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Introduction

In 1978 Cremmer, Julia, and Scherk found the action for 11-
dimensional supergravity. The action is simple, but contains
a very subtle Chern-Simons term.

This talk is about that Chern-Simons term.

Y : 11-dimensional, oriented, spin.

In topologically trivial situations

C ∈ Ω3(Y ) G := dC ∈ Ω4(Y ).

The action for the theory is (schematically):

exp

[
−

∫
Y

vol(g)R(g) +G ∧ ∗G+ ψ̄ /Dψ

]
Φ(C)

Φ(C) = exp
(

2πi
∫

Y

1
6
CG2 − CI8(g)

)
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Defining The Chern-Simons term

But we also want [G] 6= 0.

Existence of M2 branes ⇒ (Witten 96)

[G] = ā− 1
2
λ, ā ∈ H̄4(Y ;ZZ)

If ∂Y = ∅ the usual definition of a Chern-Simons term in-
volves an extension to a bounding 12-manifold Z:

Φ(C) ∼ exp
(

2πi
∫

Z

1
6
G3 −GI8(g)

)

[I8(g)] =
p2 − λ2

48

a priori only defined up to a 96th root of unity.

Witten 96: a ∈ H4(Y,ZZ) ↔ Principal E8 bundle P (a).

Identify

[G] = [trF 2 − 1
2
trR2]

1
6
G3 −GI8 =

1
2
i( /DA) +

1
4
i( /DRS) + d(∗)

Index theory ⇒ Φ is well-defined up to a ±1.

The sign cancels against

Pf( /DRS) =
√

det /DRS
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Boundaries

The extension to the case with boundary is nontrivial.

∂Y = X: We must distinguish

• Temporal boundaries

• Spatial boundaries

In either case we need a “model” for the C-field.
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Models for the C-field

For the C-field what we know for sure is the isomorphism
class of C. It is fixed by the “Wilson loops”

Σ → e
2πi

∫
Σ

C

⇒ isomorphism classes labeled by Cheeger-Simons charac-
ters, Ȟ4(Y, U(1)).

But the proper way to express this in terms of redundant
variables is not really known.

Abstractly,...

Gauge potentials = objects in a category

gauge transformations = morphisms

global gauge transformations = automorphisms

Different models for the C-field correspond to equivalent cat-
egories.



E8 Model for the C-field

Definition: A “C-field” on Y with characteristic class a is
a pair (A, c) in

C(Y ) := Conn(P (a))× Ω3(Y )

Gauge invariant fieldstrength:

G = trF 2 − 1
2
trR2 + dc

• Morally speaking

C = CS(A)− 1
2
CS(g) + c

• Note that G depends on metric.
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Chern-Simons term

Φ(C) = exp
[
2πi

{
1
4
η( /DA) +

1
8
η( /DRS)

}
+ 2πiIlocal

]

Ilocal =
∫

Y

(
c(

1
2
G2 − I8)−

1
2
cdcG+

1
6
c(dc)2

)

The same formula applies with or without boundary

Φ is a section of a line bundle:

L → C(Y )×Met(Y )

When ∂Y = X, L has a connection:

A = 2π
∫

(
1
2
G2 − I8)δC

with nonzero curvature:

F = π

∫
X

GδCδC
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Anomalies

The theory of the C-field by itself is quantum inconsistent.
The theory of the gravitino by itself is quantum inconsistent.
But the product is consistent.

No boundary

Pf( /DRS), a section of
L := PF( /DRS) →Met(Y )

L is a complex line bundle with real structure ⇒ holonomies
= ±1: The gravitino has a global anomaly.

A natural isomorphism L ∼= L ⇒ global anomaly cancela-
tion:

Pf( /DRS) · Φ
is a well-defined function on C(Y )×Met(Y )/G

Temporal boundary :

Φ is a section of a line bundle over Met(Y ), NOT over
Met(X).

⇒ Obstruction to defining a well-defined Hilbert space of
states.

Nevertheless, with APS bc’s on fermions

Pfaff( /DRS) · Φ ∈ Γ
(

PF( /DA) → C(X)×Met(X)
)
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Since the isomorphism is naturalthere are no extra choices like theta angles, torsion fluxes etc. in this anomaly cancellation. 
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Anomaly Cancellation for spatial boundaries

With local (chiral) b.c.’s on fermions one can still define ellip-
tic operators and study geometric invariants (D. Freed’s student

M. Scholl is studying the general case, filling a gap in the math literature.).

⇒ Rigorous proof of anomaly cancellation in the Horava-
Witten model.

The cancellation is completely local, e.g. multiple boundaries
with εi = ± on each boundary is allowed topologically:

G|Xi
= εi(trF 2(Ai)− 1

2 trR2(gi))

Φ : F =
∑

i

εi

∫
Xi

(
1
2
i( /DA) +

1
4
i( /DRS)

)
Pfaff( /DAi

) : F = −εi
∫

Xi

1
2
i( /DAi

)

Pfaff( /DRS) : F = −
∑

i

εi

∫
Xi

1
4
i( /DRS)
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This is hardly news, but one nice aspect of the proof is that it makes it crystal clear that the anomaly cancellation is local. Of course, locality is physically desirable, andtaken for granted by most of us, but people who have thought very carefully about it, such as Bilal and Metzger realize that it is nontrivial to show. One way of stressing the locality is that there is no topological obstruction to putting M-theory on an 11-fold with arbitrary numbers of boundary components and chirality projections. 



The Gauge group G

Our next goal is to write the Gauss law for C-field gauge
invariance.

In the E8 model C = (A, c).

• Small gauge transformations: c→ c+ dΛ, Λ ∈ Ω2(Y )

• “All” gauge transformations: c→ c+ ω, ω ∈ Ω3
ZZ(Y )

Does not properly account for global gauge transformations
“Λ ∼ constant.”

Actually, G is an extension:

0 → H2(Y, U(1)) → G → Ω3
ZZ(Y ) → 0

H2(Y,U(1)) = global gauge transformations,

acts as a group of automorphisms: If α ∈ H2(Y, U(1)) then

gα : (A, c) → (A, c)

But it still has nontrivial physical effects.
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Gauss law

Physical wavefunctions should be gauge invariant:

g ·Ψ(C) = Ψ(g · C) ∀g ∈ G

To formulate the Gauss law we define a lift:

L G→ L

↓ ↓

C(X) G→ C(X)

g ·Ψ(CX) = ϕ(CX , g) · exp(
∫ g·CX

CX

A) ·Ψ

Definition of the “lifting phase” ϕ(CX , g):

Given CX & g ⇒ twisted C-field CX,g on Y = X × S1:

CX,g(x, 1) = g · CX,g(x, 0)

ϕ(CX , g) := Φ(CX,g)

ϕ(CX , g1)ϕ(g1 · CX , g2) = e
−iπ

∫
X

Gω1ω2ϕ(CX , g1g2)
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This construction first appeared in Witten's paper on the 5-brane partition function. 



Writing out the Gauss law

Recall G is an extension:

0 → H2(Y, U(1)) → G → Ω3
ZZ(Y ) → 0

So the Gauss law consists of two statements:

1. Law for g = gα, α ∈ H2(X,U(1))

⇒ C-field electric charge tadpole condition.

2. Law for g ∈ Ω3
ZZ(X)

⇒ quantization of Page charge.
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The Tadpole Condition

A global gauge transformation gα, α ∈ H2(X,U(1)) acts
nontrivially on quantum wavefunctions:

If Ψ ∈ LA,c then

gα ·Ψ = exp
[
2πi〈Q,α〉

]
Ψ

Q ∈ H8(X,ZZ) is the C-field electric charge.

Gauss Law: Q 6= 0 ⇒ Ψ = 0.

From the definition of the group lift we get a formula for Q.

It is easy to show that

Q̄ = [
1
2
G2 − I8]DR

but there is indeed a torsion component to the usual tadpole
condition.
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Part 2 of the Gauss law

When Q = 0 we can have nonzero gauge invariant wavefunc-
tions

Ψ(C) ∈ Γ(L)

There is still further information in the statement of gauge
invariance.

Trivialize L.

⇒ Choose a basepoint C = C• + c,

Ψ(C) → ψ(c)

Remainder of the Gauss law says:

ψ(c+ ω) = eω(c)ψ(c) ∀ω ∈ Ω3
ZZ(X)

eω(c) := ϕ(C,ω)∗e−2πi
∫

X
( 1

2 G− 1
6 dc)cω
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Quantization of Page Charge

The equation
ψ(c+ ω) = eω(c)ψ(c)

is equivalent to:

exp
(
2πi

∫
ωP

)
ψ = ψ ∀ω ∈ Ω3

ZZ(X)

P =
1
2π

Π +
(1
2
G•c+

1
6
cdc

)
+ T•

where dT• = 1
2G•

2 − I8 & Π = momentum,

P is the “Page charge,” or electric flux, (expressed in a Hamiltonian

formalism).

Roughly speaking, P = dC6.

If [G] = 0, the quantum Gauss law for large C-field gauge
transformations ⇒

[P ] ∈ H̄7(X;ZZ)

This is the expected electro-magnetic dual to the quantiza-
tion of magnetic flux:

[G] ∈ H̄4(X;ZZ)

gmoore
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There is an important \pm 1 on the RHS compensating a Z2 anomaly in the Gauss law. 
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Page charges don’t commute

However, when [G] 6= 0, things are quite different.

For φ ∈ H3
DR(X) define

P (φ) =
∫

X

φ ∧ P

Easy computation:

[P (φ1), P (φ2)] =
i

2π

∫
φ1 ∧ φ2 ∧G

[P ] is not gauge invariant:

U(ω)P (φ)U(ω)−1 = P (φ)−
∫
ωφG

U(ω) := exp[2πi
∫
ωP ]

gmoore
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 This was previously noted in a special case by Beasley and Witten

gmoore
Line

gmoore
Rectangle

gmoore
Line

gmoore
Line

gmoore
Line



The Page Charge Group

When [G] 6= 0 part of the lattice H̄7(X,ZZ) collapses to a
finite group.

The gauge invariant objects are

W (φ) := e2πiP (φ)

for φ such that:∫
φωG ∈ ZZ ∀ω ∈ H3(X,ZZ)

These W (φ) form the “Page charge group.”

N.B. This group is nonabelian!

W (φ1)W (φ2) = e−iπ
∫

φ1φ2GW (φ1 + φ2)

= e−2πi
∫

φ1φ2GW (φ2)W (φ1)
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Analogy to 3D Chern-Simons

A closely related theory is 3d massive abelian CS:

S =
∫

Σ×IR

− 1
2e2

F ∗ F + 2π
∫

Σ×IR

kAdA

On Σ× IR the dynamics of the topological (flat) modes of A
is that of an electron on a torus H1(Σ;U(1)) in a constant
magnetic field.

Similarly - for harmonic modes of C: c =
∑

a caω
a,

Heff = hab

(
−i ∂
∂ca

− πBaa′
ca′

)(
−i ∂
∂cb

− πBbb′
cb′

)

hab =
∫
ωa ∗ ωb Bab =

∫
X

Gωaωb

k ↔ 1
2 [G]

Landau levels ↔ Wavefunction ψ(c)

Magnetic translation operator ↔ Page charge

Verlinde,’t Hooft, Wilson operator ↔ W (φ)
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It is important to take the long distance limit, because the theory of the C-field is self-interacting. 



A derivation of the 5-brane partition function

As an application, we derive Witten’s prescription for the
5-brane partition function.

X = D6 × S4 at conformal infinity for an asymptotically
AdS space

ds2 → (k2/3`2)
[
dr2 + e2rds2D6

+
1
4
ds2S4

]
G→ G∞ = kωS4 + Ḡ

AdS/CFT ⇒ (k � 1)

Z
[
M− theory/Y

]
= Z

[
U(k) (2, 0)− theory/D6

]
We can say something about the “singleton sector”

U(k) =
SU(k)× U(1)

ZZk

U(1) ∼ C.O.M. for k 5-branes

- couples to the harmonic modes c∞,h.
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Page charge is dual to ’t Hooft sector

To write the dependence on c∞,h we use the symplectic split-
ting

H3(D6,ZZ) = Λ1 ⊕ Λ2

〈ω1, ω2〉 =
∫

D6

ω1 ∧ ω2

Then

Z
[
U(k) (2, 0)− theory

]
=

∑
β∈Λ1/kΛ1

ζβΨβ(c∞,h)

• ζβ is the contribution of the SU(k)/ZZk (0, 2) theory.

• β labels “’t Hooft sectors” of the SU(k)/ZZk theory (Witten).

• A formula for Ψβ in terms of theta functions shows that:

W (φ1)Ψβ = Ψβ+φ1 φ1 ∈ Λ1/kΛ1

W (φ2)Ψβ = e2πik〈φ2,β〉Ψβ φ2 ∈ Λ2/kΛ2

• Page charge group = a discrete Heisenberg group onH3(D6,ZZ/kZZ).

’t Hooft sector = “Page charge.”
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Similar decompositions occur in AdS3 and AdS5, and were important in some recent work with Gukov, Martinec, and Strominger.



Formula for Ψβ

Ψβ are derived from chiral splitting of

∑
ω∈H3

ZZ
(D6)

ϕ(C•, ω) exp
{
−πk

2

∫
D6

(c+ ω) ∗ (c+ ω)− iπk

∫
D6

c ∧ ω
}

=
∑

β∈Λ1/kΛ1

ζβΨβ(c)

Explicitly:

Ψβ(c) = e
−πk

2

∫
D6

c∗c+c(1,0)Imτc(1,0)

Θβ,k/2(c(1,0) + θ + τφ, τ)

The characteristics follow from ϕ(C•, ω) and depend on the
the metric.

ϕ(C•, ω) ∼ exp[2πi
∫

D6

ω ∧ CS(g)]
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Conclusions

• The E8 formalism for the C-field can be useful, but it has
shortcommings.

Is there a better model for the C-field?

How do we formulate M -theory on unoriented manifolds?

• The naive classification of electric+ magnetic fluxes:

H4(X,ZZ)⊕H7(X,ZZ)

is replaced by a nonabelian group

• This has implications for the K-theoretic classification of
type II string fluxes.

• Five-brane partition functions have metric-dependent char-
acteristics.

• This can lead to suppression of instanton effects.
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