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Hartree-Fock

It is probably the simplest method to treat the many-particle system. The dynamic many

particle problem is replaced by an effective one-electron problem: electron is moving in an

effective static potential field.

It can be viewed as a variational method where the full many-body wave function is

replaced by a single Slater determinant. The elements of the determinant are one electron

orbitals with orbital and spin part.

It can also be viewed as the lowest order term in perturbative expansion (linear in U) with

respect to interaction between electrons.

These two views will be substantiated below by equations. But first we will use decoupling

method to derive the Hartree-Fock equations.
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In the second quantization, the many electron problem takes the form

H =

∫

drΨ†(r)[−1

2
∇2+Vext(r)]Ψ(r)+

1

2

∫

drdr′Ψ†(r)Ψ†(r′)vc(r−r
′)Ψ(r′)Ψ(r)

(1)

where Ψ(r) is the field operator of electron, Vext(r) is the potential of nucleous and

vc(r − r
′) is the Coulomb interaction 1/|r − r

′|. We assumed Born-Oppenheimer

approximation for nuclei motion (freezing them since their kinetic energy is of the order of

Mnuclei/me).

The Hartree-Fock approximation replaces the two-body interaction term by an effective one

body term

Ψ†(r)Ψ†(r′)Ψ(r′)Ψ(r) → 〈Ψ†(r)Ψ(r)〉Ψ†(r′)Ψ(r′) + 〈Ψ†(r′)Ψ(r′)〉Ψ†(r)Ψ(r) (2)

−〈Ψ†(r)Ψ(r′)〉Ψ†(r′)Ψ(r) − 〈Ψ†(r′)Ψ(r)〉Ψ†(r)Ψ(r′) (3)

With the generalized density ρ(r, r′) = 〈Ψ†(r)Ψ(r′)〉 the effective Hartree-Fock

Hamiltonian takes the form

Heff =

∫

drdr′Ψ†(r)

{[

−1

2
∇2 + Vext(r) +

∫

dr′′ρ(r′′, r′′)vc(r
′′ − r)

]

δ(r − r
′)

−ρ(r′, r)vc(r
′ − r)}Ψ(r′) (4)
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• Heff is a one-particle Hamiltonian

• The effective potential is non-local (very different from the LDA approximation)

• Higher order terms in perturbative expansion are completely neglected (so-called

correlation part in Density Functional Theory)

If we write the field operator Ψ in one electron basis

Ψ(r) =
∑

α

ψα(r)cα (5)

where cα creates an electron in one electron state ψα(r) we get

Heff =
∑

αβ

Heff
αβ c†αcβ (6)

where

Heff
αβ = H0

αβ +
∑

ab

(Uaαbβ − Uaαβb)nab (7)

with nab = 〈c†acb〉 and matrix elements

H0
αβ = 〈ψα| −

1

2
∇2 + Vext|ψβ〉 (8)
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Uαβγδ = 〈ψα(r)ψβ(r′)|vc(r − r
′)|ψγ(r)ψδ(r

′)〉 (9)

If the one electron orbitals ψα are othogonal, we are done.

First, we need to calculate matrix elements of H0 and U . Then we can proceed to

construct Heff
αβ according to Eq. (7) and finally we can diagonalize the matrix Heff

αβ . In

Eq. (7) the sum over a and b runs over all occupied states only (since nab = δabna is 0 for

unoccupied and 1 for occupied eigenstates). Weather the orbital is occupied or not, we

know only after we calculate the one-electron levels, i.e., diagonalize Heff
αβ by

〈ψα|Heff − ε|ψβ〉 = 0. Hence, the system of equations needs to be solved

self-consistently by iteration.
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Interpretation in terms of electron self-energy
In many-body problems, one usually defines the so-called self-energy. It is the quantity that

needs to be added to non-interacting Hamiltonian to get the interacting effective

Hamiltonian

Heff =

∫

drdr′Ψ†(r)
{

H0(r)δ(r − r
′) + Σ(r, r′)

}

Ψ(r′) (10)

From Eq. (4) we can see that

Σ(r, r′) = δ(r − r
′)

∫

dr′′ρ(r′′, r′′)vc(r
′′ − r) − ρ(r′, r)vc(r

′ − r) (11)

This term is just the lowest order term in perturbation expansion of self-energy in powers of

Coulomb repulsion and its diagrammatic representation in terms of Feyman diagrams is
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Derivation for beginners

We mentioned in the previous chapter (second quantization) that Hartree Fock

approximation corresponds to the approximation where one finds single ”properly

symmetrized” Slater determinant that minimizes the total energy for the interacting

Hamiltonian

E = 〈Φn1n2,···nN
|H|Φn1n2,···nN

〉 (12)

We can vary one-electron basis functions with constraint that they are normalized.

In previous chapter we called one-electron basis functions uk(x). Here, we called them

ψ(x) therefore we will stick to later definition. We remember from previous lecture

E =
∑

α

ψ∗
α(x)H0(x)ψα(x)dx+

1

2

∑

αβ

∫

dxdx′ψ∗
α(x)ψ∗

β(x′)vC(x− x′)ψα(x)ψβ(x′)

−1

2

∑

αβ

∫

dxdx′ψ∗
α(x)ψ∗

β(x′)vC(x− x′)ψβ(x)ψα(x′)
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We would like to minimize

E −
∑

α

ǫα

∫

dxψ∗
α(x)ψα(x) = min (15)

We look for the best ψβ , so we will vary the functional with respect to ψ∗
β

0 =
δE

δψ∗
β

= H0(x)ψβ(x) +

[

∑

γ

∫

dx′ψ∗
γ(x′)vC(x− x′)ψγ(x′)

]

ψβ(x) (16)

−
∑

γ

∫

dx′ψ∗
γ(x′)vC(x− x′)ψβ(x′)ψγ(x) − ǫβψβ(x) (17)

We can multiply the equation by ψα(x) and integrate over x to get
∫

ψ∗
α(x)H0(x)ψβ(x)dx+

∑

γ

∫

dxdx′ψ∗
α(x)ψ∗

γ(x′)vC(x− x′)ψγ(x′)ψβ(x) (18)

−
∑

γ

∫

dxdx′ψ∗
α(x)ψ∗

γ(x′)vC(x− x′)ψβ(x′)ψγ(x) − ǫβ

∫

ψ∗
α(x)ψβ(x)dx (19)
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or

H0
αβ +

∑

γ∈occupied

(Uγαγβ − Uγαβγ) = ǫαδαβ (20)

This is equivalent to Eq.(7). One needs to be carefull and sum only over occupied states γ.

This is because in this derivation we worked with fixed number of particles N and all states

of the Slater determinant must be occupied. This is hardly a surprise since the minimization

gives ground state only, thus, this is zero temperature analog of the above more general

perturbation formalism.
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Nonorthogonal base
In actual calculation, the one electron orbitals are choosen very carefully because we would

like to get (at least) the ground state with only few orbitals (The computation time increases

as N3, where N is the number of orbitals - solving eigenvalue problem). Those optimally

chosen orbitals are almost never orthogonal!

One way around would be to orthogonalize basis functions first. This is a time consuming

task and also leads to basis functions which are less localized. It is more convenient to

generalize the equations to non-orthogonal basis functions than to orthogonalize basis

functions.

Let us call the non-orthogonal basis functions Φp(r). Further, let us write the

transformation from non-orthogonal base to eigenbase-base as

ψα(r) =
∑

p

ApαΦp(r) (21)

We want to solve

〈ψα|Heff − ε|ψβ〉 = 0 (22)
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and using Eq. (21) we get

A∗
pα(Heff

pq − εOpq)Aqβ = 0 (23)

where Opq is the overlap matrix Opq = 〈Φp|Φq〉. This is the generalized eigenvalue

problem HeffA = εOA, where H is Hermitian and O is positive definite matrix. The

eigenvectors A are not orthogonal, but rather satisfy the relation A†OA = 1 which can be

deduced from the relation 〈ψα|ψβ〉 = δαβ .

We also need the density matrix in the non-orthogonal base. It follows from

ρ(r, r′) = 〈Ψ†(r)Ψ(r′)〉 =
∑

αβ

ψ∗
α(r)nαβψβ(r′) =

∑

pq,αβ

Φ∗
p(r)A

∗
pαnαβAqβΦq(r

′),

(24)

and since nαβ = δαβf(εα − µ) we conclude ρqp = A∗
pαAqαf(εα − µ).

The total energy of the system is not
∑

α εα! The right total energy in the eigen-base is

E =
∑

α

H0
ααnα +

1

2

∑

αa

(Uaαaα − Uaααa)nanα =
1

2
Tr[(Heff +H0)n] (25)
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In the non-orthogonal basis, the total energy takes the form

E =
1

2

∑

α

εαnα +
1

2

∑

α

(A†H0A)ααnα =
1

2

∑

α

εαnα +
1

2

∑

pq

H0
pqρqp (26)

Now we sketch algorithm to solve the general Hartree-Fock problem

1 Pick a set of one electron orbitals φp(r) and add them the spin part of the wave

function to get Φp(r) = φp(r)|s〉.

2 Calculate H0 and U matrix elements from

H0
pq = 〈Φp| −

1

2
∇2 + Vext|Φq〉 (27)

Upqrs = 〈Φp(r)Φq(r
′)|vc(r − r

′)|Φr(r)Φs(r
′)〉 (28)
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3 Calculate Heff by

Heff
pq = H0

pq +
∑

rs

(Urpsq − Urpqs)ρrs (29)

(30)

4 Solve the generalized eigenvalue problem
∑

q

(Heff
pq − εαOpq)Aqα = 0

with normalization A†OA = 1

5 Determin the chemical potential µ by requiring N =
∑

α f(εα − µ).

6 Calculate the new density matrix and new total energy by

ρpq =
∑

α

Apαf(εα − µ)A∗
qα (31)

E =
1

2

∑

α

εαf(εα − µ) +
1

2

∑

qq

H0
pqρqp (32)

7 Return to 3 with updated ρpq as long as total energy is changing
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Every index p corresponds to spin and orbital index. Treating spin index explicitely results in

more tractable equations for computation. We have

H0
pq

σσ′

= H0
pq

σσ
δσσ′ = H0

pqδσσ′ (33)

Uσ1,σ2,σ3,σ4

pqrs = Uσ1,σ2,σ1,σ2

pqrs δσ1,σ3
δσ2,σ4

= Upqrsδσ1,σ3
δσ2,σ4

(34)

Heff
pq

σσ
= H0

pq +
∑

rs

[

Urpsq(ρ
σ
rs + ρσ̄

rs) − Urpqsρ
σ
rs

]

(35)

Two methods can be used

• Restricted Hartree-Fock : ρσ = ρσ̄

• Non-Restricted Hartree-Fock: ρσ 6= ρσ̄

Restricted HF is better if the number of electrons is even → the symmetry between ↑ and ↓
is preserved. For Restricted HF we simply have

Heff
pq = H0

pq +
∑

rs

[2Urpsq − Urpqs] ρrs (36)

where p and q run over orbital index only and not over spin.

The algorithm for restricted HF is simplified to
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1 Pick a set of one electron orbitals φp(r)

2 Calculate H0 and U matrix elements from

H0
pq = 〈φp| −

1

2
∇2 + Vext|φq〉 (37)

Upqrs = 〈φp(r)φq(r
′)|vc(r − r

′)|φr(r)φs(r
′)〉 (38)

3 Calculate Heff by

Heff
pq = H0

pq +
∑

rs

(2Urpsq − Urpqs)ρrs (39)

(40)

4 Solve the generalized eigenvalue problem
∑

q

(Heff
pq − εαOpq)Aqα = 0

with normalization A†OA = 1

5 Determin the chemical potential µ by requiring N =
∑

α 2f(εα − µ) where N is the

number of all electrons.

Kristjan Haule, 2009 –14–



KH Computational Physics- 2009 Hartree-Fock Method

6 Calculate the new density matrix and total energy by

ρpq =
∑

α

Apαf(εα − µ)A∗
qα (41)

E =
∑

α

εαf(εα − µ) +
∑

qq

H0
pqρqp (42)

7 Return to 3 with updated ρpq until the total energy is changing

Example: He atom and H2 molecule

For practical computation, we need to specify basis functions. One possible choice are the

Hydrogen-like orbitals (Slater Type Orbitals - STO) of the form

φ(r) = rmPl(x, y, z)e
−ξ|r|. (43)

They are less practical for molecule calculations. A better choice are Gaussian Type

Orbitals (GTO)

φ(r) = Pl(x, y, z)e
−αr

2

. (44)

since the product of Gaussian functions is Gaussian. The polinomials Pl are the same as

for hydorgen atom, i.e.
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• s : 1

• p : x,y,z

• d: xy,yz,xz,x2 − y2,3z2 − r2

. The exponents α need to be determined by minimization of the total energy.

For the moment, we will take coefficients α from literature. For Hydrogen and He we need

only few (four) 1s-like orbitals with coefficients

• H : 13.00773,1.962079,0.444529,0.1219492

• He: 0.298073,1.242567,5.782948,38.47497

With the basis functions of the form

φp(r) = e−αpr
2

(45)

or in Dirac notation

|αpR〉 ≡ φp(r − R) = e−αp(r−R)2 (46)

the matrix elements become
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Op1,q2 ≡ 〈αpR1|αqR2〉 =

(

π

αp + αq

)3/2

e−αpq(R1−R2)
2

〈αpR1| −
1

2
∇2|αqR2〉 = Op1,q2 αpq[3 − 2αpq(R1 − R2)

2]

〈αpR1|
1

|r − RN | |αqR2〉 = 2 Op1,q2

√

αp + αq

π
F0[(αp + αq)(RN − Rpq,12)

2]

〈αpR1αqR2|
1

r − r′
|αrR3αsR4〉 = 2 Op1,r3Oq2,s4

√

αpr,qs

π
F0[αpr,qs(Rpr,13 − Rqs,24)

where αpq =
αpαq

αp+αq
, Rpq,12 =

αpR1+αqR2

αp+αq
and αpr,qs =

(αp+αr)(αq+αs)
αp+αq+αr+αs

F0[x] =
1√
x

∫

√
x

0

dye−y2

=

√
πerf(

√
x)

2
√
x

(47)
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With the above described Hartee-Fock method we get for the ground state energy of He

atom -2.85516 Hartree while the exact ground state energy is -2.86166 Hartree.

The equlibrium distance for the Hydrogen molecule H2 in the Hartee-Fock calculation is

R0 = 1.388, while the exact one is 1.401.
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Figure 1: The energy versus distance for H2 molecule
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Figure 2: The electron density of H2 molecule at equilibrium distance
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Homework:

The Python implementation of Hartree-Fock Eq. for He and H2 were started in our lecture.

Finish one of the two projects.
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