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OUTLINE

Introduction & Review

Partl: How BPS statespaces change with
moduli_In N=2 suqgra

Part II:  Line Operators in N=2 Field Theories

Framed BPS states & Protected Spin Characters

New derivation of the motivic KSWCF”

Exact results for line operator vevs in T, [A;] theories



OI0 NDuestion |

Strings2007: Introduced the semi-primitive WCF-.
Final Riddle: Why did the BPS state cross the wall?

We need to understand not just the index but how the

space of BPS states change as moduli are varied.

e New walls



DI NDuestion |l

Strings2008: Moduli space M of an N/ = 2 theory on R? x S!

Darboux/Twistor coordinates XW construct a HK metric

Final Promise:

These have an interpretation in terms of line operators

Part Il: Make good on that promise




N=2: Basic Definitions
Moduli of vacua: va X Mhm

Local system: I' — va
H=ByerH, O ®y hQHE

7T —=C E > |Z(v;u)

(,): ' = 7Z



DI Tndices & DI Walls

HSPS Finite dimensional representation of SU(Q)

space

As such: Completely determined by their spin character:

. . 2J
8(77 Y, m) T Trﬂgpsy ?
This is not an index: It depends on m € B,,, X Mpu.,
Better:  Q(y;u) := s|y,=_1

Piecewise constant but can change across:

MS(y1,72) = {ulZ1 || Z2}



DI0 VBoundstates

Boundstate radius (Denef)

Z1+7
R12 — <717/72>21|m1(Z122§|k)

So the moduli space of vacua is divided into two regions:

(v1,72)Im(Z1Z%) >0 OR (v1,72)Im(Z:123) <0






Primitive Wall-Crossing

Z1+Z
R12 — <717’72>2I|m1(2122£<)

Crossing the wall: Im(Z725) — 0

Y1 2

AH = (J12) @ H(71) @ H(72)

2J12 +1 = |{v1,72)]



OO0 Halos

HYPERS =) Fermions fyl

VECTORS =) Bosons

Hﬁgf = H%PS Xe>1 F [(J

Creation Operators

Rhalo — OO across MS(’Vl; ’72)



Pars [

Systematic description of how BPS
state-spaces change

arXiv:10??.?7??

E. Andriyash, F. Denef, D. Jafferis,




An OI10 Puzzle

‘..;....... ﬂj
Rl2 > () , AMS(v1,72)
MS(v1,72) /Z1 =20 Ri5 <0

% crosses no other walls of MS

Boundstate (v1,72) exists near M.S(v1,v2)
Boundstate (v1,72) cannot exist near AMS(7y1,72)!



ng > ()

AMS(%,%)

MS(7y1,72) Z1 =0 Ri2 <0
What happened?
Just got married... VM + HM pair up
AQym + AQpy, =0 (Note: As # 0)

boundstates
Not the whole story:(V1;72) contribute to () ?é 0



R12 > O : AMS(v1,72)

MS(’)/l,’)/Q) Zl — O R12 < 0

7'[(/71) — near Zl — () ‘ Recombination

wall

Menage a trois ryg 72 _I_ 74



- ..,“‘:75
R12 - 0 V AMS(y1,72)
MS(’717’72) Z]_’: O R12 < ()
H(y1) #0 e

{U‘ (71 + 72) attractor flow crashes on Zl — O}

Aprobe — f (mds + <77"4>) X |Z(717 ’U,(f))‘



... without any fuss, y 1

the stars were going
out.” — Arthur C.Clarke



Monodromy

“-‘*"'.

R12 > O : : AMS(v1,72)

MS(’)/l,’)/Q) '-“ Zl — O :-' R12 < 0

2
P

Yo — Y2 + Im
I = (v2,71) D peq PQ11)



Further Predictions

The halo picture makes some further predictions about the
spectrum of light states near a singular point of moduli space.

ZZ’il 629(8%) > ()
H£>0(1 ( 1)€|<727’Yl>|q€)€|<72,71>|Q(£,71)

v

These appear to contradict some of the literature on geometric
engineering and extremal transitions.

We're trying to sort it out.



Part [l: N=2 Field Theories

arXiv:0807.4723 — Hyperkahler metrics and
Darboux coordinates

arXiv:0907.3987 BPS Spectrum and Darboux Coordinates for
TynlAdl
g,nt" ‘1

Line Operators & Laminations,
arxXiv:10?7?.?7?7?



Line Operators

Now focus on d=4 N=2 field theory defined by
some su(2,2|2) superconformal fixed point S.

Line operator = boundary condition for S on AdSs % S? [Kapustin]

IR



Unbroken Susy

Restrict attention to line op’s preserving 08p(4* ‘Q)C

Fixed points of an involution of su(2,2|2)
T — —r & U(1l)gr rotation by (
osp(4*|2)F7" = sl(2,R) & so(3) & su(2)

Spatial R-symmetry
rotation

‘ Line operator L of type C LC( | )




New BPS Bound

Choose a line operator L preserving Osp(4* |2)<

HL Hilbert space in presence of L
Hr = OyHL 4

{R2,RE} = deape” (B + Re(Z, /()

—

E > —Re(Z,/¢)




Framed BPS States

Vanilla BPS

bound k//////-Conﬂnuun1
E=\Z, ™ =---
E = —Re(2,/)) | Egap > 0



Protected Spin Character
Framed PSC for framed BPS states:

Q(l—/7 Y, y) = TI‘HE,P,YS y2<]3 (_y)213

(Thanks to Juan Maldacena for an important suggestion.)

This Is an index!

Vanilla PSC for vanilla BPS states:
Q(7;y) = Trymesy> (—y)*"

Also an index.



Closing the Gap

Gap can close

when
ZyJCER_ |~ 25|
for some BPS
charge ; Eyap — 0
DEF BPS ray:  Re(Z,/0))

Whu {C‘Zﬂ’h/cé N }



IR Description of Framed BPS
States: Say halo!

¢ near £, . h 2Yn

A good description
of some states in

%BPS A)/h

L,~

Yh

_ <767’Y >
"halo = QIm(Z’y: /<)




Wall-crossing by
¢ crosses £, 4 I
We gain & lose halo Fock-spaces, F o

exactly as in the derivation of the
semi-primitive WCF!

Walll-crossing Is elegantly summarized by
Introducing a generating function:

F=3 QL yyX,

How Is F+ related to F- ?



Wall-crossing: Noncommutativity

X’Yl X’YZ — y<’71 ”72>XW1 +2

Ft =8, F S}

S’Yh Product of quantum dilogs CID (X’Yh )



Wall-Crossing Il

O(X) =Lz (1 + ¥ X)

Qvn; —y) =D, ary™

= [1, 2((—y)" Xy,) "



Wall-Crossing Il

This result implies the " "motivic wall crossing formula” of
Kontsevich & Soibelman

Our discussion Is consistent with the form of the result as
discussed In

Dimofte & Gukov; Cecotti & Vafa; Dimofte, Gukov &
Soibelman



Relation to Darboux’ coordinates
on Seiberg-Witten Moduli Spaces

Now we explain how line operators are
related to an interesting collection of

functions
X,

mmm) Lightning review of

Gaiotto, Moore, Neitzke, arXiv:0807.4723



Circle Compactification of N=2
N=2 Supersymmetric theory on [R5 % S}?

Low energies: Sigma model R?’ — M

. / Torus of (elec, mag) Wilson lines

ou // Coulomb branch

SUSy =) _/\/l hyperkahler



“"Darboux coordinates”

Giving a HK metric is equivalent to giving M C <- E ]P)]_

holomorphic symplectic structure on

We = C‘lw

-+ W3 +Cw_

wc |s determined from a collection of functions
XWIMCXC*%C yel
Ay Ay = Xy pyr
we = (dlog X, dlog X))



Constructing X,

Xsf = exp {%RZV + 2y -0+ WRCZY}

(Neitzke, Pioline, & Vandoren)
Solve a TBA-like integral equation
log X, = log X5+
T Zv’ Q(Y') K,y * log(1l + Xy)



IR Line Operator Expansion
LC wraps circle in = R® X S}%

Holomorphic on M¢
(L) = Ten, (—1)Fe-2nRH -0

- 32, QL) mRRe [+

R — o0

<LC> Has no wall-crossing!



Six-dimensional (2,0) theory

d=6 (2,0) g-theory —____ d=4 N =2

+ topological twist (- @ t;jeory[ ]
' g,n Y

Generalizing a construction of Witten 98, GMN studied these
theories in order to construct Darboux coordinates, and found an
algorithm for computing the BPS spectrum for T, [A;] theories.

They have attracted a lot of attention following the discovery
by Gaiotto, arXiv:0904.2715, that they can be described as
generalized quiver gauge theories.



oD to 3D

C. Genus g surface with n punctures

d =6 (2,0) g-theory[R® x S x C]

Sigma model



Hitchin = Seiberg-Witten

2 =1
M . I ™ R_[QO, SO] o }g Hitchin system

on C

spectral curvein 1°C Y - det()\ — 90) — ()

2 Seiberg-Witten curve

)\ Seiberg-Witten differential



Flat Connections
For ¢ # 0, o0

MC — Moduli of flat gc connections

Ac = R(" ¢+ A+ RCp

Hol(R, p) := Trr P exp fp A

will be an important holomorphic function for us.



Surface to Line Operators
S(R, St X ©))

\?1
(Le(R — TrrPexp fp A

L. labeled by o C C and R:

Consistent with Drukker,Morrison, Okuda



How to compute )
(L¢) = 22, QLe¢,7) Xy
(L¢(R, p)) = Hol(R, p)
For T, ,[A,] theories:

1. Expand Hol(R, p) using

Fock-Goncharov coordinates Xz
2. Write X, in terms of Xg



Fock-Goncharov Coordinates

Choose a triangulation of C with vertices at the

unctures:
P > (oordinates Xr on MS

Choose flat sections s,

S3
d+ A¢)s; =0
A, (A
(81 As2)(s3As4)
S4 1 Xg = (saAs3)(s4/AS1)



Fock-Goncharov gives Darboux
201y —C TI'=H{(3;,7Z)"

Use canonical triangulation of C:
from integral curves of A

/‘\

YE (nice!) basis for |

/\ X,, = Xp




Computing the Holonomy
HOl(Ra @) — ny C’YX’Y

Computable via a simple traffic rule algorithm

(37 =5 (0 )

) Q(LC(R, ©)) computable for Tg,n[Al]



Example: SU(2) N.=4

3 4
C
1 2

14+ X134+ X044+ X113 X044+ X113 X714 X044+ X13X03X04+X13X14X023X0g
vV X13X14X23X24

Would be nontrivial to compute from the geometry of monopole
moduli spaces!



Asymptotically Free Theories:

Tg,n [Al] are perturbations of conformal field theories

Reach AF theories by decoupllng HI\/I s: Send

masses to infinity

Geometrically:
Collide RSP’s to get ISP’s

UV labeling of line operators:

Laminations




Example: SU(2) Ni=0

Lamination

Wilson loop: |
't Hooft-Wilson
Charge (0,1) loops:

Charge (1,2n)



N~=0 Framed BPS Degeneracies

X

[ = 72
) v, = xomye

Y
(Wa) = (XY)V2 + (XY) /2 4\ /5

Naive Surprise !

Many elaborate results for lamination vevs




Quantum Holonomy

Classically, we have interpreted the framed BPS indices as traces of holonomy:

Hol(R, p) = 3=, Q(L¢(p), 1) X,

What about the PSC?

Combining with results of Teschner on quantization of Teichmuller space
shows that

O(Hol(R, p)) ~ >_., Q(L¢(p),7:y) X,

Satisfy the same operator algebra.



Looking Ahead...

-»

There’s been lots of progress on A/=2, and there’s lots

more to do: this will surely keep us focused in the near
future...

Litmus test: There is no effective algorithm for computing
the BPS spectrum of an arbitrary N=2 FT or string cpct.






