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Abstract – We develop a Landau-Ginzburg theory of the hidden-order phase and the local
moment antiferromagnetic phase of URu2Si2. We unify the two broken symmetries in a common
complex-order parameter and derive many experimentally relevant consequences such as the
topology of the phase diagram in magnetic field and pressure. The theory accounts for the
appearance of a moment under application of stress and the thermal expansion anomaly across
the phase transitions. It identifies the low-energy mode which is seen in the hidden-order phase
near the commensurate wave vector (0, 0, 1) as the pseudo-Goldstone mode of the approximate
U(1) symmetry.

Copyright c© EPLA, 2010

URu2Si2 is arguably the most intriguing heavy-fermion
material and its electronic structure has continued to be
the focus of intensive investigations. At 17.7K, it displays
a phase transition to a phase for which, in spite of a large
number of experimental efforts, the order parameter has
not been identified and it is therefore referred to as hidden
order (HO) [1].
Recent first-principles LDA+DMFT calculations

showed that in the paramagnetic phase of URu2Si2,
the local ground state of the 5f2 configuration, and its
first-excited state are two singlets, |∅〉 and |1〉 of opposite
symmetry under x and y reflection, separated by a crystal
field splitting ∆.
We proposed that the order parameter of the hidden-

order (HO) and local moment antiferromagnetic (LMA)
phase is the excitonic mixing between the two lowest-
lying configurations of the f electrons [2]. The excitonic
mixing of the two singlets is described by a complex-
order parameter 〈X∅1(j)〉=ψj/2 = (ψ1,j + iψ2,j)/2, where
X∅1(j) is the Hubbard operator |∅〉〈1| at site j. ψ2 is
proportional to the magnetization along the z-axis in the
material, while ψ1 is proportional to the hexadecapole
operator (JxJy +JyJx)(J

2
x −J2y ). The characteristic shape

of the hexadecapole is shown in fig. 1(c). The presence
of ψ1 does not break the time reversal symmetry, nor
the tetragonal symmetry, but it does break the reflection
symmetry along the x - and y-axis. We identify the phase
with nonzero ψ1 as the “hidden-order” phase, and the
phase with nonzero ψ2 as the LMA phase. In this picture,

(a)E-mail: haule@physics.rutgers.edu

the LMA and the HO order parameters are intimately
connected, and they are related by an internal rotation in
parameter space.
In this paper, we build on these insights from

LDA+DMFT microscopic theory to construct a low-
energy phenomenological model, and to establish contact
with many of the available experimental results on
this material. Phenomenological theories of the Landau
Ginzburg type for URu2Si2 have been developed
before [3–5]. However an approximate symmetry between
the LMA and and the HO phase has not been noticed
before, and the material specific information resulting
from the microscopic calculations, was not available
before. The new insights from LDA+DMFT calculation
restricts the effective theory enough to result in a large
number of consequences that can be compared with
experiment, as for example the response of the system to
pressure, uniaxial stresses and weak external magnetic
field. In addition, the simplifications offered by the
low-energy effective Hamiltonian of Landau-Ginzburg
type allow us to obtain analytical expressions which
cannot be obtained in the full LDA+DMFT solution.
We take the symmetry of the low-lying crystal

field sequence from LDA+DMFT calculation |∅〉=
i√
2
(|4〉− |− 4〉), and |1〉= cos(φ)√

2
(|4〉+ | − 4〉)− sin(φ)|0〉,

with φ∼ 0.372π and ∆≈ 35K. The value of φ in the
“pseudo-atomic” picture used here is modified from the
LDA+DMFT value φ∼ 0.23π, to take into account
renormalization from higher-lying f2 configurations.
A low-energy many-body Hamiltonian, generating this
sequence of levels, is sketched in the appendix. While
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Fig. 1: (Colour on-line) (a) The phase diagram of the mean-field theory under pressure and in magnetic field. (b) Experimental
phase diagram by Aoki et al. [11]. (c) The symmetry of the hexadecapole order parameter of the HO phase.

inspired by the earlier LDA+DMFT calculation, the
Ginzburg-Landau approach is more general and could be
carried out for other crystal field sequences.
It is illuminating to interpret the two low-lying config-

urations of the U-atom as a local two-level system of
(pseudo) spins 1/2 at each lattice site. The correspondence
involves the three Pauli matrices: σ3 = |∅〉〈∅|− |1〉〈1|,
σ1 = |∅〉〈1|+ |1〉〈∅|, σ2 = i(|1〉〈∅|− |∅〉〈1|). The crystal
field splitting ∆ of the two singlet states plays the role of
external magnetic field in the third direction, while the
real and imaginary parts of the order parameter appear as
the magnetization along the first and second direction in
an internal order parameter space (〈σ1〉=ψ1, 〈σ2〉=ψ2).
The coupling to the external magnetic field is given by
BµB(Lz +2Sz) and since only the off-diagonal terms are
nonzero 〈1|Jz|∅〉= 4i cos(φ) and they are purely imagi-
nary, the coupling is proportional to |〈1|Lz +2Sz|∅〉|Bσ2.

The coupling between uranium atoms is here modeled
by a set of exchange constants Jαij , which we allow to
be different in the two different ordered states α= 1, 2.
Ignoring for the time being the coupling to the fermionic
quasiparticle excitations, the low-energy effective theory
can be described by

H =
∑
i

−∆
2
σi3−µBB|〈1|Lz +2Sz|∅〉|σi2

+
∑
i,j

1

2
(J1ijσ

i
1σ
j
1+J

2
ijσ
i
2σ
j
2). (1)

This Hamiltonian should be regarded as a simplified toy
model to capture symmetry-related changes not to far
from the phase transitions. The LDA+DMFT treatment
indicates that a more refined treatment should include the
coupling to dispersing electronic excitations. This coupling
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is important for understanding several properties, includ-
ing the low-temperature superconductivity and the Fermi
surface reconstruction as a result of the coupling of the
fermions to the excitonic mode. The LDA+DMFT Fermi
surface has been shown to give rise to partially nested
features with a wave vector (0.6,0,0) [2]. Consequently, the
itinerant electrons control the magnetic response around
this wave vector as shown in ref. [6]. The analysis of the
coupling of the mode to the fermionic quasiparticles is left
for future study.
We now treat this Hamiltonian in the mean-field

approximation and arrive at an effective free energy of
the spin system, written in terms of the order parameters
ψα,i and the conjugate Weiss fields hα,i [7]

F [h, ψ]=
1

2

∑
ij,α=(1,2)

Jαij ψα,iψα,j −
∑

i,α=(1,2)

(hα,i+ bα)ψα,i

−1
2
T
∑
i

log

(
cosh

(
β

√
(∆/2)

2
+(h1,i)

2
+(h2,i)

2

))
.

(2)

Here b2 ≡ b=BµB|〈1|Lz +2Sz|∅〉|, with |〈1|Lz +2Sz|∅〉|=
3.2cos(φ)≈ 1.25, is proportional to the external magnetic
field B, while b1 is a fictitious field which couples to
the hexadecapole order. The imaginary part of ψ breaks
the time reversal symmetry and therefore couples to the
magnetic field. The mean-field equations can be obtained
by extremizing the free energy eq. (2)

hα,i+ bα =
∑
j

Jαijψα,j , (3)

ψα,i =−hα,i
2

tanh(βλi)

λi
(4)

with λi =
√
(∆/2)2+(h1,i)2+(h2,i)2.

We take the exchange constants between uranium sites
in body-centered tetragonal structure to be ferromag-
netic in the same plane (RKKY is ferromagnetic at short
distance), and antiferromagnetic in the c-direction, favor-
ing the staggered order with wave vector Q= (0, 0, 1),
observed experimentally [8–10]. As a result of the close
similarity of the exchange constants of the hexadecapole
and the LMA order parameters, both condense at the
ordering vector Q= (0, 0, 1).
When the restriction to short-range exchange is

imposed, the only combination of the exchange constants
that enters the mean-field equation is Jeff = 4|J1|+8J2,
where J1 is the nearest-neighbor ferromagnetic exchange
and J2 is the antiferromagnetic exchange in the
c-direction. The critical temperature in the absence of
magnetic field is then given by Tc =∆/(2atanh(∆/Jeff )).
Near the transition, when the field ψ is small, the free

energy acquires a simple Ginzburg-Landau form

F [ψ]≈ 1
2

∑
ij,α=(1,2)

Jαij ψα,iψα,j+
∑
i

ãψ
(2)
i +u(ψ

(2)
i )

2− bψ2,i,

where ψ
(2)
i =

∑
α(ψα,i)

2 and ã= ∆2 coth(β∆/2), while u=
∆
8 [sinh(β∆)−β∆] cosh

2(β∆/2)
sinh4(β∆/2)

.

We determine the effective exchange constants Jeff at
zero pressure in such a way to reproduce the experimen-
tally observed critical temperatures J1eff =

∆
tanh(∆/(2T0))

and J2eff =
∆

tanh(∆/(2TN ))
, where T0 = 17.7K is the hidden-

order transition and TN = 15.7K is the Neel temperature.
The exchange constants are strain dependent and for the
small compression we may use the expansion

Jαij→ Jαij(1+ gα(εxx+ εyy)),

where εxx and εyy is the strain (compression) in the x - and
y-direction. The two constants g1 and g2 are determined
in such a way to reproduce the experimental variation
of transition temperature with pressure Tc(p). We take
g1 = 20, g2 = 49.
Having determined all the parameters of the Landau-

Ginzburg functional, we proceed to determine the phase
diagram as a function of pressure and magnetic field,
which can be directly compared to the recent experimental
results of refs. [10,11].
There are two solutions of the mean-field theory, the

local moment antiferromagnetic solution with nonzero
staggered ψ2,i and vanishing ψ1,i. The second solution has
nonzero staggered ψ1,i but vanishing ψ2,i, hence it shows
no magnetic moment and corresponds to the hidden-order
phase.
Figure 1(a) shows the phase diagram of the Ginzburg-

Landau theory in the magnetic field under applied pres-
sure and fig. 1(b) show the experimentally determined
phase diagram [11]. At low pressure, with decreasing
temperature, there is a second-order phase transition into
the hidden-order state at temperature

T0 =
∆λc

2arctanh(∆λc/J1eff )

with

λc =

√√√√1+(2b
∆

)2( J1eff

J1eff +J
2
eff

)2
.

At a critical field,

bc =
∆

2
(J1eff +J

2
eff )

√
1/∆2− 1/(J1eff )2,

the hidden-order phase is replaced by the fully polarized
paramagnetic phase.
At higher pressures, there is a second-order transition

into the antiferromagnetic state at temperature

TN =
∆
√
1+ (2b)2

2arctanh(∆
√
1+ (2b)2/J2eff )

.

In this phase, the staggered magnetization at zero temper-
ature is

m(0,0,1)=µB |〈1|Lz +2Sz|∅〉|
√
1−(∆/Jeff )2

/
2∼ 0.4µB ,
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Fig. 2: (Colour on-line) The phase diagram under pressure (a)
and stress (b), (d) in the ab-plane, and uniaxial strain (c).
The critical temperatures below which the HO and the LMA
solutions are possible are indicated in the diagram. The regions
where LMA and HO are stable are shaded in blue and green,
respectively. The transition between the HO and the LMA
phase is of the first order.

in very good agreement with experiment [8]. The
hidden-order phase and the antiferromagnetic phase are
separated by a first-order boundary shown in fig. 1(a).
It is also apparent from the figure that the magnetic field
under high pressure stabilizes the hidden-order phase rela-
tively to the antiferromagnetic phase. The hidden-order
phase in a magnetic field develops a uniform magneti-
zation directly proportional to the magnetic field M =
Bµ2B|〈1|Lz +2Sz|∅〉|2|/(J1eff +J2eff )≈ 0.01µB(B/T ), in
good quantitative agreement with the experiment of
ref. [12]. Our model also allows us to extract the jump of
the specific heat across the hidden order to paramagnetic
phase boundary. It is given by

∆cv =

(
∆

Tc

)3
1

4 cosh2
(
∆
2Tc

)
[sinh( ∆

Tc
)− ∆

Tc
]
,

hence ∆cv/Tc ≈ 245mJ/molK2, and is in good agreement
with experiment [13].
The pressure dependence of the critical temperature

is shown in fig. 2(a). A close similarity with the exper-
iment of Hassinger et al. [14] is expected, since the the
couplings g1 and g2 were optimized to reproduce the
correct pressure dependence of Tc. However, the strain in
a- and c-direction acts in quite an unexpected way on
the stability of the two phases. The stress is connected to
strain by the elastic constants (σ=Cε) (see ref. [15] for
details). Their value was determined by the ultrasonic-
sound-velocity measurements to be (c11, c33, c12, c13) =
(255, 313, 48, 86)× 1010 erg/cm3 [16].

Application of strain in the ab-plane (σ||(1, 0, 0) or
σ||(1, 1, 0)) destabilizes the hidden-order state, and stabi-
lizes the antiferromagnetic state at σ around 0.6GPa.
Within our model, the transition temperatures for the two
phases are given by

Tαc (σxx)=
∆

2

[
atanh

(
∆/2

Jαeff (1+gα
c33

(c11+c12)c33−2c213σxx)

)]−1

Hence LMA is nucleated upon application of a very small
in-plane stress. This has been observed in the neutron scat-
tering experiments of ref. [15]. In those experiments, the
staggered magnetization was found to grow linearly with
the applied stress, an observation which has been taken as
evidence for time reversal breaking in the hidden-order
phase [17]. In our framework, these measurements [15]
can be interpreted as the result of inhomogeneities in the
strain field, which given the very low barrier between HO
and the LMA state, easily nucleates LMA regions. The
LMA phase persists as a metastable state all the way to
zero strain, indicating that nucleation of LMA regions is
actually possible for infinitesimal stress in the presence of
defects. This picture can be tested by scanning tunnelling
microscopy of stressed samples.
So far, we have considered stress breaking the tetragonal

symmetry. Uniaxial strain stabilizes hidden order (the TN
smaller than T0) and decreases the hidden-order transition
temperature, as shown in fig. 2(c). The formula for the two
transition temperatures is given by

Tαc (σzz)=
∆

2

[
atanh

(
∆/2

Jαeff (1−gα 2c13
(c11+c12)c33−2c213σzz)

)]−1
.

The 5.6GPa strain leads to complete elimination of the
hidden order. However, the uniaxial strain also affects
the crystal field splitting ∆. We have not attempted to
model this dependence quantitatively in our theory, but
we notice that an increase in ∆ will result in a rapid
decrease of the hidden-order temperature (and the LMA
critical temperature) resulting in a quantum critical point
at critical value of the crystal field splitting ∆c = J

1
eff

separating the HO phase from the paramagnetic phase
at zero temperature. This critical point may already have
been accessed via Rh doping in ref. [18]. This quantum
critical point is expected to be in the same universality
class as that of Ising itinerant antiferromagnets [19].
To study the dilatation of the sample in the a- and

c-direction due to the emergence of the HO and LMA
states we add to the Landau free energy the standard
elasticity terms and their coupling to the order parameter

1

2
εCε− εσ+ 1

2

∑
ij,α=(1,2)

Jαij(1+ gα(εxx+ εyy))ψα,iψα,j .

Here σ and ε are the stress and strain tensor and
the tensor C describe the elastic moduli. Differentiating
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Fig. 3: (Colour on-line) The strain resulting from the phase
transition into the HO and LAM state. The sample contracts
in the ab-plane (positive strain), and expands in the c-direction
(negative strain).

this free energy we obtain the dilatation in the a- and
c-direction, εxx = c33Lα/2 and εzz =−c13Lα, where

Lα =
gαJ

α
eff (ψα,i)

2

((c11+ c12)c33− 2c213)
.

Figure 3 shows the temperature dependence of the
strain in the a- and c-direction at zero pressure, where the
transition into the hidden-order state occurs. The sample
contracts in the ab-plane (positive strain) and expands
in the c-direction (negative strain). The expansion in the
c-direction is smaller than the expansion in the
ab-direction. At a pressure of 2GPa, where the LMA
state is stable, the dilatation has the same trend but the
magnitudes are considerably larger. Similar temperature
variation of the dilatation was recently measured in
ref. [20], where considerably larger dilatation was found in
the transition to the LMA phase than to the hidden-order
phase. This difference is connected to the larger slope
of the LMA transition temperature compared to the
hidden-order transition temperature.
The Landau-Ginzburg free energy explicitly exhibits a

remarkable similarity between the hidden-order phase and
the LMA phase. There is an approximate U(1) rotational
symmetry in an internal parameter space. The main
difference between the two phases lies in the different
values of the exchange constants, which is of the order
of 6%. Our theory therefore provides a microscopic basis
for the remarkable similarity between the LMA and HO
phase, dubbed adiabatic continuity [21].
If the U(1) symmetry was exact, the spontaneous break-

ing of this symmetry would result in a Goldstone mode
describing the transverse fluctuations of the order parame-
ter, i.e., the potential would have the form of a Mexican
hat with a flat bottom. Due to the small explicit breaking
of the U(1) symmetry, since the exchange constants
J1eff and J

2
eff are slightly different, this Goldstone mode

acquires a small mass, and we refer to it as a pseudo-
Goldstone mode. In the hidden-order phase 〈ψ1,i〉 �= 0 the
pseudo-Goldsone mode can be identified with ψ2,i
(the transverse fluctuation in the Mexican hat). Hence
the pseudo-Goldstone mode of the hidden-order phase
carries a magnetic moment and can be observed by
neutron scattering. In the antiferromagnetic phase the
pseudo-Goldstone mode can be identify with ψ1,i, which
carries hexadecapolar moment but no magnetic moment
and is invisible to neutrons. As a result a low-lying mode
at (0, 0, 1) is only visible to neutrons in the hidden-order
phase. This provides a natural explanation of the mode
observed in neutron scattering experiments, as measured
by Broholm et al. [8,9] and Villaume et al. [10]. The mode
was observed only in the hidden-order phase, but not
in the antiferromagnetic phase [10]. The energy scale of
this mode is a measure of how different the hidden-order
phase is from the antiferromagnetic phase, and therefore
should decrease with pressure (since the difference in
the exchange constants decreases with increasing pres-
sure) and should increase with magnetic field (since the
magnetic field destabilizes the antiferromagnetic phase
further relative to the hidden-order phase).
In conclusion, we developed an effective theory of

the paramagnetic–to–hidden-order and local antiferro-
magnetic transition. The theory is consistent with a
large body of experimental data, is inspired by micro-
scopic LDA+DMFT calculations, and puts URu2Si2 in
a broader context of other f2 systems [22,23].

∗ ∗ ∗

We are grateful to P. Chandra, P. Coleman, and
E. Hassinger for a useful discussion. We are particularly
grateful to D. Aoki, E. Hassinger, and J. Flouquet
for permission to reproduce their experimental phase
diagram in our figure. KH was supported by Grant NFS
DMR-0746395 and Alfred P. Sloan fellowship. GK was
supported by NSF DMR-0906943.

Appendix

There is an extensive literature on proposed crystal field
sequences for URu2Si2 starting with the early work of
refs. [24,25]. It is usually formulated in terms of a crystal
Hamiltonian with Stevens operators up to order six.
Higher-order terms are not included because they would
annihilate a single-particle state in the f shell, labeled by
an angular momentum l= 3.
Inspired by the LDA+DMFT we took the two singlet

states |∅〉= i√
2
(|4〉− |− 4〉), and |1〉= cos(φ)√

2
(|4〉+ | − 4〉)−

sin(φ)|0〉, as our low-lying states. They can be obtained
from the following crystal field Hamiltonian:

Heff = ã
[
(J+)8+(J−)8

]
+ b̃
[
(J+)4+(J−)4

]− c̃(Jz)2
(A.1)
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Acting in the space |0〉, 1√
2
(|4〉+ | − 4〉), 1√

2
(|4〉− |− 4〉)

it is represented by the matrix0 b 0
b a− c 0
0 0 −a− c

, (A.2)

where a= 40320ã, c= 16c̃, b=
√
80640 b̃.

This Hamiltonian is fully consistent with the crys-
tal field symmetry, and gives the DMFT level sequence
in the parameter range (

√
c2+2b2− c)/2<a< c. This

sequence of levels is driven by the dynamic hybridization
of the U-atom with the Si orbitals pointing towards U,
physics which is contained in the LDA+DMFT calcula-
tions. Note that the Kondo effect (dynamical hybridiza-
tion ∆) reverses the order of the LDA crystal field
levels.
Notice, however, that our effective Hamiltonian and our

Landau-Ginzburg theory is quite general and would apply
to any sequence of two low-lying singlets (one even and
the other odd under inversion along the two crystalline
axis).
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