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We present a detailed analysis of the one-electron physics of the actinides. Various linear muffin-tin orbital
basis sets are analyzed in order to determine a robust bare Hamiltonian for the actinides. The hybridization
between f and spd states is compared with the f-f hopping in order to understand the Anderson-like and
Hubbard-like contributions to itineracy in the actinides. We show that both contributions decrease strongly as
one moves from the light actinides to the heavy actinides, while the Anderson-like contribution dominates in
all cases. A real-space analysis of the band structure shows that nearest-neighbor hopping dominates the
physics in these materials. Finally, we discuss the implications of our results to the delocalization transition as
a function of atomic number across the actinide series.

DOI: 10.1103/PhysRevB.76.155126 PACS number�s�: 71.30.�h, 71.27.�a, 71.15.Mb, 71.20.�b

I. INTRODUCTION

A. Background of the actinides

It is well accepted1 that the actinides are divided into two
groups based on the behavior of the f electrons. The lighter
actinides �Th to Pu� have smaller atomic volumes, low-
symmetry crystal structures, and itinerant 5f states that par-
ticipate in metallic bonding.2 Alternatively, the heavy ac-
tinides �Am to Es� have larger atomic volumes, high-
symmetry crystal structures, and relatively localized f
electrons. Applying pressure to the heavy actinides results in
a series of crystallographic phase transitions, and the respec-
tive phases often have significantly different volumes.3,4

Transitions of this sort are often referred to as “volume col-
lapse” transitions. Given that the application of ample pres-
sure to any system of localized electrons will eventually
cause a delocalization transition, understanding what role the
electronic delocalization transition may play in the volume
collapse transition has been and continues to be an active
area of study.5,6

Plutonium is considered to be the dividing line of actinide
series, with the � and � phases associated with light and
heavy behaviors, respectively. This dual nature of Pu, along
with an enormous 25% volume collapse for the �→� tran-
sition, has made Pu the most interesting element among the
5f compounds for basic theoretical research over the past
50 years.7,8

The actinides are among the most complicated classes of
materials in terms of understanding electronic correlations
given the presence of s, p, d, and f electrons near the
Fermi surface and the unusual behavior observed in experi-
ment. Broad discussion in the literature was devoted to
the following topics: abrupt change in volume and bulk
modulus,9 unique crystal structures,2 partial localization of
f electrons,10 Mott transition,11,12 paramagnetism in light
actinides, and formation of magnetic moments in heavier
actinides �starting from Cm�.8 For this purpose, numerous
ab initio electronic structure calculations have been per-
formed for the actinides. The techniques such as local
density approximation �LDA�,13,14 generalized gradient ap-
proximation �GGA�,15 self-interaction correction–local spin
density �SIC-LSD�,16 LDA+U,17–19 and dynamical mean
field theory �DMFT�-based approaches20–22 have been
implemented.23

B. Actinide Hamiltonian

The model Hamiltonian for the actinides can be written as

H = �
ija�

Vija��cai
† f�j + c.c.� + �

ij��

tij��
f f�i

† f�j

+ �
kab

tab
spd�k�cka

† ckb + �
i����

U����f�i
† f�i

† f�i f�i, �1�

where f�i is the annihilation operator for 5f electron in state
�= �j , jz� at site i and cai is annihilation operator for conduc-
tion electrons in the state a= �n , j� , jz�� at site i. This model
can be understood as a periodic Anderson model in which
additional direct hopping is allowed between the correlated
states. Equivalently, this model can be thought of as a Hub-
bard model with additional uncorrelated states that hybridize
with the correlated states. Therefore, the model for the ac-
tinides contains the physics of both the periodic Anderson
model and the Hubbard model. In the Hubbard model, tf

competes with U to determine the degree of localization of
the electrons, while in the periodic Anderson model, V com-
petes with U. In the model of the actinides, tf and V coop-
eratively compete with U, and the relative magnitudes of tf

and V will determine the degree of Hubbard-like and
Anderson-like contributions to the itineracy of the f elec-
trons. The main focus of this study is to determine the rela-
tive importance of tf and V across the actinide series. This is
a first step toward a detailed understanding of the quantita-
tive aspects of the localization-delocalization transition in the
actinide series.

Hamiltonians of the form described in Eq. �1� containing
heavy and light electrons have appeared in various contexts
in condensed matter physics. To deal with this complexity,
this model is often reduced to a simpler model by eliminat-
ing the light electrons �i.e., spd states� to obtain an effective
Hubbard model having only the heavy �i.e., f� states. The
reduced model only describes the bands within a narrow en-
ergy window around the Fermi energy �i.e., �1 eV�. The
new renormalized f hoppings have contributions from both
the original f hopping in addition to the spd hopping. Addi-
tionally, many new interaction terms are generated, but these
are usually ignored and only the on-site Coulomb repulsion
is retained as in the original Hamiltonian. This procedure of
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one-electron “downfolding” has been used extensively to
study electronic correlations in the transition-metal oxides,
and there has been success in describing the photoemission
spectra in this manner. In the context of the actinides, it is
not clear that this approach is justified. Perhaps, the most
important issue is the nature of the localization transition in
the actinide series. In the Hubbard model, when U is suffi-
ciently large, the effective f states will be localized and the
system will be insulating. In the actinide model, when U is
sufficiently large, the f states will be localized, but the sys-
tem will not necessarily be an insulator. It is possible that the
spd states may still form a Fermi surface and give rise to a
metallic state. Therefore, the actinide model and the effective
Hubbard model differ even at a qualitative level in certain
regimes. Some aspects of localization-delocalization in the
actinide model and the Hubbard model treated by DMFT are
very similar at intermediate temperatures24 �for example,
they both exhibit a line of first order phase transitions ending
at a second order point�, but there are significant differences
at very low temperatures when hybridization becomes a rel-
evant perturbation suppressing Mott transition.25 Further-
more, the behavior at large U and high temperatures should
be quite different in the two models, due to the presence of
the broad metallic spd bands in the actinide model. Due to
these considerations, we pursue the actinide model which
should be a more accurate representation of the actinides
given that the Hubbard model is an approximate reduction of
the actinide model.

In general, the parameters V and tf depend on the choice
of basis set and therefore are not unique. This, of course,
does not affect the band structure which is basis independent,
but becomes important in the context of approximate many-
body treatments �such as DMFT� which include only local
Coulomb repulsion on the f orbitals. For these purposes, it is
clearly advantageous to set up a Hamiltonian in an orthogo-
nal basis where the f electrons are highly localized. Hence,
the secondary objective of this work is to determine a good
basis set for setting up models of the actinides. For earlier
tight-binding parametrization for actinides, see Refs. 21, 26,
and 27.

C. Motivation for this work

The idea of a localization-delocalization transition in the
actinides was brought forward by Johansson.11 Johansson
based this idea on an empirical comparison of the canonical
5f bandwidth with the estimates of the Coulomb interaction
in the form of a Hubbard U, and therefore he is starting with
the assumption of a Hubbard model to represent the ac-
tinides. As a result, the localization-delocalization transition
is designated as a Mott transition in his paper, but it should
be realized that this is a consequence of starting with an
assumption of a Hubbard model. For a later elaboration of
these ideas in the context of the �-� transition in Pu, see
Refs. 28 and 29.

The important role of d-f hybridization in actinide metals
and alloys was stressed in the early work of Jullien et al.30,31

who considered models similar to Eq. �1�.
In this paper, we reconsider the issue of the description of

the localization-delocalization transition in the actinide series

from a perspective which is motivated by recent DMFT and
LDA+DMFT works.20–22 These works utilize the actinide
Hamiltonian �i.e., both f and spd states are included� and
have provided further demonstration of the hypothesis that a
localization-delocalization transition takes place across the
actinide series. However, the relative importance of tf and V
�i.e., Hubbard-like vs Anderson-like contributions� was not
explicitly examined in these studies.

II. ORBITALS AND BASIS

A. Basis set dependence issue

While the issue of representing the Kohn-Sham Hamil-
tonian in different basis sets has been a subject of numerous
studies, the dependence of the results of correlated electronic
structure methods such as LDA+DMFT on the choice of
correlated orbitals is only beginning to be explored.32

In this study, we investigate the role of the choice of the
correlated f orbital. We first take the f electron orbital as the
f element of the LMTO basis, both in the bare and screened
representations.33,34 The LMTO basis is nonorthogonal and
therefore must be orthogonalized in order to avoid the com-
plications of solving the many-body problem in a nonor-
thogonal basis. As we will show in this study, the method of
orthogonalization has a large influence on the results. We
utilize both the Löwdin orthogonalization35 and the projec-
tive orthogonalization20,36 that were used in earlier imple-
mentations of LDA+DMFT. This effectively results in four
different constructions of f orbitals, listed in Table I.

B. Bare and screened linear muffin-tin orbital within
atomic sphere approximation scheme

The basis set of linear muffin-tin orbitals �LMTOs� has
been extensively used in electronic structure calculations.33,37

Within the atomic sphere approximation �ASA�, LMTO is a
minimal and efficient basis set with one basis function per
site I and quantum pair L= �l ,m�. Although the LMTO
method is physically transparent, the constructed basis is
nonorthogonal.

Below, we sketch the derivation of the bare and screened
LMTO basis sets within the ASA. The construction of the
bare LMTOs �IL�r� starts with the so-called envelope
function,37 which is a decaying solution of the Laplace equa-
tion centered at the site I,

KL�rI� = Kl�rI�YL�r̂I� = �w

rI
�l+1

YL�r̂I� . �2�

Here, rI=r−RI, unit vector r̂I indicates the direction of rI,
YL�r̂I� is a spherical function, and w is a scaling parameter
associated with the linear size of the unit cell.

TABLE I. Choice of basis.

Bare LMTO Screened LMTO

Löwdin transform Löwdin transform

Projective basis Projective basis
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In any atomic sphere other than I, KL�rI� can be repre-
sented as

KL�rI� = − �
I�L�

SIL,I�L�JL��rI�� . �3�

The function JL�rI�= �rI /w�lYL�r̂I� stands for the regular so-
lutions of the Laplace equation and SIL,I�L� are structure con-
stants.

Inside each atomic sphere, we construct a linear combina-
tion of the solution �IL�rI� of the Schrödinger equation and

its first derivative with respect to energy �̇IL�rI� at some
fixed energy E	.

The final step is to smoothly match the boundary condi-
tions at the surface of sphere I,


L
H�rI� 	 AIL

K �IL�rI� + BIL
K �̇IL�rI� → KL�rI� , �4�

and at the surface of sphere I� for all I�� I,


L�
J �rI�� 	 AI�L�

J �I�L��rI�� + BI�L�
J �̇I�L��rI�� → JL��rI�� .

�5�

With the array of constants A and B determined from Eqs.
�4� and �5�, we conclude the construction of bare LMTO
basis functions

�IL�rI� = 


L

H�rI� , rI � SI

− �
I�L�

SIL,I�L�
L�
J �rI�� , rI� � SI��I � I��

KL�rI� , r � interstitial.
� �6�

The Fourier transform of the LMTOs with respect to RI
−RI� gives

�kL�r� = 

L
H�r� − �

L�


L�
J �r�SkLL�, �r� � RMT

�
R

eikRKL�r − R� , �r� � RMT.� �7�

The standard LMTO method outlined above yields long-
range orbitals. The concept of a screened LMTO was created
to overcome the nonlocality of the bare LMTO basis set.34

The method is based on the idea of localizing the LMTOs by
screening with multipoles added on the neighboring spheres.
Namely, to each regular solution of the Laplace equation, we
add −�IL of the irregular solution

JL
��rI� = JL�rI� − �ILKL�rI� . �8�

The condition that the on-site Laplace solution should not
change leads to the Dyson-like equation for the screened
structure constants,

Sa,a�
� = Sa,a���a�a� + �a�Sa�,a�

�  = Sa,a�Ua�,a�, �9�

where matrix index a refers to the pair �I ,L� and implies
summation over repeated indices. The matrices �a	�l are
diagonal for each l. In our calculations, the choice of �’s
was as follows: �s=5.5166, �p=0.5242, �d=0.1382, and
� f =0.0355.

The screened and bare envelope functions are related by
the transformation Ua�,a introduced in Eq. �9�,

KL
��rI� = �

I�L�

KL��rI����I�L�,IL + �I�L�SI�L�IL
�  �10�

or in matrix notations,

Ka
� = Ka�Ua�,a,

where Ka	KL�rI� and Ka
�	KL

��rI�.
With definitions �8�–�10�, the construction of screened

LMTOs proceeds exactly in the same way as in the case of
the bare LMTOs. Namely, we construct new linear combina-
tions,


L
H��rI� 	 AIL

K��IL�rI� + BIL
K��̇IL�rI� ,

inside the sphere I by matching smoothly KL
��rI� on its sur-

face. Also, we construct new linear combinations,


L�
J��rI�� 	 AI�L�

J� �I�L��rI�� + BI�L�
J� �̇I�L��rI�� ,

inside sphere I� by matching smoothly JL�
� �rI�� on its surface

for each I�� I. Thus, we arrive at the definition of the
screened LMTO,

�IL
� �rI� = 



L
H��rI� , rI � SI

− �
I�L�

SIL,I�L�
�


L�
J��rI�� , rI� � SI��I � I��

KL
��rI� , r � interstitial.

�
�11�

The Fourier transform of the screened LMTOs with re-
spect to RI−RI� gives

�kL
� �r� = 

L

H��r� − �
L�


L�
J��r�SkLL�

� , �r� � RMT

�
R

eikRKL
��r − R� , �r� � RMT.�

�12�

The Hamiltonian and overlap matrices in screened and bare
LMTO representations �H, O and H�, O�, respectively� are
related through the transformation U introduced in Eq. �9�,

H� = U†HU , �13�

O� = U†OU . �14�

Having constructed the basis, one has to solve the gener-
alized eigenvalue problem

�H�k� − i�k�O�k��i�k� = 0. �15�

As described above, it is necessary to transform to an or-
thogonal basis when performing many-body calculations,
such as DMFT, in order to avoid the difficulties associated
with a nonorthogonal basis.
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C. Löwdin orthogonalization

Löwdin orthogonalization35 is a straightforward orthogo-
nalization of the Hamiltonian which uses no information
from the basis set,

H̃�k� =
1

�O†�k�
H�k�

1
�O�k�

. �16�

As will be shown below, this orthogonalization procedure
may lead to a further mixing of L characters among the
LMTOs and hence unphysical results.

D. Projective orthogonalization

A physically motivated orthogonalization procedure is to
find a basis where each function contains the maximum
amount of a particular L character. This approach proposed
by Haule et al. was used in earlier LDA+DMFT studies of
cerium and plutonium.36 This basis has an important advan-
tage, being that the “f electron” in this basis has a maximal f
character. Mathematically, the noninteracting spectral func-
tion of the f electron Green’s function in this basis agrees
with the LDA projected density of states having f character,
as shown in the Appendix. This allowed us to identify the f
occupation in this basis set with the occupation numbers in-
ferred from electron-energy-loss spectroscopy and x-ray ab-
sorption, which are sensitive to angular momentum selection
rules.38

Here, we follow Ref. 36. It is straightforward using Eqs.
�7� and �14� to show that the overlapping matrix within the
muffin tin �MT� sphere can be represented as39

OkL1L2
= �L1L2

ol1
�HH� − SkL1L2

† ol2
�JH� − ol1

�HJ�SkL1L2

+ SkL1L�
† ol�

�JJ�SkL�L2
. �17�

The quantities ol
HH, ol

JH, ol
HJ, and ol

JJ are numbers in each
l subspace. For A and B representing H or J,

ol1
AB = �
L1

A �
L2

B ��L1L2
. �18�

In each L subspace, the overlapping matrix is

Ok = o�HH� − Sk
†o�JH� − o�HJ�Sk + Sk

†o�JJ�Sk. �19�

In order to find the transformation to the orthonormal base,
we must represent O�k� as the square of a matrix. As we
show below, the most intelligent choice would be

O�k� � �H − JSk�†�H − JSk� �20�

for each L subspace. Here, H and J are diagonal matrices
proportional to unity in each subspace of definite L just like
the overlaps o�HH� defined above.

The above equation cannot be made exact because the
overlap numbers are obtained by integration over the radial
part of wave functions. However, in most cases, the overlap
numbers can become very close to their approximations,

ol
�HH� � Hl

*Hl, ol
�JH� � Jl

*Hl,

ol
�HJ� � Hl

*Jl, ol
�JJ� � Jl

*Jl. �21�

For each L, we have three independent equations for two
unknowns. An approximate solution can be found by mini-
mizing the following function:

�ol
�HH� − Hl

*Hl�2 + �ol
�JH� − Jl

*Hl�2 + �ol
�HJ� − Hl

*Jl�2

+ �ol
�JJ� − Jl

*Jl�2 = min. �22�

The desired transformation to the new base is

Tk = �H − JSk�−1. �23�

Finally,

Ok
new = Tk

†OkTk � 1, Hk
new = Tk

†HkTk. �24�

III. RESULTS

We perform relativistic, spin-restricted LDA calculations
within the ASA scheme. 7s, 6p, 6d, and 5f orbitals were
chosen to represent valence states, and 8�103 k points were
used in the first Brillouin zone. The same type of calculations
were carried out for four different materials, picked to evenly
represent actinide series: U, �-Pu, �-Pu, and Cm II �fcc
phase of curium�. For simplicity, we used the fcc crystal
structure for each element. The lattice parameters listed in
Table II were chosen to match the experimentally measured
volumes for corresponding phases in the case of Pu and
Cm II. For U, we use the equilibrium volume predicted
within GGA calculations.

In Fig. 1, we present the LDA band structure of Cm II
with the projections of the 5f and 6d characters. The over-
whelming contribution of the f character within a 1 eV win-
dow around the Fermi level suggests the conclusion that the
low-energy physics of actinides is completely controlled by
f-f bonding. As we show below, this intuitive interpretation
turns out to be misleading and the Hubbard model alone
cannot be considered as the low-energy Hamiltonian for ac-
tinides. One has to account for the presence of spd characters
at the Fermi level through the hybridization. Moreover, the
hybridization energy scale in actinides turns out to be larger
than the average f-f hopping.

A. Determining a robust basis for the actinides

In order to determine the optimum basis, we need to de-
fine a criterion to judge the different bases. When performing
single-site DMFT calculations, one usually only includes a
subset of local electronic interactions �i.e., on-site Coulomb
repulsion among f orbitals in this work�, and only the result-
ing local correlations are captured by DMFT �i.e., the non-

TABLE II. Lattice parameters �in Å�.

�-U 4.3378

�-Pu 4.3074

�-Pu 4.6400

Cm II 4.9726
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local self-energy due to the local interaction is neglected�.
Therefore, from the perspective of DMFT, the optimal f or-
bitals are the ones in which the on-site Coulomb repulsion U
and the resulting local self-energy are maximal with respect
to the basis set.40 In practice, it is reasonable to assume that
the orbitals with the smallest bandwidth will have the largest
on-site Coulomb repulsion, and this removes the computa-
tional burden of evaluating the four-orbital integrals associ-
ated with U. Thus, the simpler criterion is to search for the
smallest value of tf. We first investigate tf in Cm II for the
four different basis sets in Table I. The hybridization V in the
Hamiltonian �Eq. �1� may be set to zero. What remains are
the two blocks Hf and Hspd which are now completely de-
coupled. The Hamiltonian may now be diagonalized result-
ing in distinct spd and f bands, and any dispersion of the f
bands is due to tf. We begin by analyzing the bare LMTOs
orthogonalized with the Löwdin procedure �see top left panel
of Fig. 2�. Some f bands have a dispersion greater than
1.5 eV, which is unfavorable. Using the bare LMTOs or-
thogonalized with the projective procedure, the f bands are

far more narrow with a width of less than 0.4 eV �see left
bottom panel of Fig. 2�. In this case, the two sets of bands
can be identified as S= 7

2 and S= 5
2 . The Löwdin orthogonal-

ization mixes the spd states into the f states, which causes a
larger dispersion and a mixing of f bands between the S= 7

2
and S= 5

2 states. Alternatively, the projective orthogonaliza-
tion minimizes the amount of spd character in the f states,
which results in weakly dispersing f states.

The same exercise can be performed using the screened
LMTOs �see right top and bottom panels of Fig. 2�. In this
case, both the Löwdin and the projective orthogonalizations
produce nearly identical results to the projective orthogonal-
ization of the bare LMTOs. The screened LMTOs are insen-
sitive to the method of orthogonalization due to the fact that
orbitals are already well localized with a well-defined char-
acter. In conclusion, one may use bare LMTOs orthogonal-
ized with the projective procedure or screened LMTOs or-
thogonalized in an arbitrary manner as a robust basis for the
actinides. Although the screened LMTOs are advantageous
in the sense that orthogonalization is straightforward, the
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FIG. 1. �Color online� Band structure of
Cm II with indicated contributions of 5f �light
shade, purple online� and 6d �dark shade, green
online� characters. The layout is chosen to show
the 6d contribution over the 5f contribution. In-
set: Brillouin zone of the fcc structure with indi-
cated high-symmetry directions.
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FIG. 2. �Color online� Basis difference for fcc
curium. In all panels, dashed gray lines represent
the LDA band structure, solid light shade lines
�green online� represent bands for the block Hspd,
and solid dark shade lines �red online� represent
bands for the block Hf.
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projective orthogonalization is likely simpler to implement,
as compared to the screening transformation if one is starting
from the bare LMTOs.

B. Decomposition of the actinide band structures

Having established a sensible basis for the actinides, we
choose to proceed with the projective orthogonalization of
bare LMTOs. It is instructive to zero the hybridization V of
the Hamiltonian for U, �-Pu, �-Pu, and Cm II and to com-
pare the full band structure with the spd and f bands �see
Figs. 3 and 4�. The same generic behavior can be seen in all
four systems. The spd bands have a strong dispersion and
cross the Fermi energy in all cases, and the f bands are
relatively narrow. The fact that the spd bands cross the Fermi
energy in all cases is a critical point which indicates that
there will be spd states at the Fermi energy even if the f
states become completely localized. When the hybridization
V is switched on, the f and spd bands interact via V and mix.
Therefore, the strength of V can qualitatively be seen as the
difference between the full DFT bands and the f +spd bands.
The f bands are relatively wide for uranium and become
increasingly narrow as curium is approached. The spd bands
follow the same general trend, but the relative changes are
smaller. The values of V and tf will be quantified below.

C. Quantitative analysis of V and tf

In order to quantify V and tf for the different actinides, we
introduce an average V and tf so each actinide may be char-
acterized by two numbers.

First, we recall that the Hamiltonian �Eq. �1� consists of
four blocks,

H�k� = �Hspd�k� Vk

Vk
† Hf�k�

� . �25�

Then, the average strength of the hybridization per band is
defined as follows:

V̄ =
1

Nf
�1

2
Tr�H̃�k�H̃�k���1/2

, �26�

where H̃�k� stands for the Hamiltonian �Eq. �25� with
Hspd�k�=Hf�k�=0, Nf =14 stands for the number of f bands,
and �¯�	 1

Nk
�k¯. Definition �26� was chosen to match the

hybridization V of the standard Anderson model in the two-
band limit.

The average value of tf is defined as follows:

tf =
1

Nf
�Tr��Hf�k�2� − �Hf�k��2�1/2 �27�

and matches tf of the canonical Hubbard model in the limit
of the one-band model.

Table III lists the calculated values of the average hybrid-

ization V̄ and tf and the average energy for the j=5/2 and
j=7/2 levels of the f manifold relative to the Fermi energy.
The averages are generally the same for the bare and
screened LMTOs, with the exception of the average hybrid-
ization being slightly larger in the case of screened LMTOs.

These results are displayed graphically in Fig. 5. In all

cases, V̄ is significantly greater than tf. As one moves along
the actinide series from U to Cm, tf decreases as much as

four times. The average value of hybridization V̄ also de-
creases but at a slower rate, as indicated by the inset plot of
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the ratio of V̄ and tf. The strong decrease in V̄ and tf will both
contribute to the localization of the f states. In order to de-
termine if the localization could be predominantly assigned
to either a Mott or an Anderson character, explicit many-
body calculations such as DMFT would need to be per-
formed.

In order to provide further insight into the degree of lo-
cality of the basis, it is instructive to determine the fraction
of Vn and tn

f , which arises solely from nearest-neighbor hop-
ping. The corresponding values are presented in Table IV
and can also be seen in Fig. 5. First nearest neighbors con-

tribute �75% to V̄ and �90% to tf. The ratio of Vn / tn
f is also

given for the nearest-neighbor contribution, and the shape
and slopes of the two respective curves are very similar. This

analysis indicates that nearest-neighbor hopping in real space
accounts for most of the relevant one-electron physics.

D. Real-space analysis of band structure

In the above analysis, it was shown that nearest-neighbor

hopping accounts for a strong majority of V̄ and tf. There-
fore, it is suggestive that the one-electron bands can be re-
produced with relatively short-ranged hoppings tf and V. In
order to determine the degree of locality, we plot the band
structure as a function of the number of neighbors for the tf

and V hoppings �see Figs. 6 and 7�. Results are given for

TABLE III. Quantitative characteristics for actinide series �in
eV�.

V̄ tf V̄ / tf 5/2−� 7/2−�

Bare LMTO

�-U 0.483 0.188 2.569 0.442 1.353

�-Pu 0.423 0.146 2.897 −0.180 0.971

�-Pu 0.305 0.099 3.081 −0.129 1.008

Cm II 0.189 0.050 3.780 −1.152 0.238

Screened LMTO

�-U 0.490 0.188 2.606 0.444 1.355

�-Pu 0.429 0.146 2.938 −0.178 0.973

�-Pu 0.309 0.098 3.153 −0.128 1.009

Cm II 0.192 0.050 3.840 −1.151 0.238
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FIG. 5. �Color online� Histogram represents average hybridiza-
tion �first bar for each element, blue online� and average f – f hop-
ping �second bar for each element, red online� as functions of

atomic number. The shadow bars show V̄ and tf for the original

Hamiltonian and bright bars represent values V̄n and tn
f arising from

nearest-neighbor contributions only. Inset: the ratio V̄ / tf �squares�
as a function of atomic number. The ratio of nearest-neighbor con-
tributions is represented by circles.

TABLE IV. Nearest-neighbor contributions to V̄ and tf �in
eV�.

V̄n tn
f Vn / tn

f

�-U 0.371 0.172 2.157

�-Pu 0.324 0.134 2.418

�-Pu 0.232 0.090 2.578

Cm II 0.143 0.045 3.178
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FIG. 6. �Color online� Band structures of Cm II �top� and �-Pu
�bottom� when N nearest neighbors are taken into account for f
orbitals �red solid line� is compared to the LDA bands �dashed gray
line�. The band structures are plotted for the �-X direction.
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zero, first, and fourth neighbor hoppings. The hoppings tspd

are not truncated as it is clear that they will definitely have
relatively long-range hoppings. The generic results are simi-
lar for all four materials. The case with zero neighbors re-
sults in flatbands having the on-site energy of each orbital.
When first nearest neighbors are included, the resulting
bands are an excellent approximation to the full band struc-
ture. Including up to four nearest neighbors yields nearly
perfect agreement. Cm has better agreement than U for a
given number of nearest neighbors, and this reflects the
larger degree of localization in the late actinides as compared
to the early actinides. In conclusion, the band structure of the
actinides is dominated by nearest-neighbor hopping when
using an appropriate basis.

E. Conclusion

In summary, a one-electron analysis of the band structure
of the actinides was presented. We demonstrated that bare
LMTOs orthogonalized with the projective method and
screened LMTOs are robust bases, in the sense that they give
rise to f orbitals with minimal hopping. Analysis of the
Hamiltonian in these bases yielded a number of interesting
results. When switching off the hybridization V, it was

shown that the spd states cross the Fermi energy and hence
will be present at the Fermi energy even if the f electrons
become localized. Our description is in reasonable agree-
ment with the earlier work of Harrison.26 In particular, the
matrix elements of spin-orbit coupling indeed have an atom-
iclike nature and the hybridization is much larger than the
direct f-f hopping.26 However, the spd bands are not simple
plane waves and the hybridization matrix element does not
have a simple k dependence proportional to an l=2 spherical
harmonic.

Evaluation of the average hybridization V̄ and average f-f
hopping tf as a function of the actinides showed that both
quantities decrease strongly. The quantity tf decreased faster

than V̄, but V̄ was larger in all actinides. Hence, the Anderson
model of the localization-delocalization transition rather than
a multiorbital Hubbard model is needed to describe the phys-
ics of the actinides once explicit many-body calculations are
added. This is the point of view taken in recent DMFT
work,20 and no further reduction to a model containing only
f bands seems possible. Finally, a real-space analysis of the
band structure demonstrated that nearest-neighbor hopping
accounts for most of the band structure in the basis used in
this study, thus providing a tight-binding fitting of the bands
of the actinides that can be useful in further studies.
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APPENDIX: GREEN’S FUNCTION IN THE
PROJECTIVE BASE

In the DMFT approach, one needs to choose a set of lo-
calized Wannier states in which correlations are strongest. In
the context of actinides, the orbitals with the largest compo-
nent of 5f character are the appropriate set of orbitals.

For many-body calculations, it is convenient if the set of
localized orbitals is orthogonal. In this case, it is desired that
the local Green’s function is connected to the partial density
of states by the usual relation

Dmm�
l ��� �

1

2�i
�G̃loc

† − G̃loc�lm,lm�. �A1�

In other words, the localized set of orbitals needs to give rise
to the 5f spectra defined by

Dmm�
l ��� =� dr1dr2

2�i
Ylm

* �r̂1��G†�r1,r2� − G�r1,r2�Ylm��r̂2� ,

�A2�

with l=3 for actinides. Only in this case, the number of f
electrons �or the valence of the material� is connected to the
impurity f count, as obtained in the DMFT calculation.
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Using the LMTO basis set �Eq. �7�, the partial density of
states becomes

Dmm�
l ��� =

1

2�i
�
k

��Gk�
† − Gk��oHH − �Sk�Gk�

† − Gk��oHJ

− ��Gk�
† − Gk��Sk

†oJH

+ �Sk�Gk�
† − Gk��Sk

†oJJ�lm,lm�, �A3�

where the momentum dependent Green’s function is

Gk� = �Ok�� + �� − Hk − �k�−1 �A4�

and overlap numbers oAB are defined by Eq. �18�.
The projective orthogonalization �Eq. �24� leads to the

following Green’s function:

G̃k� = �Tk
†�Ok�� + �� − Hk − �k�Tk�−1, �A5�

=�H − JSk�Gk��H − JSk�†. �A6�

The local spectral function in this new base therefore be-
comes

1

2�i
�G̃loc

† − G̃loc�lm,lm�

=
1

2�i
�
k

��Gk�
† − Gk�LL�Hl

*Hl

− �Sk�Gk�
† − Gk��LL�Hl

*Jl − ��Gk�
† − Gk��Sk

†LL�Jl
*Hl

+ �Sk�Gk�
† − Gk��Sk

†LL�Jl
*Jl� , �A7�

which is equivalent to the partial density of states �Eq. �A3�
provided that the condition �Eq. �21� is satisfied. Extensive
experience shows that in the case of localized d and f orbit-
als, the condition is always satisfied to very high accuracy
�better than 1%�. Therefore, the relation between the partial
density of states and local Green’s function �Eq. �A1� is also
satisfied to high accuracy.
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