Lazy skip-lists: An algorithm for fast hybridization-expansion quantum Monte Carlo

P. Séron
Département de physique and Regroupement québécois sur les matériaux de pointe, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1

Chuck-Hou Yee
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

Kristjan Haule
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA

A.-M. S. Tremblay
Département de physique and Regroupement québécois sur les matériaux de pointe, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1 and Canadian Institute for Advanced Research, Toronto, Ontario, Canada, M5G 1Z8

(Received 29 March 2014; revised manuscript received 18 July 2014; published 28 August 2014)

The solution of a generalized impurity model lies at the heart of electronic structure calculations with dynamical mean field theory. In the strongly correlated regime, the method of choice for solving the impurity model is the hybridization-expansion continuous-time quantum Monte Carlo (CT-HYB). Enhancements to the CT-HYB algorithm are critical for bringing new physical regimes within reach of current computational power. Taking advantage of the fact that the bottleneck in the algorithm is a product of hundreds of matrices, we present optimizations based on the introduction and combination of two concepts of more general applicability: (a) skip lists and (b) fast rejection of proposed configurations based on matrix bounds. Considering two very different test cases with d electrons, we find speedups of ~ 25 up to ~ 500 compared to the direct evaluation of the matrix product. Even larger speedups are likely with f electron systems and with clusters of correlated atoms.

DOI: 10.1103/PhysRevB.90.075149 PACS number(s): 71.15.—m, 71.20.—b, 02.70.Ss, 71.27.+a

I. INTRODUCTION

One of the frontiers in condensed matter systems is the realistic modeling of strongly correlated materials. The combination of density functional theory (DFT), a workhorse for electronic structure calculations of weakly correlated materials, with dynamical mean field theory (DMFT) [1], originally designed to handle strong correlations in simple models, has allowed insights into strongly correlated compounds at a level of realism previously unobtainable. Comparisons of theory and experiment are routine.

Lying at the core of this combined theory, named DFT + DMFT [2–8], is the solution of a generalized Anderson impurity model. In the strongly correlated regime, the method of choice is the hybridization-expansion continuous-time quantum Monte Carlo (CT-HYB). Enhancements to the CT-HYB algorithm are important for bringing new physical regimes within the reach of current computational resources.

In the context of model Hamiltonians, CT-HYB is also commonly used as an impurity solver for cluster generalizations of DMFT [13–25]. CT-HYB is particularly useful in the strongly correlated case [26].

Here, we present optimizations based on skip lists [28] and matrix bounds which result in a speedup of ~ 25 up to ~ 500 as compared to the straightforward implementation of CT-HYB (see Fig. 1). These speedups are obtained for two very different test cases where the materials contain correlated d electrons. In the low-temperature and strongly correlated regimes of interest, the most computationally expensive step is the evaluation of the expectation value of a time-ordered sequence of (possibly thousands of) creation and annihilation operators acting on the impurity degrees of freedom, schematically written as $\langle d_1^\dagger d_2 d_3 d_4 d_5 d_6 \cdots \rangle$. The complex structure of impurity states is inserted between each operator, the problem is transformed into (the trace of a product of hundreds of matrices), called the impurity trace, which must be evaluated at each Monte Carlo step.

Our algorithm, which we dub “lazy skip-lists,” optimizes the matrix product by combining the following two ideas. First, we take advantage of the fact that between subsequent Monte Carlo steps, the matrix product only changes by the insertion or removal of two operators, for example, $\langle d_1^\dagger d_2 d_3 d_4 d_5 d_6 \cdots \rangle \rightarrow \langle d_1^\dagger d_2 d_3 d_4 d_5 d_f d_5 d_6 \cdots \rangle$ in the case of insertion. We observe that the intermediate products $d_1^\dagger d_2 d_3 d_4 d_5 d_6 \cdots$ are unchanged. Using skip lists, we efficiently store these intermediate products to minimize recomputation. Historically, the expense of computing this matrix product led to optimizations, beginning with the left-right storage of intermediate products [11]. This algorithm was of order $O(k)$, where k is the order in perturbation theory. In Refs. [12,29] a faster binary-search-tree algorithm, scaling as $O(\log(k))$, was proposed. Skip lists are statistically as efficient as binary trees [28], better match the structure of the impurity trace, and are simpler to implement.

Second, we often can avoid performing the matrix product altogether by quickly rejecting proposed Monte Carlo
moves via a “lazy” evaluation of the impurity trace. This implementation was first carried out in Ref. [30] and already successfully used in Ref. [31]. In normal Monte Carlo sampling, we compute an acceptance probability \(p \) for a proposed move, then accept the move if \(p > u \), where \(u \) is a number chosen randomly in \([0, 1]\). Here, we do the opposite: we flip the metaphorical Monte Carlo coin to obtain \(u \) first, then lazily refine bounds \(p_{\text{min}} < p < p_{\text{max}} \) on the acceptance ratio until \(u \) drops outside the bracketed interval. The bounding is fast, involving only scalar operations, and rapidly converges because the time-evolution operators in the time-ordered operator sequence often involve exponents which vary tremendously in magnitude.

We begin by reviewing the CT-HYB algorithm in Sec. II, focusing on the aspects relevant to this work. In the next two sections (Secs. III and IV), we present independently the key algorithmic advancements, skip lists, and lazy-trace evaluation, which are combined to form the final method in Sec. V. We benchmark our optimizations in Sec. VI. The Appendix explains how the trace can be bounded using matrix norms.

II. CONTINUOUS-TIME QUANTUM MONTE CARLO

In this section, we briefly summarize the key steps which generate the hybridization expansion formulation of impurity models. The goal is to quickly arrive at a description of the structure of the impurity trace imposed by the physics and to discuss what it implies for the Monte Carlo algorithm.

A general impurity model consists of a local interacting system \(H_{\text{loc}} \) describing the impurity degrees of freedom, immersed in a noninteracting electronic bath:

\[
H = H_{\text{loc}}(d_i^\dagger, d_i) + \sum_\mu \epsilon_\mu a_\mu^\dagger a_\mu + \sum_i (V_\mu a_\mu^\dagger d_i + \text{H.c.}),
\]

where \(\epsilon_\mu \) is the bath dispersion and \(V_\mu \) the amplitude for particles to hop from the impurity orbital \(i \) to the bath orbital \(\mu \). The spin index is absorbed into the index \(i \).

A. Partition function sampling

In CT-HYB, we transform the partition function \(Z = \text{Tr} e^{-\beta H} \) of the impurity model into a form amenable for Monte Carlo sampling (described in detail in Ref. [12]). One uses the interaction representation with the unperturbed Hamiltonian the sum of the local and bath Hamiltonians. The hybridization is the interaction term. Then, we expand the resulting expression in powers of this hybridization term, giving

\[
Z = Z_{\text{bath}} \sum_{k=0}^\infty \int_0^\beta d\tau_1 \cdots \int_{\tau_{k-1}}^\beta d\tau_k \int_0^\beta d\tau_1' \cdots \int_{\tau_{k-1}'}^\beta d\tau_k',
\]

\[
\times \sum_{i_{1,1}', \cdots, i_{1,k}'} \sum_{w_1} w_1(i_{1,1}, \tau_1, \cdots, i_{1,k}', \tau_k'),
\]

where the integrand is

\[
w_1(i_{1,1}, \tau_1, \cdots, i_{1,k}', \tau_k') = \text{Det} \text{Tr}_{\text{loc}} \left[T e^{-\beta H_{\text{loc}}} \times d_1(\tau_k)d_{i_1}^\dagger(\tau_1') \cdots d_i(\tau_k)d_{i_1}^\dagger(\tau_1') \right].
\]

Since the impurity and bath degrees of freedom are decoupled, the trace over the bath has been performed. The bath is contained in the determinant of a \(k \times k \) matrix \(\Delta \) with elements evaluated from the hybridization function \(\Delta_{\mu i, \mu j} = \Delta_{\mu i, \mu j}(\epsilon_\mu - \epsilon_i) \) whose Matsubara definition is

\[
\Delta_{\mu i}(i \omega_n) = \sum_{\mu j} V_{\mu i} V_{\mu j} \delta(i \omega_n - \epsilon_\mu),
\]

The average over the impurity \(\text{Tr}_{\text{loc}} \) in general cannot be further decomposed. Its evaluation requires converting the sequence of operators (and intervening time-evolution operators) into matrices in the basis of the impurity Hilbert space \(\mathcal{H} \).

The Monte Carlo sampling of Eq. (2) proceeds as follows: the integrands \(w \) of the partition function sum define the weights of a distribution over the configuration space \(\{i_{1,1}, \tau_1, \cdots, i_{1,k}', \tau_k'\} \) which is sampled with the Metropolis-Hastings algorithm. At each step, a new configuration is proposed with probability \(A \) and accepted with probability

\[
p = \min \left(1, \frac{A'(w')}{A(w)} \right),
\]

where \(w \) and \(w' \) are the weights of the new and the old configuration, respectively, and \(A' \) is the proposal probability of the inverse update.

The bottleneck is that the weights \(w \), and the expensive impurity trace contained within, must be computed in order to decide whether to accept each new proposed configuration. In terms of computational effort, if \(N = \|\mathcal{H}\| \) is the size of the local Hilbert space, and we are sitting at perturbation order \(k \), the impurity trace costs \(O(N^3 k) \) while the hybridization determinant costs \(O(k^3) \) [which can be reduced to \(O(k^2) \) for local updates]. The average expansion order \(\langle k \rangle \), which is typically in the hundreds, is proportional to the inverse
temperature β, whereas the N grows exponentially with the number of impurity orbitals ($N = 1024$ for the d shell). Thus, except at very low temperatures, the calculation of the impurity trace is the bottleneck in these Monte Carlo simulations.

Alluded to in the above discussion, the impurity trace contains a time-evolution operator between each creation and annihilation operator, which we denote by $P_\tau = e^{-\beta H_{\text{loc}}}$. We also write $(F_\tau)_{mn} = \langle m | d_{\tau} | n \rangle$ for the matrix representation of the creation and annihilation operator, where m and n index the states in H. In this notation, the impurity trace explicitly becomes an alternating matrix product:

$$\text{Tr}_{\text{loc}} P_{\beta-\delta_t} F_{i_1} P_{\tau_1-\tau_{i_1}} F_{i_1}^\dagger \cdots F_{i_t} P_{\tau_t-\tau_{i_t}} F_{i_t}^\dagger P_{\tau_t},$$

(6)

For simplicity, we have assumed that the imaginary times in Eq. (3) are time-ordered as they appear.

B. Symmetries, sectors, and block matrices

We can make a key simplification to the impurity trace using symmetries prior to developing computational algorithms [11]. The local Hamiltonian H_{loc} generally possesses Abelian symmetries (e.g., particle number, spin, momentum), which allow us to decompose the impurity Hilbert space as a direct sum $H = \bigoplus_{\alpha=1}^N H(q)$. Here, q enumerates the sectors of the Hilbert space, each of which is characterized by a definite set of quantum numbers (e.g., particle number, spin, momentum).

Using these symmetries one defines a new basis for the creation-annihilation operators. A creation or annihilation operator, which we denote by a_{α}, defined by the string $q_0 \rightarrow q_1 := s_\alpha(q_0) \rightarrow \cdots \rightarrow q_2 := s_\alpha(q_{2\alpha-1})$. The last sector $q_2\alpha$ is equal to q_0 by construction, since the proposed Monte Carlo updates are always chosen to preserve this property. The impurity trace then decomposes into a sum over sector traces,

$$\text{Tr} \ P a_{\alpha_1} \cdots a_{\alpha_t} P = \sum_{q_0} \text{Tr} \ P q_{2\alpha}(q_{2\alpha-1}) \cdots \times F_{\alpha}(q_0) P(q_0), \quad (7)$$

and only sectors q_0 which are not mapped on 0 contribute. Such mapping on 0 generally occurs because of the Pauli principle. In a typical 3d impurity model with the full atomic Coulomb interaction, the number of surviving strings ranges from 1 to ~ 20.

III. SKIP LISTS

We first begin with a motivation for skip lists. Then the skip list and the way it is used to store matrix subproducts is described. The final subsection explains how matrix multiplications can then be performed efficiently when operators are inserted or removed.
to find a strategy to maintain an equilibrated structure when inserting or removing matrices at random places. Equilibrated means that a subproduct is ideally always the product of two subproducts one level below.

For simplicity, we ignore here the block structure of the operator matrices. That discussion is postponed to Sec. V.

B. Skip lists and matrix products

In Fig. 2, the heights of the vertical bars associated with the matrices organize the arrows, that is the subproducts. The original matrices are stored at level \(l = 0 \). There is an arrow starting and ending at the top end of each bar with level \(l > 0 \), except for the first bar on the right where no arrow ends. When inserting an operator, we are free to associate a bar with this operator at a height that we may choose. The choice of skip lists \([28]\) is to take a height \(l \) that is determined randomly according to the distribution \(2^{-l-1} \); that is, half of the bars are on average at least level one, a quarter at least level two, and so on. This keeps the skip list on average equilibrated. A typical arrangement is shown in Fig. 3. Here we include the propagators, and an arrow stores the subproducts starting with the operator at its tail and ending with the propagator at its head. However, to include the first propagator \(P \) appearing on the right, we need to store the product of \(P \) with the identity matrix at the first bar. Since the heights are chosen randomly, there is no guarantee that the height of that first bar exceeds all others as in Fig. 2. Hence we just assume that it is at a height that exceeds all others.

To calculate the product after insertion of one operator in this skip list, we can proceed as in Fig. 2 if the randomly chosen height of the associated bar is zero. This changes if the height is not zero. More importantly, two operators and sometimes more must be inserted or removed at once in Monte Carlo simulations \([32]\), whereas the product is needed at the end only. Also, combinations of insertions and removals are sometimes necessary to make the sampling more efficient. Hence, we need a flexible multiplication algorithm, which is discussed in the next section.

C. Skip lists and matrix multiplication

To calculate the new product after an arbitrary sequence of insertions and/or removals with a minimal number of matrix multiplications, we proceed in two steps. First the matrices are inserted and/or removed, one after the other. At each time, this invalidates some subproducts \(M = P F \cdots F P \), stored in the blue arrows. These subproducts are thus emptied. Once the new configuration is proposed, the product is calculated by filling up the emptied subproducts.

When inserting an operator in the skip list, a subproduct expires if the operator lies between the head and the tail of the corresponding arrow; see Fig. 3. To identify all such arrows, we follow the skip list insertion algorithm \([28]\) and begin at the tail of the top arrow. This arrow necessarily spans over the operator to insert, and its subproduct is emptied. Moving down the red arrow on the right in Fig. 3 to the next lower blue arrow, we test if the operator to insert lies between the head and tail of this arrow. If yes, the subproduct is emptied, and the next lower blue arrow is tested. If not, the arrow is traversed and the process is repeated until we end up by emptying the subproduct at the blue arrow just above the place where the operator will be inserted. Proceeding likewise for removal, all expired subproducts are emptied once the new configuration is proposed \([33]\).

To fill up the emptied subproducts \(M \) once the insertions and/or removals are completed, we proceed recursively. The subproduct at an arrow \(A \) can be calculated from the subproducts \(M_a, M_{a+1}, \ldots M_b \) stored at the arrows \(A_a, A_{a+1}, \ldots, A_b \) just below. If all of these subproducts have not been emptied, they are multiplied while traversing the arrows \(A_a \rightarrow A_{a+1} \rightarrow \ldots \) and the result is stored at the arrow \(A \). If however one of the subproducts \(M_i \) at an arrow \(A_i \) is missing, we recursively calculate this subproduct from the subproducts below the arrow \(A_i \). This recursion stops at the latest at the bottom of the skip list, where the operators are multiplied with the propagators. The total product is obtained by starting the recursion at the top arrow.

Once the new product is calculated, we decide whether to accept or reject the proposed configuration. To recover the skip list in case of rejection, a backup is taken at the beginning of a trial step.

IV. LAZY-TRACE EVALUATION

In the regimes of interest (moderate to low temperatures \(T \lesssim 100 \text{ K} \), strong Coulomb interaction \(U \gtrsim 5 \text{ eV} \)), the probability of accepting a proposed move is low, generally lying below 10% and often below 1%. The Pauli principle and time-evolution operators \(e^{-\Delta t \hbar c} \) place strong constraints on the insertion/deletion of operators, causing the low acceptance probabilities. Developing techniques to reject improbable moves with minimal computational effort is crucial.

The Pauli constraint is computationally negligible, as it can quickly be determined by following the string of sector mappings \(q_0 \rightarrow q_1 \rightarrow q_2 \cdots \) and checking that not all strings are annihilated (i.e., mapped to 0). In contrast, the time-evolution operators are interspersed within the matrix product. Proposed moves often drive transitions to high-energy sectors, where the exponentials \(e^{-\Delta t \hbar c} \) strongly suppress the acceptance probability. Here, we describe a “lazy-trace” algorithm which leverages these exponentials to efficiently reject moves with low acceptance probability, largely avoiding a full evaluation of the impurity trace.
The first component of the lazy-trace algorithm [30] is fast bounding of the impurity trace in each symmetry sector. Writing in shorthand Eq. (7) as \[\text{Tr} = \sum_q \text{Tr}_q, \] assume we can quickly compute bounds \[B_q \geq |\text{Tr}_q| \] for each sector trace. This provides a maximum bound on the trace via the triangle inequality:

\[
|\text{Tr}| \leq \sum_q |\text{Tr}_q| \leq \sum_q B_q. \tag{8}
\]

Using the expression for the acceptance probability \[p \] [Eq. (5)], and writing the weight of the new configuration as \[w = \text{Det} \cdot \text{Tr} \], we obtain an upper bound

\[
p_{\text{max}} = \frac{A'}{A} \left| \text{Det} \right| \frac{\sum_q B_q}{w'}. \tag{9}
\]

This bound can be refined as follows: take the sector \[q_{\text{max}} \] with the largest \[B_q \] and compute the exact sector trace \[\text{Tr}_{q_{\text{max}}} \]. Applying the reverse triangle inequality gives

\[
|\text{Tr} - |\text{Tr}_{q_{\text{max}}}| | \leq \sum_q B_q, \tag{10}
\]

producing refined bounds

\[
\frac{p_{\text{max}}}{p_{\text{min}}} = \frac{A'}{A} \frac{|\text{Det}|}{w'} \frac{|\text{Tr}_{q_{\text{max}}}| \pm \sum_{q \neq q_{\text{max}}} B_q}{w'}. \tag{11}
\]

This procedure can be continued, generating successively tighter bounds, until we obtain the exact trace. The sequence of bounds is likely to tighten most rapidly if we choose the sectors in decreasing order of \[B_q \].

The second key idea is to flip the Monte Carlo coin first to obtain the acceptance threshold \[u \], before computing the above approximation to the acceptance probability. If \[p_{\text{max}} < u \], and it often is, we can reject the move outright. If \[p_{\text{min}} > u \] we accept the move. If neither of these possibilities occurs, we successively refine the bounds on \[p \] until we can either accept or reject the move, as illustrated in Fig. 4. In the following, we describe the construction of the bounds \[B_q \].

The basic equation is the formula

\[
|\text{Tr}A_1 A_2 \cdots A_n| \leq C \cdot \|A_1\| \|A_2\| \cdots \|A_n\|. \tag{12}
\]

\[
\begin{array}{c}
\text{Flip coin} \\
\text{Initial bound} \\
\text{Refined bound: move accepted} \\
\text{Refined bound: move rejected}
\end{array}
\]

FIG. 4. (Color online) The bounding technique within the lazy-trace evaluation. We first flip a coin to obtain a random number \[u \in [0,1] \]. Then, using submultiplicative matrix norms, we compute initial bounds \[p_{\text{min}} < p < p_{\text{max}} \] on the acceptance probability. The bounds are refined until \[u \] falls outside \[[p_{\text{min}}, p_{\text{max}}] \] and the move can be definitively accepted or rejected.

Proven in the Appendix. Here \[A_k \] are matrices (not necessarily square, although the entire product must be), \[\| \cdot \| \] is a submultiplicative matrix norm, and \[C \] is a constant which depends on the specific matrix norm chosen and the dimension of the matrices. In the lazy-trace algorithm, the spectral norm (see the Appendix) is used. For rectangular matrices \[A_i \in \mathbb{R}^{N_i \times M_i} \], the constant \[C \] becomes the dimension of the smallest matrix within the product, \[C = \min(N_i) \]. The spectral norm is unity for a creation or annihilation operator, and \[e^{-\Delta \text{Tr}_p(\delta)} \] for time-evolution operator, where \[E_0 \] is the ground-state energy of the sector \[q_i \] and \[\Delta \tau_i \] is the time spent in this sector.

Application to the trace of a single sector in Eq. (7) gives

\[
|\text{Tr}P(q_{2k}) F_{q_2 \cdots 1} \cdots F_{q_1} P(q_0) P(q_0)| \leq \min \{ \text{dim } H(q_i) \} \cdot \exp \left(-2k \sum_{i=0}^{2k} \Delta \tau_i E_0(q_i) \right), \tag{13}
\]

While extremely cheap to calculate, this bound precisely captures the vast variations in magnitude caused by exponentials in the time-evolution operators. The bounds for each sector \[B_q \] decrease extremely rapidly; in many cases, the initial \[p_{\text{max}} \] is sufficient to reject a proposed move.

When a move is accepted, the trace needs to be evaluated exactly, up to numerical accuracy, to be able to compute the acceptance probability of the next move.

V. LAZY SKIP-LISTS

In this section, we begin by combining the algorithms presented in Sec. III and Sec. IV. In a second step, we show how the bounds on the sector traces in Sec. IV may be improved using this combined algorithm.

A. Skip lists and lazy-trace evaluation

When iteratively refining the bounds in the lazy-trace evaluation, we only need the contribution to the trace of one sector \[q_0 \] at a time in Eq. (7). To achieve this with the skip lists in Sec. III B, we begin by taking into account the block structure of the matrices.

The operators \[F \] and the subproducts \[M \] are stored in their block form as pairs \[s(q), F(q) \] and \[s(q), M(q) \] of mapped sectors and corresponding matrix blocks. Similar to the total product which splits into strings in Sec. II B, this splits a subproduct \[P F_i \cdots F_{i+1} \] into substrings \[P(q_{i+1}) F_{q_i} \cdots P(q_0) F_{q_0} \]. Such a sub-string is stored in the matrix block \[M(q_i) \] together with the mapped sector \[s(q_i) := q_{i+1} \].

To calculate one string in the total product, we only need one of the substrings of a given subproduct. When recursively updating the subproducts in the skip list as in Sec. III C, we thus have to specify at each arrow \[\mathcal{A} \] the requested substring by a start sector \[q_0 \]. To select the entries in the block matrices \[M_i \] (stored in \(\mathcal{A}_i \) below \(\mathcal{A} \)) which need to be multiplied to obtain the requested substring \[M_i(q_{i+1}) \cdots M_{i+1}(q_{i+1}) M_i(q_i) \], one maps the start sector \[q_0 \] into \[q_0 \] using the sector mappings \[s_i \] at the arrows \[\mathcal{A}_i \], namely \[q_0 \rightarrow q_{i+1} := s_i(q_0) \rightarrow \cdots \rightarrow q_0 := s_{i-1}(q_{i-1}) \]. The product is then stored in the matrix
block \(M(q_n) \) at the arrow \(A \), together with the mapped sector
\(s(q_n) := q_{b+1} \). Again, if a matrix block \(M_i(q_i) \) at an arrow \(A_i \)
is empty, we proceed recursively.

The combination of the skip lists and the lazy-trace evaluation is now straightforward. First, expiring substrings are emptied when inserting and/or removing operators in the skip list, similar to Sec. III C. Once the new configuration has been proposed, we start the recursion at the top arrow of the skip list separately for each sector needed by the lazy-trace evaluation.

B. Subproducts and trace bounds

The bounds on the sector traces in Eq. (13) are calculated from the product of the norms of each propagator and operator individually. Tighter bounds may be obtained by using the norms of stored subproducts. In Fig. 2 for example, the trace is bounded by

\[
|\text{Tr}| \leq C \cdot \|F_8 F_7 \|F_6 \|F_5 \|F_4 \|F_3 F_2 F_1 \|
\]

after insertion of the matrix \(F \). Such bounds for a given sector trace \(\text{Tr}_s \) are obtained recursively, in a manner analogous to the block-matrix product of the corresponding string.

Calculating the spectral norm of a stored matrix block is expensive, so the Frobenius norm is used here instead. While this norm is larger than the spectral norm, its numerical cost is small compared to a matrix multiplication. However, this means that this bound is not necessarily smaller than the one in Sec. IV. Other choices for the norms are discussed in Appendix.

VI. TWO EXAMPLES

In this section we benchmark the skip lists (Sec. III taking into account the block structure described in Sec. VA), the lazy-trace evaluation (Sec. IV), and the lazy-skips lists (Secs. VA and VB). To this end, we consider Anderson impurity problems that appear in DFT + DMFT electronic structure calculation for thin film of \(\text{LaNiO}_3 \) (LNO) \cite{27,34} and \(\text{FeTe} \) bulk compound \cite{4}, using experimental structure of Refs. 35,36, respectively.

In both cases, the impurity is a \(d \)-shell system, and the associated Hilbert space splits into 132 sectors. The Slater parametrization of the Coulomb interaction is used. The average expansion orders are \(\langle k \rangle \approx 225 \) for LNO and \(\langle k \rangle \approx 515 \) for FeTe. The benchmarks are performed using two kinds of Metropolis-Hastings updates: (i) standard ones \cite{37} with low acceptance ratio and (ii) efficient ones \cite{38} with acceptance ratio higher by a factor 10 to 25.

Figure 1 shows the speedups of the different optimizations presented in this paper compared with, as a baseline, a straightforward implementation (Sec. II B) that takes the block structure into account. Note the logarithmic scale. The skip lists alone accelerate the simulations for both test cases by a factor of about 20. While the lazy-trace evaluation gives a substantial speedup for LNO, essentially no speedup is obtained for FeTe. This also shows in the performance of the combined algorithms, the lazy skip-lists, which, with speedups of order 500, perform much better for LNO. The reasons for this difference between LNO and FeTe will become clear below.

Figure 5 shows, in addition to the speedup, the reduction in matrix multiplications and the reduction in floating-point operations. While combining different optimizations does not always result in an additional speedup, in our case the lazy-trace evaluation and the skip lists work well together.

The reduction in matrix multiplications for the lazy skiplists (Sec. VA) is essentially the product of the reductions for the lazy-trace evaluation and the skip lists separately. While the reduction in matrix multiplications for the lazy skip-lists in Sec. VB is less evident to anticipate, there is always an additional speedup that comes from calculating the bounds using the norms of the stored subproducts in the skip list.

Note that speedups are smaller than expected from the reduction in matrix multiplications and floating-point operations, in particular for the lazy skip-lists of Sec. VB. This is due
to the optimization overhead and to the fact that other parts than the local-trace evaluation in the CT-HYB expansion, such as the evaluation of the determinants, are beginning to take a significant proportion of the total time.

To understand why most of the speedup comes from the lazy-trace evaluation for LNO while it comes from the skip list for FeTe, it is useful to consider the sector weights. We use standard updates. In Fig. 6(a) we show results for LNO and in Fig. 6(b) results for FeTe. Note the logarithmic vertical scales. The top panels display the average weights (Tr_q/Tr) of the various sectors in the partition function expansion. The lower panels of Figs. 6(a) and 6(b) show for each sector q the frequency with which Tr_q is calculated for a sector (lower panel).

Consider first the case of LNO. In contrast to the baseline, it is clear in Fig. 6(a) that the sector frequencies for the lazy-trace evaluation are largely proportional to the sector weights. Only a few sectors with $N = 7$ to 8 collect most of the weight, and this not only shows where the large reduction in matrix multiplications in Fig. 5(a) comes from, but also why the reduction in floating-point operations is even bigger. Indeed, the sectors with $N = 7$ to 8 have generally smaller dimension than the ones with $N = 4$ to 6 which are not calculated most of the time in the lazy-trace evaluation.

Given their negligible sector weights, it would also be possible in principle to just drop the sectors with $N = 0$ to 3. However, the gain from this is small since these sectors have rather small dimension. Dropping the sectors with $N = 4$ to 6 involves more important approximations so one would need careful checks that the truncated sectors do not affect the results. The lazy-trace evaluation avoids the calculation of these sectors most of the time and there is no approximation involved.

Moving to the case of FeTe in Fig. 6(b), one notices that the sector weights are more uniformly distributed. There are fewer sectors with extremely small weights. Hence the lazy trace evaluation does not give a substantial speedup. The skip lists on the other hand still reduce the number of matrix multiplications.

VII. DISCUSSION AND CONCLUSION

Quantum Monte Carlo algorithms generally involve multiplications of large matrices. In the case of the strong-coupling-based CT-HYB algorithm, this is a limiting factor. When updates generate new configurations that have a large probability of being rejected, we have shown that an efficient way of speeding up the algorithm is to first choose the random number and then use matrix norms to bound the Metropolis rejection/acceptance probability. This is called lazy-trace evaluation. Skip lists on the other hand provide a way to store intermediate matrix products and avoid in all circumstances the recomputation of some of the matrix products. The combination of both algorithms, lazy skip-lists, provides a robust algorithm that guarantees large speedups when the trace evaluation takes a large fraction of the computing time.

The speedup of the trace evaluation achieved with the lazy skip-lists algorithm is such that parts of CT-HYB that usually take negligible time compared with the evaluation of the trace, for example measurements and calculation of determinants, can now become the limiting factor.

The tree structure introduced in Refs. [12,29] transforms an $O(k)$ to an $O(\log k)$ problem where k is the order in perturbation theory. This substantial gain in speed also applies to skip list. The multiplication algorithm where multiple insertions are done before products are recomputed, as presented in Secs. III C and V A, could be implemented in binary search trees [12,29] as well. We find skip lists however easier to implement for at least two reasons: first they use simple probabilistic rebalancing rather than explicit rebalancing by tree rotations; second, a linked list is more natural for a product of operators and propagators than a binary tree. For the same reasons, skip lists facilitate the exploration of new updates such as exchanging subsequences of operators. Also, skip lists allow control of memory requirements by changing the probability p to add a level to an inserted bar after an update. We have not discussed further improvements in speed that can be obtained by using the associative property of matrix multiplication to speedup the calculation of products of rectangular matrices,
or many other possible optimizations that are dependent on computer architecture, such as caches, parallelism, etc.

It has also been proposed to use Krylov-space methods to calculate the trace [39]. For large enough systems, this approach should be the most efficient one, but for cases of practical interest it might not be. There are optimizations for both the Krylov and the matrix formulations. We first compare the two formulations without optimizations. To this end we consider the number of operations involved in applying both a creation/annihilation operator and a propagator to a state represented by a vector of dimension d in a given symmetry sector. In the matrix formulation, the expensive operation comes from the creation/annihilation operators and costs d^2 operations. In the Krylov formulation, the expensive operation is the application of a propagator to a state: it costs the number of operations N_H involved in the application of the Hamiltonian to a state, times the number of Krylov steps m. This scales like $m \times d$. Indeed, taking the product of d and the number of terms in the second quantized Hamiltonian n_H is one way of estimating N_H. Another estimate, which is necessarily smaller, is obtained by actually counting the number of nonvanishing elements in the Hamiltonian matrix (of order d). Proceeding here with this last estimate for an f-shell system in a tetragonal environment, the sector with the biggest dimension has $d = 313$ and $N_H = 17077$. The relevant ratio to compare the two approaches in this specific case is thus $m \times 17077/(313)^2 = m \times 0.174$. It was found in Ref. [39] that m can be small. However, highly optimized libraries are available when memory is accessed in a regular way, as in the matrix formulation, while the memory access is irregular in the Krylov algorithm. Hence we think that the matrix formulation without the optimizations discussed in this paper can be as fast as the Krylov formulation, even for typical f-shell impurities. Practical implementations must be compared to decide.

For the general case, note that while the lazy-trace idea can be applied to the Krylov algorithm, it is less clear that one can implement skip list for this algorithm. Hence, while the Krylov algorithm needs to be repeated k times for an order-k term in perturbation theory, the skip-list (or binary tree [12,29]) algorithm allows us to change that factor to $\log(k)$. Other optimizations of the Krylov algorithm have been proposed recently [40].

Some of the ideas developed here can be directly applied to other problems treated by Monte Carlo methods. For example the rejection method based on bounds (see Fig. 4) can be applied to classical Monte Carlo simulations for spins with long-range interactions [41]: Take an Ising spin system and consider a single spin-flip Monte Carlo update. The energy associated with this spin can be bounded by

$$E_{i,\text{min}, \text{max}} = S_i \sum_{j < R} J_{i,j} S_j \pm S_i \sum_{j > R} J_{i,j}.$$

(15)

The bounds can be refined by successively increasing the range R. The sums over absolute values of exchange constants need to be calculated only once. Similar problems are encountered in spin-ice models with dipolar interactions [42], ordered and/or random spins with both dipolar and RKKY interactions. Other schemes relying on different ideas also exist and may be faster [43]. But this remains to be tested.

Speedups by factors in the hundreds that can be achieved with the lazy skip-lists algorithm will bring new physical regimes in correlated electronic-structure calculations and cluster generalizations of dynamical mean field theories within reach of computational power. Applications of such methods extend as far as molecular biology [44].

ACKNOWLEDGMENTS

We are grateful to M. Boninsegni, A. Del Maestro, M. Gingras, E. Gull, H. Ishizuka, R. Melko, O. Parcollet, M. Troyer, P. Werner, and especially to S. Allen, D. Sénéchal, and J. Goulet for useful discussions. This work has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), by MRL Grant No. DMR-11-21053 (C.Y.) and KITP Grant No. PHY-11-25915 (C.Y.), by NSF Grant No. DMR-1405303 (K.H.), and by the Tier I Canada Research Chair Program (A.-M.S.T.). The ALPS libraries [45,46] were used in the code. Simulations were run on computers provided by CFI, MELS, Calcul Québec, and Compute Canada.

APPENDIX: TRACE BOUNDS VIA MATRIX NORMS

Different matrix norms give different bounds for the magnitude of the trace of a matrix product. We consider here induced norms

$$\|A\|_p := \max_{|x|_p = 1} \|Ax\|_p,$$

where $A \in \mathbb{R}^{N \times N}$, $x \in \mathbb{R}^N$, and $\|x\|_p := (\sum_i |x_i|^p)^{1/p}$ with $p \geq 1$, and the Frobenius norm

$$\|A\|_F := \left(\sum_{ij} A_{ij}^2\right)^{1/2}.$$

1. Induced norms

For the induced norms, one obtains $|A_{ii}| \leq \|Ae_i\|_p \leq \|A\|_p$, where e_i is the standard basis of \mathbb{R}^N, and hence $|\text{Tr} A| \leq N \cdot \|A\|_p$.

This immediately generalizes to a product

$$\text{Tr} \prod_{l=1}^n A_l \leq \min\{N_l\} \cdot \prod_{l=1}^n \|A_l\|_p$$

(A1)

of rectangular matrices $A_l \in \mathbb{R}^{N_l \times M_l}$, since induced norms are submultiplicative. From the cyclicity of the trace, the prefactor in Eq. (12) becomes $C = \min\{N_l\} = \min\{M_l\}$, the minimal row or column dimension of all the matrices within the product.

For a propagator P_τ, written in the eigenbasis, one obtains $\|P_\tau\|_p = \exp(-\tau E_0)$, where E_0 is the smallest eigenvalue. These norms are hence well suited for the lazy-trace evaluation in Sec. IV. Especially convenient is the spectral norm ($p = 2$). This norm is one for annihilation or creation operators since

$$\|d\|_2 = \max_{\langle \psi | \psi \rangle = 1} \sqrt{\langle \psi | d^\dagger d | \psi \rangle} = 1.$$
by the Pauli principle, and only the exponentials of the propagators enter into the bound given in Eq. (A1).

2. Frobenius norm

For the Frobenius norm, Cauchy-Schwarz states

\[|\text{Tr}AB| \leq \|A\|_F \cdot \|B\|_F, \]

and as the Frobenius norm is submultiplicative

\[
|\text{Tr} \prod_{i=1}^{n} A_i| \leq \prod_{i=1}^{n} \|A_i\|_F, \quad (A2)
\]

where \(n \geq 2 \). The Frobenius norm is numerically cheap, so Eq. (A2) can be used for the lazy skip-lists in Sec. VB. Other numerically cheap choices are the induced norms with \(p = 1 \) and \(p = \infty \).

[33] Arrows starting from the bar of an inserted operator are always empty.
[37] Two operators are inserted anywhere between 0 and \(\beta \).
[38] Two operators \(d_i \) with given orbital and spin index \(i \) are inserted between two consecutive operators with the same orbital and spin index \(i \), not taking into account the position of operators with other orbital and spin indices. Both orderings \(d_i d_i \) and \(d_i d_i \) of the inserted operators lead to a finite trace. These updates are in principle ergodic (we assume that the hybridization function is diagonal in \(i \)) and give the same results as the standard updates, however with less noise for fixed amount of CPU time. The acceptance ratio is about 10–25 times higher.
[41] This was suggested by Hiroaki Ishizuka as a further application of our rejection method based on bounds.