Homework 2, Quantum Mechanics 501, Rutgers

September 27, 2016

1) An operator **A**, corresponding to a physical observable, has two normalized eigenstates $|\phi_1\rangle$ and $|\phi_2\rangle$ with non-degenerate eigenvalues a_1 and a_2 , respectively. A second operator **B**, corresponding to a different physical observable, has normalized eigenstates $|\chi_1\rangle$ and $|\chi_2\rangle$, with eigenvalues b_1 and b_2 , respectively. The two sets of eigenstates are related by

$$|\phi_1\rangle \propto 2 |\chi_1\rangle + 3 |\chi_2\rangle \tag{1}$$

$$|\phi_2\rangle \propto 3 |\chi_1\rangle - 2 |\chi_2\rangle \tag{2}$$

The physical observable corresponding to \mathbf{A} is measured and the value a_1 is obtained. Immediately afterwards, the physical observable corresponding to \mathbf{B} is measured, and again immediately after that the one corresponding to \mathbf{A} is remeasured. What is the probability of obtaining a_1 a second time?

Answ: First let's normalized the wave functions:

$$|\phi_1\rangle = \frac{1}{\sqrt{13}} (2|\chi_1\rangle + 3|\chi_2\rangle) \tag{3}$$

$$|\phi_2\rangle = \frac{1}{\sqrt{13}} (3|\chi_1\rangle - 2|\chi_2\rangle) \tag{4}$$

After the first measurement of **A**, we know that the state must have "collapsed" into the eigenstate $|\phi_1\rangle$. If we now measure **B**, the result can be either b_1 or b_2 with the following probability

$$P(b_1) = |\langle \chi_1 | \phi_1 \rangle|^2 \tag{5}$$

$$P(b_2) = |\langle \chi_2 | \phi_1 \rangle|^2 \tag{6}$$

The wave function will now be either $|\chi_1\rangle$ or $|\chi_2\rangle$, depending on whether we got b_1 or b_2 . If we now measure **A** again, the probability to measure a_1 is given by

$$P(a_1) = |\langle \phi_1 | \chi_1 \rangle|^2 P(b_1) + |\langle \phi_1 | \chi_2 \rangle|^2 P(b_2) = |\langle \phi_1 | \chi_1 \rangle|^4 + |\langle \phi_1 | \chi_2 \rangle|^4 = \frac{97}{169}.$$
 (7)

2) The ammonia molecule NH_3 has two different possible configurations: One (which we will call $|1\rangle$), where the nitrogen atom is located above the plane spanned by the three

H atoms, and the other one (which we will call $|2\rangle$) where it is below. These two states span the Hilbert space in our simple example. In both states, the expectation value of the energy $\langle n | H | n \rangle$ is the same, E(n = 1, 2). On the other hand, the two states are not eigenstates of the Hamiltonian; in fact, we have $\langle 2 | H | 1 \rangle = \langle 1 | H | 2 \rangle = -V$ (where V is some positive number).

Write down the Hamiltonian in Dirac form and in matrix form.
 Answ: The Dirac form is

$$H = E(|1\rangle \langle 1| + |2\rangle \langle 2|) - V(|2\rangle \langle 1| + |1\rangle \langle 2|).$$
(8)

and the matrix form is

$$H = \begin{pmatrix} E & -V \\ -V & E \end{pmatrix}$$
(9)

2) Find both eigenvalues and normalized eigenvectors. Which state is the ground state?

Answ: The eigenvalues are $\varepsilon_{1,2} = E \pm V$.

The ground state has energy $\varepsilon_1 = E - V$ and eigenstate $|\phi_1\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle)$. The excited state energy is $\varepsilon_2 = E + V$ with eigenstate $|\phi_1\rangle = \frac{1}{\sqrt{2}}(|1\rangle - |2\rangle)$.

3) Where is nitrogen in the two eigenstates, i.e., what is the probability to find nitrogen atom above or below in the two states?

Answ: These two states are linear superpositions of the two eigenstates to the operator measuring the position of the N atom. In fact, it is clear that for both of them, the probability to find the N either above or below the H_3 plane is 50%. Nitrogen is in both positions at once.

4) Consider the parity operator in which all coordinates change sign $(x \to -x)$. Is parity well defined in the two eigenstates? If yes, what is the value of the parity operator in the two cases?

Answ: Under the parity operation, all coordinates change sign, interchanging the meaning of up and down. This means that $|1\rangle \rightarrow |2\rangle$ and $|2\rangle \rightarrow |1\rangle$ under this operation.

Applying this to the two energy eigenstates, we find that the ground state is invariant (it is an eigenstate of the parity operator with eigenvalue +1 even parity) and the excited state acquires a minus sign (it is also an eigenstate under parity, but with eigenvalue -1, i.e., odd parity).

3) Consider the following three operators (representing physical observable) on the two dimensional Hilbert space:

$$S_x = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right) \tag{10}$$

$$S_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \tag{11}$$

$$S_z = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \tag{12}$$

(1) Assume S_z is measured and one finds the value -1. Immediately afterwards, what are $\langle S_x \rangle$, $\langle S_x^2 \rangle$ and $\Delta S_x \equiv \sqrt{\langle S_x^2 \rangle - \langle S_x \rangle^2}$. **Answ.:** After measurement, the system is in the eigenstate $|\psi\rangle = (0,1)$ of S_z .

Hence, we can calculate $|\psi\rangle = (0, 1)$ of S_z .

$$\langle S_x \rangle = \langle \psi | S_x | \psi \rangle = 0 \tag{13}$$

$$\langle S_x^2 \rangle = \langle \psi | S_x^2 | \psi \rangle = 1 \tag{14}$$

$$\Delta S_x = 1. \tag{15}$$

(2) What are the possible values one could measure for S_x , and what are their possibilities if it is measured immediately after measurement in (1).

Answ. : Eigenstates of S_x are

$$|\phi_1\rangle = \frac{1}{\sqrt{2}}(1,1)$$
 (16)

$$|\phi_2\rangle = \frac{1}{\sqrt{2}}(1, -1)$$
 (17)

The first with eigenvalue $s_x = 1$ and the second with $s_x = -1$. Hence, one could measure either +1 or -1.

We measure $s_x = 1$ with probability $P(1) = |\langle \phi_1 | \psi \rangle|^2 = 1/2$ and $P(-1) = |\langle \phi_2 | \psi \rangle|^2 = 1/2$.

(3) Explicitly calculate the commutators between any two of the three operators above (all 3). Is it possible to prepare a state of the system with well-defined values for all three?

Answ.: After some algebra, we get

$$[S_x, S_y] = S_x S_y - S_y S_x = 2iS_z$$
(18)

$$S_y, S_z] = 2iS_x \tag{19}$$

$$[S_z, S_x] = 2iS_y \tag{20}$$

Since these operators do not commute, it is not possible to find simultaneous eigenvectors to any two of them.

4) Consider the following Hamiltonian for a classical system:

$$H = \frac{1}{2m}(p_x^2 + p_y^2 + p_z^2) + V(x^2 + y^2 + z^2)$$
(21)

Prove that the angular momentum is a constant of motion by explicitly evaluating Poisson bracket of say $L_z = xp_y - yp_x$ and H. Note that for such classical system $dL_z/dt = \{L_z, H\}.$

Ans.:

We just need to work out the possession bracket

$$\{L_z, H\} = \frac{\partial L_z}{\partial x} \frac{\partial H}{\partial p_x} + \frac{\partial L_z}{\partial y} \frac{\partial H}{\partial p_y} + \frac{\partial L_z}{\partial z} \frac{\partial H}{\partial p_z} - \frac{\partial L_z}{\partial p_x} \frac{\partial H}{\partial x} - \frac{\partial L_z}{\partial p_y} \frac{\partial H}{\partial y} - \frac{\partial L_z}{\partial p_z} \frac{\partial H}{\partial z}$$
(22)

Explicit evaluation gives

$$\{L_z, H\} = y\frac{\partial H}{\partial x} - x\frac{\partial H}{\partial y} = y\frac{dV}{dr^2}\frac{\partial(x^2 + y^2 + z^2)}{\partial x} - x\frac{dV}{dr^2}\frac{\partial(x^2 + y^2 + z^2)}{\partial y} = 2(xy - yx)\frac{dV}{dr^2} = 0(23)$$

which proves that L_z is a constant of motion.