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We use cluster dynamical mean-field theory to study the simplest models of correlated electrons, the Hub-
bard model and the t-J model. We use a plaquette embedded in a medium as a reference frame to compute and
interpret the physical properties of these models. We study various observables such as electronic lifetimes, one
electron spectra, optical conductivities, superconducting stiffness, and the spin response in both the normal and
the superconducting state in terms of correlation functions of the embedded cluster. We find that the shortest
electron lifetime occurs near optimal doping where the superconducting critical temperature is maximal. A
second critical doping connected to the change of topology of the Fermi surface is also identified. The
mean-field theory provides a simple physical picture of three doping regimes, the underdoped, the overdoped,
and the optimally doped regime, in terms of the physics of the quantum plaquette impurity model. We compare
the plaquette dynamical mean-field theory results with earlier resonating valence bond mean-field theories,
noting the improved description of the momentum space anisotropy of the normal state properties and the
doping dependence of the coefficient of the linear temperature dependence of the superfluid density in the
superconducting state.
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I. INTRODUCTION

The origin and the nature of superconductivity in strongly
correlated materials is one of the greatest challenges in mod-
ern condensed matter theory. It received renewed attention
with the discovery of the high temperature superconductivity
in copper oxide based materials. While these materials have
been studied intensively over the past decades, there is still
no consensus as to what are the essential physical ingredients
responsible for the high temperature superconductivity phe-
nomena and how it should be modeled.1–14

Anderson proposed that the high temperature supercon-
ductivity phenomena was intimately connected with the
proximity to a parent Mott-insulating state.15,16 Developing
precise connections between the proximity to a Mott insula-
tor and high temperature superconductivity has proven to be
a difficult problem. Suggestive conclusions have been
reached using slave boson methods,17,18 variational wave
functions,19,20 and gauge theory techniques.2 However, lack
of theoretical tools has made difficult to prove that simple
models are sufficient to explain the phenomena surrounding
cuprates. For example, it is still strongly debated whether the
existence of superconductivity with a high critical tempera-
ture and a pseudogap is a genuine property of the models
studied, or an artifact of the approximations employed to
solve the model.

Over the past decade, significant progress in the field of
correlated electrons has been achieved through the develop-
ment of dynamical mean-field theory.21,22 In its single site
version, this method describes lattice models in terms of
a single site impurity problem embedded in a medium.
The method has been very successful in describing and
even predicting numerous properties of a large number of
materials.23–31 Cluster extensions of this method, cluster dy-
namical mean-field theory �CDMFT� �for reviews, see Refs.
23 and 32�, have been proposed and are currently a subject of
intensive investigations.

In this paper, we apply the cluster dynamical mean-field
approach to construct a mean-field theory of the simplest
models of strongly correlated materials, the one band Hub-
bard and t-J models, using a 2�2 cluster, namely, the
plaquette as the basic mean-field reference frame.

There are several motivations for constructing a mean-
field theory based on a plaquette embedded in a dynamical
bath of conduction electrons: �a� A plaquette embedded in a
self-consistent medium can describe the physics of singlet
formation, which is very important in the t-J and Hubbard
models. There are two roads of singlet formation, the Kondo
effect, in which a spin can form a singlet with a bath of
conduction electrons, and the superexchange mechanism,
which locks two spins on a bond in a singlet state. �b� A
plaquette in a medium is a minimal unit to describe d-wave
superconductivity and antiferromagnetism on the same foot-
ing, given that their order parameters �as well as that of other
forms of order competing with superconductivity� naturally
fit on a plaquette.

From a methodological perspective, mean-field theory al-
lows one to study the physical properties of different phases
as a function of control parameters, whether they are stable
or metastable. For example, we will study the evolution of
the superconducting state, together with the underlying nor-
mal state, which appears as a metastable phase below TC.
From a theoretical perspective, metastable states are only
defined within a mean-field theory, but they are of clear
physical relevance. Furthermore, comparison response or
correlation functions in both the normal and the supercon-
ducting state give important clues as to the mechanism of
superconductivity.

A clear understanding of the evolution of well defined
mean-field phases of the simplified model is an important
step toward constructing the phase diagram of realistic
Hamiltonians. Even if a phase is not realized as the thermo-
dynamically stable phase in a mean-field treatment of a
simplified Hamiltonian, it could be stabilized by adding
additional longer range terms in the Hamiltonian without sig-
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nificantly altering the short distance properties described by
the mean-field theory. Furthermore, a good understanding of
the different mean-field states can be useful in elucidating
the results of numerical studies in larger finite clusters, since
complicated patterns in a finite size system may be a reflec-
tion of phase separation among different competing mean-
field phases.

The study of minimal models such as the t-J model or the
Hubbard model describing a system near a Mott transition is
an important first step toward understanding real materials.
From a study of minimal models, one can learn what aspects
follow from just the proximity to a doping driven Mott tran-
sition. This is a necessary step before the importance of other
physical effects, such as the disorder or the electron-phonon
interactions certainly present in the real materials, can be
ascertained. A basic question yet to be elucidated is to which
extent a minimal model of the doping driven Mott transition,
such as the t-J model, describes at the qualitative level the
physical properties of the cuprates. If, indeed, the qualita-
tively low energy physics of the cuprates results from the
proximity to a Mott-insulating state, as described by a mini-
mal model of this phenomena, then the results can be refined
by including more realistic band structure, for example,
nearest- and next-nearest-neighbor hoppings, longer range
interactions, disorder, and coupling to the lattice, as well as
by incorporating a multiband situation which is needed to
describe the physics in a wider energy range. It is possible to
carry out these studies in the more realistic framework of the
combination of electronic structure methods with dynamical
mean-field theory �DMFT�, a subject which is left for future
studies. One should also ascertain the size of the corrections
to the mean-field theory by either expanding around mean-
field theory33 or increasing the cluster size.34

Several studies have already shown that the Hubbard
model treated within cluster DMFT on a 2�2 plaquette suc-
cessfully describes many properties of the high temperature
superconductors. For example, the competition of antiferro-
magnetism and superconductivity,35–39 the existence of a
pseudogap at low doping,40–46 and the formation of Fermi
arcs.43,44,47,48

These phenomena involve short-range nonlocal correla-
tions. In CDMFT, the approach to the Mott insulator is
characterized by the growth of the nonlocal components
of the self-energy, which is responsible for the phenomena
of momentum space differentiation and the formation of
lines of zeros in the Green’s function at zero temperature.
Surprising manifestations of strong correlations include the
transfer of optical spectral weight upon condensation,49 the
existence of an avoided quantum critical point50 underlying
the superconducting dome, and the presence of two distinct
gaps51,52 in the superconducting state of the underdoped
cuprates. The approach describes well an anomalous inco-
herent normal state45,49 which is lifted by the onset of
superconductivity.50,53

Other studies of the Hubbard model using large clusters at
values of U�8t have focused on the convergence of the
critical temperature.34 In a series of publications, it has been
shown that the d-wave superconducting state is well de-
scribed by spin fluctuation theory.34,54,55 To which extent the
physics of well defined quasiparticles interacting with spin

fluctuations responsible for the pairing can be carried over to
strong coupling regime is an important open problem, which
can be only be addressed by gaining a better understanding
of the large U limit of the Hubbard model, which is the focus
of this paper.

Hence, we focus on understanding the physical content of
the plaquette mean-field theory in the regime where the in-
teraction strength is large enough to drive a Mott transition at
half filling with a substantial Mott-Hubbard gap. We gain
insights by comparing the superconducting state with the un-
derlying normal state. For example, we study the evolution
of the Fermi arcs with temperature and trace the mechanism
of superconductivity to the optimization of the superex-
change energy. We connect the maximum critical tempera-
ture with anomalies at optimal doping, resulting from a
maximum in the inelastic scattering rate. The techniques in-
troduced in this paper provide a simple interpretation of the
cuprate phase diagram in terms of the occupations of a small
number of cluster eigenstates or pseudoparticles which de-
scribe a mean-field coarse-grained version of the important
excitations of the lattice system, and we use them to describe
different experimental probes, tunneling optics, and neutron
scattering, in both the normal and the d-wave superconduct-
ing phase. The superconducting state is characterized by two
energy scales: one increases with decreasing doping, and one
decreases with decreasing doping. The first can be identified
with the photoemission gap in the antinodal region, while the
second can be identified with the slope of the Dirac cone
along the Fermi surface. We investigate the effect of the
latter scale on the penetration depth.

The organization of the paper is the following: In Sec. II,
we summarize the formalism and introduce the models, the
cluster schemes, and the impurity solvers, i.e., the continuous
time quantum Monte Carlo56,57 �CTQMC� and a generaliza-
tion of the non crossing approximation �NCA�.58–61 Section
III describes the evolution of the cluster Green’s functions
and the self-energies as a function of doping. We identify the
existence of an anomalous scattering rate describing the
nodal region of the lattice model, which peaks at a charac-
teristic doping �2

c in the normal phase. The scattering rate is
drastically reduced in the superconducting state. We identify
a second characteristic doping �1

c at which another self-
energy diverges, and connect this phenomena to the forma-
tion of lines of zeros in the Green’s function.

One can view CDMFT in the superconducting phase as a
generalization of the Migdal-Eliashberg theory to strongly
correlated electron systems, and we present the frequency
dependence of the superconducting order parameter in Sec.
IV. An advantage of the mean-field theory is that it allows us
to study the “normal” state underlying the superconducting
state and its evolution with temperature. This is done for the
tunneling density of states in Sec. IV, for the optical conduc-
tivity in Sec. V, and for the magnetic properties in Sec. VI.
This comparison between the mean-field normal state and
the mean-field superconducting state establishes the superex-
change as the main pairing mechanism, as surmised in the
resonating valence bond �RVB� theory.

The pseudoparticles representing plaquette eigenstates are
not only technical tools to set up strong coupling impurity
solvers but provide a physical picture of the excitations of
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the system, and we use them to interpret the CDMFT results
in Sec. VII. We conclude with the connection between our
method and an earlier simpler mean-field theory, approach
based on the plaquette, the slave boson mean-field theory,
and closely related methods. For related work advancing the
RVB concepts using single site DMFT on multiorbital mod-
els, see Refs. 62 and 63.

II. FORMALISM

In this section, we summarize the methodology used for
our investigation. Two minimal models of the proximity to a
Mott transition were considered: the Hubbard model and the
t-J model. There are several different versions of dynamical
mean-field theory. For example, in addition to standard
DMFT, an extended version of DMFT23,59,60,64–68 �EDMFT�
which replaces all the nonlocal terms in the interaction
�namely, the kinetic energy and the superexchange� by a fer-
mionic and a bosonic bath has been proposed. There are also
numerous variants of cluster dynamical mean-field theory
which differ by the dynamical medium surrounding the
plaquette �hybridization function of the impurity model�. Fi-
nally, the solution of the impurity model that results from the
CDMFT mapping can be carried out with different impurity
solvers. In this work, we use two complementary solvers, the
NCA and the CTQMC method.

The goal of this paper, is to highlight physical properties
which follow generally from the proximity to a Mott-
insulating state, which are captured by a local approach,
namely, cluster DMFT. For this reason, we have focused on
physics which emerges from both Hubbard and t-J models,
and which is captured by all the different cluster schemes
�cellular DMFT,69 dynamical cluster approximation,70 and
their extended versions�. While we mention some quantita-
tive differences between these schemes, the stress is on
qualitative main conclusions that can be obtained with all
quantum cluster schemes. In order to keep the presentation
clear and the paper relatively concise, we provide only meth-
odological details which are not available in the literature. To
avoid unnecessary duplication, results for a given physical
quantity are presented with only one cluster scheme and im-
purity solver, chosen to demonstrate more clearly a physical
point.

A. Models

One of the more studied models in the field of strongly
correlated electrons is the Hubbard model defined by the
Hamiltonian

H = − �
ij�

tijci�
† cj� + �

i

Uni↑ni↓. �1�

It consists of a hopping term and an on-site repulsion. To be
above the Mott-transition, we take an on-site repulsion U
=12t.

A second model of great interest is the t-J Hamiltonian,

H = − �
ij�

tijci�
† cj� +

1

2�
ij

JijSiS j . �2�

It contains two terms: the first describes the kinetic energy
which delocalizes the holes introduced by doping, and the
second represents spin-spin interaction. In this work, we take
J / t=0.3.

In the t-J model, a constraint forbidding all double occu-
pancy must be enforced, and will be treated exactly in this
work. In the spirit of understanding general features of the
proximity to the Mott state, we include only the nearest-
neighbor hopping t=1 �t�=0�.

B. Extended and standard dynamical mean-field theory

In DMFT, the nonlocal terms in the Hamiltonian coupling
are replaced by a coupling to a bath of conduction electrons.
In the Hubbard model, the only nonlocal term is the kinetic
energy, and this leads to the standard DMFT mapping which
is described in many reviews.21 In the t-J model, also the
superexchange interaction connects different sites, and ap-
plying the DMFT philosophy to that term also leads to the
extended DMFT equations.

Here, we outline the derivation of the extended version of
the cluster DMFT.59,60,64,65 We first employ Hubbard-
Stratonovich transformation to decouple the nonlocal inter-
action term of the t-J model, leading to the following action:

S = �
0

�

d���
k�

ck�
† ���� �

��
− � + 	k�ck���� + �

i

Uni↑���ni↓���

+ �
q
��†

q���
2

Jq
�q��� + iSq	�q

†��� + 
−q���
�� . �3�

Here, � is the Hubbard-Stratonovich vector bosonic field
which decouples the spin-spin interaction.

The many-body theory described by the action above can
be summarized in a functional:

�	G,D
 = − Tr log�G0
−1 − �� − Tr	G�
 +

1

2
Tr log�D0

−1 − �

+
1

2
Tr	D
 + 
	G,D
 . �4�

Here, functional 
 of the exact Baym-Kadanoff functional
contains all two particle irreducible diagrams of an electron-
boson system with propagators G and D. Maximizing the
functional Eq. �4� leads to the exact Dyson equations for this
system. Cluster approximations are obtained by restricting
the functional to a subset of trial Green’s functions. In the
cellular DMFT �C-DMFT�,23,69 the 
 functional is approxi-
mated as follows: The full lattice is covered by nonoverlap-
ping clusters. The functional within each cluster is treated
exactly, i.e., if two lattice points i and j are inside the same
cluster, 
C-DMFT	Gij ,Dij
=
exact	Gij ,Dij
. If, however, i and
j are in different clusters, 
 functional is set to zero. In this
way, short-range correlations within the cluster are treated
exactly, while long-range correlations are ignored.

Cluster approximations are obtained by replacing the
exact functional 
 in Eq. �4� by its cluster counterpart.
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The saddle point equations then become �cluster
=�
�Gcluster� /�Gcluster and cluster=−2�
�Dcluster� /�cluster.

The fluctuating bosons �q in the extended DMFT formal-
ism allow one to keep some out-of-cluster short-range corre-
lations and describe better the spin fluctuations by allowing
the cluster spin to relax more efficiently through its direct
exchange interaction with the bath. We will see that this
leads to higher superconducting critical temperatures. Apart
from this quantitative difference, we did not find any quali-
tative difference between the extended version �which em-
ploys bosons to describe spin fluctuations between the clus-
ters� and the results of the nonextended version of DMFT.

C. Cluster schemes and impurity models

There are several cluster schemes in use in the study of
correlated electron materials. The dynamical cluster
approximation70 �DCA� can be thought of as a coarse grain-
ing in momentum space, obtained by relaxing the conserva-
tion of momentum. Rather than treating the infinite number
of lattice k points and corresponding Green’s functions Gk,
the 
 functional is approximated to depend only on the
Green’s function of a few cluster momenta, which we will
denote by K and Q. The cluster Green’s functions of the
approximate functional 
	GK ,DQ
 are obtained by course
graining the exact Green’s functions, i.e., Gk→GK
=�k�KGk and Dq→DQ=�q�QDQ, where the sum �k�K is
over those k momenta in the Brillouin zone which corre-
spond to certain cluster momenta K �see Refs. 32 and 70�.

The results of this paper were obtained with both DCA
and C-DMFT. Again, all the qualitative features to be dis-
cussed in the next sections can be seen with both methods.
Since DCA is a cluster method with a simple interpretation
in momentum space while C-DMFT has a simple interpreta-
tion in real space, the fact that the qualitative physics
emerges from both approaches suggests that the physical
properties that we discuss in this paper are genuine proper-
ties of cluster dynamical mean-field theory on a plaquette,
irrespective of the specific cluster scheme used.

We summarize the abbreviations used in the remainder of
the text:

�1� CDMFT: cluster DMFT,
�2� C-DMFT: cellular DMFT,69

�3� DCA: dynamical cluster approximation,70

�4� EC-DMFT: extended version of cellular DMFT,
�5� EDCA: extended version of dynamical cluster

approximation.70,71

A great advantage of all cluster DMFT formulations is
that the complicated functional Dyson equations for the self-
energies and cluster response functions can be written in
terms of an impurity model

Z =� D	�†�
exp�− Scluster

− �
0

�

d��
0

�

d���
K

�� K
† ����� K��,����� K����

+
1

2
�

0

�

d��
0

�

d���
Q

SQ����0
−1

Q��,���SQ����� , �5�

which is numerically tractable and where the effective Weiss
fields � and �0

−1 have to obey the following self-consistency
conditions:

G = �
k

	i� − Hk − ��i��
−1 = 	i� − Eimp − ��i�� − ��i��
−1,

�6�

� = �
k

	M�i�� + Jq
−1 = 	M�i�� + �0
−1�i��
−1, �7�

which merely express the fact that the cluster quantities,
computed from the impurity model 1 / 	i�−Eimp−��i��
−��i��
, have to coincide with the lattice local quantities
when summing over the reduced Brillouin zone. Namely, in
the C-DMFT, the lattice was divided into nonoverlapping
clusters; hence, the summations over k run over the reduced
Brillouin zone. Here, M plays the role of the spin self-energy
which is computed from the local susceptibility and Weiss
field by M=�−1−�0

−1, as evident from Eq. �7�.
A special feature of the 2�2 plaquette is worth stressing:

the cluster momentum K is a good quantum number and
therefore local quantities like Green’s function G or hybrid-
ization � take a diagonal form

G =
G� 0,0 0 0 0

0 G� �,0 0

0 0 G� 0,� 0

0 0 0 G� �,�

� . �8�

For large clusters, cellular DMFT would lead to off-diagonal
terms in the impurity action written on the basis of cluster
momenta. The hybridization function in Eq. �5� would take
the form �� K

† �� KK��� K�. However, in the 2�2 case, both in
C-DMFT and DCA, the hybridization function is diagonal in
cluster momentum.

The DMFT mapping of the lattice model onto a plaquette
in a medium allows us to make a connection between this
problem and the multiorbital Hubbard models which have
been studied in connection with the orbitally selective Mott
transition.72–74 This is defined by a set of bands, each one
characterized by a local density of a states, labeled by its
cluster wave vector. Notice, however, that the interaction
among the orbitals, i.e., the Hubbard U term written in terms
of �� K

† and �� K is more complicated than what has been
treated in the literature and deserves further investigations.
The local density of states corresponding to the different
bands can be obtained by setting U=0 and evaluating the
noninteracting Green’s function G0 corresponding to each
cluster wave vector. This is plotted in Fig. 1.

The formalism is easily extended to the superconducting
state by introducing Nambu notation,

�� K = � cK↑

c−K↓
† � . �9�

Assuming singlet pairing, all the previous discussion carries
through, with the cluster Green’s functions and hybridization
functions taking the 2�2 matrix form:
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G� K��� = − �T��� K����� K
† �0�� = �GK↑��� FK���

FK
† ��� − G−K↓�− �� � .

�10�

Here, FK is the anomalous component of the Green’s func-
tion. Hybridization �� K becomes a matrix as well

�� K�i�� = ��K↑�i�� �K
an�i��

�K
an†�i�� − �−K↓�− i��

� �11�

and the impurity problem is off-diagonal in Nambu space.
In cluster momentum basis 	see Eq. �8�
, which we em-

ployed in this work on the 2�2 plaquette, DCA and
C-DMFT share the same form of the impurity model; the
only difference between the two schemes lies in the form of
the self-consistency conditions. This is dictated by the form
of the noninteracting part of the Hamiltonian H and the re-
gion of momentum summation. In the DCA scheme, the non-
interacting Hamiltonian Hk is just the tight-binding energy
	k=−2t�cos kx+cos ky�−4t� cos kx cos ky. In the self-
consistency conditions Eqs. �6� and �7�, the summation has
to be performed only in the region of the patch correspond-
ing to each cluster momentum K,32 i.e.,

G� K = �
k�K

��i� + � − 	k 0

0 i� − � + 	k
� − �� K�i���−1

.

�12�

The patches which correspond to different cluster momen-
tum K are, thus, completely decoupled in the self-
consistency condition. Their coupling is only through the
Coulomb interaction.

In the real space C-DMFT, we can still define “orbitals”
which correspond to cluster momenta K 	see the form of
local quantities in Eq. �8�
, however, these orbitals are
coupled through both the Coulomb repulsion U and the non-
interacting Hamiltonian, which takes the following form:

Hk =
	k

0 − � 0 i�k
1 0 i�k

2 0 �k
0 0

0 − 	k
0 + � 0 i�k

1 0 i�k
2 0 − �k

0

− i�k
1 0 	k

1 − � 0 − �k
0 0 i�k

4 0

0 − i�k
1 0 − 	k

1 + � 0 �k
0 0 i�k

4

− i�k
2 0 − �k

0 0 	k
2 − � 0 i�k

3 0

0 − i�k
2 0 �k

0 0 − 	k
2 + � 0 i�k

3

�k
0 0 − i�k

4 0 − i�k
3 0 	k

3 − � 0

0 − �k
0 0 − i�k

4 0 − i�k
3 0 − 	k

3 + �

� , �13�

where we defined

	k
0 = − t�2 + cos kx + cos ky� − t��1 + cos kx cos ky� ,

	k
1 = t�cos kx − cos ky� + t��1 + cos kx cos ky� ,

	k
2 = − t�cos kx − cos ky� + t��1 + cos kx cos ky� ,

	k
3 = t�2 + cos kx + cos ky� − t��1 + cos kx cos ky� ,

�k
0 = t� sin kx sin ky ,

�k
1 = sin kx�t + t� cos ky� ,

�k
2 = sin ky�t + t� cos kx� ,

�k
3 = sin kx�t − t� cos ky� ,

�k
4 = sin ky�t − t� cos ky� . �14�

The unit of distance chosen here is a=1/2 such that the
summation over the reduced Brillouin zone in Eqs. �6� and
�7� simply runs over kx� 	−� ,�
 and ky � 	−� ,�
. One can

-4 -2 0 2 4
ω

0

0.05

0.1

tb
-D

O
S

ω0

0.05

0.1

0.15
tb

-D
O

S
K=(0,0)
K=(π,0)
K=(π,π)

DCA

Cellular DMFT

FIG. 1. �Color online� Tight-binding density of states �DOS� for
the three orbitals within DCA and C-DMFT. Notice that the tight-
binding Hamiltonian within C-DMFT Eq. �13� contains off-
diagonal elements, therefore DOS does not contain full information
about the noninteracting part of the Green’s function G0 �G0

−1

=G−1+��.
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readily show that this summation leads to a diagonal form of
local quantities.

In Fig. 2, we compare the local spectral function of the t-J
model in the two cluster schemes. Notice the similarities of
the results, in particular, at low energies. The spectral func-
tions in both methods have a very similar pseudogap. Hence,
in spite of quantitative differences, which will not be inves-
tigated systematically in this paper, the qualitative physics,
which is the main focus of this paper, is present in both
cluster methods. Note, however, that decoupling of orbitals
in DCA method leads to splitting of the Hubbard band into
peaks which correspond to excitations of the 2�2 cluster.
These finite size effects are strongly reduced in C-DMFT
method.

Here, we comment on some quantitative differences be-
tween the methods. The superconducting critical temperature
is highest in EDCA method and reaches the value �0.036t,
while it drops to �0.026t in EC-DMFT. When the bosonic
bath is switched off, the real space C-DMFT maximum criti-
cal temperature in both the t-J model at J=0.3 and the Hub-
bard model at U=12t is around �0.01t. Notice that this
value is close to the estimations in Ref. 34 for the critical
temperature of the Hubbard model in the thermodynamical
limit for U=4t. Namely, the Hubbard model at U=4t within
large cluster DCA has TC�0.023t.34 If we extrapolate this
value to large U=12t treating TC�J,75 TC would drop to
�0.008t, which is close to the C-DMFT result.

The existence of a finite transition temperature and the
trends of the superconducting transition temperature with
doping and with the strength of the superexchange interac-
tion are robust properties of plaquette DMFT and are com-
mon to all cluster schemes. It would be interesting to under-
stand the convergence properties with cluster size within the
different cluster schemes for the t-J model, as was done for
the Hubbard model at intermediate U in Ref. 34 and in the
classical limit in Ref. 76.

D. Impurity solvers

At the heart of the cluster DMFT is the solution of the
impurity problem Eq. �5�. In this work, we used two different
impurity solvers, both based on the expansion of the impu-

rity action with respect to hybridization strength. The first is
the NCA, which sums up all diagrams with no crossing and
is conveniently formulated in slave particle approach.61 The
second is the recently implemented CTQMC method,56,57

which numerically samples the same type of diagrams but
sums up all diagrams using Monte Carlo importance sam-
pling. Here, we assume that the weights, which correspond
to a set of all diagrams of definite perturbation order k, to be
positive.

The two impurity solvers are in good agreement with each
other on the imaginary axis, but the first method allows us to
obtain real frequency correlation functions which are un-
available in the quantum Monte Carlo �QMC� approach.
Both approaches are well suited to study the regime of inter-
mediate temperatures and dopings, close to the tip of the
superconducting dome, separating overdoped and under-
doped regions, which is not easily accessible with other tech-
niques.

Both impurity solvers used here require the introduction
of the cluster eigenstates obtained by the exact diagonaliza-
tion of the cluster, i.e., Hcluster�m�=Em

cluster�m�. To each cluster
eigenstate, a pseudoparticle am can be assigned, i.e.,

�m� � am
† �0� , �15�

to recast the cluster part of the action to a quadratic form.
The constraint

Q � �
m

am
† am = � �m��m� = 1, �16�

which expresses the completeness of the atomic eigenbase,
has to be imposed.

The original problem can be exactly expressed in terms of
pseudoparticles am, with the only nonquadratic term of the
converted action being the hybridization between the and the
medium,

Sef f = �
0

�

�
m

am
† ���� �

��
+ Em

cluster − ��am���

+ �
0

�

d��
0

�

d�� �
mnm�n�

am
† ���an���

�Dmnn�m��� − ���an�
† ����am����� �17�

denoted here by

Dm1m2m3m4
�i�� = �

K
�FK†�m1m2

�� K�i���FK�m3m4

−
1

2
�SK�m1m2

�0
−1

K�i���SK�m3m4
, �18�

where

�FK�mn = �m��� K�n = � �m�cK↑�n�
�m�c−K↓

† �n�
� , �19�

�SQ�mn = �m�SQ�n� . �20�

Note that the effective hybridization D combines both the
fermionic ��� K� and bosonic baths ��0 K

−1 � into the total effec-
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FIG. 2. �Color online� Comparison between the local spectral
function computed in C-DMFT and in DCA with NCA used as
impurity solver.
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tive Weiss field felt by the cluster eigenstates �pseudopar-
ticles�. We used Lagrange multiplier � to enforce the con-
straint �16�.

The continuous time quantum Monte Carlo method
samples over the diagrams generated by expanding the ac-
tion �D	a†a
exp�−Scluster−�S� with respect to effective hy-
bridization �S. Here, �S stands for the second term in Eq.
�17�. The probability to visit each diagram is proportional
to its contribution to the partition function, which is
computed by explicit evaluation of the cluster trace
�D	a†a
e−Scluster�−�S�k /k!, keeping only a single pseudopar-
ticle in the system at each moment in imaginary time. In this
way, the constraint Q=1 is explicitly taken into account. For
more details, see Ref. 57.

In the diagrammatic method, the constraint Q=1 is im-
posed by letting the Lagrange multiplier � approach infinity.
The physical observable can then be computed using Abri-

kosov’s trick77 �A�Q=1=lim�→�

�QA�

�Q� .

The coupling of the cluster to the medium, which simu-
lates the rest of the lattice, causes the cluster eigenstates to
decay in time. Therefore, their spectral functions carry non-
trivial frequency dependence and important information
about various physical processes such as the Ruderman-
Kittel-Kasuya-Yosida �RKKY� interactions, the Kondo ef-
fect, and d-wave superconductivity. The corresponding
pseudoparticle Green’s function can be written in the form

Ḡmn��� = �� + � − Ecluster − �̄�mn
−1 , �21�

where �Ecluster�mn= �Ecluster�m�nm is the energy of the cluster
eigenstate and � is the Lagrange multiplier which will be set
to infinity at the end of the calculation.

Although hybridization is a small quantity compared to
other scales in the problem, the perturbation is singular in the
sense that at zero temperature an infinite number of diagrams
substantially contribute to the solution of the problem. In
Ref. 57 we showed a histogram �a distribution of the pertur-
bation order� which is peaked around �Ekin� /T, where Ekin is
the average kinetic energy and T is the temperature. An in-
finite resummation of diagrams is, thus, necessary, and the
noncrossing diagrams are simplest to compute.

Just like in the single site Anderson and Kondo impurity
problem,58,60 the noncrossing approximation works well
down to some breakdown temperature, which is slightly be-
low the superconducting transition temperature. Although
NCA is not exact, this approximation has the virtue of di-
rectly yielding real frequency information. In Fig. 3, we
present a typical comparison of the two impurity solvers on
the imaginary axis for the cluster Green’s functions of the t-J
model in the normal state close to TC. This comparison illus-
trates the degree of agreement within the two solvers on the
imaginary axis. Notice that all the qualitative features of the
evolution of the Green’s functions with doping are seen in
both methods. Therefore, we will use in this work the strat-
egy of combining information from different solvers in order
to draw conclusions as to the physical picture contained in
the solution of the cluster DMFT equations of the t-J and
Hubbard models, thus, avoiding the difficult problem of ana-
lytic continuation of imaginary time QMC data.

In the noncrossing approximation, the pseudoparticle self-
energies are computed from

�̄m�m�i�� = T �
i	,nn�

Ḡn�n�i	��Dnmm�n��i	 − i��

− Dm�n�nm�i� − i	�� , �22�

while the physical quantities such as Green’s function and
susceptibility are obtained by the functional derivative of the
NCA Luttinger functional with respect to the hybridization
term and are given by

G� K�i�� = − T �
i	,mnm�n�

�FK�m�n�Ḡn�n�i	�Ḡmm��i	 − i���FK†�nm,

�23�

�Q
���i�� = T �

i	,mnm�n�

�SQ
� �m�n�Ḡn�n�i	�Ḡmm��i	 − i���S−Q

� �nm.

�24�

The above equations can be projected to the physical sub-
space Q=1 only on the real axis. In the limit �→�, they
take the form

�̄m�m��� = �
K,nn�

� d�f���Ḡn�n�� + ���D̂nmm�n����

+ D̂m�n�nm�− ��� , �25�

G� K��� = �
mnm�n�

�FK�m�n��F
K†�nm

�� d�e−��	Ḡn�n�� + ��Ĝmm����

− Ĝn�n���Ḡmm�
* �� − ��
 , �26�
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FIG. 3. �Color online� Comparison of NCA and CTQMC
Green’s functions on the imaginary axis for several doping levels.
We used real space C-DMFT.
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�Q
����� = �

mnm�n�

�SQ
� �m�n��SQ

� �nm

�� d�e−��	Ḡn�n�� + ��Ĝmm����

+ Ĝn�n���Ḡmm�
* �� − ��
 . �27�

Here, we used the following notation:

D̂��� = −
1

2�i
	D�� + i�� − D�� − i��
 , �28�

Ĝ = −
1

2�i
	Ḡ�� + i�� − Ḡ�� − i��
 . �29�

The pseudoparticle quantities �Green’s functions Ĝ and self-

energies �̂� exponentially vanish below a certain threshold
energy �they have x-ray singularity�, which can be inter-
preted as the effective energy of the many-body state associ-
ated with the pseudoparticle. These thresholds can be re-
moved by defining new quantities without threshold,78 i.e.,

G̃�	� = Ĝ�	�/f�− 	� , �30�

�̃�	� = �̂�	�/f�− 	� . �31�

Using these quantities, we can rewrite the NCA equations as

�̃m�m��� = �
K,nn�

� d�
f�� − ��f�− ��

f�− ��
G̃n�n����D̂nmm�n��� − ��

+ D̂m�n�nm�� − ��� , �32�

Im G� K��� = − � �
mnm�n�

�FK�m�n��F
K†�nm� d�

f�� − ��f�− ��
f�− ��

�G̃n�n���G̃mm��� − �� , �33�

Im �Q
����� = − � �

mnm�n�

�SQ
� �m�n��SQ

� �nm� d�
f�� − ��f�− ��

b�− ��

�G̃n�n���G̃mm��� − �� . �34�

At zero temperature, the combination of the Fermi functions
f�−��f��−��

f�−�� =
f���f��−��

f��� is equal to unity in the interval

	min�0,�� ,max�0,��
 and zero outside.
These equations relate physical observables, such as GK

and �Q, to the pseudoparticle spectral functions. The latter
represent coarse-grained versions of the important many-
body excitations of the system including fermionic quasipar-
ticles and bosonic collective modes. They have quantum
numbers describing their spin, number of particles �which
when divided by the cluster size gives the density�, and
coarse-grained momentum.

Relating several experimental observables such as photo-
emission spectra, tunneling spectra, and optical spectra to the
same set of pseudoparticle spectral functions gives additional
insights into the important excitations of the system.

III. CLUSTER ONE-PARTICLE GREEN’S FUNCTION,
CLUSTER SELF-ENERGY, AND SCATTERING RATE

In this section, we discuss cluster quantities. As discussed
in Sec. II, in both C-DMFT and DCA formalism, local quan-
tities, such as cluster self-energies and cluster Green’s func-
tion, are diagonal in the cluster momentum basis. Conse-
quently, the physical behavior of the system within the
cluster DMFT approach on a plaquette can be summarized in
the four cluster quantities �00, ��0, �0�, and ���, corre-
sponding to the eigenvalues of the matrix containing on-site,
nearest-neighbor, and next-nearest-neighbor cluster self-
energy introduced in Ref. 48. These cluster self-energies in
the cluster momentum basis should not be interpreted as the
lattice self-energies evaluated at four momentum points.

In the next few figures, we present low temperature self-
energies for the t-J model on the imaginary axis obtained
using the CTQMC impurity solver. Figure 4 contains the
data in the normal state, and Fig. 5 the same quantities deep
in the superconducting state.

Starting from the low temperature T=0.01t normal state
solution shown in Fig. 4, one notices large momentum dif-
ferentiation at small doping. The three orbitals evolve very
differently with changes in doping and temperature, as we
will show in the following. The �0, 0� component has Fermi-
liquid frequency dependence with relatively small scattering
rate at zero frequency and small monotonic decrease of the
real part of the self-energy with increasing doping. The two
degenerate orbitals �0,�� and �� ,0� are distinctly different
from the �0, 0� orbital. The scattering rate around optimal
doping 0.12���0.22 remains large �of order unity� even
below the transition to superconducting state T�0.01t. We
notice in passing that it becomes increasingly difficult to
converge the C-DMFT equations in the metastable normal
state around optimal doping. Critical slowing down is ob-
served, which might be a signature of local �cluster� instabil-
ity, which might occur at zero temperature and might even
preclude the continuation of a translationally invariant nor-
mal state solution down to zero temperature.

The ���� self-energy in Fig. 4 is by far the largest among
all four and, except at very small and very large doping, it
does not show any signature of coherence. At ��0.1, it has
a clear pole at zero frequency. From the above plot, we can
see that a pole is on the real axis, and it is located above the
Fermi level at small doping, crosses the Fermi level around
��0.1, and finally, becomes negative in the optimal and
overdoped regimes. A very sharp pole on the real axis de-
scribed above is, indeed, confirmed by the NCA calculation.
The consequence of the pole in self-energy is the appearance
of zeros of the Green’s function as discussed in Ref. 43.
Physically, it means that some states in momentum space are
damped and gapped even at very low temperature. Figure 5
at lower temperatures shows that this behavior persist to tem-
peratures much lower than TC. Hence, even in superconduct-
ing state, the large Luttinger Fermi surface is not recovered.
The antinodal fermions are strongly damped and gapped
even in the superconducting state. This is related to the oc-
currence of Fermi arcs and lines of zeros of the Green’s
function79 as noticed in Refs. 43, 44, and 80. This phenom-
enon was first noticed in microscopic studies of coupled
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ladders,81,82 and related proposals also appeared in recent
phenomenological models of high TC’s.83–85 However, in
these studies, the location of the lines of zeros is tied to the
umklapp surface, while in the cluster DMFT, the lines of
zeros is a dynamical object which evolves in a highly non-
trivial way with doping.

The pole in ���� self-energy crosses the Fermi level at a
critical doping �or at least becomes very large at low ener-
gies� that we denote by �1

c. The existence of a pole in the
self-energy appears also in the Hubbard model with an im-
portant difference. In the Hubbard model, the pole is always
below EF and, therefore, this “critical” doping �1

c is zero. We
also want to mention that at small U=6 �below the Mott
transition of the undoped system� in the Hubbard model, the
above mentioned pole seems to be absent or at least substan-
tially reduced. This substantiates the idea that the lines of
zeros in the Green function appear only above a critical cou-
pling.

Figure 5 shows cluster self-energies at a lower tempera-
ture, i.e., T=0.005t in the superconducting state. The �0, 0�
orbital does not change very dramatically except that it be-
comes more coherent. On the other hand, the �� ,0� orbital
does show a dramatic effect. The huge scattering rate is now
replaced by the large anomalous component of the self-
energy, while the scattering rate is severely reduced. The
peak in anomalous self-energy seems to track TC and coin-
cides with the point of maximal scattering rate in the normal
state. We will call this doping �2

c since it corresponds to the
avoided critical point identified in Ref. 50. Finally, the �� ,��
component of the self-energy sharpens with reducing tem-
perature, and the pole at �1

c �0.1 is even more apparent. This
result is quite surprising because the superconducting state is

expected to be more coherent. As we show above, coherence
is only restored in three of the four orbitals, while the ����
orbital remains gapped. Hence, the Fermi surface underlying
the normal state does not contain the Luttinger volume at
small doping.

In Figs. 6 and 7, we show the cluster Green’s functions of
the t-J model in the normal state and the superconducting
state at lower temperatures. The cluster Green’s functions
describe a coarse-grained average of the lattice Green’s func-
tion over some parts of the Brillouin zone. It is evident from
Fig. 6 that the �� ,0� orbital contains most of the spectral
weight �largest imaginary part of G�0� over the whole doping
regime considered here. The �� ,�� orbital is clearly gapped
since the real part of the self-energy is too big to pick up any
states inside the band as was previously observed in the ex-
tended DMFT study of the same model.59,60 The important
message is contained in the real part of �� ,0� cluster Green’s
function. The real part measures the particle-hole asymmetry
of the orbital. It would vanish if the orbital is perfectly
particle-hole symmetric. As one can see in Figs. 6 and 7, the
�� ,0� orbital has “more weight” below EF in the underdoped
regime and more weight above EF in the overdoped regime.
Remarkably, it becomes almost particle-hole symmetric in
the region of optimal doping. The exact point of particle-hole
symmetry is close to �0.18, which is just slightly above the
point of maximal TC and maximal anomalous self-energy.
Figure 7 demonstrates that this remarkable symmetry persists
even in the superconducting state, where the gap appears in
all the orbitals.

We now compare the previous findings with the corre-
sponding quantities in the Hubbard model displayed in Figs.
8, 9, 11, and 12. The Hubbard model at U=12t has roughly

FIG. 4. �Color online� C-DMFT cluster self-energies of the t-J model using CTQMC as the impurity solver. Temperature T=0.01t and
system is in the normal state. Notice that �00 is Fermi-liquid-like �imaginary part vanishes at zero Matsubara frequency below the coherence
temperature� in the whole range of doping, ��0 is Fermi liquid in the overdoped and underdoped regimes, while the scattering rate remains
of the order of unity in the optimally doped regime. Finally, ��� is by far the largest self-energy. Its real part is so large that the orbital is
gapped in all doping ranges considered. The scattering rate is enormous and a pole appears on the real axis around �=0.1. The pole is above
EF at very small doping, crosses EF at �=0.1, and goes below EF for optimally doped and overdoped regimes. This causes a sign change of
the real part of ���. The ���� orbital is, thus, in the Mott-insulating state in most of the doping ranges considered.
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FIG. 6. �Color online� C-DMFT cluster Green’s functions at T=0.01t in the normal state of the t-J model obtained by CTQMC. The real
part of the Green’s function vanishes for particle-hole symmetric situation, while it is positive when the spectral weight below EF has the
“largest weight” and vice versa. The �0,0� orbital does not change much with doping and remains close to half-filling. The �� ,0� orbital gives
most of the weight at the Fermi level �has largest imaginary part at zero frequency� and remarkably becomes particle-hole symmetric at the
doping level slightly larger than the optimally doped level ��=0.18�. The �� ,�� orbital is gapped for all doping levels.

FIG. 5. �Color online� Same as in Fig. 4 but at lower temperature T=0.005t in the superconducting state. The bottom row shows the
anomalous self-energy. The �0,0� orbital barely changes in the superconducting state. On the other hand, the large scattering rate in �� ,0�
orbital is severely reduced in the superconducting state and the orbital becomes Fermi-liquid-like. The large scattering rate in the normal
state is now replaced by a large anomalous component of self-energy �peaked around ��0.15, see Fig. 18�. Finally, the pole in �� ,��
self-energy sharpens and the orbital remains Mott-insulating in most of the doping ranges considered. A pole of the cluster self-energy is
accompanied by a line of zeros of the Green’s functions in certain parts of the momentum space �Refs. 43 and 44� and persists in the
superconducting state.
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the same superexchange as the one used in the previous
study of the t-J model, J�0.3t, and therefore, we expect a
similar physical behavior. We will demonstrate below that,
indeed, this is the case, and we will highlight some quanti-
tative differences between the two models, such as the nu-
merical values of the critical dopings for cluster quantities �1

c

and �2
c.

Figure 8 shows the four cluster Green’s functions at T
=0.01t in the normal state. When the off-diagonal long-range
order is allowed, the system starts to develop anomalous
components in the optimally doped regime at this tempera-
ture, just like in the t-J model at the same temperature. In the
metastable normal state, the �0, 0� orbital is again the most
coherent orbital and is not very sensitive to doping. On the
other hand, the �� ,0� orbital is clearly coherent for small and
large doping and the scattering rate around ��0.1 is of the
order unity. The point of maximum scattering rate and maxi-
mum anomalous self-energy in the Hubbard model is, how-
ever, slightly shifted toward lower doping �relative to the t-J
model�, i.e., �2

c �0.1.
The �� ,�� orbital is again the one with the largest self-

energy and scattering rate. In the Hubbard model, the pole on
the real axis crosses zero exactly at zero doping; hence, �1

c

=0. However, even at optimal doping �0.1, the real part of
the self-energy is so large that the orbital is almost com-
pletely gapped.

Figure 9 demonstrates that the pole in ��� does not dis-
appear in the superconducting state. This was also the case in
the t-J model, and it is, therefore, a robust feature of the

approach to the Mott insulator within CDMFT. The physical
interpretation is that part of the underlying Fermi surface
remains gapped even in the superconducting state. The �� ,0�
orbital becomes coherent when entering the superconducting
state. Its imaginary part, at low frequencies, is maximal
around �2

c.
The cluster self-energies in the cluster site representation

contain useful information about the range. For example, it
has been argued that near the Mott insulator, they become
long ranged, while the cluster cumulant remains short
ranged.43,44 In Fig. 10, we show the on-site, nearest-
neighbor, and next-nearest-neighbor self-energy, the actual
output of the C-DMFT scheme. These are related to the ei-
genvalues shown above through the following linear rela-
tions:

�R=�0,0� =
1

4
��00 + ��0 + �0� + ���� , �35�

�R=�1,0� =
1

4
��00 − ��0 + �0� − ���� , �36�

�R=�0,1� =
1

4
��00 + ��0 − �0� − ���� , �37�

�R=�1,1� =
1

4
��00 − ��0 − �0� + ���� . �38�

FIG. 7. �Color online� C-DMFT cluster Green’s functions of the t-J model at T=0.005t in the superconducting state obtained by
CTQMC. Superconducting gap opens, in particular, in the �� ,0� orbital. Particle-hole symmetry of this orbital is again evident from the real
part of the Green’s function being close to zero around optimal doping �blue curve with triangles pointing right�.
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On the heavily overdoped side of the Hubbard model, �
�0.16, presented in Fig. 10, it is clear that the only relevant
quantity is the on-site self-energy, which justifies the use of

the single site DMFT in the overdoped site of the system. In
the underdoped regime, however, the nearest-neighbor and
next-nearest neighbor self-energies are large and give rise to

FIG. 9. �Color online� Similar to Fig. 8 but at lower temperature T=0.005t in the superconducting state. Just like in the t-J model, the
�� ,0� orbital, which is representative of the nodal part of the self-energy, becomes coherent in the superconducting state and the anomalous
self-energy is largest around ��0.1, where the scattering rate is largest in the normal state. The �� ,�� self-energy sharpens with decreasing
temperature just like in the Hubbard model, showing that this orbital is in the Mott-insulating state in the underdoped and optimally doped
regimes.

FIG. 8. �Color online� Hubbard model cluster self-energies in C-DMFT obtained by CTQMC at T=0.01t and U=12t in the normal state.
Just like in the t-J model, the �0,0� orbital is Fermi-liquid-like in the whole doping regime, while the �� ,0� orbital is coherent only in the
underdoped and overdoped regimes. At optimal doping �in the Hubbard model, optimal doping is around ��0.1�, the scattering rate is
largest. The important difference appears in the �� ,�� orbital. The �� ,�� self-energy is the largest self-energy of the system just like in the
t-J model. Contrary to the t-J model, the pole in the �� ,�� self-energy on the real axis, which appears in the t-J model around �=0.1, is now
at zero doping. The self-energy of the �� ,�� orbital, thus, monotonically grows when approaching the Mott insulator.
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qualitatively different results than those of a single site
DMFT. They renormalize the nearest-neighbor and next-
nearest-neighbor hoppings and induce a substantial next-
nearest-neighbor hopping even for the model with vanishing
bare t�. Furthermore, they distort the Fermi surface and cause
variation of coherence across the Fermi surface as we will
show below.

Finally, the cluster Green’s functions for the Hubbard
model are shown for two temperatures T=0.01 and T
=0.005 in Figs. 11 and 12 at U=12t. Again, we notice quali-
tatively similar behavior than those found in the t-J model.
The �� ,�� orbital is gapped in both normal and supercon-
ducting states. The �� ,0� orbital contains most of the spec-
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FIG. 10. �Color online� The on-site and short-range self-energies of the Hubbard model in the superconducting state at T=0.005t. The
on-site self-energy is the largest, and its imaginary part vanishes for all finite dopings. The reason is that the pole in the �� ,�� self-energy
is now at zero doping. The nonlocal components of the self-energy vanish rather rapidly with doping.

FIG. 11. �Color online� Hubbard model Green’s function in the normal state at T=0.01t. The physics is the same as in Fig. 6 for the t-J
model. The only difference is that the particle-hole symmetric point of the �� ,0� orbital appears around ��0.12, which is again slightly
above the optimally doped level.
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tral weight and becomes particle-hole symmetric slightly
above optimal doping around, i.e., ��0.12. This particle-
hole symmetry persists in the superconducting state.

We now turn to the real frequency information. In most of
what follows, we show results for the t-J model, except
when explicitly stated otherwise.

Figure 13 shows the evolution of the CDMFT cluster
spectral functions as a function of frequency for a few dop-
ing levels. Notice that due to symmetry, �� ,0� and �0,��
spectral functions coincide. At zero doping �not shown�, all
four orbitals are half filled and the system is in Mott-
insulating state.

Upon doping the system, the �� ,�� orbital is emptied
first, but in a very unusual way. Although its occupancy be-
comes much smaller than unity and, therefore, one would
naively expect a large number of hole carriers in this band, it
remains basically gapped for arbitrary doping as we have
established above on the basis of the CTQMC results. This is
very unusual since one naively expects the orbital to be
gapped only at an integer filling. Only at very large doping,
��0.3, the self-energy of this orbital approaches the other
three self-energies so that the self-energy becomes momen-
tum independent and, therefore, local. At this large doping,
the �� ,�� orbital is essentially empty and we can think of
this orbital as an Anderson impurity model in the empty
orbital regime.

The �0, 0� orbital is also very inert in the whole doping
range. Its density of states at the Fermi level is small, while
its occupancy only slightly decreases with increasing doping.
The orbital remains close to half-filling with very small num-
ber of charge carriers induced in this band.

Finally, the �0,�� 	and �� ,0�
 components have sharp
spectral features with very strong doping dependence. In go-
ing from �=0.3 to �=0.1, we observe the narrowing of the
quasiparticle width reminiscent of the single site DMFT;
however, a qualitative feature of CDMFT is that at smaller
dopings this narrowing of the width is arrested, as a result of
the presence of exchange effects as seen in slave boson
studies86 and in the large N limit of the t-J model.87

At low doping, the spectral function develops a
pseudogap on the scale of J, with most of the coherent spec-
tral weight below the Fermi level and a small fraction of it
above the Fermi level. This is a general feature of the ap-
proach to the Mott transition in cluster DMFT, and has been
seen in earlier studies.41,42,45,59,60

The important message contained in Fig. 13 is that the
momentum differentiation at small doping is very large. The
�� ,�� orbital remains gapped at all dopings. It is in the
Mott-insulating state at low doping and becomes empty in
the overdoped regime; hence, it undergoes a band insulator
to Mott insulator transition with decreasing doping. Most of
the dynamical information of the active degrees of freedom
representing the electrons close to the Fermi surface of the
lattice model is, however, contained in the �0,�� and �� ,0�
components.

The frequency dependence of the cluster �� ,0� self-
energy and its evolution with doping on the real axis is
shown in Fig. 14. At small doping, the holelike scattering
rate ���0� is large, while the electronlike rate ���0� is
small. Around optimal doping, the self-energy is roughly lin-
ear in frequency, however, with large zero-frequency value.
In this regime, there is still a large particle-hole asymmetry

FIG. 12. �Color online� Similar to Fig. 11 but for lower temperature T=0.005t in the superconducting state.
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in the scattering rate. While the holelike part is linear with a
relatively small slope down to �=−0.5t, the electron part is
increasing only in the small region up to �=0.15t with larger
slope. Only in the strongly overdoped system does the self-
energy become roughly particle-hole symmetric at low fre-
quency. This particle-hole asymmetry in scattering rate can
be contrasted with the approximate particle-hole symmetry

in the one-particle Green’s function at optimal doping. The
combination of the real part of the self-energy and the band
structure leads to approximate recovery of this symmetry in
the local one-particle spectra at optimal doping although it is
absent in the scattering rate.

Zero-frequency quantities

Further insight into the nature of the CDMFT solution can
be obtained by examining the cluster self-energies at zero
frequency. In Fig. 15, we display the CTQMC self-energy for
the t-J model at the lowest Matsubara frequency as a func-
tion of doping. In the overdoped side, the real parts of all
four self-energies merge; therefore, the self-energy becomes
local. The single site DMFT is adequate. The coherent qua-
siparticle peak at the Fermi level is formed and arises mainly
from the �� ,0� orbital. The reason is that the noninteracting
density of states for �0, 0�, �� ,��, and �0,�� orbital extends
roughly between 	−4t ,0
, 	0,4t
, and 	−2t ,2t
, respectively
�see Fig. 1�. For the momentum independent self-energy, the
Friedel sum rule dictates that the effective chemical potential
�−��0� is at the corresponding noninteracting chemical po-
tential �0, which is slightly below zero frequency. The �� ,��
orbital is, therefore, empty, being band insulator like. At
smaller doping, this orbital acquires an enormous real part of
���0�, which pushes the effective chemical potential �
−���0� far below the band edge of the tight-binding Hamil-
tonian. This orbital is, therefore, in the Mott-insulating state
for smaller dopings. The insulating state in this orbital does
change the nature from bandlike to Mott-like insulator.

For the �0, 0� orbital, the effective chemical potential is
close to its upper band edge. The noninteracting density of
states at the band edge for this orbital is small �see Fig. 1�,
and only a very small number of charge carriers are doped
into the orbital. Therefore, it remains close to a Mott-
insulating state with small scattering rate at the Fermi level.

The �� ,0� orbital is slightly less than half filled in the
doping range considered here, and the real part of the self-
energy smoothly increases with doping �see Fig. 15� such
that the effective chemical potential �−���0� is positive in
the underdoped side �carriers are holelike� and negative in
the overdoped side �carriers are electronlike�. Close to opti-
mal doping, effective chemical potential is close to zero,
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FIG. 13. �Color online� Evolution of the EC-DMFT cluster
spectral functions of the t-J model with doping in the normal state
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which makes the orbital approximately particle-hole sym-
metric at low frequency �see Fig. 13�.

The �� ,�� self-energy acquires a pole on the real axis
around �1

c �10% doping, which can be identified in Fig. 15
as a divergent point of ���� �0� and zero of ���� �0�.

Figure 16 describes the low energy phase shift in each
orbital. It is defined by �K=arg(GK�i0+ �). Phase shifts are
defined mod �. Notice two important features: at very small
doping, the phase shifts in all channels are close to zero.
They confirm the picture suggested in Ref. 50, in which the
cluster degrees of freedom are weakly affected by the sur-
roundings. It is reminiscent of the RKKY phase of the two
impurity Kondo model. The system reaches the unitarity
limit, as the phase shift crosses � /2 in the �0,�� channel
near �=0.18. This is because the real part of the cluster
Green’s function at zero frequency vanishes around optimal
doping as shown in Figs. 6 and 7.

The indication for the existence of an anomaly around �2
c

is seen most clearly in the imaginary part of the real fre-
quency electron self-energy at �0,��, evaluated at zero fre-

quency. We display EDCA-NCA calculations of it in the up-
per panel of Fig. 17. At large and small doping, the scattering
rate is small as expected for a Fermi liquid. Remarkably, it
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becomes very large in the region near optimal doping when
the critical temperature is maximal. This doping point corre-
sponds to the above defined critical doping �2

c, which is in
NCA around 0.18. The transition to the superconducting
state, severely reduces the scattering rate, eliminating the

traces of the underlying critical behavior. A coherence scale,
estimated from the scattering rate, is plotted in the bottom
panel of Fig. 17 and is shown to have a tendency to vanish
close to the point of maximal superconducting transition
temperature.

Figure 18 shows the CTQMC results for the scattering
rate within CDMFT and confirms the incoherence of the op-
timally doped system. The imaginary part of the self-energy
at the first Matsubara point is small for both the underdoped
and overdoped systems, while it is peaked at optimal doping.
The peak is slightly shifted with temperature and, if the nor-
mal state is continued below the superconducting transition
temperature, the peak of scattering rate coincides with the
maximum of the anomalous self-energy, which traces the
maximum of the transition temperature �see Fig. 19�. The
scattering rate is severely reduced in the superconducting
state when off-diagonal long-range order is allowed in the
calculation.

IV. SUPERCONDUCTIVITY, TUNNELING DENSITY OF
STATES, FERMI ARCS, AND NODAL

QUASIPARTICLES

The superconducting state is characterized by an order
parameter �ck↑c−k↓�=Fk��=0� and by the presence of a fre-
quency dependent anomalous component to the self-energy.
In Nambu notation, the self-energy in �� ,0� and �0,�� or-
bitals takes the following form:
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�� K�i�� = ��K↑�i�� �K
an�i��

�K
an�i�� − �−K↓�− i��

� �39�

and the corresponding Green’s function is

G� K�i�� = �GK↑�i�� FK�i��

FK
† �i�� − G−K↓�− i�� � . �40�

The sign of the anomalous components chosen by the system
is ��0

an =−�0�
an . Within C-DMFT, this is precisely the nearest-

neighbor self-energy and its lattice analog �using the original
C-DMFT periodization69� takes the form �k= 1

2 �cos kx

−cos ky��0�
an .

The anomalous self-energy ��0
an is plotted in Fig. 19. The

upper part of the figure shows the CTQMC results within
C-DMFT, while the lower part shows the NCA results within
EDCA. In both cases, the function is monotonically decreas-
ing with imaginary frequency and is largest at optimal dop-
ing. Furthermore, at the low values of the Matsubara fre-
quency, the anomalous self-energy exhibits a fast upturn and
sublinear frequency behavior that becomes less pronounced
as the doping is reduced. This trend is likely due to the
reduction of density of states in the pseudogap region.

The anomalous self-energy obeys a spectral representa-
tion

�k
an�i�n� = �k

an��� −� d�

�

Im �k
an���

i�n − �
.

The infinite frequency value of the self-energy vanishes in
the Hubbard model but is nonzero in the t-J model, and is
related to the order parameter of the system Fq��=0�
through the following exact relation:

�k
an��� = −

3

�1 + ��2�
q

Jk−qFq�� = 0� , �41�

where Fq��=0�= �cq↑c−q↓�.
Notice that simpler mean-field theories of the t-J model

such as the slave boson mean-field theory88 assume only the
static, frequency independent anomalous self-energy. Other
approaches based on the equation of motion for the Hubbard

operators89 capture a frequency dependent order parameter
but neglect the static infinite frequency component. A similar
analysis of the pairing interaction has recently been carried
out for the ladders in Ref. 90.

The existence of a finite value of the anomalous self-
energy of the t-J model at infinite frequency should be inter-
preted as the existence of a nonzero value for anomalous
self-energy in the Hubbard model at a scale of the order U.

The value of the anomalous self-energy at zero frequency
and low temperature, and the gap �defined as the distance
between the positive and negative energy peaks in the tun-
neling density of states divided by 2� are similar in all ver-
sions of the cluster DMFT. For the parameters used in our
study �J / t=0.3, near optimal doping�, the anomalous self-
energy is of the order of unity at low temperature �see the
upper panel of Fig. 19�.

On the other hand, TC, the superconducting order param-
eter, and the value of anomalous �an��� are more sensitive
quantities and differ between the various cluster schemes.
The schemes with higher TC �extended versions of CDMFT�
show slower decrease of the anomalous self-energy, larger
infinite frequency component of the anomalous self-energy,
and larger value of the superconducting order parameter. In
C-DMFT, the maximum value of the order parameter is
around 0.02 �see Fig. 20�, which is approximately eight
times smaller than the maximum achieved in EDCA. Conse-
quently, the static pairing in C-DMFT is very small, while it
reaches almost 1 /3 in extended versions of the cluster
DMFT �both in EDCA and in EC-DMFT�, i.e., the magni-
tude of the anomalous self-energy at infinity as compared to
the value at zero shown in Fig. 19.

From the anomalous Green’s function, we can extract the
order parameter, i.e., the anomalous Green’s function at
equal time F�0��=0�. The order parameter versus doping as
obtained by the CTQMC and C-DMFT is shown in Fig. 20.
It has a domelike shape and tracks the value of the critical
temperature, just like in BCS theory. In the same figure, we
also display critical temperature TC at optimal doping. Due
to a critical slowing down in the region of transition, many
DMFT iterations are needed to determine the critical tem-
perature.

The temperature dependence of the related quantity, the
anomalous self-energy at infinity, computed with NCA is
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FIG. 20. �Color online� Order
parameter in C-DMFT computed
with CTQMC at T=0.5Tcmax. The
critical temperature �in units of t�
for a few doping values is also
displayed.
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shown in Fig. 21. It has a clear BCS-like temperature depen-
dence, saturating to a value of the order of �0.3, which is
around 1/3 of the zero-frequency value.

Using NCA, we can examine directly ����� and ����� on
the real axis. There are several features in the frequency
dependence of the anomalous self-energies depicted in Fig.
22 which exhibit noticeable departures from the standard
Migdal-Eliashberg theory of superconductivity. First, the real

part of the self-energy does not change sign. This indicates
that the interaction is attractive over the whole frequency
range. There is no characteristic energy corresponding to
�Debye, where the interaction turns from attractive to repul-
sive. Furthermore, the spectral function displays significant
spectral weight not only at a scale of order J but also at the
scale of order t, extending all the way to very high frequen-
cies. Several scales can be clearly identified in the anomalous
self-energy: the size of the superconducting �SC� gap in one-
particle spectra �0.1t �see Fig. 25 and the discussion of the
figure later in this section�, the spin exchange J, the hopping
t, and a scale of the order of half the bandwidth �3t.

It is useful to momentum resolve the one-particle spectra
at low energies to understand the origin of the low energy
quasiparticle excitations in the system. This requires the
choice of a periodization scheme. For simplicity, we use the
cumulant periodization scheme introduced in Refs. 23, 43,
and 44. A more detailed discussion of the periodization prob-
lem will be given elsewhere.91 Here, we focus on the tem-
perature dependence, which requires the finite temperature
techniques described in this paper.

The results are shown in Fig. 23. As shown in earlier
works,47,48 C-DMFT is able to produce Fermi arcs in the
nodal region. The advantage of the CTQMC technique rela-
tive to other solvers is that it allows one to investigate,
within CDMFT, the temperature dependence of the arcs. As
shown in Fig. 23, the Fermi arcs shrink with decreasing tem-
perature, reminiscent of recent experiments92 on cuprates.
The physical mechanism for the formation of the arcs, and
their shrinking with decreasing temperature, is the shift in
the real part of the momentum dependent self-energy, which
is enhanced in the cumulant periodization. While the validity
of this periodization down to zero temperature, with the con-
sequent formation of lines of zeros and Fermi pockets, is at
this point a conjecture that deserves further study, there is no
question that the formation of the arc and their temperature
dependence, at finite temperatures, are robust properties of
the cellular DMFT treatment and are visible in other peri-
odizations. Therefore, the results of this paper together with
the earlier zero temperature results of Ref. 43 are consistent,
at the qualitative level, with both the recent De Haas–Van
Alven measurements93 and photoemission measurements.92
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FIG. 21. �Color online�
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=�� as a function of temperature
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With decreasing temperature, the Fermi arcs evolve into a
small pocket at a finite distance from a line of zeros, which
darkens one side

The arcs are increased with doping and they develop into
a banana shape structure. The Fermi surface at optimal dop-
ing in the superconducting state is displayed in Fig. 24. No-
tice the sharp quasiparticles in the nodal region and a gap in
the antinodal region.

We now turn to another observable, the superconducting
tunneling density of states and its doping dependence dis-
played in Fig. 25. This quantity has been extensively inves-
tigated experimentally.4 On a broad energy scale, there is
considerable particle-hole asymmetry in those curves, and
the positive frequency part decreases as we underdope. This
is expected on very general grounds for a doped Mott
insulator.94–98

Remarkably, around optimal doping, ��0.18, the curves
are more particle-hole symmetric at low frequencies. The
asymmetry in the superconducting state evolves from the
asymmetry of the underlying normal state. To confirm this,
we plot the density of states of the underlying normal state
with dashed lines in the lower panel of Fig. 25. It is clear
from Fig. 25 that the same magnitude of the asymmetry in
the superconducting tunneling density of states is present in
the normal state local density of states.

The low energy slope of the tunneling density of states is
only weakly doping dependent, as was shown in the CDMFT

exact diagonalization study of the Hubbard model.51

Besides the considerable particle-hole asymmetry at low
doping, there are several features in Fig. 25 which are in
qualitative agreement with experiments,9 for example, the
dip-hump feature in the tunneling density of states in the
unoccupied part of the spectra.

Another surprising aspect of the tunneling is that the in-
crease in the gap with decreasing doping is correlated with a
decrease in the intensity of the coherence peaks. This is the
opposite of what is expected for a BCS superconductor,
where the growth in coherence peaks correlates with an in-
crease in the superconducting gap. This observation can also
be understood in terms of the two gap picture. The gap in the
tunneling density of states �maximum between the coherence
peaks� is controlled by the gap originating from the normal
component of the self-energy. This gap increases with de-
creasing doping. On the other hand, the degree of coherence
is controlled by the anomalous self-energy, which decreases
with decreasing doping as shown in Fig. 25.

The two gap picture of the cuprates has recently emerged
from the analysis of numerous experiments.99–101 It is also
part of various phenomenological pictures of cuprate
superconductors.81,82,102 This picture has been recently
placed on a microscopic basis by variational cluster approach
studies52 and C-DMFT studies of the Hubbard model.51

In the optimally doped regime, the gap value is of the
order of ��0.09t. This value was obtained from Fig. 25, but
similar values result from analytic continuation of CTQMC
data to real axis. As discussed above, the critical temperature
TC strongly depends on the cluster scheme employed. Using
the maximum TC of each scheme, we can determine the ratio
2� /TC at optimal doping. In EDCA, TC

EDCA�0.036t and
2� /TC�5; in EC-DMFT, TC

EC-DMFT�0.026t and 2� /TC�7,
and TC

C-DMFT�0.01t, therefore 2� /TC�18. In conventional
superconductors described by BCS theory, this ratio is uni-
versally equal to 2� /TC=3.5, but increases in the strong cou-
pling Eliashberg theory. The cluster DMFT superconductiv-
ity is, thus in the very strong coupling limit when compared
to conventional superconductors. Recent experiments on
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Bi2212 �Ref. 103� seem to suggest that the ratio 2� /TC is
close to 8.0, being somewhere between the two limits of
extended and nonextended versions of the CDMFT schemes.

In Figs. 27 and 26, we present some insights into the
nodal quasiparticles of the Hubbard model as obtained from
the CTQMC results shown in Figs. 9 and 12. The self-energy
in the nodal region is obtained from the self-energy
periodization,69 i.e.,

��k� =
1

4
	�R=�0,0� + �R=�1,0� cos kx + �R=�0,1� cos ky

+ cos�kx�cos�ky��R=�1,1�
 . �42�

This allows us to determine the position of the Fermi mo-
mentum �−	kF

−�kF
��=0�=0 and quasiparticle renormal-

ization amplitude Z=1/ 	1−d��kF� /d�
. In Fig. 26, we plot
Znodal and kF along the nodal direction in the superconduct-
ing state, where the coherence is established and quasiparti-
cles are well formed. Fermi surface is close to �� /2 ,� /2�.
The renormalization amplitude Z is very slowly increasing
with doping in the underdoped and optimally doped regimes,

but has a fast upturn once the normal state becomes more
Fermi-liquid-like.

The evolution of the nodal velocities at very low tempera-
tures and its consequences for the superconducting gap in the
nodal and antinodal regions were recently studied in Ref. 51
using exact diagonalization as the impurity solver. Here, we
confirm all the qualitative trends in the doping dependence of
these quantities using the CTQMC solver.

In Fig. 27, we plot the quasiparticle Fermi velocity per-
pendicular to the Fermi surface and the anomalous velocity
parallel to the Fermi surface in the nodal region. The veloci-
ties are defined by

�nodal = Znodal� d	k

dk�

+
d�k

dk�

� , �43�

�� = Znodal

�k
anomal

dk�

. �44�

It is clear from Fig. 27 that the nodal velocity is almost
constant in the underdoped, optimally doped, and lightly
overdoped regimes, compatible with the observation in Ref.
104. The anomalous velocity, however, is domelike shaped
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and tracks the critical temperature. The anomalous velocity
measures the slope of the superconducting gap at the node,
and its downturn in the underdoped regime suggests that the
superconducting gap at the node decreases with decreasing
doping. This surprising result is in accordance with recent
Raman experiments100 and angle-resolved photoemission
measurements,101 showing that the superconducting gap at
the node in the deeply underdoped regime indeed decreases.

V. OPTICAL CONDUCTIVITY

We now turn to the optical conductivity, which we display
in Fig. 28 for the t-J model. This quantity has been investi-
gated both theoretically and experimentally over the past
20 years. For reviews, see Refs. 3, 8, and 10. The integrated
spectral weight is a measure of the number of carriers, and its
evolution with doping has attracted considerable
attention.49,105–112

The starting point of a theory of the optical conductivity is
the Kubo formula,

��i�n� =
1

�n
��p

2��� − e2 �
k�k���

�k
��k�

�

��
0

�

ei�n��T�ck,�
† ���ck,����ck�,��

† ck�,���� ,

�45�

where the plasma frequency is evaluated from the expecta-
tion value of the projected kinetic energy, and the operators c
and c† are projected fermions of the t-J model.

In principle, the evaluation of the optical conductivity
within CDMFT requires the evaluation of the vertex func-
tion, since current vertex corrections are nonvanishing in
plaquette C-DMFT. However, for DCA in a plaquette, we
have shown that these corrections vanish.49 This suggests
that as a first step in investigating optical conductivity, we
can neglect current vertex corrections and evaluate the con-
ductivity from a convolution of the Green’s functions,
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FIG. 26. �Color online� Upper panel: doping versus the chemical potential for the Hubbard model at T=0.005t. It shows linear
dependence and downturn at small doping. This could point to a divergence of the compressibility zero doping. Middle panel: The nodal
quasiparticle residue Z versus doping. It is slowly increasing in the underdoped and optimally doped systems and increases rather rapidly in
the overdoped system. Lower panel: Fermi momentum along the nodal direction versus doping.
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���� =
i�p

2

�
−

ie2

�
�
k�

�k
2 � dx

�
f�x�	Gk�x + � + i��Gk��x�

+ Gk��x�Gk�x − � − i�� + Fk
†�x + � + i��Fk��x�

+ Fk
†��x�Fk�x − � − i��
 . �46�

Within C-DMFT, in the regime where the NCA solvers can
be used, the f-sum rule

�
0

�

���x�dx =
�e2

4 �
k,�,�=�x,y�

�d2�k

dk�
2 �nk� �47�

is obeyed within a few percent, suggesting that even for
C-DMFT, where the vertex corrections are nonvanishing, the

corrections introduced by this effect are small. Notice that
the right-hand side of Eq. �47� is proportional to the kinetic
energy of the low energy model if this model contains
nearest-neighbor hopping only.

Formula �46� depends on the momentum dependent
Green’s function and, therefore, on the periodization scheme
used and the cluster method employed. The qualitative fea-
tures discussed in this paper and the behavior of the inte-
grated quantities are common to all methods.

The optical conductivity has been modeled as either a one
component or a two component system via an extended
Drude analysis.113,114 The two component parametrization
consists of a Drude peak and a midinfrared feature.

The cluster DMFT results for the optical conductivity of
the t-J model are shown in Fig. 28. We show the evolution of
the optical conductivity with doping at various temperatures.
In the very underdoped regime, there are clearly two compo-
nents to the optical conductivity with an optical pseudogap,
opening as a function of temperature. On the other hand,
beyond �=0.1, one can describe the optics in terms of one
broad feature which narrows as the temperature is reduced.

It is customary to parametrize the optical conductivity in
terms of a generalized Drude model

���� =
�p

2

4�

1

1

����
+ i�

m*���
m

. �48�

This parametrization relates the real and imaginary parts of
the optical conductivity in a given energy range to two func-

tions 1
�����p

2 and
m*���

m�p
2 via
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1

�����p
2 =

1

4�

��

��2 + ��2 , �49�

m*���
m�p

2 =
1

4�

1

�

��

��2 + ��2 . �50�

The quantity �p
2 is determined from a requirement involving

the energy range in which the parametrization is used,
namely,

�p
2

8
= �

0

�

�����d� , �51�

where � is the high energy cutoff.
Figure 29 describes the evolution of the plasma frequency

and effective mass versus doping in the t-J model. The
plasma frequency vanishes at half-filling and linearly in-
creases at low doping. The optical mass is weakly doping
dependent and changes from approximately 3 in the over-
doped regime to 5 in the underdoped regime, with the largest
slope at optimal doping. Weak doping dependence of the
effective mass of the same magnitude was pointed out in
Ref. 114.

Given a parametrization of the optical conductivity as a
sum of a few poles, the optical mass measures the ratio of the
total spectral weight compared to the weight in the zero en-
ergy pole, representing the Drude peak. If the transitions be-
tween the upper and lower Hubbard bands of the Hubbard
model are included in �p, i.e., ��U, then �p is finite on
approaching the Mott transition and, consequently, the opti-
cal mass diverges. On the other hand, excluding transitions
between the Hubbard bands results in �p vanishing as the

Mott transition is approached. In the t-J model, the upper
Hubbard band is projected out, therefore the optical mass is
always finite. As long as the transitions into the upper Hub-
bard band are excluded, the plasma frequencies �p of cluster
DMFT and single site DMFT are not too different. Notice,
however, that m* /m is enhanced in cluster DMFT relative to
single site DMFT �not shown� because superexchange trans-
fers optical weight from the low energy to the intermediate
energy range �J.

The optical spectral weight �p
2 is, in general, a function of

temperature and cutoff �, i.e.,

�p
2

8
= W��,T� . �52�
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In experiment, the cutoff is usually chosen such that the in-
terband transitions are absent ���1 eV�. The interband
transitions or transitions into the upper Hubbard band are
absent in the t-J model, therefore this requirement is taken
into account automatically.

The optical pseudogap which separates the two compo-
nents of spectra and is seen as a dip at the scale of J in Fig.
28 is quite large in the underdoped system, ��0.05. One
could expect that the integral spectral weight W��� for small
enough ��J might start to decrease below a certain charac-
teristic temperature of a pseudogap. However, as shown in
Fig. 30 there is no sign of such a decrease for any cutoff
frequency � or any temperature. Although the pseudogap
gap clearly increases with temperature, the Drude peak more
than compensates for this spectral weight loss and W in-
creases as T decreases.

Near optimal doping, the optical conductivity displays re-
markable power laws in an intermediate asymptotic regime.
These power laws were first pointed out by El Azrak et al. in
Ref. 115. The power laws, and the possibility of a connection
with an underlying quantum criticality, have been a subject
of several recent experimental papers.116 CDMFT provides a
natural explanation for these anomalies.49 These power laws
were seen in exact diagonalization of much larger systems,117

indicating again the power of the cluster DMFT when it can
be compared with available exact results. The power of the
optical conductivity is very close to 2/3 as seen in Fig. 31,
but an analytic derivation of this result is not available.

A surprising aspect of the physics of strongly correlated
materials is that low energy phenomena affect the spectra of

the material over a very large energy scale. This general
phenomenon is illustrated in Fig. 32, which shows the inte-
gral of optical spectral weight W��� in the normal and the
superconducting state. Low energy phenomena, like the on-
set of superconductivity which involves a scale of a fraction
of J, involves redistribution of optical weight of the order of
4t�1 eV, which is 40 times more than the gap value. A
theoretical insight from our calculation is that the high fre-
quency redistribution of weight comes from the anomalous
Green’s function F*F in Eq. �46� and, hence, cannot be
observed in the density of states or angle-resolved photoelec-
tron spectroscopy measurements. The large range of redistri-
bution of spectral weight has also been measured on cuprates
and pointed out in Refs. 105 and 108.

It is useful to compare the results for the temperature
dependence of the integrated spectral weight of cluster
DMFT with those of single site DMFT as reported by Toschi
et al.118 These are displayed in Fig. 33. There are two impor-
tant observations: first, the sign and the order of magnitude
of the effect are similar in single site and in cluster DMFT.
This indicates that local quantities can be reliably computed
in this framework and do not change dramatically as the
sizes of the cluster is increased. Second, the doping depen-
dence of this low energy kinetic energy difference W�0�
−W�300 K� has a slope in cluster DMFT opposite to that in
single site DMFT. An interesting question is whether the
existing experimental data agree better with the single site or
cluster DMFT. It seems that the results in Refs. 119–121 are
in better agreement with the plaquette DMFT, but a more
detailed comparison between theory and experiment is left
for future studies using the more realistic band structure of
each compound and a more precise periodization scheme.

We can also compute the temperature dependent resistiv-
ity using EDCA, in which the vertex correction vanish,

1

��T�
= e2�

k�

�k
2 � dx

�
�−

df�x�
dx

�	Gk�� �x�2 + Fk�� �x�2
 .

�53�

Notice that while the scattering rates at zero frequency
tend to saturate at high temperature �see Fig. 17�, the resis-
tivities do not, as seen in Fig. 34.
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FIG. 31. �Color online� The optical conductivity ���� of the t-J
model is proportional to �−2/3 in the intermediate frequency region
for the optimally doped system.
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Notice that the scaling of the resistivity with the number
of holes is approximately obeyed, and that the maximum
amount of linearity is obtained near optimal doping. More
detailed comparison with experiments will require a more
realistic modeling of the band structure and a detailed inves-
tigation of the dependence of this quantity on the periodiza-
tion scheme used.

Finally, since we have access to both the real and imagi-
nary parts of the optical conductivity, we can compute the
superconducting stiffness, defined as the strength of the delta
function peak in the superconducting state. Its temperature
and doping dependence close to TC is displayed in Fig. 35. In

optimally doped and overdoped regimes, stiffness is a linear
function of temperature close to the transition, while it is
substantially reduced in the underdoped regime due to the
opening of the pseudogap. A similar trend was found in cu-
prates as pointed out in Ref. 122.

With NCA, we are not able to reach sufficiently low tem-
peratures to address the crucial issue of the doping depen-
dence of the linear term of the superfluid stiffness. Instead,
we use the techniques in Sec. IV to evaluate the low tem-
perature behavior of this quantity,

�s�0� − �s�T� =
b

�
T = e22 log 2

�2 kBT
Zn

2�0
2

�F��

, �54�

where Zn, v�, and vF were evaluated in Sec. IV, and v0 is the
band Fermi velocity. The coefficient b can be evaluated di-
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FIG. 33. �Color online� Difference between the low temperature
and 300 K optical spectral weights integrated up to �=6t. The clus-
ter data are computed within EDCA, and the single site DMFT
results are reproduced from Ref. 123. The error bars are due to the
extrapolation of spectral weight to zero temperature from finite tem-
perature results �Tmin�0.5TC�.
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FIG. 34. �Color online� Resistivity versus temperature in EDCA
using NCA as the impurity solver.
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FIG. 35. �Color online� Superconducting stiffness versus temperature as obtained from optical conductivity using NCA and EDCA.
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rectly from the imaginary axis data of CTQMC and is plotted
in Fig. 36.

CDMF captures the weak dependence of b on doping,
which was a subject of intensive experimental
investigations.123,124 More detailed studies of this quantity in
C-DMFT, including vertex corrections, and more detailed in-
vestigations of the periodization dependence of this quantity,
as well as the related B1g slope of the Raman scattering,104

are certainly warranted.

VI. MAGNETISM SUPERCONDUCTIVITY AND SPIN
RESONANCE

In this section, we turn to the magnetic properties, starting
from the cluster magnetic quantities.8,125,126 As in the rest of
the paper, we confine ourselves to the study of minimal mod-
els; in this section, the t-J model with t�=0. Notice, however,
that it is known from numerous studies that the presence of a
next-nearest-neighbor hopping t� affects significantly the re-
gion of stability of the magnetism and can suppress it
altogether.48

The static cluster susceptibilities are displayed in Fig. 37.
These are coarse-grained versions of the momentum depen-
dent magnetic susceptibility, over the different regions of the
Brillouin zone of the size of one-quarter of the first Brillouin
zone. While the cluster susceptibilities are relatively smooth
functions of doping, they clearly demonstrate that the spin
fluctuations in different regions of the Brillouin zone have

dramatically different behaviors with doping and tempera-
ture. The �� ,�� component, dominated by the ��� suscepti-
bility, strongly increases as we approach half-filling. In con-
trast, the uniform component �00 decreases as doping is
reduced, a signal of the opening of the pseudogap. The same
is true of ��0. Hence, an interesting property of the
pseudogap state is the increase of staggered magnetic fluc-
tuations with the opening of the pseudogap. A similar con-
trast between the staggered and uniform responses is seen in
their temperature dependence. We see that while the uniform
response decreases with temperature in the underdoped re-
gime, the staggered response increases.

We now proceed to uniform spin susceptibility shown in
Fig. 38. The q=0 susceptibility at zero doping displays the
characteristic behavior of the Heisenberg model, with a
Curie-like behavior at high temperatures and a broad maxi-
mum at a scale of the order of J as the spins begin to form
singlets. The main effect of doping is to reduce the effective
exchange. Experimentally, the shift of the minima in the sus-
ceptibility is seen,127,128 but it occurs faster than in Fig. 38.
The effective spin exchange will be reduced by the addition
of a negative next-nearest-neighbor hopping t� to the model.

We now turn to the frequency dependence of the imagi-
nary part of the �� ,�� susceptibility probed in neutron scat-
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FIG. 37. �Color online� The cluster spin susceptibilities of the
t-J model versus temperature at two different dopings obtained by
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FIG. 36. Coefficient of the linear term of the superconducting
stiffness �	�s�0�−�s�T�
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tering experiments. As shown in Fig. 39, a pronounced peak
in the �� ,�� spin response at frequency 0.16t in the opti-
mally doped regime can be observed when entering the su-
perconducting state. The position of the peak is temperature
independent, but depends weakly on doping, tracking the
critical temperature. Our results are in qualitative agreement
with experiment; for example, the resonance energy scales
with doping like 5TC and its position does not depend on
temperature.125 In addition, we see a broader peak around
�0.35–0.45�t extending to very high frequencies of order of
t�300 meV, which also gains some weight when entering
the superconducting state.

Cluster methods coarse grain the momentum dependence.
In the plaquette case, the coarse graining is done over 1 /4 of
the Brillouin zone, centered at �� ,��; therefore, it is reason-
able to compare our results with the q integrated susceptibil-
ity from Ref. 129, where the two features, present in the
mean-field theory, 35 meV resonant peak as well as broader
peak around 75 meV extending up to 220 meV, were ob-
served.

The exchange energy of the t-J model can be expressed as
an integral of the spin susceptibility,130

Exc =
3J

�
� d2qd�b���Im	��q,��
�cos qx + cos qy� .

�55�

Using this equation, one can elucidate the origin of the su-
perconducting condensation energy and the relative contribu-
tion of the different features of the spectral function.

Clearly, an important contribution to superconducting
condensation energy arises from the incoherent features of
the spin spectral function 	around the frequency �0.4–0.5�t

rather than from the spin resonance.

The exchange energy as a function of temperature is
shown in Fig. 40. At high temperature, spins are disordered
and the exchange energy is negligible. At temperature below
J, the singlets are formed and the exchange energy notice-
ably decreases, especially in the underdoped regime. At TC,
the exchange energy decreases further and gives, by far, the
largest contribution to the condensation energy of the t-J
model, as shown in Ref. 49. The exchange energy mecha-
nism, observed in cluster DMFT study, is thus in agreement
with the strong coupling magnetic mechanism for the super-
conductivity.

The spin resonance has been viewed from two different
perspectives �see Ref. 125 and references therein�: �i� start-
ing from electronic quasiparticles and their residual interac-
tions in a d-wave superconductor, residual interactions form
a particle-hole bound state with spin 1, which is identified as
the spin resonance. �ii� Alternatively, starting from a disor-
dered quantum spin system, one can identify the spin reso-
nance as a massive spin 1 excitation, which becomes mass-
less as one approaches the magnetically ordered phase.

The cluster EDMFT Eq. �7� reconciles both points of
view in a unified approach, since the equations for the spin
susceptibility contain both the exchange interaction charac-
teristic of the insulator J�q� and the quasiparticle contribu-
tion described by the spin cumulant M 	Eq. �7�
.

The appearance of the spin resonance requires the dra-
matic decrease of the anomalously large scattering rate in the
normal state, which is strongly reduced when the electrons
condense to form d-wave pairs, avoiding criticality at low
temperatures. The resonance, however, appears only in the
superconducting state and is not present in the normal state.

VII. PSEUDOPARTICLE INTERPRETATION:
CONNECTION WITH OTHER MEAN-FIELD THEORIES

In this section, we give an interpretation of physical ob-
servables in terms of pseudoparticle �eigenstates of the clus-
ter� spectral functions. This is an alternative insight into a
rich physics contained in the solution of cluster DMFT equa-
tions on a plaquette.

Pseudoparticle creation and annihilation operators were
introduced as mathematical entities representing the atomic
eigenstates of the plaquette immersed in the cluster DMFT
medium. We have found that out of the large number �34� of
pseudoparticles that we introduced, very few of them are
important for reproducing the low energy part of physical
observables. For example, more than 95% of the one-particle
spectral function at the Fermi level comes from a few con-
volutions of pseudoparticles in Eq. �33�, within NCA ap-
proach. This constraint is, however, not present for the high
energy part of the spectra such as Hubbard bands, where the
contribution of most of the pseudoparticles can be identified.
The ground state and the low lying excitations are much
more restricted and are a superposition of only a few atomic
states. In the plaquette, these important states are
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FIG. 39. �Color online� The dynamical spin susceptibility at q
= �� ,�� for a few different doping levels and three different tem-
peratures: superconducting state and normal state at the transition
temperature and at room temperature. The pronounced peak is
formed in the SC state at 0.16t�48 meV, and a broad peak in the
normal state is around 100–140 meV. Susceptibility at normal tem-
perature is much smaller, and the peak moves to higher frequencies.
The resonance is strongest at the optimally doped system. It disap-
pears quickly in the overdoped side and somewhat more slowly in
the underdoped side. Results are obtained with EDCA and NCA.
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�4 = �N = 4,S = 0,K = 0� , �56�

�4� = �N = 4,S = 1,K = ����� , �57�

�3���0� = �N = 3,S = 1/2,Sz = �,K = ��,0�� , �58�

�3��0�� = �N = 3,S = 1/2,Sz = ��,K = �0��� , �59�

�2 = �N = 2,S = 0,K = 0� , �60�

where N is the number of electrons in the cluster eigenstate,
S and Sz are the total spin and its z component of the cluster
eigenstate, and K is the momentum of the cluster eigenstate.

Notice that although only a few cluster eigenstates con-
tribute to the ground state, the wave function is still highly
nontrivial since it is a product state of an infinite number of
states in the bath and the few atomic eigenstates of the im-
purity. This surprising result of restriction to a few cluster
eigenstates could be beneficial to devise useful approxima-
tions while extending C-DMFT to larger clusters in the fu-

ture. In this paper, we exploit this fact to give a simple in-
terpretation of the different doping regimes of the t-J model.

Figure 41 �left� shows the evolution of the three most
important pseudoparticle spectral functions from the under-
doped to the overdoped regime.

At small doping, the cluster is mostly occupied by the
singlet state with one particle per site and zero momentum
�4= �N=4,S=0,K=0� �half-filled singlet�. This pseudopar-
ticle has the largest occupancy as shown in Fig. 41. It de-
scribes a system locked in a short-range singlet state as a
consequence of the strong superexchange interaction.

The cluster electron spectral function describes the pro-
cess of addition and removal of an electron from the cluster
at frequency �. Within NCA, it is constructed from the con-
volution of two pseudoparticles with different cluster occu-
pations N and N+1, or N−1, with the frequency restricted
between zero and � as described by Eq. �33�. The necessary
condition for a peak of the one-particle spectral function at
the Fermi level is that at least two pseudoparticle spectral
functions share a common threshold and are strongly peaked
at the same threshold.
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FIG. 40. �Color online� The
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In the underdoped regime, the thresholds of all other
pseudoparticles except �4 are significantly shifted with ref-
erence to the half-filled singlet; a pseudogap results in the
one-particle spectra in the underdoped regime. This gap in
threshold energies severely limits the possible decay pro-
cesses of the electron, resulting in a low electronic scattering
rate. This is the plaquette-impurity model of a few holes
propagating in a sea of singlets.

At large doping, i.e., in the overdoped regime, where the
Kondo scale is dominant, we obtain the standard DMFT de-
scription of a strongly correlated Fermi liquid. As is well
known from the study of the Fermi-liquid regime of the
single impurity Anderson model, all pseudoparticles develop
thresholds �x-ray singularity� at the same frequency which is
related to the Kondo temperature of the problem. In our
plaquette DMFT, all three important pseudoparticles �half-
filled singlet, doublet with one hole per plaquette �3�K, and
singlet with two holes per plaquette �2� have a power law
divergence at the same threshold frequency at zero tempera-
ture �Fig. 41�, which is a standard signature of the Kondo
effect. Hence, the one-particle spectral function begins to
develop the Kondo-Suhl resonance at the Fermi level since
the convolution between the doublet �3�K and half-filled sin-
glet �4 �or �2 singlet� states is large at low frequency. The
one-particle spectral function is peaked slightly above the
Fermi level. Notice that while we cannot follow the forma-

tion of the Kondo resonance to very low temperatures due to
the well known NCA pathologies, we can clearly see the
onset of the Fermi-liquid behavior in Fig. 13. The overdoped
regime characterized by the common threshold of pseudopar-
ticles is distinctively different from the underdoped regime,
where the only important states are the half-filled singlet �4
and the �3�K doublet. The latter has a very little spectral
weight in the region of the singlet peak.

Transition region: Normal state. In the optimally doped
regime, the Kondo scale and the superexchange compete,
giving rise to a regime with very large scattering rate and,
consequently, a small coherence scale.

Surprisingly, the evolution of the spectral function with
doping is such that the optimally doped regime is approxi-
mately particle-hole symmetric. As shown in Fig. 41 �right,
top�, the thresholds of the N=2 cluster ground state and N
=3 cluster ground state �doublet� merge first, resulting in a
Kondo-like contribution to the electron spectral function.
This contribution is peaked above the Fermi level in a one
band model below half-filling in a Fermi-liquid regime. The
half-filled singlet, however, remains the lowest state in en-
ergy and still gives a significant contribution to the electron
spectral function. The latter contribution is peaked below the
Fermi level and keeps a pseudo-gap-like shape. Adding the
two contributions to the electron spectral function restores
the particle-hole symmetry in the density of states both in
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FIG. 41. �Color online� Left: Pseudoparticle spectral functions for the three most important pseudoparticles: ground states for N=4, N
=3, and N=2 sectors. Right, top: Sketch of pseudoparticle threshold energies which can be interpreted as the effective many-body levels in
the normal and superconducting states. Right, bottom: Pseudoparticle occupancies versus doping for the most important pseudoparticles. The
full lines correspond to the normal state, while the dashed lines correspond to the superconducting state.
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normal and superconducting states at optimal doping 	see
Figs. 13�g� and 25
. The approximate restoration is impor-
tant, because it is known that clusters of impurities such as
the two impurity Kondo model131 have a critical point only
in the particle-hole symmetric case.132

Notice that the point of maximum scattering rate in Fig.
17 coincides with the merging of the thresholds of the
pseudoparticles �see Fig. 41�. Around the same doping level,
an approximate particle-hole symmetry is restored in one-
particle Green’s function �see Figs. 6 and 13�. Hence, the
term avoided cluster quantum multicriticality describes bet-
ter the phenomena observed in this study since, to reach the
quantum critical point, both the particle-hole symmetry and
the ratio of Kondo to RKKY coupling need to be varied.

Transition into the superconducting state. The degeneracy
responsible for the strongly incoherent metal with large scat-
tering rate at the Fermi level is lifted by the superconductiv-
ity, avoiding the critical point. This dramatic reduction of
scattering rate in going from the normal to the superconduct-
ing phase, depicted in Figs. 17 and 18, highlights how
anomalously incoherent the normal state at optimal doping is
and how those anomalies are removed by superconductivity.

This fact also has a natural interpretation in terms of
pseudoparticles. Figure 41 �left� shows that both important
singlet pseudoparticles �for �4 and �2� develop a very sharp
peak at the same threshold frequency and, at the same time,
their occupancy increases �see Fig. 41, bottom� upon con-
densation, indicating that electrons are locked into singlets
with zero momentum. A gap opens between the singlets and
doublets, which gives the gap in the one-particle density of
states. Because of this gap in the pseudoparticle thresholds,
the large imaginary part of the electron self-energy does not
persist in the superconducting state �see also Fig. 17�. No-
tice, however, that in the superconducting state the
pseudoparticles are strongly mixed and the off-diagonal
spectral function A�4�2

also develops a pole at the same
threshold as A�4

and A�2
. The off-diagonal spectral function

A�4�2
describes the creation of a Cooper pair on the cluster

G�4�2
= �0�a�4

† ���a�2
�0� and, therefore, diverges at low tem-

perature at the same threshold frequency.
Since the density of states is composed of two almost

equally important contributions, i.e., the convolution of the
doublet with both singlets ��4 and �2�, the superconducting
gap is almost particle-hole symmetric in the optimally doped
regime with half-width of the order of 0.1t. When the doping
value is changed from its critical value, the asymmetry in the
superconducting density of states appears. The magnitude of
the asymmetry is the same as the asymmetry of the corre-
sponding normal state spectra and comes from the fact that
the occupancy and, therefore, the importance of the �4 sin-
glet exceed the importance of the �2 singlet �see Fig. 41,
bottom�.

Finally, we comment on the role of the triplet pseudopar-
ticle. The spin susceptibility comes almost entirely from the
convolution of the half-filled singlet with the half-filled trip-
let ��4 with �4��. The latter develops a peak at an energy
0.16t upon condensation, which results in the resonance in
the spin susceptibility shown in Fig. 39.

It is interesting to derive the form of a low energy Hamil-
tonian involving the pseudoparticles in question. The conser-

vation of charge, spin, and cluster momentum considerably
restricts the form of this Hamiltonian. If we assume that it is
of the Kondo form, it takes the following form:

H = �
�

	�a�
†a� + �

kQ�

	kQckQ�
† ckQ�

+ J1a�4

† a�2 �
kk�Q���

	�,��ckQ�ckQ�� + H.c.

+ J2 �
k�k���,K,K��	�0,��,��,0�


a�3�K

† a�3��K�
ck�K���

† ckK� + H.c.

+ ��
�

�a�
†a� − 1� , �61�

where � runs over the relevant low energy pseudoparticles.
	�,�� is an antisymmetric tensor and the Q runs over cluster
momenta. Here, ckQ�

† operators create electrons in the bath
with cluster momenta Q and spin �. The operators a�

† create
a pseudoparticle on the cluster 	see Eq. �15�
.

This Hamiltonian contains the competition of the particle-
hole and particle-particle channels for pairing with the baths
of conduction electrons, and the approach to criticality is
controlled by the variation of the on-site energy 	�, which
should be identified with the pseudoparticle thresholds. It
would be very interesting to investigate this impurity model
with the tools and the perspective of Ref. 133. It is clear that
superconductivity will add magnetic field like terms propor-
tional to �a�4

† a�2
� �kk�Q���	�,��ckQ�ckQ��. These terms should

be strongly relevant and move the system away from criti-
cality.

Within CDMFT, the cluster of few sites �2�2 in our
case� hybridizes with the Weiss field �, defined in Eq. �6�. In
single site DMFT, this effective medium drives the Mott
transition. On the Bethe lattice within single site DMFT, it is
proportional to the local Green’s function �= t2G and, there-
fore, becomes gapped in the Mott-insulating state, while it
remains gapless in the metallic phase. Hence, due to the
DMFT self-consistency condition, this quantity shows a very
strong doping dependence.

Within cluster DMFT, the effective medium is only
weakly doping dependent, and the evolution with doping is
smooth �see Fig. 42� in the doping range considered here.
Moreover, this quantity shows very mild momentum depen-
dence as opposed to strong momentum dependence of self-
energy shown in Fig. 5. For example, the �0,0� and �� ,��
Green’s functions show almost no spectra at low frequency
�are almost gapped�, while the hybridization functions of
these two orbitals are very similar to �0,�� hybridization
function, which contains most of the low frequency spectral
weight. The mild and smooth doping dependences of hybrid-
ization functions lead us to believe that the proximity to
quantum cluster criticality, which manifests itself in large
scattering rate and vanishing coherence scale, is driven by
the impurity model itself rather than the self-consistency
condition.

The picture here is based entirely on a finite temperature
analysis and is in the spirit of the DMFT approach, where we
approach the strong correlation problem starting from high
temperatures.
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FIG. 42. �Color online� First panel: Imaginary
parts of the cluster hybridization functions for
various dopings in the normal state at T=0.01t
using C-DMFT and CTQMC. Second panel: Real
parts of the same hybridization functions in the
normal state at T=0.01t. Third panel: Imaginary
parts of the same hybridization functions in the
superconducting state at T=0.005t. Fourth panel:
Real part of the same hybridization functions in
the superconducting state at T=0.005t. The self-
energies of the cluster show strong momentum
dependence, while hybridizations are only
weakly momentum dependent. Furthermore,
there seems to be no indication of any criticality
in the hybridization functions such as the forma-
tion of a gap.
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It is important to continue the normal solutions of the
plaquette DMFT equations to very low temperature to clarify
the mathematical source of the criticality that we observe at
higher temperatures. The critical point could occur exactly at
T=0, as proposed by Capone et al.62 in the context of the
two band Hubbard model with inverted Hund rule exchange
and by us in Ref. 50. The quantum critical point may exist in
an impurity model with a fixed bath or might require the
DMFT self-consistency condition. Alternatively, there may
be a finite second order endpoint of a first order line, as
found in DMFT lattice models related to the two impurity
model.134 Notice also that power laws in an intermediate
asymptotic regime, without an obvious underlying quantum
critical impurity model, have also been found in an impurity
model related to frustrated magnets.68

Still, the precise nature of the low temperature normal
state phase below TC is not essential for the validity of the
CDMFT description. What matters is that at very high tem-
perature, T�J, single site DMFT is a good description of the
system, and as we lower the temperature, we find a broad
region of temperatures where the plaquette reference frame
correctly captures the physics of the problem with its appar-
ent criticality, even though at much lower temperatures a
more nonlocal description will be needed. It is even possible
that the zero temperature solution of the DMFT equations
does not exist, in which case, unlike the standard BCS theory
where the superconductivity is viewed as an instability of a
normal phase, we would have a superconducting state that
exists without an underlying normal state.

There is an important distinction between our views and
those of local quantum critical scenario based on single site
EDMFT scenario.135 In the latter case, the locality of the
quantum critical theory of the lattice is asserted to be reliable
at T=0, while the results of the EDMFT equations in two
dimensions are known to be less reliable as temperature is
raised.136 On the other hand, the results of plaquette DMFT
are expected to become more accurate as the temperature is
raised.

VIII. CONCLUSION AND DISCUSSION

In this paper, we developed and applied a plaquette dy-
namical mean-field theory to understand the nature of the
superconductivity near the Mott transition. In relation to ear-
lier works, we focused on low but finite temperatures to al-
low a comparison with the underlying normal phase. For this
purpose, advanced impurity solvers were brought to bear on
the solution of the CDMFT equations.

The idea of using a plaquette in a self-consistent medium
as a reference frame to reconstruct physical correlation func-
tions on a lattice, while appealing, has several different
implementations through different cluster schemes. Here, we
stressed the numerous qualitative features which are com-
mon to all methods while pointing out the few significant
quantitative discrepancies that we found among the different
cluster methods in the course of our investigations.

The low temperature landscape of strongly correlated
electron systems can have many competing phases, for ex-
ample, commensurate and incommensurate condensates of

charge spin and current. A first step toward understanding
this landscape is to follow the evolution of well defined
phases as a function of control parameters. In this paper, we
focused on the superconducting and normal phases. Other
phases and the competition with superconductivity can be
studied with CDMFT techniques, as was done, for example,
in Ref. 37 for the commensurate antiferromagnetism.

We find that the normal state in the mean-field theory has
two distinct regimes, which are naturally characterized in
terms of the regimes of the impurity model. At low doping,
in the immediate proximity of the Mott-insulating state, we
have a realization of the RVB picture of holes propagating in
a sea of spins with strong singlet correlations. In the impurity
model language, that corresponds to the RKKY phase of the
two impurity model and its generalization to a plaquette. At
high doping, we have a regime with well formed quasiparti-
cles, with a Fermi surface containing 1−� electrons. In the
impurity model language, this corresponds to the Kondo re-
gime of the one impurity model, and single site DMFT pro-
vides an adequate description of its properties.

Plaquette CDMFT has three independent cluster self-
energies. For very large doping, only the local cluster self-
energy is nonzero, indicating the validity of single site
DMFT. As doping is reduced, ����i�� acquires large real
and imaginary parts. This is controlled by the existence of a
pole which approaches zero frequency at certain doping �1

c �
�1

c �0.1 in the t-J model and �1
c =0 in the Hubbard model�.

When combined with the cumulant periodization, this
anomalous growth gives rise to a topological transition asso-
ciated with the formation of line of zeros in the Green’s
function �line of poles in the self-energy� at zero temperature
discussed in Ref. 43. We call the doping at which the topo-
logical transition of the Fermi surface happens as �3

c. Notice,
however, that from a CDMFT perspective which focuses on
the finite temperature description, an infinite self-energy is
not necessary, and all that is required to generate the
pseudogap regime with its concomitant formation of Fermi
arcs is a self-energy which exceeds the bandwidth.

We identified another critical doping �2
c associated with a

maximum in the scattering rate of the third cluster degree of
freedom �0�. This is an example of cluster quantum multi-
criticality. Namely, a mapping of a lattice model onto a quan-
tum impurity model with a critical point. This critical point
satisfies the following conditions: �a� it requires a cluster of
impurities for its existence, hence it has no analogy in single
site DMFT, and �b� has at least two unstable �relevant� di-
rections �for example, the ratio JKondo /JRKKY and particle-
hole symmetry breaking in the two impurity model Jones-
Varma critical point131�.

At a critical doping �2
c, there is an avoided critical point in

the normal phase, which is near the doping level with the
highest superconducting transition temperature. Since �2

c

��1
c, �2

c may lie very close to �3
c if one adopts a periodization

scheme along the lines of the cumulant periodization, but
this issue is left for future studies since it strongly depends
on the periodization scheme. Looking at the scattering rate
and coherence temperature in the normal state solution of
CDMFT equations, we thus identified a critical doping �2

c

which could be related to the hidden quantum critical point,
which has been hypothesized by many authors based on a
large body of experimental data.131,137
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We have not analyzed the properties of the CDMFT quan-
tum impurity model describing the normal state at zero tem-
perature. It is even possible that the normal state solution
simply does not exist at T=0. These points are largely aca-
demic from the point of view of the finite temperature phys-
ics which we want to describe with CDMFT. The manifesta-
tions of the possible quantum criticality are rapidly removed
by the onset of superconductivity. The electronic lifetime on
the Fermi surface controlled by Im ��0,�� is dramatically
reduced as the system becomes superconducting.

One then arrives at a superconducting state, which inher-
its the normal state gap, largely caused by ���, but with
coherent nodal quasiparticles characterized by a weakly dop-
ing dependent velocity perpendicular to the Fermi surface.
The velocity along the Fermi surface v� has a domelike
shape and decreases in the underdoped regime, providing
further support to the two gap picture of the superconducting
state of the underdoped cuprates.51,52,99–101

The superconducting phase is stabilized by the gain of
superexchange energy, namely, improved spin-spin singlet
correlations. We resolved the frequency dependence of the
anomalous Green’s function and the anomalous self-energy,
and found them to have a structure very different from con-
ventional phonon mediated superconductivity in the Migdal-
Eliashberg theory. Since the superconducting state restores
coherence, long lived sharp excitations, Bogoliubov quasi-
particles, and a sharp spin mode which resembles the neutron
“40 meV resonance” emerge below TC.

We extracted different observables such as tunneling den-
sity of states, optical conductivity, optical mass and plasma
frequencies, integrated optical spectral weight superfluid
stiffness, and spin susceptibility which compare well at a
qualitative level with experimental data on copper oxide ma-
terials.

We have shown that at �2
c �which occurs very near the

maximum in TC�, the coherence energy vanishes and the
scattering rate is maximal. At this doping, an approximate
particle-hole symmetry in the one electron spectra is recov-
ered, and approximate power laws in physical quantities ��
��−2/3� emerge in an intermediate frequency range.

Upon periodization, the large value of the nonlocal self-
energies turn Fermi surface into Fermi arcs,43 and we studied
the evolution of the Fermi arcs with temperature. We showed
that within C-DMFT, Fermi arcs shrink with decreasing tem-
perature.

Our solution of the CDMFT on a plaquette has many
similarities with the earlier studies of Anderson’s resonating
valence bond theory of high temperature superconductivity
in the slave boson mean-field theory formulation. This ap-
proach correctly predicted the d-wave symmetry of the su-
perconducting order parameter and the presence of a
pseudogap with the same symmetry well above TC.18

The similarity between the results of the CDMFT and
slave boson approaches is not accidental. Both methods are
mean-field techniques based on order parameters that can be
defined within a plaquette, and capture the effects of the
proximity to a Mott-insulating state using a small set of
short-range degrees of freedom.

Compared with slave boson mean-field theory, CDMFT
has additional flexibility both in the frequency of the one

electron spectral function as well as in its momentum depen-
dence. One crucial difference is a much more pronounced
momentum space differentiation with very different elec-
tronic properties at the nodes and at the antinodes. This an-
isotropy, with the concomitant existence of two energy scales
in the superconductor, resolves the earlier problems of the
RVB theory related to the doping dependence of the linear
term of the penetration depth.138 The need for the introduc-
tion of more anisotropy in the microscopic theory had been
anticipated by experiments and by the phenomenological
analysis of Ioffe and Millis.139–141 Recent phenomenological
models83,84 have also generated a more pronounced momen-
tum dependence of the one-particle spectra and incorporated
in their approach a v� that decreases with decreasing doping.
The main differences between these phenomenological ap-
proaches and the more microscopic C-DMFT reside in the
location of the lines of zeros of the Green function. While in
Refs. 83 and 84 the lines of zero lie on the umklapp surface,
in C-DMFT the lines of zeros are dynamical entities with a
location that evolves with doping.

CDMFT is an extension of single site DMFT, an approach
that has been very successful in describing many aspects of
the finite temperature Mott transition. By using a single im-
purity in a medium, this method has been able to describe
several regimes near a Mott transition: a Fermi-liquid regime
at small U and temperature, a bad metal at temperature larger
than a characteristic temperature Tcoh�U�, a Mott insulator at
large U and low temperature, and a bad insulator when the
temperature is high enough that the Hubbard bands begin to
merge.

By construction, single site DMFT assigns the same self-
energy to the electronic states on the whole Fermi surface.
Hence, at a given energy and temperature, either all the states
at all k points are coherent or they are all incoherent. This is
not a good description of the high temperature superconduct-
ors, which therefore cannot be described with single site
DMFT.

On the other hand, CDMFT allows the states in the nodal
region to be coherent quasiparticles, while, at the same time,
the states in the antinodal region are highly incoherent and
have a pseudogap, i.e., Tcoh�nodal��Tcoh�antinodal�. The
self-energy in the nodal region could be compared to a single
site DMFT in the Fermi-liquid regime with U�Uc2 and Tc
�Tcoh�U�, while the antinodal self-energy is more of a single
site DMFT in the bad insulator regime, U�Uc2 and Tc
�Tcoh�U�. Plaquette DMFT offers a mean-field picture of the
lattice problem, whereby the different cluster self-energies
and cumulants describe different regions of momentum
space with distinct physical properties: a nodal region which
is closest to a Fermi liquid, an antinodal region which exhib-
its a pseudogap, and an intermediate region between the two,
described by the �0,�� self-energy, which exhibits the maxi-
mum scattering rate at criticality.

This qualitative picture is only a crude caricature of the
full CDMFT solution, but it is a useful qualitative guide to
understand how the Fermi arcs originate from the proximity
to the Mott insulator, and above all, highlights why single
site DMFT is inadequate in this situation.

The objective of this work was to advance our under-
standing of the t-J and Hubbard models as a “bare bones”
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model of the density driven Mott transition. An important
open problem is to incorporate and understand how other
effects, such as the effects of more realistic band structure in
the multiband model, the disorder, and the electron-phonon
interaction, which play an important role in cuprates, can
affect the solution of the model,

We presented a qualitative comparison with several ex-
periments in the copper oxide based materials and gave the
limitations of the model and of the methodology used; this
comparison is very encouraging and warrants future studies
including more accurate modeling and further methodologi-
cal improvements.

Future studies should include a realistic band structure of
the copper-oxygen planes and additional Coulomb terms be-
yond the local Hubbard U that can be accommodated on the
plaquette. In addition to dx2−y2 copper band, it would be de-
sirable to include another copper band, namely, dz2 band
which is coupled to apical oxygen. Although the latter band
is filled in the band structure calculation, it comes close to
the Fermi level.

Another important direction is to better momentum re-
solve one particle and two particle quantities. The latter will
require advances in the analytic continuation techniques of
QMC data as well as a better understanding of how to con-
vert cluster quantities into lattice observables in C-DMFT.
Furthermore, within a cluster size, it is important to imple-
ment an optimal choice of orbitals in CDMFT, describing
different momentum patches in the Brillouin zone. Func-
tional approaches23,142 as well as CDMFT inspired modeling

of experimental data along the lines of Ref. 143 can provide
useful guidance in this direction.

Mean-field approaches clearly separates the short distance
effects contained in the theory from long distance effects,
which will require the introduction of fluctuations due to
vortices and pair fluctuations. The TC vs � line in CDMFT
should be interpreted as being close to the Nerst line in the
cuprate phase diagram.144 On the other hand, the true super-
conducting critical temperature line is strongly reduced rela-
tive to the CDMFT on the underdoped side of the phase
diagram to the effects of long wavelength fluctuations of the
order parameter, which require long wavelength field theo-
retical techniques along the lines of Ref. 145

Finally, other inhomogeneous phases, such as stripes,
charge, bond, pair density waves, and other broken symme-
tries, can appear as secondary instabilities and can be studied
with our methods by inserting relatively local �restricted to a
plaquette� but site dependent self-energies into the CDMFT
functional.

ACKNOWLEDGMENTS

We wish to thank M. Civelli for very enlightening discus-
sion and comparison of numerous data with comparative ex-
act diagonalization study. Fruitful discussions with C. Mari-
anetti, P. Wölfle, A. Georges, O. Parcollet, C. Castellani, and
M. Capone are gratefully acknowledged. G.K. was supported
by the NSF under Grant No. DMR 0528969.

1 See the articles in Nat. Phys. 2, 138 �2006�.
2 P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. 78, 17

�2006�.
3 M. R. Norman and C. Pepin, Rep. Prog. Phys. 66, 1547 �2003�.
4 E. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Ren-

ner, Rev. Mod. Phys. 79, 353 �2007�.
5 T. P. Devereaux and R. Hackl, Rev. Mod. Phys. 79, 175 �2007�.
6 T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 �1999�.
7 S. Sachdev, Rev. Mod. Phys. 75, 913 �2003�.
8 M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev.

Mod. Phys. 70, 897 �1998�.
9 A. Damascelli, Z. Hussain, and Z. X. Shen, Rev. Mod. Phys. 75,

473 �2003�.
10 D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 �2005�.
11 E. Dagotto, Rev. Mod. Phys. 66, 763 �1994�.
12 D. J. Van Harlingen, Rev. Mod. Phys. 67, 515 �1995�.
13 W. E. Pickett, Rev. Mod. Phys. 61, 433 �1989�.
14 J. P. Carbotte, Rev. Mod. Phys. 62, 1027 �1990�.
15 P. W. Anderson, Science 235, 1196 �1987�.
16 P. W. Anderson, The Theory of Superconductivity in the High TC

Cuprates �Princeton University Press, Princeton, NJ, 1997�.
17 G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun.

63, 973 �1987�.
18 G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 �1988�.
19 C. Gros, Phys. Rev. B 38, 931 �1988�.
20 A. Paramekanti, M. Randeria, and N. Trivedi, Phys. Rev. Lett.

87, 217002 �2001�.
21 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 �1996�.
22 G. Kotliar and D. Vollhardt, Phys. Today 57, 53 �2004�.
23 G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Par-

collet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 �2006�.
24 K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A. K.

McMahan, R. T. Scalettar, T. Pruschke, V. I. Anisimov, and D.
Vollhardt, 2003, Psi-k Newsletter 56, 65 �http://psik.dl.ac.u.k�.

25 K. Held, I. A. Nekrasov, N. Blumer, V. I. Anisimov, and D. Voll-
hardt, Int. J. Mod. Phys. B 15, 2611 �2001�.

26 K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev. Lett.
87, 276404 �2001�.

27 S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature �London�
410, 793 �2001�.

28 X. Dai, S. Y. Savrasov, G. Kotliar, A. Migliori, H. Ledbetter, and
E. Abrahams, Science 300, 953 �2003�.

29 S. Y. Savrasov, K. Haule, and G. Kotliar, Phys. Rev. Lett. 96,
036404 �2006�.

30 K. Haule, V. Oudovenko, S. Y. Savrasov, and G. Kotliar, Phys.
Rev. Lett. 94, 036401 �2005�.

31 J. H. Shim, K. Haule, and G. Kotliar, Nature �London� 446, 513
�2007�.

32 T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.
Phys. 77, 1027 �2005�.

33 T. D. Stanescu and G. Kotliar, Phys. Rev. B 70, 205112 �2004�.

STRONGLY CORRELATED SUPERCONDUCTIVITY: A… PHYSICAL REVIEW B 76, 104509 �2007�

104509-35



34 T. A. Maier, M. Jarrell, T. C. Schulthess, P. R. C. Kent, and J. B.
White, Phys. Rev. Lett. 95, 237001 �2005�.

35 A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 62, R9283
�2000�.

36 Th. Maier, M. Jarrell, Th. Pruschke, and J. Keller, Phys. Rev.
Lett. 85, 1524 �2000�.

37 M. Capone and G. Kotliar, Phys. Rev. B 74, 054513 �2006�.
38 D. Sénéchal, P. L. Lavertu, M. A. Marois, and A. M. S. Tremblay,

Phys. Rev. Lett. 94, 156404 �2005�.
39 A. M. S. Tremblay, B. Kyung, and D. Sénéchal, Low Temp. Phys.

32, 424 �2006�.
40 M. Jarrell, Th. Maier, M. H. Hettler, and A. N. Tahvildarzadeh,

Europhys. Lett. 56, 563 �2001�.
41 A. Macridin, M. Jarrell, T. Maier, P. R. C. Kent, and E.

D’Azevedo, Phys. Rev. Lett. 97, 036401 �2006�.
42 T. D. Stanescu and P. Phillips, Phys. Rev. Lett. 91, 017002

�2003�.
43 T. D. Stanescu and G. Kotliar, Phys. Rev. B 74, 125110 �2006�.
44 T. D. Stanescu, M. Civelli, K. Haule, and Gabriel Kotliar, Ann.

Phys. �N.Y.� 321, 1682 �2006�.
45 B. Kyung, S. S. Kancharla, D. Sénéchal, A.-M. S. Tremblay, M.

Civelli, and G. Kotliar, Phys. Rev. B 73, 165114 �2006�.
46 D. Sénéchal and A. M. S. Tremblay, Phys. Rev. Lett. 92, 126401

�2004�.
47 O. Parcollet, G. Biroli, and G. Kotliar, Phys. Rev. Lett. 92,

226402 �2004�.
48 M. Civelli, M. Capone, S. S. Kancharla, O. Parcollet, and G.

Kotliar, Phys. Rev. Lett. 95, 106402 �2005�.
49 K. Haule and G. Kotliar, Europhys. Lett. 77, 27007 �2007�.
50 K. Haule and G. Kotliar, arXiv:cond-mat/0605149 �unpublished�.
51 M. Civelli, M. Capone, A. Georges, K. Haule, O. Parcollet, T. D.

Stanescu, and G. Kotliar, arXiv:0704.1486 �unpublished�.
52 M. Aichhorn, E. Arrigoni, Z. B. Huang, and W. Hanke,

arXiv:cond-mat/0702391 �unpublished�.
53 S. S. Kancharla, M. Civelli, M. Capone, B. Kyung, D. Senechal,

G. Kotliar, and A.-M. S. Tremblay, arXiv:cond-mat/0508205
�unpublished�.

54 Bumsoo Kyung, Jean-Sebastien Landry, and A.-M. S. Tremblay,
Phys. Rev. B 68, 174502 �2003�.

55 T. A. Maier, A. Macridin, M. Jarrell, and D. J. Scalapino,
arXiv:0706.0241 �unpublished�.

56 P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. J. Millis,
Phys. Rev. Lett. 97, 076405 �2006�.

57 K. Haule, Phys. Rev. B 75, 155113 �2007�.
58 N. E. Bickers, Rev. Mod. Phys. 59, 845 �1987�.
59 K. Haule, A. Rosch, J. Kroha, and P. Wölfle, Phys. Rev. Lett. 89,

236402 �2002�.
60 K. Haule, A. Rosch, J. Kroha, and P. Wölfle, Phys. Rev. B 68,

155119 �2003�.
61 K. Haule, S. Kirchner, J. Kroha, and P. Wölfle, Phys. Rev. B 64,

155111 �2001�.
62 M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Phys. Rev.

Lett. 93, 047001 �2004�.
63 M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Science

296, 2364 �2002�.
64 Q. Si and J. L. Smith, Phys. Rev. Lett. 77, 3391 �1996�; J. L.

Smith and Q. Si, Phys. Rev. B 61, 5184 �2000�.
65 R. Chitra and G. Kotliar, Phys. Rev. Lett. 84, 3678 �2000�.
66 A. M. Sengupta and A. Georges, Phys. Rev. B 52, 10295 �1995�.
67 O. Parcollet and A. Georges, Phys. Rev. B 59, 5341 �1999�.

68 A. Georges, R. Siddharthan, and S. Florens, Phys. Rev. Lett. 87,
277203 �2001�.

69 G. Kotliar, S. Y. Savrasov, G. Palsson, and G. Biroli, Phys. Rev.
Lett. 87, 186401 �2001�.

70 M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, and
H. R. Krishnamurthy, Phys. Rev. B 58, R7475 �1998�.

71 Th. A. Maier, Physica B 359–361, 512 �2005�; arXiv:cond-mat/
0312447 �unpublished�.

72 A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, Phys. Rev.
Lett. 92, 216402 �2004�.

73 L. de’ Medici, A. Georges, and S. Biermann, Phys. Rev. B 72,
205124 �2005�.

74 S. Biermann, L. de’ Medici, and A. Georges, Phys. Rev. Lett. 95,
206401 �2005�.

75 R. Ofer, G. Bazalitsky, A. Kanigel, A. Keren, A. Auerbach, J. S.
Lord, and A. Amato, Phys. Rev. B 74, 220508�R� �2006�.

76 G. Biroli and G. Kotliar, Phys. Rev. B 71, 037102 �2005�.
77 A. A. Abrikosov, Physics �Long Island City, N.Y.� 2, 21 �1965�.
78 J. Kroha and P. Wölfle, Acta Phys. Pol. B 29, 3781 �1998�.
79 I. Dzyaloshinskii, Phys. Rev. B 68, 085113 �2003�.
80 C. Berthod, T. Giamarchi, S. Biermann, and A. Georges, Phys.

Rev. Lett. 97, 136401 �2006�.
81 R. M. Konik, T. M. Rice, and A. M. Tsvelik, Phys. Rev. Lett. 96,

086407 �2006�.
82 F. H. L. Essler and A. M. Tsvelik, Phys. Rev. B 71, 195116

�2005�.
83 B. Valenzuela and E. Bascones, arXiv:cond-mat/0611154 	Phys.

Rev. Lett. �to be published�
.
84 K.-Y. Yang, T. M. Rice, and F.-C. Zhang, Phys. Rev. B 73,

174501 �2006�.
85 T. D. Stanescu, P. Phillips, and Ting-Pong Choy, Phys. Rev. B 75,

104503 �2007�.
86 M. Grilli and G. Kotliar, Phys. Rev. Lett. 64, 1170 �1990�.
87 G. Kotliar, Strongly Interacting Fermions and High Tc Supercon-

ductivity, edited by B. Doucot and J Sinn-Justin, Proceedings of
the Les Houches Summer School of Theoretical Physics, Ses-
sion LVI, 1991 �Elsevier Sience, New York, 1995�, pp. 201–247.

88 G. Kotliar and J. Liu, Phys. Rev. B 38, 5142 �1988�.
89 N. M. Plakida and V. S. Oudovenko, Phys. Rev. B 59, 11949

�1999�.
90 D. Poilblanc, D. J. Scalapino, and S. Capponi, Phys. Rev. Lett.

91, 137203 �2003�.
91 M. Civelli and G. Kotliar �unpublished�.
92 A. Kanigel, M. R. Norman, M. Randeria, U. Chatterjee, S.

Souma, A. Kaminski, H. M. Fretwell, S. Rosenkranz, M. Shi, T.
Sato, T. Takahashi, Z. Z. Li, H. Raffy, K. Kadowaki, D. Hinks,
L. Ozyuzer, and J. C. Campuzano, Nat. Phys. 2, 447 �2006�.

93 N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J. B.
Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L.
Taillefer, Nature �London� 447, 565 �2007�.

94 Z. Wang, Y. Bang, and G. Kotliar, Phys. Rev. Lett. 67, 2733
�1991�.

95 N. Nagaosa and P. A. Lee, Phys. Rev. Lett. 64, 2450 �1990�.
96 M. Randeria, R. Sensarma, N. Trivedi, and F. C. Zhang, Phys.

Rev. Lett. 95, 137001 �2005�.
97 H. Eskes, M. B. J. Meinders, and G. A. Sawatzky, Phys. Rev.

Lett. 67, 1035 �1991�.
98 M. B. J. Meinders, H. Eskes, and G. A. Sawatzky, Phys. Rev. B

48, 3916 �1993�.
99 G. Deutscher, Nature �London� 397, 410 �1999�.

KRISTJAN HAULE AND GABRIEL KOTLIAR PHYSICAL REVIEW B 76, 104509 �2007�

104509-36



100 M. Le Tacon, A. Sacuto, A. Georges, G. Kotliar, Y. Gallais, D.
Colson, and A. Forget, Nat. Phys. 2, 537 �2006�.

101 K. Tanaka, W. S. Lee, D. H. Lu, A. Fujimori, T. Fujii, Risdiana,
I. Terasaki, D. J. Scalapino, T. P. Devereaux, Z. Hussain, and
Z.-X. Shen, Science 314, 1910 �2006�.

102 B. Kyung and A. M.-S. Tremblay, arXiv:cond-mat/0204500 �un-
published�.

103 K. K. Gomes, A. N. Pasupathy, A. Pushp, S. Ohno, Y. Ando, and
A. Yazdani �private communication�.

104 X. J. Zhou, T. Yoshida, A. Lanzara, P. V. Bogdanov, S. A. Kellar,
K. M. Shen, W. L. Yang, F. Ronning, T. Sasagawa, T. Kakeshita,
T. Noda, H. Eisaki, S. Uchida, C. T. Lin, F. Zhou, J. W. Xiong,
W. X. Ti, Z. X. Zhao, A. Fujimori, Z. Hussain, and Z.-X. Shen,
Nature �London� 423, 398 �2003�.

105 A. F. Santander-Syro, R. P. S. M. Lobo, N. Bontemps, W. Lop-
era, D. Girata, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Phys.
Rev. B 70, 134504 �2004�; A. F. Santander-Syro, R. P. S. M.
Lobo, and N. Bontemps, arXiv:cond-mat/0404290 �unpub-
lished�.

106 R. A. Ferrell and R. E. Glover, Phys. Rev. 109, 1398 �1958�; M.
Tinkham and R. A. Ferrell, Phys. Rev. Lett. 2, 331 �1959�.

107 G. Deutscher, A. F. Santander-Syro, and N. Bontemps, Phys.
Rev. B 72, 092504 �2005�.

108 H. J. A. Molegraaf, C. Presura, D. van der Marel, P. H. Kes, and
M. Li, Science 295, 2239 �2002�.

109 J. Hwang, T. Timusk, and G. D. Gu, arXiv:cond-mat/0607653
�unpublished�.

110 A. V. Boris, N. N. Kovaleva, O. V. Dolgov, T. Holden, C. T. Lin,
B. Keimer, and C. Bernhard, Science 304, 708 �2004�; A. F.
Santander-Syro and N. Bontemps, arXiv:cond-mat/0503767 �un-
published�.

111 A. B. Kuzmenko, H. J. A. Molegraaf, F. Carbone, and D. van der
Marel, Phys. Rev. B 72, 144503 �2005�.

112 F. Carbone, A. B. Kuzmenko, H. J. A. Molegraaf, E. van Heu-
men, V. Lukovac, F. Marsiglio, D. van der Marel, K. Haule, G.
Kotliar, H. Berger, S. Courjault, P. H. Kes, and M. Li, Phys.
Rev. B 74, 064510 �2006�.

113 Y. S. Lee, K. Segawa, Z. Q. Li, W. J. Padilla, M. Dumm, S. V.
Dordevic, C. C. Homes, Y. Ando, and D. N. Basov, Phys. Rev. B
72, 054529 �2005�.

114 W. J. Padilla, Y. S. Lee, M. Dumm, G. Blumberg, S. Ono, K.
Segawa, S. Komiya, Y. Ando, and D. N. Basov, Phys. Rev. B
72, 060511�R� �2005�.

115 A. El Azrak, R. Nahoum, N. Bontemps, M. Guilloux-Viry, C.
Thivet, A. Perrin, S. Labdi, Z. Z. Li, and H. Raffy, Phys. Rev. B
49, 9846 �1994�.

116 D. van der Marel, H. J. A. Molegraaf, J. Zaanen, Z. Nussinov, F.
Carbone, A. Damascelli, H. Eisaki, M. Greven, P. H. Kes, and
M. Li, Nature �London� 425, 271 �2003�.

117 M. M. Zemljic and P. Prelovsek, Phys. Rev. B 72, 075108
�2005�.

118 A. Toschi, M. Capone, M. Ortolani, P. Calvani, S. Lupi, and C.
Castellani, Phys. Rev. Lett. 95, 097002 �2005�.

119 H. J. A. Molegraaf, C. Presura, D. van der Marel, P. H. Kes, and
M. Li, Science 295, 2239 �2002�.

120 M. Ortolani, P. Calvani, and S. Lupi, Phys. Rev. Lett. 94,
067002 �2005�.

121 A. F. Santander-Syro, R. P. S. M. Lobo, N. Bontemps, W. Lop-
era, D. Girata, Z. Konstantinovic, Z. Z. Li, and H. Raffy, Phys.
Rev. B 70, 134504 �2004�.

122 C. Panagopoulos, B. D. Rainford, J. R. Cooper, W. Lo, J. L.
Tallon, J. W. Loram, J. Betouras, Y. S. Wang, and C. W. Chu,
Phys. Rev. B 60, 14617 �1999�.

123 D. M. Broun, P. J. Turner, W. A. Huttema, S. Ozcan, B. Morgan,
Ruixing Liang, W. N. Hardy, and D. A. Bonn, arXiv:cond-mat/
0509223 �unpublished�.

124 B. R. Boyce, J. A. Skinta, and T. R. Lemberger, Physica C 341-
348, 561 �2000�.

125 Y. Sidis, S. Pailhes, B. Keimer, P. Bourges, C. Ulrich, and L. P.
Regnault, Phys. Status Solidi B 241, 1204 �2004�.

126 S. A. Kivelson, I. P. Bindloss, E. Fradkin, V. Oganesyan, J. M.
Tranquada, A. Kapitulnik, and C. Howald, Rev. Mod. Phys. 75,
1201 �2003�.

127 T. Nakano, M. Oda, C. Manabe, N. Momono, Y. Miura, and M.
Ido, Phys. Rev. B 49, 16000 �1994�.

128 Y. Kubo, Y. Shimakawa, T. Manako, and H. Igarashi, Phys. Rev.
B 43, 7875 �1991�.

129 P. Dai, H. A. Mook, S. M. Hayden, G. Aeppli, T. G. Perring, R.
D. Hunt, and F. Doan, Science 284, 1344 �1999�.

130 D. J. Scalapino and S. R. White, Phys. Rev. B 58, 8222 �1998�.
131 B. A. Jones and C. M. Varma, Phys. Rev. Lett. 58, 843 �1987�.
132 B. A. Jones, B. G. Kotliar, and A. J. Millis, Phys. Rev. B 39,

3415 �1989�.
133 M. Ferrero, L. De Leo, P. Lecheminant, and M. Fabrizio,

arXiv:cond-mat/0702629 �unpublished�.
134 G. Moeller, V. Dobrosavljevic, and A. E. Ruckenstein, Phys.

Rev. B 59, 6846 �1999�.
135 Q. Si et al., Nature �London� 413, 804 �2001�.
136 S. Pankov, G. Kotliar, and Y. Motome, Phys. Rev. B 66, 045117

�2002�.
137 J. L. Tallon et al., Phys. Status Solidi B 215, 531 �1999�.
138 X. G. Wen and P. A. Lee, Phys. Rev. Lett. 80, 2193 �1998�.
139 L. B. Ioffe and A. J. Millis, Phys. Rev. B 58, 11631 �1998�.
140 L. B. Ioffe and A. J. Millis, Science 285, 1241 �1999�.
141 L. B. Ioffe and A. J. Millis, Phys. Rev. B 61, 9077 �2000�.
142 G. Biroli, O. Parcollet, and G. Kotliar, Phys. Rev. B 69, 205108

�2004�.
143 A. Perali, M. Sindel, and G. Kotliar, Eur. Phys. J. B 24, 487

�2001�.
144 Z. Xu, N. P. Ong, Y. Wang, T. Kakeshita, and S. Uchida, Nature

�London� 406, 486 �2000�.
145 Zlatko Tesanovic, arXiv:0705.3836 �unpublished�.

STRONGLY CORRELATED SUPERCONDUCTIVITY: A… PHYSICAL REVIEW B 76, 104509 �2007�

104509-37


