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Extended Hubbard model: Charge ordering and Wigner-Mott transition
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Strong correlations effects, which are often associated to the approach to a Mott insulating state, in some

cases may be observed even far from half filling. This typically happens whenever the intersite Coulomb
repulsion induces a tendency toward charge ordering, an effect that confines the electrons, and in turn favors
local moment formation, i.e., Mott localization. A distinct intermediate regime then emerges as a precursor of
such a Wigner-Mott transition, which is characterized by both charge and spin correlations, displaying large
mass enhancements and strong renormalizations of other Fermi-liquid parameters. Here we present a careful

study of a quarter-filled extended Hubbard model—a simple example where such physics can be studied in
detail, and discuss its relevance for the understanding of the phenomenology of low-density two-dimensional

electron gases.
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I. INTRODUCTION

Early theoretical and experimental investigations of two-
dimensional electron gases (2DEGs) largely focused on dis-
order effects that dominate the so-called “diffusive” regime
kgT<<h/T, T being the impurity scattering rate. In this situa-
tion, which is best realized in relatively low-mobility mate-
rials, the interaction effects are expected to be weak and
coherent multiple-scattering processes dominate—ultimately
leading to the formation of bound electronic states through
Anderson localization. This impurity effect was first pre-
dicted in the famed scaling theory of localization,' for non-
interacting and weakly disordered 2DEG systems, and was
quickly extended to include the weak interaction
corrections.” The predicted logarithmic rise of the resistivity
at low temperature was soon confirmed by experiments on
thin metallic films and two-dimensional semiconducting
surfaces.>* All this intensive activity around the 2DEG con-
tributed to the emergence of a widely held opinion that, in
these systems, even a minute amount of (impurity) disorder
will localize all the electronic states at 7=0. If this were true,
then there should not exists a sharp metal-insualtor transition
(MIT) in any two-dimensional system; the density and/or
temperature dependence of transport should simply reveal a
gradual crossover from weak to strong localization.

Given this conventional lore focusing on disorder effects,
the 1994 pioneering experiment of Kravchenko et al.® pro-
vided quite a surprise. It reported low-temperature transport
behavior in ultraclean 2D silicon samples which, around this
time, became available due to technological advances in fab-
ricating semiconductor devices. Kravchenko’s work pre-
sented first evidence for dramatic changes in the temperature
dependence of the resistivity in a narrow density range, sug-
gesting the possibility of a MIT in the 2DEG. This result—
quite surprisingly—passed almost unnoticed for several
years, until confirmed by independent transport and magnetic
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response  measurements on clean  Si-metal-oxide-
semiconductor field-effect transistor,’ as well as on other
semiconductor heterostructures (e.g., GaAs/AlGaAs).” These
results have attracted a great deal of attention to this field,
triggering a surprising variety of proposed theoretical
scenarios,® many of which were quickly ruled out on experi-
mental grounds.’

A. Strong correlations revealed

The next 10 years produced significant new information
from complementary studies by several groups, which re-
ported singular enhancement of the effective mass,” m*
~(n—n,)~!, and emphasized the central role played by spin
physics in the low-density 2DEG systems. In particular, ex-
perimental measurements of the electronic spin susceptibility
in the proximity of the MIT shown a Curie-Weiss behavior
x/n= g,ué/ T, suggesting almost total conversion of the elec-
trons into local magnetic moments below the critical
density.'®!'?> While the initial attention concentrated on the
role of disorder,'® more recent experiments’ made it increas-
ingly clear that many key experimental features seem to per-
sist even in the cleanest samples, thus pointing to effects
intrinsic to the low-density 2DEG. All these experimental
results have contributed to validate the emerging idea'*!>
that strong interactions are the primary driving force behind
the instability of the Fermi liquid phase in favor of an insu-
lating state in the low-density 2DEG.

In very recent work,'*!> radically new ideas have been
put forward to explain the observed behavior, and to recon-
cile the early viewpoint of Wigner with the possibility of
Mott physics in the low-density regime. According to this
Wigner-Mott scenario'" the rich phenomenology of the
2DEG is ultimately determined by the competition between
the long-range Coulomb interaction and the kinetic energy.
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As first noted by Wigner,'%!7 both the Coulomb interaction
E and the kinetic (Fermi) energy E decrease with decreas-
ing density n but their ratio r;=E/Ep, i.e., the Wigner-Seitz
radius, increases. Thus, the Coulomb repulsion is expected to
dominate at very low densities (r,> 1) and low enough tem-
peratures, leading to the formation of a charge-ordered
state—a Wigner crystal. In this regime each electron forms a
bound state within a potential well formed by the repulsion
from other electrons, and must overcome an activation gap to
escape. In the opposite regime (r,<1), the quantum fluctua-
tions lead to the eventual melting of the Wigner lattice, and
the consequent formation of a homogeneous Fermi-liquid
state. In between these two limits, the system is expected to
undergo a series of nontrivial transformations, making the
description of the phase diagram of the 2DEG one of the
most challenging tasks of modern condensed-matter physics.

B. Driving force: Interactions or disorder?

This Wigner-Mott scenario should be contrasted with the
alternative physical picture as first proposed in the early the-
oretical works of Refs. 18 and 19. Here disorder is envi-
sioned as the primary driving force for electron localization,
and the insulator consists of Anderson-localized electrons
bound to impurities. In this scenario, the primary role of the
interactions is to stabilize the metallic state at higher densi-
ties, a possible mechanism that has been explored in rela-
tively recent theoretical work.!> The key theoretical chal-
lenge, therefore, is to carefully identify the precise
consequences of each of these physical pictures, and assess
their respective relevance in light of experiments.

In this work we focus on the understanding of the role of
the electronic correlation in the Wigner transition, thus we
shall deliberately disregard all disorder effects, and focus on
investigating the predictions of the Wigner-Mott picture,
which we believe can account for most qualitative aspects of
the puzzling experimental features.

To understand how the Mott physics, usually ascribed to
half-filled narrow bands, emerges out of the low-density 2D
systems, one should consider the following argument. A
barely melted Wigner crystal is dominated by the local spin
correlations while the short-range Coulomb repulsion largely
precludes double occupations. Therefore, it becomes reason-
able to view a metal in the vicinity of Wigner crystallization
as a system on the brink of Mott localization. Physically, in
the ;> 1 regime, the Coulomb interaction proves so strong
that it keeps all the electrons at bay, even after the crystal has
melted. The volume fraction available for each electron is
thus significantly reduced, giving rise to the “confinement”
of each electron. This situation is locally close to half filling
and the Mott regime, hence providing an explanation for the
(observed) similarities of a dilute 2D electrons gas with con-
ventional Mott materials characterized by narrow half-filled
bands.

While of plausible significance for diluted 2DEG, the
phenomenon of Wigner-Mott localization applies to many
more systems. In fact, based on the general arguments of
Wigner, one may expect that it will emerge for any partially
filled band, where intersite (long-range) Coulomb interac-
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tions are able to induce charge ordering. These effects have
generally been little explored, and were so far mostly studied
in (quasi-) one-dimensional systems.?%?! However, recent
detailed experimental studies on charge-ordering phenomena
in layered organic molecular crystals,?> and on the cobalt
oxide Na,Co00,,>® have triggered several theoretical investi-
gations of extended Hubbard models (EHMs) which includes
both on-site and nearest-neighbor interaction.?*2° Some as-
pects of the resulting behavior may be influenced by
material-specific details, such as the form of the lattice. In
compounds with triangular lattice structure, for example,
geometrical frustration leads to the competition of several
ground states.”’ Although still relatively few, all these ex-
amples indicate that Wigner-Mott localization is clearly a
very general phenomenon, which is yet to be explored in
detail. Its experimental realizations are often found in two-
dimensional systems, where device geometries (e.g., gating
the 2DEG) allows easy control of carrier density, which fa-
cilitates accessing the low-density transition region. Still, as
a matter of principle, this phenomenon is not restricted to
d=2, and thus should be found in all dimensions. In addition,
the charge-density wave (CDW) ordering underpinning can
emerge not only for both long-range intersite (Coulomb) in-
teractions but also for sufficiently strong short-range (e.g.,
nearest-neighbor) repulsion.®

To gain insight into its generic features, in this paper we
restrict our attention to the simplest model that illustrates its
fundamental mechanism: Mott localization as driven by
charge ordering. This is accomplished by carefully examin-
ing the quarter-filled EHM,?%3 which we solve using single-
site dynamical mean-field theory®' (DMFT) methods and a
combination of several quantum impurity solvers. The EHM
has already been studied in some detail in previous work by
Pietig et al.,’? using the DMFT approximation. These authors
found a charge-ordered phase that forms at large values of
the intersite interaction, by using a combination of noncross-
ing approximation, exact diagonalization (ED), and numeri-
cal renormalization group calculations. This work demon-
strated the increased importance of correlation effects in the
CDW phase, leading to the formation of a strongly renormal-
ized quasiparticle with the density of states displaying a nar-
row peak at the Fermi level. However, the complete V-U
phase diagram for this model has not been determined and,
more importantly, no evidence for the formation of a Wigner-
Mott insulating state has been reported. These and some
other interesting aspects of the 2DEG have been clarified in a
more recent short paper,'> where the DMFT equations for the
EHM have been solved at low but finite temperature using
the recently developed continuous-time quantum Monte
Carlo algorithm (CTQMC).3*34 This work identified the ex-
istence of a strongly correlated metallic CDW phase, sepa-
rating the homogeneous metal from a Wigner-Mott insulat-
ing phase present for larger values of the nonlocal interaction
and small enough values of the short-range interaction. In
contrast, a direct transition between the Fermi-liquid metal
and the Wigner-Mott insulating state was found at larger val-
ues of the local correlation, triggered by the tendency to
charge ordering.

Despite this progress, however, several important physical
issues remain to be clarified, in order to correctly understand
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the phenomenology of the Wigner-Mott scenario and its pos-
sible relevance for the 2DEG problem. In particular, even
within the considered DMFT solution of the EHM, the fol-
lowing questions need to be addressed: (1) What are the
conditions required to find an intermediate strongly corre-
lated CDW-metallic (CDW-M) phase? (2) What is the tem-
perature dependence of this phase? (3) What is the nature of
the phase transitions between the different phases and how
does the critical behavior depend on temperature? (4) Is there
a regime of phase coexistence between the metal and the
insulating state, allowing the possibility of phase separation?

This paper presents careful calculations providing precise
and convincing answers to all these questions. In particular,
we show the existence of an intermediate CDW-M phase,
that separate the homogeneous metal from the Wigner-Mott
insulator, for all temperatures smaller than a critical value
T=T,. The shrinking of the CDW-M phase corresponds to
temperature-dependent behavior of the Wigner-Mott transi-
tion, similar to the Pomeranchuk effect.’> We identify two
transitions in the phase diagram of the model, namely, a
charge-ordering transition from the homogeneous metal to
CDW-metallic state at V=V, (T) and a Wigner-Mott MIT
taking place at V=V ,(T). We demonstrate the continuous
character of the MIT for 7<<T, and we give clear indications
for the existence of phase coexistence, i.e., a sharp first-order
transition, at higher temperatures. Furthermore, we present a
detailed study of the evolution of the two critical lines V,
and V,, as a function of increasing temperature from 7=0.

The rest of the paper is organized as follows. In Sec. II,
we introduce the main model and the relative notation, to-
gether with a brief overview of the (numerical) methods used
in this work. In Sec. III, we present the results concerning the
Wigner-Mott transition in the EHM and we discuss the re-
lated phase diagram. We conclude in Sec. IV, where we
present our perspective on the relevance of our picture for
the 2DEG and discuss its relation to alternative theoretical
scenarios.

II. MODEL AND METHODS
A. Extended Hubbard model

The extended Hubbard model is the simplest model that
captures the interplay between strong correlation and charge-
ordering effects. This model includes both a local Coulomb
interaction, represented by the familiar Hubbard U term, and
a nonlocal (intersite) repulsion V. While the presence of this
intersite repulsion V may induce the formation of a charge-
ordered phase, it also proves capable to enhance the effec-
tiveness of the on-site repulsion U, leading to the formation
of a strongly correlated physics even away from integer fill-
ing.

The lattice structure of the model is introduced in order to
capture the crystalline order of the 2DEG in the low-density
regime. The lattice constant is then constrained by the re-
quirement that each cell contains two lattice sites, which can
be regarded as precursors of the interstitials and vacancies in
the Wigner crystal phase, corresponds to an area of wrfalz;.
The corresponding extended Hubbard model Hamiltonian
takes the form
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H=-1, cjacjo+ Uy, ngn + VY, nn;— ME Nig- (1)

({ij)o ij i

Here, U and V are the on-site and the nearest-neighbor inter-
actions, respectively. The parameter ¢ is the hopping ampli-
tude, cfa (c;,) are the creation (annihilation) operators and
n;=n;+n; is the occupation number operator on-site i. The
chemical potential u is adjusted to enforce the quarter-filling
constraint, corresponding to the presence of one electron per
unit cell in the Wigner crystal. Thus, we may expect the
formation of a commensurate charge ordering as effect of the
intersite repulsion. To this end, we can restrict ourselves to
consider a bipartite lattice structure with sublattices A and B.

We solve the problem posed by Hamiltonian (1) using
single-site DMFT method,?' which amounts to mapping the
previous lattice problem onto that of a single impurity,
coupled to an effective bath, to be self-consistently deter-
mined. This approximation becomes exact in the infinite co-
ordination number limit,***’ provided the hopping parameter
and the intersite interaction are rescaled as r—1/vz and V
—2V/z. In this limit, the interaction between electrons on
neighboring sites i and j are treated in the Hartree approxi-
mation, and Hamiltonian (1) assumes the form

H=-1), (c,-j’ocjj’o+ He)-p2n+ U, nin|
(ij)o i i

+VE

i€eA,jeB

(("i)”j + ni<nj> - <nl><nj>) (2)

For simplicity, the terms linear in the occupation operators
can be easily absorbed in a redefinition of the chemical po-
tential uy=pu—2V(ng), wp=pm—2V{n,). The Weiss field, de-
scribing the properties of the effective bath in the DMFT
approximation, reads

GB;IA,B(iwn) =iw, — ppp— Ay pliw,),

where A, p(iw,) is the hybridization function of the associ-
ated effective single-impurity Anderson model. The self-
consistency condition for the model at hand assumes the fol-
lowing expression:3!

P0(8)
€ 2
lulg—¢

with {4 p=iw,+us p—24 pliw,), 2,5 being the local self-
energy function and py(e) =2 e—e(Kk)] the noninteracting
density of states corresponding to the chosen lattice. In the
following we focus on the simple semicircular model density
of states, for which py(e)=\D*-g&?/4m> with D=2t=1
fixing the energy units of the problem. The self-consistency
equations then reduce to

GA,B = §B,A f d
R

Ay p=1Gg,. (3)

B. Methods

In this section, we briefly review the methods of solutions
used in this work, emphasizing the advantages and the draw-
backs for each of them. More detailed review of the same
methods can be found elsewhere in the literature, cf. Refs.
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31, 33, and 38. We begin our discussion with the simplest
used impurity solver, namely, the four slave-boson (SB4)
method of Kotliar and Ruckenstein.’® At the mean-field level
(saddle point), this method at =0 proves to be equivalent to
the well-known Gutzwiller variational approximation but it
also allows for extensions to 7>0. Within the SB4 method,
the effective impurity problem is reduced to the solution of a
set of algebraic equations for the appropriate slave-boson
variational parameters. Solving these equations is a relatively
simple task, which allows for quite an accurate numerical
solution, and a very precise characterization of the leading
critical behavior. Although the SB4 method variationally cal-
culates the Fermi-liquid parameters specifying the quasipar-
ticles and by neglecting incoherent parts of the spectrum, this
method is known to generally provide qualitatively and
largely even quantitatively accurate solutions when applied
within the framework of DMFT theories. In the SB4 ap-
proach, the low energy part of the local Green’s function is
parametrized in terms of the quasiparticle weight Z; at site i.
In the CDW phase these quantities differ on the two sublat-
tices i=A,B. The quasiparticle weight Z[e;,d;] is expressed
through the mean-field slave-boson parameters e’ and d?,
which are equal to the probability that the site is empty and
doubly occupied, respectively. These parameters and ulti-
mately the impurity Green’s functions Gy, g5, for either the A
and the B sublattices, are determined by constrained minimi-
zation of a suitable local free energy JF; parametrized by a
Lagrange’s multiplier A;,

2
Fi=— EE In[- iw, - w; + ZAiw,)] + Ud> = \(1 - €* + d?)

(4)

with fiy p=u—2Vnps—N4 p. The (low-energy part of the)
ocal Green’s functions are determined by the relation G, p
=Z4 pGya r- The DMFT equations are closed by supplement-
ing these relation with the self-consistency condition (3).
The chemical potential w and occupation numbers n, and
np also have to be calculated self-consistently in order
to enforce quarter-filling constraint ny+ng=1, where n, g
=%anGfA,B(iwn)'

To supplement the SB4 results with more accurate meth-
ods we solved the DMFT equation for the EHM with (nu-
merically) exact methods. In particular, in the 7=0 limit we
implemented a density matrix renormalization group
(DMRG) impurity solver. The DMRG idea have first been
introduced in 1992 by White*’ to deal with one-dimensional
quantum lattice problems,*' for which the Wilson’s real-
space blocking scheme was observed to fail in describing the
correct solution. In more recent work,’#*2 DMRG has been
adapted to solve the self-consistent DMFT equations. The
algorithm is based on a recursive ED of the associated quan-
tum impurity problem with an increasing size of the effective
bath. Similarly to other renormalization-group-based
method, the DMRG provides a suitable method to restrict the
solution of the effective problem to its relevant subspace.
This is achieved using a clever method for limiting the ex-
ponential growth of the Hilbert space dimension, based on
the analysis of the reduced density matrix. Starting with a

PHYSICAL REVIEW B 82, 155102 (2010)

small effective bath in the form of two linear chains,?' the
effective impurity problem is exactly solved, and then the
size of the bath is recursively increased. At each step the
Hilbert space of the problem is constructed using the basis
formed by the first M (i.e., the “most probable™) eigenvectors
of the reduced density matrix ﬁ:Tr‘Env|gs><gs , where |gs) is
the (approximated) ground state and the environment is rep-
resented by the impurity plus one of the two bath’ chains. For
every fixed size of the impurity problem, the impurity
Green’s function are evaluated using successive applications
of the Lanczos’ method.*? The self-consistency condition (3)
is then used to update the Hamiltonian parameters of the
problem.

The recursive nature of the DMRG method permits a sys-
tematic improvement of the quality of the solution. In addi-
tion, this method has the advantage of treating on the same
footing both low- and high-energy scales, in contrast to stan-
dard RG technique, which principally focus on the low-
energy spectra of the problem. However, the particular one-
dimensional topology imposed by the DMRG algorithm
makes this method suffering of the finite-size effects. In
practice effective baths as large as L=20 sites have to be
reached in order to obtain a satisfying solution of the model.

While the DMRG algorithm it is straightforward at zero
temperature, its extensions to finite-temperature regime are
nontrivial. To this end, we have solved the DMFT equations
using alternative algorithms. The first finite-temperature
method is (complete) exact diagonalization of the discretized
effective impurity problem. This method permits to access
the full spectrum of the problem, thus allowing for the
calculation of the exact impurity Green’s function and
other observables. The Hamiltonian parameters are self-
consistently determined using an adaptive method that per-
mits to minimize the (in principle, large) finite-size effects.**
This method is indeed known to have an almost constant
scaling with the bath’ size. On the other hand, a small num-
ber of degrees of freedom in the problem prevents the access
to the very low-energy physics of the model, thus a signifi-
cant number of bath’ sites (N,>5) becomes necessary to
have a good description of the model solution. Our calcula-
tion has been performed using N,=7, which is the largest
accessible number of sites for this method.

The second method we used to solve the DMFT equations
at finite temperature is the continuous-time quantum Monte
Carlo, in the implementation of Ref. 33. The CTQMC is a
statistically exact method based on the Monte Carlo sam-
plings of the diagrams obtained by perturbative expansion of
the impurity problem with respect to the hybridization. The
CTQMC algorithm of Ref. 33 has proven to be a highly
reliable and stable method, that permits to capture the low-
temperature regime of the model. On the other hand, the
statistical nature of the method put some, indeed nonstrin-
gent, limitations to its applicability in the proximity of a
phase transition. In this regime, the solution requires a very
large number of Monte Carlo samplings and a large number
of iterations of the self-consistency algorithm to overcome
the enhanced fluctuations and the critical slowing down of
the solution.
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FIG. 1. (Color online) Noninteracting DOS of sublattice A (solid
line) and B (dashed line) for §=0.2. The system is in a CDW-M
state and correspondingly the DOS is split in two lobes. The Fermi
energy, corresponding to w=0, falls inside the lower lobe as results
of the quarter-filling constraint.

C. U=0 solution

In the noninteracting limit U=0, the problem posed by
Hamiltonian (2) can be easily solved analytically. In particu-
lar, here we are interested in obtaining the analytic solution
corresponding to the DMFT approximation, in order to get
some physical insight from the model. In the noninteracting
limit the DMFT equations can be recast in the form

G;l(Z) =Z+ Uy — IZGB =a—- tZGB,

Gy (2) =2+ pup—1’Gy=B-1°G, S
and solved for, say, G, giving
Gy=20B =B - Blal.

All the solutions to this equation can be expressed in terms
of a single parameter 6=n,—np representing the occupation
imbalance between the two sublattices. The density of states
is nonzero only in the energy interval defined by the S°
—B/a<<0 condition. The system undergoes a charge order-
ing at V=V, with the formation of a spectral gap A=V§ (for
V=V,). In this regime, the original quarter-filled band splits
into two bands, but the Fermi level remains inside the lowest
band, which remains half-filled, cf. Fig. 1. Thus a spectral
gap at the Fermi level can only be opened by increasing the
local correlation U.

In this limit, we can think at the system as consisting of
one sublattice A with occupation close to half filling, and the
other B as being nearly empty. An estimate of the effective
hopping between sites in the sublattice A can be obtained
integrating out (virtual) high-energy processes, correspond-
ing to hops through the sites of sublattice B. At V>1, to
leading order the effective hopping between the sites of the A
sublattice then takes the form tgff:tz/ V.

III. WIGNER-MOTT TRANSITION
A. Phase diagram

In this section, we present results concerning the phase
diagram of the EHM as a function of the local correlation U
and the intersite interaction V. In the following we use dif-
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FIG. 2. (Color online) DMFT phase diagram of the extended
Hubbard model obtained with a slave-boson (SB4) impurity solver.
The figure shows the phase boundaries obtained for different values
of the temperature 7. At T=0 (solid line), the solution shows the
existence of a large CDW-metallic phase at all values of the local
correlation U. This region narrows as the temperature 7 is increased
from zero to T=0.01 (dashed line) to 7=0.05 (dotted-dashed line)
but it never disappears.

ferent methods to investigate the various phases of the sys-
tem as a function of the temperature 7.

Our results show the existence of three qualitatively dif-
ferent phases, which can be classified by two order param-
eters: (i) the CDW staggered density d=n,—ny and (ii) the
quasiparticle residue (i.e., renormalization constant) Z, z at
each sublattice. The different phases of the model are char-
acterized as following: (a) Fermi liquid. A featureless homo-
geneous metallic state, corresponding to ny=nz=1/2 and
Z,=Z5>0. (b) CDW-M. A CDW-ordered metallic state with
ny>np and Zg>Z,. The sublattice A has an occupation near
to the half-filling condition (n,=1), thus closer to Mott lo-
calization. As a consequence of this the quasiparticles weight
Z, is substantially reduced, corresponding to a enhancement
of their effect mass my/m,=Z,". (c) CDW-I. A Wigner-Mott
insulating phase. In this regime n,>np but while Zz~1,
sublattice A has an identically zero quasiparticle weight Z,
=0. This corresponds to the Mott localization of the electrons
on the “nearly half-filled” sublattice A.

The U-V phase diagram as obtained from our SB4 solu-
tion for increasing values of the temperature 7 is presented in
Fig. 2. At zero temperature, we obtain a continuous transition
from the homogeneous metallic phase to the CDW metal.
This is followed by a second continuous transition to the
CDW insulator as the intersite interaction V is further in-
creased. The intermediate CDW metallic phase, while de-
creasing in size at large U, remains of finite extent even in
the limit U — o¢ limit. Upon increasing the temperature 7, we
observe a shrinking of the intermediate CDW-M phase at
large values of U. Still, no signs for the disappearance of this
phase have been observed with the slave-bosons methods.
This result is in contrast to that initially obtained in Ref. 15
at very low but finite temperature 7=0.01 using a more so-
phisticated method. Despite the qualitative validity of the
SB4 method, this result clearly puts in question the main
features of the phase diagram for the EHM. In particular, it
suggests that the intermediate CDW-M phase at intermediate
to large U is very fragile to temperature. This observation
calls for a more detailed study of the temperature depen-
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FIG. 3. (Color online) DMFT phase diagram of the extended
Hubbard model obtained with CTQMC method. The results illus-
trate the evolution of the phase boundaries for the Mott-Wigner
transition as a function of increasing temperature. For the lowest
value of the temperature 7=0.0025 (solid line), we observe the well
established presence of a CDW-M separating the homogeneous
metal from the CDW insulator. This phase region narrows upon
increasing the value of the temperature to 7=0.0033 (dashed line)
and 7=0.005 (dotted line), till a closure of the phase boundaries is
observed for T~0.01 (dotted-dashed line) at U~ 2.

dence of the metal-insulator phase boundary, which we ex-
amine in the following sections.

The results from CTQMC solution of the DMFT equa-
tions for the EHM are summarized in the phase diagram
in Fig. 3. While this method cannot capture the zero-
temperature properties of the model, it provides an excellent
and reliable solution at very-low temperature scales. At the
lowest accessible temperature 7=0.0025, we observe a con-
tinuous transition between a homogeneous metallic state to a
CDW metal for low values of V and every value of U. At this
value of the temperature, the CDW-M phase is found to be
destabilized toward a CDW-insulating phase upon increasing
the intersite interaction V. Upon increasing the temperature,
we observed a narrowing of the intermediate CDW-M in
favor of the Wigner-Mott insulating state, until a merge of
the boundary lines is observed for temperatures of the order
T~0.01 (that is two orders of magnitude smaller than the
bare bandwidth).

To better clarify the issue of closing boundary lines at low
temperature, we have solved the DMFT equations with an
exact method at zero temperature, i.e., the DMRG. Further-
more, we have complemented this investigation with a pow-
erful ED solver, in order to access the finite-temperature
properties of the system. The ED-DMRG results for the ex-
tended Hubbard model problem are condensed in the U-V
phase diagram presented in Fig. 4. The phase diagram is in
very good agreement with that obtained from the CTQMC
solution of the model, already presented in Fig. 3. Our cal-
culations confirm the existence of an homogeneous metallic
phase at low values of V and any value of the local correla-
tion U. The stability of the homogeneous metallic phase is
related to the quarter-filling condition, making the local in-
teraction nearly ineffective at small V. For any fixed value of
U and for V larger than a critical value V,; almost indepen-
dent of the temperature 7, the system shows a continuous
phase transition toward a CDW-M state. The evolution of the
two sublattices upon further increasing V is different. One
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FIG. 4. (Color online) DMFT phase diagram of the extended
Hubbard model obtained with DMRG (zero temperature) and ED
(finite temperature) impurity solvers. The figure shows the evolu-
tion of the phase boundaries as a function of increasing temperature
from T=0 (solid line) to 7=0.0033 (dashed line), to 7=0.01
(dotted-dashed line). The intermediate CDW-M observed at 7=0 is
found to narrows upon increasing the temperature, until a closure of
the boundary lines is obtained around U~2 and for 7~0.01. The
DMRG results have been obtained with a bath of L=30 sites
whereas the ED calculation have been performed with a number of
sites N=7.

sublattice gets nearly empty and becomes, for sufficiently
large U, a band insulator. The other sublattice, with a filling
closer to 1, undergoes a continuous Mott transition toward a
CDWe-insulating state for U large enough and V larger than a
critical value V,, weakly depending on the temperature 7. In
particular the zero-temperature solution of the model shows
the persistence of the intermediate CDW-M for any value of
the local correlation U. This phase is observed to narrow
upon increasing the temperature until a closure of the bound-
ary lines at U~ 2 is obtained for 7~ 0.01, in excellent agree-
ment with the CTQMC solution of the model.

B. Generalized Pomeranchuk effect

Next, we would like to discuss the physical implications
of the observed temperature evolution of the phase diagram,
in relation to the interesting nonmonotonic resistivity behav-
ior observed in very clean 2DEG samples.’ As a general
trend, we observed a shrinking of the CDW-M region as
temperature is increased from 7=0. This effect is most pro-
nounced at the CDW-M to CDW-I boundary V,,(U), i.e., in
the region where a heavy Fermi-liquid forms. From the
physical point of view, this temperature-dependent behavior
reflects the entropy gained in destroying the (heavy) Fermi
liquid to form localized magnetic moments in the Wigner-
Mott (CDW-I) phase. This mechanism of entropy release is
indeed similar to that anticipated in the early work of
Pomeranchuk,* who speculated about the general problem
finite-temperature solidification of *He.3

It should be emphasized, however, that this “entropic”
destruction of a strongly correlated Fermi liquid is a very
general phenomenon, which does not necessarily require a
first-order phase transition, as postulated by Pomeranchuk, or
a phase coexistence with separation of the phases.**~*° For
example, the same effect can be observed in many heavy-
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FIG. 5. (Color online) Order parameter 6=n4—nyg as a function
of the intersite interaction V, for U=2 and increasing values of the
temperature 7. The metallic CDW phase appears for V>V
=(0.84 while a CDW insulator forms for V>V_==1.35. Within
DMFT-SB4 solution, the 7=0 transition is continuous while for T
>0 a small discontinuity in CDW order parameter is observed, that
is a possible artifact of the method.

fermion systems, where the destruction of the heavy Fermi
liquid for temperatures larger than the “coherence” tempera-
ture 7"~ Tk, coincides with a release of extensive spin en-
tropy S~ kg In 2, corresponding to the localization of the f
electrons. The corresponding resistivity maximum represents
a temperature-driven crossover rather than a sharp phase
transition, related to the fact that the two phases do not have
to differ by symmetry. In the Wigner-Mott picture of the
2DEG, we thus recognize in the entropy of the high-
temperature state as the driving force for electron localiza-
tion.

C. Charge ordering

To better understand the nature of the continuous transi-
tions observed in the phase diagrams of Sec. II, we now
investigate the behavior of the charge-order parameters &
=ny,—ng as a function of V for different values of the tem-
perature. The symmetry breaking associated to this transition
corresponds to the occupation unbalance in favor of one of
the two sublattices and the order parameter & roughly mea-
sures the tendency of the system to form charge-ordered
phase. All the following results have been obtained for a
fixed value of the local correlation U=2, corresponding to a
region of the phase diagram with narrowing intermediate
CDW-M phase separating the Wigner-Mott insulator from
the homogeneous metal.

Results from SB4 method are presented in Fig. 5. The
figure shows, at V=V, the emergence of a charge-ordering
instability which emerges before the Fermi-liquid state is de-
stroyed. At T=0 the slave-bosons solution displays the con-
ventional critical square-root behavior for the order param-
eter, i.e., 6=(V-V, )2 At finite temperature, however, a
small “jump” in the order parameter can be observed, that is
believed to be an artifact of the SB4 method. In the follow-
ing, we shall clarify the character of the transition using nu-
merically exact methods, namely, the CTQMC and DMRG at
finite and zero temperature, respectively.

The DMRG results for the charge ordering at zero tem-
perature are shown in Fig. 6(a). We observe a sharp increas-
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0.75F

FIG. 6. (Color online) The two panels show the behavior of the
order parameter d=n,—ng as a function of intersite interaction V,
for U=2 and different values of the temperature 7. (a) Results from
zero-temperature calculation performed using the DMRG solver. (b)
DMFT-CTQMC solution for several temperatures 7=0.01 (dots),
0.005 (squares), 0.0033 (diamond), 0.0025 (triangles). Both T=0
and finite-temperature calculations display a rather conventional
(V=V.1)""2 critical behavior near the CDW transition, similar to that
observed in the noninteracting limit.

ing of the order parameter for V~ V,; with a typical square-
rootlike critical behavior for higher values of the intersite
correlation. This result is in good agreement with that ob-
tained with SB4 method at 7=0, although the finite size of
the DMRG effective problem does not permit to exactly lo-
cate the critical value of V. On the other hand, no trace of
any discontinuities for the order parameter has been observed
at finite temperature, using CTQMC [cf. Fig. 6(b)] and
finite-temperature exact diagonalization method (not shown).
Thus, our results put strong evidences for the continuous
character of the charge-ordering transition, irrespective of the
value of the temperature.

D. Critical behavior

Finally we have investigated the destruction of the
charge-ordered metallic state in favor of the Wigner-Mott
insulator, driven by the increasing intersite correlation V and
for large values of the local interaction U. As V increases, the
effective hopping amplitude at the nonempty sublattice 7,z
=12/V decreases. Thus, it is reasonable to expect that for U
~ 1,y @ Wigner-Mott transition takes place. Our results, ob-
tained with different methods, substantiate this qualitative
picture. We observe in fact a Wigner-Mott transition for
ch(U)~t§ff/ U, that is compatible with the observed 1/U
behavior for the CDW metal to insulator transition line in the
phase diagram (cf. Sec. II). In the following, we present a
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FIG. 7. (Color online) Quasiparticle weight Z, p as a function of
V for different temperatures and U=2. At T=0 (solid line), we
observe a linear vanishing of the nonempty sublattice renormaliza-
tion constant while the constant corresponding to nearly empty sub-
lattice flows to one. At larger value of the temperature 7=0.01
(dotted-dashed line) and 7=0.05 (dashed line) the DMFT-SB4 pre-
dicts a small jump in the quasiparticle weight, that is a possible
artifact of the method rather than a real discontinuity of the
transition.

characterization of the Wigner-Mott transition in the EHM in
terms of the vanishing of the renormalization constants Z, p.

Results obtained with SB4 method are presented in Fig. 7.
At T=0, the quasiparticle weight for the nearly half-filled
sublattice, say A, is found to have a linearly vanishing be-
havior Z, = (V_,—V), similar to that observed in the conven-
tional Mott scenario. At finite temperature, the SB4 shows
again the breakdown of the solution, leading to unphysical
jump in the renormalization constant behavior. This issue has
been clarified using the more sophisticated CTQMC method

1
0.758 E
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N 0.5 —
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N
0.25 —
O 1 1
0 0.25 0.5 0.75
(b) V

FIG. 8. (Color online) Quasiparticle residues Z, 3 behavior as a
function of V and U=2 at (a) T=0.01 and (b) zero temperature. The
figures show the linear vanishing of the order parameter of the
Wigner-Mott transition, independent of the value of the temperature
and expressing the continuous character of the transition.
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FIG. 9. (Color online) Order parameter =ny—ng as a function
of the nonlocal interaction V. Data are obtain from CTQMC calcu-
lations at 7=0.01 and U=3. The figure illustrates the first-order
character of the direct transition between the homogeneous metal
and the Wigner-Mott insulator, presenting evidences for the coex-
istence of the metallic and insulating phases in a narrow interval
around V.

at finite temperature. Results from CTQMC calculations at
low temperature are shown in Fig. 8(a). The renormalization
constant for the nonempty sublattice is found to have a linear
vanishing behavior as observed within the SB4 solution at
T=0, thus indicating the continuous character of the Wigner-
Mott transition. A very similar behavior is observed in the
zero-temperature model calculations performed with DMRG
and presented in Fig. 8(b).

The continuous transition from the correlated CDW-
metallic phase with m*> 1 to the Mott-Wigner insulator, ob-
served at temperatures 7<<7.=0.01 and local interaction
large enough U>2, is replaced at higher temperature 7'
>T., by a sharp first-order transition from the homogeneous
metal with m*=1 directly to the CDW-insulating state. This
is compatible with the shrinking and disappearance of the
intermediate correlated CDW-metallic state with increasing
temperature. This effect is well illustrated in Fig. 9, present-
ing the tiny hysteresis cycle of the order parameter 6=n,
—ng for a large value of the correlation U=3 and 7=0.01.
The two curves in the figures are obtained following the
metallic and the insulating solutions, respectively. As we can
clearly see, the two solutions have a small region of coexist-
ence around the transition point at V=V, indicating the
first-order character of the Wigner-Mott transition at 7>T.,.

Interestingly, no trace of first-order transition has been
found in the less correlated regime U<2, which is more
relevant for the interpretation of the experimental results. In
this regime, the correlated quasiparticles are gradually de-
stroyed by the thermal fluctuations at 7> 7"~ Z, leading to a
thermal metal to insulator crossover with an associated resis-
tivity maximum, but without phase separation or any first-
order transition,*” compatible with out interpretation in terms
of generalized Pomeranchuk effect.

IV. CONCLUSIONS AND PERSPECTIVES

In this work we investigated the quarter-filled extended
Hubbard model, in order to describe the essential features of
the Wigner-Mott metal-insulator transitions. Using single-
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site DMFT theory, we obtained the U-V phase diagram, and
carefully studied its evolution as a function of temperature.
For this model, a metallic charge-ordered phase (CDW-M) is
generally found at low temperatures, separating a Wigner-
Mott insulator at strong coupling from a homogeneous Fermi
liquid at weak coupling. This intermediate CDW-M phase is
the one showing the most interesting features, chiefly the
emergence of strong correlation effects signaled by large ef-
fective mass m* enhancements. Physically, this reflects the
presence of heavy quasiparticles existing only below a char-
acteristic energy scale E*~Tp/m*, which vanishes at the
metal-insulator transition. Indeed, we predict that such a cor-
related metallic state can easily be suppressed either by in-
creasing the temperature beyond a modest temperature 7~
~ E*, or by applying modest polarization fields H* ~ T"—in
striking agreement with the experiments.’ In addition, we
demonstrated that the region occupied by the CDW-M phase
shrinks as a function of increasing temperature, thus produc-
ing an interesting Pomeranchuk-type effect. We presented an
interpretation of this effect in terms of the entropic destruc-
tion of the strongly renormalized Fermi liquid (CDW-M) in
favor the Wigner-Mott insulator, similar to the early idea
proposed by Pomeranchuk in the context of the *He solidi-
fication.

The extended Hubbard model we used certainly cannot be
regarded as a realistic or quantitatively accurate representa-
tion of the 2DEG materials. Ours is an approach complemen-
tary to that provided by first-principles (e.g., diffusion Monte
Carlo) studies of realistic models®® of 2DEG—yet with sur-
prisingly similar results. Both approaches portray a picture of
a strongly correlated electron fluid featuring a single charac-
teristic energy scale. But precisely by virtue of its simplicity,
our model calculation makes it possible to unravel the
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mechanism behind the puzzling behavior in the metal-
insulator transition region. It demonstrates how the tendency
to charge ordering reinforces the transmutation of conduction
electrons into local magnetic moments—a fundamental
physical process behind the phenomenon Wigner-Mott local-
ization.

Many quantitative aspects of our model can and should be
improved. In particular, our lattice model does not do justice
to dynamical charge fluctuations, which should further en-
hance the role of Coulomb correlations even in absence of
long-range charge order. Indeed, results supporting the ro-
bustness of the intermediate correlated metallic phase, have
been recently obtained in Ref. 51 using complementary
methods which emphasized the important role of longer-
range Coulomb interactions. In addition, the influence of dis-
order also needs to be addressed in the context of the
Wigner-Mott scenario we propose. These effects can be natu-
rally incorporated in our framework using the recently devel-
oped “extended” DMFT approaches.’>>3 This interesting and
important task opens an interesting avenue for future work.
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