
Final Exam, Quantum Mechanics 501, Rutgers

December 19, 2014

1) This problem concerns Clebsch-Gordan coefficients 〈jm|j1m1, j2m2〉.

a) What are allowed values of total j for the addition of angular momenta j1 = 3
and j2 = 1?

Answ.: 2, 3, 4

b) Explain why 〈44|33, 11〉 = 1 .

Answ.: This is the state with maximum m, which is m = j. There is only one
way to get |j,m〉 = |4, 4〉, namely with maximum m1 = 3 and maximum m2 = 1.

c) Find 〈43|32, 11〉 (Hint: Use the spin lowering operator).

Answ.: First apply total J−

J− |44〉 = ~
√

8 |43〉 .

The same operator J− = J1− + J2− can be applied to |33, 11〉 to obtain

(J1− + J2−) |33, 11〉 = ~
√

6 |32, 11〉+ ~
√

2 |33, 10〉 .

The resulting states are the same, from which we get

|43〉 =

√
3

2
|32, 11〉+

1

2
|33, 10〉 (1)

and finally

〈43|32, 11〉 =

√
3

2

2) A system is in a state described by the wavefunction ψ(r) = f(r)(x + iy + z), where
f(r) is a radial wave function. If Lz is measured, what are the possible values of the
measurement, and their probabilities?

Note that Y00 =
√

1
4π

, Y1,±1 = ∓
√

3
8π

sin θe±iφ and Y10 =
√

3
4π

cos θ.

Answ.: The wave function can be written as

ψ(r) = rf(r)

√
4π

3
[−
√

2 Y11 + Y10] (2)
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The measurement of Lz can yield m = 1 or m = 0. The probabilities are

P (m = 0) =
| 〈10|ψ〉 |2

〈ψ|ψ〉
=

∫
|Y1,0|2dΩ∫

|Y10 −
√

2Y11|2dΩ
=

1∫
[|Y10|2 + 2|Y11|2]dΩ

=
1

3
(3)

P (m = 1) =
| 〈11|ψ〉 |2

〈ψ|ψ〉
=

2
∫
|Y1,1|2dΩ∫

|Y10 −
√

2Y11|2dΩ
=

2∫
[|Y10|2 + 2|Y11|2]dΩ

=
2

3
(4)

3) Consider a system of two non-identical fermions, each with spin 1/2. One is in a state
with S1y = ~

2
, while the other is in a state with S2x = −~

2
. What is the probability of

finding the system in a state with total spin quantum numbers s = 0?

Answ.: The relevant eigenvectors of Sx and Sy are:

|Sx = −~
2
〉 =

1√
2

(|↑〉 − |↓〉) (5)

|Sy =
~
2
〉 =

1√
2

(|↑〉+ i |↓〉) (6)

The two particles are non-identical, hence the Q.M. state is direct product

|ψ〉 = |Sy =
~
2
〉 ⊗ |Sx = −~

2
〉 =

1

2
(|↑〉+ i |↓〉)⊗ (|↑〉 − |↓〉) =

1

2
(|↑↑〉+ i |↓↑〉 − |↑↓〉 − i |↓↓〉) (7)

The singlet state is |s = 0〉 = 1√
2
(|↑↓〉+ |↓↑〉)

The probability is

P = | 〈s = 0|ψ〉 |2 =
|1− i|2

8
=

1

4
(8)

4) A particle of reduced mass µ = 470MeV/c2 is moving in a spherical potential well of
range a and depth V0 = −76.73MeV . [V (r) = V0 for |r| < a and V (r) = 0 for |r| > a].

The particle is bound in the 1s ground state with binding energy E = −2.225MeV .
(This is supposed to be a very simple model of the deuteron). Note: ~c = 197.327MeV fm.

a) Solve the Schroedinger equation for both r < a and for r > a.

b) Using the boundary conditions at r = a, extract the size of the ”potential range”
a.

c) Calculate the probability that a measurement of r will find r > a, i.e. the particle
is outside the range of the potential (which is of course forbidden classically).

Answ.: The radial wave function for l = 0 solution is

ψ(r < a) = A
sin(kr)

r
(9)

ψ(r > a) = C
e−κr

r
(10)
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where

k =

√
2µ(E − V0)

~2
and

κ =
2µ|E|
~2

Given the numbers in the text, we can get

k = 1.341/fm

κ = 0.232/fm

The continuity of the wave function and its derivative at r = a gives the following set
of equations

A sin (ka) = Ce−κa (11)

Ak cos (ka) = −Cκe−κa (12)

which is satisfied if

tan(ka) = −k
κ
. (13)

This equation can be solved for range parameter a, and the first solution (1s) gives:

a =
1

k
(π − arctan(k/κ)) ≈ 1.3fm

The probability for the particle to be outside the well is

P (r > a) =

∫∞
a
|ψ(r)|2r2dr∫∞

0
|ψ(r)|2r2dr

(14)

The integration inside the well gives A2
∫ a
0

sin2(kr)dr = A2 a
2
(1− sin(2ka)

2ka
) and integration

outside the box gives C2
∫∞
a
e−2κrdr = C2 e−2κa

2κ
. We also have C/A = eκa sin(ka)

The ratio that describes the probability P (r > a) is

sin2(ka)

sin2(ka) + κa(1− sin(2ka)
2ka

)
≈ 0.75 (15)

5) Two elementary particles of spin s1 and s2 are bound by an attractive spin-dependent
potential, as specified by the Hamiltonian

H =
p2

2µ
+ U(r) + V (r)S1 · S2 (16)

where r and p are relative coordinate and momentum; µ is the reduced mass; U(r)
and V (r) are two different spherically symmetric potentials; and S1 and S2 are the
spin operators for two particles. (We ignore the center-of-mass motion).
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a) The Hamiltonian can also be written as

H = [
p2

2µ
+ U ](c) ⊗ I(s) + V (c) ⊗ [

1

2
(S2 − S2

1 − S2
2)](s) (17)

Briefly explain the notation used above, explain why certain terms appear before
or after the ’⊗’ and show how the last terms involving spins was obtained, in
which S = S1 + S2

Answ.: We separated the Hilbert space corresponding to the real space coordi-
nates (c) from the spin space part (s). The two can be written as direct product
because they correspond to different Hilbert spaces.

The last term was simplified by the use of the identity S2 = S2
1 + S2

2 + 2S1S2

b) Show that a vector of the form |ψnsm〉 = |χns〉 ⊗ |sms1s2〉 is an eigenvector of H
if |χns〉 obeys the effective Schroedinger equation

[−~2∇2

2µ
+ U + V Cs] |χns〉 = E |χns〉 (18)

with Cs = (~2/2)[s(s + 1) − s1(s1 + 1) − s2(s2 + 1)]. Here the state |sms1s2〉 is
bulit from states |s1m1, s2m2〉 according to the usual rules for addition of angular
momenta.

Answ.: The action of the first term on the wave function |ψnsm〉 gives(
[
p2

2µ
+ U ] |χns〉

)
⊗ |sms1s2〉 (19)

The second term evaluates to

(V |χns〉)⊗
(

1

2
(S2 − S2

1 − S2
2) |sms1s2〉

)
(20)

and since the spin operator on the eigenstate of s, s1, s2 gives an eigenvalue ~2(s(s +
1)− s1(s1 + 1)− s2(s2 + 1)), we can simplify the second term to

~2

2
(s(s+ 1)− s1(s1 + 1)− s2(s2 + 1)) (V |χns〉)⊗ |sms1s2〉 (21)

We can put them together to obtain

H |ψnsm〉 = [
p2

2µ
+ U ] |χns〉 ⊗ |sms1s2〉+ CsV |χns〉 ⊗ |sms1s2〉 (22)

hence Schroedinger equation is satisfied if

〈r|H|ψnsm〉 = [−~2∇2

2µ
+ U(r) + CsV (r)]χns(r)⊗ |sms1s2〉 = E 〈r|ψnsm〉 = Eχns(r)⊗ |sms1s2〉(23)

We can drop |sms1s2〉 and get the desired Schroedinger equation for χ(r).
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