Breaking News About

 N=2* SYM On Four-Manifolds, Without Spin

Work with JAN MANSCHOT

+ related work with JM and XINYU ZHANG

Introduction \& Main Claims

2 The N=2* Theory: UV Meaning Of Invariants

3
Coulomb Branch Integral: New Identities \& Interactions

Evaluation Of CB Integral: Wall Crossing \& Mock Modular \& Jacobi-Maass Forms Galore

LEET Near Cusps \& Explicit Results
Remarks On S-Duality Orbits Of Partition Functions

Nontechnical Summary

We study a TQFT in 4d whose partition function generalizes both the Donaldson invariants and the Vafa-Witten invariants, and interpolates between them.

The theory depends on a choice of background spin-c structure \mathfrak{s}. This dependence has not previously been
discussed. Including it turns out to be nontrivial. We believe we have solved the problem completely.

I gave a preliminary report at the end of my talk at StringMath 2018, where the last slide said...

Surprise！！

It doesn＇t work！
Correct version appears to be non－holomorphic．
With Jan Manschot we have an alternative which is currently being checked．

Does the u－plane integral make sense for ANY family of Seiberg－Witten curves？

どうもありがとうございます

And then - ah Muse! - after many years wandering a'er stormy seas. 'twixt whirlpools a' singularities and monstrous mock modular forms, unnumbered toils we did endure through dark and dismal nights, 'till with the rosy-fingered dawn, in the safe haven of explicit formulae, with full many consistency checks, we did arrive.

Intro \& Main Claims - 1/6

$$
\mathrm{d}=4 \mathrm{~N}=2^{*} \mathrm{SYM} . G=S U(2), S O(3)
$$

X : Smooth, compact, oriented, $\partial X=\emptyset, b_{2}^{+}>0$,
For simplicity: Connected, $\pi_{1}(X)=0$, ignore torsion

Data needed to formulate the invariants:

$$
\tau_{0} \in \mathcal{H} ; q_{0}:=e^{2 \pi i \tau_{0}} \quad m \in \mathbb{C}
$$

(UV) Spin-c structure: $\mathfrak{s}, \quad c_{u v}:=c_{1}(\mathfrak{s}) \in H^{2}(X, \mathbb{Z})$
$v \in H^{2}(X ; \mathbb{Z} / 2 \mathbb{Z}) \quad$ Orientation of $H^{2}(X ; \mathbb{R})$

Intro \& Main Claims - 2/6

Path integral defines a "function"

$$
\begin{gathered}
Z_{v}\left(\tau_{0}, m, c_{u v}\right): H_{*}(X ; \mathbb{Z}) \rightarrow \mathbb{C} \\
Z_{v}\left(\tau_{0}, m, c_{u v}\right)(x)=\sum_{k \geq 0} q_{0}^{k} \int_{\mathcal{M}_{k}} e^{\mu(x)} \operatorname{Eul}\left(\mathcal{E}_{\mathfrak{s}} ; m\right)
\end{gathered}
$$

\mathcal{M}_{k} : Moduli of ASD connections on a principal $S O$ (3) bundle $P \rightarrow X$ with $v=w_{2}(P)$ and instanton no. $=k$

$$
\mu: H_{*}(X, \mathbb{Z}) \rightarrow H^{4-*}\left(\mathcal{M}_{k} ; \mathbb{Q}\right)
$$

$\mathcal{E}_{5}: \mathrm{U}(1)$-equivariant virtual bundle over moduli space of instantons

Intro \& Main Claims - 3/6

Special cases were studied in
 [Moore \& Witten 1997; Labastida \& Lozano 1998]

Those studies were limited to spin manifolds with trivial spin-c structure.

Related work: Dijkgraaf, Park, Schroers 1998 $\mathrm{N}=1$ deformation of $\mathrm{N}=4 \mathrm{SYM}$, twisted using Kahler structure for Kahler 4-folds with $b_{2}^{+} \geq 3$.

Recently an important contribution to related issues appeared in [18]. It would be fruitful to apply the physical methods of [18] to the problems addressed here. In that way one could compute the entire generating functional of the $N=2$ theory with a massive adjoint hypermultiplet, and work on more general four-manifolds.

Intro \& Main Claims - 4/6

An acs \mathcal{J} defines a canonical spin-c structure $\mathfrak{s}(\mathcal{J})$.
(Use canonical homomorphism $U(2) \rightarrow \operatorname{Spin}^{c}(4)$.)
1A: For such a spin-c structure and $m \rightarrow 0$

$$
Z_{v}\left(\tau_{0}, m, c_{u v}\right) \rightarrow Z_{v}^{V W}\left(\tau_{0}\right)
$$

1B: $m \rightarrow \infty \& q_{0} \rightarrow 0$ with $\Lambda^{4}:=4 m^{4} q_{0}$ fixed:

$$
Z_{v}^{\text {renorm }}\left(\tau_{0}, m, c_{u v}\right) \rightarrow Z_{v}^{D W}
$$

Intro \& Main Claims - 5/6

$$
Z_{v}=Z_{v}^{C B}+Z_{v}^{S W}
$$

$Z_{\nu}^{C B}$: Coulomb branch integral
2a: Writing a single-valued measure requires nonholomorphic interactions with \mathfrak{s}
(\Rightarrow implications for class S generalization)
2b: Integrand is a total derivative of a Maass-Jacobi form. ('`Mock Jacobi form")

2c: Value of the integral is a nonholomorphic completion of a mock modular form.

2d: VW expression for $\mathbb{C P}^{2}$ is a special case

Intro \& Main Claims - 6/6

For $b_{2}^{+}>1 Z_{v}$ is a linear combination of SW invariants with coefficients in a ring of modular forms for τ_{0}

Corollary: VW invariants vanish if

$$
X=Y_{1} \# Y_{2} \text { with } b_{2}^{+}\left(Y_{i}\right)>0
$$

(VW invariants only rigorously defined for algebraic surfaces: Tanaka-Thomas 2017; Sheshmani-Yau 2019)

1 Introduction \& Main Claims

The N=2* Theory: UV Meaning Of Invariants

Coulomb Branch Integral: New Identities \& Interactions

Evaluation Of CB Integral: Wall Crossing \& Mock Modular \& Jacobi-Maass Forms Galore

LEET Near Cusps \& Explicit Results

Remarks On S-Duality Orbits Of Partition Functions

$\mathcal{N}=2^{*}$ Theory Bosonic Fields:

Vectormultiplet $A \in \mathcal{A}(P) \phi \in \Gamma(a d P \otimes \mathbb{C})$

$$
\mathrm{S}=\int \bar{\tau}_{0} \operatorname{tr}\left(F_{+}^{2}\right)+\tau_{0} \operatorname{tr}\left(F_{-}^{2}\right)+\cdots
$$

Adjoint $\mathrm{HM}: \quad q, \tilde{q} \in \Gamma(a d P \otimes \mathbb{C})$

$$
W=\operatorname{Tr}(q(\operatorname{Ad}(\phi)+m) \tilde{q})
$$

$\Rightarrow U(1)_{b}$ symmetry: $\quad \operatorname{Charge}(q, \tilde{q})=(1,-1)$

Topological Twisting

Couple to background $S O(3)_{R}$ bundle with connection.
Choose an isomorphism with $\mathrm{SO}(3)$ bundle with connection associated to ($\left.\Lambda^{2,+} T X, \nabla^{L C}\right)$

Magically, all metric dependence is Q-exact (Witten 1988):

$$
S=\int \tau_{0} \operatorname{tr}\left(F^{2}\right)+Q(*)
$$

N.B. Also holomorphic in τ_{0}

With adjoint hypers topological twisting only makes sense if they couple to a background spin-c structure \mathfrak{s} and spin-C connection [Labastida-Marino 95]

Topological Twisting

HM bosons $\left(q, \tilde{q}^{*}\right) \Rightarrow \quad M \in \Gamma\left(W^{+} \otimes a d P \otimes \mathbb{C}\right)$
$W^{+} \rightarrow X:$ Positive chirality rank two bundle associated to uv spin-c structure \mathfrak{s}
Q-fixed point equations
$F^{+}+[M, \bar{M}]=0$
$D M=0$
"'Nonabelian monopole/SW equations"
[Labastida-Marino; Losev-Shatashvili-Nekrasov]
$U(1)_{b}$ acts on the moduli space \mathcal{M}_{Q} of these eqs.
Fixed point set: $M=0$ is $\mathcal{M}_{\text {asd }}(P)=\mathcal{M}_{k}$

Observables

$$
\begin{gathered}
\mathcal{O}: H_{*}(X, \mathbb{Z}) \rightarrow Q-\text { coho } \\
\mathcal{O}(p)=\left[\operatorname{Tr} \phi^{2}(p)\right] \\
\mathcal{O}(S)=\left[\int_{S} \operatorname{Tr}\left(\phi F+\psi^{2}\right)\right] \\
\text { Q- coho } \cong H_{U(1)_{b}}^{*}\left(\mathcal{M}_{Q}\right)
\end{gathered}
$$

$m: U(1)_{b}$ equivariant parameter
$=\operatorname{deg} 2$ generator of $S^{*}\left(\mathfrak{u}_{b}(1)\right)$
[Labastida-Marino; Losev-Shatashvili-Nekrasov]

Localization

$Q:$ Path integral $\rightarrow \int_{\mathcal{M}_{Q}} \ldots$
$U(1)_{b}: \quad \int_{M_{e}} \cdots \rightarrow \int_{M_{a s d}} \ldots$
$\left\langle e^{O(x)}\right\rangle_{\mathcal{N}=2^{*}}=\sum_{k=0} q_{0}^{k} \int_{M_{k}} e^{\mu(x)} E u l\left(\varepsilon_{;} ; m\right)$
ε_{5} : Obstruction bundle for elliptic complex, pulled back to \mathcal{M}_{k}.

Index Computations

$$
v \operatorname{dim} \mathcal{M}_{Q}=\operatorname{dim} G \frac{c_{u v}^{2}-(2 \chi+3 \sigma)}{4}
$$

N.B. Independent of instanton number k !

$$
\operatorname{dim} \mathcal{M}_{k}=8 k-\frac{3}{2}(\chi+\sigma)
$$

\Rightarrow Partition function is an infinite q_{0} - series even without insertion of observables.

$$
\text { Index } \boldsymbol{D}=-8 k+\frac{3}{8}\left(c_{u v}^{2}-\sigma\right)
$$

Conjecture: $\mathcal{E}_{\mathfrak{5}}=\operatorname{ker}\left(\boldsymbol{D}^{*}\right)$ for large k

Relation To Vafa-Witten Equations-1/2

$$
\begin{gathered}
A \in \mathcal{A}(P) \quad C \in \Gamma(\operatorname{ad} P) \quad B^{+} \in \Omega^{2,+}(\operatorname{ad} P) \\
F^{+}+\left[B^{+}, B^{+}\right]+\left[C, B^{+}\right]=0 \\
D_{\mu} C+D^{v} B_{v \mu}^{+}=0
\end{gathered}
$$

$$
\mathrm{ACS} \mathcal{J} \Rightarrow \quad \Lambda^{2,+} T^{*} X \cong \underline{\underline{\mathbb{R}}} \bigoplus K_{\mathbb{R}}
$$

J also determines a canonical spin-c structure $\mathfrak{s}(J)$

$$
W^{+} \cong \underline{\mathbb{R}} \otimes \mathbb{C} \oplus K
$$

Relation To Vafa-Witten Equations -2/2

DW twist of $N=4$ SYM is inequivalent to the SW twist.

Nevertheless, for $\mathfrak{s}(\mathcal{J})$ Q-fixed point eqs coincide

Seiberg-Witten \cong Vafa-Witten

Mass Limits

$\operatorname{Lim}_{m \rightarrow 0}\left[N=2^{*}\right.$ SYM $]=[N=4$ SYM $]$

SW94:

$m \rightarrow \infty \& q_{0} \rightarrow 0$

$$
\begin{gathered}
\Lambda_{0}^{4}=4 m^{4} q_{0} \\
\Rightarrow \text { pure } S Y M
\end{gathered}
$$

Mass Limits - 2

$$
\begin{gathered}
\left\langle e^{\mathcal{O}(x)}\right\rangle_{\mathcal{N}=2^{*}}=\sum_{k \geq 0} q_{0}^{k} \int_{\mathcal{M}_{k}} e^{\mu(x)} \operatorname{Eul}\left(\varepsilon_{\mathfrak{s}} ; m\right) \\
\operatorname{Eul}\left(\varepsilon_{\mathfrak{5}} ; m\right)=\prod_{i}\left(x_{i}+m\right)=m^{-\operatorname{Index}(D)} \sum_{\ell} \frac{c_{\ell}\left(\varepsilon_{\mathfrak{5}}\right)}{m^{\ell}} \\
\text { Leading term for } m \rightarrow 0: c_{\text {top }}\left(\varepsilon_{\mathfrak{5}}\right)
\end{gathered}
$$

For $\mathfrak{s}(\mathcal{J}): \quad \mathcal{E}_{\mathfrak{5}} \cong T^{*} \mathcal{M}_{k} \Rightarrow{ }^{\text {' }}$ Euler character of $\mathcal{M}_{k}{ }^{"}$
Leading term for $m \rightarrow \infty: \quad c_{0}\left(\mathcal{E}_{5}\right)=1$ \Rightarrow Donaldson invariants

1 Introduction \& Main Claims

2 The N=2* Theory: UV Meaning Of Invariants
Coulomb Branch Integral:
New Identities \& Interactions

Evaluation Of CB Integral: Wall Crossing \& Mock Modular \& Jacobi-Maass Forms Galore

5 LEET Near Cusps \& Explicit Results

6 Remarks On S-Duality Orbits Of Partition Functions

Coulomb Branch Integral

This is a useful and nontrivial test case for a more general very interesting open problem: Generalize DW theory to class S.
$C B=$ Base of a Hitchin system \mathcal{B}

$$
\text { Here: } u \in \mathbb{C} \cong \mathcal{B}
$$

Physics described by special geometry of a family of Abelian varieties over \mathcal{B}

SW94: Jacobians of a holo family of curves
Equipped with meromorphic differential

Seiberg-Witten Geometry

$E_{u} \quad y^{2}=\prod_{i=1}^{3}\left(x-\alpha_{i}\right) \quad \alpha_{i}=u e_{i}\left(\tau_{0}\right)+\frac{m^{2}}{4} e_{i}\left(\tau_{0}\right)^{2}$
$e_{i}\left(\tau_{0}\right)$ half-periods of $E_{\tau_{0}}=\mathbb{C} /\left(\mathbb{Z}+\tau_{0} \mathbb{Z}\right)$

$$
e_{i}\left(\tau_{0}\right) \in\left\{\frac{1}{3}\left(\vartheta_{3}^{4}\left(\tau_{0}\right)+\vartheta_{4}^{4}\left(\tau_{0}\right), \ldots\right\}\right.
$$

N.B. After choice of duality frame E_{u} has a $\tau\left(u, m, \tau_{0}\right)$ which should not be confused with τ_{0}

$$
\lim _{m \rightarrow 0} \tau\left(u, m, \tau_{0}\right)=\tau_{0} \quad \lim _{u \rightarrow \infty} \tau\left(u, m, \tau_{0}\right)=\tau_{0}
$$

Path Integral Of U(1) LEET

LEET: U(1) Maxwell + N=2 superpartners with topological couplings

$$
Z_{v}^{C B}=\int_{\mathcal{B}} d^{2} u B(u)^{\sigma} A(u)^{\chi} Z_{\text {Maxwell }}
$$

$$
B=\prod_{i}\left(u-u_{i}\right)^{\frac{1}{8}}
$$

\Rightarrow Potential problems with single-valued measure.

CB Measure: 1997-1998

$$
\begin{aligned}
& Z_{v}^{C B}(p, S)=\int_{\mathcal{B}} d^{2} u B^{\sigma} e^{p u} e^{S^{2} T} A^{\chi} \Psi_{v} \\
& A=\left(\frac{d a}{d u}\right)^{-\frac{1}{2}} \quad \Psi_{v} \sim \sum_{\text {fluxes }} e^{-\int \bar{\tau} F_{d y n,+}^{2}+\tau F_{d y n,-}^{2}}
\end{aligned}
$$

Depend on duality frame -

- but the local system has nontrivial monodromy.

CB Measure Only SV For X Spin

 $A^{\chi} e^{S^{2} T} \Psi_{v}$ is independent of duality frame, up to $8^{\text {th }}$ roots of unity.On a spin manifold, $\sigma=0 \bmod 8$: The measure is single-valued.

If X is not spin the above measure is not single-valued

CB Measure: New Interactions

We need to include the background spin-c structure \mathfrak{s}

There are couplings to the UV spin-c connection:

$$
\Delta S_{L E E T}=\int c(u) F_{b}^{2}+d(u) F_{b} F_{d y n}
$$

[Shapere-Tachikawa, 2008]
Surprise! No choice of holomorphic coupling makes the measure single-valued!

Resolution

"'Weakly gauge" the $U(1)_{b}$ symmetry:
Gauge group: $\quad U(1)_{b} \times G \quad G \in\{S U(2), S O(3)\}$ \Rightarrow Rank TWO gauge group.

Take UV coupling of $U(1)_{b}$ to zero:
Freezes $U(1)_{b}$ vm fields to classical values

$$
m=\left\langle a_{b}\right\rangle
$$

Nati Seiberg \& Ann Nelson - 1993

Non-Holomorphic Coupling

Rank 2 Maxwell action: $F_{I}=\left(F_{b}, F_{d y n}\right)$

$$
\begin{aligned}
& \sim \int \bar{\tau}_{I J} F_{+}^{I} F_{+}^{J}+\tau_{I J} F_{-}^{I} F_{-}^{J}+\cdots \\
& \tau_{I J}=\left(\begin{array}{cc}
\frac{d^{2} \mathcal{F}}{d a^{2}} & \frac{d^{2} \mathcal{F}}{d a d m} \\
\frac{d^{2} \mathcal{F}}{d a d m} & \frac{d^{2} \mathcal{F}}{d m^{2}}
\end{array}\right) \quad v=\frac{d^{2} \mathcal{F}}{d a d m} \\
& \int \bar{v} F_{b}^{+} F_{d y n}^{+}+v F_{b}^{-} F_{d y n}^{-}
\end{aligned}
$$

Remark: SW limit $m \rightarrow \infty$

$$
e^{\int \bar{v} F_{b}^{+} F_{d y n}^{+}+v F_{b}^{-} F_{d y n}^{-}}
$$

Metric dependent \& nonholomorphic, varying continuously on \mathcal{B}

$$
\rightarrow e^{i \pi \int w_{2}(X) \frac{F_{d y n}}{2 \pi}}
$$

Important implications for the generalization of CB integral to class S theories: We do not want a \mathbb{Z}_{2}-valued QRIF.

Coulomb Branch Measure: 2019-2020

$$
Z_{\nu}^{C B}=\int_{\mathcal{B}} \Omega
$$

$\Omega=d u \wedge d \bar{u} B^{\sigma} e^{p u} e^{S^{2} T} A^{\chi} C^{c_{u v}^{2}} \Psi_{v}$

Nontrivial question: Is this single-valued?
Step 1: Use modular parametrization. Identify \mathcal{B} with the modular curve $\mathcal{H} / \Gamma(2)$

Modular Parametrization

Weak coupling duality frame:
Nekrasov: Instanton partition function
$\mathcal{F}(a, m)=\frac{1}{2} \tau_{0} a^{2}+$
$+m^{2} f_{1}\left(\tau_{0}\right)\left(\log \left(\frac{2 a}{m}\right)-\frac{3}{4}+\frac{3}{2} \log \left(\frac{m}{\Lambda}\right)\right)$
$f_{n}\left(\tau_{0}\right)$: polynomials:
$\underset{\substack{\text { Minhahan, , vemeschansky, Warner; Dhoker, Phong] } \\ E_{2}, E_{4}, E_{6} \text { wt }=2 n-2}}{f_{n}\left(\tau_{0}\right)} \sum_{n}^{2}\left(\tau_{0}\right)\left(\frac{m}{a}\right)$
Λ, m dependence (also A,B couplings):
[Manschot, Moore, Xinyu Zhang 2019]

Modular Parametrization

$$
\begin{gathered}
\tau=\frac{d^{2} \mathcal{F}}{d a^{2}} \quad \frac{d a}{d u}=\oint_{A} \frac{d x}{y} \\
m^{2}\left(\frac{d a}{d u}\right)^{2}=\frac{\vartheta_{4}^{4}(\tau) \vartheta_{3}^{4}\left(\tau_{0}\right)-\vartheta_{3}^{4}(\tau) \vartheta_{4}^{4}\left(\tau_{0}\right)}{\eta^{6}\left(\tau_{0}\right)} \\
m^{-2} u\left(\tau, \tau_{0}\right)=\frac{e_{1}^{2}\left(\tau_{0}\right) e_{23}(\tau)+\text { cycl. }}{e_{1}\left(\tau_{0}\right) e_{23}(\tau)+\text { cycl }}
\end{gathered}
$$

[Huang, Kashani-Poor,Klemm]

$$
\mathcal{B} \cong \mathcal{H} / \Gamma(2)
$$

Modular Parametrization

Two New Nontrivial Identities

$C:=\exp \left(-2 \pi i \frac{d^{2} \mathcal{F}}{d m^{2}}\right)=\left(\frac{\Lambda}{m}\right)^{\frac{3}{2}} \frac{\vartheta_{1}(2 \tau, 2 v)}{\vartheta_{2}^{2}\left(\tau_{0}\right) \vartheta_{4}(2 \tau)}$

$$
v:=\frac{d^{2} \mathcal{F}}{d a d m}
$$

$\frac{\vartheta_{2}(2 \tau, v)}{\vartheta_{3}(2 \tau, v)}=\frac{\vartheta_{2}\left(2 \tau_{0}, 0\right)}{\vartheta_{3}\left(2 \tau_{0}, 0\right)} \quad$ Determine $\quad v\left(\tau, \tau_{0}\right)$

The ``Period Point" J
 $$
b_{2}^{+}>1 \Rightarrow Z_{v}^{C B}=0
$$

$Z_{\text {Maxwell }}$:

$$
\begin{array}{lll}
b_{2}^{+}=1 \quad Z_{v}^{C B} \neq 0 \quad \begin{array}{l}
\text { Frame dependent. } \\
\end{array} & \text { Not holomorphic. } \\
& \text { Metric dependent. }
\end{array}
$$

$H^{2}(X ; \mathbb{R})$

$$
\begin{gathered}
* J=J \\
J^{2}=1 \\
J^{0}>0
\end{gathered}
$$

Maxwell Partition Function

Sum over the first Cher class $\lambda \in 2 L+v$,

$$
L=H^{2}(X ; \mathbb{Z}) \quad \text { (Simplicity: Put } S=0 . \text {.) }
$$

$$
E_{\lambda}^{J}=\operatorname{Erf}\left(x_{\lambda}\right) \quad \operatorname{Erf}(x):=\int_{0}^{x} e^{-\pi t^{2}} d t
$$

$$
x_{\lambda}=\sqrt{\operatorname{Im} \tau}\left(\lambda+\frac{\operatorname{Imv}}{\operatorname{Im} \tau} c_{u v}\right) \cdot J
$$

With all these ingredients we can now check that the CB measure is indeed monodromy invariant and hence well-defined.

The definition of the integral is still rather subtle. One must define naively divergent expressions like

$$
Z_{\mu}^{C B}=\int_{\mathcal{H} / \Gamma(2)} d^{2} \tau(\operatorname{Im} \tau)^{-s} q^{n} \bar{q}^{\tilde{n}}
$$

$$
\text { with } n<0 \text { and } \tilde{n}<0
$$

It can be done in a satisfactory way: Korpas, Manschot, Moore, Nidaiev 2019

1) Introduction \& Main Claims

2 The $N=2^{*}$ Theory: UV Meaning Of Invariants
(3)

Coulomb Branch Integral:
New Identities \& Interactions
Evaluation Of CB Integral: Wall Crossing \& Mock Modular \& Jacobi-Maass Forms Galore

LEET Near Cusps \& Explicit Results
6 Remarks On S-Duality Orbits Of Partition Functions

Evaluation Of CB Integral ?

$$
\begin{gathered}
\left.Z_{v}^{C B}=\int_{\mathcal{H} / \Gamma(2)} \Omega \quad \text { (For simplicity: } p=S=0 .\right) \\
\Omega=d \tau \wedge d \bar{\tau} B^{\sigma} A^{\chi} C^{c_{u v}^{2}} \Psi_{v}^{J} \\
\Psi_{v}^{J}=\sum_{\lambda \in 2 L+v} \partial_{\bar{\tau}} E_{\lambda}^{J} q^{-\frac{1}{4} \lambda^{2}} e^{\pi i \lambda \cdot c_{u v} v\left(\tau, \tau_{0}\right)} \\
\Omega=d \Lambda \quad \Lambda=d \tau B^{\sigma} A^{\chi} C^{c_{u v}^{2}} \widehat{G} \\
\Psi_{v}^{J}=\partial_{\bar{\tau}} \hat{G}
\end{gathered}
$$

Evaluation Of CB Integral ?

$$
\begin{gathered}
\Psi_{v}^{J}=\sum_{\lambda \in 2 L+v} \partial_{\bar{\tau}} E_{\lambda}^{J} q^{-\frac{1}{4} \lambda^{2}} e^{\pi i \lambda \cdot c_{u v} v\left(\tau, \tau_{0}\right)} \\
\Psi_{v}^{J}=\partial_{\bar{\tau}} \widehat{G} \\
\hat{G}=\sum_{\lambda \in 2 L+v} E_{\lambda}^{J} q^{-\frac{1}{4} \lambda^{2}} e^{\pi i \lambda \cdot c_{u v} v\left(\tau, \tau_{0}\right)} \\
\text { ??? NO!!! } \lim _{\lambda^{2} \rightarrow+\infty} E_{\lambda}^{J}= \pm 1
\end{gathered}
$$

Evaluating Difference Of CB Integrals

$$
\begin{gathered}
\Psi J_{1}-\Psi J_{2}=\partial_{\bar{\tau}} \widehat{G}^{J_{1}, J_{2}} \\
\widehat{G^{J_{1}, J_{2}}}=\sum_{\lambda \in 2 L+v} E_{\lambda}^{J_{1} J_{2}} q^{-\frac{1}{4} \lambda^{2}} \ldots \\
E_{\lambda}^{J_{1}, J_{2}}=\operatorname{Erf}\left(x_{\lambda}^{J_{1}}\right)-\operatorname{Erf}\left(x_{\lambda}^{J_{2}}\right) \\
\text { Converges nicely! }
\end{gathered}
$$

\Rightarrow Can use this to evaluate the difference $Z_{v}^{C B, J_{1}}-Z_{v}^{C B, J_{2}}$ by a sum of residues.

Wall-Crossing

As the contour approaches the cusp $u_{j}: E_{\lambda}^{J_{1}, J_{2}}$ limits to

$$
\operatorname{sign}\left[\left(\lambda \pm \frac{1}{2} c_{u v}\right) \cdot J_{1}\right]-\operatorname{sign}\left[\left(\lambda \pm \frac{1}{2} c_{u v}\right) \cdot J_{2}\right]
$$

$\Rightarrow Z_{v}^{C B, J}$ is piecewise constant as function of J but has nontrivial chamber dependence.

Chambers defined by various walls $W_{j}(\lambda)$

Continuous Metric Dependence

For the boundary at $u \rightarrow \infty$ the modular parameter $\tau \rightarrow \tau_{0}$. This leads to continuous metric dependence.

For $\mathfrak{s}(\mathcal{J})$ one finds:
$\eta\left(\tau_{0}\right)^{-2 \chi} \sum_{\lambda}\left[E\left(\sqrt{y_{0}} \lambda \cdot J_{1}\right)-E\left(\sqrt{y_{0}} \lambda \cdot J_{2}\right)\right]\left(\lambda \cdot c_{u v}\right) q_{0}^{-\lambda^{2}}$

+ Another Term
Closely related: Nonholomorphic: $y_{0}=\operatorname{Im}\left(\tau_{0}\right)$

The Special Period Point

For any manifold with $b_{2}^{+}=1 \exists$ special J_{0} such that

$$
\Omega=d \Lambda \quad \Lambda=d \tau B^{\sigma} A^{\chi} C^{c_{u v}^{2}} \hat{G}
$$

Where we can write \widehat{G} explicitly so that Λ is:

1. Well-defined
2. Nonsingular away from $\tau \in\left\{0,1, i \infty, \tau_{0}\right\}$
3. Modular: Good q_{i} expansion near cusps

Mock Jacobi-Maass Forms

These conditions determine \widehat{G} uniquely.

It is a Jacobi-Maass form evaluated at $z=c_{u v} v\left(\tau, \tau_{0}\right)$
After doing the integration by parts we obtain mock modular forms as functions of τ_{0}

For $X=\mathbb{C P}^{2}$ and $\mathfrak{s (J)}$ we reproduce exactly the mock modular forms used in Vafa-Witten.

1) Introduction \& Main Claims

2 The $N=2^{*}$ Theory: UV Meaning Of Invariants
(3)

Coulomb Branch Integral:
New Identities \& Interactions
Evaluation Of CB Integral: Wall Crossing \& Mock Modular \& Jacobi-Maass Forms Galore

LEET Near Cusps \& Explicit Results

LEET Near Cusps u_{j}

In the region of each cusp $u_{j}, j=1,2,3$ the LEET changes:
We have a $\mathrm{U}(1) \mathrm{VM}$ coupled to a charge 1 HM . (In the appropriate duality frame) [Seiberg-Witten 94]

There is a separate contribution to the path integral coming from the path integral of these three LEET.

We add the contributions, because we sum over vacua:

$$
Z_{v}=Z_{v}^{C B}+\sum_{j=1}^{3} Z_{v, j}^{S W}
$$

When $b_{2}^{+}>1 Z_{v}^{C B}$ vanishes -- we get true topological invariants:

$$
Z_{v}=\sum_{j=1}^{3} Z_{v, j}^{S W}
$$

So it is quite interesting to determine The three effective actions

General Form Of Effective Action Near u_{j}

a: Local special coordinate vanishing at u_{j}

$$
\begin{gathered}
S_{L E E T, j}^{S W}= \\
\alpha_{j}(a) \operatorname{Eul}(X)+\beta_{j}(a) \operatorname{Sig}(X)+\gamma_{j}(a) F_{d y n}^{2} \\
+\int \delta_{j}(a) F_{d y n} \wedge F_{b}+\varepsilon_{j}(a) F_{b} \wedge F_{b} \\
+Q(*)
\end{gathered}
$$

Determination Of Effective Action

MW97: The terms in the effective action at u_{j} can be determined from the contribution to the wall-crossing behavior $Z_{v}^{C B}$ from u_{j}

$$
Z_{v, j}^{S W}=\sum_{c_{i r}=w_{2}(X) \bmod 2} S W\left(c_{i r}\right)\left[\mathcal{A}_{j}^{\chi} \mathcal{B}_{j}^{\sigma} \mathcal{C}_{j}^{c_{u v}^{2}} \mathcal{D}_{j}^{c_{u v} \cdot c_{i r}} \mathcal{E}_{j}^{c_{i r}^{2}}\right]_{q_{j}^{0}}
$$

There is a prescription for including the homology observables $e^{\mu(x)}$

$$
\begin{aligned}
& Z_{\nu}=\kappa_{\nu}\left(\frac{\Lambda}{m}\right)^{3 / 8\left(c_{u v}^{2}-2 \chi-3 \sigma\right)} \eta\left(\tau_{0}\right)^{3(2 \chi+3 \sigma)}\left\{\eta\left(\tau_{0} / 2\right)^{-5 \chi-6 \sigma-c_{u v}^{2}} e^{s^{2} \mathcal{K}_{1}+\frac{p^{2}}{4} \frac{m^{2}}{\Lambda^{2}} \epsilon_{2}\left(\tau_{0}\right)}\right. \\
& \sum_{c_{i r}} S W\left(c_{i r}\right) e^{\frac{i \pi}{2}\left(c_{i r}-c_{u v}\right) \cdot \nu \chi_{n}}\left(\frac{\vartheta_{3}\left(\tau_{0} / 2\right)}{\vartheta_{4}\left(\tau_{0} / 2\right)}\right)^{\frac{1}{2} c_{u v} \cdot c_{i r}} e^{\frac{m}{\Lambda}\left(\vartheta_{2} \vartheta_{3}\left(\tau_{0}\right)\right)^{2} c_{i r} \cdot S} \\
& +\cdots\} \\
& Z_{\mu}=2^{12}\left(\frac{\Lambda}{m}\right)^{\frac{3}{8} c_{u v}^{2}}\left[\frac{\delta_{\mu=\frac{1}{2} c_{u v} \bmod 2}}{\left(\vartheta_{2} \eta\right)^{p}}+\frac{e^{\mathrm{i} \pi \mu \cdot c_{u v} / 2}}{\left(\vartheta_{4} \eta\right)^{p}}-\frac{e^{\mathrm{i} \pi \mu \cdot c_{u v} / 2-\mathrm{i} \pi \mu^{2} / 4}}{\left(\vartheta_{3} \eta\right)^{p}}\right] \\
& p=12+\frac{1}{2} c_{u v}^{2} \quad \vartheta_{i} \eta \text { evaluated at } \tau_{0}
\end{aligned}
$$

Relation To Previous Results

For $c_{u v}^{2}=2 \chi+3 \sigma$ and $m \rightarrow 0$ we recover and
generalize formulae of [VW;DPS] for VW invariants.

> For $c_{u v}=0$ we recover formulae of Labastida-Lozano

For $m \rightarrow \infty, \mathrm{q}_{0} \rightarrow 0$ after suitable renormalization we recover the "'Witten conjecture" for the Donaldson invariants in terms of the Seiberg-Witten invariants.

A generalization and unification of the 1990's formulae:
Vafa-Witten; Witten; Moore-Witten;
Dijkgraaf-Park-Schroers; Labastida-Lozano

1) Introduction \& Main Claims

2 The $\mathrm{N}=2^{*}$ Theory: UV Meaning Of Invariants
(3)

Coulomb Branch Integral: New Identities \& Interactions

Evaluation Of CB Integral: Wall Crossing \& Mock Modular \& Jacobi-Maass Forms Galore

5 LEET Near Cusps \& Explicit Results

Concluding Remarks

Twisted $N=2^{*}$ on four-manifolds with a spin-c structure unifies and generalizes previous expressions for invariants of 4-manifolds derived from SYM.

Some technical points are still being sorted out.
Non-simply connected generalization and implications for three-manifold invariants?

Hamiltonian formulation (Floer theory)?

Derivation from 6d $(2,0)$ theory?

S-Duality

In the $S U(2)$ theory Z_{v} is the partition function in the presence of 't Hooft flux
" Partition function in a background field for a magnetic \mathbb{Z}_{2} 1-form symmetry."

The Z_{v} span a vector space \mathcal{V}

But arbitrary linear combinations aren't physically meaningful

Three Distinct Theories

Gaiotto, Moore, Neitzke 2009; Aharony, Seiberg, Tachikawa 2013

Partition Functions For The $S O(3)_{ \pm}$Theories

$$
\begin{aligned}
& Z_{v}^{S O(3)_{+}}=\sum_{\rho} e^{i \pi v \cdot \rho} Z_{\rho} \\
& Z_{v}^{S O(3)_{-}}=\sum_{\rho} e^{\frac{i \pi}{2} \rho^{2}-i \pi v \cdot \rho} Z_{\rho} \\
& \Delta S=\frac{i \pi}{2} \int P_{2}\left(w_{2}(P)\right) \quad \text { Aharony, Seiberg, Tachikawa } 2013
\end{aligned}
$$

S-Duality Transformations

$$
\begin{gathered}
T: Z_{v} \rightarrow \xi_{v} Z_{v} \\
S: Z_{v} \rightarrow\left(-i \tau_{0}\right)^{w} \sum_{\rho} e^{i \pi v \cdot \rho} Z_{\rho} \\
w=\frac{1}{2}\left(\chi+3 \sigma-c_{u v}^{2}\right) \\
\xi_{v}=\omega \omega^{-\frac{1}{2}\left(2 \chi-3 \sigma+c_{u v}^{2}+12 v^{2}\right) \quad \omega=e^{\frac{2 \pi i}{24}}} \\
\text { Derivation from 6d? }
\end{gathered}
$$

Orbit Of Partition Functions -1/2

The Z_{v} span a vector space \mathcal{V}

The physical partition functions of the theories form an orbit in that vector space.

It is a finite covering of the triangle of theories.

For simplicity, work in $\mathbb{P V}$

Partition functions live in a disjoint union of connected
orbits, each double-covering the triangle of theories.

$$
\begin{gathered}
{\left[Z_{v+w_{2}(X)}^{S O(3)_{-}}\right] \longleftrightarrow\left[Z_{v}^{S O(3)-}\right]} \\
\left.\stackrel{\left[Z_{v+w_{2}(X)}^{S O(3)_{+}}\right]}{\longleftrightarrow}\right]
\end{gathered}
$$

Orbits of $Z_{v}^{S U(2)}=Z_{v}$ and $Z_{v+w_{2}(X)}^{S U(2)}$ are the same.

$$
\left[\begin{array}{l}
Z_{v+w_{2}(X)}^{S U(2)}
\end{array}\right]
$$

REMARKS ON CLASS S: SLIDES FROM MY STRING MATH 2018 TALK IN SENDAI, JAPAN

u-plane for class S: General Remarks
UV interpretation is not clear in general.
These theories might give new 4-manifold invariants.
The u-plane is an integral over the base \mathcal{B} of a Hitchin fibration with a theta function associated to the Hitchin torus. It will have the form

$$
Z_{u}=\int_{\mathcal{B}} d u d \bar{u} \mathcal{H} \Psi
$$

\mathcal{H} is holomorphic and metric-independent世: NOT holomorphic and metric- DEPENDENT "theta function"

Class S: General Remarks

$$
\mathcal{H}=\alpha^{\chi} \beta^{\sigma} \operatorname{det}\left(\frac{d a^{i}}{d u_{j}}\right)^{1-\frac{\chi}{2}} \Delta_{\text {phys }}^{\frac{\sigma}{\overline{8}}}
$$

$\Delta_{\text {phys }}$ a holomorphic function on \mathcal{B} with firstorder zeros at the loci of massless BPS hypers

α, β will be automorphic forms on

 Teichmuller space of the UV curve C α, β are related to correlation functions for fields in the $(0,2)$ QFT gotten from reducing $6 d(0,2)$
Class S: General Remarks

$$
\begin{array}{cl}
\Psi \sim \sum_{\lambda} e^{i \pi \lambda \cdot \xi} e^{-i \pi \bar{\tau}\left(\lambda_{+}, \lambda_{+}\right)-i \pi \tau\left(\lambda_{-} \cdot \lambda_{-}\right)+\cdots} \\
\lambda \in \lambda_{0}+\Gamma \otimes H^{2}(X ; \mathbb{Z}) & \Gamma \subset H^{1}(\Sigma ; \mathbb{Z}) \\
\xi \in \Gamma \otimes H^{2}(X ; \mathbb{R}) & \text { Lagrangian } \\
\xi \in \text { sublattice }
\end{array}
$$

If $\xi=\rho \otimes w_{2}(X) \bmod 2$ then WC from interior of \mathcal{B} will be cancelled by SW invariants
\Rightarrow No new four-manifold invariants...

Ψ comes from a "partition function" of

 a level 1 SD 3-form on $M_{6}=\Sigma \times X$Quantization: Choose a QRIF Ω on $H^{3}\left(M_{6} ; \mathbb{Z}\right)$
Natural choice: [Witten 96,99; Belov-Moore 2004]
$\Omega(x)=\exp \left(i \pi \operatorname{WCS}\left(\theta \cup x ; S^{1} \times M_{6}\right)\right)$
Choice of weak-coupling duality frame + natural choice of spin^{c} structure gives

$$
\xi=\rho \otimes w_{2}(X)
$$

Case Of $\operatorname{SU}(2) \mathcal{N}=2^{*}$

Using the tail-wagging-dog argument, analogous formulae were worked out for $\mathcal{N}=2^{*}$, by MooreWitten and Labastida-Lozano in 1998, but only in the case when X is spin.

L\&L checked S-duality for the case $b_{2}^{+}>1$
The generalization to X which is NOT spin is nontrivial: The standard expression from Moore-Witten and Labastida-Lozano is NOT single-valued on the u-plane.

This is not surprising: The presence of external $U(1)_{\text {baryon }}$ gauge field $F_{\text {baryon }} \sim c_{1}(\mathfrak{s})$ means there should be new interactions:
$e^{\kappa_{1}(u) c_{1}(\mathfrak{s})^{2}+\kappa_{2}(u) \lambda \cdot c_{1}(\mathfrak{s})}$
Shapere \& Tachikawa

Holomorphy, 1-loop singularities, single-valuedness forces:

$$
\left(u-u_{1}\right)^{-\frac{c_{1}(\mathfrak{s})^{2}}{8}} e^{-i \frac{\partial a_{D}}{\partial m} \lambda \cdot c_{1}(\mathfrak{s})}
$$

Surprise!!

It doesn't work!
Correct version appears to be non-holomorphic.
With Jan Manschot we have an alternative which is currently being checked.

Does the u-plane integral make sense for
ANY family of Seiberg-Witten curves?

MORE DETAILS ABOUT MOCK MODULAR FORMS : SLIDES FROM MY JMM TALK JANUARY, 2020, DENVER

Relation To Mock Modular Forms -1.1

Z_{u} : A sum of integrals of the form :

$$
I_{f}=\int_{\mathcal{F}_{\infty}} d \tau d \bar{\tau}(\operatorname{Im} \tau)^{-s} f(\tau, \bar{\tau})
$$

$\begin{aligned} & \begin{array}{l}\text { Support of } c \text { is } \\ \text { bounded below }\end{array}\end{aligned} f(\tau, \bar{\tau})=\sum_{m-n \in \mathbb{Z}} c(m, n) q^{m} \bar{q}^{n}$
Strategy: Find $\hat{h}(\tau, \bar{\tau})$ such that
$\partial_{\bar{\tau}} \hat{h}=(\operatorname{Im} \tau)^{-s} f(\tau, \bar{\tau})$
$\hat{h}(\tau, \bar{\tau})$ is modular of weight $(2,0)$

Relation To Mock Modular Forms - 1.2

$$
\hat{h}(\tau, \bar{\tau})=h(\tau)+R
$$

We choose an explicit solution

$$
\partial_{\bar{\tau}} R=(\operatorname{Im} \tau)^{-s} f(\tau, \bar{\tau})
$$

vanishing exponentially fast at $\operatorname{Im} \tau \rightarrow \infty$ $h(\tau)$: mock modular form $h(\tau)=\sum_{m \in \mathbb{Z}} d(m) q^{m} \quad q=e^{2 \pi i \tau}$
$h\left(-\frac{1}{\tau}\right)=\tau^{2} h(\tau)+\tau^{2} \int_{-i \infty}^{0} \frac{f(\tau, \bar{v})}{(\bar{v}-\tau)^{s}} d \bar{v}$

Doing The Integral

Note: $d(0)$ undetermined by diffeq but fixed by the modular properties: Subtle!
\exists Long history of the definition \& evaluation of such integrals with singular modular forms - refs at the

Examples 1.1

$$
\begin{gathered}
X=\mathbb{C P}^{2}: \quad b_{2}=b_{2}^{+}=1 \\
Z_{u}=\int_{\mathcal{F}_{\infty}} d \tau d \bar{\tau} \mathcal{H} \Psi \\
\mathcal{H}=\frac{\vartheta_{4}^{12}}{\eta^{9}} \exp \left[S^{2} T(\tau)\right]
\end{gathered}
$$

$$
\Psi=e^{-2 \pi y b^{2}} \sum_{k \in \mathbb{Z}+\frac{1}{2}} \partial_{\bar{\tau}}(\sqrt{y}(k+b))(-1)^{k} \bar{q}^{k^{2}} e^{-2 \pi i \bar{z} k}
$$

$$
y=\operatorname{Im}(\tau) \quad z=\frac{S}{\omega} \quad b=\frac{\operatorname{Im}(z)}{y}
$$

Examples 1.2

$$
\begin{gathered}
h(\tau, z)=\frac{r}{\vartheta_{4}(\tau)} \sum_{n \in \mathbb{Z}} \frac{(-1)^{n} q^{\frac{n^{2}}{2}-\frac{1}{8}}}{1-r^{2} q^{n-\frac{1}{2}}} \\
r=e^{i \pi z} \quad z=\frac{S}{\omega} \quad \omega=\vartheta_{2}(\tau) \vartheta_{3}(\tau) \\
Z_{u}=Z_{D W}(S)=[\mathcal{H} h(\tau, z)]_{q^{0}} \\
Z_{D W}(S)=-\frac{3}{2} S+S^{5}+3 S^{9}+54 S^{13}+2540 S^{17}+\cdots
\end{gathered}
$$

