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TOPOLOGICAL SYMMETRY IN QUANTUM FIELD THEORY

DANIEL 5. FREED, GREGORY W. MOORE, AND CONSTANTIN TELEMAN

In memory of Vaughan Jones

ApsTrAacT. We introduce a definition and framework for internal topological symmetries in gquan-
tum fleld theory, including “noninvertible symmetries” and “categorical symmetries”. We outline
a calealus of topological defects which takes advantage of well-developed theorems and techniques
in topological field theory. Our discussion focuses on finite symmetnes, and we give indications for
a generalization to other symmetries. We treat quotients and quotient defects (often called “gaug-
ing” and “condensation defects™), flnite electromagnetic duality, and duality defects, among other
topics. We include an appendix on finite homotopy theories, which are often used to encode flnite
symmetries and for which computations can be carned out using methods of algebraic topology.
Throughout we emphasize exposition and examples over a detailed technical treatment.

The study of symmetry in quantum field theory 1= longstanding with many points of view. For a
relativistic field theory in Minkowsk: spacetime, the symmetry group of the theory 15 the domsin of
a homomorphism to the group of 1sometries of spacetime; the kernel consists of smfernal symmetries
that do not move the pomnts of spacetime. [t 13 these internal symmetries—in Wick-rotated form—
that are the subject of thas paper. Higher groups, which have a more homotopical nature, appear
in many recent papers and they are included in our treatment. The word ‘symmetry” usually refers
to invertible transformations that preserve structure, as in Felix Klan's Erlangen program, but one
can also consider algebras of symmetrnies—e.g., the universal enveloping algebra of a Lae algebra
acting on a representation of a Lie group—and in this sense symmetnes can be non-invertible.

Cuantum field theory affords new formulations of symmetry beyond what one usually encounters
mn geometry. If a Lae group & acts as symmetrnes of an n-dimensional field theory F, then one ex-
presses the symmetry as a larger theory in which there 15 an additional background {nund}'nmm-calj
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Many Many Antecedants

“Like every global symmetry on the brane this is a gauge symmetry
in spacetime’” — N. Seiberg, hep-th/9608111

Theory of topological modes/singletons in AdS/CFT:
Witten 98: ~AdS/CFT Correspondence And Topological Field Theory,”

followed up c. 2004 by Belov & Moore, ...

developed much further by Apruzzi, Bah, Bhardwaj, Bonetti,
Bullimore, Garcia Etxebarria, Hosseini, Minasian, Schafer-
Nameki, Tiwari,....



Many Many Antecedants
Open-Closed 2d TQFT: Moore & Segal, ....

Fuchs, Runkel, Schweigert, Valentino, ..., Kapustin & Saulina, ...
Gaiotto, Kapustin, Seiberg, Willet: Section 6 & 7.3, ...
Gaiotto-Kulp, 2008.05960

Kong & Zheng, 1705.01087

What we add: Systematic calculus of defects in TFT,
especially, finite homotopy theories
and how it implements symmetry.”



Previous Talks

Perimeter Lectures (with lecture notes):

Finite Symmetry In QFT, PIRSA, June 13-17, 2022
StringMath 2022 & arXiv...

CMSA , Nov. 8, 2022

Simons Foundation, November 17, 2022

KITP, March 13, 2023
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n —Categories

A 2-category C is a category where the hom-sets
Hom(x{,x,) between objects x; — x, are
themselves categories.

The objects of the category Hom (x4, x,) are called “*1-morphisms’ in C
The morphisms of the category Hom(x4, x,) are called “"2-morphisms’ in C
The objects x4, x, of C are hence called "0-morphisms” in C

Lots of compatibility conditions

Definition: An n-category is a category C whose morphism spaces are n-1 categories.



The n-Category Bord,,

Objects (0-morphisms) = O-dimensional manifolds ;
Bord,: 1-Morphisms = 1d bordisms between 0-folds;
2-Morphisms = 2d bordisms between 1d bordisms; ...




Monoidal n-category

“"Monoidal”: There is a notion of &) on all the k-morphisms. Monoidal unit 0-morphism: 1,

For Bord,, the @ —productis disjoint union. 1p,.q  isthe empty 0-manifold

VECT: 1-category of fin. dim. complex vector spaces. 1, = C

ALG(VECT): Algebras, bimodules, bimodule maps
1@ — (C
CAT: Categories, Functors, Natural transformations

With suitable &), tensor unit 1,47 = VECT



Field Theory Without Fields

Generalize functorial picture of field theory from Atiyah, Segal, ....

A p-dimensional "field theory” is a monoidal functor F: Bord,, - C

C is a monoidal p-category

Values F(M;) on k —manifolds without boundary
are the result of doing the path integral.”

Categorical language formalizes constraints of locality



Field Theory Without Fields

For suitable types of p —category C

Mp: p-dimensional, compact, w/out 0 = F(Mp) € C
F(Mp): “Partition function”

N,_1: (p-1)-dimensional, compact w/out d = F(Np_l) € Obj(VECT)

F(Np_l): " Statespace on N,,_;”

R),_»: (p-2)-dimensional, compact w/out d = F(Rp_z):
More complicated: object in a "higher category.”



Defects Within Defects

Baez & Dolan, ...., Lurie, ...

Kapu Stin, arxiv:1004:2307.

13



Adding Fields: Background Fields

Fields should be locally defined on p-manifolds,
pull back under local diffeomorphisms, satisfy a sheaf property

Orientation, (s)pin structure, G-bundle with connection,
Riemannian metric, differential cochain, foliation, ...

Freed & Hopkins: [1301.5959, sec. 3]

Def: A field F is asheaf on Mangp valued in simplical sets Set,

F:Bord,(F) -» C
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Important COMPUTABLE class of theories, underlies
almost a” our examples, Kontsevich, Quinn, Freed, Turaey, ...

TOPOLOGICAL QUANTUM FIELD THEORIES FROM COMPACT LIE
GROUPS

DANIEL 5. FREED, MICHAEL J. HOPKINS, JACOR LURIE, AN} CONSTANTIN TELEMAN

Let 7 be a compact Lie group and B a classifving space for 7. Then a class in H™' 1 B E)
leads to an n-dimensional topological gquantum field theory (TQFT), at least for n — 1,2, 3. The
theory for n 1 iz trivial, but we include it for completeness. The theory for n — 2 has some
mmfimties 1f &5 15 not a fimte group; it 15 a topologcal hmit of 2-dimensional Yang-bMills theory. The
most direct analog for i — 3 &= an L? version of the topological quantum field theory based on the
classical Chern-Simons iovariant, which 1s only partially defined. The TOQFT constructed by Witten
and Reshetikhin-Turaev which goes by the name "Chern-Simons theory” (zometimes “helomorphic
Chern-Simons theory’ to distinguish it from the L? theory) is completely finite.

The theories we construct here are extended, or multi-tiered, TQFTs which go all the way down
to points. For the i — 3 Chern-Simons theory, which we term a “0-1-2-3 theory” to emphasize the
extension down to points, we only treat the cases where & 13 finite or 7 13 a tores, the latter beng
one of the main novelties in this paper. In other words, for toral theones we provide an answer to
the longstanding question: What does Chern-Simons theory attach to a pomnt? The answer 15 a hit

subtle as Chern-Simons is an anomalows field theory of onented manifolds. This framing anomaly

lv2 [math.AT] 19 Jun 2009

was already flagged in Witten's seminal paper |Wi|. Here we interpret the anomaly as an invertible

L

— 4 dimensional topological field theory &, defined on oriented manifolds. The Chern-Simons theory
r—

- i5 & “truncated morphism™ Z: 1 — & from the trivial theory to the anomaly theory. For example,
L™ : . . .

:J..." on a closed oriented 3-manifold X the anomaly theory produces a complex line &7 X) and the
- Chern-Simons invariant Z(X | 1= a (possibly zero) element of that line. This 15 the standard vision
:‘" e £ L = [ o 1) U 6. | S ™ D 1 [



 —finite space X: (Homotopy type of) a topological
space with finitely many components, finitely many
nonzero homotopy groups, all of which are finite groups.

K(ms3,q3) —» X3

!

K(T[Z:qZ) — X(z) m— K (73,93 + 1)

XV =K(ny,q)) —> Kryq,+1)



X =K(G,1 ) =BG G — gauge theory

X — K(A q + 1 ) Will be used to describe

“g-form symmetry for group A “

l Classifying space ofa 2 —group”

BG Will be used to describe 2-group symmetry”

r —finite spaces X also known as "higher groups”



Want: a p-dimensional TFT aj(cp) where the

(dynamical!) fields’ are, notionally, maps to X,
considered up to homotopy.

But we need to specify the codomain C

TFT should really be denoted UJ(CI?g but in the

paper it is written aj(cp)



Two constructions that
change category number:

Suppose C is a monoidal n-category



(C: = Hom@ (1@, 1@)
A monoidal (n — 1)-category. We ALWAYS take:

Q"¢ = VECT = Q"C = C

In our paper different choices of 2-categories Q" 2C
are used in different examples...

Q" 2C =CAT or Q" ?C =ALG(VECT)

Latter choice leads to language of modules over an algebra



Example:
For 2d gauge theory for finite group G:

C = CAT ¢ = ALG(VECT)
OR

o5 (pt) = REP(G) s @ (pt) = C[G]

So the results depend on the choice of C



CMOTita — ALG(C)

Objects ( 0-morphisms”) are
algebra objects in C.

C is an n-category m—— )

CMorita

isan (n + 1)-category

ALG(VECT): 2-category of Algebras, bimodules, bimodule maps

ALG(CAT)=TENSCAT: 3-category of tensor categories:

Tensor categories, Bimodule categories, Bimodule functors, Natural transformations



Choose a monoidal p-category C

For a compact k —fold M;, without boundary

o) (My) € 0bj(QC) ,0<k<p

We’'ll now say something concrete

about the values of JJ(CP) (M)

fork=p,p—1,p—2,p—3



O'J(g?()f fork =p—1

Notation: For any manifold M of any dimension X™ := Map(M, X)

M

_1 Compact (p — 1) —fold,
My ) o

without boundary

will be an objectin QP~1C = VECT

UJ(CI?C).. (Mp_l) :Space of states” on the spatial slice M,,_4

N.B. Vectors determined by a bordism @ - M,,_; might very well be
zero, hence are not states’” in the sense of quantum theory.



Textbook field theory: X™ = Map(M, X) is just the
space of (scalar) fields in a sigma model with target X

In textbook scalar field theory we would have a Riemannian metric
on M and X and the states would be described by normalizable
wavefunctionals of the field configurations: W[ (x)] with ¢ € XM .

Hilbert space of states: L% (XM)

In TFT: Just work up to homotopy equivalence.

So we just want the vector space of locally constant functions on XMp-1

O'J(g?g(Mp_l) = Fun (no (XMP—l))




O-)((‘I?C)"(Mp—l) = Fun(no(me_l))
Example: If X = K(A4,q) then my(XMp-1) = Hq(Mp_l,A)

If X = K(G,1) then since

nO(XMP-l) = { isom. Classes of principal G —bundles over M,,_; }

our statespace” is the vector space of
functions of G-bundles over the spatial manifold.

“*Quantization of the mapping space XMp-1"



Amplitudes



Correspondence Course

fi/ \f Generalizes notion of functions from R; to R,

We can compose functions.

513

gy 93
We would like to \

compose correspondences: SlZ 523

fi/ \f12 f? \fg
R4 R, R,



Homotopy Fiber Product

51 Xp S,

"\
fl\ /n

S1Xp Sy =1 (51»52»)/)1 y:f1(s1) = f2(s2) }



Correspondence Course

512 Xp S23
g1 93

v

f f3
R, R,

Gives a way of composing correspondences.
Composition has good properties.



Amplitudes M,: N)_; = N,_;

NG e ) = o0

Iif W € Fun(X"r) is locally constant
then 7 .(¥) € Fun (XNI%-;) is locally constant, where

MOGEIDY (1_[\m<r1-1<h> »I ) w()
[plemo(rit(n)) =



The fact that amplitudes compose properly follows
naturally from properties of homotopy fiber products.

Partition function (k = p) justtake N)_; = N, _; =



(p) _
Oxe fork=p—2
OP~2C = CAT = aj(cp) (Mp_z) must be a category.
Should be some kind of locally ““constant vector spaces’” over X Mp-2
(p) — M,,_
Oy o(Mp—z) = VECT (<1 (X "P-2))
“Quantization of the mapping space X Mp-2 *

X =BG = me (XMr-2) =
Groupoid of principal G —bundles over M,,_,



aj(cp) fork =p—3

C = ALG(CAT) & p = 3

X =BG : ¢®(pt) = VECT[G] as a tensor category:

(V1 * VZ)g = €9g1g2=g (Vl)gl X (VZ)gZ



At each categorical level there is
some quantization” of a suitable
correspondence of mapping spaces.

Not quantization in terms of symplectic
geometry, but in the above homotopical sense.

Precise general formulation of
“quantization” in this setting is given
(to some extent) in FHLT sec. 8.4



In addition to the choice of X an

d C one can

also consider a twisted’’ constr

uction based

on a choice of cocycle A € ZP (X, C*)

For X = BG these would be Dijkgraaf-Witten theories.

(p)

e.g. O'X’C.,A(Mp_l) : Vector space of

locally-constant sections
of a flat line bundle LY — xMp-1
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We can extend FHLT to a general

theory of defects in theories UJ(CPC)”L

Suggests a general framework
for defects in general TFT’s.

Defects are associated to subsets Z C Mp
where Z need not be smooth...

>—C



Questions To Answer:

What data are necessary to specify a defect?

l.e. what are the labels” carried by a defect?

Classical labels, semiclassical labels, global labels, local labels.

How does the presence of such defects

affect the quantum values Uy(cl?g,/l ( M, D(Z))

Is there a product law on defects?
How do the labels compose?



Classical Labels

Assume Z a smooth manifold of
codimension £ := cod(Z c M) .

Around any point o € Z
there is a linking sphere S*~1

Classical labels: m, (Xsf_l)

Although commonly used, they can be
inaccurate for describing the quantum systems.



Global labels: Surround Z by a small”
neighborhood U,_ with a manifold boundary dU,.

Pan®

dU, will be of codimension 1 so there is an
associated statespace o (0U,)

dp(z) € 0(dUy) = state space € Obj(VECT)

i.e. Op(z) isa vector in the complex vector space a(dUy)



Local Labels: When Z is a smooth submanifold we can hope
to characterize the defect by examining
the neighborhood of a point o € 7.

Basic idea: Try to implement KK reduction along the
linking sphere S*~1 of gp € Z where ¢ = cod(Z c M)

Local Label 0p(p) € Obj (Hom( 1oe-1p, 03(52?2 5{)_1)))

(m — (£ — 1)) — 1= (m— {¥) —category



Sanity check: £ = p. Local label = global label.
Qp_l(,’ = VECT 1QP—1(3 =
oP)(SP~1) = Vector space of “states”’ on SP~1

Op(p) IS avector in statespace on sp—1.

State/operator correspondence.

Lower codimension: There is a difference.



Claim: Z smooth with trivialized normal bundle
then the local label determines the global label:

“KK Reduction”: "D (N) = O'(N X Sf_l)
Data of local defect defines a left boundary theory

5%V for (m — £ + 1) — dimensional theory ¢~

—
€ Hom ( o@D (@), g¢-D (Z))

g -1 §¢-1) Zm—f

Gives vector dp(z) in vector space
oD (Z) =g(z x S¢V)

[0,1]



Bulk Theory ge—1

T ‘ Defect-to-Bulk
Bulk -
i St N
Ts?rfi:igl D' < D 8
y ~ —
efect -
. Tanpegtial
11[ '.‘-‘ll 1_ ( Structu

N+ -
BO,, < BO,,,_¢ xBO, +— x BO/_4

t;:d
=
|
N
N
2
S

Defect Theory | § \\\

FIGURE 8. Local defect data, including tangential structures



One key point in the general theory of defects:

When Z is not smooth we treat it as a

stratified space and consider the links

starting with the lowest codimension
and then move up in codimension.



Semiclassical Defect Data In FHT

For aj(cpc)., we can compute the local and global labels from

'semiclassical data” (thought of as dynamical fields for the defect)

DEF: Semiclassical local defect data: ¥: Y —» X5 7

Apply quantization procedure” of FHLT to the correspondence:

N

. Xg(f—l)



Simplest example: £ = p : Point defect
Local label € Hom ((C : aj(cp) (Sp_l))
i.e. is a vector in aj(cp) (SP~1) = Fun (7To (Xsp_l))

Given (U, 1) we compute this vector to be
the pushforward of the function ¥ =1 on {:

heXxst™ - .
lp*(qj)(h) — z l_[ ‘ T[i(lp_l(h), ¢)‘(_1)l—1
peny(Y~1(h)) i=1



Semiclassical Approach To Computation Of aggé (M,;,D(Z))

Mapping space M is space of pairs (</5bzk» qbdfct)
Gpix:M - X Darce:Z =Y

y “Quantization” of M gives

¢dfct
/ l ’ partition functions,

/ statespaces’’, amplitudes,
etc. in the presence of the

¢blk,Z Xs(f‘l) defect defined by (Y, Y).



Domain Walls & Boundary Theories

Specialize to £ = 1: O-J(Cp) O-J(Cp)
Natural generalization (p) (p)

Oy, Oy,



Domain Walls & Boundary Theories

Easily implemented by semiclassical data for a
domain wall between different FHTs:

Y
(] 7
X/ \Xz



Boundary theories: X; = ® OR X, = @

"Dirichlet”: Y = pt.
So 1 chooses a connected component of X

“"Neumann”: Y =X & Y ~ Identity.
Names arise from the case of G —gauge theory with X = BG

But lots of other boundary theories are possible....



Example: X = BG

General set of semiclassical boundary conditions:

f:H—)G “y:BH ;Bf,BG

Include twisting by A € HP (X, C*)

JJ(CP()BA: p-dimensional Dijkgraaf-Witten theory.

Extra data: u € CP"1(BH,C*) : 6u= (Bf)*(1)



if OM,, = N,_; then the
relevant mapping space is

M = {(beu{» (I5bdy): bpay BH

Reduction of structure group /

on the boundary from G to H N l Bf }

Adding a (homotopical) sigma model
N — G/f(H) , as expected when we

break G —symmetry to H —symmetry ¢blk
on the boundary. N



Example of quantum result with such boundary conditions:
C = ALG(CAT) = TENSCAT & p = 3

(3) , (F,w
O-X,A o =" e Hom (1@,03(5’%(191:) ))

Will be a module category for the tensor category

o) (pt) = VECT[G]. Will be VECT[G/f(H) ]
V*W)gn =@y g'n L;%?g”H Vg @ Wyny

g’ (g”H) — gH L;%)g,,H . Constructed from the cocycle 4



Defects Within Defects

One could go on to develop
this formalism to describe
defects within defects

Used in the paper to discuss
composition of N/D and D/N
boundary conditions, and
duality domain walls.



Nontrivial Topological Effects

Classical labels: m (XS{H) They are inadequate. Section 4.4.

p=3  K(A2) - X->BG,  C=TENSCAT

03(53) (pt) = VECT[AY X G ]: Vector bundles over G with coeff’s in VECT[A"]

(Wi Wa)g = Bg,g,=9 Kg1.9, ® Wy, ® Wy,

K — AV : Aline bundle computed from Postnikov map k: BG - K (A4, 3)

91,92

For a line in a D boundary theory the classical labels are g € G

Quantum Labels: Object in VECT[G x AY] with above composition.
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Generalized, categorical,
noninvertible,... symmetries”

We describe a framework for understanding
these terms using the sandwich or quiche picture



Motivation 1:

If C is a Morita category....
TFT ~ Algebra

o2 (pt) = C[G) Algebra

o) (pt) = VECT[G] © —category
(algebra object in CAT )

Boundary theory ~ module for the algebra
= Import notions from algebra: Regular representation,....



It is good to separate the notion of abstract
group (algebra) from it’s action on a module.

Relations between algebra elements will
universally be true in all modules.

Field theory: Compute relations among
defects in non-topological theories
by computations within a TFT



Motivation 2:

4d Yang-Mills for compact group G = SU(N)

From Lagrangian we can’t tell if the gauge group is
G or G = PSU(N) or G/AwithA c Z(G) = Zy

F: 4d G gauge theory: partition function/Hilbert space:
Sum over all ¢ — bundles:

Isomorphism class in 4d just determined by ¢, (P)



PSU(N) gauge theory: To compute the partition
function/Hilbert space: Sum over all G%% — bundles:

Isom. class in 4d is determined by ¢, (P)
AND w,(P) € H*(M;Zy)

w,(P) € mo(X™) with X = K(Zy, 2)

The gauge bundle of PSU(N) gauge theory determines
a (topological) Zy —gerbe” on the 4-fold M



This suggests 4d PSU(N) gauge theory is a

boundary theory for GJ(CS) with X = K(Zy, 2) :

Almost true: We couple PSU(N) on the boundary of M: := M X R,
by demanding that the boundary value of ¢4,;: M = K(Zy, 2) is
homotopic to the gerbe determined by the PSU(N )- bundle.

R<o

F: Almost PSU(N) gauge theory but

I/V’4 with an extra field: Isomorphism of
the boundary value of the bulk

gerbe with the gauge theory gerbe.

03(55) F




Now include a topological boundary theory p on the left:

gauge theory with gauge

(5) ‘M‘L This is a four-dimensional
o) s
p X F
algebra su(N)

We get different gauge theories by
choosing different boundary theories p



1/\/1,{ Thisis 4d F := SU(N) gauge theory
because the Dirichlet bc trivializes

F the "bulk” Z, —gerbe, forcing us to
couple YM only to SU(N)-bundles




This is PSU(N) gauge-theory

Thisis SU(N)/A gauge-theory for
A c Z(SU(N)) with
topological coupling determined
by 7, (Wz (P))

(4,9)




Definition 1: A p-dimensional quiche is a
pair (p, o) with

o: (p + 1) —dimensional TFT

p: » —dimensional
topological boundary theory

“right module for ¢”




Definition 2: An action by the quiche (p, o) on a
p-dimensional field theory F, (not necessarily topological),
is a boundary theory ('left module for ¢”’) F
(not necessarily topological ) and an isomorphism:

Note: Different 8’s for same

ol o F 0 . F (p, 0, F) differ by elements
N of Aut(F):
M Partially justifies the viewpoint
k<p that this is a “'symmetry.”



Our first reference complaint:

Subject: sandwiches
From: Jeff Harvey <jaharvey@ >

Date: 9/16/2022, 11:58 AM
To: Gregory Moore <gwmoore@| >

An open-faced sandwich is not a quiche, it is a tartine.

What is wrong with you?



Example: G-Symmetry In Quantum Mechanics

F: p=1 dimensional field theory
F(pt) = H Hilbert space
F([0,t) = U(t) =e '™ € Hom(H,H)

Actually: F(germ(pt)) = (H,H) Kontsevich & Segal

Suppose p: G —» U(H) has image commuting with H

(G need not be Abelian (need not be finite!)

Won'’t be sensitive to higher homotopy so take o — aé?



~

Need to define the left 0 —module F

0('">

® |

F
¢

)

€ Homygweer)( o(pt), o())
= HOmALG(VECT)( ClG], C)
= { C|G] — C bimodules }

—T as a left
C|G] —module



~

FIGURE 13. Three bordisms evaluated in (3.9) in the theory (o, F')

(a) the left module - ,H

(b) e~ TH/M.

G]

.‘HT——:»{C[ H

C[C] el

-

(¢) the central function g — Trq (S g)e TH/ h) on GG



Quiche: (p, alg?) with p = Dirichlet

O'lg?( 0———80 ) =C[G] asaC—C bimodule

Quantization of G —bundles on [0,1] trivialized at
both ends: {Trivialized bundles} = G,
SO quantization gives functions on G.

Topological p —defects in the

a
‘ Dirichlet boundary are labeled

by a € C[G]




_ 0 F

a € C|G] p(a) € End(H)

|

Insertion on topological boundary =
p(a) commutes with U(t) =
p(a) commutes with H



_ V) F

7
aecC[G]]

O(Z): A more general topological operator

|

0(Z) € End(H)



.0 F
T(¢) € End(H)

T:B - End(H)

Not topological: Gives general operator on H



In general,....

all manipulations, e.g. OPE’s of defects, etc. done within
the TFT o give universal relations independent of the
field theory F on which the symmetry acts.

Some generalized topological symmetry’”’ operators on
F might be very hard to describe within F but easy to
describe in a quiche.

Example 4.4: Slice knot defects in 3d field
theory that do not bound a disk.
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Given defects (D,Z,) & (D,, Z,) with Z,, Z,
codimension €, parallel, trivialized normal bundles:

£—1

pt :
@ @ N.B. The product of
cod £ defects is

expressed in terms of
cod € defects.




In FHT, if the local defects are described by semiclassical
data as above, this translates to the equation:

(Y. 7 + iz + 1)

(Y1 x Yo, w51 + mp2)

Y1 X Py P

(257 T (N 4w () (057, 1)

Y: homotopy fiber product of Y1 X Y, and ry



Example: Domain walls in finite gauge theory

zlzcc;)
T
YA
ot L G
(9] € fis(Hio\G/ fos (Has) 2

Z(12)(9) = { (hq2, hy3)l fi2(h12) g f23(h23)_1 =g } € Hj3 X Hy3
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Some Future Directions

Several examples in the paper show topological subtleties in labeling
and composition laws of defects. Physical consequences?

Some applications are described in the paper: Duality
defects, modular invariant combinations of left &
rightmovers in 2d CFT, ... It would be nice to see more.

Given (X, 1) can we find a ““traditional” field theory

description of ag(cpg/l or a traditional” field theory

on which (p, aj(cpﬂ)) acts?



Some Future Directions

Extension to families of QFT’s.
e.g. higher Berry curvatures?

Spacetime symmetries.
(Start with PT-invariance)

Continuous symmetries?
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