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We study the impact of dynamical correlations on the electronic structure and coherent transport

properties of Cu nanocontacts hosting a single magnetic impurity (Ni, Co, Fe) in the contact region. The

strong dynamical correlations of the impurity 3d electrons are fully taken into account by combining

density-functional calculations with a dynamical treatment of the impurity 3d shell in the one-crossing

approximation. We find that dynamical correlations give rise to the Kondo effect and lead to Fano features

in the coherent transport characteristics similar to those observed in related experiments.
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The development of nanoscale spintronics devices based
on single molecules and atomic-size junctions containing
magnetic atoms is a fascinating and challenging field of
research at the moment [1]. An important contribution to
the electronic structure and transport properties of these
devices comes from the strongly interacting d or f elec-
trons of the magnetic atoms. The strong interactions result
in dynamical correlations that give rise to interesting ef-
fects like, e.g., the Kondo effect. For example, Fano line
shapes [2] observed in the conductance characteristics of
scanning tunneling microscope (STM) experiments with
magnetic adatoms and molecular complexes on metal sur-
faces [3,4] are the result of Kondo resonances at the Fermi
level [5,6]. Recently, Fano line shapes have also been
observed in the nonlinear conductance characteristics of
chemically homogeneous nanocontacts [7] made from fer-
romagnetic transition metals (Ni, Co, Fe) [8].

State of the art calculations of the conductance and
current through atomic- and molecular-size conductors
consist in combining ab initio electronic structure calcu-
lations on the level of density-functional theory (DFT) with
the nonequilibrium Green’s function (NEGF) technique
[9]. This methodology works quite well for metallic nano-
contacts [7] predicting zero-bias conductances that are in
general in good agreement with experiments [10–12].
However, static mean-field methods like DFT cannot de-
scribe dynamical electron correlations. Thus the DFT
based ab initio transport methodology is not capable of
describing the Fano-Kondo line shapes [2] observed in
STM studies of magnetic adatoms on surfaces [3,4].

In order to explore the impact of strong dynamic corre-
lations on the transport properties of atomic- and
molecular-size conductors, we study Cu nanocontacts
hosting magnetic impurities in the contact region. Such a
system could also be realized experimentally with, e.g., the
break junction technique [7] using alloys containing mag-
netic atoms like, e.g., Cupronickel. To this end we extend
the established DFT based ab initio quantum transport
methodology to incorporate dynamic electron correlations
by adapting the LDAþ DMFTmethod [13] to the case of a
single magnetic impurity in a nanocontact. While the

strong dynamic correlations of the impurity d electrons
are fully taken into account, the rest of the system is
described on a static mean-field level in the local density
approximation (LDA) to DFT. Other recent approaches to
include dynamic electron correlations in the ab initio de-
scription of quantum transport are based on the GW ap-
proximation (GWA) [14] or the three-body scattering
formalism (3BS) [15]. While the GWA is only suitable
for weakly correlated systems due to the perturbative treat-
ment of the electron-electron interactions, the 3BS is in
principle capable of describing more strongly correlated
systems as it goes beyond perturbation theory. However,
the 3BS does not provide a satisfactory solution of the
Anderson impurity problem since the local correlations are
not taken into account properly. In contrast, in our method,
both the strong Coulomb interactions between the impurity
d electrons and the resulting local correlations are taken
into account properly.
We consider a single magnetic impurity bridging the

tips of two semi-infinite Cu nanowires of finite width
grown in the (001) direction as shown in Fig. 1. We divide
the system into three parts as shown in the right panel
of Fig. 1: Two semi-infnite leads L and R, and the cen-
tral device region (D) which contains the central magnetic
impurity with the strongly interacting 3d shell (d), and
the tips of the two electrodes. The device also contains a
sufficient part of the semi-infinite leads so that the two
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FIG. 1 (color online). Left: Atomic model of a Cu nanocontact
with a magnetic impurity in the contact region. Right: Division
of system into left (L) and right (R) electrode, and central device
region (D) containing the magnetic impurity hosting the strongly
correlated d orbitals.
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leads L and R are sufficiently far away from the scat-
tering region and the electronic structure of the leads
has relaxed to that of bulk (i.e., infinite) nanowires. The
effective one-body Hamiltonians of the device region
and leads are obtained from DFT calculations on the level
of LDA. Here, we use the supercell approach [16] to ob-
tain the effective Kohn-Sham (KS) Hamiltonians of
each part of the system prior to the dynamical treatment
of the impurity d shell and the transport calculations.
The electronic structure of the device region is calcu-
lated with the CRYSTAL06 ab initio electronic structure
program for periodic systems [17] by defining a one-
dimensional periodic system consisting of the device re-
gion as the unit cell. The device Hamiltonian HD is then
obtained from the converged KS Hamiltonian of the unit
cell of the periodic system. In the same way, the unit cell
Hamiltonians H0

L=R and hoppings VL=R between unit cells

of the left and right leads can be extracted from calcula-
tions of infinite nanowires with finite width since the
electronic structure in the semi-infinite leads has relaxed
to that of an infinite nanowire. In the LDA calculations, we
employ a minimal basis set plus effective core pseudo-
potential that takes into account only the 4s, 4p, and 3d
valence shells of the Cu atoms and the magnetic im-
purity [18].

The strong electron correlations in the 3d shell of the
magnetic impurity are captured by adding a Hubbard-like
interaction term to the one-body Hamiltonian within the

correlated subspace d: Ĥ U ¼ 1
2

P
Uijklĉ

y
i�1

ĉyj�2
ĉl�2

ĉk�1

(Einstein sum convention). Uijkl are the matrix elements

of the effective Coulomb interaction of the 3d electrons
which is smaller than the bare Coulomb interaction due to
the screening by the conduction electrons. In the spherical
approximation, all matrix elements Uijkl can be calculated

from the Slater integrals F0, F2, and F4 which are related
to the average Coulomb repulsionU between electrons and
to the Hund’s rule coupling J by F0 ¼ U, F2 ¼
ð14=1:625ÞJ, and F4 ¼ 0:625F2 [13]. For 3d transition
metal elements in bulk materials, the repulsionU is around
2–3 eV and J is around 1 eV [19]. Because of the lower
coordination of the contact atoms, the screening of the
direct interaction is reduced compared to its bulk value.
Here, we take U ¼ 5 eV and J ¼ 1 eV, but we have
checked that the results do not change much when U is
varied between 4 and 6 eV.

The Coulomb interaction within the correlated 3d sub-
space has already been taken into account on a static mean-
field level in the effective KS Hamiltonian of the device.
Therefore, the KS Hamiltonian within the correlated sub-
space Hd has to be corrected by a double-counting correc-
tion term, i.e., Hd � HKS

d �Hdc. Here, we use the

standard expression, Hdc ¼ ½UðNd � 1
2Þ � 1

2 JðNd � 1Þ� �
Id where Id is the identity matrix in the d subspace, andNd

is the occupation of the impurity 3d shell [13].
The central quantity is the Green’s function (GF) of the

device region:

G D ¼ ð!þ��HD þHdc ��d ��L ��RÞ�1 (1)

where � is the chemical potential. �L and �R are self-
energies that describe the coupling of the device to the
semi-infinite leads L and R, respectively. These can be
calculated from the effective one-body Hamiltonians of

the leads by iteratively solving the Dyson equation�L=R ¼
VL=Rð!þ��H0

L=R ��L=RÞ�1Vy
L=R. �d is the local

electronic self-energy that describes the dynamic electron
correlations of the impurity 3d electrons. In order to cal-
culate �d, the generalized Anderson impurity problem
given by the impurity 3d shell has to be solved. The
impurity problem is described by the projection Pd of the
GF (1) onto the correlated subspace d: Gd � PdGDPd

which can be written as

G dð!Þ ¼ ½!þ��Hd ��dð!Þ ��dð!Þ��1 (2)

where we have introduced the so-called hybridization
function �d which describes the hybridization of the im-
purity electrons with the conduction electrons. The hybrid-
ization function can be calculated from the projection Pd of
the uncorrelated device GF G0

D ¼ ð!þ��HD þ
Hdc ��L ��RÞ�1 onto the correlated subspace d [16],
i.e., fromG0

d � PdG
0
DPd. Solving Eq. (2) for�d and using

that ½Gd��1 ¼ ½G0
d��1 ��d, we obtain

� dð!Þ ¼ !þ��Hd � ½G0
dð!Þ��1: (3)

The hybridization function�d [16], the Coulomb repul-
sion U, the Hund’s rule coupling J, and the impurity levels
�d;i ¼ ðHdÞii are the relevant parameters for solving the

impurity problem. Here, we employ the so-called One-
Crossing-Approximation (OCA) to solve the impurity
problem [13,20] which is particularly well suited for the
Kondo regime.
The current through a strongly interacting impurity

can be calculated exactly by the Meir-Wingreen formula
[21]. However, for low temperatures and small bias volt-
ages, this expression is well approximated by the much
simpler Landauer formula [22]: IðVÞ ¼ 2e

h � R
eV
0 d!Tð!Þ

where Tð!Þ is the Landauer transmission function and
where we have assumed an asymmetric voltage drop V
about the device region [23]. Thus, the conductance is
simply given by the Landauer transmission function:

GðVÞ ¼ @I
@V ðVÞ ¼ 2e2

h TðeVÞ. The latter can be calculated

from the device Green’s function: Tð!Þ ¼
Tr½�Lð!ÞGy

Dð!Þ�Rð!ÞGDð!Þ� where �L=R are the so-

called coupling matrices which describe the coupling to
the leads, and can be calculated from the lead self-energies

by �L=R ¼ ið�L=R ��y
L=RÞ.

Figure 2 shows the results of our LDAþ OCA calcu-
lations for three different impurities: Ni, Co, and Fe, for
different temperatures. In all three cases, the partial density
of states (PDOS) for the impurity 3d electrons shows
resonances near the Fermi level which are temperature-
dependent. More precisely, the resonances vanish with
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increasing temperature. This is characteristic for the Kondo
effect which is usually observed only at low temperature.
The resonances originate from different d orbitals in each
case, as indicated by the labels in the figures. In the case of
Ni, the resonance originates from the dxy orbital. In the

case of Co, there are two distinct peaks corresponding to
two different sets of orbitals: The peak that is farther from
(closer to) the Fermi level originates from the dx2�y2 (dxz,

dyz) orbital(s). The doubly degenerate dxz, dyz orbitals are

also responsible for the resonance in the case of Fe. As can
be seen from Figs. 3(a)–3(c), the corresponding conduc-

tances all show Fano-like features. Interestingly, in the case
of Co, the dx2�y2-resonance does not lead to a correspond-

ing feature in the conductance characteristics. This can be
understood by the so-called orbital blocking: The electron
transport through certain orbitals can be inhibited by the
geometry or symmetry of atomic-size conductors in spite
of the orbital having spectral weight near the Fermi energy
[11].
Table I shows the orbital occupations and effective

energy levels ~�d � �d þ Re�dð0Þ of the impurity 3d shell
for different impurity atoms. One can see that the effective
energy levels ~�d roughly correlate with the orbital occupa-
tions except in the case of the dx2�y2 orbital in Ni and Fe.

To fully understand the orbital occupations, the imaginary
part of the hybridization function �d has to be taken into
account. The imaginary part of �d describes the broad-
ening of the d orbitals due to the coupling to the conduction
electrons. It turns out that the dx2�y2 orbital is by far the

most localized orbital of all the d orbitals; i.e., the broad-
ening is very small compared to the other d levels [16].
This explains why the dx2�y2 orbital in Ni and Fe is only

half-filled despite its low effective energy ~�d.
Furthermore, we see that for Ni, the dxy orbital which

gives rise to the resonance near the Fermi energy is almost
completely filled. Hence, it does not carry a spin-1=2, and
therefore the system is not in the Kondo regime, but is in
the so-called empty orbital regime [24]. A broad quasipar-
ticle (QP) peak quite close to the Fermi level appears
which—as in the Kondo regime—arises from the Fermi
liquid behavior at low temperatures. The temperature de-
pendence of the QP peak is qualitatively similar to the
Kondo regime; i.e., the peak broadens with increasing
temperature and disappears above a critical temperature,
called the Kondo temperature TK. For the Co and the Fe
impurity, the doubly degenerate orbitals dxz and dyz that

give rise to the QP resonance at the Fermi level are occu-
pied by three electrons (filling 3=4) and thus carry a spin
1=2. Therefore, in the case of Co and Fe, the system really
is in the Kondo regime.
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FIG. 3 (color online). Conductance calculated with LDAþ
OCA method for different magnetic impurities in Cu nanocon-
tact for the geometry shown in Fig. 1: (a)–(c) Conductance G vs
bias voltage V for different temperatures and for small bias.
(d) Comparison of LDAþ OCA (solid lines) and LSDA (dashed
lines) conductances for different impurities at T ¼ 120 K. U ¼
5 eV and J ¼ 1 eV in all cases.

TABLE I. Orbital occupations nd, effective energy levels ~�d ¼
�d þ Re�dð0Þ of impurity d levels relative to d3z2�r2 level, total

occupation Nd of the impurity 3d shell and Kondo temperature
TK estimated from the width of the resonance closest to the
Fermi level for each of the three impurities. U ¼ 5 eV, J ¼
1 eV.

Imp.: Ni Co Fe

nd

~�d
[eV] nd

~�d
[eV] nd

~�d
[eV]

d3z2�r2 1.92 0 1.01 0 1.00 0

dxz, dyz 3.60 �0:22 3.05 �0:35 3.02 �0:71
dx2�y2 1.00 0.05 1.98 �0:35 1.00 �0:43
dxy 1.90 0.26 1.00 0.03 1.00 0.24

Nd 8.42 7.04 6.02

TK [K] �500 �225 �160
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FIG. 2 (color online). PDOS of d-orbitals calculated with the
LDAþ OCA method for different magnetic impurities in Cu
nanocontact for the geometry shown in Fig. 1. (a)–(c) PDOS near
Fermi level for a Ni (a), Co (b), and Fe (c) impurity at different
temperatures. (d) Comparison of the PDOS of the three impu-
rities on a larger energy scale at T ¼ 120 K. U ¼ 5 eV and J ¼
1 eV in all cases.
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We have estimated the Kondo temperatures TK dis-
played in Table I from the width of the QP peaks at low
temperature. The Kondo temperatures follow the same
trend, namely TKðNiÞ> TKðCoÞ> TKðFeÞ, which is also

observed in STM experiments with adatoms on metal
surfaces [25] and in pure transition metal nanocontacts
[8]. Moreover, the Kondo temperature for Co agrees quite
well with the TK estimated from recent STM experiments
with Co adatoms on Cu surfaces in the contact regime [4].
The high Kondo temperatures of about 200 K for Co and Fe
imply a strong antiferromagnetic coupling Jsd between the
conduction electrons and the impurity d electrons giving
rise to the Kondo effect since TK / expð�1=Jsd�0Þ where
�0 is the conduction electron DOS at the Fermi level [24].
This strong antiferromagnetic coupling might explain why
the Kondo effect is observed in ferromagnetic nanocon-
tacts despite the ferromagnetic coupling to the bulk elec-
trodes [8].

Finally, in Fig. 3(d), we compare the results obtained

with the LDAþ OCA method at low temperature with

results obtained from DFT calculations on the level of
the local spin density approximation (LSDA). For Ni the
effect of including dynamic correlations is only moderate.
Thus, for Ni, the static mean-field description given by
LSDA is a reasonable approximation to the fully correlated
description by the LDAþ OCA method, but at the cost of
breaking the spin symmetry. This can be understood by
recognizing that LSDA usually gives reasonable spectra
for the empty orbital and mixed valence regimes. In con-
trast for Co and Fe, taking into account dynamical corre-
lations changes the conductance substantially. The
dynamic correlations open a gap in the 3d shell thereby
taking away spectral weight from the Fermi level, leaving
only the Kondo resonance (with small spectral weight) at
low temperatures. Consequently, the conductances pre-
dicted by LDAþ OCA are considerably lower than the
conductances predicted by LDA and LSDA.

In conclusion, we have extended the established DFT
based ab initio transport methodology for nanoscopic con-
ductors to include dynamic electron correlations. We find
that nanocontacts hosting a magnetic impurity show strong
dynamical correlations which give rise to quasiparticle
resonances at the Fermi level and corresponding Fano
features in the conductance-voltage characteristics. Our
findings agree well with experiments measuring the con-
ductance through Co adatoms on metal surfaces in the
contact regime. Moreover, our results shed some light on
the recent observation of the Kondo effect in ferromagnetic
nanocontacts.

D. J. acknowledges funding by the German academic
exchange service (DAAD) and fruitful discussions with
J. J. Palacios, J. Fernández-Rossier, C. Untiedt, and R.
Calvo. K.H. was supported by the NSF under Grant
No. DMR 0746395 and by the Sloan Foundation. G. K.

acknowledges funding by NSF under Grant No. DMR
0528969.

*Electronic address: djacob@physics.rutgers.edu
[1] K. Tsukagoshi, B.W. Alpenhaar, and H. Ago, Nature

(London) 401, 572 (1999); A. Zhao et al., Science 309,
1542 (2005); L. E. Hueso et al., Nature (London) 445, 410
(2007); L. Bogani and W. Wernsdorfer, Nature Mater. 7,
179 (2008).

[2] U. Fano, Phys. Rev. 124, 1866 (1961).
[3] V. Madhavan et al., Science 280, 567 (1998); L. Vitali

et al., Phys. Rev. Lett. 101, 216802 (2008); N. Neél et al.,
Phys. Rev. Lett. 101, 266803 (2008).
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