Breaking News About N=2* SYM On Four-Manifolds, Without Spin

Work with JAN MANSCHOT

Modularity $SL_2(Z) = S\begin{pmatrix}a & b\\c & d\end{pmatrix} \mid a, b, c, d \in \mathbb{Z} \mid ad - bc = 1$ Modular form fill such that $\int \left(\frac{a\tau+b}{c\tau+a}\right) = (c\tau+d)^{W} \int (\tau)$

+ related work with JM and XINYU ZHANG

2 The N=2* Theory: UV Meaning Of Invariants

- 3 Coulomb Branch Integral: New Identities & Interactions
- 4 Evaluation Of CB Integral: Wall Crossing & Mock Modular & Jacobi-Maass Forms Galore
- 5 LEET Near Cusps & Explicit Results

6 Remarks On S-Duality Orbits Of Partition Functions

Nontechnical Summary

We study a TQFT in 4d whose partition function generalizes both the Donaldson invariants and the Vafa-Witten invariants, and interpolates between them.

The theory depends on a choice of background spin-c structure s. This dependence has not previously been discussed. Including it turns out to be nontrivial. We believe we have solved the problem completely.

I gave a preliminary report at the end of my talk at StringMath 2018, where the last slide said...

Surprise!!

It doesn't work!

Correct version appears to be non-holomorphic.

With Jan Manschot we have an alternative which is currently being checked.

Does the u-plane integral make sense for **ANY** family of Seiberg-Witten curves ?

どうもありがとうございます

And then — oh Muse! — after many years wandering o'er stormy seas, 'twixt whirlpools o' singularities and monstrous mock modular forms, unnumbered toils we did endure through dark and dismal nights, 'till with the rosy-fingered dawn, in the safe haven of explicit formulae, with full many consistency

checks, we did arrive.

Intro & Main Claims – 1/6

d=4 N=2^{*} SYM. G = SU(2), SO(3)

X: Smooth, compact, oriented, $\partial X = \emptyset$, $b_2^+ > 0$,

For simplicity: Connected, $\pi_1(X) = 0$, ignore torsion

Data needed to formulate the invariants:

 $\tau_0 \in \mathcal{H}$; $q_0 \coloneqq e^{2\pi i \, \tau_0} \quad m \in \mathbb{C}$

(UV) Spin-c structure: s, $c_{uv} \coloneqq c_1(s) \in H^2(X, \mathbb{Z})$

 $\nu \in H^2(X; \mathbb{Z}/2\mathbb{Z})$ Orientation of $H^2(X; \mathbb{R})$

Intro & Main Claims – 2/6 Path integral defines a ``function'' $Z_{\nu}(\tau_0, m, c_{u\nu}): H_*(X; \mathbb{Z}) \to \mathbb{C}$ $Z_{\nu}(\tau_0, m, c_{u\nu})(x) = \sum_{i=0}^{k} q_0^k \int_{\mathcal{M}_{\nu}} e^{\mu(x)} Eul(\mathcal{E}_{\mathfrak{s}}; m)$

 \mathcal{M}_k : Moduli of ASD connections on a principal SO(3)bundle $P \to X$ with $v = w_2(P)$ and instanton no. = k

$$\mu: H_*(X, \mathbb{Z}) \to H^{4-*}(\mathcal{M}_k; \mathbb{Q})$$

 $\mathcal{E}_{\mathfrak{s}}$: U(1)-equivariant virtual bundle over moduli space of instantons

Intro & Main Claims – 3/6

Special cases were studied in [Moore & Witten 1997; Labastida & Lozano 1998]

Those studies were limited to spin manifolds with trivial spin-c structure.

Related work: Dijkgraaf, Park, Schroers 1998 N=1 deformation of N=4 SYM, twisted using Kahler structure for Kahler 4-folds with $b_2^+ \ge 3$.

Recently an important contribution to related issues appeared in [18]. It would be fruitful to apply the physical methods of [18] to the problems addressed here. In that way one could compute the entire generating functional of the N = 2 theory with a massive adjoint hypermultiplet, and work on more general four-manifolds.

Intro & Main Claims – 4/6

An acs \mathcal{I} defines a canonical spin-c structure $\mathfrak{s}(\mathcal{I})$. (Use canonical homomorphism $U(2) \rightarrow Spin^{c}(4)$.)

1A: For such a spin-c structure and $m \rightarrow 0$

$$Z_{\nu}(\tau_0, m, c_{uv}) \rightarrow Z_{\nu}^{VW}(\tau_0)$$

1B: $m \to \infty \& q_0 \to 0$ with $\Lambda^4 \coloneqq 4m^4q_0$ fixed:

 $Z_{\nu}^{renorm}(\tau_0,m,c_{u\nu}) \to Z_{\nu}^{DW}$

Intro & Main Claims – 5/6 $Z_{\nu} = Z_{\nu}^{CB} + Z_{\nu}^{SW}$

 Z_{ν}^{CB} : Coulomb branch integral

2a: Writing a single-valued measure requires nonholomorphic interactions with s

 $(\Rightarrow$ implications for class S generalization)

2b: <u>Integrand</u> is a total derivative of a Maass-Jacobi form. (``Mock Jacobi form")

- 2c: <u>Value</u> of the integral is a nonholomorphic completion of a mock modular form.
- 2d: VW expression for $\mathbb{CP}^2\;$ is a special case

Intro & Main Claims – 6/6

For $b_2^+ > 1 Z_{\nu}$ is a linear combination of SW invariants with coefficients in a ring of modular forms for τ_0

Corollary: VW invariants vanish if $X = Y_1 # Y_2$ with $b_2^+(Y_i) > 0$

(VW invariants only rigorously defined for algebraic surfaces: Tanaka-Thomas 2017; Sheshmani-Yau 2019)

2 The N=2* Theory: UV Meaning Of Invariants

- 3 Coulomb Branch Integral: New Identities & Interactions
- 4 Evaluation Of CB Integral: Wall Crossing & Mock Modular & Jacobi-Maass Forms Galore
- 5 LEET Near Cusps & Explicit Results

6 Remarks On S-Duality Orbits Of Partition Functions

$\mathcal{N} = 2^*$ Theory **Bosonic Fields:** Vectormultiplet $A \in \mathcal{A}(P) \ \phi \in \Gamma(adP \otimes \mathbb{C})$ $S = \int \overline{\tau_0} tr(F_+^2) + \tau_0 tr(F_-^2) + \cdots$ Adjoint HM: $q, \tilde{q} \in \Gamma(adP \otimes \mathbb{C})$ $W = Tr(q (Ad(\phi) + m)\tilde{q})$ $\Rightarrow U(1)_b$ symmetry: Charge $(q, \tilde{q}) = (1, -1)$

Topological Twisting

Couple to background $SO(3)_R$ bundle with connection.

Choose an isomorphism with SO(3) bundle with connection associated to $(\Lambda^{2,+}TX, \nabla^{LC})$

Magically, all metric dependence is Q-exact (Witten 1988):

$$S = \int \tau_0 tr(F^2) + Q(*)$$

N.B. Also holomorphic in τ_0

With adjoint hypers topological twisting only makes sense if they couple to a background spin-c structure s and spin-c connection [Labastida-Marino 95]

Topological Twisting HM bosons $(q, \tilde{q}^*) \Rightarrow M \in \Gamma(W^+ \otimes adP \otimes \mathbb{C})$ $W^+ \rightarrow X$: Positive chirality rank two bundle associated to uv spin-c structure s Q -fixed point equations $F^+ + [M, \overline{M}] = 0$ DM = 0``Nonabelian monopole/SW equations" [Labastida-Marino; Losev-Shatashvili-Nekrasov] $U(1)_{h}$ acts on the moduli space \mathcal{M}_{O} of these eqs. Fixed point set: M = 0 is $\mathcal{M}_{asd}(P) = \mathcal{M}_k$

Observables $\mathcal{O}: H_*(X, \mathbb{Z}) \to Q - coho$ $\mathcal{O}(p) = [Tr \phi^2(p)]$ $\mathcal{O}(S) = \left[\int Tr(\phi F + \psi^2)\right]$ Q-coho $\cong H^*_{U(1)_h}(\mathcal{M}_O)$

 $m: U(1)_b$ equivariant parameter = deg 2 generator of $S^*(u_b(1))$

[Labastida-Marino; Losev-Shatashvili-Nekrasov]

Localization

- *Q*: Path integral $\rightarrow \int_{\mathcal{M}_Q} \cdots$
 - $U(1)_b: \qquad \int_{\mathcal{M}_0} \cdots \rightarrow \int_{\mathcal{M}_{acd}} \cdots$

 $\langle e^{\mathcal{O}(x)} \rangle_{\mathcal{N}=2^*} = \sum_{k\geq 0} q_0^k \int_{\mathcal{M}_k} e^{\mu(x)} Eul(\mathcal{E}_{\mathfrak{s}};m)$

 $\mathcal{E}_{\mathfrak{s}}$: Obstruction bundle for elliptic complex, pulled back to \mathcal{M}_k .

Index Computations

$$v \dim \mathcal{M}_Q = \dim G \frac{c_{uv}^2 - (2\chi + 3\sigma)}{4}$$

N.B. Independent of instanton number k ! $\dim \mathcal{M}_k = 8k - \frac{3}{2}(\chi + \sigma)$

⇒ Partition function is an infinite q_0 - series even without insertion of observables.

$$Index \mathbf{D} = -8k + \frac{3}{8}(c_{uv}^2 - \sigma)$$

Conjecture: $\mathcal{E}_{\mathfrak{s}} = \ker(\mathbf{D}^*)$ for large k

Relation To Vafa-Witten Equations-1/2 $A \in \mathcal{A}(P)$ $C \in \Gamma(ad P)$ $B^+ \in \Omega^{2,+}(ad P)$ $F^+ + [B^+, B^+] + [C, B^+] = 0$ $D_{\mu}C + D^{\nu}B_{\nu\mu}^{+} = 0$ $\mathsf{ACS}\,\mathcal{I} \Rightarrow \quad \Lambda^{2,+}\,T^*X \cong \mathbb{R} \oplus K_{\mathbb{R}}$ \mathcal{I} also determines a canonical spin-c structure $\mathfrak{s}(\mathcal{I})$

 $W^+ \cong \mathbb{R} \otimes \mathbb{C} \oplus K$

Relation To Vafa-Witten Equations -2/2

DW twist of N=4 SYM is inequivalent to the SW twist.

Nevertheless, for $\mathfrak{s}(\mathcal{I})$ Q-fixed point eqs coincide

Seiberg-Witten \cong Vafa-Witten

Mass Limits

$Lim_{m\to 0}[N=2^* SYM] = [N=4 SYM]$

SW94: $m \rightarrow \infty \& q_0 \rightarrow 0$ $\Lambda_0^4 = 4 m^4 q_0$ $\Rightarrow pure SYM$

Mass Limits – 2

$$\langle e^{\mathcal{O}(x)} \rangle_{\mathcal{N}=2^*} = \sum_{k\geq 0} q_0^k \int_{\mathcal{M}_k} e^{\mu(x)} Eul(\mathcal{E}_{\mathfrak{s}};m)$$

$$Eul(\mathcal{E}_{\mathfrak{s}};m) = \prod_{i} (x_{i} + m) = m^{-Index(D)} \sum_{\ell} \frac{c_{\ell}(\mathcal{E}_{\mathfrak{s}})}{m^{\ell}}$$

Leading term for $m \to 0$: $c_{top}(\mathcal{E}_{\mathfrak{s}})$

For $\mathfrak{s}(\mathcal{I}): \mathcal{E}_{\mathfrak{s}} \cong T^* \mathcal{M}_k \implies \mathbb{C}$ Euler character of \mathcal{M}_k "

Leading term for $m \to \infty$: $c_0(\mathcal{E}_s) = 1$ \Rightarrow Donaldson invariants

2 The N=2* Theory: UV Meaning Of Invariants

3 Coulomb Branch Integral: New Identities & Interactions

4 Evaluation Of CB Integral: Wall Crossing & Mock Modular & Jacobi-Maass Forms Galore

5 LEET Near Cusps & Explicit Results

6 Remarks On S-Duality Orbits Of Partition Functions 24

Coulomb Branch Integral

This is a useful and nontrivial test case for a more general very interesting open problem: Generalize DW theory to class S.

CB = Base of a Hitchin system B

Here: $u \in \mathbb{C} \cong \mathcal{B}$

Physics described by special geometry of a family of Abelian varieties over \mathcal{B}

SW94: Jacobians of a holo family of curves

Equipped with meromorphic differential

Seiberg-Witten Geometry

$$E_{u} \quad y^{2} = \prod_{i=1}^{3} (x - \alpha_{i}) \qquad \alpha_{i} = u e_{i}(\tau_{0}) + \frac{m^{2}}{4} e_{i}(\tau_{0})^{2}$$

 $e_i(\tau_0)$ half-periods of $E_{\tau_0} = \mathbb{C}/(\mathbb{Z} + \tau_0\mathbb{Z})$ $e_i(\tau_0) \in \{\frac{1}{3}(\vartheta_3^4(\tau_0) + \vartheta_4^4(\tau_0), ...\}$

N.B. After choice of duality frame E_u has a $\tau(u, m, \tau_0)$ which should not be confused with τ_0

 $\lim_{m \to 0} \tau(u, m, \tau_0) = \tau_0 \qquad \lim_{u \to \infty} \tau(u, m, \tau_0) = \tau_0$

Path Integral Of U(1) LEET

LEET: U(1) Maxwell + N=2 superpartners with topological couplings

$$Z_{\nu}^{CB} = \int_{\mathcal{B}} d^2 u \, B(u)^{\sigma} A(u)^{\chi} \, Z_{Maxwell}$$

$$B = \prod_{i} (u - u_i)^{\frac{1}{8}}$$

 \Rightarrow Potential problems with single-valued measure.

CB Measure: 1997-1998

$$Z_{\nu}^{CB}(p,S) = \int_{\mathcal{B}} d^2 u \, B^{\sigma} \, e^{pu} e^{S^2 T} \, A^{\chi} \, \Psi_{\nu}$$

$$A = \left(\frac{da}{du}\right)^{-\frac{1}{2}} \quad \Psi_{\nu} \sim \sum_{fluxes} e^{-\int \overline{\tau} F_{dyn,+}^{2} + \tau F_{dyn,-}^{2}}$$

Depend on duality frame – - but the local system has nontrivial monodromy.

CB Measure Only SV For X Spin

 $A^{\chi}e^{S^2T}\Psi_{\nu}$ is independent of duality frame, up to 8th roots of unity.

On a spin manifold, $\sigma = 0 \mod 8$: The measure is single-valued.

If X is not spin the above measure is not single-valued

CB Measure: New Interactions

We need to include the background spin-c structure \$

There are couplings to the UV spin-c connection:

$$\Delta S_{LEET} = \int c(u)F_b^2 + d(u)F_bF_{dyn}$$

[Shapere-Tachikawa, 2008]

Surprise! No choice of holomorphic coupling makes the measure single-valued!

Resolution

``Weakly gauge" the $U(1)_b$ symmetry: Gauge group: $U(1)_h \times G$ $G \in \{SU(2), SO(3)\}$ \Rightarrow Rank TWO gauge group. Take UV coupling of $U(1)_h$ to zero: Freezes $U(1)_h$ vm fields to classical values $m = \langle a_h \rangle$

Nati Seiberg & Ann Nelson – 1993

Non-Holomorphic Coupling

Rank 2 Maxwell action: $F_I = (F_b, F_{dyn})$

$$\sim \int \bar{\tau}_{IJ} F_{+}^{I} F_{+}^{J} + \tau_{IJ} F_{-}^{I} F_{-}^{J} + \cdots$$

 $\int \bar{v} F_b^+ F_{dyn}^+ + v F_b^- F_{dyn}^-$

Remark: SW limit $m \rightarrow \infty$

$$e^{\int \overline{v} F_b^+ F_{dyn}^+ + v F_b^- F_{dyn}^-}$$

Metric dependent & nonholomorphic, varying continuously on \mathcal{B}

$$\rightarrow e^{i \pi \int w_2(X) \frac{F_{dyn}}{2\pi}}$$

Important implications for the generalization of CB integral to class S theories: We do not want a \mathbb{Z}_2 –valued QRIF.

Coulomb Branch Measure: 2019 -2020

$$Z_{\nu}^{CB} = \int_{\mathcal{B}} \Omega$$

$$\Omega = du \wedge d\bar{u} B^{\sigma} e^{pu} e^{S^2 T} A^{\chi} C^{c_{uv}^2} \Psi_{\nu}$$

Nontrivial question: Is this single-valued?

Step 1: Use modular parametrization. Identify \mathcal{B} with the modular curve $\mathcal{H}/\Gamma(2)$

Modular Parametrization Weak coupling duality frame: Nekrasov: Instanton partition function $\mathcal{F}(a,m) = \frac{1}{2}\tau_0 a^2 + \frac{1}{2}\tau_$ $+m^2 f_1(\tau_0) \left(\log\left(\frac{2a}{m}\right) - \frac{3}{4} + \frac{3}{2}\log\left(\frac{m}{\Lambda}\right)\right)$ $f_n(\tau_0)$: polynomials: E_2, E_4, E_6 wt = 2n - 2 + $a^2 \sum f_n(\tau_0) \left(\frac{m}{a}\right)^{2n}$ [Minhahan, Nemeschansky, Warner; Dhoker, Phong] n=2

Λ, m dependence (also A, B couplings):[Manschot, Moore, Xinyu Zhang 2019]

Modular Parametrization

[Huang, Kashani-Poor, Klemm]

 $\mathcal{B} \cong \mathcal{H}/\Gamma(2)$

Modular Parametrization

 $\tau = 0 \iff u = u_2 \qquad \qquad \tau = 1 \iff u = u_3$

Two New Nontrivial Identities

$$C := \exp\left(-2\pi i \frac{d^2 \mathcal{F}}{dm^2}\right) = \left(\frac{\Lambda}{m}\right)^{\frac{3}{2}} \frac{\vartheta_1(2\tau, 2\nu)}{\vartheta_2^2(\tau_0)\vartheta_4(2\tau)}$$

$$v \coloneqq \frac{d^2 \mathcal{F}}{dadm}$$

$$\frac{\vartheta_2(2\tau,\nu)}{\vartheta_3(2\tau,\nu)} = \frac{\vartheta_2(2\tau_0,0)}{\vartheta_3(2\tau_0,0)} \qquad \begin{array}{l} \text{Determines} \\ \nu(\tau,\tau_0) \end{array}$$

The ``Period Point" J $b_2^+ > 1 \Rightarrow Z_{\nu}^{CB} = 0$

 $b_2^+ = 1 \quad Z_{\nu}^{CB} \neq 0$

Z_{Maxwell}: Frame dependent. Not holomorphic. Metric dependent.

 $H^2(X;\mathbb{R})$

Maxwell Partition Function

Sum over the first Chern class $\lambda \in 2L + \nu$, $L = H^2(X; \mathbb{Z})$ (Simplicity: Put S = 0.)

$$\Psi_{\nu}^{J} = \sum_{\lambda \in 2L + \nu} \partial_{\overline{\tau}} E_{\lambda}^{J} q^{-\frac{1}{4}\lambda^{2}} e^{\pi i \lambda \cdot c_{uv} v(\tau, \tau_{0})}$$

$$E_{\lambda}^{J} = Erf(x_{\lambda}) \qquad Erf(x) \coloneqq \int_{0}^{x} e^{-\pi t^{2}} dt$$
$$x_{\lambda} = \sqrt{Im\tau} (\lambda + \frac{Im\nu}{Im\tau} c_{u\nu}) \cdot J$$

With all these ingredients we can now check that the CB measure is indeed monodromy invariant and hence well-defined.

The definition of the integral is still rather subtle. One must define naively divergent expressions like

$$Z_{\mu}^{CB} = \int_{\mathcal{H}/\Gamma(2)} d^2 \tau \, (Im \, \tau)^{-s} q^n \bar{q}^{\tilde{n}}$$

with n < 0 and $\tilde{n} < 0$

It can be done in a satisfactory way: Korpas, Manschot, Moore, Nidaiev 2019

2 The N=2* Theory: UV Meaning Of Invariants

3 Coulomb Branch Integral: New Identities & Interactions

5 LEET Near Cusps & Explicit Results

6 Remarks On S-Duality Orbits Of Partition Functions

Evaluation Of CB Integral ? $Z_{\nu}^{CB} = \int_{\mathcal{H}/\Gamma(2)} \Omega$ (For simplicity: p = S = 0.) $\Omega = d\tau \wedge d\bar{\tau} \ B^{\sigma} A^{\chi} C^{c_{uv}^2} \Psi_{u}^J$ $\Psi_{\nu}^{J} = \sum \partial_{\overline{\tau}} E_{\lambda}^{J} q^{-\frac{1}{4}\lambda^{2}} e^{\pi i \lambda \cdot c_{uv} v(\tau,\tau_{0})}$ $\lambda \in 2L + \nu$ $\Lambda = d\tau B^{\sigma} A^{\chi} C^{c_{uv}^2} \hat{G}$ $\Omega = d \Lambda$ $\Psi_{\nu}^{J} = \partial_{\overline{\tau}} \, \widehat{G}$

Evaluation Of CB Integral ?

 $\Psi_{\nu}^{J} = \sum \partial_{\overline{\tau}} E_{\lambda}^{J} q^{-\frac{1}{4}\lambda^{2}} e^{\pi i \lambda \cdot c_{uv} v(\tau,\tau_{0})}$ $\lambda \in 2L + \nu$ $\Psi_{\nu}^{J} = \partial_{\overline{\tau}} \widehat{G}$ $\widehat{G} = \sum E_{\lambda}^{J} q^{-\frac{1}{4}\lambda^{2}} e^{\pi i \lambda \cdot c_{uv} v(\tau,\tau_{0})}$ $\lambda \in 2L + \nu$

??? NO!!! $\lim_{\lambda^2 \to +\infty} E_{\lambda}^{\prime} = \pm 1$

Evaluating Difference Of CB Integrals $\Psi^{J_1} - \Psi^{J_2} = \partial_{\overline{\tau}} \, \widehat{G}^{J_1, J_2}$ $\widehat{G^{J_1,J_2}} = \sum E_{\lambda}^{J_1,J_2} q^{-\frac{1}{4}\lambda^2} \cdots$ $\lambda \in 2L + \nu$ $E_{\lambda}^{J_1,J_2} = Erf(x_{\lambda}^{J_1}) - Erf(x_{\lambda}^{J_2})$

Converges nicely!

⇒ Can use this to evaluate the difference $Z_{\nu}^{CB,J_1} - Z_{\nu}^{CB,J_2}$ by a sum of residues.

Wall-Crossing

As the contour approaches the cusp u_j : $E_{\lambda}^{J_1,J_2}$ limits to

$$sign\left[\left(\lambda \pm \frac{1}{2} c_{uv}\right) \cdot J_1\right] - sign\left[\left(\lambda \pm \frac{1}{2} c_{uv}\right) \cdot J_2\right]$$

 $\Rightarrow Z_{\nu}^{CB,J}$ is piecewise constant as function of J but has nontrivial chamber dependence.

Chambers defined by various walls $W_i(\lambda)$

Continuous Metric Dependence

For the boundary at $u \to \infty$ the modular parameter $\tau \to \tau_0$. This leads to <u>continuous</u> metric dependence.

For $\mathfrak{s}(\mathcal{I})$ one finds:

$$\eta(\tau_0)^{-2\chi} \sum_{\lambda} \left[E(\sqrt{y_0}\lambda \cdot J_1) - E(\sqrt{y_0}\lambda \cdot J_2) \right] (\lambda \cdot c_{uv}) q_0^{-\lambda^2}$$

+ Another Term

Closely related: Nonholomorphic: $y_0 = Im(\tau_0)$

The Special Period Point

For any manifold with $b_2^+ = 1 \exists \text{special } J_0$ such that

$$\Omega = d \Lambda \qquad \Lambda = d\tau B^{\sigma} A^{\chi} C^{c_{uv}^2} \hat{G}$$

Where we can write \hat{G} explicitly so that Λ is:

- 1. Well-defined
- 2. Nonsingular away from $\tau \in \{0, 1, i \infty, \tau_0\}$
- 3. Modular: Good q_i expansion near cusps

Mock Jacobi-Maass Forms

These conditions determine \hat{G} uniquely.

It is a Jacobi-Maass form evaluated at $z = c_{uv} v(\tau, \tau_0)$

After doing the integration by parts we obtain mock modular forms as functions of τ_0

For $X = \mathbb{CP}^2$ and $\mathfrak{s}(\mathcal{I})$ we reproduce exactly the mock modular forms used in Vafa-Witten.

+ many generalizations

2 The N=2* Theory: UV Meaning Of Invariants

3 Coulomb Branch Integral: New Identities & Interactions

Evaluation Of CB Integral: Wall Crossing & Mock Modular & Jacobi-Maass Forms Galore

5 LEET Near Cusps & Explicit Results

6 Remarks On S-Duality Orbits Of Partition Functions

LEET Near Cusps u_j

In the region of each cusp u_j , j = 1,2,3the LEET changes:

We have a U(1) VM coupled to a charge 1 HM. (In the appropriate duality frame) [Seiberg-Witten 94]

There is a separate contribution to the path integral coming from the path integral of these three LEET.

We add the contributions, because we sum over vacua:

$$Z_{\nu} = Z_{\nu}^{CB} + \sum_{i=1}^{S} Z_{\nu,j}^{SW}$$

When $b_2^+ > 1 Z_{\nu}^{CB}$ vanishes – - we get true topological invariants:

So it is quite interesting to determine The three effective actions

General Form Of Effective Action Near *u_j*

a: Local special coordinate vanishing at u_i

$$S_{LEET,j}^{SW} =$$

 $\alpha_j(a)Eul(X) + \beta_j(a)Sig(X) + \gamma_j(a)F_{dyn}^2$

+
$$\int \delta_j(a) F_{dyn} \wedge F_b + \varepsilon_j(a) F_b \wedge F_b$$

+ Q(*)

Determination Of Effective Action

MW97: The terms in the effective action at u_j can be determined from the contribution to the wall-crossing behavior Z_{ν}^{CB} from u_j

$$Z_{\nu,j}^{SW} = \sum_{c_{ir}=w_2(X) \mod 2} SW(c_{ir}) \left[\mathcal{A}_j^{\chi} \mathcal{B}_j^{\sigma} \mathcal{C}_j^{c_{uv}^2} \mathcal{D}_j^{c_{uv} \cdot c_{ir}} \mathcal{E}_j^{c_{ir}^2} \right]_{q_j^0}$$

There is a prescription for including the homology observables $e^{\mu(x)}$

$$Z_{\nu} = \kappa_{\nu} \left(\frac{\Lambda}{m}\right)^{3/8(c_{uv}^{2} - 2\chi - 3\sigma)} \eta(\tau_{0})^{3(2\chi + 3\sigma)} \begin{cases} \eta(\tau_{0}/2)^{-5\chi - 6\sigma - c_{uv}^{2}} e^{S^{2}\mathcal{K}_{1} + \frac{p}{4}\frac{m^{2}}{\Lambda^{2}}e_{2}(\tau_{0})} \\ \sum_{c_{ir}} SW(c_{ir}) e^{\frac{i\pi}{2}(c_{ir} - c_{uv}) \cdot \nu\chi_{h}} \left(\frac{\vartheta_{3}(\tau_{0}/2)}{\vartheta_{4}(\tau_{0}/2)}\right)^{\frac{1}{2}c_{uv} \cdot c_{ir}} e^{\frac{m}{\Lambda}(\vartheta_{2}\vartheta_{3}(\tau_{0}))^{2}c_{ir} \cdot S} \\ + \cdots \end{cases}$$

X = K3 @ p = 0 & S = 0

$$Z_{\mu} = 2^{12} \left(\frac{\Lambda}{m}\right)^{\frac{3}{8}c_{uv}^2} \left[\frac{\delta_{\mu=\frac{1}{2}c_{uv} \bmod 2}}{(\vartheta_2\eta)^p} + \frac{e^{\mathrm{i}\pi\mu \cdot c_{uv}/2}}{(\vartheta_4\eta)^p} - \frac{e^{\mathrm{i}\pi\mu \cdot c_{uv}/2 - \mathrm{i}\pi\mu^2/4}}{(\vartheta_3\eta)^p}\right]$$

 $p = 12 + \frac{1}{2}c_{uv}^2$ $\vartheta_i\eta$ evaluated at τ_0

Relation To Previous Results

For $c_{uv}^2 = 2\chi + 3 \sigma$ and $m \to 0$ we recover and generalize formulae of [VW;DPS] for VW invariants.

For $c_{uv} = 0$ we recover formulae of Labastida-Lozano

For $m \to \infty$, $q_0 \to 0$ <u>after suitable renormalization</u> we recover the ``Witten conjecture" for the Donaldson invariants in terms of the Seiberg-Witten invariants.

A generalization and unification of the 1990's formulae: Vafa-Witten; Witten; Moore-Witten; Dijkgraaf-Park-Schroers; Labastida-Lozano

2 The N=2* Theory: UV Meaning Of Invariants

3 Coulomb Branch Integral: New Identities & Interactions

6

- 4 Evaluation Of CB Integral: Wall Crossing & Mock Modular & Jacobi-Maass Forms Galore
- 5 LEET Near Cusps & Explicit Results

Remarks On S-Duality Orbits Of Partition Functions

Concluding Remarks

Twisted $N = 2^*$ on four-manifolds with a spin-c structure unifies and generalizes previous expressions for invariants of 4-manifolds derived from SYM.

Some technical points are still being sorted out.

Non-simply connected generalization and implications for three-manifold invariants?

Hamiltonian formulation (Floer theory)?

Derivation from 6d (2,0) theory?

S-Duality

In the SU(2) theory Z_{ν} is the partition function in the presence of 't Hooft flux

``Partition function in a background field for a magnetic \mathbb{Z}_2 1-form symmetry."

The Z_{ν} span a vector space \mathcal{V}

But arbitrary linear combinations aren't physically meaningful

Gaiotto, Moore, Neitzke 2009; Aharony, Seiberg, Tachikawa 2013

Partition Functions For The $SO(3)_{\pm}$ Theories

S-Duality Transformations

$$T: Z_{\nu} \to \xi_{\nu} Z_{\nu}$$

$$S: Z_{\nu} \to (-i \tau_0)^w \sum_{\rho} e^{i \pi \nu \cdot \rho} Z_{\rho}$$

$$w = \frac{1}{2}(\chi + 3 \sigma - c_{uv}^2)$$

$$\xi_{\nu} = \omega^{-\frac{1}{2}(2\chi - 3\sigma + c_{u\nu}^2 + 12\nu^2)} \qquad \omega = e^{\frac{2\pi i}{24}}$$

Derivation from 6d?

Orbit Of Partition Functions -1/2

The Z_{ν} span a vector space \mathcal{V}

The physical partition functions of the theories form an *orbit* in that vector space.

It is a finite covering of the triangle of theories.

REMARKS ON CLASS S: SLIDES FROM MY STRING MATH 2018 TALK IN SENDAI, JAPAN

u-plane for class S: General Remarks

UV interpretation is not clear in general. These theories might give new 4-manifold invariants.

The u-plane is an integral over the base \mathcal{B} of a Hitchin fibration with a theta function associated to the Hitchin torus. It will have the form

$$Z_u = \int_{\mathcal{B}} du \, d\bar{u} \, \mathcal{H} \, \Psi$$

 \mathcal{H} is **holomorphic** and **metric-independent**

<u>Ψ: NOT holomorphic</u> and <u>metric- DEPENDENT</u> <u>``theta function"</u>

Class S: General Remarks

$$\mathcal{H} = \alpha^{\chi} \beta^{\sigma} \det \left(\frac{da^{i}}{du_{j}}\right)^{1-\frac{\chi}{2}} \Delta_{phys}^{\frac{\sigma}{8}}$$

 Δ_{phys} a holomorphic function on \mathcal{B} with firstorder zeros at the loci of massless BPS hypers

 α,β will be automorphic forms on Teichmuller space of the UV curve *C*

 α , β are related to correlation functions for fields in the (0,2) QFT gotten from reducing 6d (0,2)

Class S: General Remarks

$$\begin{split} \Psi &\sim \sum_{\lambda} e^{i \pi \lambda \cdot \xi} e^{-i \pi \overline{\tau} (\lambda_{+}, \lambda_{+}) - i \pi \tau (\lambda_{-} \cdot \lambda_{-}) + \cdots} \\ \lambda &\in \lambda_{0} + \Gamma \otimes H^{2}(X; \mathbb{Z}) \\ \xi &\in \Gamma \otimes H^{2}(X; \mathbb{R}) \end{split} \qquad \begin{array}{l} \Gamma &\subset H^{1}(\Sigma; \mathbb{Z}) \\ \text{Lagrangian} \\ \text{sublattice} \end{array}$$

If $\xi = \rho \otimes w_2(X) \mod 2$ then WC from interior of \mathcal{B} will be cancelled by SW invariants

⇒ No new four-manifold invariants...

Ψ comes from a ``partition function" of a level 1 SD 3-form on $M_6 = \Sigma \times X$

Quantization: Choose a QRIF Ω on $H^3(M_6; \mathbb{Z})$

Natural choice: [Witten 96,99; Belov-Moore 2004]

 $\Omega(x) = \exp(i\pi WCS(\theta \cup x; S^1 \times M_6))$

Choice of weak-coupling duality frame + natural choice of *spin^c* structure gives

 $\xi = \rho \otimes w_2(X)$

Case Of SU(2) $\mathcal{N} = 2^*$

- Using the tail-wagging-dog argument, analogous formulae were worked out for $\mathcal{N} = 2^*$, by Moore-Witten and Labastida-Lozano in 1998, but <u>*Only*</u> in the case when *X* is spin.
- L&L checked S-duality for the case $b_2^+ > 1$
 - The generalization to *X* which is NOT spin is nontrivial: The standard expression from Moore-Witten and Labastida-Lozano is NOT single-valued on the u-plane.

This is not surprising: The presence of external $U(1)_{baryon}$ gauge field $F_{baryon} \sim c_1(\mathfrak{s})$ means there should be new interactions:

$$e^{\kappa_1(u)c_1(\mathfrak{s})^2 + \kappa_2(u)\lambda \cdot c_1(\mathfrak{s})}$$
 Shapere & Tachikawa

Holomorphy, 1-loop singularities, single-valuedness forces:

$$(u-u_1)^{-\frac{c_1(\mathfrak{s})^2}{8}}e^{-i\frac{\partial a_D}{\partial m}\lambda\cdot c_1(\mathfrak{s})}$$

Surprise!!

It doesn't work! Correct version appears to be non-holomorphic.

With Jan Manschot we have an alternative which is currently being checked.

Does the u-plane integral make sense for **ANY** family of Seiberg-Witten curves ?

MORE DETAILS ABOUT MOCK MODULAR FORMS : SLIDES FROM MY JMM TALK JANUARY, 2020, DENVER

Relation To Mock Modular Forms -1.1

 Z_u : A sum of integrals of the form : $I_f = \int_{\mathcal{T}} d\tau d\bar{\tau} \, (Im \, \tau)^{-s} \, f(\tau, \bar{\tau})$ Support of c is $f(\tau, \overline{\tau}) = \sum_{m=m \in \mathbb{Z}} c(m, n) q^m \overline{q}^n$ bounded below Strategy: Find $\hat{h}(\tau, \bar{\tau})$ such that $\partial_{\overline{\tau}}\hat{h} = (Im \, \tau)^{-s} f(\tau, \overline{\tau})$ $S\dot{\mathcal{F}}_{\infty}$ $\hat{h}(\tau, \bar{\tau})$ is modular of weight (2,0)

Relation To Mock Modular Forms – 1.2

 $\hat{h}(\tau, \bar{\tau}) = h(\tau) + R$ We choose an explicit solution $\partial_{\overline{\tau}}R = (Im\tau)^{-s} f(\tau,\overline{\tau})$ vanishing exponentially fast at $Im\tau \rightarrow \infty$ $h(\tau)$: mock modular form $h(\tau) = \sum d(m)q^m$ $q = e^{2\pi i \tau}$ $m \in \mathbb{Z}$ $h\left(-\frac{1}{\tau}\right) = \tau^2 h(\tau) + \tau^2 \int_{-i\infty}^{0} \frac{f(\tau,\bar{\nu})}{(\bar{\nu}-\tau)^s} d\bar{\nu}$

Note: d(0) undetermined by diffeq but fixed by the modular properties: Subtle!

∃ Long history of the definition & evaluation of such integrals with singular modular forms – refs at the

Examples 1.2

 $h(\tau, z) = \frac{r}{\vartheta_4(\tau)} \sum_{n \in \mathbb{Z}} \frac{(-1)^n q^{\frac{n^2}{2} - \frac{1}{8}}}{1 - r^2 q^{n - \frac{1}{2}}}$ $r = e^{i \pi z}$ $z = \frac{S}{\omega}$ $\omega = \vartheta_2(\tau)\vartheta_3(\tau)$ $Z_u = Z_{DW}(S) = [\mathcal{H} h(\tau, z)]_q^{0}$ $Z_{DW}(S) = -\frac{3}{2}S + S^5 + 3S^9 + 54S^{13} + 2540S^{17} + \cdots$