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N.B. v3 is a 
significant 
upgrade 



Many Many Antecedants 
``Like every global symmetry on the brane this is a gauge symmetry 
in spacetime’’ – N. Seiberg, hep-th/9608111  

Theory of topological modes/singletons in AdS/CFT:  
Witten 98:  ``AdS/CFT Correspondence And Topological Field Theory,’’ 

followed up c. 2004 by Belov & Moore, … 

developed much further by Apruzzi, Bah, Bhardwaj, Bonetti, 
Bullimore, Garcia Etxebarria, Hosseini, Minasian, Schafer-
Nameki, Tiwari,…. 



Many Many Antecedants 

Gaiotto, Kapustin, Seiberg, Willet: Section 6 & 7.3, ...  

Gaiotto-Kulp, 2008.05960 

Fuchs, Runkel, Schweigert, Valentino,  … , Kapustin & Saulina, … 

Open-Closed 2d TQFT:  Moore & Segal, …. 

What we add:  Systematic calculus of defects in TFT, 
especially, finite homotopy theories 
and how it ``implements symmetry.’’ 

Kong & Zheng, 1705.01087 



Previous Talks 
Perimeter Lectures (with lecture notes): 

Finite Symmetry In QFT, PIRSA, June 13-17, 2022 

StringMath 2022 & arXiv… 

CMSA , Nov. 8, 2022

KITP, March 13, 2023 

Simons Foundation, November 17, 2022
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𝑛 −Categories 
A 2-category 𝒞 is a category where the hom-sets 

𝐻𝑜𝑚 𝑥1, 𝑥2  between objects 𝑥1 → 𝑥2 are 
themselves categories. 

The objects of the category 𝐻𝑜𝑚 𝑥1, 𝑥2  are called ``1-morphisms’’  in 𝒞

The morphisms of the category 𝐻𝑜𝑚 𝑥1, 𝑥2  are called ``2-morphisms’’  in 𝒞

Lots of compatibility conditions 

Definition: An n-category is a category 𝒞  whose morphism spaces are n-1 categories. 

The objects 𝑥1, 𝑥2 of 𝒞 are hence called ``0-morphisms’’ in 𝒞 



The 𝑛-Category 𝐵𝑜𝑟𝑑𝑛

Bordn: 
Objects (0-morphisms) = 0-dimensional manifolds ;  
1-Morphisms = 1d bordisms between 0-folds; 
2-Morphisms = 2d bordisms between 1d bordisms; … 



CAT:  Categories, Functors, Natural transformations 

ALG(VECT):  Algebras, bimodules, bimodule maps 

With suitable ⊗, tensor unit 1𝐶𝐴𝑇 = 𝑉𝐸𝐶𝑇 

1𝒞 = ℂ

Monoidal 𝑛-category   

VECT: 1-category of fin. dim. complex vector spaces.  1𝒞 =  ℂ

``Monoidal’’:   There is a notion of ⊗ on all the k-morphisms.   Monoidal unit 0-morphism: 1𝒞

For 𝐵𝑜𝑟𝑑𝑛 the ⊗ −product is disjoint union.    1𝐵𝑜𝑟𝑑𝑛
 is the empty 0-manifold 



Field Theory Without Fields 

A p-dimensional  ``field theory’’ is a monoidal functor 𝐹: 𝐵𝑜𝑟𝑑𝑝 → 𝒞 

Generalize functorial picture of field theory from Atiyah, Segal, …. 

Values 𝐹 𝑀𝑘  on 𝑘 −manifolds without boundary 
are the result of ``doing the path integral.’’ 

𝒞 is a monoidal 𝑝-category 

Categorical language formalizes constraints of locality 



Field Theory Without Fields 

𝑀𝑝: p-dimensional, compact, w/out 𝜕 ⇒ 𝐹 𝑀𝑝 ∈ ℂ

𝑁𝑝−1: (p-1)-dimensional, compact w/out 𝜕 ⇒ 𝐹 𝑁𝑝−1 ∈ 𝑂𝑏𝑗(𝑉𝐸𝐶𝑇) 

𝑅𝑝−2: (p-2)-dimensional, compact w/out 𝜕 ⇒ 𝐹 𝑅𝑝−2 : 

More complicated:  object in a ``higher category.’’ 

For suitable types of  𝑝 −category 𝒞

𝐹 𝑀𝑝 : ``Partition function’’ 

𝐹 𝑁𝑝−1 : ``Statespace on 𝑁𝑝−1’’ 



Defects Within Defects

P

Q

a

bA B

13

Kapustin, arXiv:1004:2307.Baez & Dolan, …., Lurie, …  



Adding Fields:  Background Fields 

Orientation, (s)pin structure, G-bundle with connection, 
Riemannian metric, differential cochain, foliation, … 

Def: A 𝑓𝑖𝑒𝑙𝑑 ℱ is a sheaf on 𝑀𝑎𝑛𝑝
𝑜𝑝

 valued in simplical sets 𝑆𝑒𝑡Δ

𝐹: 𝐵𝑜𝑟𝑑𝑝 ℱ → 𝒞

Freed & Hopkins:  [1301.5959, sec. 3] 

Fields should be locally defined on 𝑝-manifolds,
pull back under local diffeomorphisms, satisfy a sheaf property  
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Important COMPUTABLE class of theories, underlies 
almost all our examples. Kontsevich, Quinn, Freed, Turaev, …    



𝜋 −finite space 𝒳:  (Homotopy type of) a topological 
space with finitely many components, finitely many 

nonzero homotopy groups, all of which are finite groups.  

𝐾 𝜋2, 𝑞2 + 1

𝒳 2  𝐾 𝜋2, 𝑞2

𝒳 1 = 𝐾 𝜋1, 𝑞1

𝒳 3  𝐾 𝜋3, 𝑞3

𝐾 𝜋3, 𝑞3 + 1

⋯
⋯



𝒳 = 𝐾 𝐺, 1 = 𝐵𝐺 𝐺 − gauge theory 

𝒳 = 𝐾 𝐴, 𝑞 + 1 

𝒳 𝐾 𝐴, 2 

𝐵𝐺

Classifying space of a ``2 −group’’ 

Will be used to describe
 ``q-form symmetry for group A ‘’ 

Will be used to describe ``2-group  symmetry‘’ 

𝜋 −finite spaces 𝒳 also known as ``higher groups’’ 



Want: a 𝑝-dimensional  TFT 𝜎𝒳
𝑝

 where the

 (dynamical!) ``fields’’ are, notionally, maps to 𝒳, 
considered up to homotopy. 

But we need to specify the codomain 𝒞

TFT should really be denoted  𝜎𝒳,𝒞
𝑝

 but in the 

paper it is written 𝜎𝒳
𝑝



Two constructions that 
change category number: 

Suppose 𝒞 is a monoidal 𝑛-category 



Ω𝒞: = 𝐻𝑜𝑚𝒞 1𝒞 , 1𝒞

Ω𝑛𝒞 = ℂ Ω𝑛−1𝒞 = 𝑉𝐸𝐶𝑇 

In our paper different choices of 2-categories  Ω𝑛−2𝒞 
are used in different examples… 

Ω𝑛−2𝒞 = CAT or    Ω𝑛−2𝒞 = ALG(VECT)   

Latter choice leads to language of modules over an algebra 

A monoidal (𝑛 − 1)-category. We ALWAYS take: 



Example: 
For 2d gauge theory for finite group 𝐺: 

𝜎𝐵𝐺
2

𝑝𝑡 = 𝑅𝐸𝑃 𝐺  
OR 

𝜎𝐵𝐺
2

𝑝𝑡 = ℂ 𝐺  

So the results depend on the choice of 𝒞

𝒞 = 𝐶𝐴𝑇 𝒞 = 𝐴𝐿𝐺(𝑉𝐸𝐶𝑇) 



𝒞𝑀𝑜𝑟𝑖𝑡𝑎 = 𝐴𝐿𝐺 𝒞  
Objects (``0-morphisms’’)  are

 algebra objects in 𝒞. 

ALG(VECT):  2-category of Algebras, bimodules, bimodule maps 

𝒞𝑀𝑜𝑟𝑖𝑡𝑎 is an 𝑛 + 1 -category     

ALG(CAT)=TENSCAT:  3-category of tensor categories:  

Tensor categories, Bimodule categories, Bimodule functors, Natural transformations 

𝒞 is an 𝑛-category 



For a compact 𝑘 −fold 𝑀𝑘 without boundary   

𝜎𝒳,𝒞
𝑝

𝑀𝑘  ∈ 𝑂𝑏𝑗 Ω𝑘 𝒞  , 0 ≤ 𝑘 ≤ 𝑝 

We’ll now say something concrete

 about the values of  𝜎𝒳
𝑝

𝑀𝑘  

for 𝑘 = 𝑝, 𝑝 − 1, 𝑝 − 2, 𝑝 − 3 

Choose a monoidal 𝑝-category 𝒞



𝜎𝒳,𝒞
𝑝

 for 𝑘 = 𝑝 − 1 

𝑀𝑝−1 Compact 𝑝 − 1 −fold, 

without boundary  

will be an object in Ω𝑝−1𝒞 

Notation:   For any manifold  𝑀 of any dimension 𝒳𝑀 ≔ 𝑀𝑎𝑝 𝑀, 𝒳  

𝜎𝒳,𝒞
𝑝

𝑀𝑝−1  for   

= 𝑉𝐸𝐶𝑇 

𝜎𝒳,𝒞
𝑝

𝑀𝑝−1  ∶ ``Space of states’’ on the spatial slice 𝑀𝑝−1 

N.B.  Vectors determined by a bordism ∅ →  𝑀𝑝−1 might very well be 

zero, hence are not ``states’’ in the sense of quantum theory. 



Textbook field theory: 𝒳𝑀 = 𝑀𝑎𝑝 𝑀, 𝒳  is just the 
space of (scalar) fields in a sigma model with target 𝒳 

So we just want the vector space of locally constant functions on 𝒳𝑀𝑝−1

𝜎𝒳,𝒞
𝑝

𝑀𝑝−1  ≔ Fun 𝜋0 𝒳𝑀𝑝−1

In textbook scalar field theory we would have a Riemannian metric 
on 𝑀 and 𝒳 and the states would be described by normalizable  

wavefunctionals of the field configurations: Ψ 𝜙 𝑥  with 𝜙 ∈ 𝒳𝑀 . 

Hilbert space of states: 𝐿2 𝒳𝑀  

In TFT: Just work up to homotopy equivalence. 



𝜎𝒳,𝒞
𝑝

𝑀𝑝−1  ≔ Fun 𝜋0 𝒳𝑀𝑚−1

``Quantization of the mapping space  𝒳𝑀𝑝−1  ′′ 

Example:  If 𝒳 = 𝐾 𝐴, 𝑞  then 𝜋0 𝒳𝑀𝑝−1 = 𝐻𝑞 𝑀𝑝−1, 𝐴

If 𝒳 = 𝐾 𝐺, 1   then since 

𝜋0 𝒳𝑀𝑝−1  = {  isom. Classes of principal 𝐺 −bundles over 𝑀𝑝−1 }   

our ``statespace’’ is the vector space of 
functions of G-bundles over the spatial manifold. 



Amplitudes 

𝑀𝑝:  𝑁𝑝−1
0  → 𝑁𝑝−1

1  

𝑀𝑝 𝑁𝑝−1
0  𝑁𝑝−1

1  



Correspondence Course

Generalizes notion of functions from 𝑅1 to 𝑅2 

𝑆12

𝑅1 𝑅2

𝑓1 𝑓12

𝑆23 

𝑅2

𝑓23 𝑓3

𝑆 

𝑅1 𝑅2

𝑓1 𝑓2

𝑆13 𝑔1 𝑔3

We can compose functions. 

We would like to 
compose correspondences: 



Homotopy Fiber Product 

𝑆1

𝐵

𝑓1

𝑆2 

𝑓2

𝑆1 ×ℎ  𝑆2  ≔ 𝑠1, 𝑠2, 𝛾 :  𝛾: 𝑓1 𝑠1 → 𝑓2 𝑠2  

𝑆1 ×ℎ 𝑆2

𝑝1 𝑝2



Correspondence Course

𝑆12

𝑅1 𝑅2

𝑓1 𝑓12

𝑆23 

𝑅2

𝑓23 𝑓3

𝑆12 ×ℎ  𝑆23 
𝑔1 𝑔3

Gives a way of composing correspondences. 
Composition has good properties. 



Amplitudes 𝑀𝑝:  𝑁𝑝−1
0  → 𝑁𝑝−1

1  

𝒳𝑀𝑝

𝒳𝑁𝑝−1
0

𝑟0 𝑟1

𝒳𝑁𝑝−1
1

𝑟1,∗ Ψ ℎ  ≔ ෍

𝜙 ∈𝜋0 𝑟1
−1 ℎ

(ෑ

𝑖=1

∞

𝜋𝑖 𝑟1
−1 ℎ , 𝜙

−1 𝑖

 ) Ψ 𝜙

𝑟1,∗ ∘ 𝑟0
∗  ∶ 𝜎𝒳

𝑝
𝑁𝑝−1

0 → 𝜎𝒳
𝑝

𝑁𝑝−1
1

If  Ψ ∈ 𝐹𝑢𝑛 𝒳𝑀𝑝  is locally constant 

then  𝑟1,∗ Ψ ∈ 𝐹𝑢𝑛 𝒳𝑁𝑝−1
1

 is locally constant, where 



The fact that amplitudes compose properly follows 
naturally from properties of homotopy fiber products. 

Partition function 𝑘 = 𝑝  just take 𝑁𝑝−1
0 = 𝑁𝑝−1

1 = ∅



𝜎𝒳,𝒞
𝑝

 for 𝑘 = 𝑝 − 2 

Ω𝑝−2𝒞 = 𝐶𝐴𝑇 ⇒  𝜎𝒳
𝑝

𝑀𝑝−2  must be a category. 

Should be some kind of locally ``constant vector spaces’’ over 𝒳𝑀𝑝−2

𝜎𝒳,𝒞
(𝑝)

𝑀𝑝−2 ≔ 𝑉𝐸𝐶𝑇(𝜋≤1 𝒳𝑀𝑝−2 )

𝒳 = 𝐵𝐺 ⇒ 𝜋≤1 𝒳𝑀𝑝−2 = 

Groupoid of principal 𝐺 −bundles over 𝑀𝑝−2 

``Quantization of the mapping space 𝒳𝑀𝑝−2  ‘’ 



𝒞 = 𝐴𝐿𝐺 𝐶𝐴𝑇  & 𝑝 = 3 

𝒳 = 𝐵𝐺 ∶ 𝜎 3 𝑝𝑡 = 𝑉𝐸𝐶𝑇 𝐺  as a tensor category: 

𝑉1 ∗ 𝑉2 𝑔 = ⊕𝑔1𝑔2=𝑔 𝑉1 𝑔1
⊗ 𝑉2 𝑔2

𝜎𝒳
𝑝

 for 𝑘 = 𝑝 − 3 



At each categorical level there is 
some ``quantization’’ of a suitable 

correspondence of mapping spaces. 

Not quantization in terms of symplectic 
geometry, but in the above homotopical sense. 

Precise general formulation of 
``quantization’’ in this setting is given 

(to some extent) in FHLT sec. 8.4 



In addition to the choice of 𝒳 and 𝒞 one can 
also consider a ``twisted’’ construction based 

on a choice of cocycle 𝜆 ∈ 𝑍𝑝 𝒳, ℂ∗

For 𝒳 = 𝐵𝐺 these would be Dijkgraaf-Witten theories. 

e.g.  𝜎𝒳,𝒞,𝜆
𝑝

𝑀𝑝−1 ∶ Vector space of 

locally-constant sections 

of a flat line bundle 𝐿 𝜆 → 𝒳𝑀𝑝−1
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We can extend FHLT to a general 

theory of defects in theories 𝜎𝒳,𝒞,𝜆
𝑝

Suggests a general framework 
for defects in general TFT’s. 

Defects are associated to subsets 𝑍 ⊂ 𝑀𝑝 

where 𝑍 need not be smooth…



Questions To Answer: 

What data are necessary to specify a defect? 

i.e. what are the ``labels’’ carried by a defect? 

Classical labels, semiclassical labels, global labels, local labels. 

How does the presence of such defects 

affect the quantum values 𝜎𝒳,𝒞,𝜆
𝑝

 𝑀𝑘 , 𝒟 𝑍  

Is there a product law on defects?  
   How do the labels compose? 



Classical Labels 

Assume 𝑍 a smooth manifold of 
codimension ℓ ≔ 𝑐𝑜𝑑 𝑍 ⊂ 𝑀  . 

Around any point ℘ ∈ 𝑍 
there is a linking sphere 𝑆ℓ−1 

𝑍
℘

Classical labels:   𝜋0 𝒳𝑆ℓ−1
 

Although commonly used, they can be 
inaccurate for describing the quantum systems. 



Global labels:  Surround 𝑍 by a ``small’’ 
neighborhood 𝑈𝑍 with a manifold boundary 𝜕𝑈𝑍. 

𝜕𝑈𝑍 will be of codimension 1 so there is an 
associated statespace 𝜎 𝜕𝑈𝑍

𝛿𝒟(𝑍) ∈  𝜎 𝜕𝑈𝑍 = 𝑠𝑡𝑎𝑡𝑒 𝑠𝑝𝑎𝑐𝑒 ∈ 𝑂𝑏𝑗 𝑉𝐸𝐶𝑇

i.e.  𝛿𝒟 𝑍  is a vector in the complex vector space 𝜎 𝜕𝑈𝑍

𝑍



Local Labels:   When 𝑍 is a smooth submanifold we can hope 
to characterize the defect by examining 

the neighborhood of a point ℘ ∈ 𝑍 . 

Basic idea: Try to implement KK reduction along the 

linking sphere 𝑆ℓ−1 of ℘ ∈ 𝑍 where ℓ ≔ 𝑐𝑜𝑑 𝑍 ⊂ 𝑀

Local Label   𝛿𝒟 ℘ ∈ 𝑂𝑏𝑗 𝐻𝑜𝑚  1Ωℓ−1𝒞 , 𝜎𝒳,𝒞
𝑝

𝑆ℓ−1

𝑚 − ℓ − 1 − 1 =  𝑚 − ℓ −category 



Sanity check: ℓ = 𝑝 . Local label = global label.  

Ω𝑝−1𝒞 = 𝑉𝐸𝐶𝑇 

𝛿𝒟 ℘  is a vector in statespace  on 𝑆𝑝−1: 

State/operator correspondence. 

Lower codimension: There is a difference. 

1Ω𝑝−1𝒞  = ℂ

𝜎 𝑝 𝑆𝑝−1  = Vector space of ``states’’ on 𝑆𝑝−1 



Claim:  𝑍 smooth with trivialized normal bundle 
then the local label determines the global label: 

``KK Reduction”:   𝜎 ℓ−1 𝑁 ≔ 𝜎 𝑁 × 𝑆ℓ−1

Data of local defect defines a left boundary theory

 𝛿 ℓ−1  for 𝑚 − ℓ + 1 − dimensional theory 𝜎 ℓ−1  

𝑍𝑚−ℓ𝛿 ℓ−1

[0,1] 

𝜎 ℓ−1  
∈ 𝐻𝑜𝑚  𝜎 ℓ−1 ∅ , 𝜎 ℓ−1 𝑍  

Gives vector 𝛿𝒟 𝑍  in vector space 

𝜎 ℓ−1 𝑍 = 𝜎 𝑍 × 𝑆 ℓ−1





When 𝑍 is not smooth we treat it as a 
stratified space and consider the links 
starting with the lowest codimension 

and then move up in codimension. 

One key point in the general theory of defects: 



Semiclassical Defect Data In FHT 
For 𝜎𝒳,𝒞

𝑝
 we can compute the local and global labels from 

``semiclassical data’’ (thought of as dynamical fields for the defect) 

DEF: Semiclassical local defect data:  𝜓: 𝒴 →  𝒳𝑆 ℓ−1

Apply ``quantization procedure’’ of FHLT to the correspondence: 

𝒴 

𝒳𝑆 ℓ−1
∗

𝜓



Simplest example:  ℓ = 𝑝 : Point defect

Local label ∈ 𝐻𝑜𝑚 ℂ , 𝜎𝒳
𝑝

𝑆𝑝−1

Given 𝒴, 𝜓  we compute  this vector to be 
the pushforward of the function Ψ = 1 on 𝒴:

𝜓∗(Ψ) ℎ = ෍

𝜙∈𝜋0 𝜓−1 ℎ

ෑ

𝑖=1

∞

| 𝜋𝑖 𝜓−1 ℎ , 𝜙 | −1 𝑖−1
 

ℎ ∈ 𝒳𝑆𝑝−1

i.e. is a vector in 𝜎𝒳
𝑝

𝑆𝑝−1 = 𝐹𝑢𝑛 𝜋0 𝒳𝑆𝑝−1



Semiclassical Approach To Computation Of 𝝈𝒳,𝒞
𝒑

(𝑴𝒌, 𝒟 𝒁 )

Mapping space ℳ is space of pairs 𝜙𝑏𝑙𝑘 , 𝜙𝑑𝑓𝑐𝑡  

𝜙𝑏𝑙𝑘: 𝑀 → 𝒳 𝜙𝑑𝑓𝑐𝑡: 𝑍 → 𝒴

𝒴 

𝒳𝑆 ℓ−1

𝜓𝑍

𝜙𝑏𝑙𝑘,𝑍

𝜙𝑑𝑓𝑐𝑡 ``Quantization’’ of ℳ gives 
partition functions, 

``statespaces’’, amplitudes, 
etc. in the presence of the 
defect defined by (𝜓, 𝒴).



Domain Walls & Boundary Theories 

Specialize to ℓ = 1: 

Natural generalization 

𝜎𝒳
𝑝 𝜎𝒳

𝑝

𝜎𝒳1

𝑝 𝜎𝒳2

𝑝



Domain Walls & Boundary Theories 

𝒴 

𝒳2
 

𝜓1 𝜓2

𝒳1
 

Easily implemented by semiclassical data for a 
domain wall between different FHT’s: 



Boundary theories: 𝒳1 = ∅ OR  𝒳2 = ∅ 

``Dirichlet’’:   𝒴 = 𝑝𝑡. 
So 𝜓 chooses a connected component of 𝒳 

``Neumann’’:   𝒴 = 𝒳 & 𝜓 ∼ 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦. 

Names arise from the case of 𝐺 −gauge theory with 𝒳 = 𝐵𝐺 

But lots of other boundary theories are possible…. 



Example:  𝒳 = 𝐵𝐺 

𝜎𝒳,𝒞,𝜆
𝑝

: p-dimensional Dijkgraaf-Witten theory. 

General set of semiclassical boundary conditions: 

𝑓: 𝐻 → 𝐺 𝒴 = 𝐵𝐻 𝐵𝐺
𝜓 = 𝐵𝑓 

𝜇 ∈ 𝐶𝑝−1 𝐵𝐻, ℂ∗  ∶  𝛿𝜇 = 𝐵𝑓 ∗ 𝜆

Include twisting by 𝜆 ∈ 𝐻𝑝 𝒳, ℂ∗

Extra data: 



If  𝜕𝑀𝑝  = 𝑁𝑝−1 then the 

relevant mapping space is 

ℳ =  { 𝜙𝑏𝑙𝑘 , 𝜙𝑏𝑑𝑦 : 𝐵𝐻 

𝐵𝐺

𝐵𝑓𝑁

𝜙𝑏𝑙𝑘 ቚ
𝑁

𝜙𝑏𝑑𝑦

}
Reduction of structure group 
on the boundary from 𝐺 to 𝐻 

Adding a (homotopical) sigma model 
𝑁 → 𝐺/f(𝐻) , as expected when we 

break 𝐺 −symmetry to 𝐻 −symmetry 
on the boundary. 



𝒞 = 𝐴𝐿𝐺 𝐶𝐴𝑇 = 𝑇𝐸𝑁𝑆𝐶𝐴𝑇 & 𝑝 = 3 

Will be a module category for the tensor category 

𝜎𝐵𝐺
3

𝑝𝑡 = 𝑉𝐸𝐶𝑇 𝐺 . 

𝑉 ∗ 𝑊 𝑔𝐻  ≔ ⊕𝑔′,𝑔′′𝐻  𝐿
𝑔′,𝑔′′𝐻
𝜆

⊗ 𝑉𝑔′ ⊗ 𝑊𝑔′′𝐻 

𝑔′ 𝑔′′𝐻 = 𝑔𝐻 𝐿
𝑔′,𝑔′′𝐻
𝜆

 : Constructed from the cocycle 𝜆

𝜎𝒳,𝜆
(3)

( ) ∈ 𝐻𝑜𝑚 1𝒞 , 𝜎𝒳,𝜆
3

𝑝𝑡  )
𝑓, 𝜇

Will be 𝑉𝐸𝐶𝑇[𝐺/𝑓(𝐻) ]

Example of quantum result  with such boundary conditions: 



Defects Within Defects 

One could go on to develop 
this formalism to describe 

defects within defects 𝒴1 

𝒳

𝒴2 

𝒲

Used in the paper to discuss 
composition of N/D and D/N 

boundary conditions, and 
duality domain walls. 

𝜓1 𝜓2



Nontrivial Topological Effects

They are inadequate. Section 4.4. Classical labels:  𝜋0 𝒳𝑆ℓ−1
 

𝑝 = 3,  𝐾 𝐴, 2 → 𝒳 → 𝐵𝐺, 𝒞 = 𝑇𝐸𝑁𝑆𝐶𝐴𝑇 

𝜎𝒳
3

𝑝𝑡 = 𝑉𝐸𝐶𝑇 𝐴∨ × 𝐺 : Vector bundles over 𝐺 with coeff’s in 𝑉𝐸𝐶𝑇 𝐴∨

𝑊1 ∗ 𝑊2 𝑔 = ⊕𝑔1𝑔2=𝑔 𝐾𝑔1,𝑔2
⊗ 𝑊𝑔1

⊗ 𝑊𝑔2

𝐾𝑔1,𝑔2
→ 𝐴∨ ∶ A line bundle computed from Postnikov map 𝑘: 𝐵𝐺 → 𝐾(𝐴, 3)

For a line in a D boundary theory the classical labels are 𝑔 ∈ 𝐺 

Quantum Labels: Object in 𝑉𝐸𝐶𝑇 𝐺 × 𝐴∨  with above composition. 
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Generalized, categorical, 
noninvertible,… ``symmetries’’  

We describe a framework for understanding 
these terms using the sandwich or quiche picture 



Motivation 1: 

TFT  ∼ Algebra  

Boundary theory  ∼ module for the algebra  

𝜎𝐵𝐺
2

𝑝𝑡  =  ℂ 𝐺  Algebra 

(algebra object in CAT ) 
𝜎𝐵𝐺

3
𝑝𝑡  =  𝑉𝐸𝐶𝑇 𝐺  ⊗ −category 

⇒ Import notions from algebra: Regular representation,…. 

If 𝒞 is a Morita category…. 



Field theory: Compute relations among 
defects in non-topological theories 

by computations within a TFT 

It is good to separate the notion of abstract 
group (algebra) from it’s action on a module. 

Relations between algebra elements will 
universally be true in all modules. 



Motivation 2: 

4d Yang-Mills for compact group 𝐺 = 𝑆𝑈 𝑁

From Lagrangian we can’t tell if the gauge group is
 𝐺 or 𝐺𝑎𝑑𝑗 = 𝑃𝑆𝑈 𝑁  or 𝐺/𝐴 with 𝐴 ⊂ 𝑍 𝐺 ≅ ℤ𝑁

𝐹:  4𝑑 𝐺 gauge theory: partition function/Hilbert space:
Sum over all  𝐺 − bundles:

Isomorphism class in 4d just determined by  𝑐2 𝑃



𝑃𝑆𝑈 𝑁   gauge theory: To compute the partition 
function/Hilbert space:  Sum over all  𝐺𝑎𝑑𝑗 − bundles:  

Isom. class in 4d is determined by 𝑐2 𝑃  
AND 𝑤2 𝑃 ∈ 𝐻2 𝑀; ℤ𝑁

𝑤2 𝑃 ∈ 𝜋0 𝒳𝑀  with 𝒳 = 𝐾 ℤ𝑁, 2

The gauge bundle of 𝑃𝑆𝑈 𝑁  gauge theory determines 
a (topological) ``ℤ𝑁  −gerbe’’ on the 4-fold 𝑀 



Almost true: We couple 𝑃𝑆𝑈 𝑁  on the boundary of M5 ≔ 𝑀 × ℝ<0 
by demanding that the boundary value of 𝜙𝑏𝑢𝑙𝑘: 𝑀5 → 𝐾 ℤ𝑁, 2  is 

homotopic to the gerbe determined by the 𝑃𝑆𝑈 𝑁 - bundle.  

෨𝐹

෨𝐹: Almost PSU(N) gauge theory but 
with an extra field:  Isomorphism of 

the boundary value of the bulk 
gerbe with the gauge theory gerbe. 

This suggests 4d PSU(N) gauge theory is a 

boundary theory for 𝜎𝒳
5

 with 𝒳 = 𝐾(ℤ𝑁, 2) : 

𝜎𝒳
5

𝑀4

ℝ<0



Now include a topological boundary theory 𝜌 on the left: 

𝜌
This is a four-dimensional  
gauge theory with gauge 

algebra 𝔰𝔲 𝑁

෨𝐹
𝜎𝒳

5
𝑀4

We get different gauge theories by 
choosing different boundary theories 𝜌



𝐷
෨𝐹

This is 4d 𝐹 ≔ SU(N)  gauge theory 
because the Dirichlet bc trivializes 

the ``bulk’’ ℤ𝑁 −gerbe, forcing us to 
couple YM only to SU(N)-bundles 

𝜎𝒳
5

𝑀𝑘



𝜎𝒳
5

𝑁 

𝑀

෨𝐹
This is PSU(N) gauge-theory   

𝜎𝒳
5

𝐴, 𝑞

𝑀

෨𝐹

This is 𝑆𝑈(𝑁)/𝐴 gauge-theory for 

𝐴 ⊂ 𝑍 𝑆𝑈 𝑁  with 

topological coupling determined 

by 𝒫𝑞 𝑤2 𝑃   



Definition 1:   A 𝑝-dimensional quiche is a 
pair 𝜌, 𝜎  with 

𝜎: 𝑝 +  1 −dimensional TFT 

𝜌: 𝑝 −dimensional   
topological boundary theory

 
 ``right module for 𝜎’’ 

𝜎𝜌



Definition 2:   An action by the quiche 𝜌, 𝜎  on a 
 𝑝-dimensional field theory 𝐹, (not necessarily topological), 

is a boundary theory (``left module for 𝜎’’)   ෨𝐹 
(not necessarily topological ) and an isomorphism: 

≅
𝐹

𝜃
𝜎 ෨𝐹𝜌

Note:  Different 𝜃’s for same 

𝜌, 𝜎, ෨𝐹  differ by elements 

of 𝐴𝑢𝑡 𝐹 :

Partially justifies the viewpoint
that this is a ``symmetry.’’ 𝑀𝑘≤𝑝



Our first reference complaint: 



Example: G-Symmetry In Quantum Mechanics 

𝐹: p=1 dimensional field theory 
𝐹 𝑝𝑡 = ℋ Hilbert space
𝐹 0, 𝑡 =  𝑈 𝑡 = 𝑒−𝑡 𝐻 ∈ 𝐻𝑜𝑚 ℋ, ℋ  

Won’t be sensitive to higher homotopy so take 𝜎 → 𝜎𝐵𝐺
2

 

𝐺 need not be Abelian (need not be finite!) 

Suppose 𝜌: 𝐺 → 𝑈 ℋ  has image commuting with 𝐻 

Actually:   𝐹 𝑔𝑒𝑟𝑚 𝑝𝑡 = ℋ, 𝐻 Kontsevich & Segal 



∈ 𝐻𝑜𝑚𝐴𝐿𝐺 𝑉𝐸𝐶𝑇  𝜎 𝑝𝑡 , 𝜎 ∅  

= 𝐻𝑜𝑚𝐴𝐿𝐺 𝑉𝐸𝐶𝑇  ℂ 𝐺 , ℂ  

= { ℂ 𝐺 − ℂ 𝑏𝑖𝑚𝑜𝑑𝑢𝑙𝑒𝑠 } 

≔ ℋ 
as a left 
ℂ 𝐺 −module 

𝜎( ) 
෨𝐹

Need to define the left 𝜎 −module ෨𝐹 

𝜎( ) 
෨𝐹





Quiche:  𝜌, 𝜎𝐵𝐺
2

 with 𝜌 = Dirichlet 

𝜎𝐵𝐺
2

 = ℂ 𝐺  as a ℂ − ℂ bimodule 

Topological 𝜌 −defects in the 
Dirichlet boundary are labeled 

by 𝑎 ∈ ℂ 𝐺

Quantization of 𝐺 −bundles on [0,1] trivialized at 
both ends: {Trivialized bundles} = 𝐺 , 
so quantization gives functions on 𝐺. 

𝑎



෨𝐹

≅

𝜃 𝐹
𝑎 ∈ ℂ 𝐺  𝜌 𝑎 ∈ 𝐸𝑛𝑑 ℋ

Insertion on topological boundary ⇒ 
𝜌 𝑎  commutes with 𝑈 𝑡  ⇒

𝜌 𝑎  commutes with 𝐻 



෨𝐹

≅

𝜃 𝐹
𝑎 ∈ ℂ 𝐺  𝒪 𝑍 ∈ 𝐸𝑛𝑑 ℋ

𝒪 𝑍 : A more general topological operator

𝑍



෨𝐹

≅

𝜃 𝐹𝜉 ∈ 𝐵 𝐵 

𝑇 
𝑇 𝜉  ∈ 𝐸𝑛𝑑 ℋ  

𝑇: 𝐵 → 𝐸𝑛𝑑 ℋ  

Not topological: Gives general operator on ℋ



all manipulations, e.g. OPE’s of defects, etc. done within 
the TFT 𝜎 give universal relations independent of the 

field theory 𝐹 on which the symmetry acts. 

Some ``generalized topological symmetry’’ operators on 
𝐹 might be very hard to describe within 𝐹 but easy to 

describe in a quiche. 

Example 4.4:   Slice knot defects in 3d field 
theory that do not bound a disk. 

In general,….
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Given defects 𝒟1, 𝑍1  & 𝒟2, 𝑍2  with 𝑍1, 𝑍2 
codimension ℓ , parallel, trivialized normal bundles:  

𝑃ℓ 𝑆ℓ−1 

𝐷1
ℓ 𝐷2

ℓ N.B.  The product of 
cod  ℓ defects is 

expressed in terms of 
cod ℓ defects. 



In FHT, if the local defects are described by semiclassical 
data as above, this translates to the equation: 

𝒴: homotopy fiber product of 𝜓1 × 𝜓2 and 𝑟0 

𝜓 = 𝑟1 ∘ 𝑔 

𝜓1 × 𝜓2



Example: Domain walls in finite gauge theory

𝐺1 𝐺2

𝐻12

𝒟 
𝑓1

𝑓12

𝐺2 𝐺3

𝐻23

𝒟 
𝑓23

𝑓3

∗

= ෍

𝑔

𝒟

𝑔 ∈ 𝑓12 𝐻12 \𝐺2/𝑓23(𝐻23)     

𝐺1 𝐺3

𝑍12 𝑔

𝑓1𝜋1 𝑓3𝜋3

𝑍 12 𝑔 = ℎ12, ℎ23  𝑓12 ℎ12  𝑔 𝑓23 ℎ23
−1 = 𝑔 } ⊂ 𝐻12 × 𝐻23 
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Some Future Directions
Several examples in the paper show topological subtleties in labeling 

and composition laws of defects.  Physical consequences? 

Given 𝒳, 𝜆  can we find a ``traditional’’ field theory 

description of 𝜎𝒳,𝒞,𝜆
𝑝

 or a ``traditional’’ field theory 

on which 𝜌, 𝜎𝒳
𝑝+1

 acts? 

Some applications are described in the paper:  Duality 
defects, modular invariant combinations of left & 

rightmovers in 2d CFT, …  It would be nice to see more. 



Some Future Directions

Extension to families of QFT’s.  
e.g. higher Berry curvatures? 

Continuous symmetries? 

Spacetime symmetries.
 (Start with P,T-invariance) 



Thanks for your attention! 
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