Second Quantization

- First quantization in physics refers to the property of particles that certain operators do not commute

$$
\begin{align*}
& {\left[x, p_{x}\right]=i \hbar} \tag{1}\\
& {\left[L_{x}, L_{y}\right]=i \hbar L_{z}} \tag{2}
\end{align*}
$$

In the first quantization formalism, the wave function $\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \cdots \mathbf{r}_{N}\right)$ has fixed number of the particles, N, and is c-number which is operated by other operators like Hamiltonian.

- Second quantization quantizes particles. The basic idea is that all particles (electrons and bosons mediating interaction) can be quantized and represented by operators rather than c-numbers.

In the second quantization formalism, the number of particle is not fixed and the information of the single particle bases are incorporated in the operators.

Let us consider a system on N identical particles described in the Schroedinger representation by the Hamitonian

$$
\begin{equation*}
H\left(x_{1}, x_{2}, \cdots, x_{N}\right)=\sum_{i} \frac{\mathbf{p}_{i}^{2}}{2 m}+\sum_{i} V_{\text {external }}\left(x_{i}\right)+\frac{1}{2} \sum_{i \neq j} U_{\text {Coulomb }}\left(x_{i}, x_{j}\right) \tag{3}
\end{equation*}
$$

Here x_{i} incorporates position and spin of the particles $\left(\mathbf{r}_{i}, s_{i}\right)$.
The many-body Schroedinger equation is

$$
\begin{equation*}
H\left(x_{1}, x_{2}, \cdots, x_{N}\right) \Psi\left(x_{1}, x_{2}, \cdots, x_{N}\right)=i \hbar \frac{\partial}{\partial t} \Psi\left(x_{1}, x_{2}, \cdots, x_{N}\right) \tag{4}
\end{equation*}
$$

To get to the second quantized form of H, we will first introduce an "intermediate" representation - occupation number representation. Than it will become clear how to simplify the notation by introducing operators for creating or destroying a particle.

To solve one particle problem, we can expand the solution $\psi(x)$ in certain complete set of functions. For N body problem, we need a complete set of of N-particle wave functions $\Phi\left(x_{1}, x_{2}, \cdots, x_{N}\right)$.

We will constract these wave functions as a properly symmetrized product of one-particle wave functions $u_{k}(x)$ which form a complete orthonormal set

$$
\begin{gather*}
\int u_{k^{\prime}}^{*}(x) u_{k}(x) d x=\delta_{k k^{\prime}} \quad \text { orthonormality } \tag{5}\\
\sum_{k} u_{k}^{*}\left(x^{\prime}\right) u_{k}(x)=\delta\left(x-x^{\prime}\right) \quad \text { completeness } \tag{6}
\end{gather*}
$$

The function Φ is then given bt

$$
\begin{equation*}
\Phi_{k_{1}, k_{2}, \cdots, k_{N}}=\mathcal{S} u_{k_{1}}\left(x_{1}\right) u_{k_{2}}\left(x_{2}\right) \cdots u_{k_{N}}\left(x_{N}\right) \tag{7}
\end{equation*}
$$

where $\mathcal{S}=\frac{1}{n!} \sum P$ in Bose statistics and $\mathcal{S}=\frac{1}{n!} \sum(-1)^{p} P$ in Fermi statistics and the summation is over all n ! possible permutations of the coorditanes $x_{1}, x_{2}, \cdots x_{N}$ and p is the order of the permutation.

Basic idea: Rather than labeling Φ by the quantum numbers $\left\{k_{1}, k_{2}, \cdots, k_{N}\right\}$ we may specify the state by stating how many times each single particle state enters the product how many times is occupied. Let this occupation number be n_{k} for state k. The set of numbers $n_{1}, n_{2}, \cdots, n_{k}$ uniquely determines the symmetrized state $\Phi_{n_{1}, n_{2}, \cdots, n_{k}}$.
Total number of particles in the system is clearly $N=\sum_{k} n_{k}$.
The numbers n_{k} are

- Fermions $-n_{k}$ is either 0 or one
- Bosons - n_{k} is any positive integer number or zero

The functions $\Phi_{n_{1}, n_{2}, \cdots, n_{k}}\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ form a complete orthonormal set of N -particle functions. The orthohonality condition is

$$
\begin{align*}
& =\iiint^{\int} d x_{1} \cdots d x_{n} \Phi_{n_{1}^{\prime}, n_{2}^{\prime}, \cdots, n_{n}^{\prime}}^{*}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \Phi_{n_{1}, n_{2}, \cdots, n_{n}}\left(x_{1}, x_{2}, \cdots^{\prime}, x_{n}\right) \tag{8}
\end{align*}
$$

The total Schroedinger wave function may be expanded in the complete set of the functions $\Phi_{n_{1}, n_{2}, \cdots, n_{k}}$

$$
\begin{equation*}
\Psi\left(x_{1}, x_{2}, \cdots, x_{n}, t\right)=\sum A\left(n_{1}, n_{2}, \cdots, n_{n}, t\right) \Phi_{n_{1}, n_{2}, \cdots n_{n}}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \tag{11}
\end{equation*}
$$

The coefficients $A\left(n_{1}, n_{2}, \cdots, n_{n}, t\right)$ are the wave function in the occupation number representation. Their norm gives probability of finding n_{k} particles in state k.

Now we are redy for the second quantization!

In second quantization, we intoduce a set of operators a_{k} and a_{k}^{\dagger} defined by

$$
\begin{align*}
& a_{k}^{\dagger} \Phi_{n_{1}, \cdots, n_{k}, \cdots\left(x_{1}, \cdots, x_{n}\right)}=\sqrt{n_{k}+1} \Phi_{n_{1}, \cdots, n_{k}+1, \cdots\left(x_{1}, \cdots, x_{n}\right)} \tag{12}\\
& a_{k} \Phi_{n_{1}, \cdots, n_{k}, \cdots}\left(x_{1}, \cdots, x_{n}\right)=\sqrt{n_{k}} \Phi_{n_{1}, \cdots, n_{k}-1, \cdots}\left(x_{1}, \cdots, x_{n}\right) \tag{13}
\end{align*}
$$

Operator a_{k}^{\dagger} (creation operator) adds one particle in the state k and a_{k} (destruction operator) destroys a particle in state k.
From the above definition follows that the operator $a_{k}^{\dagger} a_{k}$ counts number of particles

$$
\begin{equation*}
a_{k}^{\dagger} a_{k} \Phi_{n_{1}, \cdots, n_{k}, \cdots}\left(x_{1}, \cdots, x_{n}\right)=n_{k} \Phi_{n_{1}, \cdots, n_{k}, \cdots}\left(x_{1}, \cdots, x_{n}\right) \tag{14}
\end{equation*}
$$

so that the total number of particles is $N=\sum_{k} a_{k}^{\dagger} a_{k}$.
Φ is symmetric for bosons and antisymmetric for fermions. With this in mind, we can derive the commutation relations for operators from the above definition. For bosons we have

$$
\begin{equation*}
\left[a_{k}, a_{k^{\prime}}^{\dagger}\right]=\delta_{k k^{\prime}} \quad\left[a_{k}, a_{k^{\prime}}\right]=0 \quad\left[a_{k}^{\dagger}, a_{k^{\prime}}^{\dagger}\right]=0 \tag{15}
\end{equation*}
$$

Similarly for fermions it follows

$$
\begin{equation*}
\left\{a_{k}, a_{k^{\prime}}^{\dagger}\right\}=\delta_{k k^{\prime}} \quad\left\{a_{k}, a_{k^{\prime}}\right\}=0 \quad\left\{a_{k}^{\dagger}, a_{k^{\prime}}^{\dagger}\right\}=0 \tag{16}
\end{equation*}
$$

The power of the second quantization is in possibility to represent any operator in terms of creation and destruction operator for particles (one can have however many types of particles).

The above Hamiltonian can be shown to become (see standard text books, for example Landau, Schrieffer, Abrikosov, ...)

$$
\begin{equation*}
H=\sum_{k k^{\prime}}\langle k| H_{0}\left|k^{\prime}\right\rangle a_{k}^{\dagger} a_{k^{\prime}}+\frac{1}{2} \sum_{k_{1}, k_{2}, k_{3}, k_{4}}\left\langle k_{1} k_{2}\right| U_{\text {Coulomb }}\left|k_{3} k_{4}\right\rangle a_{k_{1}}^{\dagger} a_{k_{2}}^{\dagger} a_{k_{4}} a_{k_{3}} \tag{17}
\end{equation*}
$$

where

$$
\begin{align*}
& \langle k| H_{0}\left|k^{\prime}\right\rangle=\int u_{k}^{*}(x)\left\{\frac{p^{2}}{2 m}+V_{e x t}(x)\right\} u_{k^{\prime}}(x) d x \tag{18}\\
& \quad \equiv \int u_{k}^{*}(x)\left\{-\frac{\hbar^{2} \nabla^{2}}{2 m}+V_{\text {ext }}(x)\right\} u_{k^{\prime}}(x) d x \\
& \left\langle k_{1} k_{2}\right| U_{\text {Coulomb }}\left|k_{3} k_{4}\right\rangle=\iint u_{k_{1}}^{*}(x) u_{k_{2}}^{*}\left(x^{\prime}\right) U_{\text {Coulomb }}\left(x-x^{\prime}\right) u_{k_{3}}(x) u_{k_{4}}\left(x^{\prime}\right) d x d x^{\prime}
\end{align*}
$$

One can prove the above identity by checking all possible matrix elements $\langle\Phi| H\left|\Phi^{\prime}\right\rangle$ where Φ and Φ^{\prime} differ in occupation of $k, k^{\prime}, k_{1}, \ldots k_{4}$ as the above equation dictates.

We will check only the diagonal elements, i.e., $\langle\Phi| H|\Phi\rangle$ because they are equivalent to the Hartree Fock approximation. In another words, Hartree Fock approximation is "the best" approximation in the Hilbert subspace spanned by a single Slatter determinant.

What is $\langle\Phi| H|\Phi\rangle$?

$$
\begin{align*}
&\left\langle\Phi_{n_{1} \cdots n_{i} \cdots}\right| H_{0}\left(x_{i}\right)\left|\Phi_{n_{1}, \cdots, n_{i} \cdots}\right\rangle=\int d x u_{i}(x)^{*}\left\{-\frac{\hbar^{2} \nabla^{2}}{2 m}+V_{e x t}(x)\right\} u_{i}(x) d x \text { (19) } \\
&\left\langle\Phi_{n_{1} \cdots n_{i} \cdots n_{j} \cdots\left|U_{C}\left(x_{i}-x_{j}\right)\right| \Phi_{\left.n_{1}, \cdots, n_{i^{\prime}} \cdots n_{j^{\prime}}, \ldots\right\rangle}}=\int d x \int d x^{\prime} u_{i}^{*}(x) u_{j}^{*}\left(x^{\prime}\right) U_{C}\left(x-x^{\prime}\right) u_{i}(x) u_{j}\left(x^{\prime}\right)\right. \tag{20}\\
&-\int d x \int d x^{\prime} u_{i}^{*}(x) u_{j}^{*}\left(x^{\prime}\right) U_{C}\left(x-x^{\prime}\right) u_{j}(x) u_{i}\left(x^{\prime}\right) \tag{21}
\end{align*}
$$

And the Hamiltonian in this "single determinant" approximation or Hartree-Fock approximation becomes

$$
\begin{equation*}
H=\sum_{i}\langle i| H_{0}\left(x_{i}\right)|i\rangle\left\langle a_{i}^{\dagger} a_{i}\right\rangle+\frac{1}{2} \sum_{i, j}\langle i j| U_{\text {Coulomb }}\left(x_{i}-x_{j}\right)|i j\rangle\left\langle a_{i}^{\dagger} a_{i}\right\rangle\left\langle a_{j}^{\dagger} a_{j}\right\rangle \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{1}{2} \sum_{i, j}\langle i j| U_{C o u l o m b}\left(x_{i}-x_{j}\right)|j i\rangle\left\langle a_{i}^{\dagger} a_{j}\right\rangle\left\langle a_{j}^{\dagger} a_{i}\right\rangle \tag{23}
\end{equation*}
$$

Finally, the field operator is the destruction operator in position base (\mathbf{r} instead of k). The field operator is usually written as $a_{k} \rightarrow \Psi(\mathbf{r})$ and $a_{k}^{\dagger} \rightarrow \Psi(\mathbf{r})^{\dagger}$. The commutation relation in this case are

$$
\begin{equation*}
\left\{\Psi(\mathbf{r}), \Psi\left(\mathbf{r}^{\prime}\right)\right\}=\delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \tag{24}
\end{equation*}
$$

and the Hamiltonian looks very simple

$$
H=\int d \mathbf{r} \Psi^{\dagger}(\mathbf{r})\left\{-\frac{\hbar^{2} \nabla^{2}}{2 m}+V_{e x t}(x)\right\} \Psi(\mathbf{r})+\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} \Psi^{\dagger}(\mathbf{r}) \Psi^{\dagger}\left(\mathbf{r}^{\prime}\right) U_{C}\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \Psi\left(\mathbf{r}^{\prime}\right) \Psi(\mathbf{r})
$$

This is many times the starting point of our derivation (approximation).

