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Time Reversal In  
Chern-Simons-Witten Theory 

Part 1 



When does 3d Chern-Simons-Witten 
theory have a time reversal symmetry? 

General theory based on compact group
𝐺𝐺 and a ``level’’  𝑘𝑘 ∈ 𝐻𝐻4 𝐵𝐵𝐺𝐺;ℤ

Which 𝐺𝐺, 𝑘𝑘 give 
T-reversal invariant theories? 

Related:  When does Reshetikhin-Turaev-Witten 
topological field theory factor through 

the unoriented bordism category? 



Some nontrivial examples of
T-invariant CSW theories 

appeared in several recent papers

But there is no systematic 
understanding.

𝑃𝑃𝑃𝑃𝑃𝑃 𝑁𝑁 𝑁𝑁

[Seiberg & Witten 2016; Hsin & Seiberg 2016; Cordova, Hsin & Seiberg ]   

𝑃𝑃 𝑁𝑁 𝑁𝑁,2𝑁𝑁

𝑃𝑃𝑃𝑃𝑈𝑈 2𝑁𝑁 𝑁𝑁

𝑃𝑃𝑆𝑆 𝑁𝑁 𝑁𝑁

𝑃𝑃𝑃𝑃𝑃𝑃 2 6

𝑃𝑃𝑃𝑃 𝑁𝑁 2 −
1
𝑁𝑁 = 1



Spin Chern-Simons Theory with 
torus gauge group 𝐺𝐺 ≅ 𝑃𝑃 1 𝑟𝑟

𝑃𝑃 =
1
4𝜋𝜋

∫ 𝐾𝐾𝐼𝐼𝐼𝐼 𝐴𝐴𝐼𝐼 𝑑𝑑 𝐴𝐴𝐼𝐼

𝐾𝐾𝐼𝐼𝐼𝐼 ∶ 𝑟𝑟 × 𝑟𝑟 nondegenerate, integral 
symmetric matrix: determines integral lattice 𝐿𝐿

With my student Roman Geiko
we have recently carried out a 

systematic study for 



But there can be quantum T-reversal 
symmetries not visible classically. 

Classical T-reversal: 
∃ 𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿 𝑟𝑟,ℤ such that 

𝑃𝑃𝐾𝐾𝑃𝑃𝑡𝑡𝑟𝑟 = −𝐾𝐾

Rank 2 examples studied by 
Seiberg & Witten; Delmastro & Gomis

(Note: 𝜎𝜎 𝐿𝐿 = 0 )



The quantum theory does not 
depend on all the details of 𝐿𝐿

Finite Abelian group 𝒟𝒟 𝐿𝐿 ≔ 𝐿𝐿∨/𝐿𝐿

𝑞𝑞𝑊𝑊 𝑥𝑥 = 1
2
�𝑥𝑥, �𝑥𝑥 −𝑊𝑊 + 1

8
𝑊𝑊,𝑊𝑊 𝑚𝑚𝑚𝑚𝑑𝑑 ℤ

Quadratic Refinement (spin of anyons) : 

1
𝒟𝒟 𝐿𝐿

�
𝑥𝑥∈𝒟𝒟(𝐿𝐿)

𝑒𝑒2𝜋𝜋𝜋𝜋 𝑞𝑞𝑊𝑊 𝑥𝑥
= 𝑒𝑒2𝜋𝜋𝜋𝜋

𝜎𝜎(𝐿𝐿)
8

What does it depend on? 

a.k.a ``group of anyons’’   a.k.a.  ``group of 1-form symmetries’’ 



Theorem 
[ Belov & Moore; Freed,Lurie,HopkinsTeleman] 

The quantum theory only depends on the 
equivalence class of the triple 𝒟𝒟, 𝑞𝑞, �𝜎𝜎

�𝜎𝜎 ∈ ℤ/24ℤ
1
𝒟𝒟

�
𝑥𝑥∈𝒟𝒟

𝑒𝑒2𝜋𝜋𝜋𝜋 𝑞𝑞 𝑥𝑥 = 𝑒𝑒2𝜋𝜋𝜋𝜋
�𝜎𝜎
8

𝑞𝑞:𝒟𝒟 → ℝ/ℤ

Conversely, every such triple arises 
from some torus CSW theory 



Equivalence of triples

𝑓𝑓:𝒟𝒟 → 𝒟𝒟′∃ isomorphism 

∃ Δ′ ∈ 𝒟𝒟′

𝑞𝑞 𝑥𝑥 = 𝑞𝑞′ 𝑓𝑓 𝑥𝑥 + Δ′

𝒟𝒟, 𝑞𝑞, �𝜎𝜎 ≅ 𝒟𝒟′, 𝑞𝑞′, �𝜎𝜎



T-Reversal Criterion

[(𝒟𝒟, 𝑞𝑞, �𝜎𝜎)] = [ 𝒟𝒟,−𝑞𝑞,−�𝜎𝜎 ]

𝑞𝑞: Determines the spin of anyons

𝑏𝑏: Determines the braiding of anyons

𝑇𝑇



Simpler Problem:  The Witt Group (1936) 

𝑏𝑏 𝑥𝑥,𝑦𝑦 = 𝑞𝑞 𝑥𝑥 + 𝑦𝑦 − 𝑞𝑞 𝑥𝑥 − 𝑞𝑞 𝑦𝑦 + 𝑞𝑞 0

Throw away 𝑞𝑞, �𝜎𝜎 and just keep 𝑏𝑏.

Classify 𝒟𝒟, 𝑏𝑏

𝒟𝒟1, 𝑏𝑏1 + 𝒟𝒟2, 𝑏𝑏2 ≔ 𝒟𝒟1 ⊕𝒟𝒟2, 𝑏𝑏1 ⊕ 𝑏𝑏2

Abelian monoid 𝒟𝒟𝒟



𝒟𝒟𝒟 = ⊕𝑝𝑝 𝒟𝒟𝒟𝑝𝑝
Odd 𝑈𝑈: 𝒟𝒟𝒟𝑝𝑝 is generated by forms on ℤ/𝑈𝑈𝑟𝑟ℤ

𝑋𝑋𝑝𝑝𝑟𝑟: 𝑏𝑏 1,1 = 𝑈𝑈−𝑟𝑟 𝑌𝑌𝑝𝑝𝑟𝑟: 𝑏𝑏 1,1 = 𝜃𝜃𝑈𝑈−𝑟𝑟

𝜃𝜃: Quadratic nonresidue modulo 𝑈𝑈𝑟𝑟

𝑈𝑈 = 2 Many generating forms:  

𝐴𝐴2𝑟𝑟 ,𝐵𝐵2𝑟𝑟 ,𝐶𝐶2𝑟𝑟 , … ,𝐹𝐹2𝑟𝑟



Submonoid 𝒮𝒮𝒮𝒮𝒮 Split forms: 

𝒟𝒟 = 𝒟𝒟1 ⊕𝒟𝒟2

𝒟𝒟1 = 𝒟𝒟1⊥

𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲 ≔ 𝒟𝒟𝒟/𝒮𝒮𝒮𝒮𝒮

Abelian group whose 
structure is known.     



Wall, Miranda, Kawauchi & Kojima 

determine relations on the generators 

𝒲𝒲𝑝𝑝
𝑘𝑘 ≅ ℤ2 ⊕ ℤ2

𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲 ≅⊕𝑝𝑝 𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝑝𝑝
𝑈𝑈 odd:    𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝑝𝑝 ≅⊕𝑘𝑘≥1 𝒲𝒲𝑝𝑝

𝑘𝑘

−
1
𝑈𝑈

= −1
𝑝𝑝−1
2 = 1

𝒲𝒲𝑝𝑝
𝑘𝑘 ≅ ℤ4 −

1
𝑈𝑈

= −1
𝑝𝑝−1
2 = −1



𝒟𝒟𝒟𝑇𝑇 ≔ { 𝒟𝒟, 𝑏𝑏 = 𝒟𝒟,−𝑏𝑏 } ⊂ 𝒟𝒟𝒟𝒮𝒮𝒮𝒮𝒮 ⊂

Theorem 1:  The classes in 𝒟𝒟𝒟𝑇𝑇
descend to order 2 elements of 𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲

and all of order 2 elements 
are represented by a T-invariant 

bilinear form.  



Generalization to  quadratic 
refinements is nontrivial.  

𝒟𝒟 = ℤ/2ℤ

𝑏𝑏 𝑥𝑥,𝑦𝑦 =
𝑥𝑥𝑦𝑦
2

𝑚𝑚𝑚𝑚𝑑𝑑 1

𝑞𝑞 𝑥𝑥 =
𝑥𝑥2

4
𝑚𝑚𝑚𝑚𝑑𝑑 1

is   T-invariant 

is not  T-invariant 

�𝑞𝑞 𝑥𝑥 = 𝑥𝑥2

4
− 1

8
and �𝑞𝑞 𝑥𝑥 = 𝑥𝑥2

4
+ 3

8

T-invariant because ∃ Δ ∶ �𝑞𝑞 𝑥𝑥 + Δ = −�𝑞𝑞 𝑥𝑥



Higher Gauss Sums 

𝜏𝜏𝑛𝑛 𝑞𝑞 ≔ �
𝑥𝑥∈𝒟𝒟

𝑒𝑒2𝜋𝜋𝜋𝜋𝑛𝑛 𝑞𝑞 𝑥𝑥

Theorem 2:  𝒟𝒟, 𝑞𝑞 is T-invariant iff
𝜏𝜏𝑛𝑛 𝑞𝑞 are real for all n = 1,2,3, …

𝜎𝜎 = 0 𝑚𝑚𝑚𝑚𝑑𝑑 8 refines uniquely to T-invariant �𝜎𝜎 = 0 mod 24 

𝜎𝜎 = 4 𝑚𝑚𝑚𝑚𝑑𝑑 8 refines uniquely to T-invariant �𝜎𝜎 = 12 mod 24 



Theorem 3:  Given a T-invariant 
𝒟𝒟, 𝑏𝑏 and 𝜎𝜎 ∈ {0,4} 𝑚𝑚𝑚𝑚𝑑𝑑 8,

there is, up to isomorphism, 
exactly one T-invariant quadratic 
refinement 𝒟𝒟, �𝑞𝑞 such that the 

phase of 𝜏𝜏1 is  𝑒𝑒2𝜋𝜋𝜋𝜋
𝜎𝜎
8



𝒬𝒬𝒬𝒬𝒬𝒬𝒬𝒬 −𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲 Groups

𝒬𝒬𝒲𝒲: Mod out the monoid of 𝒟𝒟, 𝑞𝑞 by
𝒟𝒟1, 𝑞𝑞1 ∼ 𝒟𝒟2, 𝑞𝑞2 if there are isotropic 

subgroups ℋ𝜋𝜋 ⊂ 𝒟𝒟𝜋𝜋 such that

(ℋ1
⊥/ℋ1 , 𝑞𝑞1) ≅ (ℋ2

⊥/ℋ2 , 𝑞𝑞2)

Theo J-F: There are 2-torsion elements of 
𝒬𝒬𝒲𝒲 represented by non-T-invariant 𝒟𝒟, 𝑞𝑞

ℤ/3ℤ⊕ ℤ/27ℤ 2𝑥𝑥2

9
−

2𝑦𝑦2

81
𝑚𝑚𝑚𝑚𝑑𝑑 1



𝒯𝒯 −𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲 Groups

𝒯𝒯 −𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲: Mod out the submonoid of 
T-invariant 𝒟𝒟, 𝑞𝑞 by 𝒟𝒟1, 𝑞𝑞1 ∼ 𝒟𝒟2, 𝑞𝑞2
if  there are isotropic subgroups ℋ𝜋𝜋 ⊂ 𝒟𝒟𝜋𝜋
(invariant under a T-symmetry) ,  such that

(ℋ1
⊥/ℋ1 , 𝑞𝑞1) ≅ (ℋ2

⊥/ℋ2 , 𝑞𝑞2)

𝒯𝒯 −𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲 ≅ 𝑆𝑆𝑟𝑟𝑑𝑑2 𝒬𝒬𝒲𝒲



Interfaces 

𝒯𝒯 −𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲 equivalence detects 
the existence of a T-reversal 

symmetric interface between
T-invariant theories. 



Conjecture for the general case:
(TQFT, not spin-TQFT )  

𝐺𝐺, 𝑘𝑘 → 𝐶𝐶𝑃𝑃𝑊𝑊 𝐺𝐺, 𝑘𝑘 → 𝑀𝑀𝑇𝑇𝐶𝐶 𝐺𝐺, 𝑘𝑘



Definition [Lee & Tachikawa; Kong & Zhang]: The time  
reversal of an MTC 𝒞𝒞 with braiding

𝐵𝐵𝑥𝑥,𝑦𝑦: 𝑥𝑥 ⊗ 𝑦𝑦 → 𝑦𝑦⊗ 𝑥𝑥 and ribbon structure 
𝜃𝜃𝑥𝑥: 𝑥𝑥 → 𝑥𝑥 is the MTC  𝒞𝒞𝑟𝑟𝑟𝑟𝑟𝑟 with 

𝐵𝐵𝑥𝑥,𝑦𝑦
𝑟𝑟𝑟𝑟𝑟𝑟 ≔ 𝐵𝐵𝑦𝑦,𝑥𝑥

−1 𝜃𝜃𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ≔ 𝜃𝜃𝑥𝑥−1

A CSW theory is time reversal invariant 
if there is an equivalence of MTC’s 

𝑀𝑀𝑇𝑇𝐶𝐶 𝐺𝐺, 𝑘𝑘 𝑟𝑟𝑟𝑟𝑟𝑟 ≅ 𝑀𝑀𝑇𝑇𝐶𝐶 𝐺𝐺, 𝑘𝑘



Conjectural T-Invariance Condition  

𝜏𝜏𝑛𝑛 𝒞𝒞 ≔ ∑𝑥𝑥 𝑑𝑑𝑥𝑥2𝜃𝜃𝑥𝑥𝑛𝑛 = 𝑃𝑃𝑇𝑇𝑛𝑛𝑃𝑃 00
[Ng, Schopieray, Wang 2018; 

Kaidi, Komargodski,Ohmori,Seifnashri, Shao 2021]  

Conjecture 1: An MTC is T-invariant iff all the 
higher Gauss sums are real for all 𝑛𝑛 = 1,2,3, …

The examples of Seiberg et. al. 
satisfy this condition. 



There is a mathematical notion of a 
Witt group of (nondegenerate) braided 

fusion categories. 
[Davydov, Müger, Nikshych, Ostrik 2010]  

𝒞𝒞1 ∼ 𝒞𝒞2 if there exist fusion 
categories 𝒟𝒟1 and 𝒟𝒟2 such that 

𝒞𝒞1 ⊗ 𝑍𝑍 𝒟𝒟1 ≅ 𝒞𝒞2 ⊗ 𝑍𝑍 𝒟𝒟2

Is there a Witt group interpretation? 



Interpretations 
It is always true that 𝒞𝒞 ⊗ 𝒞𝒞𝑟𝑟𝑟𝑟𝑟𝑟 ≅ 𝑍𝑍 𝒟𝒟

So T-reversal invariant MTC’s define order 2 
elements of the Witt group of fusion categories. 

Can interpret with topological interfaces. 

Result of Freed & Teleman ⇒ 𝒞𝒞⊗ 𝒞𝒞 admits 
a gapped topological boundary condition  

C. Schweigert: There is a 1-morphism 
in the Morita 2-category BrTens



In the case of Abelian group fusion rules 
(``pointed MTC’’)  𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝑓𝑓𝑓𝑓𝑓𝑓.𝑐𝑐𝑐𝑐𝑡𝑡.

becomes the group 𝒬𝒬𝒲𝒲.

We saw above that being order 2 in 𝒬𝒬𝒲𝒲
is NOT a criterion for T-invariance! 

But….

So T-reversal invariance is NOT the same as order 2 
in the Witt group! (Thanks:  Theo Johnson-Freyd) 



Conjecture 2: There is an analog of the 
𝒯𝒯 −𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲 group for fusion categories 
consisting of T-reversal invariant MTC’s 

with T-reversal invariant boundary 
conditions, and this group will be 

isomorphic to the subgroup of 
𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝑓𝑓𝑓𝑓𝑓𝑓.𝑐𝑐𝑐𝑐𝑡𝑡. of elements of order two.



Three Questions About 
SYM & Four-manifold 

Invariants 

Part 2 



First Question 



Topological Twisting 

Basic Example: ``pure’’ SU(2) N=2 SYM 

Topological twisting of d=4 N=2 field theories 
leads to diffeomorphism invariants of smooth 

compact oriented four-manifolds. 

Super-Poincaré algebra:  𝔤𝔤 = 𝔤𝔤0 ⊕ 𝔤𝔤1

(Some new comments based on Manschot-Moore 
2021, and some discussions with Dan Freed ) 



Algebra of supertranslations 𝔤𝔤1
(and fields in the ``vectormultiplet) are in   

representations of a global symmetry group 
𝐺𝐺0 with Lie algebra 𝔤𝔤0

𝐺𝐺0 = 𝑃𝑃𝑃𝑃 2 + × 𝑃𝑃𝑃𝑃 2 − × 𝑃𝑃𝑃𝑃 2 𝑅𝑅 / 𝒵𝒵

𝒵𝒵 = −1,−1,−1 ≅ ℤ2
Background fields of untwisted theory:  

Riemannian metric and orientation on 𝑋𝑋

….  and  a 𝐺𝐺0-connection 



Metric and orientation give a reduction  
of structure group of 𝑇𝑇𝑋𝑋 to 

𝐻𝐻 ≔ ( 𝑃𝑃𝑃𝑃 2 + × 𝑃𝑃𝑃𝑃 2 −)/ −1,−1

There is a homomorphism 𝜌𝜌: 𝐻𝐻 → 𝐺𝐺0

𝑢𝑢1,𝑢𝑢2 → 𝑢𝑢1,𝑢𝑢2,𝑢𝑢1

with connection 𝛻𝛻𝐿𝐿𝐿𝐿



(Improved) Definition of topological twisting:  
A ``topologically twisted theory’’ is the 

untwisted theory with a choice of background 
fields so that there is a reduction of structure 

group and background fields to 𝐻𝐻,𝛻𝛻𝐿𝐿𝐿𝐿 under 𝜌𝜌

Remarkable fact (Witten 1988): With the above 
choice of background fields the partition 

function and correlation functions of certain 
``operators’’ are independent of 𝛻𝛻𝐿𝐿𝐿𝐿 .

They are therefore smooth invariants of 4-folds 



Other Theories

There are infinitely many other
d=4 N=2 field theories. 

Twisted versions might, or might not, teach 
us new things about differential topology 

of four-manifolds. 

What are the (topological) background 
fields of the other twisted theories? 



Example:  𝑃𝑃𝑃𝑃 2 ,𝑁𝑁 = 2∗ Symmetry group is 

𝐺𝐺0 = ( 𝑃𝑃𝑃𝑃 2 + × 𝑃𝑃𝑃𝑃 2 − × 𝑃𝑃𝑃𝑃 2 𝑅𝑅 × 𝑃𝑃 1 )/ 𝒵𝒵

There is NO homomorphism from the 
structure group of 𝑇𝑇𝑋𝑋 to 𝐺𝐺0

(compatible with constraints on the morphism of Lie algebras) 

There IS a homomorphism 𝑃𝑃𝑈𝑈𝑆𝑆𝑛𝑛𝑐𝑐 4 → 𝐺𝐺0

The twisted theory correlation functions are independent 
of the 𝑃𝑃𝑈𝑈𝑆𝑆𝑛𝑛𝑐𝑐 connection but do depend nontrivially on the 

𝑃𝑃𝑈𝑈𝑆𝑆𝑛𝑛𝑐𝑐 structure on the 4-fold [Manschot & Moore]  

𝒵𝒵 = −1,−1,−1,−1 ≅ ℤ2



Question: 
What about non-Lagrangian theories?  

One can analyze by hand the 
topological data for all the Lagrangian

theories (wip: Ranveer Singh) 

What is the background topological data 
for twisting the general class S theory 

𝑇𝑇 𝔤𝔤,𝐶𝐶𝑔𝑔,𝑛𝑛,𝐷𝐷 ? 



Second Question:
Invertible Theories And Orientation  



Twisted SYM & Anomaly Theories

(instanton moduli space is a special case) 

The path integral for topologically 
twisted Lagrangian theories localizes 

to intersection theory on moduli 
space of the nonabelian

Seiberg-Witten equations   



How Twisted Lagrangian Theories 
Generalize Donaldson Invariants 

𝑍𝑍 𝑃𝑃 = 𝑒𝑒𝒪𝒪 𝑆𝑆
𝒯𝒯 = �

ℳ
𝑒𝑒𝜇𝜇 𝑆𝑆 ℰ 𝒱𝒱

But now ℳ:  is the moduli space of:  

𝐹𝐹+ = 𝒟𝒟(𝑀𝑀, �𝑀𝑀) 𝛾𝛾 ⋅ 𝐷𝐷 𝑀𝑀 = 0

``Nonabelian Seiberg-Witten equations’’
[Labastida-Marino; Losev-Shatashvili-Nekrasov] 

𝑀𝑀 ∈ Γ 𝑊𝑊+ ⊗ 𝑉𝑉
𝑊𝑊+: Rank 2 ``spin’’ bundle; 𝑉𝑉depends on matter rep  

Presenter
Presentation Notes
Say in words V is an associate bundle to the gauge bundle for a quaternionic representation of G 



Defining the integral over ℳ
requires a choice of orientation

View the determinant bundle of the 
deformation complex as the (real) 

state space of a 5d invertible theory 

Orientability should be determined by the 
mod-two index of the deformation complex 
∼ mod two index of Dirac coupled to 
relative spin bundle [Atiyah-Hitchin-Singer]
+ …  



For the original case of Donaldson theory, with rank 
one gauge group  the 5d invertible theory is 

∫ 𝑤𝑤2 𝑃𝑃 𝑃𝑃𝑞𝑞1 𝑤𝑤2 𝑇𝑇𝑋𝑋

𝑃𝑃: Principal 𝑃𝑃𝑆𝑆(3) bundle over 𝑋𝑋 for the gauge fields 

(Related to remarks of Kapustin & Thorngren 2017; 
Cordova & Dumitrescu 2018; Wang, Wen & Witten 2019) 

An orientation is a trivialization 
of this invertible theory. 



Sign of the Donaldson invariants depends on an 
integral lift modulo 4 of 𝑤𝑤2 𝑃𝑃

(as in Donaldson & Kronheimer’s book ) 

OR on an integral lift modulo 4 of 𝑤𝑤2 𝑇𝑇𝑋𝑋
(as in  Witten, 1994) 

With an explicit counterterm between 
these choices (Moore & Witten 1997) 

This nicely summarizes some facts about the 
relation of SYM and Donaldson invariants: 



Question: 
Is there a useful description of the 

analogous 5d invertible theory 
for the moduli space of the 
nonabelian Seiberg-Witten 

equations for general compact 
group and quaternionic

representation? 



Third Question: 
Puzzle About ``K-theoretic Donaldson 

Invariants’’  



``K-Theoretic Donaldson Invariants’’ 



Five Dimensions 
Partial Topological Twist of 5d SYM on  X × 𝑃𝑃1

Topological on X ⇒ Can shrink 𝑋𝑋 ⇒
Describe the twisted theory in terms of SQM with 

target space the moduli space of instantons: 

But  ℳ is not spin in general, 
so the theory will be anomalous 

𝒬𝒬2 = 𝜕𝜕𝑡𝑡

Find a suitable ``line bundle’’  ℒ so that  𝑃𝑃ℳ+ ⊗ ℒ exists 



Chern-Simons Observables 
𝑃𝑃 1 𝜋𝜋𝑛𝑛𝑓𝑓𝑡𝑡 symmetry with current 𝐽𝐽 = 𝑇𝑇𝑟𝑟𝐹𝐹2

= ∫𝑋𝑋×𝑆𝑆1 𝐹𝐹 𝐴𝐴𝑏𝑏𝑐𝑐𝑘𝑘 ∧ 𝑇𝑇𝑟𝑟 𝐴𝐴𝑑𝑑𝐴𝐴 + 2
3
𝐴𝐴3

+ susy completion 

𝒪𝒪 𝑛𝑛 = �
Σ 𝑛𝑛 ×𝑆𝑆1

𝑇𝑇𝑟𝑟 𝐴𝐴𝑑𝑑𝐴𝐴 +
2
3
𝐴𝐴3 + ⋯

𝑛𝑛 ≔ 𝑐𝑐1(𝑃𝑃𝜋𝜋𝑛𝑛𝑓𝑓𝑡𝑡) ∈ 𝐻𝐻2 𝑋𝑋,ℤ
Couple to background 

gauge field  Abck

Introduces a ``line bundle’’  𝐿𝐿 𝑛𝑛 → ℳ in the SQM 



At least formally the path integral 
should  compute 

𝑍𝑍 ℛ,𝑛𝑛 = ∑𝑘𝑘=0∞ ℛ
𝑑𝑑𝑘𝑘
2 𝑇𝑇𝑟𝑟ℋ𝑘𝑘{ −1 𝐹𝐹 exp(−ℛ 𝐷𝐷𝐿𝐿 𝑛𝑛

2 )}

𝑑𝑑𝑘𝑘 = dimℝℳ𝑘𝑘

𝐷𝐷𝐿𝐿 𝑛𝑛 ∶ Dirac operator coupled to 𝐿𝐿 𝑛𝑛

Conjecture: For suitable 𝑛𝑛 𝑃𝑃ℳ+ ⊗ 𝐿𝐿 𝑛𝑛 exists 

Evidence:  One can show
𝑋𝑋 admits an  acs ⇒ ℳ𝑘𝑘 is spin-c 



𝑍𝑍 ℛ,𝑛𝑛 = ∑𝑘𝑘=0∞ ℛ
𝑑𝑑𝑘𝑘
2 𝑇𝑇𝑟𝑟ℋ𝑘𝑘{ −1 𝐹𝐹 exp(−ℛ 𝐷𝐷𝐿𝐿 𝑛𝑛

2 )}

ℛ = 𝑅𝑅 Λ

Λ dimensional scale in the physical theory 

ℛ4 = exp −8 𝜋𝜋2
𝑅𝑅

𝑔𝑔5𝑑𝑑,𝑌𝑌𝑌𝑌
2 + 𝑆𝑆 𝜃𝜃

𝑚𝑚𝜋𝜋𝑛𝑛𝑓𝑓𝑡𝑡.𝑝𝑝𝑐𝑐𝑟𝑟𝑡𝑡. =
1
𝑅𝑅

logℛ2



All this should generalize to (anomaly-free) 
6d SYM theories on 𝑋𝑋 × 𝔼𝔼

𝐼𝐼𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥 𝐷𝐷𝐿𝐿 𝑛𝑛 → 𝐸𝐸𝐸𝐸𝐸𝐸 𝜎𝜎(ℳ𝑘𝑘)

In good cases, this is the index of the 
Dirac operator 𝐷𝐷𝐿𝐿 𝑛𝑛

𝑇𝑇𝑟𝑟ℋ𝑘𝑘{ −1 𝐹𝐹 exp(− ℛ 𝐷𝐷𝐿𝐿 𝑛𝑛
2 )}

⇒ ``K-theoretic Donaldson invariants’’ 



Five Dimensions 

Using both the Coulomb branch integral 
(a.k.a. the U-plane integral)  and, 

independently, localization techniques, 
we make contact with the work of 

mathematicians

𝑍𝑍 ℛ,𝑛𝑛 `` = ′′�
𝑘𝑘=0

∞

ℛ𝑑𝑑𝑘𝑘/2 �
ℳ𝑘𝑘

𝑐𝑐𝑐 𝐿𝐿 𝑛𝑛 �̂�𝐴 ℳ𝑘𝑘

[Nekrasov, 1996; Losev, Nekrasov, Shatashvili, 1997] 



2006:

2019:



Using the two physical techniques 
we derived (compatible) results 

Agree  with GNY!  

This raises our main puzzle…

Differ  from GNY! 

(Suitably  interpreted.) 



𝑍𝑍𝐼𝐼 ℛ,𝑛𝑛 = Φ𝐼𝐼 ℛ,𝑛𝑛 + 𝑍𝑍𝑆𝑆𝑊𝑊
𝐼𝐼 ℛ,𝑛𝑛

Φ𝐼𝐼 ℛ,𝑛𝑛 : 4d Coulomb branch integral 

𝐽𝐽 ∈ 𝐻𝐻2 𝑋𝑋,ℝ : 𝐽𝐽 =∗ 𝐽𝐽 & 𝐽𝐽2 = 1 & 𝐽𝐽 ∈ 𝑃𝑃𝑚𝑚𝑃𝑃𝑆𝑆𝑃𝑃𝑆𝑆𝑃𝑃𝑒𝑒 𝐿𝐿𝐶𝐶

𝑍𝑍𝑆𝑆𝑊𝑊
𝐼𝐼 : Contribution of SW invariants

One can deduce 𝑍𝑍𝑆𝑆𝑊𝑊
𝐼𝐼 from Φ𝐼𝐼

Total partition function is a sum of two terms 

For 𝑏𝑏2+ = 1 there is metric dependence through the period point 𝐽𝐽

𝑏𝑏2+ > 1 ⇒ Φ𝐼𝐼 = 0



SW special Kahler geometry is subtle 

𝑎𝑎: cylinder valued 

ℱ ∼ 𝑅𝑅−2𝐿𝐿𝑆𝑆3 𝑒𝑒−2𝑅𝑅𝑐𝑐 + ⋯

+𝐼𝐼𝑛𝑛𝑃𝑃𝑃𝑃𝑎𝑎𝑛𝑛𝑃𝑃𝑚𝑚𝑛𝑛 𝑐𝑐𝑚𝑚𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑃𝑃𝑆𝑆𝑚𝑚𝑛𝑛𝑃𝑃 𝑒𝑒𝑅𝑅𝑐𝑐
[Nekrasov, 1996] 

For 5d SYM gauge group of rank 1: 
Coulomb branch = ℂ

𝑃𝑃 = 〈 𝑃𝑃𝑒𝑒𝑥𝑥𝑈𝑈 �
𝑆𝑆1

𝜎𝜎 + 𝑆𝑆 𝐴𝐴5𝑑𝑑,𝑦𝑦𝑦𝑦 〉



Modular Parametrization Of 𝑃𝑃 −plane 

𝑃𝑃
𝑅𝑅

2

+ 𝑢𝑢 𝜏𝜏 = 8 + 4 ℛ2 + ℛ−2

𝑢𝑢 𝜏𝜏 =
𝜗𝜗2 𝜏𝜏 2

𝜗𝜗3 𝜏𝜏 2 +
𝜗𝜗3 𝜏𝜏 2

𝜗𝜗2 𝜏𝜏 2 Hauptmodul for Γ0 4

The Coulomb branch is a branched double cover 
of the modular curve for Γ0 4



Φ𝐼𝐼 ℛ,𝑛𝑛 = �
ℱ
𝑑𝑑𝜏𝜏𝑑𝑑 ̅𝜏𝜏 𝜈𝜈 𝐶𝐶𝑛𝑛2 Ψ𝐼𝐼 𝜏𝜏,

𝑛𝑛
2
𝜁𝜁

𝜈𝜈 𝜏𝜏,ℛ =
𝜗𝜗4
13−𝑏𝑏2

𝜂𝜂9
1

1 − 2 ℛ2𝑢𝑢(𝜏𝜏) + ℛ4

𝐶𝐶 𝜏𝜏,ℛ Suitably modular invariant and 
holomorphic ``contact term’’ 



Ψ𝐼𝐼 𝜏𝜏, 𝑧𝑧 = �
𝑘𝑘∈𝐻𝐻2 𝑋𝑋,ℤ

𝜕𝜕
𝜕𝜕 ̅𝜏𝜏

𝐸𝐸𝑘𝑘
𝐼𝐼 𝑞𝑞−

𝑘𝑘2
2 𝑒𝑒−2𝜋𝜋𝜋𝜋 𝑘𝑘⋅𝑧𝑧 −1 𝑘𝑘⋅𝐾𝐾

𝐸𝐸𝑘𝑘
𝐼𝐼 = 𝐸𝐸𝑟𝑟𝑓𝑓 𝐼𝐼𝑚𝑚𝜏𝜏 𝑘𝑘 +

𝐼𝐼𝑚𝑚 𝑧𝑧
𝐼𝐼𝑚𝑚 𝜏𝜏

⋅ 𝐽𝐽

𝑧𝑧 →
𝑛𝑛
2
𝜁𝜁 𝜏𝜏,ℛ

Not holomorphic. Metric dependent . 

Formally: A total derivative: 
𝜕𝜕
𝜕𝜕 ̅𝜏𝜏

�𝐺𝐺 = Ψ



Measure As A Total Derivative

Ω = 𝑑𝑑 Λ Λ = 𝑑𝑑𝜏𝜏 ℋ �𝐺𝐺
For a suitably modular invariant 

and nonsingular �𝐺𝐺 𝜏𝜏, ̅𝜏𝜏

(It can be hard to find explicit formulae
for  �𝐺𝐺 ∶ one needs the theory of mock 

modular forms, and their generalizations.) 

𝜕𝜕
𝜕𝜕 ̅𝜏𝜏

�𝐺𝐺 = Ψ

Φ𝐼𝐼 ℛ,𝑛𝑛 = �
ℱ
𝑑𝑑𝜏𝜏𝑑𝑑 ̅𝜏𝜏 𝜈𝜈 𝐶𝐶𝑛𝑛2 Ψ𝐼𝐼 𝜏𝜏,

𝑛𝑛
2
𝜁𝜁



Φ𝐼𝐼(𝑛𝑛,ℛ) = lim
𝑌𝑌→∞

�𝑑𝑑𝜏𝜏1 ℋ �𝐺𝐺 �
𝜏𝜏=𝜏𝜏1+𝜋𝜋 𝑌𝑌

𝐼𝐼𝑚𝑚𝜏𝜏 = 𝑌𝑌



Explicit Results

𝑋𝑋 = ℂℙ2 Φ 𝑛𝑛,ℛ = 𝜈𝜈 𝜏𝜏,ℛ 𝐶𝐶 𝜏𝜏,ℛ 𝑛𝑛2 𝐺𝐺 𝜏𝜏,ℛ
𝑞𝑞0

𝐺𝐺 𝜏𝜏,ℛ = −
𝑒𝑒𝜋𝜋 𝜋𝜋𝑛𝑛

𝜁𝜁(𝜏𝜏,ℛ)
2

𝜗𝜗4 𝜏𝜏
�
𝒮∈ℤ

−1 𝒮 𝑞𝑞
𝒮2
2 −

1
8

1 − 𝑒𝑒𝜋𝜋 𝜋𝜋𝑛𝑛 𝜁𝜁 𝜏𝜏,ℛ 𝑞𝑞𝒮−
1
2

Φ𝐼𝐼 − Φ𝐼𝐼′ = 𝜈𝜈 𝐶𝐶𝑛𝑛2Θ𝐼𝐼,𝐼𝐼′

𝑞𝑞0

Wall Crossing Formula: 



If we take these formula literally, we get 
results that are very different from GNY 

We get finite Laurent polynomials in ℛ
with terms involving negative powers of ℛ

𝑍𝑍 ℛ,𝑛𝑛 = �
𝑘𝑘=0

∞

ℛ𝑑𝑑𝑘𝑘/2 �
ℳ𝑘𝑘

𝑒𝑒𝑐𝑐1 𝐿𝐿 𝑛𝑛 �̂�𝐴 ℳ𝑘𝑘

It looks nothing like: 



𝜈𝜈,𝐶𝐶,𝐺𝐺,Θ𝐼𝐼,𝐼𝐼′ are functions of 𝜏𝜏 and of ℛ

Subtle order of limits:  ℛ → 0 vs.  ℑ𝜏𝜏 → ∞

Example:   𝑢𝑢 𝜏𝜏 ∼ 1
8
𝑞𝑞−

1
4 + 5

2
𝑞𝑞
1
4 − 31

4
𝑞𝑞
3
4 + 𝒪𝒪 𝑞𝑞

5
4

𝜈𝜈 𝜏𝜏,ℛ =
𝜗𝜗4
13−𝑏𝑏2

𝜂𝜂9
1

1 − 2 ℛ2𝑢𝑢(𝜏𝜏) + ℛ4



If we first expand the expressions in … .
in ℛ around ℛ = 0 then take the constant 𝑞𝑞0

term at each order in ℛ we find remarkable 
and nontrivial agreement with results in GNY.

Φ 𝑛𝑛,ℛ = 𝜈𝜈 𝜏𝜏,ℛ 𝐶𝐶 𝜏𝜏,ℛ 𝑛𝑛2 𝐺𝐺 𝜏𝜏,ℛ
𝑞𝑞0

Φ𝐼𝐼 − Φ𝐼𝐼′ = 𝜈𝜈 𝐶𝐶𝑛𝑛2Θ𝐼𝐼,𝐼𝐼′

𝑞𝑞0



Did we make a technical mistake? 

Probably not:

Using toric localization and the 5d instanton 
partition function we derived exactly the same 

formula for wall-crossing @ ∞

Agreement with GNY 
– with an admittedly ad hoc interpretation of the integral –

is extremely nontrivial. 



𝐺𝐺(ℛ,𝑛𝑛) = 22𝜒𝜒+3 𝜎𝜎−𝜒𝜒ℎ

1−ℛ2
1
2𝑛𝑛

2+𝜒𝜒ℎ
∑𝑐𝑐 𝑃𝑃𝑊𝑊 𝑐𝑐 1+ℛ

1−ℛ

𝑐𝑐⋅𝑛𝑛2

𝑍𝑍 ℛ,𝑛𝑛 = Terms in the power 
series with ℛ𝑑𝑑 with 𝑑𝑑 = 𝜒𝜒+𝜎𝜎

4
𝑚𝑚𝑚𝑚𝑑𝑑 4

Agrees with, and generalizes, GKW Conjecture 1.1

Moreover, using the wall-crossing behavior of  
Φ𝐼𝐼 ℛ,𝑛𝑛 at the strong coupling cusps allows 

one to derive 𝑍𝑍𝑆𝑆𝑊𝑊
𝐼𝐼 ⇒ partition function for 𝑏𝑏2+ > 1



The Puzzle: The naïve physical 
interpretation suggests we should take 
the constant term in the 𝑞𝑞-expansion

Φ 𝑛𝑛,ℛ = 𝜈𝜈 𝜏𝜏,ℛ 𝐶𝐶 𝜏𝜏,ℛ 𝑛𝑛2 𝐺𝐺 𝜏𝜏,ℛ
𝑞𝑞0

Φ𝐼𝐼 − Φ𝐼𝐼′ = 𝜈𝜈 𝐶𝐶𝑛𝑛2Θ𝐼𝐼,𝐼𝐼′

𝑞𝑞0

But to get answers that agree with mathematical 
results we first expand in ℛ and then take the 

constant term. 



Integrals in elliptic cohomology of 
distinguished classes defined by 

the susy sigma model with target 
space ℳ𝑘𝑘 define smooth 

invariants of four-manifolds 

Conjecture: 

So far, we did not use any K-theory in describing
the ``K-theoretic Donaldson invariants’’ 

It would be very desirable to do so, because the 6d 
version, analogously formulated could be quite interesting:



SUMMARY
Part 1:  We gave a necessary and sufficient condition for 
T-invariance of CSW with torus gauge group, and 
conjectured a general condition for all CSW theories. 

Led to a question about whether the condition can be rephrased 
in terms of some (nonstandard) Witt group of fusion categories.

Part 2:   SYM & Four-manifold invariants. Three questions: 

Topological data for twisting of the general d=4 N=2 theory? 

Invertible theory governing orientation of nonabelian SW moduli

Puzzle regarding physical derivation of K-theoretic Donaldson invariants 
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