Finite Symmetries Of Field Theories

Gregory Moore From TFT Rutgers

Strings In Seoul, Sept. 15, 2023
1. Preliminary Remarks
2. Fields Without Fields
3. Finite Homotopy Theories
4. Defects & Domain Walls
5. Symmetry Action Via Quiche
6. Composition Of Defects
7. Open Problems
N.B. v3 is a significant upgrade
Many Many Antecedents

``Like every global symmetry on the brane this is a gauge symmetry in spacetime’’ – N. Seiberg, hep-th/9608111

Theory of topological modes/singletons in AdS/CFT: Witten 98: ‘`AdS/CFT Correspondence And Topological Field Theory,’’

followed up c. 2004 by Belov & Moore, ...

developed much further by Apruzzi, Bah, Bhardwaj, Bonetti, Bullimore, Garcia Etxebarria, Hosseini, Minasian, Schafer-Nameki, Tiwari,....
Many Many Antecedants

Open-Closed 2d TQFT: Moore & Segal,

Fuchs, Runkel, Schweigert, Valentino, ..., Kapustin & Saulina, ...

Gaiotto, Kapustin, Seiberg, Willet: Section 6 & 7.3, ...

Gaiotto-Kulp, 2008.05960

Kong & Zheng, 1705.01087

What we add: Systematic calculus of defects in TFT, especially, finite homotopy theories and how it ``implements symmetry.''
Previous Talks

Perimeter Lectures (with lecture notes):
Finite Symmetry In QFT, PIRSA, June 13-17, 2022

StringMath 2022 & arXiv...

CMSA, Nov. 8, 2022

Simons Foundation, November 17, 2022

KITP, March 13, 2023
1. Preliminary Remarks

2. Fields Without Fields

3. Finite Homotopy Theories

4. Defects & Domain Walls

5. Symmetry Action Via Quiche

6. Composition Of Defects

7. Open Problems
A 2-category \(\mathcal{C} \) is a category where the hom-sets \(\text{Hom}(x_1, x_2) \) between objects \(x_1 \to x_2 \) are themselves categories.

The objects of the category \(\text{Hom}(x_1, x_2) \) are called ``1-morphisms'' in \(\mathcal{C} \)

The morphisms of the category \(\text{Hom}(x_1, x_2) \) are called ``2-morphisms'' in \(\mathcal{C} \)

The objects \(x_1, x_2 \) of \(\mathcal{C} \) are hence called ``0-morphisms'' in \(\mathcal{C} \)

Lots of compatibility conditions

Definition: An \(n \)-category is a category \(\mathcal{C} \) whose morphism spaces are \(n-1 \) categories.
The n-Category Bord_n

Objects (0-morphisms) = 0-dimensional manifolds;

Bord_n: 1-Morphisms = 1d bordisms between 0-folds;
2-Morphisms = 2d bordisms between 1d bordisms; ...
Monoidal n-category

``Monoidal’’: There is a notion of \otimes on all the k-morphisms. Monoidal unit 0-morphism: $1_\mathcal{C}$

For Bord_n the \otimes — product is disjoint union. 1_{Bord_n} is the empty 0-manifold

VECT: 1-category of fin. dim. complex vector spaces. $1_\mathcal{C} = \mathbb{C}$

ALG(VECT): Algebras, bimodules, bimodule maps

$1_\mathcal{C} = \mathbb{C}$

CAT: Categories, Functors, Natural transformations

With suitable \otimes, tensor unit $1_{\text{CAT}} = \text{VECT}$
Field Theory Without Fields

Generalize functorial picture of field theory from Atiyah, Segal,

A p-dimensional ``field theory'' is a monoidal functor $F: \mathcal{Bord}_p \rightarrow \mathcal{C}$

\mathcal{C} is a monoidal p-category

Values $F(M_k)$ on k-manifolds without boundary are the result of ``doing the path integral.''

Categorical language formalizes constraints of locality
Field Theory Without Fields

For suitable types of p —category \mathcal{C}

M_p: p-dimensional, compact, w/out $\partial \Rightarrow F(M_p) \in \mathbb{C}$

$F(M_p)$: “Partition function”

N_{p-1}: $(p-1)$-dimensional, compact w/out $\partial \Rightarrow F(N_{p-1}) \in \text{Obj}(\text{VECT})$

$F(N_{p-1})$: “Statespace on N_{p-1}”

R_{p-2}: $(p-2)$-dimensional, compact w/out $\partial \Rightarrow F(R_{p-2})$:

More complicated: object in a “higher category.”
Defects Within Defects

Adding Fields: Background Fields

Fields should be locally defined on p-manifolds, pull back under local diffeomorphisms, satisfy a sheaf property.

Orientation, (s)pin structure, G-bundle with connection, Riemannian metric, differential cochain, foliation, ...

Freed & Hopkins: [1301.5959, sec. 3]

Def: A field \mathcal{F} is a sheaf on Man_p^{op} valued in simplical sets Set_Δ

$F: \text{Bord}_p(\mathcal{F}) \to \mathcal{C}$
Important **COMPUTABLE** class of theories, underlies almost all our examples. Kontsevich, Quinn, Freed, Turaev, ...
π-finite space \mathcal{X}: (Homotopy type of) a topological space with finitely many components, finitely many nonzero homotopy groups, all of which are finite groups.

\[
\begin{align*}
\vdots & \\
K(\pi_3, q_3) & \rightarrow \mathcal{X}^{(3)} & \cdots \\
 & \downarrow & \\
K(\pi_2, q_2) & \rightarrow \mathcal{X}^{(2)} & \rightarrow K(\pi_3, q_3 + 1) \\
 & \downarrow & \\
\mathcal{X}^{(1)} & = K(\pi_1, q_1) & \rightarrow K(\pi_2, q_2 + 1)
\end{align*}
\]
\[\mathcal{X} = K(G, 1) = BG \quad G \text{ — gauge theory} \]

\[\mathcal{X} = K(A, q + 1) \quad \text{Will be used to describe } \text{``q-form symmetry for group A''} \]

\[K(A, 2) \rightarrow \mathcal{X} \]

Classifying space of a ``2-group''

\[BG \quad \text{Will be used to describe } \text{``2-group symmetry''} \]

\[\pi \text{ — finite spaces } \mathcal{X} \quad \text{also known as } \text{``higher groups''} \]
Want: a p-dimensional TFT $\sigma^{(p)}_\mathcal{X}$ where the (dynamical!) ``fields’’ are, notionally, maps to \mathcal{X}, considered up to homotopy.

But we need to *specify* the codomain \mathcal{C}

TFT *should* really be denoted $\sigma^{(p)}_{\mathcal{X},\mathcal{C}}$ but in the paper it is written $\sigma^{(p)}_\mathcal{X}$
Two constructions that change category number:

Suppose \mathcal{C} is a monoidal n-category
In our paper different choices of 2-categories $\Omega^{n-2}C$ are used in different examples...

$\Omega^{n-1}C = VECT \quad \Rightarrow \quad \Omega^nC = \mathbb{C}$

Latter choice leads to language of modules over an algebra
Example:
For 2d gauge theory for finite group G:

\[C = CAT \]

\[\sigma_{BG}^{(2)}(pt) = REP(G) \]

OR

\[C = ALG(VECT) \]

\[\sigma_{BG}^{(2)}(pt) = \mathbb{C}[G] \]

So the results depend on the choice of C.
\(\mathcal{C}^{Morita} = ALG(\mathcal{C}) \)

Objects (``0-morphisms'') are \textit{algebra objects} in \(\mathcal{C} \).

\(\mathcal{C} \) is an \(n \)-category

\(\mathcal{C}^{Morita} \) is an \((n + 1) \)-category

\text{ALG(VECT)}: 2-category of Algebras, bimodules, bimodule maps

\text{ALG(CAT)}=\text{TENSCAT}: 3-category of tensor categories:

Tensor categories, Bimodule categories, Bimodule functors, Natural transformations
Choose a monoidal p-category \mathcal{C}

For a compact k-fold M_k without boundary

$$\sigma_{\chi, \mathcal{C}}^{(p)}(M_k) \in \text{Obj}(\Omega^k \mathcal{C}), 0 \leq k \leq p$$

We’ll now say something concrete about the values of $\sigma_{\chi, \mathcal{C}}^{(p)}(M_k)$ for $k = p, p - 1, p - 2, p - 3$
$\sigma_{\mathcal{X},\mathcal{C}}^{(p)}$ for $k = p - 1$

Notation: For any manifold M of any dimension $\mathcal{X}^M := Map(M, \mathcal{X})$

$\sigma_{\mathcal{X},\mathcal{C}}^{(p)}(M_{p-1})$ for M_{p-1} Compact $(p - 1)$–fold, without boundary will be an object in $\Omega^{p-1}\mathcal{C} = VECT$

$\sigma_{\mathcal{X},\mathcal{C}}^{(p)}(M_{p-1}) : \text{``Space of states'' on the spatial slice } M_{p-1}$

N.B. Vectors determined by a bordism $\emptyset \to M_{p-1}$ might very well be zero, hence are not ``states'' in the sense of quantum theory.
Textbook field theory: $\mathcal{X}^M = \text{Map}(M, \mathcal{X})$ is just the space of (scalar) fields in a sigma model with target \mathcal{X}.

In textbook scalar field theory we would have a Riemannian metric on M and \mathcal{X} and the states would be described by normalizable wavefunctionals of the field configurations: $\Psi[\phi(x)]$ with $\phi \in \mathcal{X}^M$.

Hilbert space of states: $L^2(\mathcal{X}^M)$.

In TFT: Just work up to homotopy equivalence.

So we just want the vector space of *locally constant* functions on $\mathcal{X}^{M_{p-1}}$:

$$\sigma^{(p)}_{\mathcal{X}, \mathcal{C}}(M_{p-1}) := \text{Fun}\left(\pi_0(\mathcal{X}^{M_{p-1}})\right)$$
\[\sigma^{(p)}_{\mathcal{X}, \mathcal{C}}(M_{p-1}) := \text{Fun}(\pi_0(\mathcal{X}^{M_{M-1}})) \]

Example: If \(\mathcal{X} = K(A, q) \) then \(\pi_0(\mathcal{X}^{M_{p-1}}) = H^q(M_{p-1}, A) \)

If \(\mathcal{X} = K(G, 1) \) then since

\[\pi_0(\mathcal{X}^{M_{p-1}}) = \{ \text{isom. Classes of principal } G \text{-bundles over } M_{p-1} \} \]

our ``statespace'' is the vector space of functions of G-bundles over the spatial manifold.

``Quantization of the mapping space \(\mathcal{X}^{M_{p-1}} \)''
Amplitudes

\[M_p^{a} \rightarrow N_{p-1}^{b+1} \]

\[M_p : N_{p-1}^{0} \rightarrow N_{p-1}^{1} \]
Correspondence Course

Generalizes notion of functions from R_1 to R_2

We can compose functions.

We would like to compose correspondences:
Homotopy Fiber Product

\[S_1 \times_h S_2 := \{ (s_1, s_2, \gamma): \gamma: f_1(s_1) \to f_2(s_2) \} \]
Correspondence Course

\[S_{12} \times_h S_{23} \]

Gives a way of composing correspondences.
Composition has good properties.
Amplitudes $M_p: N^0_{p-1} \rightarrow N^1_{p-1}$

If $\Psi \in Fun(\mathcal{X}^{M_p})$ is locally constant

then $r_{1,*}(\Psi) \in Fun(\mathcal{X}^{N^1_{p-1}})$ is locally constant, where

$$r_{1,*}(\Psi)(h) := \sum_{[\phi] \in \pi_0(r_1^{-1}(h))} \left(\prod_{i=1}^{\infty} |\pi_i(r_1^{-1}(h), \phi)|^{-1} \right) \Psi(\phi)$$
The fact that amplitudes compose properly follows naturally from properties of homotopy fiber products.

Partition function \((k = p)\) just take \(N^0_{p-1} = N^1_{p-1} = \emptyset\)
\(\sigma_{\mathcal{X},\mathcal{C}}^{(p)} \) for \(k = p - 2 \)

\[\Omega^{p-2} \mathcal{C} = CAT \implies \sigma_{\mathcal{X}}^{(p)} (M_{p-2}) \] must be a category.

Should be some kind of locally “constant vector spaces” over \(\mathcal{X}^{M_{p-2}} \)

\[\sigma_{\mathcal{X},\mathcal{C}}^{(p)} (M_{p-2}) := VECT (\pi_{\leq 1} (\mathcal{X}^{M_{p-2}})) \]

“Quantization of the mapping space \(\mathcal{X}^{M_{p-2}} \)”

\(\mathcal{X} = BG \implies \pi_{\leq 1} (\mathcal{X}^{M_{p-2}}) = \)

Groupoid of principal \(G \)–bundles over \(M_{p-2} \)
\(\sigma_{\mathcal{X}}^{(p)} \) for \(k = p - 3 \)

\[\mathcal{C} = \text{ALG}(\text{CAT}) \ & p = 3 \]

\(\mathcal{X} = BG : \sigma^{(3)}(pt) = \text{VECT}[G] \) as a tensor category:

\[(V_1 \ast V_2)_g = \bigoplus_{g_1 g_2 = g} (V_1)_{g_1} \otimes (V_2)_{g_2} \]
At each categorical level there is some "quantization" of a suitable correspondence of mapping spaces.

Not quantization in terms of symplectic geometry, but in the above homotopical sense.

Precise general formulation of "quantization" in this setting is given (to some extent) in FHLT sec. 8.4
In addition to the choice of \mathcal{X} and \mathcal{C} one can also consider a ``twisted'' construction based on a choice of cocycle $\lambda \in Z^p(\mathcal{X}, \mathbb{C}^*)$

For $\mathcal{X} = BG$ these would be Dijkgraaf-Witten theories.

e.g. $\sigma_{\mathcal{X},\mathcal{C},\lambda}^{(p)}(M_{p-1}) : \text{Vector space of locally-constant sections of a flat line bundle } L^{(\lambda)} \rightarrow \mathcal{X}^{M_{p-1}}$
1. Preliminary Remarks
2. Fields Without Fields
3. Finite Homotopy Theories
4. Defects & Domain Walls
5. Symmetry Action Via Quiche
6. Composition Of Defects
7. Open Problems
We can extend FHLT to a general theory of defects in theories $\sigma^{(p)}_{X,C,\lambda}$

Suggests a general framework for defects in general TFT’s.

Defects are associated to subsets $Z \subset M_p$ where Z need not be smooth...
Questions To Answer:

What data are necessary to specify a defect?
i.e. what are the "labels" carried by a defect?

Classical labels, semiclassical labels, global labels, local labels.

How does the presence of such defects affect the quantum values \(\sigma^{(p)}_{\chi,c,\lambda}(\text{M}_k, D(Z)) \)?

Is there a product law on defects?
How do the labels compose?
Assume Z a smooth manifold of codimension $\ell := cod(Z \subset M)$.

Around any point $\wp \in Z$, there is a linking sphere $S^{\ell-1}$

Classical labels: $\pi_0 \left(\mathcal{X}^{S^{\ell-1}} \right)$

Although commonly used, they can be inaccurate for describing the quantum systems.
Global labels: Surround Z by a "small" neighborhood U_Z with a manifold boundary ∂U_Z.

∂U_Z will be of codimension 1 so there is an associated statespace $\sigma(\partial U_Z)$

$$\delta_D(Z) \in \sigma(\partial U_Z) = \text{state space} \in \text{Obj}(\text{VECT})$$

i.e. $\delta_D(Z)$ is a vector in the complex vector space $\sigma(\partial U_Z)$
Local Labels: When Z is a smooth submanifold we can hope to characterize the defect by examining the neighborhood of a point $\varphi \in Z$.

Basic idea: Try to implement KK reduction along the linking sphere $S^{\ell-1}$ of $\varphi \in Z$ where $\ell := cod(Z \subset M)$.

Local Label $\delta_{D(\varphi)} \in Obj \left(\text{Hom} \left(1_{\Omega^{\ell-1}C}, \sigma_{\mathcal{X},C}(S^{\ell-1}) \right) \right)$

$(m - (\ell - 1)) - 1 = (m - \ell) - \text{category}$
Sanity check: \(\ell = p \). Local label = global label.

\[
\Omega^{p-1}C = VECT \quad 1_{\Omega^{p-1}C} = \mathbb{C}
\]

\[\sigma(p)(S^{p-1}) = \text{Vector space of } \text{``states'' on } S^{p-1}\]

\[\delta_{D(\phi)} \text{ is a vector in statespace on } S^{p-1}:\]

State/operator correspondence.

Lower codimension: There is a difference.
Claim: Z smooth with trivialized normal bundle then the local label determines the global label:

``KK Reduction'': $\sigma^{(\ell-1)}(N) := \sigma(N \times S^{\ell-1})$

Data of local defect defines a left boundary theory $\delta^{(\ell-1)}$ for $(m - \ell + 1)$-dimensional theory $\sigma^{(\ell-1)}$

\[
\sigma^{(\ell-1)} \begin{bmatrix} \delta^{(\ell-1)} \\ Z_{m-\ell} \end{bmatrix} \in \text{Hom} \left(\sigma^{(\ell-1)}(\emptyset), \sigma^{(\ell-1)}(Z) \right)
\]

Gives vector $\delta_{D(Z)}$ in vector space $\sigma^{(\ell-1)}(Z) = \sigma(Z \times S^{(\ell-1)})$
Figure 8. Local defect data, including tangential structures
One key point in the general theory of defects:

When Z is not smooth we treat it as a stratified space and consider the links starting with the lowest codimension and then move up in codimension.
Semiclassical Defect Data In FHT

For $\sigma^{(p)}_{X,C}$ we can compute the local and global labels from `semiclassical data’’ (thought of as dynamical fields for the defect)

DEF: Semiclassical local defect data: $\psi: Y \rightarrow X^{S^{(\ell-1)}}$

Apply ``quantization procedure’’ of FHLT to the correspondence:
Simplest example: $\ell = p$: Point defect

Local label $\in Hom\left(\mathbb{C}, \sigma^{(p)}_{\mathcal{X}}(S^{p-1})\right)$

i.e. is a vector in $\sigma^{(p)}_{\mathcal{X}}(S^{p-1}) = Fun\left(\pi_0(\mathcal{X}^{S^{p-1}})\right)$

Given (\mathcal{Y}, ψ) we **compute** this vector to be the pushforward of the function $\Psi = 1$ on \mathcal{Y}:

$$h \in \mathcal{X}^{S^{p-1}}$$

$$\psi_*(\Psi)(h) = \sum_{\phi \in \pi_0(\psi^{-1}(h))} \prod_{i=1}^{\infty} |\pi_i(\psi^{-1}(h), \phi)|^{(-1)^{i-1}}$$
Semiclassical Approach To Computation Of $\sigma^{(p)}_{\chi, \mathcal{C}}(M_k, \mathcal{D}(Z))$

Mapping space \mathcal{M} is space of pairs (ϕ_{blk}, ϕ_{dft})

$\phi_{blk} : M \rightarrow \chi$ \hspace{1cm} $\phi_{dft} : Z \rightarrow Y$

``Quantization'' of \mathcal{M} gives partition functions, ``statespaces'', amplitudes, etc. in the presence of the defect defined by (ψ, Y).
Domain Walls & Boundary Theories

Specialize to $\ell = 1$:

$$\sigma_{\chi}^{(p)} \quad \sigma_{\chi}^{(p)}$$

Natural generalization

$$\sigma_{\chi_1}^{(p)} \quad \sigma_{\chi_2}^{(p)}$$
Domain Walls & Boundary Theories

Easily implemented by semiclassical data for a domain wall between different FHT’s:
Boundary theories: $\mathcal{X}_1 = \emptyset$ OR $\mathcal{X}_2 = \emptyset$

``Dirichlet’’: $\mathcal{Y} = \text{pt}$. So ψ chooses a connected component of \mathcal{X}

``Neumann’’: $\mathcal{Y} = \mathcal{X}$ & $\psi \sim \text{Identity}$.

Names arise from the case of G —gauge theory with $\mathcal{X} = BG$

But lots of other boundary theories are possible....
Example: $\mathcal{X} = BG$

General set of semiclassical boundary conditions:

$$f : H \rightarrow G \quad \Rightarrow \quad \mathcal{Y} = BH \quad \Rightarrow \quad \psi = Bf$$

Include twisting by $\lambda \in H^p(\mathcal{X}, \mathbb{C}^*)$

$$\sigma^{(p)}_{\mathcal{X}, \mathcal{C}, \lambda} : \text{p-dimensional Dijkgraaf-Witten theory.}$$

Extra data: $\mu \in C^{p-1}(BH, \mathbb{C}^*) : \delta \mu = (Bf)^*(\lambda)$
If $\partial M_p = N_{p-1}$ then the relevant mapping space is

$$\mathcal{M} = \{ (\phi_{blk}, \phi_{bdy}) : \phi_{bdy} \}.$$

Reduction of structure group on the boundary from G to H

Adding a (homotopical) sigma model $N \to G/f(H)$, as expected when we break G—symmetry to H—symmetry on the boundary.
Example of quantum result with such boundary conditions:

\[C = \text{ALG}(\text{CAT}) = \text{TENSCAT} \quad \& \quad p = 3 \]

\[\sigma_{\chi,\lambda}^{(3)}(f,\mu) \in \text{Hom}(1_C, \sigma_{\chi,\lambda}^{(3)}(pt)) \]

Will be a module category for the tensor category

\[\sigma_{BG}^{(3)}(pt) = \text{VECT}[G]. \quad \text{Will be } \text{VECT}[G/f(H)] \]

\[(V \ast W)_{gH} := \bigoplus_{g',g''} L_{g',g''}^{(\lambda)} \otimes V_{g'} \otimes W_{g''H} \]

\[g'(g'' H) = gH \quad L_{g',g''}^{(\lambda)} : \text{Constructed from the cocycle } \lambda \]
One could go on to develop this formalism to describe defects within defects. Used in the paper to discuss composition of N/D and D/N boundary conditions, and duality domain walls.
Nontrivial Topological Effects

Classical labels: \(\pi_0 \left(\mathcal{X}^{S^{\ell-1}} \right) \) They are inadequate. Section 4.4.

\[
p = 3, \quad K(A, 2) \to \mathcal{X} \to BG, \quad C = TENS\text{SCAT}
\]

\[
\sigma^{(3)}_{\mathcal{X}}(pt) = VECT[A^\vee \times G]: \text{ Vector bundles over } G \text{ with coeff's in } VECT[A^\vee]
\]

\[
(W_1 \ast W_2)_g = \bigoplus_{g_1g_2=g} K_{g_1,g_2} \otimes W_{g_1} \otimes W_{g_2}
\]

\[
K_{g_1,g_2} \to A^\vee: \text{ A line bundle computed from Postnikov map } k: BG \to K(A, 3)
\]

For a line in a D boundary theory the classical labels are \(g \in G \)

Quantum Labels: Object in \(VECT[G \times A^\vee] \) with above composition.
1 Preliminary Remarks
2 Fields Without Fields
3 Finite Homotopy Theories
4 Defects & Domain Walls
5 Symmetry Action Via Quiche
6 Composition Of Defects
7 Open Problems
Generalized, categorical, noninvertible, ... "symmetries"

We describe a framework for understanding these terms using the sandwich or quiche picture
Motivation 1:

If \mathcal{C} is a Morita category....

TFT \sim Algebra

$\sigma_{BG}^{(2)}(pt) = \mathbb{C}[G]$
Algebra

$\sigma_{BG}^{(3)}(pt) = VECT[G] \otimes -$category

(Algebra object in CAT)

Boundary theory \sim module for the algebra

\Rightarrow Import notions from algebra: Regular representation,....
It is good to separate the notion of abstract group (algebra) from its action on a module.

Relations between algebra elements will universally be true in all modules.

Field theory: Compute relations among defects in non-topological theories by computations within a TFT.
Motivation 2:

4d Yang-Mills for compact group $G = SU(N)$

From Lagrangian we can’t tell if the gauge group is G or $G^{adj} = PSU(N)$ or G/\mathcal{A} with $\mathcal{A} \subset Z(G) \cong \mathbb{Z}_N$

F: 4d G gauge theory: partition function/Hilbert space: Sum over all G — bundles:

Isomorphism class in 4d just determined by $c_2(P)$
PSU(N) gauge theory: To compute the partition function/Hilbert space: Sum over all G^{adj} -- bundles:

Isom. class in 4d is determined by $c_2(P)$

AND $w_2(P) \in H^2(M; \mathbb{Z}_N)$

$$w_2(P) \in \pi_0(\mathcal{X}^M) \text{ with } \mathcal{X} = K(\mathbb{Z}_N, 2)$$

The gauge bundle of $PSU(N)$ gauge theory determines a (topological) ``\mathbb{Z}_N --gerbe'' on the 4-fold M
Almost true: We couple $PSU(N)$ on the boundary of $M_5 := M \times \mathbb{R}_{<0}$ by demanding that the boundary value of $\phi_{\text{bulk}}: M_5 \to K(\mathbb{Z}_N, 2)$ is homotopic to the gerbe determined by the $PSU(N)$-bundle.

This suggests 4d $PSU(N)$ gauge theory is a boundary theory for $\sigma^{(5)}_X$ with $X = K(\mathbb{Z}_N, 2):

\tilde{F}$: Almost $PSU(N)$ gauge theory but with an extra field: Isomorphism of the boundary value of the bulk gerbe with the gauge theory gerbe.
Now include a topological boundary theory ρ on the left:

This is a four-dimensional gauge theory with gauge algebra $\mathfrak{su}(N)$

We get different gauge theories by choosing different boundary theories ρ
This is 4d $F := SU(N)$ gauge theory because the Dirichlet bc trivializes the ``bulk'' \mathbb{Z}_N $-$gerbe, forcing us to couple YM only to $SU(N)$-bundles.
This is PSU(N) gauge-theory

\[\sigma^{(5)}_{\chi} \]

This is \(SU(N)/A \) gauge-theory for \(A \subset Z(SU(N)) \) with topological coupling determined by \(\mathcal{P}_q\left(w_2(P)\right) \)
Definition 1: A p-dimensional **quiche** is a pair (ρ, σ) with

\[\sigma: (p + 1) - \text{dimensional TFT} \]

\[\rho: p - \text{dimensional topological boundary theory} \]

``right module for σ``
Definition 2: An action by the quiche \((\rho, \sigma)\) on a \(p\)-dimensional field theory \(F\), (not necessarily topologically), is a boundary theory (``left module for \(\sigma'\)') \(\tilde{F}\) (not necessarily topologically) and an isomorphism:

\[
\begin{align*}
\rho & \quad \sigma \\
\tilde{F} & \quad \theta \\
M_{k \leq \rho} & \quad \cong \\
F & \quad F
\end{align*}
\]

Note: Different \(\theta\)'s for same \((\rho, \sigma, \tilde{F})\) differ by elements of \(Aut(F)\):

Partially justifies the viewpoint that this is a ``symmetry.''

Our first reference complaint:

Subject: sandwiches
From: Jeff Harvey <jaharvey@
Date: 9/16/2022, 11:58 AM
To: Gregory Moore <gwmoore@

An open-faced sandwich is not a quiche, it is a tartine.

What is wrong with you?
Example: G-Symmetry In Quantum Mechanics

\[F: p=1 \text{ dimensional field theory} \]
\[F(pt) = \mathcal{H} \text{ Hilbert space} \]
\[F([0, t]) = U(t) = e^{-tH} \in \text{Hom}(\mathcal{H}, \mathcal{H}) \]

Actually: \(F(\text{germ}(pt)) = (\mathcal{H}, H) \) Kontsevich & Segal

Suppose \(\rho: G \to U(\mathcal{H}) \) has image commuting with \(H \)

\(G \) need not be Abelian (need not be finite!)

Won’t be sensitive to higher homotopy so take \(\sigma \to \sigma^{(2)}_{BG} \)
Need to define the left σ–module \hat{F}

\[\sigma\left(\begin{array}{c}
\hat{F}
\end{array}\right) \in \text{Hom}_{\text{ALG}(\text{VECT})}(\sigma(pt), \sigma(\emptyset)) \]
\[= \text{Hom}_{\text{ALG}(\text{VECT})}(\mathbb{C}[G], \mathbb{C}) \]
\[= \{ \mathbb{C}[G] - \mathbb{C} \text{ bimodules} \} \]

\[\sigma\left(\begin{array}{c}
\hat{F}
\end{array}\right) := \mathcal{H} \quad \text{as a \underline{left} } \mathbb{C}[G] - \text{module} \]
Figure 13. Three bordisms evaluated in (3.9) in the theory \((\sigma, \tilde{F})\)

(a) the left module \(\mathbb{C}[G] \mathcal{H}\)

(b) \(e^{-\tau H/\hbar}: \mathbb{C}[G] \mathcal{H} \to \mathbb{C}[G] \mathcal{H}\)

(c) the central function \(g \mapsto \text{Tr}_{\mathcal{H}}(S(g)e^{-\tau H/\hbar})\) on \(G\)
Quiche: \((\rho, \sigma_{BG}^{(2)})\) with \(\rho = \text{Dirichlet}\)

\(\sigma_{BG}^{(2)}(\quad \quad) = \mathbb{C}[G]\) as a \(\mathbb{C} - \mathbb{C}\) bimodule

Quantization of \(G\) —bundles on \([0,1]\) trivialized at both ends: \(\{\text{Trivialized bundles}\} = G\), so quantization gives functions on \(G\).

Topological \(\rho\) —defects in the Dirichlet boundary are labeled by \(a \in \mathbb{C}[G]\)
Insertion on topological boundary \Rightarrow

$\rho(a)$ commutes with $U(t) \Rightarrow$

$\rho(a)$ commutes with H
$\mathcal{O}(Z)$: A more general topological operator
\(\xi \in B \)

\[
\begin{array}{c}
\xi \in B \\
\tilde{F} \\
T \\
\end{array}
\]

\[
\begin{array}{c}
\theta \\
\cong \\
\end{array}
\]

\[
\begin{array}{c}
F \\
T(\xi) \in \text{End}(\mathcal{H}) \\
\end{array}
\]

\[
T: B \rightarrow \text{End}(\mathcal{H})
\]

Not topological: Gives general operator on \(\mathcal{H} \)
all manipulations, e.g. OPE’s of defects, etc. done within the TFT σ give universal relations independent of the field theory F on which the symmetry acts. Some ``generalized topological symmetry’’ operators on F might be very hard to describe within F but easy to describe in a quiche.

Example 4.4: Slice knot defects in 3d field theory that do not bound a disk.
1. Preliminary Remarks
2. Fields Without Fields
3. Finite Homotopy Theories
4. Defects & Domain Walls
5. Symmetry Action Via Quiche
6. Composition Of Defects
7. Open Problems
Given defects $(\mathcal{D}_1, Z_1) \& (\mathcal{D}_2, Z_2)$ with Z_1, Z_2 codimension ℓ, parallel, trivialized normal bundles:

N.B. The product of cod ℓ defects is expressed in terms of cod ℓ defects.
In FHT, if the local defects are described by semiclassical data as above, this translates to the equation:

\[
\mathcal{Y} = \psi = r_1 \circ g
\]

\[
\mathcal{Y} : \text{homotopy fiber product of } \psi_1 \times \psi_2 \text{ and } r_0
\]
Example: Domain walls in finite gauge theory

\[\mathcal{D} \begin{pmatrix} f_1 & H_{12} & f_{12} \\ G_1 & G_2 \end{pmatrix} \ast \mathcal{D} \begin{pmatrix} f_{23} & H_{23} & f_3 \\ G_2 & G_3 \end{pmatrix} = \sum_{[g]} \mathcal{D} \begin{pmatrix} f_1 \pi_1 & Z_{12}(g) & f_3 \pi_3 \\ G_1 & G_1 \end{pmatrix} \]

\[[g] \in f_{12}(H_{12}) \backslash G_2 / f_{23}(H_{23}) \]

\[Z_{(12)}(g) = \{ (h_{12}, h_{23}) | f_{12}(h_{12}) g f_{23}(h_{23})^{-1} = g \} \subset H_{12} \times H_{23} \]
1 Preliminary Remarks
2 Fields Without Fields
3 Finite Homotopy Theories
4 Defects & Domain Walls
5 Symmetry Action Via Quiche
6 Composition Of Defects
7 Open Problems
Some Future Directions

Several examples in the paper show topological subtleties in labeling and composition laws of defects. Physical consequences?

Some applications are described in the paper: Duality defects, modular invariant combinations of left & rightmovers in 2d CFT, ... It would be nice to see more.

Given \((\mathcal{X}, \lambda)\) can we find a "`traditional" field theory description of \(\sigma_{\mathcal{X},\mathcal{C},\lambda}^{(p)}\) or a "`traditional" field theory on which \((\rho, \sigma_{\mathcal{X}}^{(p+1)})\) acts?
Some Future Directions

Extension to families of QFT’s. e.g. higher Berry curvatures?

Spacetime symmetries. (Start with P,T-invariance)

Continuous symmetries?
Thanks for your attention!