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We propose a continuum representation of the dynamical mean field theory, in which we were able to
derive an exact overlap between the dynamical mean field theory and band structure methods, such as the
density functional theory; double counting. The implementation of this exact double counting shows
improved agreement between the theory and experiment in several correlated solids, such as the transition
metal oxides and lanthanides. Previously introduced nominal double counting is in much better agreement
with the exact double counting than the most widely used fully localized limit formula.
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Understanding the electronic structure of materials with
strong electronic correlations remains one of the great
challenges of modern condensed matter physics. The first
step towards calculating the electronic structure of solids
has been achieved by obtaining the single-particle band
dispersion EðkÞ within the density functional theory
(DFT) in the local density approximation (LDA) [1], which
takes into account correlation effects only to a limited
extent.
To account for the many-body correlation effects beyond

the LDA, more sophisticated methods have been devel-
oped. Among them, one of the most successful schemes is
the dynamical mean field theory (DMFT) [2]. It replaces
the problem of describing correlation effects in a periodic
lattice by a strongly interacting impurity, coupled to a self-
consistent bath [3]. This method was first developed to
solve the Hubbard model, but it was soon realized [4] that it
can also be combined with the LDA method, to give more
material-specific predictions of correlation effects in solids.
The LDAþ DMFT method achieved great success in the
past two decades, as it was successfully applied to
numerous correlated solids [5]. The combination of the
two methods, nevertheless, leads to a problem of a some-
what ambiguous way of subtracting the part of correlations,
which are accounted for by both methods.
The so-called double-counting (DC) term was usually

approximated by the formula first developed in the context
of LDAþ U and was evaluated by taking the atomic limit
for the Hubbard interaction term [6,7]. Many other similar
schemes were proposed recently [8–12], but rigorous
derivation of this double-counted interaction in solids
within the DMFT and LDA is missing to date. Here we
propose a new method of calculating the overlap between
the DMFT and a band structure method in solids, and we
explicitly evaluate this DC functional within the
LDAþ DMFT. Some ideas presented here come from
studying the toy model of correlations, namely, the H2

molecule, in which the exact double counting was found for

the DMFT method applied to the single H atom of a H2

molecule [13], where the screening is absent. The deriva-
tion of the double counting in the presence of screening in
solids will be addressed in this Letter and will be tested on
several well-studied correlated materials, such as transition
metal oxides SrVO3, LaVO3, and the most studied lantha-
nide metal, the elemental cerium.
To compare different approximations in the same lan-

guage, it is useful to cast them into the form of the
Luttinger-Ward functional [5,14,15], which is a functional
of the electron Green’s function G and takes the form
Γ½G� ¼ −Tr½ðG−1

0 −G−1ÞG� þ Tr logð−GÞ þ ΦVc
½G�. The

first part is the material-dependent part, in which
G−1

0 ðrr0;ωÞ ¼ ½ωþ μþ∇2 − VextðrÞ�δðr − r0Þ, and the
second two terms are universal functionals of the
Green’s function Gðrτ; r0τ0Þ and the Coulomb interaction
Vcðr − r0Þ. In the exact theory, ΦVc

½G� contains all skeleton
Feynman diagrams, constructed by G and Vc [15]. In the
language of the Luttinger-Ward functional, different
approximations can then be looked at as different approx-
imations to the interacting part ΦVc

½G�.
The density functional theory equations can be obtained

by approximating the exact functional ΦVc
½G� by

EH½ρðrÞ� þ Exc½ρðrÞ�, where EH and Exc are the Hartree
and the exchange-correlation functionals, respectively. The
stationarity condition gives the DFT equations, i.e.,
G−1 −G−1

0 ¼ ðVH½ρ� þ Vxc½ρ�Þδðr − r0Þδðτ − τ0Þ, because
δExc½ρ�=δG¼ δðr− r0Þδðτ− τ0ÞδExc½ρ�=δρ¼ δðr− r0Þδðτ−
τ0ÞVxc½ρ�. Note that, in this language, the exact DFTappears
as an approximation, which gives an approximate Green’s
function, and in which the exact self-energy is approxi-
mated by a static and local potential. The total energy is
exact, but one would not learn this from the Luttinger-Ward
formalism. Note also that the static approximation is a
consequence of truncating the variable of interest, namely,
replacing full Gðr; τ; r0; τ0Þ by its diagonal compo-
nents ρðrÞ ¼ δðr − r0Þδðτ − τ0ÞGðrτ; r0τ0Þ.
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In the Luttinger-Ward functional language, the DMFT
appears as an approximation where the Green’s function in
the Φ functional is replaced by its local counterpart G →
Glocal and the Coulomb repulsion Vc by screened inter-
action Vc → U, namely, ΦDMFT ¼ ΦU½Glocal� [5,16]. Note
that the DMFT functional has exactly the same form as the
exact functional ΦVc½G�, because all the skeleton Feynman
diagrams constructed byGlocal andU are summed up by the
DMFT [17], while in the DFT the functional Exc½ρ� is
unknown, and further approximation is necessary. The
truncation of the variable of interest from G to Glocal
leads in the DMFT to the self-energy, which is also local in
space, but it keeps its dynamic nature. Other approxima-
tions such as Hartree-Fock or GW [18] can be similarly
derived by replacing ΦVc½G� by some limited set of
Feynman diagrams, i.e., truncation in space of the
Feynman diagrams, rather than truncation of the variable
of interest.
There is some kind of disconnect between the DMFT

functional ΦDMFT
U ½Glocal� and the LDA functional Exc½ρðrÞ�,

mostly because the auxiliary systems for the two methods
are very different. The auxiliary system for the LDA is the
uniform electron gas problem defined for a continuum, in
the absence of complexity of the solid. On the other hand,
the DMFT is usually associated with a lattice model like the
Hubbard model, where mapping to the local problem
reduces to the Anderson impurity model, which does not
have a unique continuum representation. The double-
counting problem occurs because it is not clear what the
overlap is between the two methods, i.e., what physical
processes are accounted for in one and what in the other
method.
It is useful to represent the DMFT method in the

continuum r representation with the real space projec-
tion-embedding technique [9]. First, we define the DMFT
projector P̂ such that it maps the Green’s function, defined
in the real space Gðr; r0Þ, to the local Green’s function also
defined in the real space, i.e., Glocalðr; r0Þ ¼ P̂Gðr; r0Þ.
Next, we also write the screened Coulomb repulsion in
the continuum space, and we denote it by VDMFTðr; r0Þ. The
DMFT is then the method which sums all skeleton
Feynman diagrams constructed by Glocalðr; r0Þ and
VDMFTðr; r0Þ, and hence the DMFT functional has exactly
the same form as the exact functional, except that the
variables Vc and G are replace by VDMFT and Glocal,
respectively, i.e., ΦVc

½Gðr; r0Þ� → ΦVDMFT
½Glocalðr; r0Þ�

[19]. Note that this truncation of the Green’s function
Gðr; r0Þ to its local counterpart parallels the truncation
of the Green’s function to its diagonal component in
theories that choose density as the essential variable,
i.e., ρðrÞ ¼ Gðrτ; r0τ0Þδðr − r0Þδðτ − τ0Þ.
More specifically, for the projector P̂ we will use a

set of quasiatomic orbitals, such that Glocalðr;r0Þ¼P
L;L0 hrjϕLihϕLjGjϕL0 ihϕL0 jr0i, where hrjϕLi¼ulðrÞYLðrÞ

are spheric harmonics times localized radial wave function.

Note that locally the basis could be completed, in which
case the DMFT becomes a projector-independent method,
which depends only on the range of the projector. For the
screened Coulomb repulsion, we will use a Yukawa short-
range interaction of the form VDMFTðr; r0Þ ¼ ½ðe−λjr−r0jÞ=
ðjr − r0jÞ�, but the precise form is arbitrary at this point.
After mapping the DMFT method to the continuous

(r; r0) Hilbert space, where the DFT exchange correlation
is defined, it is easy to see what the overlap is between
the two methods. The Hartree term is accounted for exactly
in the LDA method and has the form EH

Vc
½ρ� ¼

1
2

R
drdr0ρðrÞρðr0ÞVcðr − r0Þ, while in the DMFT it takes

the following form: EH;DMFT ¼ 1
2

R
drdr0½P̂ρðrÞ�½P̂ρðr0Þ�×

VDMFTðr − r0Þ, which can also be written as EH;DMFT ¼
EH
VDMFT

½P̂ρ�, where P̂ρ ¼ δðr − r0Þδðτ − τ0ÞGlocalðrτ; r0τ0Þ
and EH

Vc
½ρ� is the exact Hartree functional defined above.

The Hartree contribution to the DC within the LDAþ
DMFT (or any other band structure method which includes
the exact Hartree term) is thus EH

VDMFT
½P̂ρ�. This DC term

thus corresponds to truncating the Green’s function G and
the Coulomb interaction Vc by their local or screened
counterparts, i.e., G → P̂G and Vc → VDMFT in the
functional.
For approximations, which truncate in the space of

Feynman diagrams (such as Hartree-Fock or the GW
method), one can obtain the DMFT double counting by
applying both the truncation in space of the Feynman
diagrams as well as the DMFT truncation in the variables of
interest [20]. For the case of theGW method, one can check
diagram by diagram that the corresponding DMFT
Feynman diagram is obtained by replacing G by P̂G
and Vc by VDMFT in each diagram, just like it was
done above for the Hartree term. More precisely,
the GW functional can be written as ΦGW

Vc
½G� ¼ EH

Vc
−

1
2
Tr logð1 − VcGGÞ, where GG ¼ P is the convolution

of two Green’s functions (polarization function). The
GW þ DMFT double counting is thus EH;DMFT−
1
2
Tr log½1 − VDMFTðP̂GÞðP̂GÞ�, which can be shortly writ-

ten as ΦGW
VDMFT

½P̂G�.
In the case of the DFTþ DMFT, the expansion in terms

of Feynman diagrams does not exist; however, to identify
the overlap between the two methods, this is not essential.
Clearly, the double counting in the DFTþ DMFT is
obtained by the same procedure of replacing G by P̂G
and Vc by VDMFT in the DFT functional. This can be
derived in two ways: (i) first applying the DFT approxi-
mation to the exact functional (Φ → EH

Vc
þ EXC

Vc ), followed
by the DMFT approximation on the resulting functional
(G → P̂G, Vc → VDMFT), or, (ii) first applying the DMFT
approximation (Φ → ΦVDMFT

½P̂G�), followed by the DFT
approximation on the resulting functional. In both cases,
we arrive at
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ΦDFTþDMFT
DC ¼ EH

VDMFT
½P̂ρ� þ EXC

VDMFT
½P̂ρ�;

where ΦDC is a functional of ρlocal ¼ δðτ − τ0Þδðr − r0ÞP̂G
only, because the DFT truncates the Green’s function to its
diagonal components. The explicit derivation for the
exchange, and representative correlation term, is given in
Supplemental Material [16].
In the LDA method, the exchange-correlation functional

is obtained from the energy of the uniform electron gas. To
obtain the LDAþ DMFT double counting, one thus needs
to solve the problem of the electron gas with the density
that contains only “local” charge P̂ρ but where electrons
interact with the screened VDMFT interaction [16].
Including the exact double counting, the LDAþ DMFT

Φ functional is thus

ΦLDAþDMFT½G� ¼ EH
Vc
½ρ� þ EXC

Vc
½ρ� þ ΦVDMFT

½P̂G�
− EH

VDMFT
½P̂ρ� − EXC

VDMFT
½P̂ρ�; ð1Þ

where ΦVDMFT
½P̂G� is the DMFT functional which contains

all Feynman diagrams constructed from P̂G and VDMFT.
This is the central equation of this Letter, as it defines the
LDAþ DMFT approximation including the exact DC. The
saddle point equations give the LDAþ DMFT set of
equations in the real space:

G−1 −G−1
0 ¼ P̂

δΦVDMFT
½Glocal�

δGlocal

þ
�
δEHXC

Vc
½ρ�

δρ
− P̂

δEHXC
VDMFT

½ρlocal�
δρlocal

�
δðr − r0Þδðτ − τ0Þ;

ð2Þ

where we used EHXC½ρ�≡ EH½ρ� þ EXC½ρ� and P̂G≡
Glocal [16].
The only difference between functional Eq. (1) and the

usual LDAþ DMFT implementation is the presence of
EXC
VDMFT

. This is the semilocal exchange and LDA correlation
functional of the electron gas interacting by the screened
interaction, which we will in the following approximate
by the Yukawa form, i.e., VDMFTðr; r0Þ ¼ ½ðe−λjr−r0jÞ=
ðjr − r0jÞ�. We will take here a constant λ, although
generalization with space-dependent λðr − r0Þ is in princi-
ple possible. The semilocal exchange density εxVDMFT

½ρ�
(defined by Ex½ρ� ¼ R

drρðrÞεx½ρðrÞ�), can be computed
analytically and takes the following form:

εxVDMFT
½ρ� ¼ −

C
rs
fðxÞ;

where

fðxÞ ¼ 1 −
1

6x2
−
4 arctanð2xÞ

3x
þ ð12x2 þ 1Þ logð1þ 4x2Þ

24x4
;

C ¼ 3
2
(9=ð4π2Þ)1=3, rs ¼ (3=ð4πρÞ)1=3, and x ¼

ð9π=4Þ1=3 × (1=ðλrsÞ). The exchange potential Vx ¼
ðδ=δρÞEx½ρ� is then Vx

VDMFT
¼ 4

3
εxVDMFT

þ 1
3
ðC=rsÞxðdf=dxÞ.

The correlation part requires a solution of the homo-
geneous electron gas problem interacting with Yukawa
repulsion, which was solved by quantum Monte Carlo
calculations [21–23]. Here we want to have an analytic
expression for correlation energy at arbitrary λ and rs. It is
well established that G0W0 gives a quite accurate corre-
lation energy of the electron gas [24,25], especially when
computed from the Luttinger-Ward functional Γ½G�. We
thus repeated the G0W0 calculation for the electron gas, but
here we use the Yukawa interaction. We evaluate the total
energy by using the Luttinger-Ward functional of GW to
achieve high accuracy. We then fit the correlation energy in
the range of the physically most relevant rs ∈ ½0; 10� and
screenings λ ∈ ½0; 3� (λ is measured in the Bohr radius
inverse) with the following functional form:

εc
Vλ
c
¼ εcλ¼0

1þP
4
n¼1 anr

n
s
: ð3Þ

The numeric values of an coefficients, obtained by the fit,
are given in Supplemental Material [16].
Finally, the correlation potential is Vc

DMFT ¼
½Vc

λ¼0=Aðrs; λÞ� þ ½εcλ¼0=Cðrs; λÞ�, where Aðrs; λÞ ¼
1þP

4
n¼1 anr

n
s and Cðrs; λÞ ¼ 3½1þP

4
n¼1 anr

n
s �2=P

4
n¼1 nanr

n
s . Note that Vc should not be confused with

Vc. The former is the correlation potential, and the latter is
the Coulomb interaction. We take the unscreened correla-
tion energy density εcλ¼0 (and unscreened potential) from
the standard parametrization of the quantum Monte Carlo
results; hence, the G0W0 calculation is used only for
renormalization of correlations by screening with the
Yukawa form.
In the following, we present results for some of the most

often studied correlated solids, namely, elemental cerium,
SrVO3, and LaVO3. We will use the symbolU for the value
of the DMFT screened monopole interaction, as is custom-
ary in the literature. Note, however, that the value of U
gives a unique value of screening parameter λ needed in the
exact DC [16]. Moreover, in the Yukawa parametrization of
the interaction, U then also uniquely determines the other
Slater integrals, such as the Hund’s coupling [16].
We will use three different forms of DC functional:

(i) ”exact,” which we introduced above, (ii) ”FLL” stands

TABLE I. LDAþ DMFT valence and DC potential for α-Ce at
T ¼ 200 K. The local Coulomb repulsion in Ce is U ¼ 6 eV.

Ce-α nf Vdc=U

Exact 0.997 0.424
Nominal 1.002 0.500
FLL 1.035 0.533
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for fully localized limit form introduced in Ref. [6], which
has the simple form Vdc ¼ Uðn − 1=2Þ − J=2ðn − 1Þ, and
n stands for the correlated occupancy, and (iii) the
“nominal” DC, introduced in Refs. [9,10] and in Ref. [26]
in the context of the Hubbard-I approximation. The
nominal Vdc takes the same form as the FLL formula,
but n in the formula is replaced by the nominal occupancy
(n0), i.e., corresponding to the nominal valence. We use the
LDAþ DMFT implementation of Ref. [9].
The physical properties of correlated materials are very

sensitive to the value of the local occupancy nf, and nf is
sensitive to the value of DC. In Table I, we show results for
elemental cerium in the α phase. All three DC functionals
give very similar correlated occupancies nf, and all are very
close to nominal valence n0 ¼ 1. The actual value of the
DC potential Vdc differs for less than 0.1U, which leads to
almost indistinguishable spectra on the real axis, and from
the previously published results [9]; hence, we do not
reproduce them here. We found a general trend in all
materials studied that the exact DC is somewhat smaller
then given by the FLL formula. For Ce, the Hartree
contribution to the DC potential is VH ¼ nfU ≈ 0.997U,
the semilocal exchange contribution is Vx ≈ −0.485U, and
the LDA correlation is Vc ≈ −0.088U; hence, the total DC
potential is VH þ Vx þ Vc ≈ 0.424U, which is slightly
smaller than the FLL formula Uðnf−1=2Þ−J=2ðnf−1Þ≈
0.533U or the nominal formula Uðn0f − 1=2Þ−
J=2ðn0f − 1Þ ¼ 0.5U. It is interesting to note that the
semilocal exchange used in the LDA is quite different
from the exact exchange value. The latter is only
jVFj ¼ Un=14 ≈ 0.071U, a substantially smaller value

than the semilocal exchange jVxj ≈ 0.485U. This shows
why DC within the LDAþ DMFT is so different from
the Hartree-Fock value of the DMFT self-energy, i.e.,
Σðω ¼ ∞Þ.
Next, we present tests for SrVO3, which is a metallic

transition metal oxide with a nominally single electron in
the t2g shell. Near the Fermi level EF, there are mostly t2g
states. The majority of eg states are above EF; however, due
to strong hybridization with oxygen, some part of the eg
orbitals also gets filled. There are two ways the DMFT
method can be used here. In the first case, one can treat only
the t2g shell within the DMFT. The vast majority of DMFT
calculations for SrVO3 were done in this way. In this case,
all three DC potentials again give very similar results, and
the spectra are almost indistinguishable from previously
published results in Ref. [10]. One can also treat dynami-
cally with the DMFT the entire d shell. This case is
presented in Table II and spectra in Fig. 1. One can notice
that the exact and the nominal DC give very similar nd,
while the FLL formula gives 14% larger nd. This is because
the value of the DC potential is substantially larger (≈40%)
when using the FLL as compared to the exact case. It is
nevertheless comforting to see that a 40% error in double
counting still does not lead to major failure of the
LDAþ DMFT. We plot the spectra in Fig. 1, to show
how this change in Vdc leads to a shift of oxygen-p spectra
relative to vanadium-d states. For the exact DC, the oxygen
peak positions match very well with the experimentally

FIG. 1 (color online). The LDAþ DMFT total density of states
for SrVO3 using three different DC potentials. Experimental
photoemission is reproduced from Ref. [27] (parameters listed in
Table II).

TABLE II. The LDAþ DMFT results for SrVO3 at T ¼ 200 K
and U ¼ 10 eV. Both t2g and eg orbitals are treated by the
DMFT.

SrVO3 nt2gþeg nt2g neg Vt2g
dc =U Veg

dc=U

Exact 2.223 1.507 0.716 1.384 1.406
Nominal 2.251 1.541 0.710 1.443 1.444
FLL 2.529 1.699 0.830 1.943 1.943

TABLE III. The LDAþ DMFT results for LaVO3 at T ¼
200 K and U ¼ 10 eV. Only t2g orbitals are treated by the
DMFT.

LaVO3 (t2g-only) nt2g Va1g
dc =U Veg0

dc =U

Exact 2.014 1.195 1.193
Nominal 2.074 1.450 1.450
FLL 2.099 1.544 1.544

(a)

(b)

FIG. 2 (color online). The LDAþ DMFT total density of states
for LaVO3 using the three different DC formulas. (a) Only t2g
orbitals are treated by DMFT, and (b) both t2g and eg orbitals are
treated dynamically. Experimental photoemission is reproduced
from Ref. [29].
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measured spectra. The nominal valence is quite close to the
exact spectra, while the FLL formula leads to an upward
shift of oxygen for roughly 0.6 eV, which is still relatively
small compared to the difference in the double-counting
potentials, which is VFLL

dc − Vexact
dc ≈ 5.37 eV.

Next, we present results for the Mott insulating oxide
LaVO3, which is solved in two ways: (i) treating only the
t2g orbitals dynamically with the DMFT, presented in
Table III and Fig. 2(a), and (ii) treating both t2g and egwith
the DMFT. In the first case, the valences are similar in all
three double-counting formulas. The t2g occupancy is very
close to the nominal value of 2. The exact double counting
is again smaller than given by the FLL or nominal formula,
which leads to a slightly larger splitting between oxygen-p
and V − d states, i.e., a slight upward shift of oxygen states
in Fig. 2(a). In case (ii), displayed in Fig. 2(b) and tabulated
in Table IV, where both the t2g and eg orbitals are treated
by the DMFT, the FLL formula dramatically fails, as it
overestimates the valence, i.e., nFLLd − nexactd ≈ 0.26. While
the Mott gap does not entirely collapse, it is severely
underestimated by the FLL formula. The nominal valence,
however, gives very similar results as the exact DC. This
improvement of nominal DC as compared to the FLL was
pointed our in Refs. [9,10] and was found to hold not just in
transition metal oxides but also in actinides [28]. The t2g
occupancy nt2g in the nominal and exact DC is very close to
the nominal value of 2, equal to scheme (i) presented above.
It is therefore not surprising that the spectra in Figs. 2(a)
and 2(b) are similar, with a slight improvement compared to
the experiment when eg orbitals are also treated by the
DMFT.
In summary, we presented a continuum representation of

the dynamical mean field theory, which allowed us to
derive an exact double counting between the dynamical
mean field theory and the density functional theory. The
implementation of exact double counting for solids shows
improved agreement with the experiment as compared to
the standard FLL formula. The previously introduced
nominal DC formula [9,10] is in very good agreement
with the exact double counting derived here.
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