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Series of alternating states with unpolarized and spin-polarized bands in dimerized IrTe2
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A series of states with different densities of stripes of Ir dimers is investigated using x-ray diffraction and density
functional theory in layered nonmagnetic metal IrTe2. With decreasing temperature, structures with and without
inversion symmetry alternate. In noncentrosymmetric states, spin-orbit coupling splits the electronic energy
bands into spin-polarized pairs. Factors affecting the stability of the observed dimerized states are established,
and it is conjectured that an infinite series of alternating states with and without polarized bands is realized in
IrTe2. Switching dimerized states with different symmetries by changing temperature or strain enables control
of band polarization, adding a new tool for spintronics and valleytronics research.
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I. INTRODUCTION

Compounds with large spin-orbit coupling (SOC) have
recently attracted significant attention because of numerous
exotic phenomena, such as Jeff = 1/2 Mott state [1], and
topological insulators [2]. In nonmagnetic compounds, a
combination of time reversal and inversion symmetries makes
spin-up and spin-down states in electronic energy bands
degenerate, leading to zero band polarization. One of the
remarkable consequences of SOC is the splitting of electronic
energy bands into spin-polarized pairs in compounds that lack
inversion symmetry [3] [polarization direction varies over the
Brillouin zone (BZ), generally]. This mechanism does not
rely on any conventional magnetic interactions, and therefore
works in both magnetic and nonmagnetic compounds. Po-
larized electronic bands are recognized for their importance
for spintronic applications [4], as well as for other exotic
phenomena, such as mixed singlet/triplet superconductivity
[5], and intrinsic spin-Hall effect [6]. They may also be relevant
for valleytronics research [7,8] (through affecting polarization
of valley pseudospins). Controlling the polarized bands using
nonmagnetic mechanisms is of clear importance for these
applications.

Spin-orbit coupling is largest in heavy elements. Among
heavy-metal compounds, hexagonal layered materials at-
tracted increasing interest as systems with potentially ap-
plicable large polarized band splitting (e.g., BiTeI) [9], and
as model valleytronics compounds [7]. IrTe2 is a hexagonal
layered metal composed of stacked layers of IrTe6 octahedra
forming a CdI2-type structure at T = 300 K [10]. Triangular
Ir and Te layers are stacked along the c0 hexagonal axis.
For T < TS = 280 K, a modulated structure characterized
by the wave vector q1 = (1/5, 0, 1/5) has been found in
transmission electron microscopy [11] and x-ray studies [12]
(qn is quoted with respect to the T = 300 K unit cell). Scanning
tunneling microscopy (STM) measurements [13] suggest that
a series of coexisting structures with wave vectors qn =
[1/ (3n + 2) , 0, 1/ (3n + 2)], n = 1, 2, 3 . . . occurs, with n

increasing as temperature decreases. The n = 1 structure has

been determined using x-ray diffraction [12]. It consists of
stripes of Ir dimers (20% Ir-Ir bond length contraction) in the Ir
planes, see Fig. 1(d). The stripes are stacked in a staircase-type
pattern along the c0 axis, generating the triclinic unit cell
shown in Fig. 1(g). A complex pattern of Te displacements
is realized in the Te layers, with dimerlike structures located
near the Ir dimers. The Ir dimers form “walls” cutting through
the structural Ir and Te layers, see Fig. 1(g). These walls
exhibit reduced density of states (DOS) at the Fermi level
EF , giving rise to a quasi-two-dimensional (2D) electronic
state “tilted” with respect to the hexagonal c0 axis [12]. The
corresponding Fermi surface (FS) is shown in Fig. 1(j). Density
functional theory (DFT) calculations show that the Ir-Ir bonds
in the dimers possess a covalent character, indicating that
the Ir dimerization is the driving force of the structural
transition [12]. Alternative mechanisms emphasizing the role
of the Te orbitals [14–16], as well as a charge density wave
scenario [17] have also been proposed. Spin-orbit coupling
was found to disfavor the dimerized state, and the only
effect of SOC discussed so far is a possible reduction of
the TS [12].

Probable schematic patterns of the Ir dimerization for
n > 1 were proposed in STM studies [13]. These patterns are
conjectured from the shifts of the Te atoms on the surface of
the cleaved sample, which exposes the Te layer. However, the
actual crystallographic structures, and even the values of qn in
the c0 direction remained unknown. Herein, we report x-ray
diffraction studies of the n = 2,3,4 and n = ∞ states in single
crystals of pure and Se-doped IrTe2. The atomic positions are
determined for two structures: n = 2 with q2 = (1/8, 0, 1/8),
and n = ∞. As explained later, q∞ = (1/6, 0, 1/6). Using the
experimentally observed structures and DFT, we propose the
dimerization patterns for the entire series and find that inver-
sion symmetry is absent for even n. We show that significant
SOC-induced splitting of polarized electronic bands occurs
in the latter states and propose a tentative temperature-strain
phase diagram containing alternating states with polarized and
unpolarized bands.
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FIG. 1. (Color online) Three horizontal rows refer to the n = 1, 2, and � states, respectively. (a)–(c) X-ray diffraction scans showing the qn

Bragg peaks. Experimental temperatures, sample compositions, and the symmetry of the crystal structures are indicated. (d)–(f) Dimerization
patterns in the Ir planes. (g)–(i) Side views of the crystal structures. Solid lines show the unit cells. Crystallographic axes a,b,c, the reciprocal
axes c*, and the high-T hexagonal axes c0 are shown with arrows. Thick lines mark the Ir dimers. Ir dimer “wall” is shown with tilted shaded
rectangle in (g). (j)–(l) Calculated Fermi surfaces, as viewed along the c* direction. VWZ give the volume of the Wigner-Seitz cells. (m)–(o)
Calculated energy bands in the [0, 0, l] direction (along the c*). The shown ±[0, 0, 0.5] wave vector range becomes ± (1/2p, 0, 1/2p),
p = 3n + 2, in the high-temperature notation. In panel (n), the spin directions in the polarized bands are color-coded using the angle θ with
respect to the c axis. The spins are confined in the ac plane for the bands shown.

II. EXPERIMENTS

Single crystals of IrTe2−xSex (x = 0, 0.4) were grown
using Te flux, as described in Ref. [18]. Samples from
the same batches as those described in Refs. [13,18] were
used, and their bulk properties can be found there. X-ray
diffraction measurements were done at different temperatures
(300, 220, 100 K) using an Oxford Diffraction SuperNova
Diffractometer equipped with a charge-coupled device (CCD)
detector, a nitrogen gas cooler, and Mo Kα radiation. Data
collection, cell refinement, and data reduction were carried out
using CrysAlisPro [19]. Superflip software [20] was used for
structure solution and space group assignment, and Jana2006
[21] for structure refinement. Crystal structure figures were
generated using VESTA [22]. The absorption correction was
done analytically using a multifaceted crystal model [23]. No
extinction corrections were necessary.

The IrTe2 samples used in this paper exhibit two visible
first-order transitions in electrical resistivity measurements on
cooling, the first one around TS = 280 K, and the second one
at TS1 = 180 K, see Ref. [13]. In our x-ray measurements,
appearance of the n = 1,2,etc. states is indicated by emergence
of the qn Bragg peaks. We find that in a single cooling run

(no thermal cycling), the pure n = 1 phase is present for
TS1 < T < TS , see Fig. 1(a), while this phase coexists with the
n = 2 phase for T < TS1. The STM measurements of Ref. [13]
indicate that, on warming from temperatures below TS1, the
samples remain in such a coexisting state all the way up to TS .
However, we were able to obtain the pure n = 2 state in IrTe2

samples at T = 100 K using thermal cycling. The sample was
first cooled from T ∼ 400 K down to T = 100 K and kept at
this temperature for about an hour. It was then warmed above
TS1 up to T = 200 K and kept there for another hour. Finally,
the sample was cooled down to T = 100 K, and the pure n = 2
phase was observed, see Fig. 1(b).

Different thermal cycling protocols lead to the appearance
of larger n states, with volume fractions depending strongly
on the thermal history. The n = 4 and � phases (see Fig. 2),
as well as evidence for the n = 3 state, were found in the
x-ray diffraction data. No states violating the 1/(3n + 2) rule
were observed. The system is strongly hysteretic, consistent
with the reported first-order transition type [10,11,13], and
the large n states survive at elevated temperatures. Traces of
the n = 4 state, for example, were detected at T = 220 K. The
equilibrium transition temperatures are, therefore, impossible
to determine from our data. As described above, we were
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FIG. 2. (Color online) X-ray diffraction patterns in the (H, 1, L)
reciprocal plane of IrTe2 at (a) T = 300 K and (b) T = 220 K
after thermal cycling. (c) One-dimensional cut (open circles) in
this plane for T = 220 K taken along the white solid line in panel
(b). Experimental background taken along the dashed line in (b) is
shown with filled circles. Black solid line is a guide for the eye. The
superlattice peaks due to the n = 1 and n = 4 phases are shown
with short and long arrows, respectively. The diffraction patterns in
the (H, 0, L) planes for (d) IrTe2 at T = 100 K and (e) IrTe1.6Se0.4

at T = 300 K. The superlattice peaks due to the n = ∞ phase with
q∞ = (1/6, 0, 1/6) are present in both (d) and (e), as can be seen, for
example, in the boxed areas. In all panels, reciprocal space positions
are given in the high-temperature notation.

able to obtain the pure n = 1 and n = 2 states in IrTe2. After
numerous attempts, we were unable to identify the thermal
protocol leading to the pure n = ∞ phase in the whole volume
of the undoped IrTe2. Therefore, we studied this state in
the x = 0.4 Se-doped sample, in which the q∞ wave vector
was observed at T = 300 K, see Fig. 1(c). The n = 2 (x = 0)
and n = ∞(x = 0.4) structures were determined from the
diffraction data. The obtained atomic coordinates and isotropic
thermal parameters are given in Tables I and II. The n = 1
structure is described in Ref. [12].

TABLE I. Experimental atomic parameters for the n = 2 phase
in IrTe2 at 100 K obtained from single crystal x-ray diffraction.
The structural model was fitted against 1924 unique reflections
satisfying |F | > 3σ (|F |) with the full-matrix least-squares on |F |
refinement method (R1 = 0.133). The atomic positions are given
in the lattice parameter units. The space group is C2 (No. 5);
the unit cell parameters are a = 12.7036(13) Å, b = 3.9646(3) Å,
c = 22.6796(18) Å, α = 90◦, β = 92.642(7)◦, γ = 90◦.

Atom Site x y z Uiso (Å
2
)

Ir1 2a 0 0.0000(11) 0 0.00143(20)
Ir2 4c 0.23031(16) 0.4979(7) 0.25834(9) 0.00143(20)
Ir3 2b 0 0.6623(10) 0.5 0.00143(20)
Ir4 4c 0.36641(16) 0.0003(8) 0.12729(8) 0.00143(20)
Ir5 4c 0.13627(16) 0.1774(7) 0.36890(9) 0.00143(20)
Te1 4c 0.0952(4) 0.0033(14) 0.25731(16) 0.0017(2)
Te2 4c 0.8633(4) 0.4991(14) 0.00985(16) 0.0017(2)
Te3 4c 0.3682(4) 0.0029(13) 0.24325(14) 0.0017(2)
Te4 4c 0.0019(4) 0.0037(13) 0.11554(14) 0.0017(2)
Te5 4c 0.2308(4) 0.5016(14) 0.13963(16) 0.0017(2)
Te6 4c 0.4971(4) 0.1697(13) 0.38329(16) 0.0017(2)
Te7 4c 0.1346(4) 0.1647(13) 0.48668(16) 0.0017(2)
Te8 4c 0.2296(4) 0.1665(13) 0.63132(16) 0.0017(2)

III. FIRST-PRINCIPLES CALCULATIONS

Density functional theory calculations were carried out
to (i) analyze the origin of the observed sequence of states
by performing relaxation of the structures and testing their
stability, and (ii) calculate the band structure and FS. Two
different calculation schemes were employed. For the band
structure and FS, SOC is of key importance, especially for
the electronic band polarization effects. Thus, the WIEN2k
package [24] [generalized gradient approximation Perdew-
Burke-Ernzerhof (GGA-PBE) functional [25]] with SOC
included was used for these calculations. In contrast, SOC
and strain effects were shown to play a secondary role when it
comes to the stability of the dimerized n = 1 structure [12]. To
test different DFT methods with respect to the stability of the
experimentally seen dimerization patterns, we have performed
atomic relaxations using the following combinations: (i)
GGA-PBE [25] or local density approximation (LDA) [26]
for the exchange-correlation functional; (ii) with or without
SOC; (iii) using the experimental or unstrained unit cells (unit
cell construction is discussed in detail in the Appendix). The
obtained atomic positions in the relaxed structures were found
to be practically independent on the specific combination of (i),
(ii), and (iii) used. We have also carried out these calculations
for the artificially created dimerization patterns described
below, and the obtained results were independent on the DFT
method used, too. Therefore, the economical scheme utilizing
the fast Vienna Ab initio Simulation Package (VASP) code [27]
with GGA-PBE exchange-correlation functional was chosen,
SOC was not included, and unstrained unit cells were used. The
starting dimerized patterns of the artificial structures described
below were created manually with the dimer distances similar
to those obtained from experiment. During the relaxations of
atomic positions for the artificially created dimerized patterns,
many of the structures were unstable, i.e., converged to the
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TABLE II. Experimental atomic parameters for the n = � phase in IrTe2−xSex

(x = 0.4) at 300 K obtained from single crystal x-ray diffraction. The structural model
was fitted against 1954 unique reflections satisfying |F | > 3σ (|F |) with the full-matrix
least-squares on |F | refinement method (R1 = 0.055). The atomic positions are given
in the lattice parameter units. Occ stands for site occupancy. The space group is
C2/c (No. 15); the unit cell parameters are a = 12.6659(6) Å, b = 3.92240(10) Å,
c = 16.9186(7) Å, α = 90◦, β = 99.283 (4)◦, γ = 90◦.

Atom Site x y z Uiso (Å
2
) Occ

Ir1 4e 0 0.08032(15) 0.25 0.00884(10) 1
Ir2 8f 0.31705(3) 0.09017(11) 0.07356(2) 0.00917(8) 1
Te1 8f 0.36061(6) 0.0795(2) 0.23225(4) 0.00978(16) 0.793(9)
Te2 8f 0.31710(6) 0.0823(2) 0.42469(4) 0.01082(17) 0.812(9)
Te3 8f 0.03864(6) 0.0832(2) 0.40262(4) 0.00976(16) 0.793(9)
Se1 8f 0.36061(6) 0.0795(2) 0.23225(4) 0.00978(16) 0.207(9)
Se2 8f 0.31710(6) 0.0823(2) 0.42469(4) 0.01082(17) 0.188(9)
Se3 8f 0.03864(6) 0.0832(2) 0.40262(4) 0.00976(16) 0.207(9)

undimerized high-temperature structure. In these cases, the Ir
pattern was fixed and the Te positions relaxed to obtain the
“best” Te positions for this pattern. The Ir and Te positions
were then relaxed separately, one after another, until the
procedure converged, in a search for a possibly missed local
energy minimum.

IV. DISCUSSION

The experimentally obtained Ir dimerization patterns for
the n = 1,2 and � states are shown in Figs. 1(d)–1(f). They
consist of stripes of dimers, designated D or D in the figures,
depending on which of the two possible dimerization types
(dimer tilts) within the stripe is chosen. The stripes are sepa-
rated by either one or three columns of undimerized Ir atoms,
designated 1 and 3, respectively. Inspection of these patterns
reveals that the in-plane qn periodicities can be naturally
generated by repeating n dimerized stripes separated by 1, and
ending the unit cell sequence with 3. The dimer stripe type (D
or D) changes across 1. Thus, using these empirical rules, one
gets D3 [Fig. 1(d)], D1D3 [Fig. 1(e)], D1D1D3, etc. for the
n = 1,2,3, . . . states, obtaining the correct in-plane periodicity
of 3n + 2 Ir columns. In other words, the pattern consists of
n alternating D1 and D1 blocks, capped by the 2 block, see
Fig. 4(a). The fraction of dimerized Ir increases with n until
the maximum dimer density consistent with the above rules is
reached in the n = ∞ state, D1D1 [Fig. 1(f)] with 6 Ir columns
in the repeating unit. The dimerized IrTe2 layers are stacked in
the staircaselike pattern, giving rise to the unit cells shown in
Figs. 1(g)–1(i) and explaining the observed three-dimensional
qn = [1/ (3n + 2) , 0, 1/ (3n + 2)], with q∞ = (1/6, 0, 1/6).

To analyze the origin of the observed sequence of states,
DFT calculations (relaxation of the structures) were carried out
using the VASP code as described above. All the experimental
structures are well reproduced by DFT, with atomic positions
deviating by less than 1% from their measured positions
(in the lattice parameter units). In addition to the experi-
mental structures, other possible in-plane patterns containing
dimerized stripes were constructed to test their stability as
follows. A given in-plane 3n + 2 periodicity can hold N

stripes, 1 < N < Nmax, Nmax = (3n + 2) /2 for even n, and

(3n + 1) /2 for odd n. By considering all the arrangements of
the stripes giving the 3n + 2 periodicity for the allowed N , all
the possible in-plane combinations were obtained. Stacking
the Ir planes in a staircaselike pattern, the unit cells similar
to those of Figs. 1(g)–1(i) were produced. Within these fixed
unit cells, the initial high-temperature structure with imposed
Ir dimerization pattern was relaxed fully. The details of unit
cell construction can be found in the Appendix. The full
set of the in-plane dimerized patterns for the experimentally
relevant periodicities is shown schematically in the legend to
Fig. 3. The obtained results can be summarized as follows:
(i) Fully dimerized structures (DD, DD, etc.), as well as
states containing D1D and D2D blocks, are unstable. They are
prohibited by high elastic energy cost, as explained later. (ii)
Dimers of the opposite type separated by 1 or 2 undimerized
Ir columns (D1D1, D2D1, etc.), and the states in which the
dimers of any type are separated by more than two columns
are stable. All the experimental structures known so far
from x-ray (Fig. 1) and STM [13] measurements exhibit the
maximum dimerized stripe densities allowed by these rules
for a given unit cell size, probably due to the energy gain
from the formation of Ir-Ir covalent bonds in the dimers [12].
Rules (i) and (ii), combined with the maximum allowed dimer
density requirement produce the 3n + 2 periodicity observed
in experiments. For odd n, only the pattern shown in Fig. 4(a)
is possible. For even n, two end patterns, . . . D1D3 and
. . . D2D2, are allowed by these rules. Experimentally, the
D1D3 pattern is realized for the n = 2 case. It also has the
lower energy (by 5–10 meV/f.u.) in the DFT calculations
for the n = 2 and 4 states. Thus, although DFT calculations
are designed for zero temperature, they successfully reproduce
the experimentally observed structures (n = 1,2,∞), provided
that the index n (unit cell size) is given. They also predict
that the pattern of Fig. 4(a) holds for at least n = 3 and 4,
suggesting that it might continue for larger n. To strengthen
the DFT predictions, especially for even n, temperature effects
should be taken into account, and more realistic models
including entropy and, possibly, kinetics should be used. The
total energies for the experimental structures for various DFT
methods are given in the Appendix. In agreement with the
previous report [12] for n = 1, DFT favors the undistorted state
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FIG. 3. (Color online) Baur distortion index 〈D〉 of the IrTe6

octahedra for the experimental and theoretical dimer patterns with
various fractions of dimerized Ir atoms. Large green (gray) symbols
designate the patterns proposed in Fig. 4(a), shown for all the observed
wave vectors qn. These patterns are experimentally confirmed for
n = 1,2,∞. The other patterns are designated by the open symbols
for the states stable within DFT, and by the filled black symbols
for the unstable states. The in-plane dimerization patterns and the
corresponding qn are given in the legend on top of the figure. The
dimerization pattern notation is described in the text.

over the dimerized structures. Thus, as pointed out previously
[12], determination of the true ground state among all the qn

structures appears to be beyond the reach of DFT, probably
because DFT underestimates the nonlocal energy gain due
to the Ir dimerization. This suggestion is consistent with
the maximum dimer density requirement discussed above.
Application of nonlocal methods, such as cluster dynamical
mean field theory, could resolve this issue. Thus, state-of-the-
art calculational methods are required to better understand the
competition between the dimerized phases. Such calculations
are highly desirable, in our opinion.

To gain insight into the DFT results and answer questions
such as why the complete Ir dimerization is impossible, we
note that the energy gain due to the Ir dimerization competes
with the elastic energy loss. To characterize this loss roughly,
it is sufficient to consider deformation of the strongest bonds
in the system: the Ir-Te bonds. These bonds are the shortest
(∼1.65 Å) and exhibit both the ionic and covalent character.
The Ir-Ir and Te-Te in-plane bonds are much longer (∼3.9 Å),
virtually approaching the sum of the atomic van der Waals
radii (∼4.1 Å). The interplane Te-Te bonds are also weak (this
is the cleavage plane [13]). The quantitative measure of the

10
0

20
0

30
0

T(
K

)

(a)

(b)

+ ... + +

3n 2+

1/5

1/8 NCS 1/11

1/6

1/14 

1/(3n+2)...

Low dimer
density

High dimer
density

In-plane compressive strain0

0

Experimentally determined structures

0.4Se - doping (IrTe2-xSex) x

NCS - Noncentrosymmetric

FIG. 4. (Color online) (a) The proposed dimerization pattern for
a state with modulation wave vector qn (confirmed experimentally for
n = 1,2, and �). (b) Tentative schematic equilibrium phase diagram
of IrTe2−xSex . The horizontal axis can be understood as generalized
compressive strain. Large dots indicate experimentally determined
structures. Structures up to n = 4 were observed. The phases are
identified using the in-plane modulation vector 1/ (3n + 2). The
noncentrosymmetric 1/8 phase (n = 2) is marked with NCS.

Ir-Te bond distortion is the Baur index [28] 〈D〉, defined as∑6
i=1 |li − lav|/6lav calculated for each IrTe6 octahedron (li

and lav are the individual and the average Ir-Te bond lengths,
respectively), and then averaged over all the octahedra in the
unit cell. Figure 3 shows 〈D〉 for all the experimental and
artificial dimer patterns considered in our study. For unstable
states, 〈D〉 was calculated for the structures with imposed
fixed Ir dimerization (∼3.2 Å Ir-Ir dimer bond length), and
DFT-relaxed Te positions. For a given dimer density (and
the associated dimerization energy gain), the Baur index of
the unstable structures is always significantly larger than that
of the stable ones (Fig. 3). The nonexistent fully dimerized
states exhibit very large 〈D〉. Thus, the elastic energy cost
is prohibitively large for the states unstable within DFT,
including the fully dimerized states.

For the band structure and FS calculations, SOC is of key
importance, especially for the electronic band polarization
effects. Thus, the WIEN2k package (GGA-PBE functional)
with SOC included was used for these calculations. Band
polarization was calculated for the noncentrosymmetric n = 2
structure. As was previously reported for the n = 1 case
[12], the experimental n = 2 and � states contain “walls”
of Ir dimers cutting diagonally through the structural Ir and
Te layers, see Figs. 1(g)–1(i). These walls exhibit reduced
DOS at EF , giving rise to a quasi-2D electronic state, with
electronic planes normal to the reciprocal c* axes. The corre-
sponding calculated quasi-2D FS are shown in Figs. 1(j)–1(l).
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TABLE III. Theoretical atomic positions for the n = ∞ phase
in IrTe2 obtained from first-principles calculations. These positions
were obtained by assuming that IrTe2 has the same lattice parameters
as IrTe2−xSex (x = 0.4) given in Table II, and then fully relaxing
the atomic positions of both Ir and Te ions. The atomic positions are
given in the lattice parameter units.

Atom Site x y z

Ir1 4e 0 0.08350 0.25
Ir2 8f 0.31575 0.09467 0.07299
Te1 8f 0.35808 0.08289 0.23304
Te2 8f 0.32077 0.08786 0.42331
Te3 8f 0.03692 0.08762 0.40725

Experimental atomic coordinates were used for n = 1,2. To
avoid difficulties due to fractional Se doping, the FS for the
n = ∞ case was calculated using theoretical coordinates of
the pure IrTe2 structure relaxed under the experimentally
determined symmetry and the unit cell; see Table III. The
geometry of these FS (tilted with respect to the structural
planes) is highly unusual. Direct confirmation of this geometry
(e.g., in de Haas–van Alphen experiments) would be of
significant interest.

An important result of our x-ray experiments is that the
n = 1 and � crystallographic structures exhibit inversion sym-
metry (space groups P -1 and C2/c, respectively), while the
n = 2 state lacks it (space group C2). In noncentrosymmetric
structures, SOC splits the electronic bands into spin-polarized
pairs [5]. Figures 1(m)–1(o) show examples of the calculated
band structures for the experimental n = 1,2 and � states. The
bands are split only for n = 2, with polarized band splittings
as large as ∼100 meV observed throughout the BZ, consistent
with the large SOC of Ir (∼0.5 eV). The n = 2 bands are
spin-polarized, with the polarization varying over the BZ, as
shown in Fig. 1(n). The in-plane Ir dimerization patterns shown
in Figs. 1(d)–1(f) clearly possess the inversion symmetry for
the n = 1,∞ cases, and lack it for the n = 2 case. It can
be easily seen that the corresponding patterns for the n > 2
states constructed according to the D1D1 . . 2 rule [Fig. 4(a)]
proposed above have the inversion symmetry for odd n, and
lack it for even n. Thus, it is natural to conjecture that the even
n states possess split polarized bands, while the odd n states
do not. Experimental testing of this proposal for n > 2 is the
subject of future work.

Compressive in-plane strain should favor the dimerized
state. Indeed, moderate Se doping is known to produce the
maximally dimerized n = ∞ state for all temperatures below
the structural transition [18]. Thus, the Ir dimerization patterns
can be switched not only by temperature, but by strain. The
published [18] phase diagram of IrTe2−xSex lacks the n = 2,3,
etc. states and therefore is incomplete. Unfortunately, due to
the first-order character of the structural transitions in IrTe2,
establishing the equilibrium phase diagram is very difficult.
On cooling the pure IrTe2, the n = 1 state appears first in
our experiments, then the n = 2 state, and then the larger n

states, generally in a phase mixture. It is reasonable to propose
that these states appear consecutively in an equilibrium phase
diagram. Based on this conjecture and on the phase diagram

of Ref. [18], we propose a tentative equilibrium temperature-
strain phase diagram shown in Fig. 4(b). In this diagram,
states with and without the inversion symmetry alternate if
the pattern of Fig 4(a) holds, and the splitting of the polarized
energy bands can be switched on and off by either temperature
or strain. We believe that experimental determination of the
actual phase diagram is highly desirable and might provide a
rare example of a “staircase” sequence of states, such as those
discussed in “devil’s staircase” models [29] We note that, even
if the actual sequence of states is not realized in the proposed
manner (e.g., not infinite), our experimental observations
already present a sequence of states with switchable band split-
ting: the n = 1 (no split), 2 (split polarized bands), � (no split).

V. CONCLUSIONS

The presented results highlight the potential of using the
dimerization phenomenon in heavy-element compounds for
control of the electronic band polarization in nonmagnetic ma-
terials. The splitting of the bands into spin-polarized pairs can
be switched on and off by either temperature or strain, using the
combination of SOC and the switchable inversion symmetry
of the dimerized crystal lattice. IrTe2 itself remains metallic
at all temperatures [10,11] and therefore might not serve as
a prime candidate for the active (semiconducting) medium
for spintronic or valleytronic applications [7,8], at least in
its bulk form. Many other layered metal dichalcogenides are
good semiconductors [7], and the properties of atomically thin
layers could differ significantly from those of the bulk samples.
Metal-metal dimerization is found in many transition metal
compounds. The mechanism of band polarization control
demonstrated in this paper opens a new search direction for
functional electronic materials and emphasizes the potential
of heavy-element compounds with large SOC for electronic
applications.
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APPENDIX

Here, we mark the structural phases using their modulation
wave vectors qn = (1/p, 0, 1/p), with p = 3n + 2. Thus, the
n = 1 phase is referred to as the (1/5, 0, 1/5) phase, etc.

1. Construction of the unit cells

As described in the main text, unstrained unit cells were
used for the DFT calculations involving relaxation of the
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structures and testing their stability. The unstrained unit cell
is tilted with respect to the high-T crystallographic axes in
the same manner as the actual low-T unit cells shown in
Figs. 1(g)–1(i). However, the atoms in the corner points in
the unstrained cells retain their high-T positions (these atoms
shift slightly in the actual low-T structures). In other words,
the unstrained unit cells possess the same symmetry and
orientation as the actual low-T unit cells, but are constructed
on the atomic grid of the high-T structure. Inside the unstrained
cells, the atoms can move in any manner.

Below, we give the linear transformation [30], Eqs. (A1a)
and (A1b), between the high temperature unit cell lat-
tice vectors a0, b0, c0 defined with respect to the ori-
gin O0, and the low temperature unit cell lattice vectors
a(1/p,0,1/p), b(1/p,0,1/p), c(1/p,0,1/p) of the unstrained cell de-
fined with respect to a new origin O (shifted by a vector
p(1/p,0,1/p) with respect to O0). To determine these matrices,
we imposed the following constrains: (i) the unit cell should
give supercell Bragg peaks with the periodicity (1/p, 0, 1/p)
with respect to the high temperature reciprocal space, (ii) the
symmetry should be monoclinic [triclinic for the case of the
(1/5, 0, 1/5) and (1/10, 0, 1/10) structures], and (iii) one of
the three lattice vectors of the (1/p, 0, 1/p) phase should point
in the direction of the dimer stripe.[

a( 1
p
, 0, 1

p
), b( 1

p
, 0, 1

p
), c( 1

p
, 0, 1

p
)

]
= (a0,b0,c0) {P }( 1

p
, 0, 1

p
) (A1a)

p( 1
p
, 0, 1

p
) = (a0, b0, c0) {p}( 1

p
, 0, 1

p
) (A1b)

{P }( 1
p
, 0, 1

p
) =

⎧⎨
⎩

P11 P12 P13

P21 P22 P23

P31 P32 P33

⎫⎬
⎭ (A2a)

{p}( 1
p
, 0, 1

p
) =

⎧⎪⎨
⎪⎩

p1

p2

p3

⎫⎪⎬
⎪⎭ (A2b)

For example, in the case of the (1/5, 0, 1/5) phase, using the
high temperature lattice parameters |a0| = |b0| = 3.9295 Å,
|c0| = 5.3984 Å and the following linear transformation (with
no origin shift),

[
a( 1

5 , 0, 1
5 ), b( 1

5 , 0, 1
5 ), c( 1

5 , 0, 1
5 )

]
= (a0, b0, c0)

⎧⎨
⎩

0 −1 4
1 −1 2
0 1 1

⎫⎬
⎭
(A3)

one obtains the unstrained lattice parameters |a(1/5,0,1/5)| =
3.9295 Å, |b(1/5,0,1/5)| = 6.6771 Å, |c(1/5,0,1/5)| = 14.64357 Å,
α(1/5,0,1/5) = 100.119◦, β(1/5,0,1/5) = 90◦, γ(1/5,0,1/5) =
107.112◦. These parameters are only slightly different from
the experimentally measured lattice parameters 3.9548(2) Å,
6.6542(4) Å, 14.4345(7) Å, 98.129(5)°, 92.571(4)°, and
107.119(5)°. Similarly, the corresponding differences
between the experimental and the unstrained cells were small
in all the other cases considered, justifying the use of the
unstrained cells in our calculations.

The same matrix {P }(1/p,0,1/p) can be used to transform
the coordinates of a point from the reciprocal space of the
high temperature phase, (h0,k0,l0) to a point [h, k, l] from the

reciprocal space of the (1/p, 0, 1/p) phase:

[h, h, l]( 1
p
, 0, 1

p
) = (h0, k0, l0){P }( 1

p
, 0, 1

p
) (A4)

The following matrices are used to transform the atomic
coordinates (x0, y0, z0) of an atom from the high temperature
unit cell to the atomic coordinates [x, y, z] of an atom from
the unit cell corresponding to the (1/p, 0, 1/p) phase:⎡

⎣x

y

z

⎤
⎦

( 1
p
,0, 1

p
)

= {Q}( 1
p
, 0, 1

p
)

⎛
⎝x0

y0

z0

⎞
⎠ + {q}( 1

p
, 0, 1

p
) (A5)

{Q}( 1
p
, 0, 1

p
) = {P }−1

( 1
p
, 0, 1

p
)

(A6a)

{q}( 1
p
, 0, 1

p
) = −{P }−1

( 1
p
, 0, 1

p
)
{p}( 1

p
, 0, 1

p
) (A6b)

Below, we list the matrices used to obtain the supercell unit
cells corresponding to the dimerized phases considered in our
work:

D3
D3D− 3

D4D− 2

D5D− 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

{P }( 1
10 , 0, 1

10 ) =
⎧⎨
⎩

0 −1 8
1 −1 4
0 1 2

⎫⎬
⎭ (A7)

D2
D1D− 3

D2D− 2

D1D3

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

{P }( 1
8 , 0, 1

8 ) =
⎧⎨
⎩

−2 0 6
−1 −1 3

2 0 2

⎫⎬
⎭ (A8)

D1D
−

1D3}{P }( 1
11 , 0, 1

11 ) =
⎧⎨
⎩

2 0 8
1 1 4

−2 0 3

⎫⎬
⎭ (A9)

D2D− 1

D3D− 1D1D− 1

}
{P }( 1

14 , 0, 1
14 ) =

⎧⎨
⎩

2 0 10
1 1 5

−2 0 4

⎫⎬
⎭ (A10)

D1
D1D− 1

}
{P }( 1

6 , 0, 1
6 ) =

⎧⎨
⎩

2 0 4
1 1 2

−2 0 2

⎫⎬
⎭ (A11)

D
DD−

}
{P }( 1

4 , 0, 1
4 ) =

⎧⎨
⎩

2 0 2
1 1 1

−2 0 2

⎫⎬
⎭ (A12)

The matrix corresponding to the origin shift is zero for all
the phases, apart from the (1/6, 0, 1/6) phase which has the
following origin shift:

{p}( 1
6 , 0, 1

6 ) =
⎧⎨
⎩

0
0
1
2

⎫⎬
⎭ (A13)

The most reliable results for comparison of the total
energies of different dimer patterns with the same fraction
of the dimerized Ir atoms are obtained when the same unit cell
is used in the calculations. Thus, even though the dimer pattern
D3 can be constructed in the unstrained unit cell corresponding
to the (1/5, 0, 1/5) phase, for the theoretical calculations it was
stabilized in the larger unstrained unit cell corresponding to
the (1/10, 0, 1/10) phase. The obtained total energy could then
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be reliably compared to the energies of the other three dimer
arrangements having the same dimer density, but exhibiting
the (1/10, 0, 1/10) modulation (see Fig. 3). The same was
done for the other dimer patterns: the (1/8, 0, 1/8) cell was
used instead of the smallest possible (1/4, 0, 1/4) cell for the
dimer pattern D2, (1/14, 0, 1/14) was used for D2D1 instead
of (1/7, 0, 1/7), (1/6, 0, 1/6) instead of (1/3, 0, 1/3) for D1,
and (1/4, 0, 1/4) instead of (1/2, 0, 1/2) for D. Stabilizing
the same dimer patterns in such enlarged unit cells gave the
identical arrangements of the atoms relative to each other.

2. Total energies

Total energies were calculated using several different
approximations (LDA [26] and GGA-PBE [25], with and
without spin-orbit coupling included), using two different
codes: VASP [27] and WIEN2k [24]. The crystallographic
structures used for the calculations are those given in Tables I
and III for the (1/8, 0, 1/8) and the (1/6, 0, 1/6) states,
respectively. The crystallographic structure for the (1/5, 0,
1/5) state was taken from Ref. [12]. The primitive unit cell
(room temperature) containing one formula unit (f.u.) per unit
cell, used as a reference in our calculations is space group
164, a = 3.92990 Å, c = 5.39510 Å, atomic position Ir (1a) =
(0, 0, 0), and Te (1d) = (1/3, 2/3, 0.25350). We consider the

differences �E between the total energies of the dimerized
structures E(1/p,0,1/p) and the total energy of the room-
temperature structure E0,

�E( 1
p
, 0, 1

p
) =

E( 1
p
, 0, 1

p
)

Number of f.u.
− E0(primitive unit cell),

(A14)

calculated per f.u. Below, the results obtained using VASP
are given. No SOC, GGA-PBE: �E(1/5,0,1/5) = −3.5 meV,
�E(1/8,0,1/8) =−7.6 meV, �E(1/6,0,1/6) = 71.1 meV. No SOC,
LDA: �E(1/5,0,1/5) = −16.4 meV, �E(1/8,0,1/8) = −32.4 meV,
�E(1/6,0,1/6) = −6.5 meV. Spin-orbit coupling included,
GGA-PBE: �E(1/5,0,1/5) = 15.10 meV, �E(1/8,0,1/8) =
20.60 meV, �E(1/6,0,16) = 104.7 meV. Spin-orbit coupling
included, LDA: �E(1/5,0,1/5) = 2.5 meV, �E(1/8,0,1/8) =
−3.8 meV, �E(1/6,0,1/6) = 27.6 meV. Here, �E were also
calculated using WIEN2k code (for the same unit cells and
atomic positions), and the same trends were obtained. These
results indicate that the considered DFT methods do not
correctly predict the ground state of the system because they
favor the undistorted state over the dimerized structures. Thus,
more advanced numerical techniques should be used for that
purpose, as described in the main text.
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