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TECHNICAL DESCRIPTION OF
COMPUTATIONAL DETAILS

We used the implementation of LDA+DMFT of Ref.1,
which is based on Wien2K package [2]. The exchange-
correlation functional Exc of LDA was utilized, in combi-
nation with nominal double-counting (DC) [1, 3], which
was shown to be closest to the exact form of DC [4]. We
checked (on the example of Cerium) that the exact-DC
gives very similar free energy, as expected for a station-
ary functional. The convergence of LDA+DMFT results
is much faster using nominal DC, hence most of results
in this publication are obtained by this simplification.

The impurity model is solved using the hybridization
expansion version of the numerically exact continuous
time QMC method [5, 6]. Of the order of 300 LDA and 30
DMFT iterations were required for precision of 1 meV per
formula unit, and between 109−1010 Monte Carlo moves
were accepted per impurity iteration for precise enough
impurity solution. The resources of Titan supercomputer
were used.

To construct the projector, the atomic-like local or-

bitals are used 〈r|φlm〉 = ul(r)
r Ylm(r̂). The radial part of

the local orbital ul(r) is the solution of the scalar rela-
tivistic Dirac equation inside the muffin-tin sphere, lin-
earized at the Fermi level. The muffin-tin spheres are set
to touch at the lowest volume. We tested a few other
forms of the projectors defined in Ref. 1. The stationary
F (V ) is quite insensitive to the precise choice of projec-
tor, however, E(V ) changes much more.

For SrVO3 calculations, we treated dynamically all five

3d orbitals of Vanadium. The muffin-thin radius of Vana-
dium was set to Rmt = 1.83 aB , and U = 10 eV was
used, which was previously shown to give good spectra
[3, 4] for this localized orbital (see spectra below). The
Yukawa form of screening interaction than gives J ≈ 1 eV
(see note below). Brillouin zone integrations were done
over 15 × 15 × 15 k-point in the whole zone in the self-
consistent calculations, and for calculation of the impu-
rity entropy, the hybridization is computed on more pre-
cise 36 × 36 × 36 k-points mesh. We mention in pass-
ing that impurity entropy is very sensitive to the precise
frequency dependence of the hybridization, and requires
very dense momentum mesh.

For FeO, all five 3d orbitals are treated by DMFT and
the muffin-thin radius of iron is set to Rmt = 2.11 aB ,
and the Coulomb repulsion to previously determined U =
8eV [7], which requires J ≈ 1eV in Yukawa form. In Ce
metal, all seven 4f orbitals are treated by DMFT and
the muffin-thin sphere is Rmt = 2.5 aB , the k-point mesh
is 21× 21× 21, and the Coulomb U = 6 eV [8–10], leads
to J = 0.72 eV in Yukawa form. The spin-orbit coupling
is included in Cerium, but neglected in SrVO3 and FeO.

DETAILS ON EVALUATION OF LDA+DMFT
FUNCTIONAL

Here we explain how we evaluate the total energy Eq.1
and the free energy Eq.4 of the main text.

For total energy Eq.1, we group the terms in the fol-
lowing way

E = Tr((−∇2 + Vext + VH + Vxc)G)− Tr((VH + Vxc)ρ) + EH [ρ] + Exc[ρ] + Enuc−nuc +
1

2
Tr(ΣG)− ΦDC [ρloc] (1)

We then split the energy into three terms E = E1 +E2 +
E3, where the first two parts E1, E2 are computed using
the Green’s function of the solid, and the third E3 using
the impurity Green’s function.

The first five terms in Eq. 1 look similar to the standard
DFT energy functional, except that the Green’s func-
tion G here is the self-consistent LDA+DMFT Green’s

function. We first solve the eigenvalue problem for
Kohn-Sham states (−∇2 + Vext + VH + Vxc)ψik =
εDFTik ψik, where εDFTik are DFT-like energies, computed
on LDA+DMFT charge. We then evaluate

E1 = Tr(εDFTG) (2)



2

and

E2 = −Tr((VH + Vxc)ρ) + EH [ρ] + Exc[ρ] + Enu−nuc.(3)

Both E1 and E2 are computed using Green’s function G
and density ρ of the solid in the same way as the standard
DFT total energy is implemented [11].

The last two terms of Eq. 1 can be computed either
from the local Green’s function P̂G or from the impu-
rity Green’s function Gimp. Once the self-consistency is
reached, the two are of course equal. We choose to eval-
uate the second term on the impurity Gimp

E3 =
1

2
Tr(ΣimpGimp)− ΦDC [ρimp] (4)

However, we never actually use Migdal-Galitskii formula,
because it is numerically much less stable than computing
the potential energy from the impurity probabilities, i.e.,

1

2
Tr(ΣimpGimp) =

∑
m

PmE
atom
m − Tr(εimpnimp)

The free energy functional Γ[G] (Eq. 2 of the main
text) is

Γ[G] = Tr logG− Tr log((G−10 −G−1)G) + EH [ρ] + Exc[ρ] + ΦDMFT [Gloc]− ΦDC [ρloc] + Enuc−nuc. (5)

First, we extremize it (δΓ[G]/δG = 0) to obtain the
Dyson equation

G−1 −G−10 + VH + Vxc + ΣDMFT − Vdc = 0. (6)

A note is in order here. We assumed δP/δG = 0, which
holds whenever the projector does not depend on the self-
consistent charge density. To ensure this property, we

used for the localized orbitals |φ〉 = ul(r)
r Ylm(r̂), where

the radial wave function ul(r) is the solution of the scalar
relativistic Dirac equation on the LDA charge density
(rather than self-consistent charge density). Note also
that the use of the self-consistently determined Wannier
functions (which depend on self-consistent charge), as is
commonly used in most of the LDA+DMFT implemen-
tations [12–14], leads to non-stationary LDA+DMFT so-
lution, and non-stationary free energies.

We next insert the expression G−1−G−10 into Eq. 5 to
obtain expression for free energy

F = Enuc−nuc − Tr((VH + Vxc)ρ) + EH [ρ] + Exc[ρ]

+Tr logG− Tr(ΣDMFTG) + ΦDMFT [Gloc]

+Tr(Vdcρloc)− ΦDC [ρloc] + µN (7)

The impurity free energy Fimp contains ΦDMFT [Gimp] in
the following way

Fimp = Tr logGimp − Tr(ΣimpGimp) + ΦDMFT [Gimp].(8)

In DMFT, Gloc = Gimp and ΣDMFT = Σimp, hence we
can write

F = Enuc−nuc − Tr((VH + Vxc)ρ) + EH [ρ] + Exc[ρ]

+Tr log(G)− Tr log(Gloc) + Fimp

+Tr(Vdcρloc)− ΦDC [ρloc] + µN. (9)

This equation appears as Eq.4 in the main text.
Next we split free energy of the impurity into the en-

ergy and the entropy term

Fimp = Eimp − TSimp,

where

Eimp = Tr((∆ + εimp − ωn
d∆

dωn
)Gimp)

+
1

2
Tr(ΣimpGimp) (10)

Hence

F =
1

2
Tr(ΣimpGimp)− ΦDC [ρloc]− TSimp

+Enuc−nuc − Tr((VH + Vxc)ρ) + EH [ρ] + Exc[ρ]

+Tr log(G)− Tr log(Gloc) + Tr(Vdcρloc) + µN

+Tr((∆ + εimp − ωn
d∆

dωn
)Gimp) (11)

Again using the identity Gimp = Gloc and ρimp = ρloc
as well as the definition of E2 (Eq. 3) and E3 (Eq. 4) we
obtain

F = Tr log(G) + µN + E2

+ Tr((∆− ωn
d∆

dωn
+ εimp + Vdc)Gloc)

− Tr log(Gloc) + E3 − TSimp (12)

This equation is implemented in our DFT+DMFT code.
Similarly than in the implementation of the total energy
Eq. 1, we compute E3 and TSimp using impurity quan-
tities, while the rest of the terms are computed using
the Green’s function of the solid. In this way we en-
sure that F and E are split in the same way between the
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”impurity” and the ”lattice” quantities, hence they share
almost identical Monte Carlo noise. However, when com-
paring E(V ) and F (V ) at two different volumes, F (V )
converges faster that E(V ) with the number of LDA
and/or DMFT iterations.

However, a faster and more stable convergence with
MC steps is many times reached by evaluating free energy
in a slightly different way. Again using the fact that
Gimp = Gloc and ρimp = ρloc we can rewrite

F = Tr logG+ µN + E2 − Tr(ΣDMFTG) (13)

−Tr logGimp + Tr(ΣimpGimp) + Eimp (14)

+Tr(Vdcρimp)− ΦDC [ρimp]− TSimp (15)

We evaluate Eq. 13 using G of the solid, and Eqs. 14, 15
using impurity quantities.

Notice that F + TSimp can be evaluated at each
LDA+DMFT iteration, just like the total energy above.
To subtract TSimp at low temperatures, we however need
a few extra impurity runs. The method of computing
TSimp is explained in the main text (Eq.7 of the main
text), and requires the impurity energy at a few temper-
atures. To calculate the latter, we use

Eimp = Tr((∆ + εimp − ωn
d∆

dωn
)Gimp) + Eimp−pot,(16)

This is Eq. 6 in the main text. We evaluate differ-
ent terms in this formula by the following tricks: i)
Tr(∆Gimp) is computed from the average perturbation
order 〈k〉 of CTQMC, and takes the form Tr(∆Gimp) =
〈k〉 /T , where T is temperature [5], or, at low temper-
ature it is often more accurate to carry out the Mat-
subara sum Tr(∆Gimp) = 1

β

∑
iωn

∆(iωn)Gimp(iωn). To

achieve fast convergence, we subtract C/((iωn − Eimp −
Σ∞)(iωn − ε0)) and add analytic result for this sum,
namely, C(f(Eimp + Σ∞) − f(ε0))/(Eimp + Σ∞ − ε0).
Here C/(iωn − ε0) is determined to match the high-
frequency of ∆(iωn). ; ii) Eimp−pot, which is equal
Eimp−pot = 1

2Tr(ΣGimp), is computed from the ener-
gies of atomic state of QIM Eatomm and their probabili-
ties Pm by Eimp−pot =

∑
m PmE

atom
m −Tr(εimpnimp) [5],

which delivers much more precise interaction energy than
obtained by MGF; ii) We spline ∆(ωn) in Matsubara
points and determine its derivative d∆/dωn, and then
carry out Matsubara sum by subtracting out the leading
high-frequency tails by formula A/((iω − ε1)(iω − ε2)),
which has an analytic sum of A(f(ε1)− f(ε2))/(ε1− ε2).
Because the probabilities Pm, hybridization ∆(iωn) and
impurity green’s functions G(iωn) are known to very high
precision in CTQMC, the impurity internal energy can
easily be computed with precision of a fraction of a meV.

An alternative way to compute the impurity entropy
term TSimp is to use the so called ”flat-histogram sam-
pling method” [15], which is also done as postprocessing
on self-consistent LDA+DMFT hybridization ∆.

Perhaps, the most challenging term in Eq. 12 to com-
pute is Tr log(G), which requires eigenvalues (but not
eigenvectors) of the LDA+DMFT eigenvalue problem.
We first diagonalize

(−∇2 + Vext + VH + Vxc + Σ(iωn)− Vdc)ψi,k,ωn =

= εi,k,ωnψi,k,ωn .(17)

and then evaluate

Tr log(G) + µN = T
∑

iωn,i,k,σ

(log(εi,k,ωn
− iωn − µ)− log(εi,k,∞ − iωn − µ))− T

∑
i,k,σ

log(1 + e−β(εi,k,∞−µ)) + µN(18)

Here it becomes apparent that if Σ(iωn) is frequency in-
dependent, the first term in the brackets vanishes, while
the second term gives (at T = 0) the sum of eigenvalues

Tr log(G) + µN →U=0→
∑
i,k,σ

θ(εi,k < µ) εi,k,

the well known DFT contribution to the total energy.

FREE ENERGY FROM THE FUNCTIONAL IN
THE HUBBARD MODEL

To demonstrate the efficiency of the proposed method
of calculating the free energy within the DMFT method,

we apply it to the single band Hubbard model on the
Bethe lattice. In Fig. 1 we show results for the half-filled
case in the correlated metallic regime (U = 2D), very
near the metal-insulator transition.

The upper pannel displays the Free energy calculated
from thermodynamics relation (“thermodynamics”)

F = E − T (S∞ −
∫ ∞
T

1

T ′
dE

dT ′
dT ′) (19)

and from the functional, using impurity free energy Fimp
(“impurity F”), i.e.,

F = Tr logG− Tr logGloc + Fimp. (20)
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The two expressions match within Monte Carlo statistical
error. The lower pannel shows the entropy computed by
both methods. The efficiency of the “impurity F” method
is reflected in the fact that for almost all the point in the
curve (except the lowest few temperatures T/D < 0.02)
a single calculation is needed. Namely, to evaluate the
integral in Eq. 19 we need to calculate the energy E of
the lattice model at all temperatures and than carry out
the integral. On the other hand, the formula Eq. 20 does
not couple different temperature together, and it requires
only the knowledge of the Green’s function and Fimp at
a single temperature. For T/D < 0.02 we were able to
calculate Fimp from Eq.5 of the main text. For lower
temperatures, only a few extra impurity calculations in
the temperature range T < T ′ < 0.02 are needed. In
Fig. 1 we also display the impurity part of the entropy,
defined by Fimp = Eimp−TSimp. It is of course expected
that the impurity carries most of the entropy of the sys-
tem, however, there is also extra contribution due to the
coupling of the impurity to the neighboring sites on the
lattice, which seems to consistently increase the entropy
of the system.

Finally we notice that the same parameter regime was
studies in the manuscript by S. L. Skornyakov et. al. [16].
Our results disagree with those of Ref. [16], in particu-
lar, the entropy at high temperature in the metallic state
saturates at log(4) (not shown in the figure) and not at
log(2) value as in Ref. [16]. This is because at high tem-
peratures all four local states can be accessed leading to
4 degrees of freedom per site. We notice that a shallow
plateau appears at S = log(2), but no saturation.

COMPARISON WITH STANDARD
FUNCTIONALS

Here we compare total energy of LDA, PBE [17],
and PBEsol [18] functionals with the free energy of
LDA+DMFT.

In most weakly correlated solids, LDA underesti-
mates lattice constants on average for 1.6%, while
PBE [17] overestimates them for approximately 1%. [19]
PBEsol [18] was designed to predict most accurate vol-
umes in solids, and it typically falls in-between LDA and
PBE.

In Fig. 2 we compare LDA+DMFT free energy in
SrVO3 with the total energy computed by other function-
als. Both LDA+DMFT and PBEsol underestimate lat-
tice constant for approximately 0.6%, while LDA under-
estimates it for 1.5%, and PBE overestimates for 0.7%.
Hence predictions of standard functionals in the case of
SrVO3 are quite in line with standard performance in
weakly correlated solids. Perhaps, this is not very sur-
prising given that SrVO3 is a metallic moderately corre-
lated system.

In FeO (Fig. 3), all standard functionals severally un-

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

Fr
e
e
 e

n
e
rg

y

U=2
thermodynamics
impurity F

0.0 0.1 0.2 0.3 0.4 0.5

Temperature

0.0

0.2

0.4

0.6

0.8

1.0

E
n
tr

o
p
y

log(2)

thermodynamics
impurity F
single calculation
S_{imp}

FIG. 1: Free energy and Entropy for the single orbital Hub-
bard on the Bethe lattice in the correlated metallic regime
(U/D = 2). Upper panel shows the free energy computed
from total energy using standard thermodynamic relations
Eq. 19 (“thermodynamics”), and by using impurity free en-
ergy in Eq. 20 (“impurity F”). The lower panel shows entropy
S computed by the two methods. The same panel also shows
the impurity part of the entropy Simp to emphasize that most
of the entropy is coming from the impurity part, and very
small contribution comes from the DMFT self-consistency
condition. The red dots show the points, which were com-
puted by a single DMFT calculation.
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FIG. 2: Free energy of LDA+DMFT for SrVO3 compared
with total energy of other standard DFT functionals.

derestimate volume in the paramagnetic state. For ex-
ample the lattice constants with LDA, PBEsol and PBE
are 7.7%, 6.5% and 5.1% too small, far outside the stan-
dard performance of these functionals in weakly corre-
lated solids.

The predictions are improved when the AFM long
range order is allowed. LDA and PBEsol still underes-
timate lattice constant for 3.6%, and 2.3% respectively.
On the other hand PBE is this time quite close to the
experiment (underestimates for 0.7%). In comparison
LDA+DMFT underestimates it for only 0.16%. It is
quite clear that the excellent prediction of AFM-PBE
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FIG. 3: Free energy of LDA+DMFT for FeO compared
with total energy of other standard DFT functionals. Upper
(lower) panel shows non-magnetic (antiferromagnetic) DFT
calculation. LDA+DMFT results are obtained at 300K in
paramagnetic state.

20 22 24 26 28 30 32 34 36

Volume[
3

]

0

20

40

60

80

100

E
n
e
rg

y
[m

e
V

]

Cerium

LDA
PBE
PBEsol
LDA+DMFT

FIG. 4: Free energy of LDA+DMFT for Cerium compared
with total energy of other DFT functionals. LDA+DMFT
results are obtained at 400K.

here is merely a coincidence, as normally PBE overesti-
mates the volume.

Finally, we plot results for Cerium in Fig. 4. The result
of LDA+DMFT is very different from those of any other
functional, as it clearly contains the nontrivial soft mode
for the α-γ transition. No other functional shows any
hint of such transition.

The equilibrium volume in Cerium is strongly temper-

ature dependent, and is approximately 34Å
3

at zero pres-

sure and 400 K, while it changes to approximately 28Å
3

in the α phase at low temperature. The LDA+DMFT
results are computed at 400 K, hence at p = 0 the volume
is somewhat underestimated (1.5%), but under pressure
(already at 1 GPa) the agreement with experiment is con-
siderably improved.

The DFT results should be compared to T = 0 ex-

perimental volume of 28 Å
3
. All functionals underesti-

mate the lattice constant, LDA for 6%, PBEsol for 5%
and PBE for 1.8%. Clearly electronic correlations are
very important even in the α phase at low temperature,
as standard DFT functionals substantially underestimate
the volume.

SCREENED COULOMB REPULSION OF
YUKAWA FORM

It is noted above that we used the Yukawa represen-
tation of the screened Coulomb interaction, in which
there is unique relationship between the Hubbard U and
Hund’s coupling J . If U is specified, J is uniquely de-
termined. To show this we derive the matrix elements of
screened Coulomb interaction in our DMFT orbital basis

Um1m2m3m4 =

∫
d3r

∫
d3r′

(
ul(r)

r

)2(
ul(r

′)

r′

)2

Y ∗lm1
(r̂)Ylm4(r̂)Y ∗lm2

(r̂′)Ylm3(r̂′)
e−λ|r−r

′|

|r− r′| (21)

There exist a well known expansion of Yukawa interaction in terms of spheric harmonics Ykm, which reads

e−λ|r−r
′|

|r− r′| = 4π
∑
k

Ik+1/2(r<)Kk+1/2(r>)
√
r< r>

∑
m

Y ∗km(r̂)Ykm(r̂′) (22)

Here r< = min(r, r′), r> = max(r, r′), I and K are modified Bessel function of the first and second kind. Inserting
this expression into Eq. 21, we get

Um1m2m3m4
=
∑
k

4π

2k + 1
〈Ylm1

|Ykm1−m4
|Ylm4

〉 〈Ylm2
|Y ∗km3−m2

|Ylm3
〉

×(2k + 1)

∫ ∞
0

dr

∫ ∞
0

dr′u2l (r)u
2
l (r
′)
Ik+1/2(λr<)Kk+1/2(λr>)

√
r< r>

. (23)
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Hence, the screened Coulomb interaction has the Slater form with the Slater integrals being

F k = (2k + 1)

∫ ∞
0

dr

∫ ∞
0

dr′u2l (r)u
2
l (r
′)
Ik+1/2(λr<)Kk+1/2(λr>)

√
r< r>

. (24)

LDA+DMFT
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4

FIG. 4: (Color online) Energy- and momentum-dependent
spectral weight near the Fermi level. (a) Experimental inten-
sity plot for SrVO3. Peak positions of the EDCs and MDCs
are shown by filled circles and open squares, repectively. The
V 3d bands from the LDA calculation [26] and tight-binding
calculation are also shown by solid thick and thin curves, re-
spectively. Broken curves are LDA bands renormalized by a
factor of 2. (b) Intensity plot of spectral function from DMFT
calculation with U/D = 1.5.

0.5, the experimental band dispersions are well repro-
duced as shown in Fig. 4 (a). This indicates that elec-
tron correlation strength is almost independent of mo-
mentum and of the dxy, dyz or dzx bands of the degen-
erate t2g band. The kink in the band dispersion is weak
and broad, if exists, but the curvature changes its sign
around ∼ −0.2 eV as predicted by a recent DMFT cal-
culation [14]. As for the incoherent part located around
−1.5 eV, one can see a weak but finite (∼ 0.1 eV) disper-
sion. The intensity of the incoherent part is momentum
dependent and becomes strong within the Fermi surface.

Figure 4 (b) shows the intensity plot of the spectral
functions from the DMFT calculation [25]. The DMFT

self-energy was computed using a single band model in
the present case. One obtains agreement between exper-
iment and theory when the correlation strength of U/D
is set to 1.5, where D is the bandwidth of the occupied
part of the non-interacting band. Although the DMFT
calculation predicts that an incoherent part disperses as
strongly as the bare band, the experimental dispersion of
the incoherent part was weaker. This is probably due to
the overlapping dispersiveless dyz band along the Γ - X
direction, which has been neglected in the present DMFT
calculation. In future, DMFT + LDA calculation which
takes into account the three-fold degenerate of the t2g

orbitals are necessary to quantitatively understand the
ARPES results.

In conclusion, we have studied the electronic structure
of SrVO3 thin films by means of ARPES. Due to the
“transparent” protective surface V5+ oxide layer, bulk-
like V 3d band structure was successfully observed. We
have determined the occupied quasiparticle width of the
V 3d band to be 0.44 ± 0.02 eV. The band dispersions in
the coherent part were reproduced by the renormalized
LDA bands with the global mass renormalization factor
of ∼ 2. There was a weak but finite dispersion in the
incoherent part and its intensity was stronger within the
Fermi surface. The experimental dispersions and intensi-
ties of the coherent part as well as of the incoherent part
were reproduced by momentum-resolved DMFT calcu-
lation. Since we have employed the single-band model
for the DMFT calculation, multi-orbital effect of the t2g

bands remains to be studied in future studies.
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−1.5 eV, one can see a weak but finite (∼ 0.1 eV) disper-
sion. The intensity of the incoherent part is momentum
dependent and becomes strong within the Fermi surface.

Figure 4 (b) shows the intensity plot of the spectral
functions from the DMFT calculation [25]. The DMFT

self-energy was computed using a single band model in
the present case. One obtains agreement between exper-
iment and theory when the correlation strength of U/D
is set to 1.5, where D is the bandwidth of the occupied
part of the non-interacting band. Although the DMFT
calculation predicts that an incoherent part disperses as
strongly as the bare band, the experimental dispersion of
the incoherent part was weaker. This is probably due to
the overlapping dispersiveless dyz band along the Γ - X
direction, which has been neglected in the present DMFT
calculation. In future, DMFT + LDA calculation which
takes into account the three-fold degenerate of the t2g

orbitals are necessary to quantitatively understand the
ARPES results.

In conclusion, we have studied the electronic structure
of SrVO3 thin films by means of ARPES. Due to the
“transparent” protective surface V5+ oxide layer, bulk-
like V 3d band structure was successfully observed. We
have determined the occupied quasiparticle width of the
V 3d band to be 0.44 ± 0.02 eV. The band dispersions in
the coherent part were reproduced by the renormalized
LDA bands with the global mass renormalization factor
of ∼ 2. There was a weak but finite dispersion in the
incoherent part and its intensity was stronger within the
Fermi surface. The experimental dispersions and intensi-
ties of the coherent part as well as of the incoherent part
were reproduced by momentum-resolved DMFT calcu-
lation. Since we have employed the single-band model
for the DMFT calculation, multi-orbital effect of the t2g

bands remains to be studied in future studies.
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FIG. 5: Spectral function of SrVO3 within LDA+DMFT at
equilibrium volume compared with ARPES spectra of Ref. 20.

This is a product of two one-dimensional integrals and is
very easy to efficiently implement.

It is clear from Eq. 24 that λ uniquely determines
all F k’s, and furthermore even one Slater integral (F 0)
uniquely determines λ. This is because F k are monotonic
functions of λ and take the value of bare F k at λ = 0 and
vanish at large λ. Hence given F 0, the screening length
λ is uniquely determined, and hence other higher order
F k are uniquely determined as well.

MASS RENORMALIZATION OF METALLIC
SrV O3

Even though the Coulomb interaction in SrVO3 is U =
10 eV, it gives a relatively moderate mass enhancement
over DFT band structure in all-electron LDA+DMFT
implementation. This is because the interaction is
severely screened by hybridization of d states with oxy-
gen p states, and because the t2g orbitals are in mixed-
valence state (nt2g ≈ 1.5) [3, 4]. In Fig. 5 we show the
LDA+DMFT spectral function as well as recent APRES
measurements [20]. The mass renormalization in the t2g
orbital is m∗t2g/mband ≈ 2 and in eg is m∗t2g/mband ≈ 1.3
The agreement between ARPES spectra (the experimen-
tal signal is color coded on the right) and LDA+DMFT
spectral function A(k, ω) (plotted on the left) is very
good, both in the quasiparticle band (between −0.5 eV
and 0.5 eV) and Hubbard satellite at −1.5 eV.
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