The u-Plane Integral As A Tool In The Theory Of Four-Manifolds

Gregory Moore Rutgers University

SCGP, April 26, 2017

- 2 Lightning Summary: The Physical Derivation Of Witten's Conjecture Relating Donaldson & SW
- 3 Brief Overview Of The World Of N=2 Theories
 - 4 Donaldson-Witten Partition Function For General Compact Simple Lie Group
- 5
- Theories With Matter & Superconformal Simple Type
- 6
- **Two Possible Future Directions**

Introduction

Most of this talk reviews work done around 1997-1998:

Moore & Witten Marino & Moore Marino, Moore, & Peradze

Overlapping work: Losev, Nekrasov, & Shatashvili

Central Question: Given the successful application of N=2 SYM for SU(2) to the theory of 4-manifold invariants, are there interesting applications of OTHER N=2 field theories?

Recently re-visited with Iurii Nidaiev

2 Lightning Summary: The Physical Derivation Of Witten's Conjecture Relating Donaldson & SW

- 3 Brief Overview Of The World Of N=2 Theories
 - 4 Donaldson-Witten Partition Function For General Compact Simple Lie Group
- 5 -
 - Theories With Matter & Superconformal Simple Type

Two Possible Future Directions

Review: Derivation Of Witten Conjecture From SU(2) SYM

X: Smooth, compact, $\partial X = \emptyset$, oriented, $(\pi_1(X) = 0)$

Twisted N=2 SYM on X for simple Lie group G: Sum over connections $A \in \mathcal{A}(P)$ on all G_{adj} bundles $P \to X$ with fixed 't Hooft flux $\xi \in H^2(X; \pi_1(G_{adj}))$ together with various fields valued in ad P:

 $\phi \in \Omega^{0}(adP \otimes \mathbb{C}) \quad \chi \in \Pi\Omega^{2,+}(adP) \ \eta \in \Pi\Omega^{0}(adP) \quad \psi \in \Pi\Omega^{1}(adP)$

Formally: Correlation functions of Q-invariant operators localize to integrals over the finite-dimensional moduli spaces of G-ASD conn's.

Witten's proposal: For G = SU(2) correlation functions of Q-invariant operators are the Donaldson polynomials.

Local Observables $U \in Inv(g) \Rightarrow U(\phi)$

Donaldson-Witten Partition Function

$$Z_{DW}^{\xi}(p,s) = \langle e^{2p \, U + s^a U(S_a)} \rangle_{\Lambda}$$
$$= \Lambda^{-\frac{3}{4}(\chi + \sigma)} \sum \frac{(\Lambda^2 p)^{\ell} (\Lambda s)^r}{\ell! \, r!} \mathscr{D}_D(pt^{\ell} S^r)$$

Mathai-Quillen & Atiyah-Jeffrey: Path integral formally localizes:

 $\mathcal{M} \hookrightarrow \mathcal{A}/\mathcal{G}$

Strategy: Evaluate in LEET: Integrate over vacua on \mathbb{R}^4

Spontaneous Symmetry Breaking

 $SU(2) \rightarrow U(1)$ by vev of Order parameter: adjoint Higgs field ϕ : $u = \langle U(\phi) \rangle$

Coulomb branch: $\mathcal{B} = \mathfrak{t} \otimes \mathbb{C}/W \cong \mathbb{C}$ $adP \to L^2 \bigoplus \mathcal{O} \bigoplus L^{-2}$

Photon: Connection A on L U(1) VM: $(a^q, A, \chi, \psi, \eta)$ a^q : complex scalar field on \mathbb{R}^4 :

Do path integral of quantum fluctuations around $a^q(x) = a + \delta a(x)$

What is the relation of $a = \langle a^q(x) \rangle$ to u?

What are the couplings in the LEET for the U(1) VM ?

LEET: Constraints of N=2 SUSY

General result on N=2 abelian gauge theory with Lie algebra $t \cong \mathfrak{u}(1) \bigoplus \cdots \bigoplus \mathfrak{u}(1)$: Action determined by a family of Abelian varieties and an ``N=2 central charge function'':

 $\mathfrak{A} \to \mathfrak{t} \otimes \mathbb{C} - \mathcal{D} \qquad \Gamma \coloneqq H_1(\mathfrak{A}; \mathbb{Z})$ $Z: \Gamma \to \mathbb{C} \qquad \langle dZ, dZ \rangle = 0$

Duality Frame: $\Gamma \cong \Gamma^{electric} \bigoplus \Gamma^{magnetic}$

$$a^{I} = Z(\alpha^{I}) \quad a_{D,I} \coloneqq Z(\beta_{I}) = \left(\frac{\partial \mathcal{F}}{\partial a^{I}}\right) \qquad \tau_{IJ} \coloneqq \frac{\partial a_{D,I}}{\partial a^{J}}$$

Action $\sim \int_{X} \overline{\tau} (F^{+})^{2} + \tau (F^{-})^{2} + da^{q} * (Im \tau) d \overline{a^{q}} + da^{q}$

Seiberg-Witten Theory:

For G=SU(2) SYM \mathfrak{A} is a family of elliptic curves:

$$E_{u}: \quad y^{2} = x^{2}(x - u) + \frac{\Lambda^{4}}{4}x \qquad u \in \mathbb{C}$$
$$Z(\gamma) = \oint_{\gamma} \lambda \qquad \lambda = \frac{dx}{y}(x - u)$$
$$u \to \infty: \quad Invariant \ cycle \ A: \qquad a(u) = \oint_{A} \lambda$$

Choose B-cycle: $\Rightarrow \tau(a) \Rightarrow$ Action for LEET

LEET breaks down at $u = \pm \Lambda^2$ where $Im(\tau) \rightarrow 0$

Seiberg-Witten Theory - II

LEET breaks down because there are new massless fields associated to BPS states

$$u = -\Lambda^2$$
 $u = \Lambda^2$

 $U(1)_D VM: (a_D, A_D, \chi_D, \psi_D, \eta_D)$

Near \mathcal{U}_{Λ^2} : Charge 1 HM: $(M = q \oplus \tilde{q}^*, \cdots)$ $Z_{DW}^{\xi}(p, s) = Z_u + Z_{\Lambda^2} + Z_{-\Lambda^2}$

u-Plane Integral Z_{μ} Can be computed explicitly from QFT of LEET Vanishes if $b_2^+ > 1$ $Z_{u} = \int da \, d\bar{a} \, \left(\frac{du}{da}\right)^{\frac{\chi}{2}} \Delta^{\frac{\sigma}{8}} e^{2pu+S^{2}T(u)} \Theta$ $\Delta = (u - \Lambda^2)(u + \Lambda^2)$ Contact term: $T(u) = \left(\frac{du}{da}\right)^2 E_2(\tau) - 8 u$

 Θ : Sum over line bundles for the U(1) photon.

Photon Theta Function

$$\Theta = e^{y^{-1} \left(\frac{du}{da}\right)^2 S_+^2} \sum_{\lambda = \lambda_0 + H^2(X, \mathbb{Z})} y^{-\frac{1}{2}} e^{-i\pi\overline{\tau}\lambda_+^2 - i\pi\tau\lambda_-^2}$$
$$(-1)^{w_2(X)\cdot(\lambda - \lambda_0)} e^{-i\left(\frac{du}{da}\right)S\cdot\lambda_-} \left(\frac{d\overline{\tau}}{d\overline{a}}\right)(\lambda_+ + \frac{1}{4\pi y}S_+\left(\frac{du}{da}\right))$$

 $\tau = x + i y$

 $2\lambda_0$ is an integral lift of $\xi = w_2(P)$

Metric dependent! $\lambda = \lambda_+ + \lambda_-$

Contributions From \mathcal{U}_{Λ^2} Path integral for $U(1)_D$ VM + HM: General considerations imply: $\sum SW(\lambda)e^{2\pi i\,\lambda\cdot\lambda_0}\,R_{\lambda}(p,S)$ $\lambda \in \frac{1}{2} w_2(X) + H^2(X,\mathbb{Z})$ $R_{\lambda}(p,S) = Res\left[\left(\frac{da_{D}}{\frac{1+\frac{d(\lambda)}{2}}{2}}\right)e^{2pu+S^{2}T(u)+i\left(\frac{du}{da_{D}}\right)S\cdot\lambda}C(u)^{\lambda^{2}}P(u)^{\sigma}E(u)^{\chi}\right]$ $u = \Lambda^2 + Series a_D$ $c_1^2 = 2\chi + 3\sigma$ $d(\lambda) = \frac{(2\lambda)^2 - c_1^2}{\lambda}$

C,P,E : Universal functions. In principle computable.

Deriving C,P,E From Wall-Crossing

$$\frac{d}{dg_{\mu\nu}}Z_u = \int Tot \, deriv = \oint_{\infty} du(\dots) + \oint_{\Lambda^2} du(\dots) + \oint_{-\Lambda^2} du(\dots)$$

 Z_u piecewise constant: Discontinuous jumps across walls:

$$\Delta_{\infty} Z_{u}: W(\lambda): \quad \lambda_{+} = 0 \quad \lambda = \lambda_{0} + H^{2}(X, \mathbb{Z})$$
Precisely matches formula of Göttsche!
$$\lambda_{\pm \Lambda^{2}} Z_{u}: W(\lambda): \quad \lambda_{+} = 0 \quad \lambda = \frac{1}{2} w_{2}(X) + H^{2}(X, \mathbb{Z})$$

 $\Delta_{\Lambda^2} Z_u + \Delta Z_{\Lambda^2} = 0 \Rightarrow C(u), P(u), E(u)$

Λ

$$Z_{DW} = \left\langle e^{p\mathcal{O} + I(S)} \right\rangle_{\text{micro}} = Z_{\text{Coulomb}} + Z_{\text{Higgs}} = Z_u + Z_{SW}$$

Donaldson polynomials do *not* jump at SW walls \Rightarrow

 $0 = \delta Z_{DW} = \delta Z_{\rm Coulomb} + \delta Z_{\rm Higgs}$

Witten Conjecture

Now, with C,P,E known one takes $b_2^+(X) > 1$ and SWST to recover the Witten conjecture:

$$Z_{DW}^{\xi}(p,s) = 2^{c^2 - \chi_h} \left(e^{\frac{1}{2}S^2 + 2p} \sum_{\lambda} SW(\lambda) e^{2\pi i \,\lambda \cdot \lambda_0} e^{2S \cdot \lambda} + e^{-\frac{1}{2}S^2 - 2p} \sum_{\lambda} SW(\lambda) e^{2\pi i \,\lambda \cdot \lambda_0} e^{-2iS \cdot \lambda} \right)$$

$$\chi_h = \frac{\chi + \sigma}{4} \qquad c^2 = 2\chi + 3 \sigma$$

2 Lightning Summary: The Physical Derivation Of Witten's Conjecture Relating Donaldson & SW

- 4 Donaldson-Witten Partition Function For General Compact Simple Lie Group
- 5 Theories With Matter & Superconformal Simple Type

Two Possible Future Directions

N=2 Theories

Lagrangian theories: Compact Lie group G, quaternionic representation \mathcal{R} with G-invariant metric,

$$\tau_0 \in \prod_{simple factors} \mathcal{H} \qquad m \in Lie(G_f) \qquad G_f = Z(G) \subset O(\mathcal{R})$$

Class S: Theories associated to Hitchin systems on Riemann surfaces.

Superconformal theories

Couple to N=2 supergravity

6

- 2 Lightning Summary: The Physical Derivation Of Witten's Conjecture Relating Donaldson & SW
- 3 Brief Overview Of The World Of N=2 Theories
 - 4 Donaldson-Witten Partition Function For General Compact Simple Lie Group
- 5 Theories With Matter & Superconformal Simple Type
 - Two Possible Future Directions

G-Donaldson Invariants

Pure VM theory for G a compact simple Lie group of rank r

0,2 observables derived from independent invariant polynomials $U, V \in Inv(g)$

$$V(S) \sim \int_{S} V_{ab} \left(\phi^{a} F^{b} + \psi^{a} \psi^{b} \right)$$

$$Z_{DW}^{G,\xi}(U,V(S)) = \langle e^{U+V(S)} \rangle_{\Lambda}$$

Formally the path integral localizes to G-ASD moduli space

Generating function of generalization of Donaldson polynomials for any G.

Rigorous setup: Kronheimer & Mrowka

LEET On Coulomb Branch Coulomb branch: $\mathcal{B} = \mathfrak{t} \otimes \mathbb{C} / W$ SSB: $G \rightarrow T \Rightarrow$ Abelian VM's valued in T Example of SW Geometry : G=SU(N) $P(x) = x^{N} + u_{2}x^{N-2} + \dots + u_{N}$ Σ_{u} : $y^{2} = P(x)^{2} - \Lambda^{2N}$ $\mathfrak{A}_{\mu} = Iac(\Sigma_{\mu})$ $\Gamma_{\mu} = H_1(\Sigma_{\mu}; \mathbb{Z})$ $Z(\gamma) = \oint_{\mathcal{X}} \lambda$ $\lambda = x \, d \, \log \frac{y + P}{v - P}$

u-Plane Integral

Can compute u-plane integral explicitly from QFT:

 \exists almost canonical duality frame in weak-coupling region at $\, \propto \,$

 \Rightarrow t-valued VM: (a, A, χ, η, ψ)

$$Z_{u} = \int_{t_{c}} [da] A^{\chi} B^{\sigma} e^{U + S^{2}T_{V}} \Theta$$
$$A = \alpha \left(Det \left(\frac{\partial u^{I}}{\partial a^{J}} \right) \right)^{\frac{1}{2}} \qquad B = \beta \Delta^{\frac{1}{8}}$$

 $\Delta: \text{ Holomorphic function vanishing along ``discriminant locus'' ~ } \mathcal{D}$

T_V: Contact term. General theory Losev-Nekrasov-Shatashvili; Edelstein, Gomez-Reino, Marino

For quadratic Casimir:
$$T_{u_2} \sim 2 u_2 - a^I \frac{\partial u_2}{\partial a^I}$$

Theta Function

 Θ : Theta function for abelian gauge fields remaining after SSB Reduction of structure group $G_{adj} \rightarrow T$ Classes for fluxes in a torsor for $H^2(X; \Lambda_{wt}(g)) \cong \Lambda_{wt}(g) \otimes H^2(X; \mathbb{Z})$

$$[F] = 4 \pi \lambda \qquad \lambda \in \Lambda_{wt}(\mathfrak{g}) \otimes H^2(X; \mathbb{Z}) + \lambda_0 := \Lambda$$

$$\Theta \sim \sum_{\lambda \in \Lambda} e^{-i \pi \lambda_{+} \overline{\tau} \lambda_{+} - i \pi \lambda_{-} \tau \lambda_{-}} e^{i \pi (\lambda - \lambda_{0}) \cdot \rho \otimes w_{2}(X)} e^{i \frac{\partial V}{\partial a^{I}} \lambda_{-}^{I} \cdot S}$$

Metric dependent \Rightarrow Possible wall-crossing

Discriminant Locus

Just as in rank 1, the integrand is singular along a ``discriminant locus'' \mathcal{D} where BPS states become massless and some $U(1) \subset T$ becomes strongly coupled.

 $\mathcal{D} = \bigcup_i \mathcal{D}_i$ $\mathcal{D}_i \text{ generalizes } u = \pm \Lambda^2$

Higher rank: complicated intersections where multiple BPS states become massless, i.e. multiple periods of the curve vanish.

Integral Z_u must be regularized by cutting out tubular regions around \mathcal{D}_i

General Form Of Z_{DW}

$$Z_{DW}^{G,\xi}(p,s) = Z_u + \sum_i Z_{\mathcal{D}_i} + \sum_{i \neq j} Z_{\mathcal{D}_{ij}} + \dots + Z_{mx}$$

Cancelling wall-crossing inductively determines $Z_{\mathcal{D}_i}$ from Z_u and $Z_{\mathcal{D}_{ij}}$ from $Z_{\mathcal{D}_i}$, etc.

All $Z_{\mathcal{D}_{i_1...i_k}}$ vanish for $b_2^+ > 1$ EXCEPT Z_{mx}

So for $b_2^+ > 1$ the answer is given entirely by Z_{mx}

The ``N=1 Vacua''

 \mathcal{D}_{mx} contains $h = h^{\vee}(G)$ isolated points v_{α} permutated by spontan. broken $\mathbb{Z}/h\mathbb{Z}$ R-symmetry

$$b_2^+ > 1$$
 $Z_{DW}^{G,\xi}(U,V) = \sum_{v_a} Z_{DW}^{G,\xi}(U,V;v_a)$

In principle, other maximal degenerations – corresponding to superconformal points- might have contributed.

But detailed analysis shows they do not for G=SU(3) and it is natural to conjecture that this is the case for all G.

Analog Of Witten Conjecture In duality frame where max degeneration is $a_D^I = 0$ the Θ function is a sum over $\lambda \in \frac{1}{2}\rho \otimes w_2(X) + \Lambda_{\mathrm{wt}}(\mathfrak{g}) \otimes H^2(X;\mathbb{Z})$ r independent spin-c structures : $f_I \in \frac{1}{2}w_2(X) + H^2(X; \mathbb{Z})$ $SW(\lambda) \coloneqq SW(f_I)$ $Z_{DW}^{G,\xi}(U,V;v_{a}) = e^{i\theta_{a}} \sum_{\lambda}' e^{(2\pi i\lambda \cdot \lambda_{0})} SW(\lambda) R_{\lambda}(U;V)$ $R_{\lambda}(U,V) = Res[(da_D^1 \wedge \dots \wedge da_D^r) / \prod (a_D^I)^{1 + \frac{d(f_I)}{2}}) \mathcal{E}(a_D^I) e^{Us + S^2 T_V + i \frac{\partial V}{\partial a_D^I} S \cdot f_I}$ All computable from the degenerate curve and its first order variation.

Example Of SU(N)

Thus we can derive the SU(N) Donaldson invariants.

Corollary: X of simple type, $b_1 = 0, b_2^+ > 1$:

Only the $\mathcal{N} = 1$ points contribute. Local analysis near $\mathcal{N} = 1$ points \Rightarrow

$$\langle \mathbf{e}^{U+I_2(S)} \rangle_{SU(N)} = \widetilde{\alpha}_N^{\chi} \widetilde{\beta}_N^{\sigma} \sum_{k=0}^{N-1} \sum_{\lambda^I} \omega^{k(N^2-1)\delta} \Big(\prod_{I=1}^{N-1} SW(\lambda^I) \Big)$$
$$\cdot \exp\left[\sum_{s=1}^{\left[\frac{N-1}{2}\right]} p_{2s} \omega^{2ks} u_{2s} + 2\omega^{2k} S^2 + 4\omega^k \sum_{I=1}^{N-1} (S, \lambda^I) \sin \frac{\pi I}{N} \right]$$

$$\omega = \exp[i\pi/N] \qquad \qquad \delta = (\chi + \sigma)/4 \qquad u_{2s} = 4^{s} \binom{2s}{s} N$$

The sum \sum_{λ^I} is over the finite set of SW classes with: $4\lambda^2 = 3\chi + 2\sigma$

- 2 Lightning Summary: The Physical Derivation Of Witten's Conjecture Relating Donaldson & SW
- 3 Brief Overview Of The World Of N=2 Theories
 - 4 Donaldson-Witten Partition Function For General Compact Simple Lie Group

Theories With Matter & Superconformal Simple Type

Two Possible Future Directions

Including Matter

Now consider the general Lagrangian theory:

Data: $G, \mathcal{R}, m, \Lambda \text{ or } q = e^{2\pi i \tau}$

Twisted N=2 theory is again of MQ form:

Localize on moduli space of generalized monopole equations.

Q: Differential for G_f – equivariant cohomology with parameters $m \in Lie(G_f)$

Labastida & Marino; Losev-Nekrasov-Shatashvili

$$Z(U,V(S)) = \sum_{\ell,r} \frac{1}{\ell!\,r!} \int_{\mathcal{M}} \omega_U^{\ell} \, \omega_{V(S)}^{r} \, Eul(Cok(\mathbb{F}))$$

SU(2) With Fundamental Hypers

Moore & Witten

 $\mathcal{R} = N_{fl}(2 \oplus 2^*) \quad Spin(2N_{fl}) \subset G_f$

Mass parameters $m_f \in \mathbb{C}, f = 1, ..., N_{fl}$ Must take $\xi = w_2(X)$

Seiberg-Witten: E_u : $y^2 = x^3 + a_2 x^2 + a_4 x + a_6$ a_k : Polynomials in Λ, m_f, u

 $u \approx m^2$

 Z_u has exactly the same expression as before but now, e.g. da/du depends on $m_f/\frac{\omega}{\omega}$

New ingredient: \mathcal{D} has $2 + N_{fl}$ points u_i : $\Delta = \prod_i (u - u_i)$

Analog Of Witten Conjecture

$$b_{2}^{+} > 1 \qquad Z(p;s;m_{f}) = \sum_{j=1}^{2+N_{fl}} Z(p,s;m_{f};u_{j})$$
$$Z(p,s;m_{f};u_{j}) = \tilde{\alpha}^{\chi} \tilde{\beta}^{\sigma} \sum_{\lambda} SW(\lambda) e^{2\pi i \lambda \cdot \lambda_{0}} R_{j}(p,s)$$

X is SWST \Rightarrow

$$R_{j}(p,s) = \kappa_{j}^{\chi_{h}} \left(\frac{du}{da}\right)^{\chi_{h}+\sigma} \exp\left(2p u_{j} + S^{2}T(u_{j}) - i \left(\frac{du}{da}\right)_{j} S \cdot \lambda\right)$$
$$u = u_{j} + \kappa_{j}q_{j} + \mathcal{O}(q_{j}^{2})$$

Everything computable explicitly as functions of the masses from first order degeneration of the SW curve.

Superconformal Points

Consider $N_{fl} = 1$. At a critical point $m = m_*$ two singularities u_{\pm} collide at $u = u_*$ and the SW curve becomes a cusp: $y^2 = x^3$ [Argyres,Plesser,Seiberg,Witten]

Two mutually nonlocal BPS states have vanishing mass:

$$\oint_{\gamma_1} \lambda \to 0 \quad \oint_{\gamma_2} \lambda \to 0 \qquad \gamma_1 \cdot \gamma_2 \neq 0$$

Physically: No local Lagrangian for the LEET : Signals a nontrivial superconformal field theory. $m = m_* + z$

Un

Superconformal Simple Type – 1/2

Analyze contributions at the two colliding points u_\pm

$$R_{j}(p,s) = \kappa_{j}^{\chi_{h}} \left(\frac{du}{da}\right)^{\chi_{h}+\sigma} \exp\left(2p u_{j} + S^{2}T(u_{j}) - i \left(\frac{du}{da}\right)_{j} S \cdot \lambda\right)$$

$$= const. e^{2pu_* + S^2T(u_*)} e^{i\theta_{\mp}} z^{\frac{c^2 - \chi_h}{2}} (1 + Series in z^{\frac{1}{2}})$$
$$\exp\left(e^{i\theta_{\pm}} z^{\frac{1}{4}} \left(1 + Series in z^{\frac{1}{2}}\right) S \cdot \lambda\right)$$

$$\frac{c^2 - \chi_h}{2} = \frac{7 \chi + 11 \sigma}{8} < 0 \quad \text{Perfectly reasonable!}$$

$$\text{Physics: } \lim_{z \to 0} Z_{DW} \ (p, s; m_* + z) < \infty$$

Superconformal Simple Type – 2/2 Physics: $\lim_{z\to 0} Z_{DW}$ $(p,s;m_*+z) < \infty$

No IR divergences on X No noncompact moduli spaces of vacua Form of explicit answer implies the only way this can hold for all polynomials in pnt and S is for a series expansion in z with coefficients made from $SW(\lambda)$ to be regular

Theorem [MMP]: There is no divergence in Z_{DW} if : a.) $\chi_h - c^2 - 3 \le 0$ b.) $\sum_{\lambda} SW(\lambda) e^{2\pi i \lambda \cdot \lambda_0} \lambda^k = 0$ $0 \le k \le \chi_h - c^2 - 4$ **Conditions a,b define SST.** MMP checked that all known (c. 1998) 4-folds with $b_2^+ > 1$ are SST.

6

- 2 Lightning Summary: The Physical Derivation Of Witten's Conjecture Relating Donaldson & SW
- 3 Brief Overview Of The World Of N=2 Theories
 - 4 Donaldson-Witten Partition Function For General Compact Simple Lie Group
- 5 Theories With Matter & Superconformal Simple Type
 - **Two Possible Future Directions**

Two Possible Future Directions

Invariants for families of 4-manifolds

New invariants (or new facts about old invariants) from superconformal theories??

Families Of Four-Manifolds – 1/5

Donaldson invariants can be generalized to families of four-manifolds: Donaldson, Durham lectures 1989

Naïve attempt at a physical approach:

Couple N=2 field theory to N=2 supergravity: $g_{\mu\nu}, \psi^{A}_{\mu\alpha}, \overline{\psi}^{A}_{\mu\dot{\alpha}}, ...$

Topological twist: $\Rightarrow g_{\mu\nu}, \Psi_{\mu\nu}, \phi^{\mu}, ...$

 $Qg_{\mu\nu} = \Psi_{\mu\nu}$, $Q\Psi_{\mu\nu} = D_{\mu}\phi_{\nu} + D_{\nu}\phi_{\mu}$, $Q\phi^{\mu} = 0$, ...

Superfields describe (Cartan model) for diff(X) – equivariant cohomology of $\Omega^*(Met(X))$

Families Of Four-Manifolds – 2/5

 $S = \{Q, V\} + const \int tr F \wedge F$

 $T_{\mu\nu} = \{ Q, \Lambda_{\mu\nu} \} \qquad D^{\mu}\Lambda_{\mu\nu} = \{ Q, Z_{\nu} \}$

 $Q\left(S + \int_X vol(g) \Psi^{\mu\nu} \Lambda_{\mu\nu} + vol(g) \phi^{\mu} Z_{\mu}\right) = 0$

(For a fixed volume form vol(g).)

Families Of Four-Manifolds – 3/5 $Z[g_{\mu\nu},\Psi_{\mu\nu},\phi^{\mu}] = \int d[A,\phi,\chi,\psi,\eta] \exp(S + \int_{\Psi} \Psi^{\mu\nu}\Lambda_{\mu\nu} + \phi^{\mu}Z_{\mu})$ Q - closed diff(X)-equivariantdifferential form on Met(X)Diffeomorphism invariant Descends to cohomology class $\in H^*(\frac{Met(X)}{Diff(X)})$ **Conjecture:** These are the family Donaldson invariants n – parameter families of metrics have wall-crossing

in the degree n component for $b_2^+(X) \le n+1$

Four-Manifold Families – 4/5

 $b = b_2^+(X)$ Singularities of (b-1)-form component for b-dimensional families are associated with classes $\lambda \in H^2(X; \mathbb{Z})$

Suppose $\lambda \in H^2(X; \mathbb{Z})$ is ASD for a metric $g^{(0)}$

Perturb :
$$g(t) = g^{(0)} + \sum_{\alpha=1}^{b} t^{\alpha} p_{\alpha}$$

 $Z^{sing} \sim c\left(\frac{\lambda^2}{2}\right) \omega_{b-1} + d(*)$

 ω_{b-1} angular form in t^{α} around the point t=0.

For G=SU(2) c(n) are the coefficients of the same modular form that appears in the standard Donaldson WCF.

Four-Manifold Families – 5/5

One can also couple $g_{\mu\nu}$, $\Psi_{\mu\nu}$, ϕ^{μ} to the LEET around \mathcal{U}_{Λ^2}

It is natural to expect that this will give the family SW invariants formulated by T.-J. Li & A.-K. Liu.

... and moreover that there is an analog of the Witten conjecture for the family Donaldson invariants.

Superconformal Theories – 1/4 Basic question:

There are lots of interesting superconformal theories.

(Some of them don't even have Lagrangian descriptions.)

Nevertheless, they can be topologically twisted and have Q-invariant operators.

Is this a source of new four-manifold invariants?

Superconformal Theories – 2/4 Important lesson from $SU(2) N_{fl} = 4$ $\tau(u; m_a)$ approaches a FINITE limit as $u \to \infty$

Completely changes the wall-crossing story.

$$\frac{d}{dg_{\mu\nu}}Z_{u} \sim \sum_{\ell,r} \mathscr{D}^{\ell}S^{r} \lim_{R \to \infty} \oint_{|u|=R} du \ u^{\frac{\sigma+1+2\ell+r}{2}} \Theta_{\ell,r}(\tau_{0})(1 + Series \ \frac{1}{u}, \frac{1}{\overline{u}})$$

 $\frac{1}{2}(\sigma + 1 + 2\ell + r) < -1$ No wall-crossing at $b_2^+ = 1$ $\frac{1}{2}(\sigma + 1 + 2\ell + r) \ge -1$ $\frac{Continuous}{TFT fails utterly !!}$

$$u = \infty$$
 for $b_2^+(X) = 1$

The truth of this conjecture would suggest that the superconformal theories might provide new four-manifold invariants, at least in some range of $r \& \ell$

The truth of this conjecture would then strongly motivate an investigation of the u-plane integral for general class S.

Much of the structure of Z_u is known – follows pattern of higher rank.

Some important details remain to be understood more clearly.

Can, in principle, be derived from a 2d (2,0) QFT derived from reduction of abelian 6d (2,0) theory along a four-manifold.