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1. Introduction

These are lecture notes for a course I gave at Rutgers University during the Fall of 2013. The
main goal of the notes is to give mathematical background necessary for an understanding of
a specific point of view on the recent developments in the theory of topological insulators
and superconductors. This viewpoint, which builds on the work of C. Kane et. al. A 012w
Kitaev, A. Ludwig et. al., and A. Altland and M. Zirnbauer, was developed in &2]7
The main theme is how symmetries are implemented in quantum mechanics and how the
presence of symmetries constrains the possible Hamiltonians that a quantum system with
a specified symmetry can have. I have tried to explain how the results follow simply from
the basic principles of quantum mechanics.

I have aimed the notes at graduate students in both physics and mathematics, with
the idea that a solid grounding in some of the topics chosen will serve them well in their
future research careers, even if their interests are far removed from topological states of
matter. If one’s purpose is simply to understand the recent developments in topological

sdseGrBhpExishRépagsec: SuperLinearAlgebra

llnsulé%t%s then, for examlee the extensive discussions of Chapters B-8 and Chapters 12,
SecC a
I3, 117 and I8 are clearly overkill. But the mathematics developed here is very useful in a

wide variety of areas in Physical Mathematics. In some places I have used the approach

of first-rate mathematicians ertln about ph¥51cs For example, the treatment of Clifford
|sec: Cllﬂﬁerdk g8piasModu

algebras in Chapters T3 and 17 1s slightly nonstandard for physicists since it emphasizes

the role of Zs-graded or super—hnear algebra. Some sections rely heavily on the masterful
treatment by P. Deligne $TTearned in my (unpublished) work with J. Distler and D.
Freed on the K-theory approach to orientifolds of string theory, this is an excellent way to
approach the subject of twisted equivariant K-theory. (And, in turn, as explained in %ﬁm
the classification of topological insulators properly relies on twisted equivariant K-theory.)
In some parts of the chapter on fermions and the spin representation I have borrowed

S-LoopGroups

liberally from the beautiful book of Pressley and Segal



One thing I have stressed which, in my opinion, is not very well appreciated in the
literature, is that there are many conceptually distinct “10-fold ways.” There is a straight-
forward generalization of Dyson’s 3-fold way which applies to all quantum systems, inter-
acting or not, bosonic, fermionic - whatever. This is rather nicely based on the fact that
there are 10 superdivision algebras over the real numbers, in close analogy to Dyson’s en-

. . |sdseBPhR¥sesFTRepeFold X X
sembles. (As explained in Chapters B0, Dyson’s classification follows from simple group

theory and the Frobenius theorem, which identifies the 3 (associative) division algebras =
. . R . |sec:BeaifTiperiipsision
over the real numbers as R, C,H.) This 10-fold way is described in Chapters |141— 16. T do 4.2012
p4 reed: uu
not believe it has been properly explained in the literature before, although fZU] and 122

came close.

Another “10-fold Wa};_” is associated with the work of Altland and Zirnbauer and is
sec FF-Dynamics
e

discussed in Chapter 9. classification involves classical Cartan symmetric spaces.
The large N limit of these spaces are classifying spaces of K-theory and this is briefly

|sec:SymmetricClassifying

discussed in Chapter 20.

I do make some effort to connect the various “10-fold ways.” For example, Dyson’s

L. son3fold . . . .
original paper 1% entitied “The Threefold Way:...” in fact contains a 10-fold classification
of what he called “corepresentations.” ' Dyson’s 10-fold classification of irreducible ¢-reps

can be related again to the 10 real superdivision algebras, although that precise relation
reed:2012uu

relies on a conjecture, not fully proven. grlld 22]. Tt seems to me to be conceptually distinct
from the 10-fold way of Chapter i5, a onugﬁ it is clear that both trace their existence back
ggc‘gl%%_%ong%ailc ssuperdivision algebras. Similarly, the AZ classification described in Chapter
@ﬁKaLh_pysmally different question from that answered by Dyson’s classification or the
above-mentioned 10-fold classifications. Since the symmetric spaces can be related to the

P |sec:SymmetricClassifying .
classifying spaces of K-theory (Chapter 20) and the latter are related to Clifford algebras

there is once again a connection to the 10 real super—divisiorllo%l%%eras. From the viewpoint
Sec: [¢] a

of K-theory, 10 = 248. From the viewpoint of Chapter [[5 on the other hand, 10 = 3+7. In

the problems discussed in these notes these decompositions are unnatural. The underlying

unifying concept is that of a real super-division algebra.

In one of those delicious ironies, with which the history of mathematics and physics
is so pregnant, the rBeSlation of thealCliﬂ"ord algebras to K-theory was developed by Atiyah,
Bott, and Shapiro [7] and Wall almost simultaneously with Dyson’s work.

The original plan for the lecture series,vs{tasttto expand a little on two lectures given
al.

at a school in St. Ottilien (July 2012) and _on a ltecture given at a conference on
ecture
topological insulators at the SCGP in May 2013 . Time flies, all too often I stopped

|sec|sERBEFoPoiBand-Struct
to smell the flowers, and so the final Chapters I%Z—%g)cg?rvee not yet been written (although
they correspond to definite slides in the talk . AS the course was ending I was just
beginning to write Chapter ARTNT nsextends the AZ classification to free bosonic systems.
(This possibility was also noted in it auerzls chapter is even more incomplete than the

previous ones. I do think it is very likely these ideas could be very profitably applied to

1q: « C . . . . .
Since the term “corepresentations” has many misleading connotatlonslSIe}éa:%%{jleé)lrse%ﬁte%ds this usage in

favor of “¢-twisted representations” or “¢-representations”. See Chapter B. I'm still looking for a better
name.



sec:QuantAut

systems of ultracold atoms and Bose-Einstein condensates which are the subject of many
exciting current experimental discoveries. But I leave that for the future.

I hope to finish these notes at some point in the future. In the meantime, I hope they
will be useful to students, even in this manifestly unfinished state. So they will remain
available on my homepage.

2. Quantum Automorphisms

2.1 States, operators and probabilities

We begin with first principles. The Dirac-von Neumann axioms of quantum mechanics
posit that to a physical system we associate a complex Hilbert space H such that

1. Physical states are identified with traceclass positive operators p of trace one. They
are usually called density matrices. We denote the space of physical states by S.

2. Physical observables are identified with self-adjoint operators. We denote the set of
(bounded) self-adjoint operators by O.

Recall that pure states are the extremal points of §. They are the dimension one
projection operators. They are often identified with rays in Hilbert space for the following
reason:

If ¢ € H is a nonzero vector then it determines a line

by = {z¢|z € C} :=yC (2.1)

Note that the line does not depend on the normalization or phase of v, that is, £y, = £,
for any nonzero complex number z. Put differently, the space of such lines is projective
Hilbert space

PH := (H — {0})/C* (2.2)

Equivalently, this can be identified with the space of rank one projection operators. Indeed,

given any line ¢ C H we can write, in Dirac’s bra-ket notation: 2
|9) (¥
P, = (2.3)
(¥[¥)

where 9 is any nonzero vector in the line £.
The “Born rule” states that when measuring the observable O in a state p the proba-
bility of measuring value e € E C R, where F is a Borel-measurable subset of R, is

P,o(E) = TrPo(E)p. (2.4)

Here Pp is the projection-valued-measure associated to the self-adjoint operator O by the
spectral theorem.

2We generally denote inner products in Hilbert space by (z1,z2) € C where z1,z2 € H. Our convention
is that it is complex-linear in the second argument. However, we sometimes write equations in Dirac’s
bra-ket notation because it is very popular. In this case, identify « with |x). Using the Hermitian structure
there is a unique anti-linear isomorphism of H with #* which we denote = — (x|. Sometimes we denote
vectors by Greek letters ¥, x, ..., and scalars by Latin letters z,w,.... But sometimes we denote vectors
by Latin letters, x,w, ... and scalars by Greek letters, «, 3, .. ..



2.2 Automorphisms of a quantum system

Now we state the formal notion of a general “symmetry” in quantum mechanics:

Definition An automorphism of a quantum system is a pair of bijective maps s1 : O — O
and s9 : § — S where s; is real linear on O such that (s1,s2) preserves probability
measures:

PSl(O),SQ(p) = PO,p (2.5)

This set of mappings forms a group which we will call the group of quantum automorphisms.

The meaning of s; being linear on O is that if 71,75 € O and D(T})N D(13) is a dense
domain such that a7 + asT5, with aq, s real has a unique self-adjoint extension then
s1(aTh + asTh) = ags1(Ty) + ags1(Ts). A consequence of the symmetry axiom is that so
is affine linear on states:

sa(tp1 + (1 —1)p2) = tsa(pr) + (1 —1)s2(p2) (2.6)

The argument for this is that (si,s2) must preserve expectation values (T'), = Tr(Tp).
However, positive self-adjoint operators of trace one are themselves observables and we
have (p1)p, = (p2)p:, S0 the restriction of 51 _t&)f?_ LIil’lr}lSt agree with so. Now apply linearity
of 51 on the self-adjoint operators. From (2.6) it follows % that s must take extreme states
to extreme states, and hence sy induces a single map

s:PH — PH. (2.7)

Moreover, the preservation of probabilities, restricted to the case of self-adjoint operators
given by rank one projectors and pure states (also given by rank one projectors) means
that the function

0:PH xPH — [0,1] (2.8)
defined by
0(61,62) = Tl"Pglng (29)
must be invariant under s:
0(8(61), 8(62)) = 0(61,62) (210)

.. . leq:overlaplet :overlap-2 .
Definition The function defined by (2.8 and (2.9) is known as the overlap function.

Remarks

1. The upshot of our arguments above is that the quantum automorphism group of a

system with Hilbert space H can be identified with the group of (suitably continuous)
leq:QuantAut leq:overlap-3 X

maps (2.7) such that (2:10) holds for all lines ¢1,¢3. We denote the group of such

maps by Autgm (PH).

imonQD
3For some interesting discussion of related considerations see '3(] .

&Need to state
some appropriate
continuity
properties. &

eq:Aff-Lin

eq:QuantAut

eq:overlap-1

eq:overlap-2

eq:overlap-3



1biniStudyDist

2. The reason for the name “overlap function” or “transition probability” which is also
used, is that if we choose representative vectors ¥ € ¢1 and vy € 5 we obtain the -

perhaps more familiar - expression:

| (w1 [¢a)?
(1[11) (2 |92)

2.3 Overlap function and the Fubini-Study distance

TePy, Py, = (2.11)

If # is finite dimensional then we can identify it as H =2 CV with the standard hermitian
metric. Then PH = CPY~! and there is a well-known metric on CPY~! known as the
“Fubini-Study metric” from which one can define a minimal geodesic distance d(¢1,¢2)
between two lines (or projection operators). When the FS metric is suitably normalized
the overlap function o is nicely related to the Fubini-Study distance d by

d(ly, 05)\ 2
o(01, 2) = (cos %) (2.12)
Let us first check this for the case N = 2. Then we claim that for the case
PH? = CP! =~ 52 (2.13)

d is just the usual round metric on the sphere and the proper normalization will be unit
radius. Let us first check this:

First we write the most general general density matrix in two dimensions. Any 2 x 2
Hermitian matrix is of the form a + b - & where & is the vector of “Pauli matrices”:

ol 01
10
1 0
o3 — 10
0 -1

a € Rand b € R3. Now a density matrix p must have trace one, and therefore a = % Then

(2.14)

the eigenvalues are % + |I;\ So positivity means it must have the form

p==(14+72-7) (2.15)

2

where ¥ € R? with #2 < 1.
The extremal states, corresponding to the rank one projection operators are therefore
of the form

1
Py =5(1+17i-5) (2.16)

where 77 is a unit vector. This gives the explicit identification of the pure states with

elements of S2. Moreover, we can easily compute:

1
TI‘.Pﬁl.Pﬁ2 = —(1 + ’Fil . ﬁg)

5 (2.17)



and 7 - 7ia = cos(fy — 62) where |6 — 62| (with €’s chosen so this is between 0 anéi T _11§S
the geodesic distance between the two points on the unit sphere. Thus we obtain (i‘Z l%i

There is another viewpoint which is useful. Nonzero vectors in C? can be normalized
to be in the unit sphere S3. Then the association of projector to state given by

1

[¥) = W)l = 51 +7i-5) (2.18)

defines a map 7 : S% — S? known as the Hopf fibration.

The unit sphere is a principal homogeneous space for SU(2) and we may coordinatize
SU(2) by the Euler angles:

ot gmigo?eigo (2.19)

with range 0 < 6 < 7 and identifications:

(¢,0) ~ (¢ + 4m,¢) ~ (¢, + 4m) ~ (¢ + 27,9 + 2m) (2.20)

We can make an identification with the unit sphere in C? by viewing it as a homogeneous

Jbto
e "2 cosf/2 1
= o =u- 2.21
v <€_Zw2¢ sinc9/2> <0> (2.21)

The projector onto the line through this space is

space:

P, = W)Wl = 5(1+7-5) (222)

with 77 = (sin 6 cos ¢, sin 0sin ¢, cos 0) as usual. Alternatively, we could map 7 : S — 52
by w()) = [ : ] = CP!, and this will correspond to the point in S? by the usual
stereographic projection.

In any case, for the case N = 2 we see that Autqm (PH) is just the group of isometries
of S? with its round metric. This group is well known to be the orthogonal group O(3).

Moving on to higher N we can define the F'S metric in a number of ways:

1. Identify CPN as a homogeneous space

CPN = U(N+1)/UN) xU(1) = SU(N +1)/SU(N) x U(1) (2.23)

This follows from the stabilizer-orbit theorem: There is a transitive action of U(N 4 1) on
the set of lines in CV*! and the stabilizer of a line £ is the product of the unitary group of
¢ (which is U(1)) and the unitary group of ¢+ (which is U(N)). If we give an orthogonal
decomposition of the Lie algebras using a Cartan-Killing metric on SU(N + 1): *

su(N+1)Zsu(N)®u(l) ®p (2.24)

then we can identify p with the tangent space at the origin. The restriction of the Cartan-
Killing form to p, then made left-invariant by group translation defines the FS metric.

4Since SU(N + 1) is simple the CK metric is unique up to scale.

~10 -

&from which pole?
L)



2. We can identify the holomorphic tangent space to £ € PCN*! as
T,PCN*! = Hom(¢, ¢+) (2.25)

Put this way, a tangent vector is a linear map t : £ — ¢, and we can define an Hermitian
metric by the formula
h(ty,to) := Tr(tlty) (2.26)

This viewpoint has the advantage that it works in infinite dimensions if ¢1,to are traceclass
operators.

3. Indeed, the Hermitian metric just defined is a Ké&hler metric and one choice of &

Kéhler potential is K =log ), X;X; where X; are homogeneous coordinates.

It is known that the FS metric on CP has the property that the submanifolds CP* —
CPYN embedded by [21 : -+ : 2k41] = [21: -+ : 2y41] are totally geodesic submanifolds.

Definition If (M, g) is a Riemannian manifold a submanifold M; C M is said to be
totally geodesic if the geodesics between any two points in M7 with respect to the induced
metric (the pullback of g) are the same as the geodesics between those two points considered
as points of M.

Example: If (M, g) is the two-dimensional Euclidean plane then the totally geodesic
one-dimensional manifolds are straight lines. Any one-dimensional submanifold which
bends affords a short-cut in the ambient space.

If M, is the fixed point set of an isometry of (M, g) then it is totally geodesic. Now
note that the submanifolds CP* are fixed points of the isometry

[21: 12Nt = (210t Zhg1 D —Fkg2 T —EN41 (2.27)

Another way to see this from the viewpoint of homogeneous spaces is that if we exponentiate
a Lie algebra element in p to give a geodesic in U(N + 1) and project to the homogeneous
space we get all geodesics on the homogeneous space. But for any ¢ € p we can put it into
a U(2) subalgebra.
Now, any two lines /1, {5 span a two-dimensional sub-Hilbert space of H, so, thanks to
tge:gog%ly geodesic property of the FS metric, our discussion for H = C? suffices to check
. in general.

2.4 From (anti-) linear maps to quantum automorphisms

Now, there is one fairly obvious way to make elements of Autqm(PH). Suppose u € U(H)
is a unitary operator. Then it certainly takes lines to lines and hence can be used to define
a map (which we also denote by u) u : PH — PH. For example if we identify ¢ as £, for

some nonzero vector 1 then we can define

u(ly) = e (2.28)

One checks that which vector 1) we use does not matter and hence the map is well-defined.
In terms of projection operators:
w: P uPul (2.29)

- 11 —

&Check the proper
class of operators.

&simple proof or

ref? &



and, since u is unitary, the overlaps Tr(P; P») are preserved.
Now - very importantly - this is not the only way to make elements of Autqem (PH).
We call a map a : H — H anti-linear if

a(i1 + h2) = a(¥1) + a(y2) (2.30)
but
a(=) = #*a(4) (2.31)
where z is a complex scalar. It is in addition called anti-unitary if it is norm-preserving:
la(w) 7= |I? (2.32)
Exercise
Show that
(a(¥1), a(p2)) = (Y2, 1) (2.33)

Now, anti-unitary maps also can be used to define quantum automorphisms. If we try
to define a(¢), ¢ € CH by

a(ly) = faw) (2.34)
then the map is indeed well-defined because if £,y = £y then ¢’ = z1) for some z # 0 and
then

Moreover,

((a@),a@2))? (v (2.36)

(a(th1), a(yr))(a(ih), aliha)) (Y1, 91) (Y2, 1b2)

and hence the induced map on PH does indeed preserve overlaps.

Remark: One may ask why we don’t simply say that a induces a map on projection
operators P+ aPa’. Indeed we can, if we define the adjoint by (11, atbs) = (g, al)y).

2.5 Wigner’s theorem

In the previous subsection we showed how unitary and antiunitary operators on Hilbert
space induce quantum automorphisms. Are there other ways of making quantum automor-
phisms? Wigner’s theorem says no:

Theorem: Every quantum automorphism Autgtm, (P#H) is induced by a unitary or
antiunitary operator on Hilbert space, as above.
I don’t know of a simple intuitive proof of Wigner’s theorem. In addition to Wigner’s

woElementar . .
own argument the paper C references with alternative proofs! (And there are

others, for examples :
We will indicate two proofs.

- 12 —



Let us first consider the case of a two-dimensional Hilbert space. In this case we
identified PH =2 S? and the isometry group is just O(3). Now,

O(3) = Zs x SO(3) (2.37)

Let us first consider the connected component of the identity.
There is a standard homomorphism

m:SU(2) = SO(3) (2.38)
defined by 7(u) = R where
ui - dut = (RT) - & (2.39)

V)@l = 51 +7-3) (2.40)

we see - using the Euler angle parametrization - that any proper rotation on 7 is induced by
some SU(2) action on |¢). Elements in the connected component of O(3) not containing the
identity can be written as PR where R € SO(3) and P is any reflection in a plane. It will
be convenient to choose P to be reflection in the plane y = 0 so that it transforms (¢,0) —
(—¢,0). But this just corresponds to complex conjugation of 1 (77), which establishes the
theorem for two-dimensional Hilbert space. °

Having established Wigner’s theorem for N = 2 one can now proceed by induction on

. . woElementar
dimension. See or details.

ar, n . . .
A second proof, due to V. Bargmann [T1], iand which also works for separable infinite
dimensional #) proceeds as follows
Let S, denote the sphere of radius p inside Hilbert space:

Sp={v e H| | v = p?} (2.41)

Now S,/U(1) = PH for p # 0, as we henceforth assume. We will denote equivalence classes
in S,/U(1), by [¢] where || ¢ ||>= p. These equivalence classes are often called “rays”
in physics, although in fact such an equivalence class is a circle of vectors in the Hilbert
space.
Given a quantum automorphism s : PH — PH we can unambiguously define a corre-
sponding map
s:8,/U() = S,/U(1) (2.42)
We will also denote it by s to avoid cluttering the notation. The meaning should be clear
from context. To define s in (e. v, ngé?l%ider [Y] € S,/U(1). Then £y, the line through v,
is well-defined, so we can consider ¢ = s(¢;). Choose any nonzero vector ¢’ € ¢'. We can
always choose 9’ to be of norm p. For any such choice define s[¢)] := [¢/]. This map does

5We stress that there is no basis-independent notion of “complex conjugation.” But in the above
description of the unit sphere as a homogeneous space for SU(2) we made an explicit choice of basis, so
then complex conjugation is well-defined.
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not depend on the choice of ¢’ and is therefore well-defined. Note that || o ||?=|| ¥’ ||?. If
we define the overlap function o : S,, /U (1) x S,,/U(1) — Ry by

o([t], [tha]) := [(¢b1, ¥2)[? (2.43)

then o is well-defined and preserved by s.
Now note a key

Lemma: If ¢,, n = 1,2,... is a set of orthogonal lines, so, 0(¢y,{y,) = 0p m, then
s(fn) = £, is another set of orthogonal lines. Therefore if we choose nonzero vectors
fn € £, then we claim that for any set of vectors f] € ¢, such that

s([fn]) = [f2) (2.44)

we have |(f5, f2)| = |(fn, fm)| = Onm || fn [|* and moreover if

v = Z o, fn (2.45)

then for any v’ such that s([v]) = [v'] we have

v = Z al fl (2.46)

with |a,| = |-
Proof of Lemma: Note that

lown|* = o([fal, []) = 0(s[fn], s[0]) = |o[*. (2.47)

Now, choose any unit vector ¢ € H. Then choose another unit vector ¢/ € H so that
s([e]) = [¢/]. We will construct a unitary or anti-unitary operator 7" on H which induces s.
To begin, we set T'(e) = €, so T will depend on the choice of €.

Let P := ¢, C H and P’ := ¢4 C H. Our first aim is to construct a map 7 : P — P
To do this consider a nonzero vector p € P. Since /. and £, are orthogonal lines we know
that s(¢.) and s(¢,) are orthogonal lines. Since s({.) = {.s there must exist a vector p’ € P’
with

s(lp) = [P'] (2.48)

and moreover || p' [|=|| p ||. We choose such a vector p’. Two different choices p’ and § are
i@l /
p.

Similarly, consider the vector v = e + p € H, and choose a v' so that

related by a phase p' = ¢

s([]) = [V (2.49)

Any two choices of v/ and ¥/ are related by a phase ¥/ = €2¢/. By our Lemma with
f1 =-e, fo = p we know that we must have

v =de + By (2.50)

- 14 —



with |o/| =1 and || = 1. The only ambiguity in choosing v' was an overall phase so if we
divide by o/ we get a canonical vector:

IB/
V' = + Jp/ (2.51)

In particular the vector p’ = fl—:p' is independent of the choices of phase in p' and v'.
That is, having made a choice of e, e’ and p there is a canonically defined vector p” € P'.

We now define T'(p) by
T(p) =p" (2.52)
Note that
I T() =l 2" =" 1=l p | - (2.53)

so we can extend to p = 0 by T'(0) = 0. We have now defined a map T': P — P’. Moreover,
we also define
Te+p):=¢e+p" =€ +T(p) (2.54)

To summarize, for any nonzero p € P we have defined T'(p) € P’ and T'(e + p) so that

s(lp]) = [T ()]

, (2.55)
s(le+p]) = [T(e+p)] = [ +T(p)]
Now, the invariance of overlaps under s means that if pi,ps € P then
’ 2 _ T ,T 2
[(p1,p2)| :( (p1),T(p2))| (2.56)

l(e+p1,e+p2)]> = (e + T(p1), € + T(p2))|

and therefore:
1. For all p;,p2 € P we have

Re((T'(p1), T(p2)) = Re(p1,p2) (2.57)

2. Moreover, if (p1,p2) € R then

(T'(p1), T'(p2)) = (p1,p2). (2.58)

Now assume that dimP > 1. Otherwise, we are in the two-dimensional case which we
have already covered.
Given any vector w € P define a function x,, : C — C by

T(ow) = xw(a)T(w) (2.59)

and since T' is norm-preserving on P we have |x, ()| = |a|. We are going to show that in
fact this function is independent of w. To this end choose any ON set of vectors {f;} in P.

: d-1
Then we know that f/ := T'(f;) are ON. For brevity write T'(af;) = x;(a) f!. Apply (Ze.B?oin
to p1 = af; and p = Bf; (same i) to get:

Re(xi(a) xi(#)) = Re(a’5) (260)
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: d-1
Since x;(1) =1, we can take a =1 in (B.blcio)?ang hence

Re(xi(8)) = Re(8) (2.61)
Now, we saw before in our lemma that if p = > «;f; then T(p) = > o f] with
|oj| = |evi|. We claim that in fact o = x;(cy). This is trivial if a; is zero. If it is not zero

eq:cond-

then let 7; = 1/o so that (v;fi,a; f;) = 1. But then by g 98] X ~i)*xi(a;) = 1. On the
other hand, it is also true that (v;f;,p) = 1 so again by (2.585 we have

1= ()£ alif)) = xi(ri)*aj (2.62)
J
and hence o] = x;(c;). Next, we also claim that x;(c) is independent of i. To see this let
w= fi+ f; with i # j. Then T(w) = xi(1)f! + x; (1. = £+ f}- Then
T(aw) = xi(a)fi + xj(@) fj = T(w)xw(a) = (ff + f})xw(e) (2.63)

Now, another simple little lemma: Suppose that vi,ve are two linearly independent
vectors and aq, as, ag are complex numbers such that

a1v1 + Qovy = ai3vs (2.64)

Then a1 = ay = ag. Proof: Let P; be the orthogonal projection onto the plane perpendic-
ular to v;, s = 1,2. Then Pyvs and Py are nonzero vectors. Applying P; and then Ps to

eq:splefact
(b%zﬂ gives the statement.

. . eq:splefact X .
So, invoking (2:64) we have x1(a) = x2(a) = xw(@). Denote this common function as

X(«). Using the properties we proved above we know that |x(i7)|] = 1 and Re(x(i)) = 0.
Therefore x (i) = ni with n = +1. Therefore

Im(x(B)) = Re(i"x(8)) = nRe(x(i)"x(8) = nRe(i*B) = nIm(j3) (2.65)

: t
and combining this with (B.%rl % we learn that for any S € C

g n=1
= 2.66
x(8) {B* n— 1 (2.66)

In particular, it follows that x is real linear: x (a1 +a2) = x(a1)+x(a2) and x(ra) = rx(«)
for r € R and o € C. Therefore T : P — P’ is also real-linear. Now we can extend T to
the entire Hilbert space: If v € H then it has a unique decomposition

v=ae+p (2.67)
with a € C and p € P. We then define
T(v) i= x(@)¢ +T(p) (2.68)
One can check that T'(v) is either C linear or anti-linear. Moreover:

I T) = lal*+ [ T() *= lal+ | p [IP=] v [ (2.69)
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roupExtensions ‘

Finally:

= [lol(¢ + T(-p)] (2.70)

so T really does induce the original map s. This concludes the proof of Wigner’s theorem.

Theorem: Any two lifts T, T of s differ by a phase.

This is clear from the construction above: The only essential choice was the choice of
€. Any two choices of ¢’ differ by a phase. The dependence on e is not so obvious, so
let us simply consider two anti-unitary operators 77,75 which induce the same s. Then
[T1(v)] = [Ta(v)] for every v and hence Ti(v) = a(v)T2(v), where |a(v)| = 1. eO:réelIg}fiagCI%t
worry that this phase could depend on v, however, invoking the simple fact (2. above

we see that - at least when dim# > 1, the phase is independent of v.

Exercise
Simplify the above proof of Wigner’s theorem!

3. A little bit about group extensions

We assume a basic familiarity with abstract group theory. However, let us recall that a
group homomorphism is a map ¢ : G; — G2 between two groups such that

e(g191) = e(g)e(g1)  VYoi,91 € Gu (3.1)

We define the kernel of ¢ to be keryp := {g € G1|p(g) = 1} and the image to be Im ¢ :=
{g2 € G2|391 € G1,9(91) = g2}. These are natural subgroups of G; and Gy respectively.
Given three groups G1, G2, G3 and a pair of homomorphisms ¢; and @9 we say the sequence

G136 56, (3.2)

is exact at G if kerpo = Im (5.
If N, G, and @) are three groups and ¢ and m are homomorphisms such that

1I-N &% G & Q-1 (3.3)

is exact at N, G and @ then the sequence is called a short exact sequence and we say that
G is an extension of Q@ by N . This is equivalent to the three conditions:
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1. ¢ is an injective homomorphism.
2. mis a surjective homomorphism.

3. ker(m) =Im (1).

Note that since ¢ is injective we can identify N with its image in G. Then, N is a
kernel of a homomorphism (namely 7) and is hence a normal or invariant subgroup (hence
the notation). Then it is well-known that G/N is a group and is in fact isomorphic to the
image of m. That group @ is thus a quotient of G (hence the notation).

There is a notion of homomorphism of two group extensions

1-N 5% G B Q-1 (3.4)
I1-N B3 Gy, B Q-1 (3.5)
This means that there is a group homomorphism ¢ : G; — G5 so that the following diagram
commutes:
1 N—-625Q 1 (3.6)
ma
1 NGy 2@ 1

When there is a homomorphism of group extensions based on ¢ : Go — G such that g o
and 1 o ¢ are the identity then the group extensions are said to be isomorphic extensions.
Given group N and @ it can certainly happen that there is more than one nonisomor-
phic extension of @) by N. Classifying all extensions of () by N is a difficult problem.
We would encourage the reader to think geometrically about this problem, even in

. . . fig:GroupExtension .
the case when () and N are finite groups, as in Figure [I. In particular we will use the

important notion of a section, that is, a right-inverse to m: It is a map s : () — G such that
7(s(q)) = q for all ¢ € Q. Such sections always exist.® Note that in general s(m(g)) # g.

L. . X |fig:GroupExtension .
This is obvious from Figure [I: The map m projects the entire “fiber over ¢” to q. The

section s chooses just one point above ¢ in that fiber.
Now, given an extension and a choice of section s we define a map

w:Q — Aut(N) (3.7)

q— wy (3.8)

The definition is given by
Uwy(n)) = s(q)u(n)s(q) ™ (3.9)

Because ((N) is normal the RHS is again in ¢(/V). Because ¢ is injective wq(n) is well-
defined. Moreover, for each ¢ the reader should check that indeed wq(n1n2) = wq(n1)wq(n2),

5By the axiom of choice. For continuous groups such as Lie groups there might or might not be continuous
sections.
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Figure 1: Illustration of a group extension 1 - N — G — @ — 1 as an N-bundle over Q). The
fiber over ¢ € @ is just the preimage under 7.

therefore we really have homomorphism N — N. Moreover w, is invertible (show this!)
and hence it is an automorphism.

Remark: Clearly the ¢ is a bit of a nuisance and leads to clutter and it can be safely
dropped if we consider IV simply to be a subgroup of G. The confident reader is encouraged
to do this. The formulae will be a little cleaner. However, we will be pedantic and retain
the ¢ in most of our formulae.

Let us stress that the map w : Q@ — Aut(N) in general is not a homomorphism and in
general depends on the choice of section s. Let us see how close w comes to being a group
homomorphism:

L (wgy © wgy (1)) = s(a1)e(wey (n))s(ar) ™"

= s(q1)s(g2)e(n)(s(q1)s(g2)) "

In general the section is not a homomorphism, but clearly something nice happens when

(3.10)

it is:

Definition: We say an extension splits if there is a section s : @ — G which is also a
group homomorphism.
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Theorem: An extension is isomorphic to a semidirect product iff there is a splitting.

Proof
Suppose there is a splitting. Then from (E. l'(cloimweomE%ow that

Wqp O Wgy = Wqigo (3'11)

and hence ¢ — w, defines a homomorphism w : @ — Aut(/N). Therefore, we can aim to
prove that there is an isomorphism of G with N x, Q.
Note that for any g € G and any section (not necessarily a splitting):

g(s(m(9))) ™" (3.12)

maps to 1 under 7 (check this: it does not use the fact that s is a homomorphism).
Therefore, since the sequence is exact

g(s(m(9))) ™" = e(n) (3.13)

for some n € N. That is, every g € GG can be written as

g =1(n)s(q) (3.14)

for n € N and q € Q.

In general if s is just a section the image s(Q) C G is not a subgroup. But if the se-
quence splits, then it is a subgroup. Moreover, when the sequence splits the decomposition
is unique:

vn)s(q1) = (n2)s(g2) = t(ng 'n1) = s(g2)s(q1) " = s(qeqy ") (3.15)

Now, applying 7 we learn that ¢; = g2, but that implies n; = ns.
How does the group law look like in this decomposition? Write

v(n1)s(q1)e(n2)s(q2) = v(ny) (s(q)e(n2)s(q) ") s(qige) (3.16)

Note that
s(q1)u(n2)s(q) " = t(wg, (n2)) (3.17)
t(n1)s(q1)e(n2)s(qz) = ¢ (niwg, (n2)) s(q1q2) (3.18)

But this just means that
U(n,q) = 1(n)s(q) (3.19)
eq: SNET
is in fact an isomorphism ¥ : N X, ) — G. Indeed equation (l3 l8; just says that:

U (n1,q1)¥(n2,q2) = ¥((n1,q1) w (n2,92)) (3.20)

where -, stresses that we are multiplying with the semidirect product rule.
Thus, we have shown that a split extension is isomorphic to a semidirect product
G = N x Q. The converse is straightforward. &
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Remark/Definition: In general, when N is abelian it does not follow that ¢(N) is
in the center of G. However, very nice things happen when this is true. These are called
central extensions.

Exercise
If s : @ — G is any section of 7 show that for all ¢ € Q,

s(g") =s(q) 'n=n's(q)”" (3.21)

for some n,n’ € N.

3.1 Example 1: SU(2) and SO(3)
Returning to (E?i%%%?% a standard homomorphism

m:SU(2) = SO(3) (3.22)
defined by 7(u) = R where

ui - dut = (RZ) - & (3.23)

Note that:

1. Every proper rotation R comes from some u € SU(2): This follows from the Euler
angle parametrization.

2. ker(m) = {£1}. To prove this we write the general SU(2) element as cos x+sin x7i-5.
This only commutes with all the o’ if sin’y = 0 so cos y = %1.

Thus we have the extremely important extension:

Uy

1 -7y 5 SUQ2) 5 SOB3)—1 (3.24)

The Zsy is embedded as the subgroup {£1} C SU(2), so this is a central extension.
Note that there is no continuous splitting. Such a splitting 7s = Id would imply that
xS« = 1 on the first homotopy group of SO(3). But that is impossible since it would have
factor through 7 (SU(2)) = 1.

Remarks

1. As a manifold H{(SO(3);Z2) = Za so there are two double covers of SO(3) and
SU(2) is the nontrivial double cover.

2. The extension (Egzz"wﬁﬁﬂeralizes to
1—Zy = Spin(d) & SO(d)—1 (3.25)
as well as the two Pin groups which extend O(d):
127y &% Pint(d) 5 O@d) —1 (3.26)

we discuss these in Section *** below.
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3.2 Example 2a: Extensions of Zy by Zo

Now let us ask which groups G can fit into

1-Zy & G 5 Zy—1 (3.27)

One obvious possibility is
G:ZQXZQ:<0'1,0'2‘0'%:0'§:(0'10'2)2:1> (328)

We could take «(01) = 01 and 7(01) = 1 and 7(o2) = 092. In this case there is an obvious
splitting 7(o2) = o9.

On the other hand, let us consider the group of complex numbers generated by w = 1.
Then G = {£1,+i} = Z4. Define 7 : G — {&1} by 7(w) = w? and extending so it is a
homomorphism. Then kerm = {1,w?} = Z,. Therefore G is also an extension of Zy by Zs.
Yet, G cannot be isomorphic to Zo X Zy because GG has an element of order four. There is
clearly no splitting: If s(¢) = w’ then 7o s(¢) = o implies that w? = —1 but then

1=15(1) = s(0?) = s(0)s(0) = w? = —1. (3.29)

which is a contradiction.

Remarks

1. It turns out that these are the only extensions of Zy by Zs, up to isomorphism.

2. Warning: If p is prime there are only two groups of order p?, up to isomorphism.
These can be taken to be Zj, X Z; and Z,2. Nevertheless, there are p distinct isomor-
phism classes of extensions of Z,, by Z,.

3.3 Example 2b: Extensions of Z, by Z,

In instructive example arises by considering an odd prime p and the extensions
1 =72, —=G—=7Zyp—1 (3.30)

where we will write our groups multiplicatively. Now, using methods of topology one can
show that 7
H*(Zy,Zp) = Zp. (3.31)

On the other hand, we know from the class equation and Sylow’s theorems that there
are exactly two groups of order p?, up to isomorphism! How is that compatible with (e. 177
The answer is that there can be nonisomorphic extensions involving the same central group.
To see this, let us examine in detail the standard extension:

L= Zy = Ly — Ly — 1 (3.32)

"You can also show it by examining the cocycle equation directly.
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We write the first, second and third groups in this sequence as
Ly = (o1lo} = 1)

Zy2 = (ala? =1) (3.33)

Lp = (o]0 = 1)
respectively. Then the first injection must take
toy) =af (3.34)

since it must be an injection and it must take an element of order p to an element of order
p. The standard sequence then takes the second arrow to be reduction modulo p, so

m(a) = o9 (3.35)

Now, we try to choose a section of w. Let us try to make it a homomorphism. Therefore
we must take s(1) = 1. What about s(o2)? Since 7(s(02)) = o2 we have a choice: s(o2)

could be any of
a, ot @t (3.36)

Here we will make the simplest choice s(o2) = . The reader can check that the discussion
is not essentially changed if we make one of the other choices. (After all, this will just
change our cocycle by a coboundary!)

Now that we have chosen s(o2) = «, if s were a homomorphism then we would be
forced to take:

s(1)=1
s(o2) = «
s(03) = o” (3.37)

s(eb™h = P!

But now we are stuck! The property that s is a homomorphism requires two contradictory
things. On the one hand, we must have s(1) = 1 for any homomorphism. On the other
hand, from the above equations we also must have s(c) = a?. But because ob = 1 these
requirements are incompatible. Therefore, with this choice of section we find a nontrivial
cocycle as follows:

B 1 k+i<p
s(0%)s(o3)s(05™) 7 = (3.38)
ol p<k+{
and therefore,
1 k+i<
flok ob) = P (3.39)
o p<k+/{

In these equations we assume 1 < k, ¢ < p — 1. We know the cocycle is nontrivial because
Ly X Ly is not isomorphic to Zz.
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But now let us use the group structure on the group cohomology. [f]" is the cohomology
class represented by

1 k+i<
f1(05,0%) = P (3.40)
of p<k+{
. . eq:pi-standard
This corresponds to replacing (3: v
mr(ar) = (02)" (3.41)

and the sequence will still be exact, i.e. ker(m,) = Im (¢), if (r,p) = 1, that is, if we compose

the standard EI"OJeCtIOD with an automorphism of Z,. Thus m, also defines an extension of
tanidardExtension

the form (ld 32). But we claim that it is not isomorphic to the standard extension! To see

this let us try to construct ¢ so that

(3.42)

/\
\/

1—><01> 2>—>1

In order for the right triangle to commute we must have () = ", but then the left triangle
will not commute. Thus the extensions 1,...,mp_1, all related by outer automorphisms
of the quotient group Z, = (02), define inequivalent extensions with the same group Z,
in the middle.

In conclusion, we describe the group of isomorphism classes of central extensions of Z,,
by Z, as follows: The identity element is the trivial extension

1 =2y, =Ly XLy —Zp—1 (3.43)
and then there is an orbit of (p — 1) nontrivial extensions of the form
1= Zp— 2Ly —Zp—1 (3.44)
acted on by Aut(Zy).

3.4 Example 3: The isometry group of affine Euclidean space E?

Definition Let V be a vector space. Then an affine space modeled on V is a principal
homogeneous space for V. That is, a space with a transitive action of V' (as an abelian
group) with trivial stabilizer.

The point of the notion of an affine space is that it has no natural origin. A good
example is the space of connections on a topologically nontrivial principal bundle.

Let E? be the affine space modeled on R? with Euclidean metric. The isometries are
the 1-1 transformations f : E* — E? such that

| f(p1) = f(p2) =1l p1 —p2 || (3.45)

for all p1,ps € E¢. These transformations form a group Euc(d).
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The translations act naturally on the affine space. Given v € R? we define the isome-
try:
Ty(p) ==p+v (3.46)

0 Ty, v, = T, + T, and hence v — T, defines a subgroup of Euc(d) isomorphic to R
One can show that there is a short exact sequence:

1 = R = Buc(d) — O(d) — 1 (3.47)

The rotation-reflections O(d) do not act naturally on affine space. In order to define such
an action one needs to choose an origin of the affine space.

If we do choose an origin then we can identify E? 2 R¢ and then to a pair R € O(d)
and v € R? we can associate the isometry: &

{R|v} :z+— Rx +v (3.48)
In this notation -known as the Seitz notation - the group multiplication law is
{RafviH{Re|ve} = {R1Ra|v1 + Ryva} (3.49)

which makes clear that
1. There is a nontrivial automorphism used to construct the semidirect product: O(d):

{Rlv}{1Jw}{Rlv}™" = {1|Rw} (3.50)

and 7 : {R|v} — R is a surjective homomorphism Euc(d) — O(d).
2. Thus, although R? is abelian, the extension is not a central extension.
3. On the other hand, having chosen an origin, the sequence is split. We can choose a
splitting s : O(d) — Euc(d) by
s: Rw— {R|0} (3.51)

Exercise Manipulating the Seitz notation
a.) Show that:

{Rlo} ' ={R7'[ - R v}
{R|0}{1[v} = {R[Ruv}
{1[vH{R|0} = {R[v}
{HlwHR[v} = {R|w + v}
{Ry|vi H{Ra|vo H{Ry|v1} ™' = {R1 RoaR | Ryva + (1 — RyRoRTV)uy }
[{Ri|v1}, {Ra|v2}] = {R1Ro Ry 'Ry (1 — RyRoR; vy — RiRo R Ry (1 — RoRy Ry Mo}
(3.52)

8Logically, since we operate with R first and then translate by v the notation should have been {v|R},
but unfortunately the notation used here is the standard one.
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b.) Using some of these identities check the statements made above.
c.) We stressed that the splitting depends on a choice of origin. Show that another
choice of origin leads to the splitting R — {R|(1 — R)v}, and verify that this is a splitting.

Figure 2: A portion of a crystal in the two-dimensional plane. fig:Crystal

4. A little bit about crystallography

“rytallography ‘
4.1 Crystals and Lattices

A crystal should be distinguished from a lattice. The term “lattice” has several related
but slightly different meanings in the literature.

Definition A lattice A is a free abelian group equipped with a nondegenerate, symmetric
bilinear quadratic form:

(,):AxA—R (4.1)

where R is a Z-module.
The natural notion of equivalence is the following: Two lattices (Aq, (-,-)1) and (Ag, (-, -)2)
are equivalent if there is a group isomorphism ¢ : A; — Ay so that ¢*((-,-)2) = (-, )1.
However, we usually think of lattices as actual subsets of some vector space or affine
space. If an origin of the lattice has been chosen then we can define:
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Definition An embedded lattice is a subgroup L C V where V is a vector space with
a nondegenerate symmetric bilinear quadratic form b. The induced form on A defines a
lattice in the previous sense.

X . . X . |subsec:CrystalClassification
Now there are several notions of equivalence, discussed briefly in §@4.5 below. The most

obvious one is that Ly is equivalent to Lo if there is an element of the orthogonal group
O(b) of V taking L; to Lo.
Sometimes it is important not to choose an origin, so we can also have the definition:

Definition An affine Fuclidean lattice is a subset L of an affine Euclidean space E™ which
is a principal homogeneous space for a free abelian group (i.e. Z™). If we choose a point
as an origin we obtain an embedded lattice in real Euclidean space R™.

Again, there are several notions of equivalence, discussed below.

Definitions Let L be an embedded lattice in Fuclidean space R™. Then:

a.) A crystal is a subset C' C E™ invariant under translations by a rank n lattice
L(C) c R™ C Euc(n).

b.) The space group G(C) of a crystal C' is the subgroup of Euc(n) taking C' — C.

c.) The point group P(C) of G(C) is the projection of G(C) to O(n). Thus, G(C) sits

in a group extension:

1—L(C)— GIC)— P(C)—1 (4.2) ‘eq:CrystalGroup—]

and P(C) 2 G(C)/L(C).
d.) A crystallographic group is a discrete subgroup of Euc(n) which acts properly

discontinuously on [E" and has a subgroup isomorphic to an embedded rank n—dlim%nsi(l)tn%(l; )
L. . o eq:CrystalGroup-
lattice in the translation subgrlou% Itttglgreforelr sits in a sequence of the form (H.2).
. eq:CrystalGroup- . . . ..
e.) If the group extension (4.2) splits the crystal is said to be symmorphic. Similarly, for

a crystallographic group G if the corresponding sequence splits it is said to be a symmorphic
group.

fig:Crystal
An example of a two-dimensional crystal is shown in Figure 2. 1 o point group is
trivial. If we replace the starbursts and smiley faces by points then the point group is a
subgroup of O(2) isomorphic to Zs X Zs.

4.2 Examples in one dimension

Choose a real number 0 < § < 1 and consider the set
C=Z1(Z+59) (4.3)

In this case G(C) contains the translation group Z whose typical element is {1|n}. It also
contains {—1|0}, which exchanges the two summands in the above disjoint union. So

1-Z—GIC)—=Zy— 1 (4.4)

However, note that
{~-1l6}* =1 (4.5)
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and therefore the sequence splits. This is a symmorphic crystal. Indeed, G(C) = Z x Zs is
the infinite dihedral group. If we move on to consider

C =721 (Z+6,) 11 (Z+ 6) (4.6)

with 201 — §o # OmodZ and 265 — §; # OmodZ and 0 < 61,92 < % then there is no point
group symmetry and G(C) = Z.

4.3 Examples in two dimensions

In a manner similar to our one-dimensional example, if we consider Z2 I1 (Z2 + §) for
a generic vector ¢ the symmetry group will be isomorphic to the infinite dihedral group
72 x Zy, where we can lift the Zs to, for example {—1[5}.

Now let 0 < § < 1 and 5= (6, %). Consider the crystal in two dimensions

C =721 (Z* + ) (4.7)
Now
1272 = GC) = Ty x Ly — 1 (4.8)
If we let 01,09 be generators of Zy X Zo then they have lifts:

1
01 : (.1‘1,%‘2) — (—.1‘1 + 0,9 + 5) (4.9)

(3'2 : (1‘171‘2) — (a:l, —1‘2) (410)

That is, in Seitz notation:

61— {(‘1 1) 65,5 (4.11)

by = {(1 _1) 0} (4.12)

Note that the square of the lift 67 = {1](0,1)} is a nontrivial translation. Thus o; — &; is
not a splitting, and in fact this crystallagraphic group is nonsymmorphic.

4.4 Examples in three dimensions: cubic symmetry and diamond structure

A nice example of the distinction between split and non-split groups in nature are the crys-
tallographic groups of the cubic lattice and of the diamond structure. These are manifested
by several materials in nature.

We begin with the hypercubic lattice, considered as the embedded lattice L = Z" C
R"™. The automorphisms must be given by integer matrices which are simultaneously in
O(n). Since the rows and columns must square to 1 and be orthogonal these are signed
permutation matrices. Therefore

Aut(Z™) = Z5 % S, (4.13)
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where S,, acts by permuting the coordinates (x1,...,z,) and Z§ acts by changing signs
Ti — €T, € € {:l:l}.
Now, an important sublattice is the fcc lattice, defined to be

Dy = {(x1,...,xn) € Z"xy + -+ 2, = 0 mod2} (4.14)

It is called fcc because the vectors 2e; form an n-dimensional cubic lattice (of side length
2!) but then, for the case of n = 3, the vectors (1,1,0), (0,1,1) and (1,0,1) and their
translates by 2e; form the midpoints of the faces of the cube.

The dual lattice D} = Hom(D,,,Z) is

1
D; = §BC’C’n (4.15)
where where bee stands for “body-centered cubic.” The lattice BC'C), is the sublattice of
Z™ cousisting of (x1,...,2,) so that the x; are either all even or all odd. Note that if
all the x; are even (odd) then adding € produces a vector with all x; odd (even), where
€= (1,1,...,1) =é1 + --- 4+ €,. Therefore, we can write:
BCC,, =2Z" U (2Z" + ¢€) (4.16)

Clearly 27" is proportional to the “cubic” lattice. Adding in the orbit of & produces one
extra lattice vector inside the center of each n-cube of side length 2, hence the name bcec.

Since D, is an integral lattice it is a sublattice of D}, and it is interesting to show how
D} is constructed from D,,. We have

D} = D, U (D +s)U (D, +v)U (D, +s") (4.17)

The vectors s, v, s" are known as “glue vectors” and are given by

5 =[5 5)]
times

(4.18)

n—1 times

where the square brackets refer to the equivalence class under translation by D,,.

Remark: These lattices have a nice interpretation in the theory of simple Lie groups:
The fec lattice is the root lattice of D,, = so(2n). The dual bee lattice is the weight lattice
and s and s’ are spinor weights. The “glue group” or “disciminant group” is

Zo x Zy n = 0mod2
D;/Dn%{; 2 m= e (4.19)

4 n = 2mod?2
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This is easily verified by noting that 2[s] = [0] for n even and 2[s] = [v] for n odd. Note
that [s] 4 [s'] = [v]. Related to this the center of Spin(N) is Z, for N = 2mod4 and Zg x Zs
for N = Omod4.

Now let us specialize to the case n = 3, most relevant in the current story to 3 physical
dimensions.

Exercise

Show that if we multiply D3 by 2 then the sum of the coordinate values x; is Omod4.
Then the three cosets are characterized by the other residues mod 4: 2(Ds+s) has > x; =
3mod4, but 2(D3 + §) has Y x; = 1lmod4, and finally 2(D3 + v) = 2mod4.

Let us consider the point group of D3. This turns out to be the cubic group Oy, which
is also the point group of the cubic lattice. As we showed above, Oy = Z3 x S3 where S3
acts as a group of automorphisms on Z3 by permutation. It acts on R by permuting the
coordinates (1,22, 23) and by sign flips of the coordinates. Let us denote sign flips by e;.
Elements of S5 are denoted by (ab) and (abc).

The cubic group is a 48 element group. As an abstract group

Ohp =2 Sy X Zs (4.20)

The Zs factor corresponds to inversion I. 9

A much more geometrical way to think about the group elements is to think about
symmetries of the cube. The S; factor can be thought of as permutations of the axes
through antipodal vertices of the cube. Then we can organize the elements as follows:

1. Identity.

2. 6 elements of order 4: These are order 4 rotations about an axis through two
antipodal midpoints of faces. These are denoted Cy. They correspond to €;(ij).

3. 3 elements of order 2: These are the squares C7. These correspond to €;€;.

4. 6 elements of order 2: These are rotations by 7 about an axis which goes through
the midpoint of two opposite edges. These are denoted Cy. They correspond to €;(jk) and
I(i7).

5. 8 elements which are 3-fold rotations around axes through opposite vertices. They
correspond to (ijk) and €;e;(ijk).

6. Then we have inversion I times the above 24 elements.

See the table below for the explicit transformations.

The space group of Ds is split since the transformations { R|0} where R € Oy, clearly
preserves Ds.

Now let us turn to the diamond structure which is, by definition, D3 U (D3 + s).

Note

a.) 4s € Ds

9The Sy is the Weyl group of s0(6) = su(4).
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b.) Diamond structure is not a lattice.

c.) The space group of the diamond structure is non-split, i.e., non-symmorphic. Half
of the elements of the point group Oy, take D3+s — D3+s" and hence must be accompanied
by a translation by an element of D3 + s in order to preserve the diamond structure.

For the diamond structure a natural lift of €; is {¢;|s} which exchanges D3 and D3 + s.
Note that the crystal group is non-symmorphic: This lift does not square to one, and in
fact, there is no lift which will square to one. A lift of €;e; is {€;€;{0}. A lift of €jees is
{€1€9¢€3]s}

Since s is invariant under the permutations the lift of any element o € Ss is simply
{o]0}.

The following canonical lifts have half of the group elements lifting with no translation
and half lifting with a translation by s.

1. {1]0}

{1]s}
{c2(o}
{1C3s}
{Cals}
{1C,[0}
{Csls}
{1Cs[0}
- {Culs}
10. {IC4|0}

© 0N D T
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Cube symmetry | Z3 x Sz | (z1,72,23) (T3)9 Lift to G(C)
1 1 (z1,22,23) | (y,4,y") {10}
I €1€2€3 (.i‘l,.i‘g,f'y,) (6,6/,5//) {I|S}

CZ €€ (flaj:??xif) (575/73/) {042|0}
(fl,aiz,jg) (E,y,E’)
(.1‘1,.%‘2,3_73) (y’ag/)
IC} € (z1,22,73) | (y,9¢ {1C3|s}
(21, %2, 73) | (y:6,9)
(1,22, 23) | (5,9,9)
Cy €i(jk) | (Z1,23,22) | (,9,v) {Cals}
(z3,%2,21) | (y:€,9)
(z2,21,%3) | (y,9,€)
I(ij) | (Z1,23,%2) | (£,9,9)
(T3, Z2,71) | (y,6,9)
(T2,71,73) | (y,9,¢)
1C, ei€j(ig) | (x1,23,72) | (v, y,9) {1C5[0}
(T3, 72,71) | (,9.9)
(2,21, 23) | (4,9,9)
(i7) (z1,23,72) | (V',9,9)
(z3,72,71) | (1,9,9)
(x2,21,23) | (y,9,9)
C3 (igk) | (z2,23,21) | (y,9,9) {Cs)0}
(z3,71,72) | (y,9,9)
ei€j(igk) | (w2, %3,71) | (¥,9,7)
(T2 23,71) | (¥, 9,9)
(Z2,Z3,21) | (¥,9,Y)
(z3,71,%2) | (¥,9,Y)
(Z3,71,%2) | (¥,9,9)
(Z3,71,72) | (¥,9,9)
I1Cs I(ijk) | (Z2,Z3,71) | (&,6,¢) {ICs]|s}
(Z3,Z1,%2) | (g,e,¢)
ei(ijk) | (T2, 23,21) | (g,6,¢)
+ 5 more
Cy €i(ij) (T2, z1,23) | (g,¢,Y) {Cyls}
(%2,531,:133) (E,E,y)
(Z3,29,21) | (g,y,¢)
(x3,22,%1) | (g,y,¢)
(%1,533,:132) (y,E,E)
(.131,.133,:f2) (y,E,E)
1Cy Gjek;(’ij) (x2,%1,%3) (6,6,6/) {IC4|0}
(5271'17%3) (57575/)
(x3,T2,Z1) | (g,¢,¢)
(Z3,To,21) | (g,¢,¢)
(T1,23,T2) | (¢/,¢,¢)
(Z1,T3,22) | (¢/,¢,¢)




Classification

1
5.
is a coordinate system on the Brillouin torus of the cubic lattice. Recall that it must be

Notation: e,&’,&” stands for 0 or 5. x; stand for real numbers modulo 1. (1, %2, x3)
quotiented by z — x + s. y,y’,y” stand for real numbers modulo 1. The primes here
indicate that € and & might be different, although they need not be different. Similarly
for the y,3'. A bar T means —z. It is standard CM notation. A blank means the entry is
identical to the one above it.

4.5 A word about classification of lattices and crystallographic groups

This is an enormous subject, but perhaps a few words would help put some of the material
into context.

When classifying lattices or crystallographic groups we need to be careful about the
notion of equivalence.

If we want to speak of the classification of integral lattices that amounts to the classi-
fication of positive definite matrices ) over Z under the equivalence

Q~SQS"™  SeGL(n,Z) (4.21)

This is an extremely difficult and subtle problem with lots of nontrivial number theory -
already for the case n = 2.

Let us turn to the classification of embedded lattices in Euclidean R". First, note that
the set of bases for a vector space V' is a principal homogeneous space for GL(n,R): Any
two bases are related by such a transformation. If we choose one basis and identify V = R"”
then we can choose the standard ordered ON basis {e;}

x1
D wiei= | (4.22)
i .
Then, given any ordered basis {b(l), R b(”)} of R™ we can form a matrix B whose columns

are the components bz(»a) of those vectors. The change of basis formula for a linear trans-
formation is b(%) = > o Tapb® which acts on B on the right: B — BT.

Now, consider an embedded lattice L C R™. Then if we choose one basis B € GL(n,R)
for L any other basis is related by right-multiplication by an element T' € GL(n,Z). Note
well that 7" must be an integral matrix invertible over the integers! Therefore, we can
identify a lattice in a basis-independent way with a single coset of GL(n,Z) in GL(n,R)
and the set of lattices is in one-one correspondence with the set of orbits

GL(n,R)/GL(n,Z) (4.23)

We have not quite characterized the set of lattices intrinsically because our construction
made a choice of basis {e;}. We can eliminate this dependence by left-multiplication of b
by elements of O(n). Or - to take an active viewpoint - we can naturally identify two em-
bedded lattices L and L’ if one can be brought to the other through an (active) orthogonal
transformation. Thus, the set of lattices in R™ is canonically identified with

O(n)\GL(n,R)/GL(n,Z) (4.24)
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. . . . . . leq:QuadFormClass
To make a connection with the kind of classification discussed around (4.21) note that if

we are given a basis B of L then Q = BY™ B is a symmetric positive definite matrix of
inner products, invariant under B — OB, O € O(n). Under change of basis for L, @ is

. leq: QuadFormClass
transformed as in (A.21).
eq:Lattices . . . L
Now (4.24) is an interesting manifold, but for many purposes it is far too fine a clas-

sification to be useful. For example L = Z"™ and L = M\Z"™ are considered different for any
nonzero real number A # +£1.
A courser - but more useful - classification is obtained by the general notion of strata

X ichel-1
of a group action:

Definition If G acts on a set M then a stratum is the set of G-orbits whose stabilizer
groups are conjugate in G. The set of strata is denoted M | G.

As an example, consider the Lorentz group acting on a vector space with Minkowskian
signature. There are four strata (if we consider all four components of the Lorentz group)
corresponding to spacelike, lightlike, timelike orbits and the origin.

If we consider the set of strata of O(n) acting on the set of embedded lattic_i((e:s etllleén we
will find a finite set. And, for dimension n = 3 we get the 7 crystal classes , named:
Triclinic, Monoclinic,Orthorhombic, Tetragonal, Trigonal, Hexagonal, Cubic. (There is a
partial order on this set so they are almost always listed in this order.)

When we consider classification of crystallographic groups G C Euc(n) we again must
consider the proper notion of equivalence. The set of conjugacy classes within Euc(n) is
continuously infinite. Again this is related to the fact that continuous deformations of

)

lattices might change their “symmetries.” The standard notion of equivalence then is to
consider G and G’ equivalent if, as subgroups of Aff(n) there is an element s € Aff(n) such
that G/ = sGs™ 1.

Warning! Euc(n) C Aff(n) is not a normal subgroup. Similarly, O(n) C GL(n,R)
is not a normal subgroup. Therefore, we are not saying that any affine transformation
deforming a crystal leads to a crystal with the “same” symmetry.

Before stating the classification result it is important to distinguish between Aff(n)
and its orientation-preserving subgroup Aff(n). This is the subgroup which projects to
GL*(n,R) C GL(n,R), the subgroup of invertible matrices with positive determinant.

The result of Fedorov and Schoenfliess from 1892 is that in 3 dimensions if we use
conjugacy in AffT(3) then there are 230 types of crystallographic group. There are 11
types which can be related to each other by an improper, but not by a proper affine
transformation, and hence there are 219 types related by conjugacy in AffT(3)

If we view the space group as an extension of a finite subgroup by a lattice then
the finite subgroup acts as a group of automorphisms of the lattice and hence has an
representation by integral matrices. The pair (P, p) where P is a point group and p is an
integral representation up to conjugacy in GL(n,Z) is called an arithmetic type. There are
73 such types in n = 3 dimensions. Of the 230 space groups 73 are split and the remaining
157 are nonsplit.

In his famous list of problems for the 20th century Hilbert’s 18th problem (part of it)
asked whether there were a finite set of space groups in n dimensions for all n. This was
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dignerRestated‘

answered in the affirmative by Bieberbach in 1910. Such groups do in fact have physical
applications. For example, they are very useful in orbifold constructions of conformal field
theories.

5. Restatement of Wigner’s theorem

Now that we have the language of group extensions it is instructive to give simple and
concise formulation of Wigner’s theorem.

Let us begin by introducing a new group Autg(H). This is the group whose elements
are unitary and anti-unitary transformations on . The unitary operators U(H) form a
subgroup of Autg(#). If u is unitary and a is anti-unitary then wa and au are also anti-
unitary, but if a1, ao are antiunitary, then ajas is unitary. Thus the set of all unitary and
anti-unitary operators on H form a group, which we will denote as Autg(#). Thus we
have the exact sequence

15 UM) 5 Aute(H) 2 Zo—1 (5.1)
where ¢ is the homomorphism:
+1 S unitary
P(9) = , , (5.2)
—1 S anti — unitary

Now, in Section *** above we defined a homomorphism 7 : Autg(H) = Autqem (PH)
by m(S)(€) = gy if £ = £y. (Check it is indeed a homomorphism.) Now we recognize the
state of Wigner’s theorem as the simple statement that 7 is surjective. What is the kernel?
We also showed that ker(w) = U(1) where U(1) is the group of unitary transformations:

T (5.3)

with |z| = 1. We will often denote this unitary transformation simply by z. Thus, we have
the exact sequence

1=U@1) 5 Autg(H) = Autgm(PH) — 1 (5.4)

Remarks:
1. For S € Autr(H)) we have

zS ¢(S)=+1

Z8 ¢(S) = —1 (55)

Sz =298 = {

eq:WigSe
So the sequence (lSEI) 1S not central!

:WigS
2. If we restrict the sequence (E.EU i el%er(gb) then we get (taking dim# = N here, but
it also holds in infinite dimensions):

1-U(1) & UN) 5 PUNN)—=1 (5.6)

which is a central extension, but it is not split. This is in fact the source of interesting
things like anomalies in quantum mechanics.
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3. The group Autg(H) hasl fvz%cgnnected components, measured by the homomor-
€eg:healAu 1

phism ¢ used in (5.1). is_ homomorphism “factors through” a homomorphism

¢ Autgem (PH) — Z which likewise detects the connected component of this two-

component group. The phrase “factors through” means that ¢ and ¢’ fit into the

1 ——=U(1) —= Autg(H) — Autqem (PH) — 1 (5.7)

K lqy

Ly

diagram:

Example: Again let us take H = C2. As we saw,
Autgem(PH) = O(3) = SO(3) I P - SO(3), (5.8)
where P is any reflection. 19 Similarly, if we choose a basis for H then we can identify
Autg(H) = U(2)IC-U(2) (5.9)

where C is complex conjugation with respect to that basis so that Cu = u*C. (Note that C
does not have a 2 x 2 matrix representation.) Now

PU(2) == U(2)/U(1) = SU(2)/Zs = SO(3) (5.10)

Again, there is no continuous cross-section s : SO(3) — U(2) because such a continuous
map would induce

sx 1 m1(SO(3)) = m (U(2)) (5.11)
but this would be a homomorphism s, : Zo — Z and the only such homomorphism is zero.
But that is incompatible with 7 o s = Id which implies m,s, = Id. A splitting of (e. T
would restrict to one for N = 2, so there is also no splitting for N > 2.

Exercise

eq:RealAutHilb
Show that the sequence (.1 ; Splits.

6. ¢-twisted extensions
hiTwistedExts)|
So far we have discussed the group of all potential automorphisms of a quantum system

Autgem (PH). However, when we include dynamics, and hence Hamiltonians, a given quan-
tum system will in general only have a subgroup of symmetries. If a physical system has
a symmetry group G then we should have a homomorphism p : G — Autgim (PH).

10Please do not confuse this with the notation PGL(n), PU(n) etc!

— 36 —



In terms of diagrams we have

G (6.1)

|

1 U(1) —= Autg(H) — Autqem (PH) —1

The question we now want to address is:

How are G-symmetries represented on Hilbert space H ¢

Note that each operation p(g) in the group of quantum automorphisms has an entire
circle of possible lifts in Autg (). These operators will form a group of operators which is
a certain extension of G. What extension to we get?

3

To answer this we need the “pullback construction.”

6.1 The pullback construction

There is one general construction with extensions which is useful when discussing symme-
tries in quantum mechanics. This is the notion of pullback extension. Suppose we are given
both an extension

1 H —=H "~ H" 1 (6.2)

and a homomorphism

p:G"— H" (6.3)

Then the pullback extension is defined by a subgroup of the Cartesian product G C H xG":
G = {(h,g")|r(h) = p(¢")} C H x G" (6.4)

and is an extension of the form

1 H —=G—"=G" 1 (6.5)

where 7(h, g") := ¢”. Tt is easy to see that this extension fits in the commutative diagram

1 H' G—sa" 1 (6.6)
|
1 H' H—">H" 1

Moreover, show that this diagram can be used to define the pullback extension.
Remark: In terms of principal bundles, this coincides with the pullback of a principal
H' bundle over H” via the map p: G” — H".

6.2 ¢-twisted extensions

:G-AutPH
Now, let us return to the situation of (%.I ) arlia apply the pullback construction to define
a group G*W that fits in the diagram:
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1 U(1) G u G 1 (6.7)

1 U(l) —= Autg(H) — Autqpm (PH) —=1

That is, the group of operators representing the G-symmetries of a quantum system
form an extension of G by U(1).
This motivates two definitions. First

Definition: A Zs-graded group is a pair (G, ¢) where G is a group and ¢ : G — Zy is a
homomorphism.

When we have such a group of course we have an extension of Zs by GG. Our examples
above show that in general it does not split. The group is a disjoint union Gy II Gy of
elements which are even and odd under ¢ and we have the Zs-graded multiplications:

Gy x Gg — Gy
Gy x Gy — Gy
G1 x Gy — Gy
G1 x G1 — Gy

(6.8)

This is just saying that ¢ is a homomorphism.
Next we have the

Definition Given a Zs-graded group (G, ¢) we define a  ¢-twisted extension of G to be an
extension of the form

1——=U(1) GV 1~ G 1 (6.9)

where G* is a group such that

= g)s zg ¢(g) =1 6.10
i =

where g is any lift of g € G, and |z| = 1 is any phase. Put differently, if we define ¢V := ¢om
then
G = 22" @ Vg e G (6.11)

Example

Take G = Zs It will be convenient to denote My = {1,T}, with T2 = 1. Of course,
My =2 7. We take the Zy grading to be ¢(T) = —1, that is, ¢ : Zo — Zg is the identity
homomorphism. There are two inequivalent ¢-twisted extensions:

1 U(1) MY T My — 1 (6.12)
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Choose a lift T of T. Then 7(T?) =1, so T? = z € U(1). But, then
Tz=TT? =TT = 2T (6.13)

on the other hand, ¢(T) = —1 so
Tz=z"'T (6.14)

Therefore 22 =1, so z = +1, and therefore 72 = 4+1. Thus the two groups are
Mf = {2T):T=T>" & T*=+1} (6.15)

These possibilities are really distinct: If 77 is another lift of 7' then 77 = uT for some
e U(1) and so
(T')? = (uT)? = T = T (6.16)

Remarks

1. For ¢ =1 a ¢-twisted extension is a central extension.

2. For a given Zs-graded group (G, ¢) there can be several non-isomorphic ¢-twisted
extensions. These isomorphism classes can be classified by (twisted) group cohomol-

ogy.

3. It turns out that M2i is also a double cover of O(2) and in fact these turn out to be
isomorphic to the Pin-groups Pin®(2).

4. The representation (G'W, p'V) is always guaranteed to act on the Hilbert space, but
in a particular situation it might well happen that a set of lifts of p(g) generates a
smaller group. For example, suppose that G = M,. We therefore have M2+ or My
acting on H. If M2+ acts then in fact s : T — T is a splitting and a Zy group acts on
‘H. On the other hand, if M, acts then T itself generates a Z4 subgroup of M, . So,
Zs does not act on the Hilbert space, but a double cover of it does.

5. The above mechanism is the basic origin of anomalies in quantum systems: One
expects a G symmetry but in fact only a ¢-twisted extension G* acts on H. Thus,
in the example of M, the fact that T" generates a Z4 group of operators acting on H
rather than a Zo group of operators may be regarded as a kind of “anomaly.”

7. Real, complex, and quaternionic vector spaces

sec:RCH-VS

7.1 Complex structure on a real vector space
:CpletrRealVS‘

Definition Let V be a real vector space. A complex structure on V is a linear map
I:V — V such that I? = —1.

Choose a squareroot of —1 and denote it 7. If V' is a real vector space with a complex
structure I, then we can define an associated complex vector space (V,I). We take (V,I)
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to be identical with V', as sets, but define the scalar multiplication of a complex number
z € C on a vector v by

zovi=z-v+I(y-v)=x-v+y-I(v) (7.1)

where z = x 4 1y with z,y € R.
If V is finite dimensional and has a complex structure its dimension (as a real vector
space) is even. The dimension of (V, ) as a complex vector space is

1
dime (V. 1) = gdimgV (7.2)

We will prove this as follows. First note that if v is any nonzero vector in V then v
and Jv are clearly linearly independent over R. Linear independence is equivalent to the
statement that

v=alv (7.3)

for a real number «. But then, acting with I we get

Iv = —av (7.4)
and hence o? = —1, which is not possible. Now, suppose that there is a set of linearly
independent vectors vy, ...,v, in V with

S = {v1, [v1,va, Tva, ..., vn, vy} (7.5)

linearly independent over R. Suppose that w is a vector not in the linear span of S. Then
we claim that
{w, Iw}US (7.6)

is also linearly independent over R. A linear dependence would have to take the form

aw + BIw + Y (yivi + 6ilv;) =0 (7.7)

1

Acting on this equation by I, and then taking a suitable combination of the two equations
gives

(o + BHw + Z ((ayi + BS;)vi + (ad; — Byi)Ivi) = 0 (7.8)

But « and B cannot be both zero since § was a linearly independent set, and since they are
real a® + 3% # 0. But this means that w is in the linear span of S, which is a contradiction.
It then follows that the maximal set of the form & must be a basis for V', which therefore
must have a basis of the form S for some n.

Note that we have proven a nice lemma:

Lemma If I is any 2n x 2n real matrix which squares to —1s,, then there is S € GL(2n,R)

such that
| = 10 = /.

Remarks
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1. Using the Jordan canonical form theorem we learn that SIS~! = I for some complex
matrix S € GL(2n,C), but we proved something stronger above because our matrix
S was real.

2. While v and I(v) are linearly independent in the real vector space V' they are linearly
dependent in the complex vector space (V,I). The very definition i - v := I(v)
expresses this linear dependence!

Example Consider the real vector space V = R?. Let us choose
0 -1
I = 7.10
(1 0 ) (7.10)

Then multiplication of the complex scalar z = x + iy, with x,y € R on a vector <a1> € R?
a2

. a a1T —a
(x + 1y) - ( 1) = ( ! zy) (7.11)
a2 a1y + asx
eq:half-dim
By equation (155 this 1must be a one-complex dimensional vector space, so it should be

isomorphic to C as a complex vector space. Indeed this is the case. Define ¥ : (V,I) — C
by

can be defined by:

U (“1> — ay + ias (7.12)
ag

Then one can check (exercise!) that this is an isomorphism of complex vector spaces.
Quite generally, if I is a complex structure then so is I = —I. So what happens if we
take our complex structure to be instead:

- (01
I= (_1 0) (7.13)

Now the rule for multiplication by a complex number in (V,I) is

(z +iy) - <al> - ( 0T+ azy > (7.14)
as —a1y + axx
Now one can check that W : (V,I) — C defined by

0 <a1> = ap — iag (7.15)
2

a

is also an isomorphism of complex vector spaces. (Check carefully that W(za@) = 2¥(a). )
How are these two constructions related? Note that if we introduce the real linear

10
C = (0 _1) (7.16)
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then C? =1 and
crc~'=cI1c =-1 (7.17)

We see from the above example that a real vector space can have more than one
complex structure. Indeed, it follows from our Lemma above that the space of all complex
structures on R?" is a homogeneous space for GL(2n,R). The stabilizer of Iy is the set of
GL(2n,R) matrices of the form

A B
=A®1y+iB®o> 1
(—B A) Rl +1BRo (7.18)

2 is conjugate to o3, over the complex numbers this can be conjugated to

A+iB 0
1
() a0

The determinant is clearly |det(A + iB)|? and hence A +iB € GL(n,C). Therefore, the
stabilizer of Ij is a group isomorphic to GL(n,C) and hence we have proven:

and since o

Proposition: The space of complex structures on R*™ is:

CplxStr(R**) = GL(2n,R)/GL(n,C) (7.20)

If we introduce a metric g on V' then we can say that a complex structure I is compatible
with g if
g(Iv, Iv") = g(v,v") (7.21)

So, when expressed relative to an ON basis for g the matrix I is orthogonal: I'" = I
But I=! = —I, and hence I is anti-symmetric. Then it is well known that there is a matrix
S € O(2n) so that

SIS~ =1, (7.22)

eq:Stab-I0
NovvS tthbe Isgabilizer of Iy in O(2n) is of the form (7.I8) and can therefore be conjugated to
eq: abp— =
. But now A + iB must be a unitary matrix so
The space of complex structures on R?™ compatible with the Euclidean metric a ho-

mogeneous space isomorphic to

CmptCplxStr(R?") = O(2n)/U(n) (7.23)

:Stab-10
where A+ iB € U(n) with A, B real is embedded into O(2n) as in (97.I8).a
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7.2 Real structure on a complex vector space

Given a complex vector space V can we produce a real vector space? Of course, by
restriction of scalars, if V' is complex, then it is also a real vector space, which we can call
Vr. V and VR are the same as sets but in Vg the vectors v and v, are linearly independent
(they are not linearly independent in V'!). Thus:

dimg Vg = 2dimcV. (7.24)

There is another way we can get real vector spaces out of complex vector spaces. A
real structure on a complex vector V space produces a different real vector space of half
the real dimension of VR, that is, a vector space of real dimension equal to the complex
dimension of V.

Definition An antilinear map 7 : V — V on a complex vector space V satisfies
L To+d)=Tw)+T®),
2. T(av) = a*T (v) wherea € Cand v € V.
Note that T is a linear map on the underlying real vector space V.

Definition Suppose V is a complex vector space. Then a real structure on V is an
antilinear map C : V — V such that C? = +1.

If C is a real structure on a complex vector space V' then we can define real vectors to
be those such that

Clv)=v (7.25)

Let us call the set of such real vectors V. This set is a real vector space, but it is not a

complex vector space, because C is antilinear. Indeed, if C(v) = +v then C(iv) = —iv. If
we let V_ be the imaginary vectors, for which C(v) = —v then we claim

V=V V_ (7.26)

The proof is simply the isomorphism

o (%C(Uv ® (U_TC(”)> (7.27)

Moreover multiplication by ¢ defines an isomorphism of real vector spaces: Vi = V_. Thus
we have

dimgVy = dim¢V (7.28)

Example V =C,
C:a+iy — ¥ (x —iy) (7.29)

The fixed vectors under C consist of the real line at angle ¢/2 to the z-axis as shown in

. fig:REALVECTORS
Figure lg.
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Figure 3: The real structure C has fixed vectors given by the blue line. This is a real vector space
determined by the real structure C.

In general, if V' is a finite dimensional complex vector space, if we choose any basis
(over C) {v;} for V then we can define a real structure:

C(Z Zi’UZ‘) = Z ZiV; (7.30)

and thus
V+ = {Z aivi|ai € R} (731)

The space of real structures on C" is GL(n,C)/GL(n,R).
Remark: We introduced a group Autg(?). This is the automorphisms of H as a Hilbert
space which are real-linear. It should be distinguished from Aut(Hg) which would be a
much larger group of automorphisms of a real inner product space Hg.

Exercise Antilinear maps from the real point of view

Suppose W is a real vector space with complex structure I giving us a complex vector
space (W, I).

Show that an antilinear map 7 : (W,I) — (W, I) is the same thing as a real linear
transformation 7' : W — W such that

TI+IT =0 (7.32)

7.2.1 Complex conjugate of a complex vector space

There is another viewpoint on what a real structure is which can be very useful. If V is
a complex vector space then we can, canonically, define another complex vector space V.
We begin by declaring V' to be the same set. Thus, for every vector v € V, the same
vector, regarded as an element of V is simply written . However, V is different from V as
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a complex vector space because we alter the vector space structure by altering the rule for
scalar multiplication by « € C:

a-vi=aF v (7.33)

where a* is the complex conjugate in C.

Of course V = V.

Note that, given any C-linear map T : V' — W between complex vector spaces there
is, canonically, a C-linear map

T:V W (7.34)
defined by

T(5) := T(0) (7.35)

With the notion of V' we can give an alternative definition of an anti-linear map: An
anti-linear map 7 : V — V is the same as a C-linear map T : V — V, related by

T () = T(v) (7.36)

Similarly, we can give an alternative definition of a real structure on a complex vector
space V as a C- linear map
C:V-=V (7.37)

such that CC =1 and CC = 1, where C' : V — V is canonically determined by C as above.
In order to relate this to the previous viewpoint note that C : v +— C(v) is an antilinear
transformation V' — V which squares to 1.

Remark: Real structures always exist and therefore V and V are isomorphic complex
vector spaces, but not canonically isomorphic.

Exercise
A linear transformation T : V' — W between two complex vector spaces with real
structures Cy and Cy commutes with the real structures if the diagram

v L ow
ey |cC (7.38)
v L ow

commutes.
Show that in this situation 7" defines an R-linear transformation on the underlying real
vector spaces: T4 : V. — W,.

Exercise Complex conjugate from the real point of view
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Suppose W is a real vector space with complex structure I so that we can form the
complex vector space (W, I). Show that

(W. 1) = (W,-I) (7.39)

7.3 Complexification

If V is a real vector space then we can define its complezification V¢ by putting a complex
structure on V @ V. This is simply the real linear transformation

I (v1,02) = (—v2,01) (7.40)
and clearly I? = —1. Another way to define the complexification of V is to take
Ve =V erC. (7.41)

Note that we are taking a tensor product of vector spaces over R to get a real vector space,
but there is a natural action of the complex numbers on these vectors:

z-(v®2) i =v®zd (7.42)

making V¢ into a complex vector space. In an exercise below you show that these two
definitions are equivalent.
Note that
dimc Ve = dimpV (7.43)

Note that V¢ has a canonical real structure. Indeed
Ve=VerC (7.44)
and we can define C : Vg — V¢ by setting
C:vel—oel (7.45)

and extending by C-linearity. Thus

Covez)=C(z-(v®1l)) def of V¢
=z-C((v®1l C — linear extension
(( ‘ ) (7.46)
z-(v®1)
=V ® 2* definition of scalar action onVg

Finally, it is interesting to ask what happens when one begins with a compler vector
space V' and then complexifies the underlying real space Vg. If V' is complex then we claim

there is an isomorphism of complex vector spaces:

R)c=2VaeV (7.47)
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Proof: The vector space (Vr)c is, by definition the space of pairs (vi,vs2), v; € Vg with
complex structure defined by I : (v1,v9) = (—v2,v1). Now we map:

Y (v1,v2) = (V1 + 1v2) @ (v — ivg) (7.48)
and compute
(z + Iy) - (v1,v9) = (V1 — Yva, TV2 + Yv1) (7.49)
SO
Yz (v, )= (x+1dy) - (v +ive) B (x —iy) - (v —dvg) =2z v+ Z-0 (7.50)

Another way to look at (%% follows. Let V be a real vector space with complex
structure I. Now consider V' ®@gr C. There are now two ways of multiplying by a complex
number z = x + iy: We can multiply the second factor C by z or we could operate on
the first factor with x 4+ Iy. We can decompose our space V ®r C into eigenspaces where
Iv = +iv and v = —iv using the projection operators

1
Py=(1F1®i) (7.51)

The image of P, is the vector space V' of vectors with Iv = iv and the image of P_ is the
vector space V of vectors with Tv = —iv.

Exercise Fquivalence of two definitions
. L leq:cplx-defleh:cplx-def-2
a.) Suppose V is a real vector space. Show that the two definitions (7.40) and (I7-41)

11

define canonically isomorphic complex vector spaces.
b.) If V is a real vector space write the canonical real structure of V¢ in terms of pairs
(v1,v2) in Vo V. 12

Exercise
Show that
CerC=CaqC (7.52)

C®cC=C (7.53)

as algebras.

1 Answer: (vi,v2) = v1 ® 1 4+ v2 @ 1.
12 Answer: C : (v1,v2) = (vi, —v2). Check that this anticommutes with I.
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Exercise

Suppose V is a complex vector space with a real structure C' and that V, is the real
vector space of fixed points of C.

Show that, as complex vector spaces

V=V, C. (7.54)

7.4 The quaternions and quaternionic vector spaces

If V is a complex vector space then the complex vector space
VeV (7.55)

has some interesting extra structure. Of course, it is a complex vector space, so it has
multiplication by I:

I: (v1,72) = (iv1,102) = (iv1, —iva) (7.56)
But now, let us introduce another operator J
J 1 (v1,73) = (—vg,77) (7.57)
Note that
1. J2=-1
2. IJ+ JI =0. So J is C-anti-linear.
Whenever we have a vector space with two independent operators I and J with
I’=-1 J?=-1 1J+JI=0 (7.58)
we get a third: K := IJ. Note that
r’r=-1 J*=-1 K?’=-1 (7.59)

IJ+JI=JK+KJ=KI+IK =0 (7.60)

These are the abstract relations of the quaternions. To put this in proper context recall
the definition:

Definition An algebra A over a field k is a k-vector space together with a k-bilinear map
AxA— A

Concretely, this means that there is a multiplication A x A — A written a - b for
a,b € A such that

l.a-(b+c¢)=a-b+a-c

2. (b+c)-a=b-a+c-a,
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3. a(a-b) = (aa)-b=a- (ab), for a € k.

If there is a multiplicative unit A is called unital. If a-(b-c) = (a-b) - ¢ then A is
called associative.

A good example of an algebra over x is End(V) where V is a vector space over k.
Choosing a basis we can identify this with the set of n x n matrices over k. We will see
many more examples.

Definition The quaternion algebra H is the algebra over R with generators i, j, £ satisfying
the relations

Hii=it+t=j+8=0 (7.62)

The quaternions form a four-dimensional algebra over R, as a vector space we can
write

H=Ri®R)®Re PR =R (7.63)

The algebra is associative, but noncommutative. It has a rich and colorful history, which
we will not recount here. Note that if we denote a generic quaternion by

q=z1i+ 29 + w3t + 24 (7.64)
then we can define the conjugate quaternion by the equation
q:= —T1i— To) — w3t + 14 (7.65)

and
99 = qq = z,xy, (766)

Definition: A quaternionic vector space is a vector space V over k = R together with
three real linear operators I,.J, K € End(V) satisfying the quaternion relations. In other
words, it is a real vector space which is a module for the quaternion algebra.

Just as we can have a complex structure on a real vector space, so we can have a
quaternionic structure on a complex vector space V. This is a C-anti-linear operator K on
V which squares to —1. Once we have K2 = —1 we can combine with the operator I which
is just multiplication by v/—1, to produce J = KI and then we can check the quaternion
relations. The underlying real space VR is then a quaternionic vector space.

It is possible to put a quaternionic Hermitian structure on a quaternionic vector space
and thereby define the quaternionic unitary group. Alternatively, we can define U(n,H)
as the group of n x n matrices over H such that uu’ = ufu = 1. In order to define the
conjugate-transpose matrix we use the quaternionic conjugation ¢ — ¢ defined above.

Exercise

Show that U(1,H) = SU(2)
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Exercise
a.) Show that a

i—sV—1lo!  j—= V=10 t—=+-10° (7.67)

defines a set of 2 x 2 complex matrices satisfying the quaternion algebra. Under this
mapping a quaternion ¢ is identified with a 2 x 2 complex matrix

g plq) = <Z _’I’> (7.68)

w oz

with z = x4 + ix3 and w = x9 + ix1.
b.) Show that det(p(q)) = q¢ = x,x, and use this to define a homomorphism SU(2) x
SU(2) — SO(4).

Exercise Complex structures on R*
a.) Show that the complex structures on R* compatible with the Euclidean metric can
be identified as the maps
q v ng n?=—1 (7.69)

OR
g qn n?=-1 (7.70)

b.) Use this to show that the space of such complex structures is S2 IT 52,
c.) Explain the relation to O(4)/U(2).

Exercise A natural sphere of complex structures
Show that if V' is a quaternionic vector space with complex structures I, J, K then
there is a natural sphere of complex structures give by

IT=x1]4 29 +a3K .1‘% + .1‘% + ZC?)) =1 (7.71)

Exercise Regular representation &This is too
important to be an
exercise, and is used
heavily later. &
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Compute the left and right regular representations of H on itself Choose a real basis
for H with v1 = i,v9 =j,v3 = &,v4 = 1. Let L(q) denote left-multiplication by a quaternion
q and R(q) right-multiplciation by ¢q. Then the representation matrices are:

L(q)va =0 Vg = L(q)bavb (7.72)

R(q)va 1= v - 4 1= R(q)pavp (7.73)

a.) Show that:
0001
00-10
L(i) = 74
W=10100 (7.74)
~10 0 0

0 010

0 001
L(j) = 7.75
O=1_10 00 (7.75)

0 =100

(7.76)

R(i) = (7.77)

(7.78)

(7.79)

b.) Show that these matrices generate the full 16-dimensional algebra My (R).

Exercise 't Hooft symbols and the regular representation of H
The famous 't Hooft symbols, introduced by ’t Hooft in his work on instantons in
gauge theory are defined by

i 1
O‘i’/ = §(i5iu51/4 + 5i1/5u4 + Ei/u/) (780)

—51 —



where 1 < p,v <4
a.) Show that

1 1 1
o™t =-R@li) at?=_-R({) o™ ==R(¥) (7.81)
2 2 2
1 1 1
at=—ZL{i) o ?=-IL(G) o P=-L( (7.82)
2 2 2
b.) Verify the relations
[azl:z a:l:,g] — EZ]ka:I:,k
[, a™7] =0 (7.83)
. 1 ..
{ai,z’ ai,]} _ 551]
So
atiatd — _Xgii _ Lok
U (s
)2 5] — vy _ Y !
oo 4(5 5€
Exercise

It is also sometimes useful to identify H = C? by choosing the complex structure to be
L(i). Thus we can write q = 21 + 2z2j where z1 = 1 +iy; and 2o = x9 + iys with z;,y; real.

a.) Show that L(j) acts by
L(j) : (zl) — <_22) (7.85)
z9 Z1

b.) Show that R(q) act C-linearly, and hence can be represented as 2 x 2 matrices

acting from the left:

R(i) = (5 _Oi) (7.86)
R(j) = (? _01) (7.87)
R(t) = (? (‘)) (7.88)
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7.5 Summary

To summarize we have described three basic structures we can put on vector spaces:

1. A complex structure on a real vector space W is a real linear map I : W — W with
I?=-1.

2. A real structure on a complex vector space V is a C-anti-linear map K : V — V with
K? = +1.

3. A quaternionic structure on a complex vector space V is a C-anti-linear map K :
V =V with K2 = —1.

Exercise Tensor algebras and real and quaternionic structures

Suppose V' is a complex vector space.

a.) Show that if V has a real structure then it induces a natural real structure on V™.
Moreover, each of the fixed symmetry types under S, (i.e. the isotypical subspaces under
the symmetric group) have a real structure.

b.) Show that if V has a quaternionic structure then it naturally induces a real
structure on V& for n even and a quaternionic structure on V®" for n odd.

8. ¢-twisted representations

Wigner’s theorem is the source of the importance of group representation theory in physics.
In these notes we are emphasizing the extra details coming from the fact that in general
some symmetry operators are represented as C-antilinear operators. In this section we
summarize a few of the differences from standard representation theory.

8.1 Some definitions

There are some fairly straightforward definitions generalizing the usual definitions of group
representation theory.

Definitions:

1. A ¢-representation (or ¢-rep for short) of a Zs-graded group (G, ¢) is a complex
vector space V together with a homomorphism

p: G — End(VR) (8.1)
such that
C — linear o(g) =+1
plg) = o (8.2)
C — anti — linear ¢(g) = —1
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2. An intertwiner or morphism between two ¢-reps (p1,V1) and (po, Va) is a C-linear
map T : Vi — Vs, ie., T € Homg(V7, V3), which commutes with the G-action:

Tpi(g) = p2(g)T  Vge @ (8:3)
We write Hom§ (V;, V3) for the set of all intertwiners.

3. An isomorphism of ¢-reps is an intertwiner T which is an isomorphism of complex
vector spaces.

4. A ¢-rep is said to be ¢-unitary if V has a nondegenerate sesquilinear pairing such
that p(g) is an isometry for all g. That is, it is unitary or anti-unitary according to
whether ¢(g) = +1 or ¢(g) = —1, respectively.

5. A ¢-rep (p,V) is said to be reducible if there is a proper (i.e. nontrivial) ¢-sub-
representation. That is, if there is a complex vector subspace W C V, with W not
{0} or V which is G-invariant. If it is not reducible it is said to be irreducible.

Remarks:

1. In our language, then, what we learn from Wigner’s theorem is that if we have a
quantum symmetry group p : G — Autqum(PH) then there is a Zg-graded exten-
sion (G™,¢) and the Hilbert space is a ¢-representation of (G*,¢). In general we
will refer to a ¢-representation of some extension (G, ¢) of (G, ) as a ¢-twisted
representation of G.

2. In the older literature of Wigner and Dyson the term “corepresentation” for a ¢-
unitary representation is used, but in modern parlance the name “corepresentation”
has several inappropriate connotations, so we avoid it. The term “¢-representation”
is not standard, but it should be.

3. If G is a compact group it has a left- and right-invariant Haar measure. Using this
one can show that any ¢-rep on an inner product space is unitarizable. That is, by
choosing an appropriate basis one can make all the operators p(g) unitary or anti-
unitary. The way to show this is that if h(!) is the original inner product on V then
we define a new inner product by

B (01, 03) = /G 1dglh® (o(g)vn, plg)vz) (8.4)

and it is straightforward to see that the rep is ¢-unitary with respect to 2.

4. An important point below will be that Hom§ V1, Va) is, a priori only a real vector
space. If T'is an intertwiner the ¢1" certainly makes sense as a linear map from Vj to
V5 but if any of the p(g) are anti-linear then T will not be an intertwiner. Of course,
if the Zy-grading ¢ of G is trivial and ¢(g) = 1 for all g then Hom& V3, V3) admits a
natural complex structure, namely 7" — T
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Example: Let us consider the ¢-twisted representations of My = {1,T} where ¢(T) = —1.
We showed above that there are precisely two ¢-twisted extensions M;E First, let us
suppose H is a ¢-rep of M2+ . Then set

K = p(T). (8.5)

This operator is anti-linear and squares to +1. Therefore K is a real structure on 4. On
the other hand, if the ¢-twisted extension of My is M, then K 2 = —1. Therefore we
have a quaternionic structure on H. Thus we conclude: The ¢-twisted representations
of (Ma, ¢), with ¢(T) = —1 are the complex vector spaces with a real structure (for M)
union the complex vector spaces with a quaternionic structure (for M ).

Exercise ¢-reps and Zs-gradings
a.) Show that a ¢-representation of (G, @) can be defined as a real vector space W
with a complex structure I and a homomorphism

p: G — End(W) (8.6)

such that
p(9)I = ¢(g)Ip(9) (8.7)

b.) Show that if (W, I) is a real vector space with a complex structure then conjugation
by I defines a Zs-grading on End(W) and on the group Aut(G) so that a ¢-rep is a
homomorphism of Zs-graded groups. This leads to a mathematically more sophisticated

viewpoint on ¢-reps.

8.2 Schur’s Lemma for ¢-reps

While many of the standard notions and constructions of representation theory carry over
straightforwardly to the theory of ¢-reps, sometimes they come with very interesting new
twists. A good example of this is Schur’s lemma.

One very important fact for us below will be the analog of Schur’s lemma. To state it
correctly we recall a basic definition:

Definition An associative division algebra over a field k is an associative unital algebra
A over k such that for every nonzero a € A there is a multiplicative inverse a=! € A, i.e.
aa ' =a"la=1.

Then we have

Theorem [Schur’s Lemma).

a.) If A is an intertwiner between two irreducible ¢-reps (p, V) and (p/, V') then either
A =0 or A is an isomorphism.

b.) Suppose (p, V) is an irreducible ¢-representation of (G, ®). Then the commutant,
that is, the set of all intertwiners A of (p, V') with itself:

Z(p,V) :={A € Endc(V)Vg e G Ap(g) = p(g)A} (8.8)
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is a real associative division algebra.

Proof

Part a: Suppose A € Homg(V, V’). Then ker(A) C V is a sub-¢-representation of V
and also Im (A) C V' is a sub-¢-rep of V'. Since V is irreducible it must be that one of
the following is true:

e ker(A) =0
e ker(A) =V

If ker(A) =V then A = 0. So, if A # 0 then ker(A) = 0. Moreover Im (A) C V' is nonzero.
Since V' is irreducible it follows that Im (A) = V’. Therefore A is an isomorphism of ¢-reps.

Part b: Now suppose that A is an interwiner of (p, V) with itself. If A # 0 then
ker(A) = 0, which means that A is invertible. Since Z(p, V) is a subalgebra of an associative
algebra it is also associative. Therefore Z(p, V') is an associative division algebra over the
field Kk = R. As we remarked above, even though A is C-linear the ground field must be
considered to be R and not C because some elements p(g) might be C-anti-linear, so if
A€ Z(p,V) it does not follow that iA € Z(p, V).

Schur’s lemma for ¢-representations naturally raises the question of finding examples
of real division algebras. In fact, there are only three. This is the very beautiful theorem
of Frobenius:

113

Theorem: If A is a finite dimensional *° real associative division algebra then one of three

possibilities holds:
o AR
o A=C
o A=H

Proof: Let D be a real, associative division algebra. Given a € D we can form L(a) €
End(D), defined by
L(a):b+—a-b (8.9)
Let V' := {a|Tr(L(a)) = 0}. Then D = R@V, separates D into the traceless and trace
parts. Now we need a little
Lemma: V = {a € D|a® < 0}.
Proof of Lemma: If a # 0 consider the characteristic polynomial of L(a)

pa(x) := det(x — L(a)). (8.10)

This polynomial has real coefficients and therefore has a factorization over C which we can
write as

pa(z) = H($ —7;) H(l‘ — 20)(% — Za) (8.11)

7 [

13The Gelfand-Mazur theorem asserts that any unital Banach algebra over R is R, C or H.
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where 7; are the real roots and z, are a collection of roots which are not real, so that all
non-real roots can be arranged in complex conjugate pairs. Thanks to the Cayley-Hamilton
theorem we know that p,(a) = 0. But since D is a division algebra this must mean that:

a—r;=0 (8.12)

for some i, OR
a® — 2Re(zq)a + |24/ = 0 (8.13)

for some «a. .
eq:root—-cCccC

Note that in the case (b.lBi we must use the second-order polynomial with real coef-

ficients rather than the first-order polynomial with complex coefﬁctients since the division
eq:root—r
algebra is over the real numbers. Now, if we are in the case (8. en Tr(L(a)) # 0 so to
. eq:root-cc i i

prove the Lemma we assume we are in the case (b 13). Moreover, this equation cannot hold
for two different values of «, otherwise we would subtract the two equations and reduce to

: t-
the case of (e. 57T erefore, the characteristic polynomial of L(a) is of the form:

pa(z) = (2% — 2Re(2)x + [2|*)™ (8.14)

for some non-real complex number z and some positive integer m. Now, recall that the

coefficient of z2™~! must be —Tr(L(a)). Since we are assuming this is zero we must have
Re(z) = 0 and hence a? = —|z|? < 0. This proves the Lemma <.
Now, note that Q(a,b) := —ab — ba is a positive definite form on V since Q(a,b) =

a’? + v — (a + b)? and hence Q(a,a) = —2a> > 0 on V. If D # R so that V is nonzero
then the quadratic form Q(a,a) on V is positive definite over R we can diagonalize it to
the form 26;;. Therefore, we can choose a basis {e;};—1, .~ for V such that

eie; +eje; = _251']' 1<4,5<n (815)

Now, we can choose a minimal set of generators of the algebra from the set {e;}i=1.. -
(The trace part is generated by squaring any e; so we do not need to include any element of
R to generate the algebra.) Without loss of generality we can say that the first n elements of
the basis constitute a minimal set of generators. Tléuéﬁ gvge}%%ifffzfﬂgebraically independent
elements e; € V with 1 <i <n, n < N, satisfying (8-15). ese are the defining relations
of the real Clifford algebra, C'¢_,, something we will study at length later on.

For n > 2 we note that 14

(1 + 616263)(1 — 616263) =0 (816)

Since D is a division algebra this means we must have ejeses = +1, and hence e3 = tejes.
But we assumed we had a minimal set of generators. So we have reached a contradiction
and hence n = 1,2 are the only possibilities other than D = R.

For n = 1,2 we can check explicitly that D = C or D =2 H as real algebras: For n =1
the general element is x1 + exs where x1, xo are real. The identification with z1 4 NESY

141t is precisely at this point that we use the hypothesis that D is associative.

— 57 —

eq:root-cc

‘eq:NegDefCliff




is an isomorphism with C. Similarly, the generators ej, es and ejes can be mapped to i,j
and €, respectively to define an isomorphism of the case n = 2 with H. $<&

Examples
1. Let G = My with ¢(T) = —1. Take V = C, p(T) = C € Endg(C) given by complex
conjugation C(z) = z. Then Z(p,V) = R.

2. Let G = U(1) with ¢ = 1, so the grading is trivial (all even). Let V = C and

p(z)v = zv. Then Z(p,V) = C. Notice we could replace G with any subgroup of

th

multiplicative n"* roots of 1 in this example, so long as n > 2.

3. Let G = M, , with ¢(T) = —1. Take V = C? and represent

z €i92
p(ew) (;) = <ewz;> (8.17)
p(T) <Zl) = <_Z2) (8.18)
Z9 Z1

One checks that these indeed define a ¢-representation of M, . We claim that in this

case Z(p,V) = H.

To prove the claim let us map C? — H by

(;) = 21+ 29) = (21 +iy1) + (22 + iy2)) (8.19)
2
Thus, if we think of the ¢-twisted representation as acting on the quaternions then
we have:
p(e?) = cosf + sin L(i) (8.20)
and T is represented by
p(T) = L(j) (8.21)

Of course, the commutant algebra Z(p, V') must commute with the real algebra gen-

erated by all the elements p(g). Therefore, it must commute with left-multiplication aperhaps put this
by arbitrary quaternions. From this it easily follows that Z(p, V) is the algebra of o :mrk
right-multiplication by arbitrary quaternions. In fact this identifies Z(p, V') = HOPP

but as you show in an exercise below H°PP = H as a real algebra.

so the algebra of operators generated by p(g) is the quaternion algebra acting on
V = R* as the left regular representation. The commutant of these operations is
therefore right-multiplication by any quaterion R(q), and hence Z = H.

Remarks:
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1. The above argument shows that the only division algebras over the complex numbers
is C itself. The only change in the proof is that the characteristic polynomial p,(z)
factorizes and a — z, = 0 for some root. Therefore, the traceless part of the algebra
vanishes and hence D = C.

2. One can drop the associativity condition in the definition of a division algebra by
modifying the defining property to the statement that if a # 0 then the equation
ax = y for any y has a unique solution x = by for some b. Then a theorem from
topology (due to Kervaire and Bott-Milnor) says that the only division algebras over
R have real dimensions 1,2,4,8. Moreover, a theorem of Hurwitz says that the
normed division algebras over R (i.e. those with a norm so that || ab ||=|| a ||| b |
) are precisely R, C,H and just one more finite dimensional division algebra over R,
namely the octonions @. This has dimension 8 and can be constructed from a kind
of doubling of the quaternions. The dimensions of the divison algebras 1,2,4,8 are
related to the dimensions in which minimal supersymmetric Yang-Mills theory can
exist: 3,4,6,10.

3. Note that the C-linear map v — iv is in Z(p, V) iff ¢(g) =1 for all g. If i € Z(p,V)
then Z(p, V) is in fact a division algebra over C, and hence must be isomorphic to
C. Thus, we recover Schur’s lemma for ordinary irreps of G over C as a special
case: If ¢ = 1 then Z(p,V) = C given by v — zv. Warning: It is possible to have
Z(p,V) = C even when ¢ # 1 and hence i ¢ Z(p,V).

Exercise NesDefCLitE
eq:Neghe
If e; satisfy the defining relations (% ) of Z?Z/ﬁl,n show that
(eiej)> =—1 Vi (8.22)
(eiejer)’ =+1  Vi#j#k#i (8.23)
Exercise

The quaternions H form a division algebra over R. Therefore H ®g C is an algebra
over C. It has 4 dimensions as a complex algebra. Why is it not a division algebra?

Exercise Opposite algebra
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If A is an algebra then we define the opposite algebra A°PP to be the same vector space
as A over the field x but the multiplication m°PP : A°PP x A°PP — A°PP ig related to the
multiplication m : A x A — A by

m°PP(a,b) ;== m(b,a) (8.24)

Show that HCPP is isomorphic to H.

Exercise
Consider G = Autg(C?) acting on C? in the standard way. Show that Z = R if ¢ = ¢y
is the canonical Zo-grading while Z = C if ¢ = 1.

8.3 Complete Reducibility

A very important theorem in ordinary representation theory is the complete reducibility
of representations of compact groups. This extends more or less directly to ¢-reps.

If (G,¢) is a Zo-graded group then (G, @)Y, known as the “dual,” is the set of in-
equivalent irreducible ¢-representations of G. For each element of A € (G, ¢)" we select a
representative irrep V). Thanks to Schur’s lemma it is unique up to isomorphism.

Theorem: If (p, V) is a finite-dimensional ¢-unitary rep of (G, ¢) then V is isomorphic
to a representation of the form

@)\E(G7¢)\/W)\ (8.25)
where, for each A, W), is itself (noncanonically) isomorphic to a direct sum of representations
Vy:

WAV @DV (8.26)
sy times

(If sy = 0 this is the zero vector space.)

Proof: The proof is a simple consequence of the following lemma: Suppose that W C V is
a ¢-sub-rep of V. Then we claim that

Wt = {v|(w,w') =0 Yw e W} (8.27)

is also a ¢-sub-rep of V. This is simple because if w’ € W= then for all ¢ € G and all
weWw

(w, p(g)w') = (p(g~")w,w') =0 (8.28)

Therefore, choose any nonzero vector v € V and let W (v) be the smallest G-invariant
subspace containing v. This must be an irrep. Now consider W (v)* and choose a nonzero

5 Answer: Take ¢ — G
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vector in that space (if it exists) and repeat. Because V' is finite-dimensional, after some
number of steps the subspace

(W(v1) ® W(v2) & & W(vy))" (8.29)

must in fact be zero and the procedure stops. By arranglélg the summands mtolsubsBets
ility-

. . . le
corresponding to the isomorphism class A we arrive at (8 25) (18 26). O

Remarks

Jedt eBemipibe beRediyedbility-B
1. The isomorphism of a representation with ( 25) (I?S .26) 1s known as an isotypical

decomposition. The nonnegative integers sy are known as degeneracies.

2. Concretely the theorem means that we can choose a “block-diagonal” basis for V' so
that relative to this basis the matrix representation of p(g) has the form

p(g) ~ Ls, ® pa(9) (8.30)

We need to be careful about how to interpret p)(g) because anti-linear operators
don’t have a matrix representation over the complex numbers. If we are working
with ordinary representations over C and dimcV) = t) then 1,, ® px(g) means a
matrix of the form

Ly, @palg) = | . S : (8.31) [eq:BlockMatrix

where py(g) and each of the 0’s above is a ¢y x t) matrix and there is an sy x sy
matrix of such blocks. On the other hand, if p(g) is anti-linear then it does not have
a matrix representation over the complex numbers. If we wish to work with matrix
representations what we must do is work with (Vg, I) where I is a complex structure
on Vg, and similarly for the irreps (Vi g, I). Then py(g) means a real representatlon

|subsec:ComRedAlg
matrix which is 2ty x 2ty and anticommutes with Iy. See the beginning of §8.4 for a

specific way to do this.

leq:CompleteReducibility-B leq:CompleteReducibility-B
3. Equation (18 76) 1s noncanonical. What this means is that in the isomorphism (8.26)

one could compose with an isomorphism that mixes the summands. Put differently,

eq:BlockMatrix
one could change basis in (b %l % by a matrix of the form S ® 1;, with S an invertible
leq:CompleteReducibility-A

sy X sy matrix. However, we would like to stress that the decomposition (8:25) 1S

completely canonical. We can define W), to be the image of the map

Hom&(V),V)®@Vy = V (8.32)

— 61 —



given by the evaluation map
T®v— T() (8.33)
Note that the G-action on the left-hand side is g : T ® v — T ® p(g)v and on the

right-hand side g : T'(v) — ¢ - T'(v). Hence the evaluation map is an intertwiner.
Therefore, the canonical way to write the isotypical decomposition is

V = @Homf(Vy, V) ®r Vi (8.34)

Recall that Homg(V)\, V') is a real vector space, while V) is a complex vector space.
We therefore take the tensor product over R regarding V), as a real vector space but
the result of the tensor product is naturally a complex vector space.

. Now if we combine this canonical formulation of the isotypical decomposition with
the second part of Schur’s lemma to compute the real algebra of self-endomorphisms
End& (V). To lighten the notation let Sy := Hom&(Vy,V) and let Dy be the real
division algebra over R of self-intertwiners of V). Then we compute:

Hom¢(V,V)ZV* ®@cV
>~ @) v (5% ®r Sy) ®r (Vi ®c V) (8.35)
= @y vHom(Sy, Sy) ®r Home(Vy, Vi)
Now G acts trivially on the Hom(S), Sy ) factors and in the natural way on Homc (Vy, V).
Therefore, taking the G-invariant part to get the intertwiners we invoke Schur’s

lemma
Hom& (Vy, Var) = 0y v Dy (8.36)
and hence
Hom(V, V) = @,End(S)) ®r D) (8.37)

Of course, End(S)) is isomorphic to the algebra of real matrices Matg, (R) upon
choosing a basis and therefore

End& (V) = @y\Mats, (D)) (8.38)
is a direct sum of matrix algebras over real division algebras.

. We proved complete reducibility for finite-dimensional ¢-unitary reps. For G which

is compact the result extends to infinite-dimensional representationlst IE fact, this is
egallectures

equivalent to the Peter-Weyl theorem. For a nice discussion see . For noncompact

groups the theorem can fail. For example the representation of Z or R on R? given

1z
(O 1> (8.39)

is reducible but not completely reducible. The subspace W of vectors of the form

<g) (8.40)

is a nontrivial invariant subspace, but there is no complementary invariant subspace
in R?

by matrices of the form
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8.4 Complete Reducibility in terms of algebras
Jsec:ComRedAlg‘

The complete reducibility and commutant subalgebra can also be expressed nicely in terms
of the group algebra R[G]. We work with Vg with complex structure I with operators
pr(g) commuting or anticommuting with I according to ¢(g). This defines a subalgebra of
End(Vr). If G is compact this algebra can be shown to be semisimple and therefore, by a
theorem of Wedderburn all representations are matrix representations by matrices over a

T . |app:CentralSimple .
division algebra over R. See Appendix [A for background on semisimple algebras.

It is useful to be explicit and make a choice of basis. Therefore, we choose a basis to
identify V' = CN. Then we identify Vg = R?Y by mapping each coordinate

z— (3:) (8.41)
Y

The complex structure on R?Y is therefore

Iy = (? _01) CRRG> <(1) _01> (8.42)

While the real structure of conjugation with respect to this basis is the operation

10 10
C = <0 _1) DD (0 _1> (8.43)

Having chosen a basis V' = CV the C-linear operators p(g) with ¢(g) = 1 can identified
with N x N complex matrices and then they are promoted to 2N x 2N real matrices by
replacing each complex matrix element by

zij = (xij _yij) (8.44)

Yij Tij

The operators with ¢(g) = —1 must be represented by C times a matrix of the above type.
Now we want to describe the algebra p(G) over R generated by the real 2N x 2N
matrices p(g) together with Iy. To do this let us introduce some notation: If K is any
algebra then mK will denote the algebra of m x m matrices over K of the specific form
Diag{k,k,...,k}. Thus mK and K are isomorphic as abstract algebras. Similarly, if K is
any algebra we denote by K[m] the algebra of all m x m matrices whose elements are in
K. Note that m(K[n]) and (mK)[n] are canonically isomorphic so we just write mK[n]
when we combine the two constructions. Finally, with this notation we can state the:

Theorem The algebra A(p(G),I) C End(Vr) generated over R by the operators p(g) and

1 is equivalent to
A(p(G). 1) = @rsxDalm] (8.45)

and the commutant Z(p, V) is equivalent to

Z(p, V) = @xma D [s3] (8.46)
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Note that the dimensions 7, are slightly different from the complex dimensions ¢y
of V) in general. Let us denote the real dimension of Dy by dy = 1,2,4 according to

Dy =R,C,H. Then

2
™=t (8.47)
A

Recall that when Dy = H there must be an action of H on V' and hence ¢\ must be even,

so T is always an integer, as it must be.
Remarks

1. We omit the proof, which may be found in Weyl’s book. It amounts to the statement
that R[G] is a semisimple algebra over R together with Wedderburn’s theorem that
any representation of a semisimple algebra over R is a direct sum of matrix algebras
over a division algebra over R.

2. To illustrate the reason that D°PP appears in the commutant consider the following
representative example. Suppose we have an algebra such as H[m/|. If we represent
this as real matrices then we must represent the quaternions i, j, £ as real matrices. We
do this using - say - the left regular representation. Hence each of the matrix elements
is promoted to a 4 x 4 real matrix to make a 4m X 4m real matrix. Thus we regard
H[m] C R[4m] as a subalgebra of matrices. We ask: What is the commutant of H[m)]
within R[4m|? Some elements of the commutant are obvious, namely the matrices
of the form Diag{R(q),...,R(q)} where R(q) is the 4 x 4 matrix representing right-
multiplication of ¢ on quaternions. This represents rightmultiplication of an m x m
matrix of quaternions by gq. The theorem says that this is the full commutant. Note
that since R(q1)R(q2) = R(g2q1) so that the commutant is more naturally regarded
as HOPP,

8.5 Application: Classification of Irreps of G on a complex vector space

|subsec:ComRedAlg
As an application of §18 Iwe rederive the standard trichotomy of complex irreducible rep-

resentations of a group. The question we want to address is this:

Suppose p : G — Aut(V) is an ordinary irreducible representation of V. (That is, an
irreducible unitary ¢-rep with ¢ = 1.) Then there is canonically a complex conjugate rep-
resentation (p, V). If we choose a basis for V' so that p(g) are complex matrices then p(g)*
is also a representation. The conjugate representation (p, V') is easily seen to be irreducible
and the question is: What is the relation between the original rep and its conjugate?

To answer this we consider two real algebras. This first, denoted by A is the real
algebra generated by the set of operators p(G) C End(Vr). The second, denoted by B is
the algebra generated by A and I, the complex structure on Vg. Both of these algebras
are semisimple and hence the above theorem applies.

Because we have an irreducible representation Schur’s lemma tells us that

B 2 Cln (8.48)
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and hence
Z(B) = nC (8.49)

Let us now consider A. There are two cases: [ € Aand I ¢ A. If I € A then A = B and so
A has real dimension 2n?. If I ¢ A then B must have twice the dimension of A and hence
A has real dimension n2. The only possibilities compatible with Weyl’s theorem above are

e A=2R[n] and Z(A) = nR[2]
e A=C|n] and Z(A) =nC
o A=H[5] and Z(A) = GHOPP

We call the three cases above as type R, C, H. In the cases where Z(A) is of type R or
H we can check by hand that there is an operator P € Z(A) with PI = —IP. Of course,
P ¢ Z(B). On the other hand, since P is in Z(A) we know that

Pp(g9)r = p(9)rP (8.50)

But this means that in terms of complex matrices there is an invertible matrix S such that

p(9)* = Sp(g)S~" (8.51)

Moreover, we can take S to be unitary. 6 So the representation (p, V) %nglc its Ecomplex con-
— eq . ltar uliv
jugate (p, V') are unitarily equivalent. Moreover, compatibility of (8.51) wi ¢ complex

conjugate equation shows that

plg) = S"Sp(g)(5*S) ™ (8.52)

and hence, by Schur’s lemma S$*S = z1 for a complex number z. Since S is unitary,
the determinant of this equation shows that z is a root of unity. On the other hand,
conjugating the equation show that z is real. Therefore, z must be +1. Moreover, again
since S is unitary, the equation implies that S* = zS is symmetric or antisymmetric. So
P = CS where C is complex conjugation and P? = z, is +1. We check that in case R
we have P2 = +1 and in case H we have P? = —1. Conversely, if there is an invertible
matrix satisfying (E%‘&ET%% that we can take S to be unitary and we can construct
a P e Z(A) but P ¢ Z(B) with P? = 1. Therefore, the above trichotomy is equivalent
to the following statement:
If (p,V) is an irrep of G then one of the following holds:

e Potentially Real Representations: (p, V') is equivalent to its conjugate and there exists
an S with S = S. In this case we can find a basis of V' where the representation
matrices are real.

e Complex Representations: (p,V') is not equivalent to its conjugate.

1676 prove this show that STS is in the commutant over C. Therefore, by irreducibility STS = z1 for
some complex number z. By a suitable rescaling of S we can then make it unitary.
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e Pesudoreal Representations or, equivalently, Quaternionic Representations: (p,V)

is equivalent to its conjugate and there exists an S with S = —S. In this case

V has a quaternionic structure commuting with p(g). Thus, we can identify the
representation with a quaternionic matrix representation. Minterpret S as
sesquilinear form

which is orthogonal
or symplectic. &

Examples

1. Consider the irreducible representations of SU(2). Using the fact that USp(2) =
SU(2) = U(1,H) we see that there is a canonical representation of the SU(2) on
H by left-multiplication by unit quaternions. Identifying H = C? this becomes the
standard fundamental two-dimensional representation of SU(2) on C2. The standard
identity on Pauli matrices:

(") = —o20t0? (8.53)

means that the generators of the representation transform as
(vV—=1c")* = S(v/=10")57! (8.54)

where S = y/—10? is antisymmetric. The isomorphism of the representation with
its complex conjugate is v — /—1o2v* where v € C?. Taking symmetric tensor
products Sym™C? will have a real structure commuting with SU(2) for n even and
a quaternionic structure for n. This is the familiar rule that integer spin has a
representation by real matrices and half-integer spin is pseudoreal and does not.

2. For G = U(1) the representations p,(el?) = ¥ are complex for n # 0.

3. For G = SU(n) with n > 2 the fundamental representation of dimension n is complex.
A quick way to prove this is to note that the characters of a real or pseudoreal
representation must be real functions on the Cartan torus. This is clearly not the
case for the characters of the n-dimensional representation, when n > 2.

4. A beautiful result of Frobenius and Schur is the following. Let [dg] be an invariant
measure on G of weight 1. Then if (p, V) is an irreducible representation of G on a
complex vector space V then

+1 type R
/G [dg]Trv (p(g9))> =<0  type C (8.55)
—1 type H

son3fold | i i
For a proof see . ere is an analog for ¢-reps which we give below.

Exercise
Write the representation of a unit quaternion v € U (1, H) in the spin-3/2 representation
of SU(2) as a 2 x 2 matrix of quaternions.
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9. Symmetry of the dynamics

With the possible exception of exotic situations in which quantum gravity is important,
physics takes place in space and time, and time evolution is described, in quantum me-
chanics, by unitary evolution of states.

That is, there should be a family of unitary operators U (t1, t2), strongly continuous in
both variables and satisfying composition laws U(t1,t3) = U(t1,t2)U(t2,t3) so that

p(t1) = U(tr, t2)p(t2)U((t2, 1) (9.1)

Let us - for simplicity - make the assumption that our physical system has time-translation
invariance so that U(tq,t2) = U(t1 —t2) is a strongly continuous group of unitary transfor-
mations.

Again, except in unusual situations associated with nontrivial gravitational fields we
can assume our spacetime is time-orientable. Then, any physical symmetry group G must
be equipped with a homomorphism

T:G — 7o (9.2)

telling us whether the symmetry operations preserve or reverse the orientation of time.
That is 7(g) = +1 are symmetries which preserve the orientation of time while 7(g) = —1
are symmetries which reverse it.

On the other hand, Wigner’s theorem also provides us with an intrinsic homomorphism
¢ : G — Zo and it is natural to ask how these two homomorphisms are related.

By Stone’s theorem, U(t) has a self-adjoint generator H, the Hamiltonian, so that we

may write
it
U(t) = exp (—%H) (9.3)

Now, we say a quantum symmetry p : G — Autqyem (PH) lifting to p™ : G™ — Autg(H) is
a symmetry of the dynamics if for all g € G*":

P (Q)U(#)p™ ()" = U(r(9)t) (9.4)

where 7 : G™ — Zj is inherited from the analogous homomorphism on G.

. K leq:Hamiltonian-Ev . L
Now, substituting (9.3] and paying proper attention to ¢ we learn that the condition
eq . —byn
for a symmetry of the dynamics (9.4) 1s equivalent to

P(9)p™ (9 Hp™(9) " =7(9)H (9.5)

in other words,
P™(9)Hp™ (9)~" = ¢(9)7(9)H (9.6)

Thus, the answer to our question is that ¢ and 7 are unrelated in general. We should
therefore define a third homomorphism y : G — Zo

x(g) = ¢(g)7(9) € {£1} (9.7)
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Figure 4: If a symmetry operation has x(g) = —1 then the spectrum of the Hamiltonian must be
symmetric around zero.
Note that
o-7-x=1 (9.8)
Remarks

1. We should stress that in general a system can have time-orientation reversing sym-
metries but the simple transformation ¢ — —t is not a symmetry. Rather, it must be
accompanied by other transformations. Put differently, the exact sequence

1 = ker(r) =G —Zy—1 (9.9)

in general does not split. Many authors assume it does, and that we can always
write G = Gg X Zs where Gy is a group of time-orientation-preserving symmetries.
However, when considering, for example, the magnetic space groups the sequence
typically does not split. As a simple example consider a crystal

C = (2% + (81,02)) L (Z* + (=02,01)) L (Z* + (=61, —02)) L1 (Z* + (62, —61)) (9.10)
and suppose there is a dipole moment, or spin S on points in the sub-crystal
Cy = (Z+ (61,02)) L(Z + (=61, —b2)) (9.11)
but a spin —S at the complementary sub-crystal

C. = (Z+ (~02,80)) I (Z + (33, 1)) (9.12)
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Figure 5: In this figure the blue crosses represent an atom with a local magnetic moment pointing
up while the red crosses represent an atom with a local magnetic moment pointing down. The
magnetic point group is isomorphic to D4 but the homomorphism 7 to Zs has a kernel Zs X Zo
(generated by 7 rotation around a lattice point together with a reflection in a diagonal). Since Dy
is nonabelian the sequence 1 — Po — P57, — 1 plainly does not split.

such that reversal of time orientation exchanges S with —S. Then the time-orientation-

reversing symmetries must be accompanied by a /2 or 377/ 2 rotation around some
fig:TimeNoSplit

integer point or a reflection in some diagonal. See Figure erefore, the extension
of the point group is our friend:

1> 79— 74— Zo—1 (9.13)
which does not split.

2. It is very unusual to have a nontrivial homomorphism x. Note that

P () Hp™(9)™" = x(9)H (9.14)
implies that if any group element has x(g’) = —1 then the spectrum of H must be
fig:SymmetricSpectrum

symmetric around zero as shown in Figure . In many problems, e.g. in the standard
Schrédinger problem with potentials which are bounded below, or in relativistic QFT
with H bounded below we must have x(g) = 1 for all g and hence ¢(g) = 7(g), which
is what one reads in virtually every physics textbook: A symmetry is anti-unitary iff
it reverses the orientation of time.
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3. However, there are physical examples where x(g) can be non-trivial, that is, there
can be symmetries which are both anti-unitary and time-orientation preserving. An
example are the so-called “particle-hole” symmetries in free fermion systems. We will
discuss those later.

4. The transformations with y(g) = —1 are sometimes called “charge-conjugation sym-
metries” and are sometimes called “particle-hole symmetries.” The CMT literature
is inconsistent about whether we should allow “symmetry groups” with y # 1 and
about whether “particle-hole symmetry” should be a C-linear or a C-anti-linear op-
eration. So we have deliberately avoided using the term “particle-hole symmetry”
and “charge conjugation” associated with x(g).

9.1 A degeneracy threorem

Suppose that x = 1 and there is a time-orientation-reversing symmetry with p(g)? = —1.
Then since p(g) is anti-unitary H has a quaternionic structure which commutes with H.
It follows that the H-eigenspaces have a quaternionic structure which means that their
complex dimension must be even. That is, the eigenvalues of the Hamiltonian must have
even degeneracy.

One important example where this comes up is systems with a rotational symmetry
together with a time-reversal symmetry 7" which takes (x,t) — (z, —t). Then it follows that
the Hermitian generators of rotations must satisfy TJT—' = —J so T must be an antilinear
operator that commutes with the SU(2) representation. We have seen that the natural
quaternionic structure on the fundamental induces an antilinear operator commuting with
SU(2) which satisfies

T2 = (-1)% (9.15)

and hence for half-integer spin T defines a quaternionic structure, whereas for integer spin
it defines a real structure. If we are working with a Hamiltonian for a half-integer spin
particle then it follows that the energy eigenvalues have even degeneracy. This is sometimes
referred to as “Kramer’s theorem.”

10. Dyson’s 3-fold way

Often in physics we begin with a Hamiltonian (or action) and then find the symmetries
of the physical system in question. However there are cases when the dynamics are very
complicated. A good example is in the theory of nuclear interactions. The basic idea
has been applied to many physical systems in which one can identify a set of quantum
states corresponding to a large but finite-dimensional Hilbert space. Wigner had the beau-
tiful idea that one could understand much about such a physical system by assuming the
Hamiltonian of the system is randomly selected from an ensemble of Hamiltonians with a
probability distribution on the ensemble. In particular one could still make useful predic-
tions of expected results based on averages over the ensemble.

So, suppose £ is an ensemble of Hamiltonians with a probability measure du. Then
if O is some attribute of the Hamiltonians (such as the lowest eigenvalue, or the typical
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eigenvalue spacing) then we might expect our complicated system to have the attribute O
close to the expectation value:

() = /g O (10.1)

Of course, for this approach to be sensible there should be some natural or canonical
measure on the ensemble &, justified by some a priori physically reasonable principles. For
example, if we take the space of all Hermitian operators on some (say, finite-dimensional)
Hilbert space CV then any probability distribution which is

e Invariant under unitary transformation.
e Statistically independent for H;; and Re(H;;) and Im(H;;) for i < j

t
can be shown IZef afo be of the form

N
d/.L — HdHM H dQHije—aTr(H2)+bTr(H)+C (102)
i=1 i<j
The specific choice
N
1
dp = [ ata ] d2H,je~ 2 TH” (10.3)
i=1 i<j

where Z is a constant chosen so that [du = 1 defines what is known as the Gaussian

unitary ensemble.
Now sometimes we know a priori 3tfhag the system under study has a certain kind of
SOon. [¢]
symmetry. Dyson pointed out in at such symmetries can constrain the ensemble in

ways that affect the probability distribution du in important ways.

10.1 The Dyson problem
3fold
Now we can formulate the main problem which was addressed in iVBSO:n 2

Given a Zs-graded group (G,¢) and a ¢-unitary rep (p,H), what is the ensemble of
commuting Hamiltonians? That is: What is the set of self-adjoint operators commuting
with p(g) for all g?

sec:10FoldWa
Note that the statement of the problem presumes that x(g) = 1. In Section §h'mwl
we generalize the problem to allow for y # 1.
The solution to Dyson’s problem follows readily from the machinery we have developed.
We assume that we can write the isotypical decomposition of H as

H = B)\S)\ Qr V) (10.4)

This will always be correct if G is compact. Moreover, H is a Hilbert space and there are
Hermitian structures on Sy and V) so that V) a ¢-unitary rep and we have an isomorphism
of ¢-unitary reps.
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Now, if x(g) = 1 then any Hamiltonian H on H must commute with the symmetry
operators p(g) and hence must be in End%(#). But we have computed this commutant
above. Choosing an ON basis for S we have

Z(p,H) = @ \Mats, (D)) (10.5)
The subset of matrices Matg, (D)) which are Hermitian is

Real symmetric Dy=R
Hermg, (D)) = { Complex Hermitian Dy =C (10.6)

Quaternion Hermitian Dy = H

where quaternion Hermitian means that the matrix elements H;; of H are quaternions and

H;j = Hj;. (In particular, the diagonal elements are real.)
In conclusion, the answer to the Dyson problem is the ensemble:

£ = [[Herm,, (Dy) (10.7)
A

Each ensemble Hermy (D) has a natural probability measure invariant under the uni-
tary groups

O(N;R) D=R
U(N,D) = { U(N) D=C (10.8)
Sp(N) =2 USp(2N;C) D=H

such that the matrix elements (not related by symmetry) are statistically independent.
These are:

N

1 — N Tyrp?
dugoe = dHy; dH;;e 202 10.9
M E Zig()E Ji{ %3 1;£ 1] ( )

where H € Hermy (R) is real symmetric.

N
1 ~ N TrH?
ducue = dH; | [ d?H; e 202 10.10
/"L ZGUE E (2 E 1] ( )

where H € Hermy (C) is complex Hermitian.
N

1 — N T2
ducsp = dH; || d*H; e 202 10.11
HGSE Zase Ji{ i ];g ij ( )

where H € Hermy (H) is quaternionic Hermitian.

Remarks: Examples of physical systems exhibiting the different ensembles are discussed
|[Zirnbauerl,Zirnbauer2

in [43; 44J.
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e GOE (Type R): Highly excited levels of atomic nuclei, as probed by scattering with
low energy neutrons. Since the strong force is both parity and time-reversal invari-
ant here G = O(3) x Zy with the Zy factor coming from time-reversal. This was
the original context for the Wigner hypothesis. Conjecturally, the large energy lev-
els of a Schrodinger Hamiltonian with classical chaotic dynamics with time-reversal
invariance obey GOE statistics.

e GUE (Type C): Similarly, conjecturally, the large energy levels of the quantization
of Schrodinger Hamiltonian with chaotic dynamics and no time-reversal invariance.
Here G = Zy. A very interesting aspect of the Riemann zeta function is that the
zeroes on the critical line with large imaginary part appear to exhibit GUE statistics.
This in fact generalizes to other L-functions of analytic number theory [Katz-Sarnak,
Keating-Snaith].

e GSE (Type H): Electrons in disordered metals. In the single electron approximation

P -
H= %—FU(l‘)—FVgo(l‘) (@ x P) (10.12)

where U(z) and Vso(z) are drawn from a statistical ensemble. This has time reversal
invariance so we can take G = Zs.

Exercise

Show that NVAD/4
N

a.) ZGOoE =272 (%) .

b) ZGUE =

C.) ZGSE =

10.2 Eigenvalue distributions

The space of Hermitian matrices is a cone so we could rescale H by any real number and
hence change the variance of the distribution. The reason we chose the factor N above is
that with this normalization the eigenvalue distribution has a good large N limit known
as Wigner’s semicircle law. Indeed, by making a change of variables

H=UAUT (10.13)

where A = Diag{\,...,An} is a diagonal matrix of real eigenvalues we get a joint proba-
bility distribution for the eigenvalues. To find it we use the map

RY x U(N, D) — Hermy (D) (10.14)
given by (A,U) — UAU'. This factors through to a map

m:RY x U(N,D)/U(1,D)N — Hermy (D) (10.15)
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Near the origin of U(N, D) we parametrize the group elements by the Lie algebra using

the exponential map. So U = e =1+ €+ --- where € = Z” €;jeij with €5 = —ej;. Then
the group invariant measure on U (N, D)/U(1, D)V at the origin is just [, d’e;j with
1 R
=42 C (10.16)
4 H
Now note that
H:ZHijeij = (1—|—€—|—~~~)Z)\]€€kk(1—€+"')
ij k
= A + Z()\Z — )\j)(—:ijeij + h.c. + -
1<J
so that, the measure [[, dHps, HKJ- deHij pulls back under 7* to
Hd)\k H |Ai — )\j|ﬂd6€ij(1 + 0(6)2) (10.18)

k i<j

Now we use group translation invariance to conclude that

Hdek.Hd Hj | =const. [ =N [[dw  (10.19)
k

1<j 1<i<j<N

/U(N,D)/U(l,D)
and hence the joint probability distribution for the eigenvalues is
N
1 N
dp(A) = — [ 1N —AjlPexp (——2 A?) (10.20)
ZNB | 20% “
" 1<i<g<N i=1

From the joint probability distribution of eigenvalues we can determine the probability
distribution for one eigenvalue py(A)d\. With the above normalization of the variance
pn(A) has a good limit for N — oo which can be shown by saddle-point methods to be

2
lim py(A\)dA = =1 —220(1 — 2%)dx (10.21)
N—o0 s
where () is the Heaviside step function (=0 for @ < 0 and = 1 for « > 0) and

A 1 B
== No=o0 H/Z. :
x N 0=0 5 (10.22)

t
This is known as Wigner’s semicircle law. For much more about this see 1295 % Note that
the single-eigenvalue distribution is essentlal Ly independent of symmetry type. However,

tP
the joint probability distribution (Iii 2(01 inls rcolearly strongly S-dependent.
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11. Gapped systems and the notion of phases

An active area of current 17

research in condensed matter theory is the “classification of
phases of matter.” There are physical systems, such as the quantum Hall states, “topolog-
ical insulators” and “topological superconductors” which are thought to be “topologically
distinct” from “ordinary phases of matter.” We put quotation marks around all these
phrases because they are never defined with any great precision, although it is quite clear
that precise definitions in principle must exist.

One way to define a “phase of matter” is to consider gapped systems.

Definition By a gapped system we mean a pair of a Hilbert space H with a self-adjoint
Hamiltonian H where 0 is not in the spectrum of H and 1/H is a bounded operator.

Remarks

1. Except in quantum theories of gravity one is always free to add a constant to the
Hamiltonian of any closed quantum system. Typically, though not always, the con-
stant is chosen so that 2 = 0 lies between the ground state and the first excited state.
For example, if we were studying the Schrodinger Hamiltonian for a single electron
in the Hydrogen atom instead of the usual operator H, = % — ZTEQ we might choose

H, + 12eV so that the groundstate would be at —1.6eV and the continuum would
begin at E, = 12eV.

Now suppose we have a continuous family of quant¥£d§ (S)Eglrlrllls. Defining this notion
precisely is not completely trivial. See Appendix D of or defails. Roughly speaking,
we have a family of Hilbert spaces Hs and Hamiltonians Hg varying continuously with
parameters s in some topological space S. 18

Suppose we are given a continuous family of quantum systems (Hs, Hs)ses. Then a
subspace D C S of Hamiltonians for which 0 € Spec(H) is a generically real codimension

one subset of S. It could be very complicated and very singular in places.

Definition Given a continuous family of quantum systems (Hs, Hs)ses we define a phase
of the system to be a connected component of S — D.

Another way to define the same thing is to say that two quantum systems (Ho, Hp) and
(H1, Hy) are homotopic if there is a continuous family of systems (Hs, Hs) interpolating
between them. 19 Phases are then homotopy classes of quantum systems in the set of all
gapped systems.

172007-2013

8To be slightly more precise: We use the compact-open topology to define a bundle of Hilbert spaces
over § and we use this topology for the representations of topological groups. The map s — H; should
be such that (¢,s) — exp[—itH,] is continuous from R x & — U(H)c.o. where we use the compact-open
topology on the unitary group.

9Gtrictly speaking, we should allow for an isomorphism between the endpoint systems and the given
(Ho, Ho) and (H1, H1) so that homotopy is an equivalence relation on isomorphism classes of quantum
systems.
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PHASE 1 / PHASE 2

Figure 6: A domain wall between two phases. The wavy line is meant to suggest a localized low
energy mode trapped on the domain wall.

Remark: A common constructllg)orﬁl ;:ILIH‘E]E:ILS subject is to consider a domain wall between
two phases as shown in Figure ‘B_gThe_dMH wall has a thickness and the Hamiltonian
is presumed to be sufficiently local that we can choose a transverse coordinate x to the
domain wall and the Hamiltonian for the local degrees of freedom is a family H,. (Thus,
x serves both as a coordinate in space and as a parameter for a family of Hamiltonians.)
Then if the domain wall separates two phases by definition the Hamiltonian must fail to
be gapped for at least one value x = x¢ within the domain wall. This suggests that there
will be massless degrees of freedom confined to the wall. That indeed happens in some nice
examples of domain walls between phases of gapped systems.

The focus of these notes is on the generalization of this classification idea to continuous
families of quantum systems with a symmetry. Thus we assume now that there is a group
G acting as a symmetry group of the quantum system: p : G — Autqim(PH). As we have
seen that G is naturally Zs-graded by a homomorphism ¢, there is a ¢-twisted extension
G™ and a ¢-representation of G* on H. Now, as we have also seen, if we have a symmetry
of the dynamics then there is are also homomorphisms 7 : G™ — Zs and x : G" — Zs with
?(g9)7(g9)x(g) = 1. When we combine this with the assumption that H is gapped we see
that we can define a Zy-grading on the Hilbert space given by the sign of the Hamiltonian.
That is, we can decompose:

fig:DomainWall

H=H oH (11.1)

where H° subspace on which H > 0 and H! is the subspace on which H < 0. Put

differently, since H is gapped we can define I1 = sigré(H ). Then IT2 = 1 and II serves as thse
eq: T ad eq .

grading operator defining the Zs grading (TT.T). From this viewpoint the equation (9.4],

written as

“(9)H = x(9)Hp™ (g) (11.2)

means that the operators p'™(g) have a definite Zs-grading: They are even if x(g) = +1.
That means they preserve the sign of the energy and hence take ’HO — H% and H! — H!

ec:SuperLinearAlgebra

while they are odd if x(g) = —1 and exchange H° with H!. See §|M below for a summary

of Zo-graded linear algebra.
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This motivates the following definition:

Definition Suppose G is a bigraded group, that is, it has a homomorphism G — Zs X Zo
or, what is the same thing, a pair of homomorphisms (¢, x) from G to Zz. Then we define
a (¢, x)-representation of G to be a complex Zs-graded vector space V = V? @ V! and a
homomorphism p : G — End(Wk) such that

{(C — linear o(g) =+1 {even x(g) =+1
and  p(g) =

(11.3)
C — anti — linear ¢(g) = —1

plg) =

soe
S %

Figure 7: The blue regions in the top row represent different phases of a family of gapped Hamil-
tonians. The red regions in the bottom row represent different phases with a specified symmetry.
Some of the original phases might not have the symmetry at all. Some of the connected components
of the original phases might break up into several components with a fixed symmetry.

In terms of this concept we see that if G is a symmetry of a gapped quantum system
then there is a (¢, x)-representation of G™. We can again speak of continuous families
of quantum systems with G-symmetry. This means that we have (Hs, Hs, ps) where the
representation pg is a symmetry of the dynamics of H, which also varies continuously with
s € §. If we have a continuous family of gapped systems then we have a continuous family
of (¢, x)-representations. Again we can define phases with G-symmetry to be the connected
components of S — D. This can lead to an interesting refinement of the classification of

. . . X fig:SymmetryPhases
phases without symmetry, as explained in Figure 7. We will denote the set of phases by

TP(G™,4,x,S) (11.4)

In general, this is just a set. In some nice examples that set turns out to be related to an

abelian group which in turn ends up being a twisted equivariant K-theory group.
An example of how this refinement is relevant to condensed matter physics is that
in topological band structure we can consider families of one-electron Hamiltonians which

respect a given (magnetic) space-group. Then there (iisz%rllQinteresting refinement of the
reed: uu

usual K-theoretic classification of band structures which will be discussed in Chapter

|sec:Topo-Band-Struct

2o.

We have been led rather naturally to the notion of Zs-graded linear algebra. Therefore
|sec:SuperLinearAlgebra

in the next section §12 we very briefly recall a few relevant facts and definitions.
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12. Zs-graded, or super-, linear algebra

In this section “super” is merely a synonym for “Zs-graded.” Super linear algebra is
extremely useful in studying supersymmetry and supersymmetric quantum theories, but
its applications are much broader than that and the name is thus a little unfortunate.
Superlinear algebra is very similar to linear algebra, but there are some crucial differ-
ences: It’s all about signs.
For a longer version of this chapter see my notes, Linear Algebra User’s Manual, section
23.

12.1 Super vector spaces

It is often useful to add the structure of a Zs-grading to a vector space. A Zo-graded vector
space over a field x is a vector space over k which, moreover, is written as a direct sum

V=VeVv! (12.1)

The vector spaces VY, V! are called the even and the odd subspaces, respectively. We may
think of these as eigenspaces of a “parity operator” Py, which satisfies P‘% =1 and is +1
on V% and —1 on V!, If V? and V! are finite dimensional, of dimensions m, n respectively
we say the super-vector space has graded-dimension or superdimension (m|n).

A vector v € V is called homogeneous if it is an eigenvector of Py. If v € VO it is
called even and if v € V! it is called odd. We may define a degree or parity of homogeneous
vectors by setting deg(v) = 0 if v is even and deg(v) = 1 if v is odd. Here we regard 0, 1
in the additive abelian group Z/2Z = {0,1}. Note that if v,v’ are homogeneous vectors of
the same degree then

deg(av + v') = deg(v) = deg(v') (12.2)

for all a, 8 € k. We can also say that Pyv = (—1)deg(”)v acting on homogeneous vectors.
For brevity we will also use the notation |v| := deg(v). Note that deg(v) is not defined for
general vectors in V.

Mathematicians define the category of super vector spaces so that a morphism from
V — W is a linear transformation which preserves grading. We will denote the space of
morphisms from V' to W by Hom(V, W). The underline is there to distinguish from the
space of linear transformations from V to W discussed below. The space of morphisms
Hom(V, W) is just the set of ungraded linear transformations of ungraded vector spaces,
T :V — W, which commute with the parity operator T'Py = PyT.

So far, there is no big difference from, say, a Z-graded vector space. However, important
differences arise when we consider tensor products.

Put differently: we defined a category of supervector spaces, and now we will make it
into a tensor category. (See definition below.)

The tensor product of two Zg graded spaces V and W is V @ W as vector spaces over
K, but the Zo-grading is defined by the rule:

Vew) =v'ewlaeview!

12.3
Vo) =view’eVv'ew! (123)
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Thus, under tensor product the degree is additive on homogeneous vectors:

deg(v ® w) = deg(v) + deg(w) (12.4)

If x is any field we let kP17 denote the supervector space:

kPl = kP @ kY (12.5)
even odd
Thus, for example:
R7elno @ R7elno ov Rrenetnong|neno+nong (12.6)
and in particular:

R g RN = R2I2 (12.7)

R212 o R212 — R8I (12.8)

R8I8 & RIS — R128/128 (12.9)

Now, in fact we have a braided tensor category:

In ordinary linear algebra there is an isomorphism of tensor products
cv,w VoW WV (12.10)

given by cyw : v ® w — w ® v. In the category of super vector spaces there is also an
i br

q:Brdl
isomorphism (T%. l(); defined by taking

cyw v @w— (=1 @ (12.11)

on homogeneous objects, and extending by linearity.
Let us pause to make two remarks:

. eq: SuperBraid L. . . .
1. Note that in (I%.l Ii we are now viewing Z/2Z as a ring, not just as an abelian
group. Do not confuse degv + degw with degvdegw! In computer science language
degv + degw corresponds to XOR, while degvdegw corresponds to AND.

2. It is useful to make a general rule: In equations where the degree appears it is
understood that all quantities are homogeneous. Then we extend the formula to
general elements by linearity. Equation (%i—?’%}%ﬁrs‘u example of another general
rule: In the super world, commuting any object of homogeneous degree A with any
object of homogeneous degree B results in an “extra” sign (—1)4Z. This is sometimes
called the “Koszul sign rule.”

With this rule the tensor product of a collection {V;};cs of super vector spaces
Vi, Vi, ®--- @V, (12.12)

is well-defined and independent of the ordering of the factors. This is a slightly nontrivial
fact. See the remarks below.
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We define the Zs-graded-symmetric and Zso-graded-antisymmetric products to be the
images of the projection operators

P = % (1xevy) (12.13)

Therefore the Zs-graded-symmetric product of a supervector space is the Zs-graded vector
space with components:

SP(V)°? = S2(VO) @ A*(VY)

12.14
SV =viev! (12:14)
and the Zs-graded-antisymmetric product is
NV = AV @ 5 (V!
(V) = A2 @ SV o15

ANV =viev!
Remarks

1. In this section we are stressing the differences between superlinear algebra and ordi-
nary linear algebra. These differences are due to important signs. If the characteristic
of the field k is 2 then £1 are the same. Therefore, in the remainder of this section
we assume k is a field of characteristic different from 2.

. . . c e 1. eq:TensSupVect
2. Since the transformation cy,y is nontrivial in the Zs-graded case the fact that (h’%—fﬁ—pi

is well-defined is actually slightly nontrivial. To see the issue consider the tensor
product Vi ® V, ® V3 of three super vector spaces. Recall the relation (12)(23)(12) =
(23)(12)(23) of the symmetric group. Therefore, we should have “coherent” isomor-
phisms:

(CVQ,V3 ® 1)(1 & CV1,V3)(CV1,V2 ® 1) = (1 ® CV1,V2)(CV1,V3 ® 1)(1 Y CV27V3) (12-16)

and this is easily checked.

In general a tensor category is a category with a bifunctor CxC — C denoted (X,Y) —
X ®Y with an associativity isomorphism Fyy 7z : (X®Y)®Z = X®(Y ®7) satisfying
the pentagon coherence relation. A braiding is an isomorphismcxy : XY — Y®X.
The associativity and braiding isomorphisms must satisfy “coherence equations.” The
category of supervector spaces is perhaps the simplest example of a braided tensor
category going beyond the category of vector spaces.

3. Note well that S?(V) as a supervector space does not even have the same dimension
as S?(V) in the ungraded sense! Moreover, if V has a nonzero odd-dimensional
summand then A™(V) does not vanish no matter how large n is.

Exercise
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a.) Show that Cé/ié/CWV 1.
b.) Check (

Exercise Reversal of parity

a.) Introduce an operation which switches the parity of a supervector space: (IIV)? =
V1and (IIV)! = V0. Show that II defines a functor of the category of supervector spaces
to itself which squares to one.

b.) In the category of finite-dimensional supervector spaces when are V and IIV
isomorphic? 2V

c.) Show that one can identify IIV as the functor defined by tensoring V with the

canonical odd one-dimensional vector space k01

12.2 Linear transformations between supervector spaces

If the ground field & is taken to have degree 0 then the dual space V'V in the category of
supervector spaces consists of the morphisms V — % Note that V'V inherits a natural
Zs grading;:

(12.17)

Thus, we can say that (V)¢ are the linear functionals V' — & which vanish on V!*€,
Taking our cue from the natural isomorphism in the ungraded theory:

Hom(V, W)= VYo W (12.18)

we use the same definition so that the space of linear transformations between two Zo-
graded spaces becomes Zy graded. We also write End(V) = Hom(V, V).

In particular, a linear transformation is an even linear transformation between two
Zo-graded spaces iff T : VO — W? and V! — W', and it is odd iff T : V° — W' and
V1 — WO Put differently:

Hom(V, W)° = Hom(V°, W) @ Hom(V?!, W)

12.19
Hom(V, W)! = Hom(V°, W) @ Hom(V?!, W?) ( )

The general linear transformation is neither even nor odd.

If we choose a basis for V' made of vectors of homogeneous degree and order it so that
the even degree vectors come first then with respect to such a basis even transformations
have block diagonal form

20 Apswer: An isomorphism is a degree-preserving isomorphism of vector spaces. Therefore if V has
graded dimension (m|n) then IIV has graded dimension (n|m) so they are isomorphic in the category of
supervector spaces iff n = m.
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A0
T = (0 D> (12.20)

while odd transformations have block diagonal form

0 B
T = (c o> (12.21)

Remarks

1. Note well! There is a difference between Hom(V, W) and Hom(V, W). The latter is
the space of morphisms from V' to W in the category of supervector spaces. They

consist of just the even linear transformations: 2!

Hom(V, W) = Hom(V, W)° (12.22)

One reason for this definition is that otherwise the graded dimension (ne|n,) is not
an invariant of a super-vector-space.

2.UT :V — W and T" : V! — W' are linear operators on super-vector-spaces then
we can define the Zo graded tensor product T'® T’. Note that deg(T ® T") =
deg(T') + deg(T”), and on homogeneous vectors we have

(TRT(we) = (—1)Tde) () @ T'(v') (12.23)

As in the ungraded case, End(V) is a ring, but now it is a Zs-graded ring un-
der composition: T1Ty := Ty o Ty. That is if 71,75 € End(V) are homogeneous then
deg(T1Ty) = deg(Ty) + deg(T»), as one can easily check using the above block matrices.
These operators are said to graded-commute, or supercommute if

T\T, = (—1)desTrdesTey ) (12.24)

Exercise

Show that if T': V — W is a linear transformation between two super-vector spaces
then

a.) T is even iff TPy = PyT

b.) T is odd iff TPy = —PyT.

2'Warning! Some authors use the opposite notation Hom vs. Hom h _i@.H.Bguishing hom in the category
of supervector spaces from “internal hom.” In particular, see §1.6 of .
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12.3 Superalgebras

The set of linear transformations End(V') of a supervector space is an example of a super-
algebra. In general we have:
Definition

a.) A superalgebra A is a supervector space over a field x together with a morphism
A A— A (12.25)
of supervector spaces. We denote the product as a ® a’ — aa’. Note this implies that
deg(aa’) = deg(a) + deg(a’). (12.26)

We assume our superalgebras to be unital so there is a 14 with 1 4a = al 4 = a. Henceforth
we simply write 1 for 1 4.
b.) The superalgebra is associative if (aa’)a” = a(a’a”).
c.) Two elements a, a’ in a superalgebra are said to graded-commute, or super-commute
provided
ad' = (=1)lll¥lg/q (12.27)

If every pair of elements a,a’ in a superalgebra graded-commmute then the superalgebra
is called graded-commutative or supercommutative.

d.) The supercenter, or Zs-graded center of an algebra, denoted Z4(.A), is the subsu-
peralgebra of A such that all homogeneous elements a € Z4(.A) satisfy

ab = (—1)lllblpg (12.28)

for all homogeneous b € A.

Example 1: Matriz superalgebras. If V' is a supervector space then End(V') as described
above is a matrix superalgebra. As an exercise, show that the supercenter is isomorphic
to Kk, consisting of the transformations v — av, for a € k. So in this case the center and
super-center coincide.

Example 2: Grassmann algebras. The Grassmann algebra of an ordinary vector space W
is just the exterior algebra of W considered as a Zs-graded algebra. We will denote it as
Grass[IW]. In plain English, we take vectors in W to be odd and use them to generate a
superalgebra with the rule that

wiws + wowy = 0 (12.29)

for all wy,ws. In particular (provided the characteristic of & is not two) we have w? = 0
for all w. Thus, if we choose basis vectors 6!,...,0" for W then we can view Grass(W) as
the quotient of the supercommutative polynomial superalgebra x[0',..., 6"]/I where the
relations in [ are:

0'67 +670° = 0 6H)%* =0 (12.30)
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The typical element then is

. 1 o 1 ) )
a=x+x;6"+ Emijﬁléﬁ 4+ -+ Exil,m,iﬁ“ NG (12.31)

th

The coefficients z;, .. ;,, are m"*-rank totally antisymmetric tensors in k¥ We will some-

times also use the notation Grass[f?,...,0"].

Definition Let A and B be two superalgebras. The graded tensor product AQB is the
superalgebra which is the graded tensor product as a vector space and the multiplication
of homogeneous elements satisfies

(a1®b1) - (a2®bg) = (—1)!011192l (a1 a5) R (b1by) (12.32)

Example For matrix superalgebras we have End(V)®End(V’) = End(V ® V'), and in
particular:

End(C"<I")@End(Cel"o) = End(CMe"e @ Crelmo) = End(Cremetnonolnenotnone (12 33)
Remarks

1. Every Zo-graded algebra is also an ungraded algebra: We just forget the grading.
However this can lead to some confusions:

2. An algebra can be Zs-graded-commutative and not ungraded-commutative: The
Grassmann algebras are an example of that. We can also have algebras which are
ungraded commutative but not Zs-graded commutative. The Clifford algebras C?4
described below provide examples of that.

3. The Zo-graded-center of an algebra can be different from the center of an algebra
as an ungraded algebra. Again, the Clifford algebras C¢1; described below provide
examples.

4. One implication of (ﬁ'%%g’lui?sﬂﬁ—tg%?when writing matrix representations of graded
algebras we do not get a matrix representation of the graded tensor product just
by taking the tensor product of the matrix representations. This is important when
discussing reps of Clifford algebras, as we will stress below.

5. As for ungraded algebras, there is a notion of simple, semi-simple, and central super-

. . i Iapp:C%ntralSimp e
algebras. These are discussed in the Appendix [A-

Exercise
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If V' is a supervector space show that the super-center of End(V') consists of scalar
multiples of the identity.

Exercise The opposite algebra
a.) For any ungraded algebra A we can define the opposite algebra A°PP by the rule

a-°PP b= ba (12.34)

Show that A°PP is still an algebra.
b.) Show that there is natural morphism of algebras: 22 A ® A°PP — End(A).
c.) For any superalgebra A we can define the opposite superalgebra A°PP by the rule

a PP b= (—1)lellblpg (12.35)

Show that A°PP is still an superalgebra.
d.) Show that A is supercommutative iff A = A°PP.
e.) Show that there is natural morphism of super-algebras: A®A°PP — End(A).

12.4 Modules over superalgebras

Definition A super-module M over a super-algebra A (where A is itself a superalgebra
over a field k) is a supervector space M over k together with a x-linear map A x M — M
defining a left-action or a right-action. That is, it is a left-module if, denoting the map by
L:Ax M — M we have

L(a, L(b,m)) = L(ab,m) (12.36)

and it is a right-module if, denoting the map by R : A x M — M we have
R(a, R(b,m)) = R(ba,m) (12.37)

In either case:
deg(R(a,m)) = deg(L(a,m)) = deg(a) + deg(m) (12.38)

The notations L(a,m) and R(a,m) are somewhat cumbersome and instead we write
L(a,m) = am and R(a,m) = ma so that (ab)m = a(bm) and m(ab) = (ma)b. We also
sometimes refer to a super-module over a super-algebra A just as a representation of A.

Definition A linear transformation between two super-modules M, N over A is a k-linear
transformation of supervector spaces such that if T is homogeneous and M is a left A-
module then T'(am) = (—1)ITllelgT(m) while if M is a right A-module then T(ma) =
T(m)a. We denote the space of such linear transformations by Hom 4 (M, N). If N is a left

22 Answer: Given a ® b we consider the linear transformation z — azb.
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A-module then Hom 4(M, N) is a left A-module with (a -T)(m) :=a- (T(m)). If N is a
right A-module then Hom 4 (M, N) is a right A-module with (T-a)(m) := (=1)1¢™T(m)a.
When M = N we denote the module of linear transformations by End 4(M).

Just as in the case of supervector spaces, we must be careful about the definition of a
morphism:

Definition A morphism in the category of A-modules is a morphism T of supervector
spaces which commutes with the A-action.

Example Matriz superalgebras. In the ungraded world a matrix algebra End(V) for a
finite dimensional vector space, say, over C, has a unique irreducible representation, up
to isomorphism. This is just the space V itself. A rather tricky point is that if V is a
supervector space V = CPI? then V and IIV are inequivalent representations of End(V).
One way to see this is that if 5 is a generator of IT = Cl' then T'(nv) = (~D)ITInT(v) is a

priori a different module. In terms of matrices

(-0 62

So the LHS gives a representation of the matrix superalgebra, but it is not related by an
invertible element of End(CP!9). The even subalgebra End(C?) @ End(C?) has a unique
faithful representation C? @ C? and hence the matrix superalgebra End(CPl%) has exactly
two irreducible modules.

Exercise Tensor product of modules
Let A and B be superalgebras with modules M and N, respectively. Show that the
rule
(a®b) - (men):= (=17 (am) @ (bn) (12.40)

does indeed define M ® N as an A®B module. Be careful with the signs!

Exercise Left modules vs. right modules
a.) Show that if (a,m) — L(a,m) defines the structure of a left-A-module on M then
the new product R : A°PP x M — M defined by

R(a,m) := (=1)ldm L(a, m) (12.41)
defines M as a right A°PP-module. That is, show that

R(ay, R(az, m)) = R(az -°"P a1, m) (12.42)
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b.) Similarly, show that if M is a right A-module then it can be canonically considered
also to be a left- A°PP module.

c.) Show that if M is a module for a supercommutative algebra .4 then it can be con-
sidered either as a left- or right- A-module. Because of this, when A is supercommutative,
we will sometimes write the module multiplication on the left or the right, depending on
which order is more convenient to keep the signs down.

12.5 Star-structures and super-Hilbert spaces

There are at least three notions of a real structure on a complex superalgebra which one
will encounter in the literature:

1. Tt is a C-antilinear involutive automorphism a +— a*. Hence deg(a*) = deg(a) and
(ab)* = a*Xb*.

2. Tt is a C-antilinear involutive anti-automorphism. Thus deg(a*) = deg(a) but

(ab)* = (—1)lellbly* > (12.43)

3. It is a C-antilinear involutive anti-automorphism. Thus deg(a*) = deg(a) but

(ab)* = b*a* (12.44)

If A is a supercommutative complex superalgebra then structures 1 and 2 coincide:
a — a* is the same as a — a*. See remarks below for the relation of 2 and 3.

Definition A sesquilinear form h on a complex supervector space Hisamap h : HxH — C
such that

1. Tt is even, so that h(v,w) = 0 if v and w have opposite parity

2. It is C-linear in the second variable and C-antilinear in the first variable

3. An Hermitian form on a supervector space is a sesquilinear form which moreover
satisfies the symmetry property:

(h(v,w))* = (~1)#lh(uw, v) (12.45)
4. Tf in addition for all nonzero v € H°
h(v,v) >0 (12.46)

while for all nonzero v € H!
i h(v,v) >0, (12.47)

then H endowed with the form h is a super-Hilbert space.
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For bounded operators we define the adjoint of a homogeneous linear operator T :
H — H by
hT*v,w) = (=) TP h (v, Tw) (12.48)

The spectral theorem is essentially the same as in the ungraded case with one strange
modification. For even Hermitian operators the spectrum is real. However, for odd Her-
mitian operators the point spectrum sits in a real subspace of the complex plane which is
not the real line! If T' is odd then an eigenvector v such that Tv = Av must have even and
odd parts v = ve + v,. Then the eigenvalue equation becomes

Tve. = Av,
(12.49)
Tv, = e
Now the usual proof that the point spectrum is real is modified to:
AN h(ve, Vo) = h(Avg, Vo) = (T e, v5) = h(Ve, TV,) = M(ve, v
(vo, Vo) = h(Avo, Vo) = h(T've, o) = h(ve, T'v,) (ve, ve) (12.50)

A h(Ve,ve) = h(Ave, ve) = h(T0o,ve) = —h(vo, TVe) = —Ah(vo, Vo)

These two equations have the same content: Since v # 0 and we are in a superHilbert
space it must be that
h(ve, ve) = i h(ve, v0) > 0 (12.51)

and therefore the phase of A is determined. It lies on the line passing through e!™/4 =
|fig: SUPERHERMITIAN

(1414)/+/2 in the complex plane, as shown in Figure 8

A

)

N

v

Figure 8: When the Koszul rule is consistently implemented odd super-Hermitian operators have
a spectrum which lies along the line through the origin which runs through 1 4 4.

Example: An example of a natural super-Hilbert space is the Hilbert space of L2-spinors
on an even-dimensional manifold with (—1)f" given by the chirality operator. An odd self-
adjoint operator which will have nonhomogeneous eigenvectors is the Dirac operator on an
even-dimensional manifold. One usually thinks of the eigenvalues as real for this operator
and that is indeed the case if we use the star-structure *x, number 3 above. See the exercise
below.
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Remarks

1. In general star-structures 2 and 3 above are actually closely related. Indeed, given a
structure a — a* of type 2 we can define a structure of type 3 by defining either

* -0
@ = {a al (12.52)

ia* Ja| =1

or
a* al=0
o 25
—ia* Ja| =1
It is very unfortunate that in most of the physics literature the definition of a star
structure is that used in item 3 above. For example a typical formula used in manip-

ulations in superspace is
0105 = 020, (12.54)

and the fermion kinetic energy
~d
dtih— 12.55
[ dtiv o (12.55)

is only “real” with the third convention. The rationale for this convention, especially
for fermionic fields, is that they will eventually be quantized as operators on a Hilbert
space. Physicists find it much more natural to have a standard Hilbert space struc-
ture, even if it is Zg-graded. On the other hand, item 2 implements the Koszul rule
consistently and makes the analogy to classical physics as close as possible. So, for
example, the fermionic kinetic term is

_d
/dw%q/) (12.56)

and is “manifestly real.”

Fortunately, as we have just noted one convention can be converted to the other, but
the difference will, for example, show up as factors of ¢ in comparing supersymmetric
Lagrangians in the different conventions, as the above examples show.

Exercise

a.) Show that a super-Hermitian form h on a super-Hilbert space can be used to define

an ordinary Hilbert space structure on #H by taking H" L H! and taking
(v,w) := h(v,w) v,w € H

(v,w) := i th(v,w) v,w € H!

(12.57) ‘ eq:UnbradedHermit

b.) Show that if 7" is an operator on a super-Hilbert-space then the super-adjoint 7%
leq:UnbradedHermitian

and the ordinary adjoint T'f, the latter defined with respect to (II2:57), are related by

. |17 |11=0
T = (12.58)
iTt T =1
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c.) Show that T — T is a star-structure on the superalgebra of operators on super-
space which is of type 3 above.

d.) Show that if T is an odd self-adjoint operator with respect to * then e /AT is an
odd self-adjoint operator with respect to t. In particular e /4T has a point spectrum in

the real line.

e.) More generally, show that if a is odd and real with respect to * then e~ m/4q is real

:relstar

with respect to x defined by (e .

13. Clifford Algebras and Their Modules

Some references for this section are:

1. E. Cartan, The theory of Spinors

2. Chevalley,

2’. P. Deligne, “Notes on spinors,” in Quantum Fields and Strings: A Course for
Mathematicians

3. One of the best treatments is in Atiyah, Bott, and Shapiro, “Clifford Modules”

4. A textbook version of the ABS paper can be found in Lawson and Michelson, Spin
Geometry, ch.1

5. Freund, Introduction to Supersymmetry

6. M. Sohnius, “Introducing Supersymmetry” Phys. Rept.

7. T. Kugo and P. Townsend, “Supersymmetry and the division algebras,” Nuc. Phys.
B221 (1983)357.

8. M. Rausch de Traubenberg, “Clifford Algebras in Physics,” arXiv:hep-th/0506011.

9. Freedman and van Proeyen, Supergravity

13.1 The real and complex Clifford algebras
13.1.1 Definitions

Clifford algebras are defined for a general nondegenerate symmetric quadratic form @ on a
vector space V over k. They are officially defined as a quotient of the tensor algebra of V' by
the ideal generated by the set of elements of T'V of the form v1 ® vy + vy @ v1 — 2Q(v1, v2) - 1
for any v1,v3 € V. A more intuitive definition is that C¢(Q) is the Zy graded algebra
over k which has a set of odd generators {e;} in one-one correspondence with a basis, also
denoted {e;}, for the vector space V. The only relations on the generators are given by &Poor choice of

notation since e;; is

an element of the
{€i7 63} - QQ’U . 1 (131) Clifford algebra but
also our notation for
matrix units... &

where Q);; € k is the matrix of ) with respect to a basis {e;} of V, and 1 € C¥(Q) is
the multiplicative identity. Henceforth we will usually identify x with & - 1 and drop the
explicit 1.

Because e; are odd and 1 is even, the algebra C/¢(Q) does not admit a Z-grading.
However, every expression in the relations on the generators is even so the algebra admits
a Zy grading:

CUQ) = CLQ)° & CUQ) (13.2)
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Of course, one is always free to regard C'¢(Q) as an ordinary ungraded algebra, and this is
what is done in much of the physics literature. However, as we will show below, comparing
the graded and ungraded algebras leads to a lot of insight.
Incidentally, it turns out that CY(Q)° is isomorphic to an ungraded Clifford algebra:
subsubsec : EvenSubA

See Section §T3.1.2 below.
Suppose we can choose a basis {e;} for V so that Q;; is diagonal. Then e? = ¢; # 0. It

follows that Cl(Q) is not supercommutative, because an odd element must square to zero
in a supercommutative algebra. Henceforth we assume ();; has been diagonalized, so that
e; anticommutes with e; for 7 # j. Thus, we have the basic Clifford relations:

€i€j + €5€; = 2%'52']' (133)

When {i1,...,i,} are all distinct is useful to define the notation

€iq-- (13.4)

ip = €y €

P

Of course, this expression is totally antisymmetric in the indices, and a moment’s thought
shows that it forms a basis for C¢(Q)) as a vector space and so we have

cUQ)

eq:VSISO . . . . . .
We stress that (I%Si 1S only an isomorphism of wvector spaces. If V is finite-dimensional
with d = dim,V then we conclude that
d
d
-3 (5) -
p

p=0

eq: VSISO
We must also stress that while the left and right hand sides (l% 5) are both algebras over

K thve Iescbuatlon is completely false as an isomorphism of algebras. The right hand side of
eq:

(T3°5) 15 a Grassmann algebra, which is supercommutative and as we have noted C¢(Q) is

YN (13.5)

dim,C0(Q) (13.6)

not supercommutative.
If we take the case of a real vector space R? then WLOG we can diagonalize @ to the

+1, 0
-(v5)

For such a quadratic form on a real vector space we denote the real Clifford algebra C¢(Q)
by Clyys—. 2

We can similarly discuss the complex Clifford algebras C/,,. Note that over the complex
numbers if e2 = +1 then (ie)? = —1 so we do not need to account for the signature, and
WLOG we can just consider C/, for n > 0.

form

(13.7)

2The notation Cl, s is used in different ways by different authors. Some have r generators squaring
to +1 and s generators squaring to —1, and and some have the opposite convention. It is impossible to
remember this convention so we always explicitly write which are 4+ and which are —, when it matters,
except when one of then is negative. For an integer n we denote C¥,, := C¥,4 0— when n is nonnegative
and we denote C¥,, := CY|,|_ o4 for n nonpositive. So we have a single notation C'/,, and the sign of n tells

us the sign of e?.

~ 9] —
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Exercise
a.) Show that v € V' is considered as an element of C¢(Q) then

0= Q)1 133)

b.) Show that (E%%g%d in fact be taken as a definition of the generating relations
of the Clifford algebra C¢(Q).

Remark: In physics we often distinguish v € V' from v € C¢(Q) by the notation .
Thus, for example, if p = p’e; is a vector on the pseudo-sphere

PP’ Qi = R*. (13.9)

then pQ =R%2.1.

Exercise Opposite Clifford algebra

Show that if A= C/l,4 s then APP =Cly, ..

Since A is not supercommutative we cannot conclude that these are isomorphic, and,
in general, they are not.

13.1.2 The even subalgebra

sec:EvenSubAlg

The even subalgebra is an ungraded algebra and is isomorphic, as an ungraded algebra, to
another Clifford algebra.
For example, if d > 1 then

ClY = Cly_y ungraded algebras. (13.10)

The proof is straightfoward. For d = 1 the statement is obvious. If d > 1 then choose some
basis vector, say e; and let

éj = €1€6541 j = 1, e ,d -1 (13.11)

Then one easily checks that the €; satisfy the standard Clifford relations defining Cl;_1,
albeit with quadratic form —24;;. However, as we have remarked, over the complex numbers
one can always change the signature. Note that there is no canonical isomorphism - we
made a choice of a basis vector in our construction.

When working over the real numbers we must be more careful about signs. choose any
basis element e;, and consider the algebra generated by

& =cioj G #in (13.12)
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Note that
€jek + ;i = —24igio Gk J, k F o (13.13)

and therefore 24

ClO(ry, s )= Cl(ry,(s—1)_) s>1

Oy, 5 ) = Cllsy, (r—1)_) r>1 (13.14)

I

Exercise
:t
Show that when both » > 1 and s > 1 then the two equations in (el % IWZI ;egl?g Scompatible.

Exercise
Show that
(Cllry,52))° 2= (Cl(sy,r-))" (13.15)

13.1.3 Relations by tensor products

One important advantage of regarding C'¢(Q) as a superalgebra, rather than just an algebra
is that if Q1 @& Q9 is a quadratic form on Vi @ V5 then

ClQ1 D Qo) = CUQRBRCUQ,) (13.16)

As we will see below, this is q(gﬁr_l&lgtely false if we regard the Clifford algebras as ungraded
algebras. Since equation (I[3.16] is crucially important below let us give a proof: Let {e;}
and {f,} be bases for V; and V; respectively. In the Clifford algebra the corresponding
generators anticommute:

eifa + faei =0 (1317)

Now in an ordinary tensor product we have
(e ®1)-(1® fa) =(1® fa) - (e ®1) (13.18)
but in a graded tensor product we get an extra sign, since e; and f, are both odd:

(ei®1) - (18fa) = — (18 fa) - (;®1) (13.19)

24Note that this implies that we must have CE((r + 1)+, 5-) = C¢((s 4+ 1)4,7-) for all 7,5 > 0. One can
indeed prove this is so using the periodicity isomorphisms and the observation that C¢(24) = C¢(14,1_) =
R(2). Nevertheless, at first site this might seem to be very unlikely since the transverse dimensions are
r—s—1and s—r—1 and in general are not equal modulo 8. Note that the sum of the transverse dimensions
is —2 = 6mod8. Thus, we have the pairs (0,6), (1,5), (2,4), and (3,3). One can check from the table that
these all do in fact have the same Morita type! Of course, the dimensions are the same, so they must in
fact be isomorphic.
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eq : CA-GTP
Therefore we I(I:I&lSGtT Aise the graded tensor product in (I% [6).
eq: N
From (I3.16) we have some useful identities: First, note that for n > 0:

Cl, = CUH®---RCl (13.20)
N———

n times

Clp=Cl1® - RCL_4 (13.21)

n times

More generally we have

Clry g =CUHE - RCHRCL_ 1B RCL_4 (13.22)
r times s times
Moreover
Cl, =2 CHB - RCL (13.23)
N——
n times

If we view the Clifford algebras as ungraded algebras then the tensor product relations
are a bit more complicated:

Lemma: As ungraded algebras we have the following isomorphisms:

Cllry,s_)@CU24) = Cl(s+2)4,r-) (13.24)
Clry,s_)@CU2_) = Cl(sq,(r+2)-) (13.25)
Cllry,s—)@CLA,1)=Cl(r+1)4,(s+1)-) (13.26)
(13.27)

Cly, ® Cly = Cly s 13.27

Proofs:

e Let e; be generators of Cl,, s, fo, @ = 1,2 be generators of C'¢5. Note that the
obvious set of generators ¢; ® 1 and 1 ® f,, do not satisfy the relations of the Clifford
algebra, because they do not anticommute. On the other hand if we take

€ =¢e; ® fi9 €dta ‘= 1® fo (13.28)
where fio = f1fo, then €y, M =1...,d + 2 satisfy the Clifford algebra relations and also
generate the tensor product. Now note that (fi2)?> = —1 and hence:

(ei & f12)2 = —(62')2 (13.29)

(no sum on 1).
An almost identical proof works for tensoring with C'¢_,. Similarly, in the case C¢14 1—
we have (f12)? = +1 and hence:

(e ® f12)* = +(e:)” (13.30)

(no sum on 7).
Complexifying any of the above identities yields the last one. <
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-:CliffVolElmt|

Remarks These isomorphisms, and the consequences below are very useful in physics
because they relate Clifford algebras and spinors in different dimensions. Notice in par-
ticular, item 2, which relates the Clifford algebra in a spacetime to that on the transverse
space to the lightcone. Since they are relations of ungraded tensor products they can be
used to build up (ungraded) representations of larger algebras from smaller algebras. For
the complex case see **** below.

Exercise
Show that Cl((s + 1)4,r_) = Cl((r + 1)4+,s_) as ungraded algebras.

13.1.4 The Clifford volume element

A key object in discussing the structure of Clifford algebras is the Clifford volume element.
When V is provided with an orientation this is the canonical element in C'¢(Q) defined by

wi=e;---eq (13.31)

where d = dim,. V' and e; A--- A ey is the orientation of V. Since there are two orientations
there are really two volume elements.

Note that:

Remarks

1. The Clifford volume element w or w, in the complex case (see below) is often referred
to as the chirality operator in physics, or sometimes as -s.

2. For d even, w is even and anti-commutes with the generators e;w = —we;. Therefore
it is neither in the center nor in the ungraded center of C¢(Q). It is in the ungraded
center of the ungraded algebra C¢(Q)°.

3. For d odd, w is odd and e;w = 4we;. Therefore it is in the ungraded center Z(C¢(Q))
but, because it is odd, it is not in the graded center Z5(C4(Q)).

4. Thus, w is never in the supercenter of C¢(Q). In fact, we will see that the super-center
of U, s is R and the super-center of Cl; is C.

5. w? is always +1 (independent of the orientation). The precise rule is worked out
in equation (Wbelow. Here is the way to remember the result: The sign only
depends on the value of r4 — s_ modulo 4. Therefore we can reduce the question to
C?,, and the result only depends on n modulo four. For n = Omod4 the sign is clearly
+1. For n = 2mod4 it is clearly —1, because (e1e3)* = —e?e3 = —1 as long as €7 and

e3 have the same sign. For C¢, and C/_; it is obviously +1 and —1, respectively.
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Exercise The transpose anti-automorphism

An important anti-automorphism, the transpose B : C4(Q) — CU(Q) is defined as
follows: 5(1) =1 and S(v) = v for v € V. Now we extend this to be an anti-automorphism
so that B(p1¢2) = Ppa¢p1. In particular:

/B(eileig e eik) = €43 Cip_y " €64y (1332)
Show that:
1
Bleiig) = iy = (—1)2FE ey, (13.33)

Note: The functions f(k) = (—1)%]“(]“_1) and g(k) = (—1)%]“(]““) appear frequently
when doing computation with Clifford algebras. Note that f(k) and g(k) only depend on
kmod4, f(k) = g(—k) and

—1 k =2,3mod4 .

(_1)%k(k+1) _ +1 k= 0,3mod4 (13.35)
-1 k=1,2mod4

Exercise The Clifford volume element
a.) Show that the volume element in C'¥(ry,s_)

w=ees - eq (13.36)
d =ry + s_, satisfies

+1 for(s— —ry)=0,3mod4

(13.37)
-1 for(s— —ry)=1,2mod4

w2 = (_1)%(87—T+)(87—7’++1) — {

[Answer: The easiest way to compute is to write
W — (_1)%d(d71)wﬂ(w) _ (_1)%d(d71)+s _ (_1)%(sfr)(sfr+l)] (1338)

b.) Show that under a change of basis e# — fF =Y g"*e” where g € O(Q) we have
w’ = detg w, so that w indeed transforms as the volume element.

d.) wet = (=1)%*1ety. Thus w is central for d odd and is not central for d even.

Note:

1. dr = s— — r4 generalizes the number of dimensions transverse to the light cone in
Lorentzian geometry.

2. w? =1 and w is central only for d7 = s — r = 3mod4.
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Exercise Clifford volume element and Hodge star

If V is a real vector space with nondegenerate metric then given an orientation we can
define a Hodge *. This is a linear operator on A*V which exchanges A*V with A%~*V such
that, on differential forms

wrw=||w | vol(g) (13.39)

eq: VSISO
Under the isomorphism (T3: e Hodge * must correspond to a linear operator on

C?, _,. Find this operator.

13.2 Clifford algebras and modules over xk = C
13.2.1 Structure of the (graded and ungraded) algebras and modules

Let us begin by considering the low-dimensional examples. We will contrast both the
graded and ungraded structures, to highlight the differences.

Of course Cly = C is purely even. Nevertheless, as a superalgebra it has two inequiv-
alent irreducible graded modules My~ = C!% and My = CO'. As an ungraded algebra it
has one irreducible module - the regular representation Ny = C.

Moving on to Cf;. As a vector space it is isomorphic to C? with the natural basis
{1, e}, so the general element is z; + z9e with multiplication

(21 + 22€) (2] + zpe) = (212] + 2225) + (2125 + 2227 )e (13.40)

As an exercise the reader should show that this algebra is a simple superalgebra: There

are no proper graded ideals. It is also central: The graded center is Zs(Cl1) = C. Thus, it
lapp:CentralSimple

is a central simple superalgebra over C. (See the Appendix [A for the basic definitions of

central and simple superalgebras.)

The algebra C/¢; is a two-dimensional vector space and thus cannot be a matrix su-
peralgebra! The latter would be End(C"™) and would have complex dimension (n +m)?,
but 2 is not a perfect square.

As an ungraded algebra

Ch=CoC ungraded! (13.41)
where the RHS is the algebra with multiplication
(21 @ 22)(2] D 25) = 2121 D 2224 (13.42)

This is not a simple algebra and Py = %(1 + e) are orthogonal projectors to the two ideals
given by the two summands. Moreover, the ungraded center is the whole algebra. Thus it
is mot an central algebra: Its center contains the ground field as a proper subalgebra.

Let us consider the representations of C/;:

As a superalgebra C/; has a unique irrep M; = C''. We must represent p(e) by an
odd operator which squares to +1. The most general such operator is

ple) = zo' +yo® 22+y?=1, a,yeC (13.43)
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But all these choices are equivalent by an even automorphism, hence an invertible element
of End(C'"). Indeed, conjugation by the even transformation cos 6 +i sin fo° rotates (z, )
by 26. However, we cannot represent p(e) by 0% because this would not be odd.

On the other hand, as an ungraded algebra C/; has two inequivalent one-dimensional
representations Ni¥ 2 C with pi(e) = +1.

Now let us move on to Cly. As a superalgebra we can write two inequivalent irreducible
modules M3 for Cly with M = CU' as supervector spaces. Therefore Cf; = End(C'")
as a superalgebra. This superalgebra has super-center Zs(Cls) = C and is graded-simple.
Thus it is a central simple superalgebra. For M, we can take, for example,

01 0 —1 ,
ple1) = (1 0) plez) = (2 0) (13.44)
and for MQJr
01 0 —i
pler) = (1 0) ples) = — (Z 0) (13.45) |eq:M2-plus

The invariant distinction between these is apparent when we look at the volume form:
w = ejeg. This is even, is in the center of CE(Q), and squares to —1. Therefore, in an
irrep it should act as a scalar 4+% on the even subspace. That cannot be changed by a
superisomorphism.

The above matrix representations also show that, as an ungraded algebra C/s is iso-
morphic to M3(C) = C(2). This is a simple algebra with ungraded center Z = C. It has a
unique irrep No = C2. Note that this simple example already shows us the failure of the

i . eq:CplxCliff-Tens . . .
identity (II3.23) tor the ordinary tensor product. Indeed, with the ordinary tensor product

we have

ClhecCh=(Capl)ac(CalC)=2=CpCapCaC (13.46) ‘ eq:ungradtens

which is an abelian, nonsimple algebra of dimension four.

At this point we have established:

Clifford Algebra Cty Clyq Cl4o

Graded algebra C Cle],e? =1 End(C'I")
Ungraded algebra C CoC M>(C)

Graded irreps MFE = o con M, = ClIt M = Cl‘l,p(eleg)|MQi,o =+i
Ungraded irreps No=2C Nli =C,ple) ==+1 Ny = (C?
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What about dimensons n > 27 Now we can use tensor products to get the general

structure.
leq:CplxCliff-Tens
First, in the superalgebra case we can invoke (3.23). We know how to multiply matrix

superalgebras by (I[Z.33). As we have stressed, C/; is not a matrix superalgebra, but Cfly
is. Therefore, since Cl,, 9 = Ct,RCly we have the key fact

Cly 4o = End(C'M&CE, (13.47)

Therefore, one can show inductively that
Cly, = End(C2 12" (13.48)
and hence
Cloi1 = End(C2 2" HBCH, (13.49)

In both cases they are central simple superalgebras.

Note that
+1 =0, lmod4
W = ne e (13.50)
-1 n=2,3mod4
so if we define
w n=0,1mod4
We 1= (13.51)
iw n=2,3mod4

then w? =1

. . I-19[%]-1
For n even there are two irreducible modules M = C2?*" 122

. The volume element
w, is even and therefore can be restricted to the even subspace M° of any C/,, module (for
n even). Moreover w,. is central in the even algebra and will therefore be a scalar in an
irreducible module. The two irreducible modules are then distinguished by the sign of the
volume element w, restricted to the even subspace (MF)". For n odd there is a unique
irreducible module M,, = CQ[%”Q[%].

We can use the above results to derive the ungraded algebras. For n = 2k even

Cl, = End((CQk) n = 0(2), ungraded (13.52)
This is a central simple algebra with a unique irrep Noj =2 C2*. For n = 2k + 1 odd
Ct, = End((CZk) D End((CZk) n = 1(2), ungraded (13.53)

Now w, is (ungraded) central and we can make orthogonal projection o%egag(()irs Py =
ungraqaeao
$(1 £ w,) onto the two simple ideals (i.e. the two summands in (I%.SB% There are two
mequlvalent representations on c?* according to whether w, is represented as +1.

To summarize, we have:
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Clifford Algebra Clyy, Clok41
Graded algebra End(C2" 12T End(C? 2" H&Ce,
Ungraded algebra C(2%) C(2F) @ C(2%)
Graded irreps Mi ~ 2T p(wc)\Mi,o = =1 Moy 1 = c2'2*
Ungraded irreps Ny, &= c?* Ni“ = C2k, plwe) = £1
Remarks

1. The irreducible representation Noj is often called the “Dirac representation.”

2. Although C/,, is not supercommutative, it is nevertheless true that C/’Y = C/_,, =
C/,,. Therefore we do not need to distinguish left-modules from right-modules. (See

$okokokok

exercise above.) In our discussion above we have always implicitly worked with

left-modules.

3. A more conceptual way to explain the relation between the ungraded and graded
modules is that there is an equivalence of categories between the category N, of
ungraded modules of C/,, and the category M, 1 of graded modules of C¢, ;. To
go in one direction, if we have M € M, then M? is a module for C£2 41- But
C€9H_1 =~ C/,, as an ungraded module, so we can regard M° as an object in N,,. In
the other direction we note that C#,1 is a right C£2 41-module, so given N € N, we
can produce a graded Cl,;1-module via

C€n+1 ®Ce%+1 N (1354)
These are inverse functors. &Should explain
why. &
4. Tt is also interesting to compare the irreducible modules in different dimensions. We
can do this by embedding ¢ : C* < C*+! say, by (z1,...,2x) = (21,...,2k,0). Then
it is not hard to show that
L*(MQik) > Mok_1 U (Mogy1) = M, & My, (13.55) ‘eq:RestrictGradec‘
L*(N;]:CJA) = Nog 1" (Nog ) = N;;cfl @ Nop_y (13.56) ‘ eq:RestrictUnGrac

5. We are now in a position to write explicit matrix representations for the Clifford
eq: WO~ .
modules.  We use (l%.??i as follows. Suppose that %, ¢ = 1,...,2k — 1 iS an  &Line this up with

. . . _ _ . . : the explicit re
irreducible representation of Coy_; by complex 2F~1 x 281 matrices with, say, (1) =  from harmonic
. o, e . . oscillatdesagiv i 3
1. Since it is irreducible we must have SectionW
7123---(2]671) — 7172 L 72]671 — Zlek—l (1357)
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b>subsec:Kpoint

where zj, is a complex number in {£1,+i}. Now we can produce an irrep of Clog41q
by

70

0 _i
I = 11 @02 = ( OZ) (13.58)
1

10

In this way we build up an explicit irrep in two higher dimensions. For example, if
we start out with v' = 1 in one dimension we build the three Pauli matrices in three
dimensions. In general we have

[128(k+1) — PIP2. . P26+ = g (13.59)

In particular, choosing the two values for z; produces the two irreps of Clyx 11 as an
ungraded algebra. Starting with ! = z; = £1 one obtains

zp =1z (13.60)
. . leq:RestrictUnGraded 1 ok . C . .
As an illustration of (I3.56) the mafrices I',...,I'“* provide an explicit irreducible

representation of Cly. (In fact, it can be also be taken as a graded representation.)
25

13.2.2 Morita equivalence and the complex K-theory of a point

. leq:ComplexPeriodicity . . .
Equation (T3.47) shows that the Morita equivalence classes of complex Clifford algebras

have a mod two periodicity:

[Cliso] = [CLy] (13.61)

X . . |app:CentralSimple X X
As explained in Appendix [A There is a group structure on Morita equivalence classes

[an] ’ [Cém} = [(Cfn@(:ém] = [C€n+M] = [Cg(ner)modZ] (13~62)

Therefore, the graded Brauer group of C is the group Zs.

At this point we are at the threshhold of the subject of K-theory. This is a generaliza-
tion of the cohomology groups of topological spaces. At this point we are only equipped to
discuss the “cohomology groups” of a point, but even this involves some interesting ideas.

Let Mg be the abelian monoid of finite-dimensional complex super-vector-spaces. This
is in harmony with our notation above because a finite-dimensional complex supervector
space is the same thing as a graded module for C¢y = C. The monoid operation is direct
sum and the identity is the 0 vector space. We consider a submonoid Mgﬁ" of supervector

25In particle physics courses the logic is exactly the reverse of what we said here. Usually one finds an

1234

irreducible representation of 4, with = 1,2, 3,4 and then discovers that one can introduce +° = to

give an irreducible representation in five dimensions.
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spaces for which there exists an odd invertible operator T.. That is, T € End(V)! so that
T : VO — V1! is an isomorphism. This is a submonoid because if (Vi,T1) and (Va,T»)
are “trivial” then Ty @ Ty “trivializes” Vi @& V5. Now we consider the quotient monoid
Mo/ MEY. There is a well-defined sum on equivalence classes:

[Mi] @ [Ma] := [My @ Mo (13.63)
and in the quotient monoid there are additive inverses. The reason is that
[M] @ [IIM] =M & IIM] =0 (13.64)

The second equality holds because the super-linear transformation of M @ IIM given by
v1 ® vg > vg @ vy is odd (why ?!?) and obviously invertible. The abelian group K(pt) is,
by definition,

KO(pt) := Mo/ ME (13.65)

with the above abelian group structure. Indeed K°(pt) = Z. One way to see that is to
define a linear map Mgy — 7Z via

V= ne —n, (13.66)

if V = C"elno. Clearly the kernel of this map are supervector spaces isomorphic to C'I" for
some r > 0. But these are precisely the super-vector spaces in M.
Now let us similarly define, for n > 0,

K (pt) := My /MY, (13.67)

Here M,, is the monoid of finite-dimensional complex graded modules for C¢,,. Meanwhile
MY is the submonoid of C¢,-modules M such that there exists an invertible odd operator
T € End(M) such tha;c 1; rxz%((lilglglc—)(i:g%nmutes with the C/,-action. The choice of superscript
—n instead of +n in (I%Béi 1s related to the connection to algebraic topology, a connection
which is far from obvious at this point!

Let us work out some examples of K" (pt) with n > 0.

Consider K~ !(pt). Then there is a unique irreducible module M; for Cf;. We can
take M; = C!I' with, say, p(e) = o!. Then we can introduce the odd invertible operator
T = 0? which graded commutes with p(e). Therefore M; € MV and since C/; is a
super-simple algebra all the modules are direct sums of Mj. Therefore MUY = M; and
hence K~!(pt) 0.

Next consider K ~2(pt). Then there are two irreducible modules M5 for Cly. We can
represent M2i as M2i >~ C!' together with p(e;) = o' and p(es) = 0. Any module will
be a direct sum of copies of MQi Now, any odd operator 1" on C!' which anticommutes
with ¢! and ¢? must vanish. Therefore neither M2+ nor M, are in M(t)riv. We should not
hastily conclude that MY is the zero monoid! Indeed, consider My @ M, = C22. Let
vg,v1 be an ordered basis for M2+ , with vy even and v; odd, and similarly let wg,w; be
an ordered basis for M, and consider the ordered basis vy, wp for the even subspace of
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M2+ @ M, and vy, w; for the odd subspace of M2+ @ M, . Then in this basis, as a Cl
module we have

0010 0030
000-1 000

Pe)=11 0 0 o =o' ®d® ple) =1 . 0 oo = —0?®1 (13.68)
0-10 0 0 —i00

Having made these choices notice that we can introduce

0001
1
T = 8(1)08 =o'l ®@o! (13.69)

1000

which is plainly odd, invertible, and anticommutes with p(e;) and p(ez). (Note that it also
cannot be written as a direct sum of operators on MQJr and M, , respectively.) Therefore,
in K~2(pt) we have [M, ] = —[M,]. From this it is clearly that, as abelian monoids

My 27, @7, (13.70)

(generated by M) while
MY =7, (13.71)

(generated by M, @ M, ). Therefore
K 2(pt) 2 Z (13.72)

the isomorphism being given by [ny My & n_My |+ ny —n_.
We have gone through this in excruciating detail, but now, thanks to the mod-two
periodicity it should be clear that for n > 0

K" (pt) = {f Z Z ?g; (13.73)

Remarks

:K int
1. Equation (el 373 ;oénﬁould be contrasted with the more familiar (co)homology theory
of singular, Cech, or DeRham cohomology. The cohomology groups HP(X) of a
topological space X can be defined for all integers p, but for X = pt only one group
is nongzero:
Z p=20
HP(pt) = { P (13.74)

0 else
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2. There are very many ways to introduce and discuss K-theory. In the original approach
yahHirzebruch

of Atiyah and Hirzebruch Ilt] "(pt) was defined in terms of stable isomorphism

classes of complex vector bundles on S™. One of the main points of was the

reformulation in terms of Clifford molglules an agproach which culminated in the
SingerSk

beautiful paper of Atiyah and Singer [9].” We have chosen this approach because it

is the one closest to the way K-theory appears in ph¥s1cs In string theory, T turns
out to be the classical value of a tachyon field ]ZIZ In the apphcatlons to topological
phases of matter T is related to “topologically trivial pairing of particles and holes”.

itaev,Stone
See, e.g. .

3. In general, given an abelian monoid M there are two ways to produce an associated
abelian group. One, the method adopted here, is to define a submonoid M™V so
that the quotient M /M™V admits inverses and hence is a group. A second method,
known as the Grothendieck group is to consider the produce M x M and divide by
an equivalence relation. We say that (a,b) is equivalent to (c, d) if there is an e € M
with

a+d+e=c+b+e (13.75) ‘ eq:GrothGrpRel

The idea is that if we could cancel then this would say a — b = ¢ — d. Now it
is easy to see that the set of equivalence classes [(a,b)] is an abelian group, with
[(a,b)] = —[(b,a)]. A standard example is that the Grothendieck group of M = 7Z,
produces the integers. Note that if we took M = Z, U {oo} then the Grothendieck
group would be the trivial group. This idea actually geneera_li%e% to additive categories amxplain the

. . rphe Grothendieck group
where we have a notion of sum of objects. In that case (3. should be understood approach to

to mean that there exists an isomorphism between a + d + e and ¢+ b+ e. Then one Ko
takes the monoid of isomorphism classes of objects to the Grothendieck group of the

category.

4. In fact, there is more mathematical structure here because we can take graded tensor
products of Clifford modules. These induce a product structure on the equivalence
classes:

[My] - [My] := [M1®Moy)] (13.76)

This is well-defined because if M € MV then M®M' has an odd invertible linear
transformation T®1 and hence M&M' € MYV, This allows us to define a graded
ring:

S0 K" (pt) = Zu] (13.77)

where u, known as the Bott element can be take to be u = [M,]. Note that it has
degree two.

13.2.3 Digression: A hint of the relation to topology

-:HintTopology ‘

Consider a representation of C/; by anti-Hermitian gamma matrices on a vector space (with
basis) V' where I'* are such that {I'*, 'V} = —26"", where p =1,...,d. Let dimcV = L.
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Suppose xg, Ty, 4 = 1,...,d are functions on the unit sphere 5% embedded in R
SO
xf +xur, =1 (13.78)

Consider the matrix-valued function

T(z) := 2ol + x,I'* (13.79)

T(z)T(z) =1 (13.80)

Note that

and therefore T'(z) is a unitary matrix for every (zg,z,) € S% We can view T(x) as
describing a continuous map T : S¢ — U(L). Therefore it defines an element of the
homotopy group [T'] € m4(U(L)). The following examples show that the homotopy class of
the map can be nontrivial:

Example 1: If d = 1 then we could take either of the ungraded irreducible representations
V =Cand I' = +i. If 23 + 2?2 = 1 then

T*(z) = g £ iz (13.81)
and, for either choice of sign, [T*] is a generator of m(U(1)) = Z.

Example 2: If d = 3 then we may choose either of the ungraded representations V = C?
and I' = +1/—10" and then
T(x) = o + 2;T" (13.82)

is one way to parametrize SU(2). Thus the map T : S* — SU(2) is the identity map (with
the appropriate orientation on S%). If we fix a an orientation on S% we get winding number
+1 and hence [TF] is a generator of 73(SU(2)) = 73(53) = Z.

Here is one easy criterion for triviality of [T]: Suppose we can introduce another anti-
Hermitian I x L gamma matrix on V, call it T, so that I'> = —1 and {I',T#} = 0. Now
consider the unit sphere

d
ST = {(zo, 2, y)|af + Y wpwy +y® =1} C R (13.83)
pn=1
Then we can define
T(x,y) = xo + x, " +yT (13.84)

When restricted to S9! ¢ R¥2, T is also unitary and maps S*! — U(L). Moreover
T(z,0) = T(z) while T(0,1) = . Thus T(z,y) provides an explicit homotopy of T'(x) to
the constant map.

Thus, if the representation V of Cly is the restriction of a representation of Clgiq
then T'(x) is automatically homotopically trivial.

Let us see what this means if we combine it with what we learned above about the
irreducible ungraded representations of C/.
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Figure 9: The map on the equator extends to the northern hemisphere, and is therefore homo-
topically trivial.

1. If d = 2p we have irrep Ng, = C?. Tt is indeed the restriction of NQip = C% and

hence, T'(x) must define a trivial element of m,(U (L)), with L = 2P.

2. On the other hand, if d = 2p + 1 then N;‘;H =~ C? is not the restriction of Nopio =
€2, All we can conclude from what we have said above is that T (x) might define a
homotopically nontrivial element of w41 (U (L)) with L = 2P. On the other hand, if
we had used V = NQ'; +1 ® Ny, then since V' is the restriction of the representation
Nopyo and T'= T+ & T, it follows that the homotopy classes satisfy [T~] = —[T].

o . BS. 26
Now, a nontrivial result of [[7] is:

Theorem|[Atiyah, Bott, Shapiro]. If V' is an irreducible representation of Cly then then
[T] generates mq(U(L)).

It therefore follows that 7o, (U (L)) = 0 and mop41(U(L)) = Z, with generator [T1] or
[T].
These facts are compatible with the statement in topology that

moyp 1 (UN)=Z  N>p (13.85)

mop(UN) =0 N>p (13.86)

Note that these equations say that for N sufficiently large, the homotopy groups do
not depend on N. These are called the stable homotopy groups of the unitary groups and
can be denoted 71, (U). The mod two periodicity of 7, (U) as a function of k is known as
Bott periodicity.

To make the connection to vector bundles on spheres we use the above matrix-valued
functions as transition functions in the clutching construction.

Now we recall from the theory of fiber bundles the following

Theorem. If d > 1 and G is connected then principal G-bundles on S are topologi-
cally classified by m4_1(G), i.e. there is an isomorphism of sets:

Pring(sd) = 715-1(Q)

26More precisely, they used the above T'(x) to define a K-theoretic Thom class. Then the result we have
stated follows from the relation of K-theory to homotopy theory.
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It follows from this theorem that, for N > d/2 we have

Vect v (S4) = {f Zz ?g; (13.87)

where Vect y(S?) is the set of isomorphism classes of rank N complex vector bundles over
S,

One way to measure the integer is via a characteristic class known as the Chern charac-
ter ch(E) € H?*(X;Q). If we put a connection on the bundle then we can write an explicit
representative for the image of ch(F) in DeRham cohomology. Locally the connection is
an anti-hermitian matrix-valued 1-form A. It transforms under gauge transformations like

(d+A) = g 1 (d+ A)g (13.88)

The fieldstrength is
F =dA+ A? (13.89)

and is locally an anti-hermitian matrix-valued 2-form transforming as F — g~ 'Fg. Then,
in DeRham cohomology

1

ch(E) = [Trexp <2£>] (13.90)

and the topological invariant is measured by

/ ch(E) (13.91)
Sd

Note that since ch(F) has even degree this only has a chance of being nonzero for d even.
On a bundle with transition function g on the equator we can take A = rg~'dg on the
northern hemisphere, where g(z) is a function only of the “angular coordinates” on the
hemisphere and A = 0 on the southern hemisphere. Note that thanks to the factor of r,
which vanishes at the north pole this defines a first-order differentiable connection. For
this connection the fieldstrength is

= drg_ldg —r(1-— r)(g_ldg)2 (13.92)
and hence if d = 2¢

1 1
L o) = (0 s [ = [ g g

The integral of the Maurer-Cartan form over the equator measures the homotopy class of

(13.93)

the transition function g. It is not at all obvious that this integral will be an integer, but

- 107 -



for U(N) and the trace in the N it is. This is a consequence of the Atiyah-Singer index
theorem.

Note that from the viewpoint of vector bundles there is no obvious abelian group
operation on Vecty(S?), despite the fact that in this isomorphism of sets the RHS has a
structure of an abelian group. We can of course take direct sum, but this operation changes
the rank.

It is fruitful to consider the abelian monoid obtained by taking the direct sum

Vect(S9) := @nsoVect y(S%). (13.94)

As mentioned above, we can immediately obtain an abelian group by using the Grothendieck
construction. More generally, consider the Grothendieck construction applied to Vect(X)
for any topological space X. We consider equivalence classes [(E1, E2)] where [(E, Eq)] =
[(F1, F»)] if there exists a G with

PiohoGEFLoEdG (13.95)

Intuitively, we think of [(E1, E2)] as a difference E; — Ey. The Grothendieck group of
Vect(X) is the original Atiyah-Hirzebruch definition of KY(X).

Example: If we consider from this viewpoint the K-theory of a point K°(pt) then we
obtain the abelian group Z, the isomorphism being [(F1, E2)] — dimFE; — dimEs.

For vector bundles the Grothendieck construction can be considerably simplified thanks
to the Serre-Swan theorem:

Theorem|Serre; Swan] Any vector bundle 2 has a complementary bundle so that EGE+ =
Oy is a trivial rank N bundle for some N. Equivalently, every bundle is a subbundle of a
trivial bundle defined by a continuous family of projection operators.

This leads to the notion of stable equivalence of vector bundles: Two bundles E7, Fo
are stably equivalent if there exist trivial bundles 6 of rank s so that

Eiq0,, 2 @0, (1396)

Example: A very nice example, in the category of real bundles is the tangent bundle of
S52. The real rank two bundle T'S? is topologically nontrivial. You can’t comb the hair on
a sphere. However, if we consider $2 C R? the normal bundle is a real rank one bundle
and is trivial. But that means 7'S? @ 01 = 3. So T'S? is stably trivial.

Returning to the general discussion. In the difference F; — F» we can add and subtract
the complementary bundle to get (E; © EQL) — O for some N. If we restrict the bundle to
any point we get an element of K°(pt). By continuity, it does not matter what point we
choose, provided X is connected.

In other words, there is a homomorphism

K%X) — K%@pt) (13.97)

2Tover a suitable nice topological space
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The kernel of this homomorphism is, by definition, K°(X). We can represent it by formal
differences of the form E — 0 where N = rank(FE).

For spheres, we have
. 7Z d=0(2
K°(S%) = @) (13.98)
0 d=1(2)

eq:KnPoint
and this is the abelian group which is to be compared with the group ( l%. 73; defined above.

Remarks

1. We can nicely tie together the relation to projected bundles by noting that if I'
are Hermitian matrices then PT = %(1 + 2'T"%) are projection operators on spheres.

Therefore, consider the relation between irreducible representations of Clor_1 and
eq . eveno

Cloj11 given in (I358). Let u = 1,...,2k+ 1 and consider the projection operators
1
Pi(X,) = 5(1 + X,.I) (13.99)

acting on the trivial bundle S?* x V where V = c?*.

We now define two bundles Vi — S?! of rank 2¥~! which are the images of the
projection operators Py, respectively.

Focus on Vi which is the image of Py. Let us compute a trivialization on the two
hemispheres and compute the transition function. Write the coordinates as

Xt = (2%, 2%, y) (13.100)

Choose a basis vy, @ = 1,...,2F 1 for the irrep of Cly,_;. Then

<an) (13.101)

is a trivialization of the bundle V, at the north pole y = 1. Indeed:

va ) 1 (1+y)vg
Ex ( 0 ) T2 <(*}/Z$Z + il‘%)va> (13.102)

<UO ) (13.103)

provides a trivialization at the south pole y = —1 and

i _ 2Ry
P, (i) = % <(7 1 y)va) 0‘) (13.104)

The transition function at y = 0 is, essentially, the unitary matrix

Similarly,

T(z) = 2?* + iy'a’ (13.105)
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which is where we began our discussion above. This construction generalizes the stan-
dard constructions of the magnetic monopole and instanton bundles on S? and 5%,
respectively. Indeed, the projected connections on V4 define the basic (anti)monopole
and (anti)instanton connections.

2. Now, as in our discussion using Clifford modules, there is another approach where
we consider an abelian monoid and divide by a submonoid of ”trivial” elements. As
we mentioned, the latter viewpoint is closer to the physics. The abelian monoid
consists of isomoprhism classes of Zs-graded bundles equipped with odd operators.
The trivial submonoid are those with invertible odd operators. Very roughly speaking
the difference E° — E' in the Grothendieck construction is to be compared with a
Zy-graded bundle & with an odd operator T € End(€) so that E° = kerT and
E' = cokT. Introducing Hermitian structures we have E' = kerTT so the picture is
that

£V — &1 = (kerT|go @ (kerT|eo)t) — (kerTT|g1 @ (kerT|g1)h). (13.106)

Now T provides a bundle isomorphism between kerT'|¢o)* and kerTT|¢1)*, so these
can be canceled.

13.3 Real Clifford algebras and Clifford modules of low dimension

In this section we consider the real Clifford algebras C,, for |n| < 4. We also describe their
irreducible modules and hence the abelian monoid M,, of isomorphism classes of Zy-graded

representations.

13.3.1 dimV =0

Already for Cf¢y = R there is a difference between graded and ungraded modules. There
is a unique irreducible ungraded module, namely R acting on itself. But there are two
inequivalent graded modules, RY? and RO,

13.3.2 dimV =1

As in the complex case, Cf41; cannot be a matrix superalgebra for simple dimensional
reasons. It therefore defines a new Morita equivalence class. Unlike the complex case we
need to distinguish the cases where e? = +1.
As a vector space C'l4; is
Clii=R®Re (13.107)

the algebra structure is:
(a @ be)(c @ de) = (ac+ bd) & (be + ad)e. (13.108)

As an ungraded algebra this is sometimes known as the “double numbers.” As an ungraded
algebra C'? 11 =2 R & R because we can introduce projection operators Py = %(1 +e), so

Cly 2RPL & RP_ ungraded! (13.109)
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However, as a graded algebra there is a unique irreducible representation, 7. As a
graded vector space 77 = R and, WLOG, we can take

ple) = ((1) é) (13.110)

Note that e is odd and squares to 1. Since the irrep is unique up to isomorphism
My =747 (13.111)

In the ungraded case there are two inequivalent ungraded irreducible representations
Nif =R with p(e) = £1.
Similarly, C¢_; has a single generator e with relation e? = —1. Therefore

Cl_1=R®Re (13.112)
as a vector space. The multiplication is
(a @ be)(c @ de) = (ac — bd) & (be + ad)e (13.113)

so C¥_; is isomorphic to the complex numbers C as an ungraded algebra, although not as
a graded algebra.

As a graded algebra C'/_; has a unique irreducible representation 7 which is, as a
super-vector space is 7 = R, but now with

ple) = ((1) _Ol> = €= —io* (13.114)

We therefore have:
M_1=7Zyn (13.115)

As an ungraded algebra C'¢_; has a unique ungraded irreducible representation: N_; =
C acts on itself. (As representations of a real algebra p(e) = +i are equivalent.)

Remark: As with C¢;, both C/_; and Cl;; are commutative as ungraded algebras
but noncommutative as superalgebras. Thus the centers of these as ungraded algebras are
C'l41 but the supercenter of C'?1q as graded algebras are Zs(Cly1) = R.

13.3.3 dimV =2

Now, C'¢; _1 has two irreducible graded representations Ri‘l with

pler) = £ <(1) (1)) ples) = (? _01) =€ (13.116)

Note that these are both odd, they anticommute, and they square to 41, respectively.
Moreover, they generate all linear transformations on R

(13.117)

pla+ be' + ce? + dete?) = atdbte
b—ca—d
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and the algebra is that of R(2). Therefore, C¥¢; _; is a supermatrix algebra:
Cfy_1 = End(R') (13.118)

It is interesting to compare this with Cli 5. We claim that C'li9 is not equivalent
to a matrix superalgebra. This is no longer immediately clear from dimensional reasons.
However, the only possibility would be End(R'") for dimensional reasons. Now WLOG

pler) = <(1) (1)) (13.119)

But then what do we take for p(e2)? It must be odd, and it must anticommute with p(e;).

we can take

The only possibility is a real multiple of the matrix e = —io?. But this matrix squares to
—1. Hence C/, 9 is not a matrix superalgebra.
As an ungraded algebra we can write a faithful representation of C'¢5:

pler) = (f é) plea) = (; _01> (13.120)

since these matrices anticommute and both square to +1. These generate the full matrix
algebra M (R) as an ungraded algebra: Note that

0-1
le? = —joy = 13.121
ee P <1 0 ) ( )

Now we can write an arbitrary 2 x 2 real matrix as a linear combination of 1,07, 03, —i09:

pla+bet + ce? +de'e?) = (Zi; Z:i) (13.122)

However, if we try to use the operators (ng—%%%%n R this is not a representation of
Cl,9 as a graded algebra because p(e2) is not odd.

One can show that there is a unique irreducible representation of C'¢ 15 as a superalge-
bra. One way to construct it is to take the graded tensor product 72 := 7®7. As a vector
space this is R22. Since we take the graded tensor product we must be careful about signs,
and we cannot just take the usual tensor product of the matrix representations. Thus let
v, v1 be even, odd basis elements of 1 with

ple)vg = v1

13.123
ple)vr = vo ( )

Now to take the graded tensor product let wg,w; be a corresponding basis for the second
factor. Then choose an ordered basis for 7% to be

{v()@wo,v1®w1,vo®w1,v1®wo} (13.124)
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A little computation shows that

0001
~ 0010 L
= 1= = 13.125
pler) = p(e)® 0100| =7 @° ( )
1000
0010
~ 000-1
plez) =1®ple) = | | 0 o | = o' ®o’ (13.126)
0-10 0
One can show that
Mo =7, i (13.127)

Now consider the opposite algebra C¢_s. Again, one can show it is not a matrix su-
peralgebraby an argument analogous to that we gave for C'¢15. As an ungraded algebra we
can write an isomorphism with H by sending the generators to imaginary unit quaternions:

el >
e? = (13.128)
ele? — ¢
Therefore, as an ungraded algebra
Cl o =2H (13.129)

Once again there is a unique irreducible graded module up to isomorphism which we
can identify with n? := n®n:
M_ o =T n? (13.130)

The reader should do the analogous computation to what we did for 72 and show that for
n? the representation is

000-1
. 0010

pler) = p(e)®1 = 010 0 =o'®e (13.131)
1000
00-10
. 000 —1

ple2) = 1®p(e) 100 0 €® ( )
010 0

Remarks

1. When we complexify there is no distinction between the signatures. Any of the above
three algebras can be used to show that

CL(2) = C(2) (13.133)
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2. The above representation of C¢; _; is useful for describing a Majorana-Weyl fermion
in 14 1 dimensions. Let us modify it slightly and write

01 01 10

0 1 0.1

= = = 13.134
7 (—1 0) 7 <1 0) T (0 —1) ( )

For example, the 1+ 1 Dirac equation on 1 4 1 dimensional Minkowski space M

(%09 + 4101 =0 (13.135)

do—0, 0 b\
00 ) () - 11

so that ¢ is a left-mover and v is a right-mover. This explains why the volume

can be rewritten as

element 70! is called the “chirality operator.”

Exercise Fven subalgebra
eq:epsdef
a.) Using the ungraded representation of C¢_s in (l%.lEU% show that the even subal-
gebra of C¢(2,0) is the algebra of matrices:

—b
<“ ) (13.137)
b a
and is isomorphic to C.

b.) Show that the even subalgebra of C¢ys is isomorphic to C.
c.) Show that we can identify Cliy as Clex] where € is odd, 2 = +1 and ze = ¢Z.

Exercise
We have now obtained two algebra structures on the vector space R*: R(2) and H.
Are they isomorphic? (Hint: Is R(2) a division algebra?)

Exercise Representations of Clifford algebras

Show that
0 ol 0 o3
pler) = <al 0) pleg) = (Jg 0) (13.138)

is a graded representation of C¢, 5 on R22. Show that it is equivalent to the one given
above.
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Exercise
Show that n? gives an irreducible graded representation of C/_,.

13.3.4 dimV =3

Again, as graded algebras C'¢i3 are not matrix superalgebras, simply for dimensionful
reasons. We might ask whether they are matrix algebras over simpler superalgebras. For
dimensional reasons the only possibility would be End(R”l)@C’Eil. However, the latter

10
(0 o) (13.139)

eq:INV-cl2-1
which is nonzero, even, and noninvertible. However, an argument along the lines of (I%.l ;
below shows that in C/13 any nonzero even element is in fact invertible.

contain the element

Nevertheless, Cl13 can be expressed more simply as follows. We claim that, as graded

Oli3 =2 HRC I+ (13.140)

where H is purely even. This is easily proved by mapping the generators according to

algebras:

el >i®e
ea > jRe (13.141)
es >t®e
Note that since H is purely even this map of generators is even, as it must be, and moreover
preserves the Clifford relations.

Asungraded algebras we can use the tensor product rules and the isomorphisms already
established to conclude

Cls3 = Cl_1 ®Cly

~ Cor R(2) (13.142)

~C(2)

Cl_3=Clh @Cl_,

=~ ROR)®rH (13.143)

“HoH

Note particularly, that, as an ungraded algebra C'¢_3 is not a simple algebra. The reason
is that we can introduce projection operators

1
Py = (1% ereaes) (13.144)
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One can show that once again
Mg =77 (13.145)

M_s =7, 3 (13.146)
Note that, as a vector space n° = R4, as is 7.

:CA-GTP
Remark: Again we can illustrate the failure of the ungraded version of (el 3106) (a

. X . . eq:ungradtens .
failure which we already pointed out in (I3. . Note that as ungraded algebras with

ungraded tensor product

ClhierCl_1=CoC (13.147)
but C?¢; 1 = R(2), as an ungraded algebra. Moreover
CerC=CaC (13.148)

To prove this, simply note that we have projection operators Py = %(1@1:&2@2'). Therefore,
as ungraded algebras

Cl_ierCl_1=2CerC=CaC (13.149)
but in fact C'?_5 = H as an ungraded algebra. Finally,
CorH=C(2) (13.150)

This follows since the usual Pauli matrices (together with the identity) form a basis of all
2 x 2 matrices over the complex numbers. Therefore

Cl_1 ®rCl_9=C(2) (13.151)

as an ungraded algebra, but we just showed above that C¢_3 = H @& H, as an ungraded
algebra. I hope at this point that it is clear that the graded viewpoint is both useful and
more elegant.

Exercise

Write Cf1, 2 and Cf;_ o, in terms of simpler superalgebras.

13.3.5 dimV =14

Now, something important and interesting happens when we reach C?4.
Now we can show that, as graded algebras C¢+4 = End(R!'") ® H with H purely even.
We do this by exhibiting explicit graded isomorphisms as follows:
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For C? 4 we use:

(13.152)

where s € {#1}. This defines two irreducible graded modules fi* which are isomorphic
to RY* as supervector spaces. (One should think of them as R'M®H.) The invariant

distinction is that p(ejeseseq) = k = 1 on the even subspace.

Similarly, for C'0_4:

el — K ;

The two cases k = +1 define two modules p*.

One can show that

13.3.6 Summary
1CliffIrrepSum

0

€y — K OJ

2 ] 0
(13.153)

0¢

es — K

£0

eq4 — 01

T 210
My =7 0t 2y i (13.154)
M 427yt ®Zyp (13.155)

It is time to summarize what we have learned about the graded and ungraded irreps of the

low dimensional real Clifford algebras. (Here e is odd and €4 = +1. See exercise above):
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:PeriodTheorem|

Clifford Algebra | Ungraded algebra | Graded algebra Ungraded irreps Graded irreps
Clyy H(2) End(R') @ H H? s
Clys C(2) HRR[e_] C? ik
Clio R(2) Cley], ze4 = €4 %2 R? i
Cliq ReR Rle4] Ry, p(e) = £1 7

Cl R R R RO RO
Cl_y C Rle_] C n
Cl_g H Cle_], ze— =¢e_Z H 7
Cl_3 He H HOR[e ] Hy, p(ejeges) = £1 n3
Cl_y H(2) End(R') @ H H?2 uE

13.4 The periodicity theorem

The fact that C'14 are the same, and are matrix superalgebras over the even division

algebra H is very significant. Together with the tensor product rules
leq: ComplexPerio

eq:RC

iff-Tens3 |
S. .22) we can derive
icity

a beautiful periodicity structure. It is the analog of (I3.47) for Chiiford algebras over the

real numbers.

We can use the tensor product rule (II3.

eq:RCliff-Tensl
O bul

we get to n = 8 something special happens. We can

Cly = ClRCY,

=~ End(R*?)&(H  H)

But now we can use

H ®r H = End(R*0).

eq: HHi
We have already proven (l% [57 & above: Recall that H°PP = H and the operators L(q) and
R(q) of left- and right-multiplication of quaternions in the regular representation generate

the most general linear transformation on H. Therefore,

Clg = End(R%®)

and hence we have a mod-eight periodicity of Morita classes:

Clnyis = End(R¥®)RCY,

By induction we conclude that

with k,r > 0.

n>0

Clspsr = End(R2 2% g 0,

up C¥,, from C¥y, for n > 0. When

(13.156)

(13.157)

(13.158)

(13.159)

(13.160)

We can of course do something similar with the negative signature algebras C'¢_,,.
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:C113H
But now, thanks to (el % 140), which we repeat:
Cli3 2 HRCl+; (13.161)

we can relate C¢, for n’s which are negative and positive to each other at the level of
Morita equivalence. For example note that

Cls = ClRCH
~ End(R'MOH © Ch, (13.162)
=~ End(R'M&CI_s

and therefore

Clg = Cls201

=~ End(R1M&CE_3000,
~ End(R'M&(CHECE_)&CE_o (13.163)
~ End(R'M&End(R'MQC1_,
~ End(R??)&CC_,
and similarly,
Cl7; = End(R*)&C1_, (13.164)
There is an entirely analogous set of formulae relating C'¢,, for n = —5, —6, —7 to matrix

superalgebras over the smaller Clifford algebras C/{s, C'ls, Clq, respectively.
The upshot is that if we define the following 8 basic superalgebras:

Dj:=R
Dl = Clas (13.165)
Diy = Clay

where Dj and Dj are purely even, then all the Clifford algebras are matrix superalgebras
over the D} :

- 119 —

eq:Dsalpha



Clifford Algebra | Ungraded Algebra M, s ® Dy,
Clys R(16) Endg (R*®)& D
Cliq C(8) Endg(R¥*)&D? |
Clg H(4) Endg (R??)&D?,
Clys H(2) © H(2) Endg(R'M&D* ,
Clyy H(2) Endg (R')& D
Clys C(2) D3
Cliy R(2) Dj
Cliq RoR D;

Cly R D;
Cl_y C D?
Cl_y H D,
Cl_3 HeoH D? 4
Cl_y H(2) Endg (R'M& D3
Cl_s C(4) Endg(R'M)® DS,
Cl_g R(8) Endg(RZ%)® D3,
Cl_q R(8) @ R(8) Endr(R**)® D3,
Cl_g R(16) Endg (R¥®)& D

Note particularly that, at the level of Morita equivalence we have

[Clsa] = [Clgr]  [Clas] = [Clge]  [Clas] = [Cls)] (13.166)

Therefore, the graded Morita equivalence class of [C¢,,] where n € Z is positive or negative
is determined by the residue o = nmod8, and we have:

[C¢,] = [D;)] (13.167)
and moreover, the multiplication on Morita equivalence classes is just given by
[Da] - (D3] = [Dg44] (13.168)

Thus the real graded Brauer group over R is Z/87Z.

The Wedderburn type of the ungraded algebras is now easily determined from the
graded ones by using the explicit determination we gave above for the basic cases C?,, with
|n| < 4. Notice that there is a basic genetic code in this subject

RCHHeHHCRR®RR,... (13.169)
We will meet it agaln annodtt C%am One would do well to memorize this sequence. It is
illustrated in Figure
Finally, we can now easily determine the structure of C/,, s_ for all r,s. The Morita
class is determined by:
[C€r+757] =

[D7_] (13.170)
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®

Figure 10: An illustration of the “Bott clock”: For C¥,, with decreasing n read it clockwise (=
decreasing phase) and with increasing n read it counterclockwise (= increasing phase).

and hence, lifting a = (r — s)mod8 to |a| < 4
Cl,, s = End(R*'?"&CH, (13.171)

for an n which can be computed by matching dimensions (see exercise below).

Exercise

eq:gencliff
Show that the nonnegative integer n in (I% I (1) 1S given by

n = Hsf_‘a' 1 (13.172)

Exercise

Show that if n,m are any integers, then
Cl@Cly =2 Cly @M (13.173)

where M is a matrix superalgebra End(R%¢) and find a formula for .
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Exercise
Show that

End(R'M)&Cl+y = HOC U1y

One way to answer:

HRCly =2 HRCHRC,

~ COf_s®@Cl

>~ O RCH_1RCl_q
~ End(R'M&CE_,

(13.174)

(13.175)

Exercise The real Clifford algebras in Lorentzian signature
Using the above results compute the real Clifford algebras in Lorentzian signature as

ungraded algebras:

d=s+1 Cl(sy,12) Cl(1y,s-)
0+1 C RO R
1 +1 R(2) R(2)
2+1 | RQ2) @R(2) C(2)
3 +1 R(4) H(2)
4 +1 C(4) H(2) @ H(2)
5+1 H(4) H(4)
6 +1 H(4) @ H(4) C(8)
7 +1 H(8) R(16)
8 +1 C(16) R(16) ® R(16)
9 +1 R(32) R(32)
10 +1 | R(32) @ R(32) C(32)
11 +1 R(64) F(32)
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1bsec:KO-point

13.5 KO-theory of a point

Now in this section we describe the real KO-theory ring of a point along the lines we
|subsubsec:Kpoint

discussed in Section §I3.2.2. In order to complete the story we need to name the irreducible

representations of Clig. These are supermatrix algebras and so we have simply A* = R8I8
for Cl_g and A\* = R8I® for C'¢, 4. The superscript + refers to the sign of the volume form
on the even subspace.

One can construct very nice explicit modules for A* and A\*. See Section **** below.

Now let us consider KO~"(pt) along the above lines. A useful viewpoint is that we are
considering real algebras and modules as fixed points of a real structure on the complex
modules and algebras. Recall we described Mirivie (where the extra ¢ in the superscript
reminds us that we are talking about complex modules of complex Clifford algebras) as
those modules which admit an odd invertible operator which graded commutes with the
Clifford action. In order to speak of real structures we can take our complex modules to
have an Hermitian structure. Then the conjugation will act as T' — +TT where the =+ is
a choice of convention. We will choose the convention 7' — —T'f. The other convention
leads to an equivalent ring, after switching signs on the degrees.

Note that we have introduced an Hermitian structure into this discussion. If one
strictly applies the the Koszul rule to the definition of Hermitian structures and adjoints
in the Zs-graded case then some unusual signs and factors of v/—1 appear. See Section

|[subsec:SuperHilbert o
§12.5 above. We will use a standard Hermitian structure on R™™ and C™™ such that

the even and odd subspaces are orthogonal and the standard notion of adjoint. Since we
introduce the structure the question arises whether the groups we define below depend on
that choice. It can be shown that these groups do not depend on that choice, and the main
ingredient in the proof is the fact that the space of Hermitian structures is a contractible
space.

This motivates the following definitions:

Definition

a.) For n € Z, M,, is the abelian monoid of modules for C/,, under direct sum.

b.) For n € Z, MUV is the submonoid of M,, consisting of those modules which admit
an odd invertible anti-hermitian operator 1" which graded-commutes with the C'/,, action.

c.)
KO"(pt) :== My / MBY (13.176)

We now compute the KO™(pt) groups for low values of n:

1. Of course KO(pt) = Z, with the isomorphism given by the superdimension.

2. Now consider KO!(pt). In our model for 7j we had p(e) = o'.

introduce T = e. Thus [j] = 0 in KO-theory and KO!(pt) = 0.

Therefore we could

3. Next consider KO~ !(pt). In our model for  we had p(e) = e. Now we cannot
introduce an antisymmetric operator which graded commutes with e. Thus, n is a
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nontrivial class. However, we encounter a new phenomenon relative to the complex
case. Consider 2n = n @ 7. As a vector space this is R%? and as usual taking an
ordered bases with even elements first we have

00-1 0
00 0 -1
= = 1 13.177
fO=[10 0 ol=c® (13.177)
010 O

We can therefore introduce T' = o' ® e which is odd, anticommutes with p(e), and
squares to —1. Therefore, KO~!(pt) = Zy with generator [n].

4. Moving on to KO~2(pt). One can use our explicit model for n? to show that there is
no odd operator 7T of the required type. Of course 2n? will again be a trivial module #Give more details
in KO. Thus KO~2(pt) = Zy. on this point. &

5. Now consider KO*2(pt). The monoid M, is generated by 7 and since 7 is trivial
in the KO-group, so is 772. Therefore KO*2(pt) = 0. Exactly the same reasoning
shows that KO3(pt) = 0.

6. Next we consider KO~ 3(pt). M_3 is generated by n3. However, as a vector space
n® = R4, But this space supports the representations put of Cl_y. Therefore, the
fourth Clifford generator can serve as T and we learn that n? is trivial in the KO
group. Thus KO~3(pt) = 0.

7. Next we consider KO~*(pt). Of course u* descend to nontrivial elements in the KO-
group. On the other hand, C/_5 = End(R!")&C¢,3 so we can construct a graded
irrep of C?_5 on R''®7? and this generates M_s. One can check that the restriction
of RI®73 is just ut @ pu~. Therefore, we can take T' = p(es) and hence [~ ] = —[u]
in the quotient M_4/ M™Y. Thus, KO~*(pt) = Z. Again, since M_j is generated
by RI'®7? we have KO~%(pt) =0

8. Similarly, from our table above we read off that M_g is generated by R22&7? and
M_7 is generated by R3B&7. Hence KO~ 6(pt) = KO~ 7(pt) = 0.

9. Reasoning as above from the table we learn that KO*(pt) = Z generated by ei-
ther [*] or [i~] = —[ia "], while KO3(pt) = 0, (because [°] = 0), KOS(pt) = Zy
(generated by R?2®n? ) and KO7(pt) = Zy (generated by R3B&n )

10. Finally, KO18(pt) is generated by [A*], with [A\~] = —[A*], while KO~3(pt) is gen-
erated by [A*]. with [A7] = —[AT].

Now, using the periodicity of the Clifford algebras we conclude that:

Theorem
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KO™(pt) is mod-eight periodic in n and the groups KO~ "(pt) for 1 < n < 8 are given
by 28
9, 7,0,7,0,0,0,7 (13.178)

Once again, one can introduce an interesting ring structure in the KO-group. This ring
structure has not yet played any significant role in the physical applications of K-theory,
neither to string theory nor to condensed matter physics. But we explain it anyway for its
mathematical virtue.

As in the complex case we define the product on equivalence classes of modules by

[My] - [My] = [My&Ms)] (13.179)
(As before, check that the multiplication is well-defined on K O-theory.) If we consider
KO=%(pt) := ©p>0 KO "(pt) (13.180)
Then the graded ring is given by
KO=(pt) = Z[n, p, | /1 (13.181)
where 7, 1, A are generators 2% of degree
deg(n) = —1 deg(p) = —4 deg(\) = -8 (13.182)
and the relations are given by the ideal:
I = (20,03, nu, p? — 4)) (13.183)

We have already checked the relations 27 = 0 and 1* = 0. Then nu is a module for
C/_5 but we have already shown this KO-group is zero. Consider pu?. As a vector space
this is R332, The volume form on the even subspace is +1. Therefore p? is a nonzero
multiple of AT = R8/®, and by dimensions that multiple must be four. Thus

p? = AN (13.184)

There is a similar result for KO=%(pt): We introduce generators deg(ji) = +4 and
deg(S\) = +8, while KO and KO° are generated by 5\7] and 5\772 respectively. 30
Finally, using Morita equivalence we can define a ring structure on

KO*(pt) = ®nezKO™(pt) (13.185)

When multiplying modules for C¥,, with C?,, with n and m of different sign we identify
with the Morita equivalent module for C'¢,, .

Z8This is easily memorized using the “Bott song.” Sing the names of the groups to the tune of ” Ah! vous
dirai-je, Maman,” aka ”Twinkle, twinkle, little star.”

PHere pp = p and A = AT,

30Given our table above we know these are not minimal dimensional representations but by Morita
equivalence they generate the same KO group.
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The net result is then

KO*(pt) = Zn, w, fi, A, 5\]/[ (13.186) ‘ eq:K0-ring-11 ‘

I = 20,03, np,ni, i — 4, M — 1, 52 — 4\, 52 — 4)) (13.187) [eq:KO-ring-22]

where i = i+ and A = AT
As an example consider A\. This is a module for Cl,g g = End(R'3128). But
A\ 2 RI28I128 4g supervector spaces. Therefore A\ =1 in the K O-ring.

Remarks:

. . . |subsubsec:HintTopology
1. The discussion we gave in [[3.2.3 about the relation to the topology of complex vector

bundles has a direct analog for real vector bundles. The upshot is that the stable
homotopy groups of the orthogonal groups O(N) are given by the Bott song:

p o[ 1[2]3[4a]5]6]7
() [Zy | Zy [0 Z |0 |0]0|Z

Note, for example, that indeed my(O) = Zs, because O(N) has two components. (In
this case, it is true for all N and there is no need to take the stable limit). The other
homotopy groups require a choice of a basepoint, and a natural choice of basepoint
is the identity element of the group

2. Since C'lyy = End(Rl‘l)@JH, the category of quaternionic vector spaces is equivalent
to the category of Cl4-modules. This implies that if we look at quaternionic vector
bundles, whose transition functions can be reduced to the compact symplectic group
USp(2n), then we learn about the stable homotopy groups of the symplectic groups.
The interpretation in terms of C'¢4-modules shifts the degree by 4 and so we have

p lol1]2][3]4a]5]6]7
m(Sp) | 000z ]2 |2y [0]Z

13.6 Digression: A model for A using the octonions

nbda-Octonions |

A beautiful model for AT and A* can be constructed using a nonassociative division algebra
ae

known as the octonions. We recommend the engaging review article by Baez on this

subject.
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The octonions O is a nonassociative real division algebra of dimension 8. One way to

define the multiplication - via the “Cayley-Dickson process” - is to identify O = H& H and
31

(a,b) - (¢,d) = (ac — db, da + bE) (13.188)

In the double-quaternion notation = (g1, ¢2) we have Z = (G1, —q2) and Re(x) = Re(q1) =
1 _

define the multiplication as:

el

Figure 11: The multiplication law of the imaginary unit octonions. The arrow encodes the sign of

the nonzero structure constants. Thus ejes = e3, etc. There are 7 points and 7 lines in this figure. ‘ fig:octonions

Let eq, a =1,...,7 be the ordered basis of imaginary octonions given by

(1,0), (3,0, (£,0), (0,1),(0,1), (0,)), (0, ) (13.189)

Now make a basis vy, o =0,...,7 for O by taking vg = (1,0) and v4, = €4, 1 <a < 7.
eq:octmult
Applying the rule (I% l88]$ one finds that vy is the identity and

eaes + €geq = —0q,3 (13.190)

Therefore if we define 7 real 8 x 8 matrices:
7
€q - Vo i= Z(’Ya)ﬁoﬂ)ﬂ (13.191)
8=0

they will be antisymmetric and will give an ungraded irrep of C¢_7. It turns out that
w = +1. The matrix elements are always in {0, £1}. Indeed, if o # 3 then e, - eg is £e, acneck: &

31 A multiplication table is in Jacobsen, Basic Algebra I, p. 426. Note he has a sign mistake for i7 X i3.
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LSuperDivision‘

fig:octonions
for some v and the precise rule for multiplication is given in Figure [TT. In other words, the

matrix elements of the gamma matrices are just the structure constants of the octonions!
Now, using these matrices we can give an explicit model for A\*:

p(ei)=n<o %'):(71@% 1<i<T

ples) = ((1) _01> =e®l

with k = 1. Similarly, we can give an explicit model for 2E,

(13.192)

Exercise
Compute the explicit 8-dimensional real representation of C'?_7 defined by the octo-
nions.

14. The 10 Real Super-division Algebras

Definition An associative unital superalgebra over a field k is an associative super-division
algebra if every nonzero homogeneous element is invertible.

Example 1: We claim that C¢; is a superdivision algebra over k = C (and hence a
superdivision algebra over R). Elements in this superalgebra are of the form = + ye with
z,y € C. Homogeneous elements are therefore of the form = or ye, and are obviously
invertible, if nonzero. Note that it is not true that every nonzero element is invertible!
For example 1 + e is a nontrivial zero-divisor since (1 +e)(1 —e) = 0. Thus, C/; is not a
division algebra, as an ungraded algebra.

&CHECK! &

:D h
Example 2: We also claim that the 8 superalgebras D3, with o € Z/8Z defined in (el % I 65a5i 2

are real super-division algebras. The argument of Example 1 show that C/y; are super-
division algebras. For C/is the even subaglebra is isomorphic to the complex numbers,
which is a division algebra. It follows that C'¢1, are superdivision algebras. To spell this
out in more detail: For C'/5 we note that for even elements we can write

(z + yer2)(x — yern) = 2° +y° (14.1)
and for odd elements we can write
(we1 +yea)? = 2” + 4/ (14.2)

where z,y € IR\'/ ’Ilgluls the nonz%rolgognogeneous elements are invertible. For C?¢_5 the
eq: —C = . —C -
equation (IT4. olds and (T4.2) simply has a sign change on the RHS. So this too is a

superdivision algebra. More conceptually, note that CfiQ is isomorphic to C, which is a
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sec:lOFoldWay‘

division algebra, and C¢L, is related to C¢%., by multiplying with an invertible element. We
can now apply this strategy to C'¢L3: The even subalgebra is isomorphic to the quaternion
algebra, which is a division algebra and the odd subspace is related to the even subspace
by multiplication with an invertible odd element. Hence C'/y3 is a superdivision algebra.

Note well that (041, _1 being a matrix superalgebra is definitely not a superdivision

10
& s

is even and is a nontrivial zerodivisor. By the same token, C/+s = End(R!IM)®H is also

algebra! For example

not a superdivision algebra.

The key result we need is really a corollary of Wall’s theorem classifying central simple
|subsec:WallTheorem

superalgebras. For a summary of Wall’s result see Appendix [A.4.

Theorem There are 10 superdivision algebras over the real numbers: The three purely
even algebras R, C, H, together with the 7 superalgebras C¢y,Cl1q,Clis, Clyis.

Proof: A superdivision algebra D?® over R must be a simple superalgebra over R. Oth-
erwise some element a € D® would have a nontrivial Jordan form for L(a) from which we
could construct a nontrivial zero-divisor.

Wall’s paper %?(]ﬂlgives a classification of simple superalgebras over a general field x.
The first invariant is the even part of the supercenter Z%(D*). This must be both a field
and a division algebra, and is therefore either R or C. The algebra D? is then central
simple over R or C. These we can then classify central simple superalgebras over kK = R
and over Kk = C using Wall’s paper. The central simple superalgebras with nonzero odd
part turn out to be all Clifford algebras. From our previous characterizations of these we
see that except for C¢; and Cliq,Clis, Clis, all the Clifford algebras have a factor which
is a matrix superalgebra. These cannot be superdivision algebras. On the other hand, we
have checked explicitly that C¢; and Cly1,Cli9,Clig are in fact superdivision algebras.
So we have the complete list.

15. The 10-fold way for gapped quantum systems

We are now in a position to describe the generalization of Dyson’s 3-fold way to a 10-fold
way, valid for gapped quantum systems.
K . . sec:SymmDyn .
Recall from our discussion of a general symmetry of dynamics (§b) that 1 G is a
symmetry of the dynamics of a quantum system then there are two independent homo-
morphisms (¢, x) : G — Zs. In the Dyson problem one explicitly assumes that y = 1

&Need to explain
how that is related
to the triple of
invariants in Wall’s
theorem in the
appendix. &

&If we drop
associativity are
there super-analogs
of the octonions? &

Bec:GappédSystems

Nevertheless, as we saw when discussing phases of gapped systems in Section §IT, There

is a natural Zo-grading of the Hilbert space sopthght.,Rif x # 1 then the Hilbert space is a
. lnheps

(¢, x)-representation of G. (See Definition (TT1.3). erefore we can state the
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Generalized Dyson Problem: Let G be a bigraded compact group and H o Zo-graded
(¢, x)-representation H of G. What is the ensemble of gapped Hamiltonians H such that
G is a symmetry of the dynamics and H induces the original Zo-grading ¢

We can proceed to answer this along lines closely analogous to those for Dyson’s 3-fold

way.
Y . .. L. . |subsec:PhiRepBasics |
First, we imitate the definitions of Section §8.T for ¢-representations:

Definitions:

eq:PhiChiReps
1. If G is a bigraded group by (¢, x) then a (¢, x)-representation is defined in (II I3i

2. An intertwiner or morphism between two (¢, x)-reps (p1, V1) and (p2, V2) is a C-linear
map T : Vi — Vs, which is a morphism of super-vector spaces: 7' € Hom¢(V1, Va),
which commutes with the G-action:

Tpi(g) = p2(9)T  VgeG (15.1)
We write Hom&(Vi, Va) for the set of all intertwiners.

3. An isomorphism of (¢, x)-reps is an intertwiner T which is an isomorphism of complex
supervector spaces.

4. A (¢, x)-rep is said to be ¢-unitary if V has a nondegenerate even Hermitian structure
32 such that p(g) is an isometry for all g. That is, it is unitary or anti-unitary
according to whether ¢(g) = +1 or ¢(g) = —1, respectively.

5. A (¢, x)-rep (p,V) is said to be reducible if there is a nontrivial proper (¢, x)-sub-
representation. That is, if there is a complex super-vector subspace W C V, (and
hence W% c VY and W' c V1) with W not {0} or V which is G-invariant. If it is
not reducible it is said to be irreducible.

As before, if G is compact and (p, V) is a (¢, x)-rep then WLOG we can assume that
the rep is unitary, by averaging. Then if W is a sub-rep the orthogonal complement is
another (¢, x)-rep, and hence we have complete reducibility.

Let {V)\} be a set of representatives of the distinct isomorphism classes of irreducible
(¢, x)-representations. We then obtain the isotypical decomposition of (¢, x)-representations:

H = @yHomE (Vy, V)®VA (15.2) [eq:PhiChiTsotyp-t

Now we need to deal with a subtle point. In addition to intertwiners we needed to
consider the graded intertwiners Hom&(V, V') between two (¢, x)-representations. These

32 B Eubsec:bupernllbert
See Section §T2.5 above.
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are super-linear transformations 7' such that if we decompose T' = T? + T into even and
odd transformations then 70 € Homg (V, V') but T? instead satisfies

T'p(g) = x(9)p'(9)T"  VgeG (15.3)

Two irreducible representations can be distinct as (¢, x)-representations but can be graded-
isomorphic. The simplest example is G = {1} which has graded irreps C'1© and COI*.

Let {V)} be a set of representatives of the distinct graded-isomorphism classes of
irreducible (¢, x)-representations. We then obtain the isotypical decomposition of (¢, x)-
representations:

H = @\Homf (Vy, V)OVy (15.4)

Note that Homg (V, V) is no longer an even vector space in general. This will be more
convenient to us because of the nature of the super-Schur lemma:

Lemma[Super-Schur] Let G be a Zy x Za-graded group, graded by the pair of homo-
morphisms (¢, x).

a.) If T is a graded intertwiner between two irreducible (¢, x)-representations (p, V)
and (p', V') then either T = 0 or there is an isomorphism of (p, V') and (o', V).

b.) If (p, V) is an irreducible (¢, x)-representation then the super-commutant Zs(p, V),
namely, the set of graded intertwiners of (p, V') with itself is a super-division algebra.

Proof: The usual proof of the Schur lemma works, although one should take some care
because Zs-gradings introduce some extra things to check.

a.) If T is nonzero then T = T? + T! and at least one of T° or T" is nonzero. If TV is
nonzero then we consider W = kerT°. Note that W is a Zo-graded subspace of V since if
T9(w® @ w') = 0 then we conclude that both T%(w") = 0 and 7°(w') = 0. Moreover, W is
G-invariant. If T" is nonzero then W # V and hence, by irreducibility W = {0}. Moreover
if 7% # 0 then W’ = Im TV is nonzero. Again, we check that W' is a Zy-graded subspace
of V' and is G-invariant and hence W’ = V. Similarly, if 7! is nonzero then we can check
that W = kerT" is a G-invariant nonzero Zs-graded subspace of V and hence is {0} and
W’ =1Im T! is a G-invariant nonzero Zs-graded subspace of V' and hence is {V'}. Either
way, T? or T' will provide the required (graded) isomorphism.

b.) The argument used in the proof of (a) shows that when (p, V) = (p/, V') if T is
homogeneous then it is an isomorphism, and hence invertible. <

Now we can now proceed as before t% dgﬁi}ie @che analog of Dyson’s ensembles. We
eq: 1 11S0

consider the isotypical decomposition (I5.4) of H. Let S) := Homg(VA,V). It is a real

super-vector space of degeneracies. Now we compute the set of superlinear transforma-

tions:

Homg (V, V) = @) ,(S5®S,)@Home (Vy, V,,) (15.5)

Now we take the graded G-invariants and apply the super-Schur lemma to get

Homf (V, V) = @, ,End(S))®D; (15.6)
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where for each isomorphism class of graded-irreducible (¢, x)-rep A, D is one of the 10 real
super-division algebras. Since End(S)) is a real matrix superalgebra the graded commutant
is

Zs(p, H) = @ \Mats, (D3) (15.7)

Finally, let us apply this to the generalized Dyson problem. If G is a symmetry of the
dynamics determined by H then

Hp(g) = x(9)p(9)H (15.8)

and hence the C-linear operator H is in the graded-commutant of the given (¢, x) repre-
. L leq: GradedComm-GDP . .
sentation #H. Therefore, H is in the space ([5.7). For each irreducible representation A

there is a corresponding super-division algebra D3 and this gives the 10-fold classification.

To write the ensemble of Hamiltonians more explicitly we recall that H must be a self-
adjoint element of Zs(p,H). There is a natural * structure on the superdivision algebras
since the Clifford generators can be represented as Hermitian or anti-Hermitian operators.
That is, we take ef = d-e; with the sign determined by e; = 3. We then extend this to be
an anti-automorphism, and for Mat,, (D3) we take * to include transposition. H must be
a self-adjoint element of this superalgebra.

Moreover, if x(g) is nontrivial for any g then H must be in the odd subspace of the
superdivision algebra.

Thus, the 10-fold way is the following:

1. If the (¢, x) representation has x = 1 then the generalized Dyson problem is identical
to the original Dyson problem, and there are three possible ensembles.

2. But if x is nontrivial then there are new ensembles not allowed in the Dyson classi-
fication. In these cases, Df is one of the 7 superalgebras which are not purely even
and H is an odd element of the superalgebra Mat, (D3).

Remarks:

1. It was easy to give examples of the three classes in Dyson’s 3-fold way. Below we will
sec:CTgroups

give examples using the 10 bigraded “CT-groups” discussed in Section § elow.

2. The abé)%% 113, strictly speaking, a new result, although it is really a simple corollary
reed: uu

of . However, it should be stressed that the result is just a general statement

about quantum mechanics. No mention has been made of bosons vs. fermions, or

interacting vs. noninteracting.

3. A key point we want to stress is that the 10-fold way is usually viewed as 10 = 2+ 8,
where 2 and 8 are the periodicities in complex and real K-theory. And then the
K-theory classification of topological phases is criticized because it only applies to
free systems. However, we believe this viewpoint is slightly misguided. The unifying
concept is really that of a real super-division algebra, and there are 10 such. They
can be parceled into 10 = 8 + 2 but they can also equally naturally be parceled into
10 = 7 + 3 (with the 3 referring to the purely even superdivision algebras).
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4. The Altland-Zirnbauer classification discussed below makes explicit reference to free

fermions.

&Note: We already
had an exercise on
parity reversal
above. There is
some redundancy
here. &

Exercise Parity reversal

If V is a supervector space its parity-reverse IIV is the supervector space such that
(MV)°? = V! and (V)L = VY.

a.) Let V' be a super-vector space. Under what conditions are V' and IIV isomorphic
in the category of super-vector spaces? 33

b.) Show that there is a canonical super-linear transformation 7 : V' — IIV given by
(0 @ vl) = vt @00 Is it even or odd? 34

c.) Show that if V is a (¢, x)-representaton of G then IIV is also a (¢, x) representation.
Show that, in the physical context this corresponds to switching the sign of the Hamiltonian.

d.) Is the operator 7 of part (b) a graded intertwiner?

e.) Can V and IIV be inequivalent (¢, x) representations?

Exercise

eq:C113H
Show that (l% [107 is an isomorphism of #-structures.

15.1 Digression: Dyson’s 10-fold way

As a curious digression we note that in Dyson’s original paper on ¢-representations HBS]CM
he in fact had a 10-fold classification of irreducible ¢-representations! For completeness we
review it here.

Dyson assumes that ¢ is surjective, i.e. ¢ is nontrivial, and considers an irreducible
¢-representation (p, V') of complex dimension n. Let Gy = ker¢. One useful approach to
Dyson’s 10-fold way is to identify V' with (Vg, I), where I is a complex structure on Vg and
consider certain subalgebras of Endg(VR) generated by group representation operators.
The algebra generated by p(g) for g € Gg is denoted A. The algebra generated by A
together with I is denoted B. Finally, the algebra generated by I and p(g) for all g € G
is denoted D. The commutants in Endg (V') of A, B, D are denoted X,), Z, respectively.
Note that Endr(V') = R(2n). Dyson’s 10 cases are then summarized by the table:

33 Answer: If V is finite-dimensional then we must have dimV° = dimV*'. In general there is no canonical
isomorphism between V and IIV.
34 Answer: 7 is an odd operator.
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Dyson Type D B A X y Z
RR R(2n) C(n) 2R(n) nR(2) nC 2nR
RC R(2n) C(n) C(n) nC nC 2nR
RH R(4m) C(2m) H(m) mH 2mC 4mR
CR C(2m) | C(m) ® C(m) | 2R(m) ® 2R(m) | mR(2) ® mR(2) | mC @& mC | 2mC
CCy C(2m) | C(m)®C(m) | C(m)® C(m) mC @ mC mC @ mC | 2mC
CCy C(2m) | C(m)® C(m) 2C(m) mC(2) mC @& mC | 2mC
CH C(4p) | C(2p) ® C(2p) | Hi(p) ® H(p) pH & pH 2pC @ 2pC | 4pC
HR H(m) QC(m) 4R(m) mR(4) mC(2) mIH
HC H(m) 2C(m) 2C(m) mC(2) mC(2) mH
HIH H(2p) 2C(2p) 2H(p) pH(2) 2pC(2) | 2pH

|subsec:ComRedAlg . . .
Recall from Section §8.4 the notation: K(s), for s a positive integer, is the algebra of s x s

matrices over a real division algebra K. Then ¢K(s) is the algebra of s x £s block diagonal
matrices over K where all ¢ diagonal s x s blocks are the same. Thus ¢K(s) is isomorphic to
K(s) as an abstract algebra. On the quaternionic space H? there is a left action of H(s) and
a right action of the opposite algebra H. Finally, while V always has complex dimension
n, in some cases it is useful to define integers m = n/2 and p = n/4.

The fact that D and its commutant Z are matrix algebras over a real division algebra
follows (and is equivalent to) the assumption that (p, V') is an irreducible ¢-rep. In general,
although V is irreducible it will become reducible when considered as a representation of
the index two subgroup Gy of G. The algebra A will be semisimple and Dyson proves that
when writing it as a direct sum over simple algebras they all have the same Wedderburn
type.  Thus there is a well-defined pair of Wedderburn types (Ki,Kq) of (D,.A), or
equivalently, of (Z,X). Dyson shows, by exhibiting examples, that these are uncorrelated:
All nine possible combinations do occur for some suitable ¢-representation. Finally, the
case (C,C) usefully splits into two subcases according to whether the two representations
of G are equivalent or inequivalent. That gives 10 cases.

From the viewpoint of these notes we should remargie ;cclilzat iu%lu(?e is an a priori different
10-fold classification of irreducible ¢-representations REZZ]._T’Iw—algebra Endgr(VR) has an
involution

T —ITI! (15.9)

and we can use this to define a Zs-grading on Endg(Vg) without choosing any Zs-grading
on Vg. The subalgebra D has graded commutant Z4(p, V') consisting of A € Endg(VR) so
that if we decompose A = A? + A! into even and odd pieces then

AT =1A° & A%(g) = p(g)A° Vge G (15.10)

Al =—1A" & Alp(g) = ¢(9)p(9)A! Vg e G (15.11)

Then Z(p,V) is a real super-division algebra (apply the reasoning of the proof of the
Schur lemma), and we have seen that there are ten types, yielding a 10-fold classification
of irreducible ¢-representations.
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This raises the obvious question of whether Dyson’s old 10-fold classification coincides
with the one given by the real superdivision algebras.

In general it is clear that the even part of the superdivision algebra is precisely the same
as the algebra Z. On the other hand, the definition of the odd part of the superdivision
algebra does not appear in Dyson’s discussion so the relation between the two classification
schemes is not obvious, even though both are 10-fold ways. The fact that there are 10
distinct cases does not mean that they are the “same” ! 3°
Nevertheless we conjecture that the two classifications are the same. More precisely:

Conjecture: There is a 1-1 correspondence between the 10 Dyson types and the real
superdivision algebras so that the classification of irreducible ¢-representations, for all
Zs-graded groups (G, ¢) with G compact and ¢ nontrivial, is the same.

Assuming this conjecture, examination of examples leads to the correspondence:

Superdivision Algebra | R C H | Cly |Cl_g | Cl_o | Cl_q | Cl | Cly| Cls

Dyson Type RC | CCy |HC | CCo | HH | CH | RH | RR | CR | HR

Example 1: Suppose G = Zs, ¢(0) = —1, where 0 € G is the nonidentity element.
We take V = C and p(c) acts by complex conjugation. Then Vg = R?, I = ¢, A = 2R,
X =R(2), and ¢ acts by ¢3. So D is generated by € and 0 and hence D = R(2) so Z = 2R.
Thus, this example is Dyson type RR. On the other hand, in the supercommutant we search
for a T with Te = —eT and To® = —o3T. Such a T is proportional to o' and hence the
graded commutant is C¢; = R @ RT.

Example 2: Suppose G = O(2), graded by ¢(g) = detg. Thus Gy = SO(2). Let
V = C so that Vg = R%, I = ¢, and O(2) acts by its defining representation. Now
A =X = {z + ye|lz,y € R} = C. To compute D we adjoin any reflection, and then we
find D = R(2), so Z = 2R. Thus, this representation is Dyson type RC. On the other
hand, any odd element 7" in the graded commutant must anticommute with € (so it is odd),
and yet commute with p(Gy) which consists of matrices of the form cos 1 + sin fe. This
is clearly impossible, so that the graded commutant is just 2R, and is thus isomorphic to
Cly =R.

Example 3: Now take G = Z, = (w) where w is a primitive fourth root of unity. Define
the Zs-grading by ¢(w) = w? = —1. Thus Gy = {1,w?} = Zy. Our ¢-representation

35For example, I am fortunate to have all 10 fingers. Which superdivision algebra corresponds to my
right thumb?
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sec:CTgroups

space will be V = C2, which we identify with Vg = R* = H and the complex structure is
I = L(i). Then the ¢-representation is defined by p(w) = L(j). (Note that even though G
is abelian we have an irreducible ¢-representation of complex dimension two!) Note that
p(w) is indeed antilinear, and p(w?) = —1. Thus, the restriction of the representation to
G is highly reducible: It is four copies of the sign representation of Zy. Now the algebra
D generated by L(i) and L(j) is the algebra of operators L(q) for ¢ € H and hence is
isomorphic to H. The commutant, Z, is therefore the algebra of operators R(q) for ¢ € H
and is therefore isomorphic to H°PP. On the other hand, since p(w?) = —1 is a multiple of
the identity matrix the algebra A is just 4R and hence the commutant X" is R(4). Therefore,
this example is of Dyson type HRR. Next, to compute the graded commutant we note that
the odd operators anticommuting with L(j) are those of the form L(€)R(q) for ¢ € H. That
is,

D' = {L(§)R(q)lq € H} (15.12)

This means that the superdivision algebra is generated by
e1 = L(®)R(i) es = L(&)R(J) es = L(E)R(¢) (15.13)

and hence the superdivision algebra is C/¢ 3.

Exercise Challenge

Prove the conjecture. If you succeed, you get an automatic A% in the course! 36

16. Realizing the 10 classes using the CT groups

To make contact with some of the literature on topological insulators we describe here the
10 “CT groups.” (This is a nonstandard term used in iR 2P 211émlS a set of 10 bigraded
groups which we now define.

To motivate the 10 CT groups note that in some disordered systems, (sometimes well-

described by free fermions), the only symmetries we might know about a priori are the

36 Here is one approach: For each Dyson type we try to construct a central simple superalgebra in such
a way that there is a one-one correspondence between the Dyson type and the Morita equivalence class of
the algebra. To this end we first define a ¢-representation V' to be of type p if there exists a P € X which
anticommutes with I and P? o 1. We say V of type np otherwise. Equivalently, a ¢-rep is of type p if as
representation of Gy it is either real or quaternionic. Now, in seven out of the ten cases with V irreducible
it turns out that the ¢-rep is of type p. The remaining 3 cases, which are necessarily of type np, are the
Dyson types RC, HC, and CC;. In these cases note that that V @ V is of type p. Let U = V if V is of type
pand U =V @V if V is of type np. Consider the sub-algebras D, A, X, Z of Endg(U), defined as above.
One can check in examples that adjoining P to Z defines a Zo-graded Clifford algebra Z*, (with the sign
of the commutation with I defining the grading) and U is a Clifford module for Z*. The choice of P is not
unique, so one must prove that the Morita class of ZT is independent of P and that the Morita class only
depends on the Dyson type, and not the particular representation.
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presence or absence of “time-reversal” and “particle-hole” symmetry. Thus it is interesting
to consider the various ¢-twisted extensions of the group

My = (T,C|T? =C?* =TCTC = 1) 2 Zy x Ly (16.1)

or of its subgroups. We make this a Zs-graded group with the choice

#(T) = $(C) = —1. (16.2)

Figure 12: The 5 subgroups of Zy x Zs. fig:M22SUBGROUPS

Now let us consider the ¢-twisted extensions of My o. This is a simple generalization
X . . $ec:PhiTwist$éﬁ§%%au .
of the example we discussed in Section §6, equation (6.12). First, let us note that thlefre aLe < BGROUPS
. A A . ig:
5 subgroups of M 2 depending on whether 7', C or T'C' is in the group. See Figure 12

eq:Gtau
As in the example (‘Bgﬂj_t"he isomorphism class of the extension is completely deter-
mined by whether the lift T and/or C' of T and/or C squares to +1. After a few simple
considerations discussed in the exercises below it follows that one has the table of 10 ¢-
twisted extensions of the subgroups of M o:
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Subgroup U C Mss | T2 | C? | [Clifford]
0 €6l =[O
{1,5} [Cl]
[L,7) T [Clo] = [R]
M; +1 | -1 [Cl_1]
{1,C} -1 [Cl_s]
Ms o -1 -1 [Cl_3]
.7} 1 [[Clh] = H
M272 -1 | +1 [C€+3:|
.0} 11| (Ol
Ms o +1 | +1 [Cly1]

Now the group Ms > has a natural bigrading, which, WLOG (see the exercise below)
we can take to be

o(T) = -1 ¢p(C) = -1
x(T) = +1 x(C) =—1 (16.3)
7(T) = —1 7(C) = +1

where we have defined 7 from ¢ and x so that 7-¢ - x = 1. These can be used to define
bigradings of the ten ¢-twisted extensions of all the subgroups of M .

. . |subsec:PhiRepBasics
Now, we can generalize the remark near the example of Section §8.1. Recall that we

could identify ¢-representations of ¢-twisted extensions of My with real and quaternionic
vector spaces. If we consider subgroups of My then for the trivial subgroup we also get
complex vector spaces. This trichotomy is generalized to a decachotomy for the CT groups:

Theorem There is a one-one correspondence, given in the table above, between the ten
CT groups and the ten real super-division algebras (equivalently, the 10 Morita classes
of the real and complex Clifford algebras) such that there is an equivalence of categories
between the (¢, x)-representations of the CT group and the graded representations of the
corresponding Clifford algebra.

Proof:

We systematically consider the ten cases beginning with a (¢, x)-representation of a
C'T group and producing a corresponding representation of a Clifford algebra. Then we
show how the inverse functor is constructed.

1. First, consider the subgroup U = {1}. A (¢, x) representation W is simply a Zs-
graded complex vector space, so V = W is a graded Cly-module.
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2. Now consider U = {1, S}. There is a unique central extension and S = CT acts on
W as an odd operator which, WLOG, we can take to square to one. Moreover, S is
C-linear. Therefore, we can take V' = W and identify S with an odd generator of
Ct,.

3. Now consider U = {1,C}. On the representation W of U™ we have two odd anti-
linear operators C and iC. Note that

(iC)? = C? {iC,C} =0 (16.4)

since C' is antilinear. Therefore, we can define a graded Clifford module V = W with
e; = C and ey = iC. It is a Clifford module for a real Clifford algebra, again because
C is anti-linear. The Clifford algebra is C'l 9 if C? = +1 and Cl_, if C? = —1.

4. Next, consider U = {1,T}. The lift T to U™ acts on a (¢,x) representation W
as an even, C-antilinear operator. It is therefore a real structure if 72 = +1 and a
quaternionic structure if 72 = —1. In the first case, the fixed points of T define a
real Zo-graded vector space V' = W|r—y; which is thus a graded module for C¢y. In
the second case, T defines a quaternionic structure on V = Wg. As we have seen,
Clyis M0£ita equivalent to H, and in fact the C'¢4 module is V@ V. (Recall equation

eg:cliffd
above.)

5. Now consider U = M> . This breaks up into 4 cases:

6. If T? = +1 then, as we have just discussed T defines a real structure. As shown in
the exercises, WLOG we can choose the lift of C' so that CT = T'C. Therefore, C
acts as an odd operator on the real vector space of T' = +1 eigenstates: V = W|p—_41.
Then V is the corresponding module for C/41 according to whether C? = £1.

7. If T? = —1, then, as we just discussed, T defines a quaternionic structure on V = Wg.
Then C, iC, and iCT are odd endomorphisms of Wr and one checks they generate
a C'ly3 action if C? = +1 and a C/_3 action if C? = —1.

To complete the proof we need to describe the inverse functor, namely, given a Clif-
ford module V' in each of the 10 cases, how do we produce a (¢, x)-representation for a
corresponding C'T" group?

For Cty,Cly we take W =V and e; represents S. For C¢j +1, given a real module V'
we take W =V ® C, and let T =1 ® C where C is complex conjugation. Then C =¢e; ® C
defines the corresponding C'T" module. If V' is a real C'¢{19 module then we make a complex
vector space W = (V,I = ejez). We may take C = e;. This is odd and antilinear. If V' is
a real C'l13 module then W = (V, Fejeq) and we take C' = e; and T' = —eges.

We leave it to the reader to check that these are indeed inverse functors. <

Now, in order to give our application to the generalized Dyson problem we note a key:
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Proposition: Let U™ be one of the 10 bigraded CT groups and let D be the associated
real superdivision algebra. Let (p, W) be an irreducible (¢, x)-rep of U'™. Then, the graded
commutant Zs(p, W) is a real superdivision algebra isomorphic to D°PP.

Proof: We consider the 10 cases in succession.

1. For U = {1} we have D = C and there are two inequivalent irreducible (¢, x) repre-
sentations W = C1° and W = €O, (There is only one graded-irreducible represen-
tation.) In either case we clearly have Z; = C.

2. Now consider U = {1,585} so D = C/;. There is a unique (up to isomorphism)
irreducible representation W = C!', and choosing the natural basis we have

p(S) = (? ;) (16.5)

It follows that the graded commutant Z,(p, W) consists of the C-linear transforma-
tions which in this basis have the form

(O‘ 5) a,BeC (16.6)
—Ba

The Zs-graded algebra of such matrices is isomorphic to C/_; = C¢{PP. (It is also
isomorphic to C¢; in this example.)

3. Now consider U = {1,C} with C? = &, where ¢ € {£1}. These correspond to
D = (V45 for £ = +£1, respectively. Then up to isomorphism we can take the irrep
to be W = C!' and we can take

ok (2) — (5;12> (16.7)

Computing the conditions A°C = CAY and A'C = —CA! reveals that A must be a
C-linear transformation which in this basis is

A= <—ZB g) a,BeC (16.8)

so Zs(p, W) = Cl4o = DPP.

4. Next, consider U = {1,T}. If T? = +1 then D = Cly = R and there are two
inequivalent irreducible (¢, x) representations of U™ namely W = CcUo or W = COI,
In both cases in the natural basis Tz = z. Therefore Z, = R = C{PP. If T? = —1
then D = H and there are again two inequivalent irreps W = C20 or W = C°2 and

T (2) s (;'?) (16.9)
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(Note: This is an even transformation!) Now a simple computation shows that if A
is a 2 X 2 complex matrix in this basis then

TA=eAe T (16.10)

where A is simply complex conjugation of the matrix elements of A. The fixed points
A = eAe™! defines a matrix realization of the quaternions:

A= (O‘B g) a,feC (16.11)

and therefore Z; = H = D°PP. (An alternative and slicker argument identifies W = H
with I given by L(i) and T given by L(j). Then it is clear that Z; = {R(q)|q € H} =
H°PP. )

. Now consider U = M 2. This breaks up into 4 cases:

.IfT? = 41 and C? = € then D = Cfl4; for € = £1 and there 1s a unlque irrep

:Coxi-act
isomorphic to W = C!1. We can still take C' to act according to ( ; ut now we

r(2)- () (16.12
29 z2

so that T is even, antilinear, and commutes with C'. From our computations above we

must take

know that %raded commutation with C' implies that a graded intertwiner A is of the
int-

form (I% §) and commutation with 7" implies that «, 8 € R and hence for D = C/14

we have Zs(p, W) = Cl+y = DOPP.

. If T2 = —1, then, up to isomorphism we have W 2 C212 and now, up to isomorphism
we can take

21 £73
Z Z

C: ol 574 (16.13) ‘eq:c-xi-act-ii
z3 Z1
24 )
21 —2Z9
z z

T:{?|—] " (16.14) [eq:T-xi-act-ii
23 —Z4
24 Z3

Now write A as a 2 x 2 block matrix

A= (i‘ ?) a, B,v,8 € My(C) (16.15)

Then AT = T A shows that each 2 x 2 block satisfies @ = eae™ !, and so forth. Then
graded commutativity with C' shows that 6 = @ and v = —e3. Therefore

A= (—C:B 2) (16.16)

- 141 -



where «, 3 are 2 x 2 complex matrices satisfying the quaternion condition o = ece™?

and B = eBe!. Therefore, for D = Clyi3 we get Zs(p, W) = Cl+3 = DPP.

We can now give examples of all 10 generalized Dyson classes. If U™ corresponds to
one of the even superdivision algebras R, C, H then there are two irreps W,. The general
rep of U™ is isomorphic to H = mer ® WP Then the graded commutant is

Z(p, 1) = End(R"+"-)& D°PP (16.17)

In these cases the group U™ (which is isomorphic to Pin® (1), see below) is purely even so
the Hamiltonian can be even or odd or a sum of even and odd. We can therefore forget
about the grading and we recover precisely Dyson’s 3 cases. If U™ corresponds to one of
the remaining 7 superdivision algebras (those which are not even) then there is a unique
graded irrep W and up to isomorphism H = W%" so again

Zs(p,H) = End(R"™)&D°PP (16.18)

As discussed above we can impose Hermiticity conditions on the graded commutant
to get the relevant ensembles of Hamiltonians.

Remark: We motivated the study of Ms o and its subgroups using the example of dis-
ordered systems. Unfortunately, in the literature on this subject it is often assumed that
given a pair of homomorphisms

(T, X) :G — Mg,g (16.19)

such that 7 - x = ¢, we will always have G = Gy x U, where U is a subgroup of M2 and
Gy is ker(t) Nker(). This is not true in generall There is a sequence

1-Gp—-G—=U—1 (16.20)

and in general it will not split, let alone be a direct product.

Exercise
Show that for My 2 one may always choose, (after a possible rescaling by a phase), lifts
T and C of C and T, respectively so that TC = CT.

Exercise
Show that in the case the subgroup is U = {1, 5} with S = CT, one may always choose
a lift so that S = 1 (or S? is any other phase, for that matter.)
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Exercise
a.) Consider My o = Zg x Zg and suppose 91,1y are two distinct homomorphisms to
Zy = {£1}. Then WLOG we can choose generators T, C with

i (T) = -1 Po(T) = +1
Y1 (C) = +1 Yo (C) = —1

In particular, if 7, x are distinct and we define ¢ = 7 -y then ¢(T) = ¢(C) = —1.

(16.21)

17. Pin and Spin

17.1 Definitions

The Pin and Spin groups are double covers of orthogonal and special orthogonal groups,
respectively. They are best defined as groups of invertible elements inside a Clifford algebra.

To motivate the definition let us recall a few facts about the orthogonal and special
orthogonal groups. Let R%* be the real vector space of dimension d = ¢ + s with symmetric
bilinear form (z,y) = n;jz'y’ where n;; = Diag{—1!,+1°}. By definition, O(¢,s) is the
group of automorphisms of this bilinear form. If the form is definite we write R? and O(d).

Now, if z € R is a vector such that (z,z) # 0 then we can define a transformation
R, : RHS — RbHS:

szy»—>y—2§§’z§m (17.1)

Note that, R, = R,, where « is any nonzero real number and hence R, only depends
on the unoriented real line through x, so we could write Ry, where £ is the line through
x. A short computation, making use of the symmetry of the form, shows that R, is an
orthogonal transformation:

(R$y17 Ra:y2) = (yb 92) (17'2)

In the case of definite signature there is a simple geometric intuition here: A real line
in R? determines a unique orthogonal plane through the origin and R, is reflection in that
plane. A basic fact of group theory is that the group O(t, s) is generated by the reflections
R, in vectors of nonzero norm.

The group O(t,s) has four connected components when ¢t > 0 and s > 0 and two
components when the form has definite signature. The special orthogonal group SO(t, s)
is the subgroup of orientation preserving transformations and has two components. The
transformations R, are orientation reversing and hence SO(t, s) contains products Ry, Ry, .
In fact, these products generate the group SO(t, s).

Returning to definite signature, the product of two reflections R, R;, is a rotation in
itio Y REFLECT-TWO-LINES

the two dimensional plane spanned by the vectors x1, x2. See Figure 13-

Now, to define the Pin and Spin groups we consider the vector space R"* as embedded
in the real Clifford algebra Cliff_; ; as the linear span of the generators, and we must make
a few definitions:
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Figure 13: A product of reflections Ry, Ry, is a rotation by angle 26 around the point of intersection,
where 0 < 0 < 5 is the acute angle between ¢1 and ¢s. The rotation is ccw (cw) if the rotation of
¢ into £1 by 0 is ccw (cw). The easy way to remember this is to consider the image of a point on
a plane orthogonal to {5, as shown.

First consider the group C/Z, ; of invertible elements of the algebra.
Examples:

1. O = {a+bet|a®—b? # 0} = R*xR*. Recall that as an ungraded algebra C/; = RGR
via the projection operators Py = %(1 + e), from which the group structure above is
obvious.

2. Cl*, =C* =R, x U(1)

3. Clr, =H* =R, x SU(2)

4. CO*, = H* x H*

5. Cl*

6. Ct*, =~ GL(4,C)

7. Cl* s = GL(3,R)

8. Cl*. =~ GL(8,R) x GL(8,R)

9. Cl* g, = GL(2* R)
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Now define the algebra automorphism A : C'0_; ; = Cl_; s by defining it on the gener-
ators to be A(e;) = —e; and extending it to be an algebra automorphism. On homogeneous
elements it is just the Zo-grading. If ¢ € ClZ, ; we define the twisted adjoint action: It is
a homomorphism of groups (not algebras!):

Ad: O, — GL(Cl_y,) = GL(2Y* R) (17.3)

where on the RHS we mean the group of invertible linear transformations of C/_; 5 as a
vector space. It is defined by

Ad(¢) 1t = A(@) - 97" Vi € Cl_y s (17.4)

One easily checks the homomorphism property: A\a(qbl)ﬂi(qﬁg) = Avd(qﬁl -¢2) and hence Ad
defines a representation of the the group C'%, ;. The reason we put in the extra twisting by
parity, ), is that we want certain operators of the form A\a(qb) to act as reflection operators
on the subspace Rb® C C¢_; ; spanned by the generators e;. In particular, x = zle; € RS
is an invertible element of C?_; s iff (z,7) # 0 and the inverse, in the group C¢*, ., is

xT = (17.5)

Then for any y = y'e; € RH® C Cl_, 5 (invertible or not) we have

Avd(a:)y = —qyx !

wyr (vy+ym)z

T (zx) (z,7) ty (17.6)
_ o)

VT e

It follows that if we consider the subgroup of Cf*, . generated by x with (z,z) # 0
then under Ad that subgroup covers the entire orthogonal group O(t,s). Moreover, since

Xa(ax) = Ad(z) for a a nonzero scalar we can, WLOG take those vectors to be of norm
+1. This leads to the definitions:

Definition: Pin(t, s) is the subgroup of C¢*,  generated by vectors of norm +1. Spin(t, s)

is the subgroup of even elements. In equations: 37

Pin(t,s) := {f£v1---v, | vs €RY & |(vs,v5)]=1 1<s<n} (17.7)

Spin(t,s) == {£vy---ve, | vs €RY & |(vs,v5)|=1 1<s<2n}= C€9t7SﬂPin(t, s)
(17.8)
In the case of a definite signature we write Pin™(d) = Pin(0,d) and Pin~(d) = Pin(d, 0).

3"With the exception of Pin(0,1) = Pin™ (1) and Spin(1) = {£1} we can drop the + in the definition of
the Pin and Spin group. If ¢, s are positive then for an appropriate vector v we can arrange that v? = +1.
In the definite signature case of Pin(d) or Spin(d) consider (eje2)? = —1 .
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We will see that Spin(d,0) = Spin(0, d) so we just denote this as Spin(d).

Note that under the homomorphism ;‘:(/i, the group Pin(t, s) maps to the linear trans-
formations on C¢_; ¢ that have the special property that they take the subspace R%* to
itself and preserve the norm. That is,

Ad : Pin(t,s) = O(t,s) — 1 (17.9)
Moreover, for a single vector v, ;‘:(/i(v) is orientation reversing and hence
Ad : Spin(t, s) — SO(t,s) — 1 (17.10)

Now we consider the kernel of Ad. Suppose ¢ € Pin(t, s) is in the kernel. Decompose
¢ into its even and odd pieces: ¢ = ¢° + ¢'. Then, for all y € R** we have A(¢)y = yo.
Since y is odd this is equivalent to two equations:

¢y = yg"

17.11
o'y = —yo! (1711

In particular, since the generators of C/_;  are in R"* these equations say that ¢ is in the
graded center of C/_; ;. But we know that the Clifford algebra is a central superalgebra,
so ¢ € R* is an invertible scalar. What scalars can we get? If

vp-ev, =a € R (17.12)

|subsubsec:C1iffVolElmt
then we can apply the transpose anti-automorphism [ (see exercise 1 in Section §|ld 1.4

above) to this equation and multiply the two equations to get
V202 = a? (17.13)

and hence o> = £1. Since « is real, o> = +1 and hence o = +1. Therefore, the kernel is
just the group {£1} = Zy and we have the exact sequences:

1 — Zs — Pin(t, s) 24 O(t,s) — 1 (17.14)

1 — Zy — Spin(t, s) 24 SO(t,s) — 1 (17.15) [eq:spinextseq]

17.1.1 The norm function

|[subsubsec:C1liffVolElmt
Recall from exercise 1 in Section §|ld I.4 above that the transpose operation ¢ — [(¢) is

defined to be the unique ungraded anti-automorphism that is the identity on R%®. Thus,
38

B(g12) = b2 (17.16)

and f(e;) = e;. In terms of a basis:

Blei€iy - €i,) = € i, | - €inei; (17.17)

38Note well that this violates the Koszul sign rule! That leads to some awkward signs in some equations
with 5. It is possible to define a closely related anti-automorphism which respects the Koszul rule.
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Definition Define ¢ := X o 8(¢), and the norm function:

N(¢) = ¢¢. (17.18)

The norm function has some nice properties when restricted to the Clifford group
I'(t,s), namely is the subgroup of C¢(t, s)* which preserves the vector space R* generated
by e; under twisted adjoint action. That is, ¢ € I'(t, s) if for all vectors y = y’e; (where 7
are real numbers)

Ao)-y-¢~ ' eRY (17.19)

First, we claim that if ¢ € I'(t,s) then N(¢) € R*. To see this let A(¢)yop—! = v/
Take the transpose of this equation and solve for y to get y = A(¢)y'¢~*. Therefore

A@)ys ™!

A (@)Y o o~!
Aoo)y' (90) ™

= Ad(¢9)y’

y/

(17.20)

is true for all /. Therefore ¢¢ € ker(;‘:(/i) and we have already shown 3 that ker(Avd) >~ R*.
It follows that N(¢1¢2) = d1¢adadr = ¢1N(p2)¢1 = d191N(¢2) = N(¢1)N(¢2) and
hence N : T'(t,s) — R* is a homomorphism.
Moreover, we claim that for ¢ € I'(t,s) we have Ad(¢) € O(t,s). To prove this, note
that if ¢ € I'(t,s) and y € R%* then

Ne)yo™ o~ gA(9)
= (M@)A(9))(99) 'y (17.21)
vy

Ad(¢)y - Ad(¢)y

Alternatively, just use the fact that N is a homomorphism: N (Avd(qb)y) = N\ (p)yop™ ') =

N(¢)N(y)N(¢)~' = N(y).
Therefore we have shown that:

15 R* 5 T(ts) 2 0@,s) > 1 (17.22)
Moreover, it follows that an alternative definition of Pin(¢, s) can be given as
Pin(t,s) :={p € I'(t,s) : IN(¢)| =1} C I'(¢,s) (17.23)

and in fact I'(¢,s) = Pin(¢, s) x R4.

Note that since Spin(t,s) := Pin(t,s) N C¢°, and C£°, . = CL°_, it follows that
Spin(t, s) = Spin(s,t). However, the analogous statement for Pin is definitely false.

One useful application of the norm function is that it gives a neat definition of the
groups Pin® and Spin® which are useful in both geometry and physics. To define these

39The same argument works for T'(¢, s).
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we work with the complexified Clifford algebras. In the complex case we define x — T to

include complex conjugation. That is, if z is in a real Clifford algebra then (z ® 2) =z ® z.

We can again define the Clifford group I'c(t,s) C CZ}; as the group preserving the subspace

R @ C under Ad. Now the kernel of Ad is C* and for z € C* we have N(z) = 1 for
eg:presnorm

|z| =1, i.e. for z € U(1). The same computation (II 7.21) above shows that in the complex

case the image of Ad is in U(d) C GL(d,C), but one can also show that

Ad(y) = Ad(7) (17.24)
and hence the image is in fact in O(d) C U(d).
eq:DefPin-alt
Taking our queue from (I7.23) we define:
Pin(d) := {¢ € T'c(t,s) C Cly: |[N(¢)| =1} (17.25)

The intersection with (C/(d))" defines Spin‘(d) so we get

1 - U(1) - Pin“(d)HO(d; R) — 1 (17.26)

1 — U(1) — Spin“(d)24S0(d; R) — 1 (17.27)

From this one can show
Pin‘(d) = (Pin*(d) x U(1))/Zs (17.28)

Spin‘(d) = (Spin(d) x U(1))/Zx (17.29)

Exercise
Show that in general that for ¢ € I'(t,s) C C¥; 4, the norm N(¢) can be positive or
negative.

Exercise
Show that e!?** is not connected to the identity in Spin(1,3).

Exercise
a.) Consider the quaternions realized as C/(0,2). Show that xZ is the norm of the

quaternion.
b.) Show that we can identify C/(0,2)* = R* — {0}
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17.2 The relation of Pin and Spin for definite signature

We consider the case of definite signature for simplicity. Then we define Pini(d) according
to whether e? = +1 or €? = —1.

If P € O(n) is any reflection, then {1, P} = Zy generates a Zg subgroup of O(n). In
Pin™ (n) this subgroup is covered by Zsy x Zs, and the double coverings + P of the reflection
squares to 1 € Pin™(n). On the other hand, in Pin~(n), this subgroup is covered by Z4
and the double coverings of the reflection +P squares to —1 € Spin(n).

The difference between Pin™ and Pin~ is that the double coverings of a reflection
squares to 1 in Pin™ and squares to —1 in Pin~.

Now, from the definition it is clear that Spin(d) C Pin(d) is a normal subgroup of
index two. We can define an explicit homomorphism

§:Pin(d) — {*1} =2 7Z, (17.30)
by §(¢) := detAvd(qﬁ), and Spin(d) = ker(d). So
0 — Spin(d) — Pint(d) > Z, =0 (17.31)

In the case of Pint(d) we can split this sequence by taking s(—1) = e! (or any other

vector of unit norm). The associated automorphism of Spin(d) is:
¢ — elgel (17.32)
and in general is an outer automorphism. It follows that
Pin™(d) = Spin(d) x Zs. (17.33)

It turns out that Pin~(d) is more complicated. To describe the group structure of
Pin~(d) we define an automorphism of Z4 on Spin(d). Choose any vector v with v? = —1
(e.g. it could be any of the generators). Then w’/ € Z4 acts by

agi € = v EW)TL (17.34)

Using this automorphism construct the semidirect product Spin(d) x Z4. Then we claim
there is a well-defined surjective homomorphism

Spin(d) x Z4 — Pin~(d) — 0 (17.35)

given by (€,w’) — Ev7. Now, the kernel of this homomorphism is just Zs with the nontrivial
element being (—1,—1).

To summarize:

Pin™(d) = Spin(d) x Zs (17.36) ‘eq:PinPlusSeq‘

Pin~ (d) = (Spin(d) x Z4) /Zs (17.37)

- 149 -



Figure 14: Illustrating Pin* (1) double covering O(1). The red arrow indicates e = +1 in Pin™ (1)
and the golden arrow indicates e? = —1 in Pin~(1). Of course, Spin(1) is the Zy subgroup double
covering the identity I in O(1).

17.3 Examples of low-dimensional Pin and Spin groups

In this section we give some explicit examples of Pin and Spin groups in low dimensions.
These examples have the nice feature that one can easily parametrize the general group
element in a way which makes the group multiplication simple. On the other hand, the
reader should be warned that the topological properties in these cases are not representative

of the general case.

17.3.1 Pin®(1)

PinT(1) = {£1,4e} = Zy x Zs (17.38)

Pin~ (1) = {£1, e} = 7, (17.39)

Now, O(1) = {I, P}, where [ is the identity and P is the nontrivial element, acts on
the 1-dimensional vector space Re by P : e — —e. We have

Ad(£1) =1  Ad(+e)=P (17.40)

Thus we have
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0 — Zy — Pin™(1) = O(1) = 0 (17.41)

There is a homomorphism O(1) — Pin™* (1) which splits the sequence, but there is no

such homomorphism for Pin~(1).
Note that Siping) :gl{l:I:l} is the double cover of the identity element I € O(1).
ig:PinSpinOne

See Figure 14:

17.3.2 Pin™(2)
Now consider Pin*(2) C C¢%, = GL(2,R).

For oo ~ o + 27 we define:
1 : 2
cos(a)e” + sin(a)e
e e (1742

2

2
£
I

E(a) = cos(a) + sin(a)ee

Then
0743

Pin® (2) = {€(a)} T{O(o)}
has two components, both isomorphic to the circle. To compute the group structure
note that £(a)&(B) = E(a+ B), so these elements form a subgroup. This is the group
Spin(2). The group multiplication for Pin™(2) is easily worked out to be:

E(@EB) =E(a+B)
O(a)é(B) = O(a+ B)

7.44 eq:pin s
E(B)O(a) = O(a — B) (17.44)
O(a)O(B) = &(B - a)

In particular Spin(2) is isomorphic to U(1). Note that for any o, O(a)O(a) = +1.
If we consider the homomorphism Ad : Pin™(2) — O(2) we have a matrix representa-

tion defined by
(1745

Ad(g)(e") =D (Ad(¢))bac”

b

Then in the ordered basis {e, ea}:

_ _ cos(283) sin(28)
Ad(E(B)) <_ sin(20) cos(2ﬂ)> (17.46)
) eq:mtrxr
Avd((’)(ﬁ) —cos(2) sin(203)
sin(28) cos(28)

. . . eq:PinPlusSe
These relations nicely illustrate the exact sequence (I %.36;:

0 — Zoy — Pin™(2) = O(2) = 0

747
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Topologically, both Spin(2) and SO(2) are copies of the circle. From the above we see
that the double-covering Spin(2) — SO(2) is the nontrivial double-covering of a circle
over a circle. The group O(2) has two connected components, each component is a circle.
The group Pin(2) also has two connected components, each is a circle nontrivially double-
covering the circle in O(2).

Note that we also can define a homomorphism ¢ : Pint(2) — Zs given by ¢(z) =
detK(/i(x). The kernel is Spin(2) 2 U(1) and the sequence

0— U(1) = Pin™(2) —» Zg — 0 (17.48)

splits by
s:T—T:=0(a) (17.49)

eq:PhiTwPlus
where we can choose any reflection O(«) we please. GtThus we recognize ([I r.A8] as the
eq.: au
¢-twisted extension we called M2+ in the example (6. above.

17.3.3 Pin~(2)

Now consider Pin™(2) C C¢*, = H* = Ry x SU(2).
For oo ~ o« + 27 we define:

O(a) = cos(a)e! + sin ae? (17.50)

E(a) = cos(a) + sin(a)e' e?

Then
Pin™(2) = {€(a)} U {O(a)} (17.51)

has two components, both isomorphic to the circle. The group structure is then easily

computed:

E(@)EB) =E(a+p)

O(a)&(B) = O(a — B) (17.52)
E(B)O(a) = O(a + B)

O(@)OB) =E(a— B+ )

If we consider the homomorphism Ad : Pin™ (2) — O(2) we have a matrix representa-

tion

N [ cos(28) —sin(20)
Ad(E(B)) = <sin(2ﬁ) cos(203) ) (17.53)
R = (252 )
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The first line shows the double-covering of Spin(2) over SO(2). In the next line we
have the set of all reflections in O(2) double-covered by the elements O(/3). In particular,

eq:PinMinSe
we have (II7.

0—Zy —Pin (2) > 0(2) -0 (17.54)

Note that we also can define a homomorphism ¢ : Pin™ (2) — Zg given by ¢(x) = detga(m).
The kernel is Spin(2) = U(1) and the sequence

0—-U(l) »Pin (2) > Za— 0 (17.55)
does not split. The most general section we can choose is
s:T—T:=0(a) (17.56)

where we can chogﬁeTag reflection O(«) we please, but now reflections square to —1. Thus
eq: wrPlus

we recognize (I7.48) as the ¢-twisted extension we called M, in Section §**** above.

17.3.4 Pin(1,1)

Now consider C?; 1 and let the generators be {e1, ez} with e% = +1 and e% =—1. Itis
useful to form the isotropic elements

e1 +e2 €1 — €2
= _ = ]. .
€t 9 € 9 ( 7 57)
so that
et =e2=0 {eq,e}=1 (17.58)
Indeed Py = e_e; = 3(1+e12) and P = eye_ = 3(1 — ey2) are orthogonal projection

operators, and provide a basis for the even subalgebra.
We can define group elements

Exix_(0) = x e’ Py + x_e P

0

, 3 (17.59)
Oyyx_(0) = xq€"er + x—€ e

where # € R and x4+ € {£1}. It is not difficult to show that these are the most general
even and odd elements in Pin(1,1). Thus, Spin(1,1) has four connected components, each
a copy of R as a manifold, while Pin(1,1) has eight connected components, again each a
copy of R as a manifold. This presentation of the group elements makes the computation
of the group law especially transparent.

Exercise
Compute the action of Spin(1,1) on RY! by twisted adjoint action:

Ad(Ey. iy (0))es = x1x—e Pey (17.60)

Ad(Ey, v (0))e- = e x—eXe_
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For the components with x4+ x— = 1 the image is a boost of rapidity 26. For the components
with x4+x— = —1 the image is such a boost together with a PT transformation.

Exercise Pin*(3)
Using the fact that C¢%; = H give an analogous presentation of the group structure

of Pin®(3) parametrizing even and odd elements in terms of unit quaternions.

17.4 Some useful facts about Pin ad Spin

17.4.1 The center

We focus on the case of definite signature.

For d = 1 the groups Pin*(d) and Spin(d) are abelian as we saw above.

For d = 2 Spin(2) is abelian, while the center of Pin®(2) is just {£1}. This follows
from the explicit discussion of the group law above.

To understand d > 2 note that any element of the center of Pin®(d) or Spin(d) must
map to the center of O(d) or SO(d) under Ad, respectively. But for d > 2 any element
of the center of O(d) or SO(d) must be proportional to the identity matrix. The only
orthogonal matrices of the form aly are +1,4. Viewing —1, as a product of reflections in
the planes orthogonal to eq,...,eq it is clear that the inverse image of —14 is +w where
w = ey ---eq is the volume form. Therefore, the center of Pin®(d) and Spin(d) must be
contained in the group {£1, fw}.

To compute the structure of the group {£1, +w} recall that the square of the volume
form is

€ d = 1mod4
2 )1 d=2modd (17.61)
—e d=3mod4

+1 d=4mod4

where € = & for Pini(d). Thus {+1, +w} is isomorphic to Zy X Zg or Z4 according to the
above cases.

For d even the element w is indeed in Spin(d) and clearly is in fact central. For d odd
w is not in Spin(d). Therefore:

ZQ X ZQ d = Omod4

Z(Spin(d)) =  Z4 d = 2mod4 (17.62)

Zy d = 1mod2
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For Pin the situation is reversed: If d is even then w is not central and if d is odd then
w is central, and hence:

(7o x Zy  d = 1mod4

Z(Pint(d)) = { 74 d = 3mod4 (17.63)
| Z2 d = Omod?2
Zy d = 1mod4

Z(Pin~(d)) = { Zy x Zy d = 3mod4 (17.64)
ng d = Omod2

17.4.2 Connectivity

For d = 1, Spin(1) = {41} has two components, while Pin* (1) has four components.

For d > 1, Spin(d) is a connected double-cover of the connected group SO(d). The
connectedness follows directly from the definition: Consider an element vq - --v9,. Each
vector v, lies on the unit sphere v> = +1. But that sphere is connected, for d > 1.
Therefore for each vs we may choose a continuous path of vectors vg(x), 0 < x < 1 of unit
norm connecting vs to some common vector, say e1, at x = 1. Then vy(x) - - vo,(x) is a
continuous path of elements in Spin(d) connecting vy - - - vo,, to 1.

Although not strictly necessary, we can also exhibit an explicit path connecting —1 to
+1 within Spin(d). Consider the path of elements:

r(t) := cost + sintej ey 0<t<m. (17.65)

This path is useful in discussing simple-connectivity below.

Applying the same argument to Pin™(d) with d > 1 shows that it has exactly two
components. For vy - - - v, we choose paths vs(x) as before. At x = 1 we have (e1)™ which is
= 1 for n even or ey for n odd. Since these map to disconnected components of O(d) under
the continuous map Ad there cannot be any path connecting 1 and e;. Each component
double-covers the corresponding connected component of O(n). These facts also follow
from the group-theoretic discussion of the relation of Pin and Spin above, once we know
Spin is connected.

For the general case of Spin(¢,s) and Pin(¢,s) with ¢ > 0 and s > 0 and d > 2 a
similar argument can be used to investigate the components: Spin(¢,s) has 2 connected
components and Pin(¢,s) has 4 connected components. Each component is a nontrivial
double cover of one of the 4 connected components of O(¢, s).

To prove the above claims note that the sphere in R*® given by

(where z,, are the coordinates of v) is a bundle over R? whose fiber is topologically S*~1.

The sphere S has two csomponents and S™ has one component for n > 0. Therefore the
eg:rs r

solution space of (II7. as one component for s > 1 and two for s = 1. By the same

token
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has one component for t > 1 and two for ¢t = 1.

Now consider an arbitrary group element in Pin(¢,s). Since d > 2 either s > 1 or
t > 1 and this allows us to prove that —1 is connected to 4+1. Therefore the general group
element is path connected to one of the form

VU (17.68)

If s > 1 and t > 1 then for each vector vs with v2 = +1 we choose a path of unit norm
vectors connecting it to eq. For each vector with v2 = —1 we choose a path connecting it
to e;. Therefore, at the endpoint of our path we obtain a group element ie? eﬁd which is
ie? ezd, where /1,04 are valued in {0,1} and are congruent module two to £, ¢4, respec-
tively. Again, since —1 is connected to +1 we have shown that the arbitrary group element
in Pin(¢, s) is connected to one of 1,e1,eq4,e1e4. But each of these projects under Ad to
each of the four components of O(t, s), with e; projecting to a “time reflection,” and eq
projecting to a “space reflection.” If t = 1 or s = 1 the argument needs to be supplemented
but the conclusion is unchanged. For example, if ¢ = 1 then there are two components of
the set of vectors with v? = —1. These vectors are pathwise connected to +e;. But then,
so long as s > 1, e can be path connected to —e; in the group. {

17.4.3 Simple-Connectivity
Now consider the simple-connectivity. Spin(d) is a principal Zs bundle over SO(d). From
the exact homotopy sequence for fibrations:

0 — m1(Spin(d)) — m1(SO(d)) — mo(Zs) — 0 (17.69)

For sufficiently large d we can use the Bott song to see that 71(SO(d)) = Zy and therefore
it follows that m(Spin(d)) = 0. In fact this applies for d > 2. Of course 71(SO(2)) = Z
and hence 7 (Spin(2)) = Z. ,
. . . eq:BasicPath . —~
Now, consider the path r(¢) in equation (I %.65;. Let us compute its image under Ad:

A\a(r(t))el = (cost + sintejes)e(cost — sintejes)
= (0052 t — sin? t) e1 — 2costsintey
= cos(2t)e; — sin(2t)eqy

A\(/i(r(t))eg = sin(2t)e; + cos(2t)ey

(17.70)

and of course Ad(r(t))e; = ¢; for i > 2. The matrix representation is thus

Ad(r(1)) = (fgfﬁg) n(é?)) Bi 1 (r.7)

Thus the image is the path of rotations R(2t) in the ejes plane. Note in particular it is a
closed path for 0 < ¢ < 7. Thus this closed loop in SO(d), which is homotopically nontrivial
and in fact generates m(SO(d), 1), lifts to an open loop in Spin(d) which connects +1 to
—1, thus explicitly showing how the connecting homomorphism in (e fFl efrfgps the basic
loop to the nontrivial element of 7y(Z2).
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:LieAlgSpinGrp

17.5 The Lie algebra of the spin group

We consider the general situation of a quadratic form @ on a real vector space and compute
the Lie algebra spin(Q). Since Adisa?2:1 covering and a group homomorphism we are
guaranteed that Lie algebra spin(Q) of Spin(Q) is isomorphic to that of so(Q). However,
since we are thinking of Spin(Q) as a subgroup of C¢(Q)* we can also give a very nice
description of this Lie algebra as a Lie subalgebra of C'?¢(Q). After all, the tangent space
to Spin(Q) at the origin will be a linear subspace of T1C¢(Q) = C¥(Q), as a vector space.
Moreover, C'¢(Q) can also be considered to be a a Lie algebra with the obvious Lie product
[a,b] :== ab — ba, and we will see that L(Spin(Q)) := spin(Q) is a Lie subalgebra.

To motivate the construction we want to think of the identity element as the product
v? = 1 for some vector v € R C Cls_;. Consider a path of elements vy (t)va(t) with
v;(0) = v and v?(t) = 1. The tangent vector is

d

Zlo(w1(Eua(t) = v + vty (17.72)

where ©; = %\ovi(t). On the other hand, differentiating vZ(t) = 1 gives vi; + v;v = 0. It
follows that we can equally well write the tangent vector as

d

a‘o(vl(t)w(t)) = %(i}w — 1) + %(m')z — Dov) = VW — WY (17.73)

where w = $(d9 — 1).
This suggests that

spin(t, s) = {vivy — vov1|v1, v2 € R} C Cls 4 (17.74)

and indeed, by the above remark the RHS must be a subspace. On the other hand, it is
easy to see that it is already the full dimension of spin(¢, s), and hence the spaces are equal.
Indeed, if e, is a basis for R"® with Q(e,,e,) = 7, then a natural basis for spin(t, s) is

the set of generators:

1 1
M, = Cm = Z[eu,ey] (17.75)

where p1 # v and we need only take those for ;1 < v to get a basis since M,,,, is antisymmetric
on f, .

As a check of the isomorphism spin(¢, s) = so(t, s) the reader should use the Clifford
algebra relations to compute

[euua eAp] =2 (nu)\eup — NurCrp — NupCpux + nupeu)\> (1776)

It is easy to remember this formula by specializing to the case v = A # pu, p, using the
Clifford algebra property, and then imposing the antisymmetry on the pairs p, v and A, p.
Therefore we get the desired equation:

(M, My,) = M, =3 terms (17.77)

- 157 -



A natural choice of Cartan subalgebra is given by the span of

1 1 1
hy = 5612, he = 5@347 veeny hp = 5627,_172,« (17.78) ‘eq:simple—coroots

where r = [d/2] is the rank of the complex simple Lie algebra so(d) ® C. Indeed the h; can
be taken to be a set of simple coroots. &check &

Exercise

Show that Ad(e,,) acts on V as a linear transformation

[euw ex = [eue,,, ex)
= eﬂ{el/a 6)\} - {eua e)\}el/ (1779)
=2e,Qux — 2e,Qux

Exercise

Check that the linear transformation Ad(e,, ) preserves the quadratic form Q:

2Q([epvs ex]s ep) +2Q(en, [epvs €p]) = [euws erlep + €pleuw, en]
+exlew, ep] + [euws eplen
= [euws exep +epen] = [euw, 2Q,1]
=0

(17.80)

Thus, Ad(e,,) acts as linear transformations on V' preserving the quadratic form @ on V
and they generate the Lie algebra so(Q).

Exercise

If T}, is the antisymmetric matrix with 1 (—1) in matrix element u,v (v, u) and zero
elsewhere and exp(3w*T},,) = g € SOy(r, s) then

1 1
exp (Zw"”ew> exexp (—waew> = gpr€p (17.81)
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17.5.1 The exponential map

Let us consider the image of the exponential map. Note that for each pair p < v we can
write:

1 10) + 0)euw if v = +1
exp <_¢96W> = cos(36) +sin(30)es b Tl (17.82)
2 cosh(%@) + smh( Oew if Ny =—1

Although it is guaranteed to be true, let us note that these expressions can be written
as the product of two vectors of norm-square +1:

exp (196111/) _ {eu(n,uu COS(%?)eu + Sln( 0)e,) ?f NupThor = +1 (17.83)
2 €y (N cosh(z0)e, + 81nh(§9)e,,) it nuume = -1

Now, a small computation shows that the image under Ad of e e, is a rotation (or
2 v
boost) by angle # in the pv plane:

Avd(exp (%Hew,>)(e>\) =e) A # v (17.84)
Ad(exp (%Oew> J(ep) = c(8)e, — nus(B)es (17.85)
Ad(exp <%96W>)(ey) — (B)ey + nos(B)e, (17.86)

where c(f) is cos 6 or cosh f according to the sign of 7,,,m.., etc.
Now let us restrict to the case of definite signature, say all +, so (e,)*> = 1 (no sum on
). Then the maximal torus is the subgroup of Spin(d) composed of elements of the form:

(cos ty + e1asin fy)(cos O + e34 5inb) - - - (cos O + e(2r—1(2r) SiN 0;.) (17.87)
where r = [d/2] and 6; ~ 0; 4+ 27. Recall that the reflection in a plane by two lines at angle

0 is a rotation by 26. Since we can write (cos; + ej2sinf;) = ej(cosfie; + sinfies) the
above element maps to

cos 207 sin 264 cos 260, sin 20,
. 17.88
(— sin 267 cos 291> O @ (— sin 26, cos 20T) ( )
for d = 2r and
cos 207 sin 26 cos 20, sin 26,
e 1 17.89
(— sin 267 cos 291) O @ (— sin 20, cos 297,) © ( )

for d = 2r + 1. In either case this gives a 2"-fold covering of the maximal torus of Spin(d)
over the maximal torus of SO(d).

- 159 —



17.6 Pinors and Spinors

Let us now consider representations of Spin(¢,s) and Pin(¢,s). We first want to define
spinorial representations.

Suppose p : Spin(t,s) — Aut(V) is a representation on a vector space V over a field
k. We automatically get a representation of the Lie algebra spin(¢, s), and hence of the
universal enveloping algebra Uspin(t, s):

p : Uspin(t, s) — End(V) (17.90)

|subsec:LieAlgSpinGrp
On the other hand, the upshot of Section §|l7 D 1s that there 1s an embedding of algebras

¢ : Uspin(t, s) — 058,4 (17.91)
Moreover, CES _, is generated by products v1vy of vectors in R4 and since
1 1 1
V1V = 5(2}12}2 — Ugvl) + 5(?}1?}2 + Ugvl) = 5(2}12}2 — 1)22}1) + Q(’Ul,vg)l (17.92)

this embedding is surjective, and hence ¢ is in fact an isomorphism of algebras.
We say that the representation p “factors through” a representation of CK(S),,t if we
can write p = p/f o, where p®ff is a representation of Cﬂgﬁt.

Definition

a.) A representation (p, V') of spin(t, s) is spinorial if it factors through a representation
of Y

s,—t*
b.) A representation of Spin(t, s) is spinorial if its Lie algebra representation is spinorial.

c.) A spinor representation S is an irreducible representation of C’ég,_t restricted to
Spin(t, s). Typical vectors in S are called spinors.

d.) A pinor representation S is an irreducible representation of C/s_;, restricted to
Pin(t,s). Typical vectors in S are called pinors (if we wish to emphasize that the rep-
resentation extends to the other components).

Thanks to the isomorphism ¢ we know that irreducible representations of C’é(s),,t restrict
to irreducible representations of Spin(¢,s). Similarly, irreducible representations of C'ls _;
restrict to irreducible representations of Pin(t, s).

In view of this relation of Spin to the even parts of the Clifford algebras, together with
the relation

ClY = Cly_q (17.93)

for d > 0, and using the tables above for the structure of the ungraded Clifford algebras
we can immediately read off the spin representations of Spin(d):
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d | CO=Cl_y4 Irrepsg (C19) Irrepsc (CY) = Trrepsc (CYY) | Irrepsg (Pin™(d))
2 C S=C Sf~C H

3 H S>~H S, = C? ST=H
4 HoH SE2H, w=+1 St~ (? S = H?
5 H(2) S =~ H? S, =ct S=Ct
6 C(4) S =t SF =~ S = R8
7 R(8) S~ R8 S, = C? ST ~R8
8 | RB)®R(S) | ST=RE w=+1 SF >~ (8 S = RIS
9 R(16) S = RI6 S. = C6 S Cl¢
10 C(16) S = Cl6 St~ 6 S = H!6
11 H(16) S = 16 S, =3 ST = H6

We need to make a number of remarks about this table:

We left off the case d = 1 because Spin(1l) = {£1} is not a connected group, the
argument based on the Lie algebra does not apply.

We could have stopped at d = 9 and invoked periodicity for higher d since the
ungraded algebra just changes by multiplying by the appropriate number of factors
of R(16). These merely shift the dimensions in the obvious way. We put in the last
two rows because they are useful in physics.

The algebra Cfg is ungraded and hence we are considering ungraded representations
of Cl1_4 here.

Note we must be careful to distinguish representations over R from those over C. As

~

an example, consider Spin(2) = U(1).
over R which is the vector space V = C with representation matrix

There is a unique irreducible representation

p(cos 0 + sin fejo)z = €2 (17.94)
Of course, one might wonder about the representation
p(cos @ + sinfejn)z = e 2 (17.95)

As a relpresentation over
:Re

R we can use the R-linear intertwiner z — Z to prove that
. .

eq:Rep2

. is equivalent to (| . That is why there is a single spinor representation

S = R in the table. On the other h'amdé as representations over C the representations

eqg:he

eq:he
on V = C given by (I7.94) and (I[7.95) are inequivalent, because there is no complex-

linear transformation on V' which conjugates one into the other.
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5. The presence of two inequivalent representations in the table can always be under-
stood from the volume element w, which in some contexts is called the chirality
operator. For d even the volume element of C/; is in Cf?l. It will be, up to a sign, the
same as the volume element of C'¢;_4. For d = 0,4mod8 it squares to +1 and hence
we can define projection operators Py = %(1 +w) projecting onto the two simple sum-
mands in Cﬂg. For d = 2,6mod8 it squares to —1 and there are no such projection
operators over R. However, if we complexify the Clifford algebra, or the represen-
tation, then we can multiply w by v/—1 and then produce a projection operator,
thus giving two inequivalent complex representations. In general the representations
SF = C2"”* for d = Omod?2 with we = +1 are known as Weyl or chiral or semi- spin
representations. For the case of odd d the volume element is not in Cf?l, and the
algebra, and its complexification, are simple.

6. Of course, for representations of Pin™(d) over R the situation is different and the
Clifford algebra is not simple for d = 3mod4, yielding two inequivalent pinor repre-
sentations.

Now, for representations of Spin(¢, s) more generally we can use Morita equivalence in
the following sense:

It Cls _; has an irreducible graded representation V = V0@ V! then VO and V! will
be irreducible representations of the ungraded even subalgebra Cfg,_t. On the other hand,
we can always write

Ol =2 Cly_1@CU, (17.96)
:gencliff
along the lines of (el 3.1 - Note the change of conventions so that o = —drmod8

drmod8 = (t — s)mod8 (17.97)

Now CY; _, is a super-matrix algebra and has a unique graded irrep U = R®* where
s =271 Now it follows (Morita equivalence) that there is a one-one correspondence of
graded irreps S of the definite signature Clifford algebra C?, and those of C'¢; _; given by
S+ U®S. Therefore, there is also such a correspondence for the irreps of Spin(t, s) and
Spin(dr) with

SO St RO (S S, (17.98)
Thus the properties of representations being real and or quaternionic is invariant under
the shift (s,t) — (s + ¢,t + £). One example of this is physically very important: It

relates Spinor representations for Lorentzian signature Spin(d + 1,1) to those of the Spin
representations of the space transverse to the lightcone Spin(d).
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drmod8 | Real (Majorana) | Quaternionic (Pseudoreal) | Chiral (Weyl) | Majorana-Weyl
-4 - yes yes -
-3 - yes - -
-2 - - yes -
-1 yes - - -
0 yes - yes yes
1 yes - - -
2 - - yes -
3 - yes - -
4 - yes yes -

Remark: In the physics literature the reality properties of spin representations are
usually established by considering irreducible representations of the complex Clifford alge-
bras and then showing the existence (or not) of intertwining matrices between I'* and

+TH, £(TH)! £(TH)*, £(TH)T (17.99)

Once one knows that the key properties of these intertwiners does not depend on a partic-
ular representation one can even use a particularly convenient one, such as that given by

fermionic oscillators (see below) to compute explicit intertwiners.
17.7 Products of spin representations and antisymmetric tensors
For spinorial representations S of Spin and Pin some key constructions in physics involve

the existence of covariant maps (morphisms of representations) of the following form:

1. S® S — V: Super-Poincaré and super-conformal algebras.
2. S®S5®V — 1: Kinetic terms in Lagrangians.
3. S® S — 1: Mass terms in Lagrangians.

4. V® 51 — Sy: Dirac operators

The last morphism is given by Clifford mulitplication by V' C C¢(V,Q) in the pinor
representation. If the spin group admits chiral representations then it exchanges these
chiral representations.

The existence and the properties of the first three kinds of morphisms depends on the
signature and the dimension mod eight. This mod-eight dependence should be reminiscent
of the graded Brauer group for k = R, and indeed one can find a conceptual discussion

elignSpinors
based on that in . e are going to take a much more concrete and down-to-earth
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approach to these matters, but the beautiful conceptual underpinnings are worth bearing
in mind.

Our approach will be to decompose the products of spinors (bispinors) into sums of
antisymmetric tensors. The existence and properties of the above morphisms will be a
corollary of that discussion.

17.7.1 Statements
We begin with the Clifford algebra generated by

{eu,en} = 21, = 2Diag{+1°, -1}, (17.100)

over R. Choose an irreducible Clifford representation on a complex vector space S. Let
V =R"» ®C = C% with d = s+t. Then, thanks to ;‘Ii, V' is an irreducible representation
of Spin(t, s), and so are all the antisymmetric powers AV for 0 < k < d.

We want to study Spin(¢, s)-equivariant maps

S®S — al_oA*V (17.101)

We immediately see that there is an important distinction between d even and odd. If d is
even both the LHS and RHS are Of'%%nglﬁ;( dimension 24/2 x 24/2 = 24 Indeed, we will
see that there is an isomorphism ( 1 the other hand, if d is odd then S is 2(¢=1)/2
dimensional and the LHS is only 2(d*1)-d1men51onal so there can be no isomorphism.

For fixed k the space of intertwiners
Hom**™?) (S ® 5, AFV) (17.102)

is one-dimensional, when d is odd and two-dimensional, when d is even. In Section
|subsubsec:BiSpinorProolfg:antis

te
8772, see equation (II7. ldl), Wo will show that - given a representation of the Clifford

algebra by gamma matrices I'* - there are canonical intertwiners @i, where £ € {£1} is
a sign which enters the construction. When d is even there are two distinct intertwiners
labeled by £ and when d is odd there is only one. Moreover

e For d = 1mod4 then £ = +1.

e For d = 3mod4 then £ = —

Note that since the intetwiners are nonzero they are surjective by the reasoning of
Schur’s lemma, since the target representatlon 1sllsrrlen%201ble

We want to understand how the maps ( ; ehave when restricted to irreducible
representations of Spin(¢, s), what the symmetry properties are, and what the reality prop-
erties are. As we mentioned above, these properties depend on both s and ¢ modulo eight.
In order to express the answer we need to understand the roles of chirality, Hodge duality,
and symmetry for these maps.

First, let us discuss the role of chirality:
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Denote the representation of the volume form I' := Ty ; = p(w). In representations
over the complex numbers we can always diagonalize this operator. The eigenvalues of T’
are denoted by ¢ and they obey

% ::(__1)%dQL—D%¢ ::(__1)§dT(dT+4) (17.103)

where we recall dr =t — s for Cls _;. For d even the trace of I' in the Dirac representation
S, is zero. In order to state our results in a convention-independent way we let {1+ denote
the eigenvalue of ' on the irreducible representation S*. Then (- = —(y. When ¢? =1
it would be natural (but not necessary) to choose ¢, = +1 and when ¢? = —1 which root
we assign to ST is a matter of convention.

Now, when d is even we have

5 (1, Tapa) = (—1)MH4205 (Dypy, 1) (17.104)

leg:Phik-chiralld
The identity (IU 104) 1mplies that if 11, ¥ have definite chiralities (1, (2, respectively

then ®(1)1,12) can only be nonzero if

6o = (—1)7FF (17.105)

We say that the spinors have opposite chirality if (;(; = —1 and the same chirality if
(1¢2 = 1. This gives the following table summarizing when ®(11,%2) can be nonzero if
11,19 have definite chirality:

k =0mod2 | k£ = 1mod2
d = Omod4 same opposite

d =2mod4 | opposite same

For d even the ®; can be assembled to give isomorphisms
ST @ ST ®ST®ST E @y _apAC

17.106
SRSt DSt RS X ;1,7 C ( )

+1)(2)

Now let us consider the role of Hodge duality:
Given a metric on V and an orientation, expressed as a volume form vol of unit norm,
the Hodge * operator is the unique C-linear operator * : A¥V — A4k such that

f*f=| f]? vol (17.107)

where || f ||? is the norm-squared of the differential form f in the metric.
Using the metric ds? = Nuet ® e’ and the orientation

1
vol ;== et A ned = a(—l)tem...ude“1 Ao N et (17.108)
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the Hodge * acts on the natural basis as

1 4
(LA NeliR) = (—1)tHEV1 e €A A et (17.109)
where /1 Ha € {0, 41} is the totally antisymmetric tensor normalized by !¢ = 41, and
indices are raised and lowered with 7,,,. Note especially that, restricted to A*V for any k
we have the important sign:

2 = (=1)f(~1)k=R), (17.110)

When this is +1 we can diagonalize * over the reals with eigenvalues +1, and when it is
—1 we can only diagonalize over the complex numbers.
The Hodge star commutes with the Spin(t, s) action (but not with the Pin(t, s) action!
For orientation-reversing group elements it anti-commutes) and hence defines isomorphism
of Spin(¢, s) representations
APV = ARy (17.111)

Moreover, if d is odd then *?> = (—1)!. Denote the two eigenvalues of * by +e, with
e =+1for t =0(2) and € =i for t = 1(2). Then, as representations of Spin(t,s) we can
decompose A*V into two equivalent (highly reducible) representations given by

€

S

—E&

AV 2 (@i _ ARV OF_ A*V (17.112)

where g}tle s111perscripts +¢ indicate the corresponding eigenspaces of *. Of course, thanks
eq: ar—1lso

to (7. each of the summands is isomorphic to, say,
k
@k<gA V (17.113)

as a Spin(t, s) representation.

When d is even then #* = (—1)"** and hence A*V decomposes into two subspaces.
One is the subspace on which *> = +1 and the other is the subspace on which *?> = —1.
These two subspaces are distinguished by the parity of k. Each of these subspaces may be
decomposed into * eigenspaces. The “middle” space ASV splits into two representations
given by the * = +¢ eigenspaces, where

1 (-2 =41
ot (=) + (17.114)
+i (_1)t+d/2 —
Therefore, we can decompose A*V into eigenspaces of * as
. e (17.115)
k k
D @k:(gﬂ)(z)/\ Vi @ @k:(gﬂ)(z)/\ 4
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Now, returning to our equivariant maps @i :S®8 — A*V, the key identity which
relates Hodge * and chirality is

B (1 ® 1) = (—1)1T 30D (1) DY () @ Tpy) (17.116)

This identity holds for d eveIIl{ or.od odd. If v is an eigenstate of I' of eigenvalue (5 then by

eq:zeta-s
we can simplify ( o

RO () @ 1) = G5 (= 1) 2 ETDDG | (1 @ o) (17.117)

Again, this equation holds for d even or odd.

Now, for d odd, since each ® is surjective, it follows that we have

3 —&

S® S @,KgA’“V ~ @i _ AV od_ AFV (17.118)

where we can forr%{lstheI%tef—dual or anti-self-dual linear combinations of ®; and ®,4_;. as we
eq: -
please, using (

) " leq:HS-CHIR2
For d even equation (I 7T /i implies that

STRST =@ 4y d(Q)A Vo [A?V}

R (17.119)
d
= |:@k=g(2)A2V:|
_ o~ k d o
ST®S :@k<§l,k=§(2)A Vo [Aﬂ/]
. (17.120)
d
where
e= M- (17.121)
:Star-I
Meanwhile, because of the isomorphism (el 7111 ) we also have
STRST =D a4 +1)(Q)A’“V (17.122)

Finally, we can meaningfully ask how the symmetric and anti-symmetric decomposi-
tions of S ® S (for d odd) and ST ® S*, S~ ® S~ (for d even ) map to antisymmetric
tensors. The key identity is now

B (1 ® 12) = E¥(€, d)(~1) FEDDS 1y @ 1) (17.123)

where (€, d) is a sign which depends on £ and dmod8 and is given by
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dmod8 | £ =+1 | £ =—1
0 +1 +1
1 +1 *
2 +1 —1
3 * —1
4 —1 —1
5 —1 *
6 -1 +1
7 * +1

It follows that for d odd we have

Sym?(S) =

k
Dttt 4y ket AV

~ k
A2(S) = @k:dTﬂ(4)’k<%A V

On the other hand, if d is even then we have

2 ~Y k
Sym (S+) = eBk::%modélA 4

€

AP (ST) = Dh=(2+2)modd k< A"V

2

Sme(Si) = [@k:%modllAkV

AQ(S_) = 69k::(%—|—2)mod4,k:< d Akv

2

(17.124)

(17.125)

(7.126)
(7127
(7.8

(17.129)

Returning to the questions at the beginning of this section the above identities easily

elignSpinors

reproduce Table 1.5.1 from .

n the entries in the second column, “orthogonal” means

there is a symmetric nondegenerate Spin-invariant form on the spin representation, while

“symplectic” means there is an anti-symmetric nondegenerate Spin-invariant form.

dmod8 | Forms on spinors Symmetry of S® S — V
0 S* orthogonal SteS, -V
1 orthogonal symmetric
2 S dual to S symmetric (on SF separately)
3 symplectic symmetric
4 S* symplectic SFfeS, -V
5 symplectic antisymmetric
6 S+ dual to S | antisymmetric (on ST separately)
7 orthogonal antisymmetric
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3iSpinorProofs

Finally, we comment on the reality properties. For d = 2mod4 S& are complex conju-
gates of each other. In the other cases Si are self—co dCh I%ate
leq leg: Phik-SYMM
The proofs of the key identities (|17 104 ), (|17 I16), and (I7.123) did not use complex
conjugation. From our discussions of Clifford algebras we know that we can form a real

representation of gamma matrices for dr = +1,0mod8 and hence the same story holds

with real representations. For uaterrélonlc representations dr = +3,4mod8 the story is
elign inors
a little more complicated. See [16 for onc discussion. We will merely remark that the

product of two quaternionic complex vector spaces carries a natural real structure, so that
one can use the reality conditions to map to real antisymmetric tensors.

17.7.2 Proofs

We begin with a definition of the intertwiners:
5508 - AV (17.130)

To define it choose an irreducible matrix representation I';, of C¢,. _s. Think of spinors as
column vectors and consider

1
5 (1,1)2) = o (] CeDH T Mhapy) ey A v A epy (17.131)

The reason for the matrix C¢ is the following: In the spin representation 1 transforms
according to

(e em) . ap = o = ez Ty (17.132)

so we need to know how the transpose transforms. (That is, we are looking at the dual
representation space SV.) This requires the introduction of an intertwiner C¢, which has
the property

CelHCO = Tt (17.133)

where £ = £1. We will see below that such intertwiners always exist with the only restric-
tion that £ = +1 for d = 1mod4 and £ = —1 for d = 3mod4.
Given a choice of C¢ the representation on the dual space is

D Ce = (7 Ce)em zom ™™ (17.134)

antisymmtensa
Consequently, the RHS of (IU I31) 1s invariant if we replace v; — ps(g) - ¢; and e, —

Ad( )(eu) for g € Spin(t, s).
Our first rule is about how k is correlated with the pairing of chirality. Note that:

cdn Lald— e —
(C ey = ¢i(—1)2 1D ertdeg ! (17.135)

This holds for any value of d, even or odd.
For d odd "% is represented by a scalar and therefore £4 = (—1)%d(d_1). Thus:

e For d = 1mod4 then C¢ can only exist for £ = +1. (And it turns out it does exist for
£=+1)
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e For d = 3mod4 then C¢ can only exist for £ = —1. (And it turns out it does exist for

£=-1)

For d even we may simplify (ﬁ%‘%%%tf%?
(DLdytr — (—1)d/QC§F1"'ng1
Therefore we compute
BT O Ty = (1) (CDCE O™ Heasy
= (1) FHE(Dy) T Ol Ty

leg:Phik-chiralld
Thus proving (IU 104).

Next we take into account Hodge duality and use the crucial identity:

LAV BETD = (—1)%k(kfl)mﬁ’”“’“kyl"'ud*krul---udw

where I' = T'y..4 and €!% = +1.
We now compute

*‘I)i(@bl @ 77b2) = % (%b?,cfrur“uk@bQ) (*el‘l"'ﬂk)
1

On the other hand,
1 r Vil
@ka(@bl ® Fl/JZ) = m (1/}115 CEF ! d_krl/}Q) 6V1“‘Vd7k)

— (—1)3d—R)(d—k=1)(_4 kd—k) 1
(-1) ()" e (¥

:HS-CHIR
Comparing these equations and doing a little algebra leads to (I iv; Iéi

t cVq—
1/}1TC§FM1 ,U«deQ) Gul 1/1 I/d keyl vd k)

(17.136)

(17.137) ‘ eq:connectchiral

(17.138) ‘ eq:hodgegamma

(17.139)

B CET o o) €11 Ve

(17.140)

Finally, for the symmetry properties note that from the definition of C¢ we can com-

pute:
(Gt = h(—1) Dot oy

Now we can therefore say
1 ,
‘I)i(l/ﬂ ® a) = %! (V1 Cel gy 2) €
1 T T
) (v5 (FNI"'Nk)t Cé Q) et
:gk(_ )2 (D) <¢ C€Fu1~~uk( )1/)1> et

eg:defcxi
Now note that (1 7133 implies

CeTrC !t = et
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: t
and by Schur’s lemma it follows that Cé_ ngT is a scalar, and consistency of (e T

implies that scalar is +1. The symmetry nature of the tensor product decompositions
depends on that sign.

Again by Schur’s lemma that sign cannot depend on the matrix representation. If we
multiply matrices by v/—1 we can change the signature but not the anti-symmetry prop-

erties, so we might as well choose signature +1¢ and compute in a specific representation,
. i i . i . |sSubsubsec:ExplicitRepGamma
We will use the harmonic oscillator representation constructed in Section §I8.4.T Delow  &Perhaps would be

better to use the

For d = 2n, define U = rr4... FQ”, and then check that we can take: explicit

r@%@v@ﬁ'@dd
(I13758) above. &

U
e (740
odd

P1
€
S
S

even

17.145) |eq:plusintera
U n odd ( ) ‘

2
Il
—N—
’1
€
=
3

and by explicit computation

ULyt = (—1)znmtD) (CLU) Y (TLU)T = (—1)2n=D) (17.146)

Finally, recall that for d odd, we may only use C for n even, i.e. d = 1lmod4 and C_
for n odd, i.e. d = 3mod4.

In this way we compute

dmods8 | C{'CY | cZlet

0 +1 +1
1 +1 *

2 +1 ~1
3 * ~1
4 -1 -1
5 —1 *

6 ~1 +1
7 * +1

. eq: Phik-SYMM
This proves (II7. .

Note that from this table we deduce
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0|1]2|3[4|5]6]|7
CIo® 1 S|IS|S|[*|A|A[A|*
CIo st *|A[A[A|*|S|S
Cr'®Ws|s|s|*[A|A[A]|*
CT'WIA[*]|S|[S|S|*[AlA
CI?2H T A[A[A|[*|S|S|S]|*
CI?M Al *|S|[S|[S|*|A]A
CI3H TA[A[A|[*|S|S|S]|*
CI3® | S|*]A[A|A|*]|S]|S

Across the top we have written the value of dmod8 and in the left-column C,I°*)
means a matrix C ['#1"#k with k = Omod4. The S,A in the table denotes symmetry or
. . . eq: symms
anti-symmetry, respectively. This leads to the final refinements (II %.Iﬁuﬁu;, et. seq.
Remark: Note that for some columns, e.g. d = 2mod8 and k = 0 we can have both
symmetric and antisymmetric matrices. This is not a contradiction because in such cases
we are pairing spinors of opposite chirality.

Exercise Checking dimensions
a.) Show that: 40

d) d-2  otd-1__7d
Z =27 422%" cos(—)
k=0(4) <k 4
Z <Z> = 2072 4 93771 sm(%i)
k=1(4)
<d> o (17.147)
=292 — 229" cos(—)
k=2(4) k 4
d d
<k> = 9d-2 _ 93d-1 sin(%)

These identities hold for any positive integer d, even or odd.
b.) Using these identities check that the dimensions match in the various decomposi-
tions of products of spinors into antisymmetric tensors given above.

Exercise

Find the explicit linear combinations of ®; which project into the eigenspaces of x.

40 Answer: Apply the binomial expansion to (1 + &)? for the four distinct fourth roots & of 1.
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Hints:
a.) It is useful to remark that

(—1)3@-R@-k-1 _ ] H1 k = d,d + 3mod4 (17.148)
-1 k=d+1,d+ 2mod4
and hence
1 1
-1 5(d—k)(d—k—1) _ -1 sk(k—1) k — d2
(=1)2 (=1)=" 3100 (17.149)
(—1)z@=Rd=k=D) — _(1)zk¢=D g = (4 4 1) mod2
b.) In particular, if k = m0d2 then
#(Ou(r, 1) + Pa (Y1, 9)) = G ()@ + (13PN )
(17.150)

— G M (=)D (D (4, 9) + By (1, 2))

c.) On the other hand, if k = % + 1mod?2 then (—1)%]“(]“_1) = —(—1)%(‘1_1")(‘1_1‘5—1) and
hence

* (Pp(V1,12) — 1Py (Y1,12)) = (( )% q;d p —i(— 1)%(d—k)(d—k—1)q)k)
:igl( 1) 2 E=D) (@) (4, o) — 1By (11, )
(17.151)

d.) It follows that we can refine the decompositions to

—E&
$t @8t (@ sy AV] @ [B (1,0 A V] (17.152)

where the superscripts +¢ mean the spaces are eigenspaces of Hodge * with eigenvalues

1 d(d—2)
e=¢, (=1)" s (17.153)
respectively. Here ¢, is the eigenvalue of T on S*. For S~ we have the same story with
(-~ = —(+ and so we get the complementary space
ST®S ARV A 17.154
05" =04 A'V] @ [0 (snwA'V] (17.154)
:PhiMap-2
e.) Similarly, the map (el 7. T51) Teads to
55t Ay Arp] 17.155
05" = o (dV] @[S giwdV] (17-155)
where now the & superscripts mean
(d+2)
—ic ()T (17.156)
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17.7.3 Fierz identities

For d even we can rewrite the main result of the previous section as

d
1
(¥1)a () =272 Y (7 Celpy o o) T C g (17.157)
k=0

Proof: The Clifford algebra is simple as an ungraded algebra so I'*1"#k),g forms a
linear basis for the full matrix algebra, and hence so does (F“k""“Cg o) Ba- Therefore, we
can certainly write

d

1
(¥ 5= D N (102 T C 0 (17.158)
k=0

for some some totally antisymmetric tensors N ()1, 9) p1...up, Which are linear in 11 and v».
Moreover, the trace in the Dirac representation has the property that

TyDH-Hk = () (17.159)

for 0 < k < d. When k is odd this immediately follows by thinking of the Dirac representa-
tion as a Zy-graded representation. (Equivalently, we can insert Fi = 1 and use cyclicity.)
When k is even we can cycle, say, I'**. Therefore it follows that

TH(TM 4T, ) = 6, 2% Z sgn ()84 .. 5l (17.160)

Vo (1) Vo (k)
ogESy,

Using this property of the tracle;livezcan determine N (1,%2),,...u, as above.

Further contraction of (| with spinors 3, ¢4 gives a way of rearranging products
of spinor bilinears known as F 1erz rearrangement.

Remark: Fierz rearrangements are frequently used in computations in perturbative
quantum field theory and in computations involving supersymmetric field representations

and invariant Lagrangians.

17.8 Digression: Spinor Magic
17.8.1 Isomorphisms with (special) unitary groups

The minimal dimensional irreps of the Spin group give insight into the special isomorphisms
between the different classical Lie groups in low dimension.

We consider the definite signature Clifford algebra and study Spin(d). The irreducible
representations on real vector spaces are of the form K" where K = R, C,H according to
dmod8. After extension to complex scalars n is a power of 2 given 2[4~ 1/2_If the signature
is positive we can choose the representation matrices I'* to be hermitian and if negative we
can choose them to be anti-hermitian. In either case they are unitary matrices considered
as complex matrices. In any case, the representation is given by a homomorphism p into
the norm-preserving elements of K" which we will denote U(K"™) with the understanding
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that

S
=
N>
IR

SO(n;R)

=
a
=
I
=
2

(17.161)

Now, using the irreps of Spin(d) over R we construct homomorphisms p : Spin(d) —
U(V) with

p:Spin(2) - U(C)=U(1)

p: Spin(3) - U(H) = USp(2) = SU(2)

p:Spin(4) - UH e H) = USp(2) x USp(2) = SU(2) x SU(2)

p: Sp%n(f)) — U(Hz) = USp(4) (17.162)
p: Spin(6) - U(C*) = U(4)

p : Spin(7) — U(R®) = SO(8)

p : Spin(8) — U(R®) = SO(8)

p : Spin(9) — U(R!®) = SO(16)

In the above the kernel of p is one. This follows since Spin(d) is simple, except for d = 2,
where we can check the kernel explicitly, and for d = 4, which is why we mapped to the two
chiral spin representations. The center of the spin group acts nontrivially on the spinor.
Now, we compare dimensions. In the cases where the dimensions match we obtain
isomorphisms of Spin groups with (special) unitary groups. These isomorphisms are:

x U(H) = USp(2) x USp(2) = SU(2) x SU(2) (17.163)

In general the image of p will only be a small subgroup of U(Vy, K) since the dimension
of Vy is growing like ~ 2%/2 while the real dimension of the Spin group is %d(d —1). The
dimensions coincide for d = 2,3,4,5,6. By the time we get to d = 9 the Spin group is
dimension 36 but the dimension of SO(16) is 120.

Sor Rk kR kR

Compatibility with Ad. Explain the relation to Az -TA™! = R(z) - T.
FokkoR Rk R KK

17.8.2 The spinor embedding of Spin(7) — SO(8)

Once we reach d = 7 we have an image of p : Spin(7) — SO(8) and just counting dimensions
we see that it cannot be onto. This hardly means the magic is over!

- 175 —

&Need a better
argument to rule
out a kernel which
is a finite group &

‘eq:SpecialIso




We should note that there is another natural homomorphism from Spin(7) to SO(8)
given by

Ad : Spin(7) — SO(7) = SO(8) (17.164)

where we embed SO(7) into SO(8) so that it is the stabilizer of a nonzero vector.

Now let us compare with the embedding by the spin representation. C¢(7_) has two
inequivalent representations on R®, giving two inequivalent representations of Pin(7_) on
RS,
representation is obtained by considering the action of the seven imaginary units in the

eg:octmu
octonions on O = R?® as described in ( et. seq. above.

These become equivalent when restricted to Spin(7). A beautiful explicit matrix

Now, in this representation if we consider the stabilizer of a nonzero vector then we
do not get SO(7) but rather a completely different group, known as the exceptional group
G3. Thus, the spinor 8 of Spin(7) becomes reducible as a representation of Gs:

8=1®7 (17.165)

where 7 is the smallest nontrivial representation of Gs.

From the octonionic description we obtain 7 explicit 8 x 8 real antisymmetric matrices.
The two inequivalent representations of C/_; are related by v — —+%. The spinor rep-
resentation is obtained by multiplying even numbers of vectors of norm-squared —1 or by
exponentiating v/. We will next use the matrices 7* to construct the spinor representations
of Spin(8).

17.8.3 Three inequivalent 8-dimensional representations of Spin(8)

Something very special happens at d = 8. Then there are three inequivalent 8-dimensional
representations. Two of these are the spinor representations S*. These are obtained by

€ij = —Vij 1<i<j<7
Y i =red= (17.166)
;8 — i%‘ 1< <7
Put differently, we can form a representation of C'¢(8+) = R(16) by taking
~ 0 . - 01
;= =1,...,7 = 17.167
= (00) w= (7)) (17 167
so that if v1 - - y7 = 1 then the chirality matrix is
- - - 10
Fy = 1A = (o _1> (17.168)

Then the two representations of spin(8) are given by the two block diagonal components
Of?MN,1§M<N§8.

In addition, there is the vector, or defining representation of SO(8) on R®, and thanks
to the Ad homomorphism, this is also a representation of Spin(8). Thus, we have con-
structed three irreducible representations of Spin(8) on R®. We claim that these represen-
tations are in fact inequivalent. One way to see this is to consider the representation of
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the center of Spin(8). This is Z = {1, +w} where w = e; - - - eg is the volume form. Note
that w? = 1 so the center is Z = Zy x Zy. In the two spin representations (p4,S*) the
element w is represented by the 11, and 22 blocks of 4, above. Thus, pi(w) = +1 and
p—(w) = —1, and hence they are inequivalent. Of course, —1 € Spin(8) is represented by
—1 on both S* but is represented by +1 in the vector representation V: A‘a(—l) = +1.
Thus, there are three inequivalent 8-dimensional representations. Of course, the volume
element w = (e12)(es4)(es6)(ers) double covers (under Ad ) a rotation by 7 in the 12, 34,

56, 78 planes and hence Ad(w) = —1. Thus, we have the following table (of course, the
last column is the product of the first two):

g€Spin8) | -1 | w | —w
P+ -1 +1] —1
p— -1|-1] 41
Ad +1| -1 -1

It turns out that the group of outer automorphisms of Spin(8) is isomorphic to the
symmetric group S3, and the automorphism can be detected by its action on the center:

Outer(Spin(8))/Inner(Spin(8)) = Aut(Zy x Zy) = S (17.169)

Moreover, S3 permutes the three 8-dimensional representations amongst themselves. This
very beautiful group of outer automorphisms of Spin(8) is known as the triality group,
discovered by E. Cartan in 1925.

[

Figure 15: The Dynkin diagram of D4 with nodes labeled by fundamental representations corre-
sponding to the simple roots.

Triality can be understood in several different ways. Here are a few of them: Label
the three real eight-dimensional representations by Ry = ST, Ry =S, R3=V.

1. The most direct way utilizes the relation between Lie groups and Lie algebras and
the characterization of the Lie algebra by Dynkin diagrams. Since the Lie algebra
can be reconstructed from its root system it suffices to give an automorphism of the
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root system. The group of outer automorphisms of a simple Lie algebra is given
by the automorphisms of its Dynkin dlagram The most symmetric case is that of
g DADYNKIN
Dy = s0(8) = spin(8) and shown in Figure e three legs can be permuted
arbitrarily. In spin(8) the four simple coroots can be taken to be
1 1 1 1

5012, 564, 5656, HCTs: (17.170)

Then the permutation 015 € S3 can be lifted to the automorphism which acts on the

Cartan subalgebra as 4!
€12 100 0 €12
~ €34 001 O €34
= 17.171
712 €56 010 0 €56 ( )
€78 000 -1 €78

A more nontrivial automorphism is

€12 €12
013 R I R (17.172) ‘eq:outeronethree
€56 €56
€78 €78
where
11 1 1
111-11 -1
H == 17.173
2111 —-1-1 ( )
1-1-11

is a matrix that squares to 1. Note that
(613612)° = 1 (17.174)
and hence 615 and 713 generate a copy of the group S3 in the group of automorphisms.

2. Using this we can write a group-theoretic version. 42 An outer automorphism o1z
which permutes ST holding V fixed is defined by its action on the generators
€ij — €ij 1§i,j§7

(17.175)
€;8 — —€;8 ’izl,...,7

To see this, note that one can write w = ejgesg---erg. Thus 019 exchanges w for
—w holding —1 fixed. A glance at the table above showing the representation of

the center shows that the represesentations Ry, Ry i.e. ST are exchanged, holding V/
fixed.

“'Rows 2 and 3 in this matrix are not misprints. They differ from the naive transformation by an inner
automorphism.

49 leq:outeronethree

One should be careful not to interpret the transformation (T7.I72) as an automorphism of the Clifford

algebra. This would map w to a projection operator.
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To construct the permutation o3 note that since w = exp (7‘(%(612 + esq + e56 + 678))
it follows that the induced automorphism on the group, denoted o3 is given by
o73(w) = —1. We see that exchanging w and —1 in the table above exchanges S™ for
V, leaving S~ fixed.

17.8.4 Trialities and division algebras

A very nice viewpoint on the triality automorphism of Spin(8) is provided by stepping back
and thinking first about trialities more generally. We are here following the nice exposition
in IO who is describing ideas of J.F. Adams.

If V3, V5 are two vector spaces over a field x they are said to be in duality if there is a
nondegenerate bilinear form

d: VixVo—=k (17176)

This is also known as a perfect pairing. It establishes an isomorphism V; & V..
Thus, it is reasonable to say that three vector spaces Vi, Vo, Vs are in triality if there
exists a trilinear form

t:VixVoxVs—k (17.177)

which is nondegenerate in the sense that if we fix any two nonzero arguments we obtain
a nonzero linear functional on the third vector space. This can be interpreted as defining
maps

m; Vi x Vigr — Vi, (17.178)

and nondegeneracy implies that if we choose any nonzero vector v; € V; then
mi(v,+) : Vigr 2 Vil (17.179)

mi(-, vig1) = VY (17.180)

7

Therefore, with a choice of nonzero vectors vy, v2 we have an isomorphism V5 = V3V = V.
Let us call the common vector space V. The triality defines a product

VXV oV (17.181)

Since left and right multiplication by a nonzero vector is an isomorphism it follows that V'
is a division algebra! If we take the field k = R then by a theorem of Kervaire-Bott-Milnor
the dimension of V' must be 1,2,4,8.

Now, if we consider the representations over R of Spin(d) then we have irreps Sjc for

d = 0,4mod8 and unique irrep Sy otherwise. Taking V' 22 R? to be the vector representation
we certainly have multiplication maps

mq:V xS;—SF  d=0,4mod8

(17.182)
mg:V X S;— 5y else
Since the reps are self-dual we get trilinear maps
ta:V xSy xS, =R  d=0,4mod8
(17.183)

tdZVXSdXSd%R else
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Essentially, the coefficients of the map in a basis are the matrix elements I' f) 3 of the gamma
matrices.

In order for the gamma matrices to define a triality we must have an isomorphism V =2
Sg. One checks this only happens for d = 1,2,4,8. Moreover, the form is nondegenerate.
In this way we define the three division algebras

tlt‘ﬁXSlXSl—}R =D=R

ta: Vax Sy xS =R =D=C
S (17.184)

ta:Vax S§ xSy =R =D=H

ts: Ve x S x Sy =R =D=0

Under the isomorphisms V =2 Q, and ST = O the multiplication maps are
TRY — Ty (17.185)
and the triality map is just

t(xl, X2, xg) = Re(flfg.fg) (17186)

. elignSpinors
(For more about this see .

The triality automorphism can be written very explicitly in terms of the unique (up
to scale) nondegenerate trilinear coupling

t:ST®S TV =R (17.187)

Given g € Spin(8) there exist unique elements g1 € Spin(8) such that, for all vectors
sy € STandv eV,

t(p4(9+)5+,p—(9-)s—, pv(g9)v) = t(s4,5-,v) (17.183)
Then the maps ay : g — g+ are outer automorphisms and descend (taking the quotient
by inner automorphisms) to generators of the group of outer automorphisms.
17.8.5 Lorentz groups and division algebras

Finally, we remark that there is a beautiful uniform prescription for the Lorentz groups
in the special dimensions 2 + 1,3 + 1,54+ 1 and 9 + 1 where the transverse dimension
s —t is a power of 2. In terms of spinor representations C¢1, Cly, Cly,Clg have graded
representations

Ste S~ (17.189)

where ST = R, C,H, O as a real vector space. Now
Clay1,1 = Ol 1RCHy, (17.190)

Let {vo,v1} be a basis of even and odd vectors for the irreducible module R of Cly_1in
which the generators take the values

pley) = (8 ;) ple_) = (f 8) (17.191)
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Then the even part of the irreducible C¢441 _1 module is
STRuy®S™ ®@u (17.192)

and hence we can think of spinors in these Minkowski spaces as pairs of elements of K =
R,C, H, O.
Moreover, bispinors can be related to 2 x 2 Hermitian matrices over the normed division

20 4 21 Tt
X= * 0 1
Ty T —T

with 2%+ 2! € R light cone coordinates and z; € K a transverse coordinate. It makes sense

algebra K:

(17.193)

to define the determinant of such an Hermitian matrix as

(@) = (2')? = || ¢ |? (17.194)
The idea is that spin transformations should act on X as
X — SXST (17.195)

The transformation S should have unit determinant and hence transformations of the spin
group should act on spacetime as norm-preserving transformations. This works well and is
quite useful for K = R, C. It is the basis of the spinor helicity formalism! It is problematic
but suggestive for K = H, Q. There is, however, the suggestion of a beautiful and profound

pattern:
Spin(1,2) = SL(2,R)
Spin(1,3) = SL(2,C) (17.196)
Spin(1,5) = SL(2,H) |
Spin(1,9) = SL(2,0)

The last two lines require some nontrivial interpretation: It is nontrivial to say what these
ae el inors

are as groups and to interpret the det(S) = 1 condition. See and or the elegant

details.

18. Fermions and the Spin Representation

We now return to quantum mechanics.

The central motivation for this chapter, in the context of these notes, is that important
examples of the 10-fold way described above are provided by free fermions. They also
appear in the Altland-Zirnbauer classification, and in applications to topological band
structure.

Of course, the basic mathematics of free fermion quantization is very broadly applica-
ble. In this chapter we give a summary of that quantization and comment on the relation
to the Spin group and spin representations.
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subsec:FDFS

18.1 Finite dimensional fermionic systems

A finite dimensional fermionic system (FDFS) is a quantum system based on a certain kind
of operator algebra and its representation:

Definition: A finite dimensional fermionic system is the following data:

1. A finite-dimensional real vector space M = R called the mode space with a positive
symmetric bilinear form Q.

2. An extension of the complex Clifford algebra
A = Cliff(M,Q)® C (18.1)
to a x-algebra.

3. A choice of Hilbert space Hp together with a * homomorphism of A into the algebra
of C-linear operators on Hp. 43

Here are a number of remarks about this definition:

1. As an algebra A is the complex Clifford algebra of V := M ® C with @ extended
C-linearly.

2. From (M, Q) we can make the real Clifford algebra Cliff(M, Q). In quantum me-
chanics we will want a x-algebra of operators and the observables will be the operators
fixed by the x-action. For us the x-algebra structure on

A= Cliff (M, Q) ® C (18.2)

is f®C, where (5 is the canonical anti-automorphism of Cliff (M, @) and C is complex
conjugation on C. Thus * fixes M and is an anti-automorphism. (These conditions
uniquely determine *.) Axioms of quantum mechanics would simply give us some
x-algebra without extra structure. The fermionic system gives us the extra data

(M, Q).

3. Since we have a * structure on a Zs-graded algebra we must deal with a convention
issue. Here we are taking the convention that (ab)* = b*a* for any a,b because this
is the convention almost universally adopted in the physics literature. However, a
systematic application of the Koszul sign rule in the definition of * would require
(ab)* = (—=1)l9I"®lp*a*. One can freely pass between these two conventions and, if

. X |subsec:SuperHilbert
used consistently, the final results are the same. See Section §TZ2.5 above for more

discussion.

43The subscript “F” is for “Fock.”
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4. If Q) is positive definite then we can diagonalize it to the unit matrix. If ¢; is a choice
of basis in which @ is ¢;; then the usual Clifford relations

eie; +eje; = 2(51‘]' ,7=1,...,N (18.3)

are known in this context as the fermionic canonical commutation relations. Be-
cause of our choice of *-structure we have e] = e;. Of course, the choice of basis
is far from unique. Different choices are related by O(N) transformations. Those
transformations commute with the * structure. The ¢; are known in the literature
as real fermions or Majorana fermions. In terms of the e; the most general quantum
observable is

d
O=0y+ Z Oiy iy €. ig (18.4) ‘ eq:GenSelfAdj

k=1
where the coefficients are totally antisymmetric tensors such that Oy € R and
O i, = (—1)%]6(]671)01'1...1,( (18.5)
5. In quantum mechanics we must also have a Hilbert space representation of the *-

algebra of operators so that * corresponds to Hermitian conjugation in the Hilbert
space representation. That is, we have an algebra homomorphism

pr : A— Endc(Hp) (18.6)

to the C-linear operators on the Hilbert space Hp. The is a *-homomorphism in the
sense that

(pr(a)t = pr(a®) (18.7)

In the fermionic system we are assuming that H r is a choice of an irreducible module
for A. We will describe explicit models for Hp in great detail below. (Of course, we
have already discussed them at great length - up to isomorphism.)

6. The notation N is meant to suggest some large integer, since this is a typical case in
the cond-matt applications. But we will not make specific use of that property.

18.2 Left regular representation of the Clifford algebra

The Clifford algebra acts on itself, say, from the left. On the other hand, it is a vector
space. Thus, as with any algebra, it provides a representation of itself, called the left-regular
representation (LRR).

Note that this representation is 2V dimensional, and hence rather larger than the
~ 2[N/2 dimensional irreducible representations. Hence it is highly reducible. In order to
find irreps we should “take a squareroot” of this representation.

We will now describe some ways in which one can take such a “squareroot.” To
motivate the construction we first step back to the general real Clifford algebra C/, _s and
interpret the LRR in terms of the exterior algebra. Recall that we identified

Cl(ry,s_) = AN'R™ (18.8)
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as a vector spaces. Also, while the exterior algebra A*R™® is an algebra we stressed that
(e 8) s not an algebra isomorphism.

Nevertheless, since (e 8) s a vector space isomorphism this means that A*(R™*) must
be a Clifford module, that is, a representation space of the Clifford algebra. We now
describe explicitly its structure as a module.

If v € R™® then we can define the contraction operator by

k

) (viy A Awy) =3 (=17 Qu, 03 Jviy, A AT A Ay, (18.9)
s=1

where the hat superscript ¥ means we omit that factor. Similarly, we can define the wedge
operator by
w(v)(viy, A= Avi ) =0 Avy A Ao, (18.10)

These operators are easily shown to satisfy the algebra:

{i(v1),i(v2)} =0
{ro(v1),w(v2)} =0 (18.11)
{i(v1),(v2)} = Q(v1,v2)

Using these relations we see that we can (using symmetry of @) represent Clifford

o
o

multiplication by v on A*R™* by the operator:
p(v) =1i(v) + 1o (v) (18.12)

Since the v € V' generate the Clifford algebra we can then extend this to a representation of
the entire Clifford algebra by taking p(aja2) = p(ai)p(az), and scalars in A act as scalars
on A*R"™%,

Of course, this representation is highly reducible! We have seen that it is isomorphic to
the tensor product of spin representations. Thus, spin representations take a square root
of this representation. In order to describe that square-root intrinsically in terms of the
exterior complex we need to split the vector space V in half in an appropriate way. This
is the topic of the next Section.

18.3 Spin representations from complex isotropic subspaces

Let us assume dimp. M is even so that N = 2n. The standard finite-dimensional fermionic
Fock space construction begins by choosing a complex structure I on M. As shown in

(%%)%%Xolve we automatically have
MC=V2WaeW (18.13)
given by the projection operators Py = %(1 + I ®1i). Here we take
W := P_M® C = Spanc{e — ilele € M} (18.14)

W = P, M ®C = Spang{e + ile|e € M} (18.15)
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If a vector P_v = v then Iv = iv, so W is the (1,0) space of V.
Now, we henceforth assume that I is compatible with the quadratic form @ so

Q(IUl,IUQ) = Q(Ul,UQ) (18.16)

We then extend @) to be a symmetric C-linear form on V. Note that W is a maximal
dimension isotropic complex subspace of V. For if wi,ws € W then

Q(wl,wg) = Q(le,lwg) = Q(iwl,iwg) = iQQ(wl,wg) = —Q(wl,wg) (1817)

and hence Q(wy,w2) = 0. Note we have crucially used the fact that the extension of @ is
C-linear.

Remark: Recall that the space of complex structures compatible with () is a homogeneous
space CmptCplxStr(M, Q) isomorphic to O(2n)/U(n). (See (ﬁ%é'gsl_glsco—%E}tOnce we have
extended @) in this C-linear fashion we can also understand the space of complex structures
as the Grassmannian of maximal dimension complex isotropic subspaces in V. This inter-
pretation is sometimes quite useful, especially inc%gfiirrllee a geometrical interpretation of the

. . . . |subsubsec:Geometri P. . .
spin representation in Section [[8.4.7 below. We denote this Grassmannian by G(V, Q).

Now, given the decomposition V' = W @ W it is fairly evident how to take a “square-
root” of

AV 2 AW @ AW (18.18)

We could, for example, consider the vector space
AW = @ _A*W (18.19)

We can make this vector space into an irreducible Clifford module for Cliff(V, Q) by simi-
larly taking “half” of the representation (e SviE

1. For w € W we define ppw (w) := o(w)

2. For w € W we define ppw (0) = i(w).

3. Now define pr on V' by extending the above equations C-linearly: prw (w; @ w3) :=
pew(w1) + prw (W2).

Now one checks that indeed

{pEw (w1 © W), prw (u1 © W2)} = 2Q (w1 © Wy, uy © U3)1 (18.20)

so that the Clifford relations are satisfied and ppw defines the structure of a Clifford
module on A*W. We will often denote this module as

Hpw = AW (18.21)

and to lighten the notation we sometimes abbreviate prw by pr if W is understood or
drop it altogether if the context is clear.
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In fact (ppw, Hrw) is naturally a graded representation with
Hipw = AW 1= gy AW (18.22)

Hipw = AW = By o AW (18.23)

Now if we think of Spin(2n) as a group of invertible elements in
Spin(2n) C Cliff(M, Q) C ClLff(V,Q) (18.24)

then through pr the group Spin(2n) acts on Hpg, but not irreducibly. The operations
of contraction and wedging with a vector change the parity of k, but Spin(2n) involves
the action of an even number of vectors so we see that, as a representation of Spin(2n),
Hrw = S and this decomposes into:

ST = AV (18.25)

S = Acddyy (18.26)

In the physical applications it is important to note that we can put an Hermitian
structure on V by defining the sesquilinear form

h(vl,vg) = Q(El,vg) (1827)

where ¥ is defined from the decomposition W @& W. Note that V = W @ W is an orthogonal
Hilbert space decomposition: W and W are separately Hilbert spaces and are orthogonal.
To prove this note that orthogonality follows since W and W are isotropic with respect
to Q. Then since W is maximal isotropic and () is nondegenerate the sesquilinear form
restricted to W must be nondegenerate. Moreover, since () > 0, this defines a Hilbert
space inner product on V.

The Fock space Hp, now inherits a Hilbert space structure since we can define

h(wy A==+ Awg,wy A -+ Awp) = 0 gdeth(w;, w)) (18.28)

for k,¢ > 0. We extend this to A°WW by declaring it orthogonal to the subspaces AWV with
k > 0 and normalizing:
h(1,1) =1 (18.29)

Note that pp v (e;) are self-adjoint operators so that ppw is indeed a * homomorphism,
as desired. Moreover, pryy(e;;) are anti-self-adjoint. Therefore with this Hilbert space
structure Hpw is a unitary representation of Spin(2n). Indeed, the operators representing
the group Spin(2n) are of the form exp[3w® ppw (e;;)] with real w.

The upshot of this discussion is the theorem:

Theorem: There is a bundle of Zs-graded finite dimensional Hilbert spaces over

CmptCplxStr(M, Q) = G(V,Q) = O(2n)/U(n) (18.30)
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subsec:FermOsc |

whose fiber at a complex maximal isotropic subspace W C V is the fermionic Fock space
Hew = AW @ AW (18.31)

The homogeneous subspaces in the fibers are naturally unitary chiral representations of
the spin group Spin(2n).

Remark: The reader might well be wondering: “Why not choose A*W 7”7 Indeed that
works too. Exchanging I and —I is equivalent to exchanging W and W. So, with our
construction, ppyy is simply the module we would get from complex structure —I. The
space of complex structures O(2n)/U(n) has two connected components. These can be
distinguished by the extra data of a choice of orientation of M. For example, we could
associate to any basis in which [ is of the form

01 01
I = (_1 0) DB (_1 0> (18.32)

eq:Stab-I0-
the orientation e; A es A -+ A ea,. Then, thanks to (7.19) above, this association is well-
defined.

18.4 Fermionic Oscillators

&Maybe this

discussion ’&gsgbhe CElXS
in Section [7.1.

|subsec:SpinRepCplxIsotropic

Now let us connnect the construction of the spin representation in [I8.3 to the usual discus-
sion in the physics literature using fermionic harmonic oscillators. In particular, we would
like to justify the terminology “fermionic Fock space” for Hp .

Given a complex structure I on M compatible with () we can find an ON basis e; for
M such that

legi1 = —eg;
- % , (18.33)
Iegj:egj_l, jZl,...,n
Put differently, the ordered basis:
{e}?n, :={ei,e3,...,eam_1,€2,€4,...,€2m}, (18.34)

is a basis in which

01
I= <_1 0) (18.35)

Once again: The choice of such a basis is far from unique. Different choices are related

. . . . . |[subsec:CplxStrRealVs

by a subgroup of O(2n) isomorphic to U(n), as described in Section §7.T.” We will explore
this in detail below.

Then applying projection operators gives us a basis for W and W, respectively:

1 .
aj =P_egj1 = 5(623‘—1 +iez))
(18.36)

aj = Pyeyj_1 = 5(623'71 - i€2j)
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€2j—1 = a5 + a;

157

We easily compute the fermionic CCR’s in this basis to get the usual fermionic har-

e2; = i(a; — a;)

monic oscillator algebra:

{aj,ar} ={a;j,ap} =0

_ (18.38)
{aj,ar} = d;
The space A*W has a natural basis 1,a;,... where the general basis element is given
by @j, ---aj, for j1 <--- < jp. In particular, note that 44
prw(a;)-1=0 (18.39)

where 1 € A°W 22 C. We build up the other basis vectors by acting with pgw (a;) on 1.

The transcription to physics notation should now be clear. The vacuum line is the
complex vector space A°W = C. Physicists usually choose an element of that line and
denote it |0). Moreover, they drop the heavy notation pg v, so, in an irreducible module
we have just

a;|0) = 0. (18.40)

The state |0) is variously called the Dirac vacuum, the Fermi sea, or the Clifford vacuum.
However, irrespective of whose name you wish to name the state after, it must be stressed
that these equations only determine a line, not an actual vector, and, when considering
families of representations this can be important. Indeed, some families of quantum field
theories are inconsistent because there is no way to assign an unambiguous vacuum vector
to every element in the family which varies with sufficient regularity.

In our case we have a canonical choice 1 € AW <« |0) € Hp, where Hp is our
notation for the fermionic Fock space. Then, A*W is the same as the subspace spanned
by @, - -1, |0).

In physical interpretations A*TV is a subspace of a Fock space describing states with
k-particle excitations above the vacuum |0). It is very convenient to introduce the fermion
number operator

n .
F = Z (_li(li = g — iZeaIage/g (1841)
i=1 a,f

so that AFIW is the subspace of “fermion number k.”

The operator (—1)7 commutes with the spin group and decomposes the Fock space
into even and odd subspaces. That is, the eigenspaces (—1)7 = %1 are isomorphic to the
chiral spin representations.

Finally, consider the Hilbert space structure. With respect to the Hilbert space struc-

eq:HilbStruct .
ture (1%28% we hind that indeed

prw (@) = praw(ai)], (18.42)

4 Note that, if we drop the prw then the equation would be wrong!
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so in physics we would just write a; — a . The normalization condition (II¥:29) 1S written

in physics notation as
(00) = 1. (18.43)

Remarks:

1. In the physics literature the decomposition of V.= W @ W into orthogonal Hilbert
spaces given by a bilinear form and compatible complex structure is sometimes re-
ferred to as a Nambu structure. Note that we therefore have two Hilbert spaces
associated to the system of free fermions. This is important in the K-theory classifi-
cation.

Exercise Change of basis between fermionic harmonic oscillators and Majorana op-
erators
a.) Compute the matrix for the change of ordered basis {e,} for V.= M ® C to the
ordered basis
{aa} =Aa1,...,an,a1,...,an} (18.44)

Answer: a, = ugaeg with
1(11
u= = ( ) (18.45)
2 —1

10
(9) s

b.) Check that

ut = 1_,Z utru:1 01 uut’“:1
14 10 2

$ubsubsec BogTmn
These identities are useful in Section §T8.4.3.

c.) Show that
Q(aivaj) = Q(amd]) =0
1 (18.47)
Q(ai, a;) = Q(aj,a;) = §5z‘,j
Exercise
Show that
€2j—1€25 = i(QELj(Zj — 1) (1848)

so this has eigenvalues +i and the representation of the volume element for the orientation

w=e1- ey, is

prw(w) =i [ (2ala; — 1) (18.49)
7j=1
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18.4.1 An explicit representation of gamma matrices

The Fock space Hp gives a nice representation of the full complex Clifford algebra C/lo,.
Consider first the case n = 1. It is useful to make a change of notation:

0)=1-3) allo):=|+g) (18.50)

We will write |+) = |+ %) for brevity. This labelling will be useful later for representations
of the spin group. It follows that

a'|=) = |+) al+) =[-) (18.51)

Now taking

x2

z1|+) + z2|—) — (xl) (18.52)

we have the representation

pler) = (? é) ple2) = (—Ez —Oz) (18.53)

We recognize one of our standard graded irreducible representations of Cls. According to
(%}%&rith the choice of orientation w. = iejo and taking the upper component as the
even subspace it is M, .

Now, with n oscillator pairs we have a natural basis for a 2 dimensional Fock space:

(aIZ)Sn‘*'%(aiL 1)3n71+% e (a‘ii)51+%|0> (18.54)

where s; = i%. We identify these states with the basis for the tensor product of represen-
tations

Sy Sty -+, 81) = |87)®|80_1)D - - - B)s1) (18.55)

Note that because the aj- anticommute we are really taking a graded tensor product.
Let F?n—l) be the 2771 x 2"~! representation matrices of e; for a collection of (n — 1)

oscillators. Then when we add the n'” oscillator pair we get

: -1 0 : ,
pn(ej)zfgn): (O +1>®F%n1) j=1,...,2n—2
1
pulean—1) =T = (‘1) 0) ® lgn-1 (18.56)

n 0 —1
pn(e2n) = F%n) = (’L 0 ) ® Lgn-1

:ExplctR
Note the first factor in the first line of (el%.SXBi. Tt 15 a direct manifestation of the fact that
we are taking a graded tensor product.

- 190 —

eq:SpinWtBs

eq:ExplctRep



For example, for n = 2 we have

(18.57)
3 _ 01 10
@~ \10 0+1
0 —i 10
Ty =
@ (—I—i 0) ® (0 +1>
By induction we see that the volume form w, is represented by
10 10 10
I, =(=i)"T...1%" = 18.58

where there are n factors. Note that this can be expressed in terms of the fermion
number operator as

I, = (-1)"(-1)" (18.59)
For d = 2n + 1 we still take n pairs of oscillators and set ['*"*+1 =T,.
When we consider the Fock space as a representation of Spin(2n) the vectors (s, ..., s1)

become the spinor weights of the spinor representations of so(2n;C). That is, we choose a
basis for a Cartan subalgebra, in this case - (Ma,—1.2p, ..., Mi2). Then these operators are
. . . . e : n B . . .

simultaneously diagonalizable, and the basis (1%525 1S a simultaneous eigenbasis for these
operators with vector of eigenvalues given by (s,,...,s1). Note that the weights of S* and
S~ are distinguished by the parity of ). (s; — %)

Remark Faplicit intertwiners. We can now fill a gap in our discussion above. In
our explicit basis I'* are real and symmetric for i odd, and imaginary (= ix real) and

antisymmetric for ¢ even. Our explicit intertwiners are
BB = £(T%*
CLI'CLt = £(I)"

Note that in this basis we can take BL = C'y. Because of the simple reality and symmetry

(18.60)

properties we can easily construct the intertwiners using the operator U := I'?I'*...T2",
In particular, we have

U neven

Cy =By = (18.61)
I',U nodd
', U neven

C_=B_= (18.62)
U nodd

It is now a matter of straightforward computation to compute the scalars Cg 1027’ and
B Be.

- 191 —

&Conventions! &

eq:cplxvol

&Better to redefine
', but then must
be careful about
intertwiners. &

& Again, check
conventions! &

‘eq:plusintera‘




18.4.2 Characters of the spin group

The character of a representation is the function on the group given by the trace. The
character is a class function and therefore determined by its restriction to the maximal
torus.

Parametrize the Cartan subalgebra by x - M := 21 M2 + xoM3y + -+ - + 2, Mop_1,25
where n = [IN/2]. Then the character functions for Spin(/V) are given by

n n
chs, (z) == Trs, (M) = ] (e2® + e72%) = [] (2 cosh z;/2) (18.63)
i=1 i=1
This follows immediately from the above oscillator construction of the spin represen-
tation since Ms;_1 2, has eigenvalue s;. The sum over the representation is a sum over the
spinor weights (:l:%, :l:%, . ,:l:%).
When N = 2n is even the representation is reducible. If we look back at the oscillator
construction we see that the volume form acts on a basis state |sp, sp—1,...,51) as

n

1
Lol S, Snet1y-- -5 81) = (1) == s, s 1,0 s1) = (=) [sn, sn_1, ..., 51) (18.64)

Exercise
a.) Show that:

n n

Trs, [(—1)7emM] = [](e2™ — e 2%) = [[(2sinhz;/2) (18.65)
i=1 =1

This formula is important in index theory.
b.) Deduce that

chyz (z) = % [[(2cosha;/2) + [ (2sinh;/2) (18.66)

c.) Check the special isomorphisms with unitary groups with these formulae.
d.) Check the identity on characters implied by the decomposition of S ® S and its

variants.

18.4.3 Bogoliubov transformations

b>subsec:BogTmn

We now return to the fact that we had to choose a complex structure to construct an
|subsec:SpinRepCplxIsotropic eq:Cplx—Compat

irreducible spin representation in Section §I8.3. However, as we saw in equation (I7.

above there is a whole family of complex structures I which we can use to effect the
construction. On the other hand, the irreducible spin representations Sgt are unique up
to isomorphism. Therefore there must be an isomorphism between the constructions: this
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isomorphism is known in physics as a “Bogoliubov transformation.” It can have nontrivial
physical consequences.
To a mathematician, there is just one isomorphism class of chiral spin representation
St or S (distinguished, invariantly, by the volume element). However, in physics, the
fermionic oscillators represent physical degrees of freedom: Nature chooses a vacuum, and
if, as a function of some control parameters a new vacuum becomes preferred when those
parameters are varied then the Bogoliubov transformation has very important physical
implications. A good example of this is superconductivity. Adxplain
somewhere what a

Returning to mathematics, suppose we choose one complex structure I; with a com- polarization is. &
eg:rermysc—

patible basis {e,} satisfying (IIS. or I;. Next Weocon§ider a different complex structure "";Vle need to
eq:rermusc— explain tha
I, with corresponding basis {f,} satisfying (I8. or 1Io. although Spin(2n)

: : . .. . . eq:Ferm0scags on Hp,w for
With the different basis {f,} we can form fermionic oscillators according to (&%‘36_5—““ W we can also

make it (through
the map to O(2n))

_ 1 . act on the space of

b] = 5 (f2]7 1 —|— 1f2]) le tuures.
1 (18.67) |equBogfo2 pn

b] = 5 (f2]7 1~ 1f2]) strlcures is .

defined. Thus, we
could also ask about

Now we must have a transformation of the form whether the bundle
Hp — G(V,Q) can

_ be interpreted as an
J— ... S equivariant bundle.
by = Aja; + Cjiay

18.68) ffq:BogT-3
b; = Bjidj + Djiaj 1<4,7<n ( )

:BogT-3
Observation: For a general transformation of the form (eI%.BSOi, with complex n x n
matrices A, B, C, D the fermionic CCR’s are preserved iff the matrix

AB
9= <C D) (18.69) ‘eq:OnnBlockForm‘
satisfies:
01 01
tr _ . - -
g <1 0) g= (1 O) (18.70) ‘eq.cplx orthog 1‘
That is

A"D+C"B =1
ATC = — (AT O (18.71) ‘eq:Dnn-Block-Rels
DtrB — _(DtrB)tr

Proof: The proof is a straightforward computation. <

The plropositiontgharlacterizes the general matrices which preserve the CCR’s. We
. eq:CpLlX—0I og—1 . .
recognize (I[8.70) as the definition of the complex orthogonal group for the quadratic form

- <(1) é) (18.72)
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So, Bogoliubov transformations can be effected by complex orthogonal transformations
O(¢;C) == {g € GL(2n;C)|¢" q9 = ¢} (18.73)

The form ¢ has signature (n,n) over the real numbers but is, of course, equivalent to

the standard Euclidean form over the complex numbers. Indeed, the transformation v/2u
transforms between them thanks to equations (e fe_toéa.a bsaerq. above.

The change ofeC(:)gT;(_e}C(oitg%cture does not induce the most general Bogoliubov trans-
formation. From ([7.23) we know that there must exist an orthogonal matrix R € O(2n) in

the compact orthogonal group such that

Jo = Rgaep (18.74)
and

Iy = RIR" (18.75)

:e-to-aab :full- -b
Using the change of basis (elg.ZIeBiOW%acaﬁreck that (with b, defined analogously to (elg.zluzii E E—
ba = u,@af,@

= ugaRpe, (18.76)

= (uilRu)&la&
and hence

R =ugu™! (18.77)
Remarks:

1. There are some elementary matrix multiplications it would be %vegl to record here.
eq:h—To—
Note that the transformation of the matrix g related to R via (l% 77) indeed produces
a complex orthogonal matrix:

R € 0(2n;C):={R € GL(2n;C)|R" R = 1}. (18.78)

SO
O(¢;C) = v '0(2n; C)u (18.79)

If R € O(2n;C) is written in block form as
R= <O‘ 5) (18.80)
v 0

g=u'Ru (18.81)

then

-194 -



has
A= S(at5+i(B-)
D=S(a+5-i(3 )
B=f(a~5-i(5+7)

C=5(a—b+i(B+7))

1552)

It follows that the image of O(2n) := O(2n;R) in O(gq;C) consists precisely of those

matrices g € O(q; C) such that A = D* and B = C*. We claim that this is precisely

the intersect}iaon U(2n) N O(gq;C). To prove this observe that if g € U(2n) has block
e n.

: lockForm
form (I%. en

At Ct
= (o) (1559

On the other hand if g € O(gq; C) then

_ Dtr Btr
ot —ara= (0 ) 55

:0 -1
Theoinver%e of ¢ is unique. Therefore, if g € U(2n) N O(g; C), then (eI%.S% gméquals
eq: nn-

84), but this is true iff A = D* and B = C*, which is precisely the defining
relation of v~ 10(2n;R)u.

2. In particular, note that a Bogoliubov transformation preserves the x-automorphism
(a;)* =a;iff g € U(2n)NO(q; C). A general Bogoliubov transformation would change
the hermitian structure on the Fock space.

Exercise
. . . . eq:0nnBlockForm
Show that if g € O(q; C) is written in block form (ﬁfﬁg%fms also true that

AD" 4+ BC" =1
BA" = —(BA™")¥r (18.85) [eq:0nn-Block-Rels
CDtr — _(CDtr)tr

leq:0nn-Block-Rels leq:0nn-Block-Rels-alt
and that (I8.71) 1S true it (IX.85) 1s true.

Exercise
Consider the case of n = 1.

- 195 —



a.) Show that O(g; C) has two components, given by matrices of the form

A0
_ AeC 18.
g (0 Al) eC (18.86)

0 A
— \eC* 18.87
g ()\1 0) € ( )

or

b.) Show that under the transformation R = SgS~! with R € O(2), those Bogoliubov

transformations arising from orthogonal transformations in O(2) connected to the identity
eq:cco2-1 eq:cco2-1

correspond to (I8.86) while those in the nonidentity component correspond to (I8.86) with
A =ef.
Exercise

Given a complex structure I there is always a second complex structure —I. Of course,
since I has a stabilizer, there are many transformations R € O(2n) which conjugate I to
—1I, but since exchanging I and —I exchanges the projection operators Py = %(1 +I®i)
the most natural transformation is

bj =a;
T (18.88)

bj = a,
If we exchange I for —I then we exchange W for W so the corresponding Fock space is
Hpw = AW (18.89)

Interpret the unitary transformation from Hpw to Hpyy in terms of the Hodge x
operation.

18.4.4 The spin representation and U(n) representations

X |subsec:SpinRepCplxIsotropic . .
As we stressed at the end of Section §I8.3, the Fock space constructure provides us with a

Hilbert bundle of fermionic Fock spaces over the base manifold O(2n)/U(n). Now O(2n)
acts on the base manifold and hence a natural question is whether this action “lifts” to the

bundle Hr so that it is an “equivariant bundle.” Let us define this term.

Suppose w : . — X is a general fiber bundle over a topological space X and that a
group G acts on X, say, as a left-action. So we write 1)4(x) = ¢ - « for the action of g € G
on z € X. We say that E is an equivariant bundle if there exists a lift of this action to F.
That is, for each g € G there should be a bundle map so that 1[19 fits into the commutative

diagram:
E-Y.F (18.90)
T lﬂ'
X Yo X
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In more concrete terms, for each z there should be a map @g,x i By — E4, so that the
maps compose according to the group law of G:

Q/;91,92'33&92,117 = &glgg,;r (1891)

The statement “@59 is a bundle map” means that it must preserve the structures on the
fiber. Thus, if F is a vector bundle then @59 must be linear on the fibers. Note that this
means that the isotropy group H, C G at a point  must act on the fiber at z.

In our case we will now show that for an O(2n) action on CmptCplxStr(M, Q) the
stabilizer group is isomorphic to U(n) but this U(n) group does not act compatibly on
‘Hrw. Rather a double cover acts. FormOsc-1

Let us choose a complex structure I and a compatible basis u@_m e basgis

eq:e-ord-alt pletrRealVS leq: Stab I0

e 1¥e11)a Il(])a ( above. Now, as we discussed in Section § / I (see equations (7.13]J,
eq . abp— -
; 19)) the stabilizer of a complex structure is a subgroup of O(2n) isomorphic to U(n).

In particular, we have the embedding ¢ : U(n) — SO(2n) defined on v € U(n) by writing
it in terms of its real and imaginary parts u = a + i3 and defining

L(u) = (O‘ 5) € SO(2n) (18.92)
B«

The unitary subgroup can be thought of as follows. The Bogoliubov group O(g;C)
acts on the vector space of oscillators V. The most general Bogoliubov transformation
which stabilizes the decomposition V = W @ W expresses the b; as linear combinations
of @; and b; as linear combinations of a;. In other words Cj; = 0 and Bj; = 0, and
therefore A = D™ ~! € GL(n,C). Those transformations which preserve the * structure
have A = D* and therefore we are lead to the unitary group A € U(n).

The U(n) group of Bogoliubov transformations that stabilizes H g in fact commutes
with the fermion number operator F. We might therefore expect that there is a well-defined
action of U(n) on the k-particle subspaces A¥IW. Indeed, acting on the oscillators, W is
just the defining representation of U(n) and hence there is a very natural action of U(n)
on AFWW. But is this action actually compatible with the Spin-representation?

We have to be a little careful here. The stabilizer group U(n) discussed here is a
subgroup

U(n) — SO(2n) (18.93)

acting on the space of oscillators - the vector representation of Spin(2n). But SO(2n) only
acts projectively on Hp . Indeed the spin double-cover is nontrivial, the sequence given
by Ad does not split, and —1 € Spin(2n) acts nontrivially on the spin representation. It
is therefore not a priori obvious that we can make U(n) act on the spin representation in
a way compatible with its action on V in the vector representation. That is, we want an
action p(u) of U(n) on Hpw so that such that

p(u) (prw (0)9) Zprw (1(u) - ) p(u)e (18.94)

forw € U(n), v e V C Cliff(V,Q) and ¢ € Hpw. Here t(u) - v = Ad(u(u))v. (Although
there are two lifts of «(u) to Spin(2n) they differ by sign so Ad(c(u)) is well-defined.) A
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. leq: compat-condit ¥ t
less-formal way of stating (II8.94) 1s that we want to say how g € U(n) acts on a/, - - a; |0)
and we should surely have

g-al,---af |0) = (gal,g7") - (9a] g7")gl0) (18.95)

where ga'g™! is determined by the vector representation of O(2n).

Since U(n) is a “small” subgroup of SO(2n) one might think that we do not need to
worry, but in fact we do! The subtlety is typical of some of the tricky points one encounters
when working with spin groups, so we will describe the problem and its resolution in some
detail.

Since Spin(2n) — SO(2n) is a double-covering the problem is going to be a sign
problem in defining p(u) on Hpw. It therefore suffices to examine the Cartan subgroups.
Every element can be conjugated into the Cartan subgroup, and a sign ambiguity in the
conjugating operators will cancel out.

Let us start with the U(1) subgroup of matrices in U(n) proportional to the identity .
From the embedding (e. :Sta\?v_elcs)ee that, in the ordered basis {ej,ea,...,ea,} this embeds
1, € U(n) as the SO(2n) matrix:

W) =R@)® - ® R(H) (18.96)

The action on the oscillators is just

a; —

i0

~ o (18.97)
a; — € a;.

What should be the compatible actionlon 1;uhe Fock space Hpw? Under the twisted
eq:ul—-embe

adjoint map Ad : Spin(2n) — SO(2n) (IS iffs to a nonclosed loop in Spin(2n):

—~ 0
Ad: exp[§ (e12+e3a+ - +em129)] = RO)D--- & R(O) (18.98)

When n is odd this will have a sign problem: The U(1) is only projectively represented on
Hrew!

One way of discussing the problem is this. The Fock space is a representation of
Spin(2n). Now we have the diagram:

Spin(2n) (18.99)
|=
U(1l) —= SO(2n)

and we ask whether we can find a homomorphism f such that it can be completed to a
commutative diagram
Spin(2n) 777 (18.100)

f 7

U(1) —> SO(2n)
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Since the Spin representation is given by a homomorphism p from Spin(2n), in order to
represent the U(1) subgroup of U(n) in a way c_om[gatible with Ad we need to lift the
homomorphism ¢ to f as in equation (e :llf - ol;gever, what we have just observed is
that no such lift exists! On the other hand, we “almost” managed to lift it: We “just”
missed by a minus sign. Mathematically what we can do about this is consider the double-
cover of 7 : U(1) — U(1) given by 7(e'?) = €2 and then there is indeed a homomorphism

¢ enabling a commutative diagram:

U(1) — Spin(2n) (18.101)
s e
U(1l) —= SO(2n)

In order to extend this idea to the full group U(n) we define double coverings:

U(n)* = {(u,\) € U(n) x U(1)|A\*F? = det(u)} (18.102)

leq:lifting-prob-i
Then, (I8.I0T) generalizes to

U(n)= —“~ Spin(2n) (18.103)

F s
U(n) —= SO(2n)

and under po(*, where p is the spin representation U(n)* takes the k-particle space A¥W

to itself and acts as
port(u,\) = \FLAF(u) (18.104)

‘eq:lifting-prob-j

‘eq:lifting—prob—j

‘eq:lifting—prob—j

leq:1liftin; rbbftiing-prob-iii . . eq:spintwob
In order to prove (I8.T03), (II8.104) we use the group Spin‘(2n) (see equation (Il r2)

above). Note that Spin(2n) x U(1) acts on Hp with the U(1) acting by scalars. Therefore
(—1,—1) acts trivially and we have an action of Spin®(2n) = Spin(2n) x U(1)/Z2 on Hp.
Now we can solve the lifting problem

Spin‘(2n) (18.105)
F%,,~7 lp

Un) —L50(2n) x U(1)

where p(g, z) := (Ka(g), 2?) is a two-fold cover of Spin®(2n) — SO(2n) x U(1), and fi(u) =
(¢(u), (detw)®1). This can be proven using abstract covering theory from algebraic topology,
but in this example we can in fact give an explicit description:
As we mentioned above, we need only define the lifting on a Cartan torus in U(n).
Thus we take
u = Diag{el”, ... €} (18.106)

and therefore
Wu) = R(01) ® R(02) @ --- @ R(0y) (18.107)
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Then we take "
Fi(u) = [[] esticsimreni o320, (18.108)
i=1
Note that each of the angles 6; is only defined modulo 27, that is, we identify 0; ~ 6; + 27.
Therefore neither e2%€2i-1¢2 nor ¢+3 Xi% i well-defined: They both change by a minus
sign if we shift 6; — 6; + 2w. However, the pair is well-defined in Spin®(2n) = (Spin(2n) x
U(1))/Zs.
The main conclusion from the above discussion is that the Fock space bundle Hp —
X X |subsec:SpinRepCplxIsotropic
G(V,Q) = 0(2n)/U(n) constructed in Section §I8.31s not an equivariant bundle for O(2n).
However, we could also consider the homogeneous space CmptCplxStr(M, Q) to be a
homogeneous space for Pin™(2n) and we will show below that there is a lift the Pin™(2n)
action.

Lie algebra level:

It is quite interesting to see how the decomposition of the spin representation works
as a representation of Lie algebras. Recall that spin(2n) 2 so(2n) with Je,, = M, .

If we choose a complex structure I with +i eigenspace of V' given by W together with
a compatible set of harmonic oscillators a;, a; then, in terms of the oscillator basis we have
generators of su(n) given by

i _ 1 -
T = <aiaj—g(52j]:> ,j=1,...,n (18.109)
Note that Y, T% = 0. One easily computes
[T, 1%) = 6%, 1%, — 6, T% (18.110)

which is a standard presentation of the Lie algebra su(n) in terms of generators and struc-
ture constants. Note that this is not a real basis, rather, the general element of the su(n)
Lie algebra (which is a Lie algebra over kK = R) is t = Zmij T ij such that t* = —t. Thus
x;" are pure imaginary and (:1:2])* = —l‘ji.

To complete the Lie algebra of U(n), namely, u(n) = su(n) @ u(l) we must again
be careful. The generator ¢ € u(1) of the U(1) subgroup of U(n) C SO(2n) of diagonal
matrices lifts to

~ 1
t= 5(612 +-+ e2n—1,2n) (18111)

In terms of harmonic oscillators we write eg;_1 = a; + a; and eg; = i(a; — a;) so that

[=iF - ig (18.112)

Thus:

1. The vacuum is not invariant under the U(1)

2. When n is odd ¢ only exponentiates to give a projective representation of U(1), in
accord with our discussion above.

The point of this exercise is that if one is sufficiently careful with normalizations of
generators one can detect topological subtleties.

Remarks:
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1. One interesting implication of the above formulae is an important formula in Kéhler
geometry. Let K denote the determinant representation of U(n). Then we consider
the projective representation K1/2. This has precisely the same cocycle as the pro-
jective U(n) representation on the Fock space. These two Zg-valued cocycles cancel
if we consider S ® K/, which becomes a true representation of U(n). Thus we have
the identities of true U(n) C SO(2n) representations:

St e KY? ~ @kZO(Q)AkW = @kZO(Q)Ak’OV (18.113) ‘ eq:Splus-Khalf‘

S™® K2 2 @y o) A"W 22 @ o) AP0V (18.114) [eq:Sminus-Khalf]

where W = C" is the defining representation of U(n). If we exchange the complex acueck: &
structure I for —I then we exchange W and W. Then we have

ST K2 2 @) AW = @) AVFV (18.115) [eq:Splus-Knalf|

ST KV 2 @y o) AW 2 @) AVFV (18.116) [eq:Sminus-Khalf]

&This is confusing
unless you explain

leq:Splus-Khalfleq:Sminus-Khalf the role of
2. The identities (|18 115) and (I8.116) are very important in Kahler geometry where orientations in these
HitchinHarmonicSpinors isomorphisms. &

we can exchange Dirac operators for Dolbeault operators [26]:
Do+ (18.117)

We will explain this a little bit by considering M = R?" with the Euclidean metric.
To define the Dirac operator we consider Cliff (7% M). Choosing standard coordinates
we can use an ON basis e, = dx® and represent p(e,) on a Dirac representation and
form the Spinor bundle S = M x S.. Spinor fields will be functions on M valued
in S.. We denote the space of spinor fields as the sections of the spin bundle T'(S).
Then the Dirac operator Ip is defined by the exterior derivative d : I'(S) — Q!(S)
followed by Clifford contraction back to I'(S). In explicit equations

0 0

— =z _ra_Z DA
D= p(ea)axa L (18.118)
Of course S = ST @ S~ is Zo-graded and ) is odd:
DT TS 5 T(ST) (18.119)

Now choose a complex structure I so that we can split 7*M @ C = T*1LO A @
T*OD [, Let us choose the complex structure **** above. Then
1 : : 1.
a; = i(dm%_l + ideJ) = —dz’
- | | (18.120)
a; = i(da:%_l —idz¥) = =d7F
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We have introduced standard complex coordinates so

i_l( o 5)
55] %39«“25_1 afg;J (18.121)

97~ 2lgm1 Tiggm)

In terms of complex coordinates the Dirac operator becomes

p= Z( (2a5) 5 p(%‘)%) (18.122)

. . eq:Splus-Khalf . . 1 4
Now under the isomorphism (l%.l 15; efc. p(a;) becomes wedging with 5dz/ and
p(a;j) becomes contraction with 2( ), so we can identify I with 0+ 9.

18.4.5 Bogoliubov transformations and the spin Lie algebra

Above we identified an action of O(q;C) on V preserving the h&Trmgchgsc}i(H%tlor algebra.
eq:0nn-Block-Rels
By considering one-parameter subgroups of matrices satisfying (I8.71) we see that the Lie

algebra of this group consists of matrices of the form

m = (a Btr) € Mats,(C) (18.123)
7 &

with (,~ antisymmetric. The «, 3,7y are otherwise arbitrary complex n x n matrices.
Note that m is antihermitian iff of = —a and ' = —5. Such antihermitian matrices
exponentiate to elegn:elnites é)rfiU(Qn) and U(2n) N O(q; C) =2 O(2n; R).

For matrices (IIX. with m € o(q; C) define a corresponding element of the Clifford
algebra:

n

_ _ 1 1,
e (ajiajai + 57005 + 5&;-%%)
. (18.124)

1 1
)=

Note that m is antihermitian, so that af = —« and 8T = — if and only if 7 is a pure
imaginary element of the %-algebra A: m* = —m.
We claim that the element g 9= exXp iml in the complex Clifford algebra conjugates the

eq: 1-o08
column vector a,, defined in ( according to the matrix g := €™ € O(q; C):

G009 ' = gsa0s (18.125)

g= (é g) (18.126)

with

leq:0nn-Block-Rels
satisfying (I[8.71)-
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To prove this, use [AB,C] = A{B,C} — {A,C}B to check that

[m, ai] = agia; + jia;

_ ~ (18.127)
(M, ai] = Bjia; — aija;
eq:full-osc-bas
In other words, if we define a vector a,, from the ordered basis (I8. en
[m, an] = mpaas (18.128)

eq: SNTNE
This formula exponentiates to givle, (l%.]25i.
eq:llegenl
The matrices defined in (l%.l23i span the Lie algebra o(q; C). This does not imply
that the corresponding elements m generate an isomorphic Lie algebra! That is, the map

o(q;C) — Cliff( M; Q) ® C, nleed Itloltdbe a Lie algebra homomorphism. The origin of the
eg:mtllde—action .

problem is that the relations (T8.128) would also be satisfied if we shifted m b%/. any scalar.

leg:mtildé-action

Indeed, given m the general element of the Clifford algebra satisfying (I8.128) 1S of the

form 7 plus a scalar.
One can compute the commutator [, ms] using the relation

[AB,CD] = A{B,C}D —{A,C}BD + CA{B,D} - C{A,D}B (18.129)
and a small computation shows that in fact
— 1
[ml, mg] = [ml, mg] — §T1"(51’)/2 — ,32’)/1)1 (18.130)

The term proportional to 1 is easily computed from the VEV (0]---|0) of the LHS and
the RHS. The expression w(my, mg) := Tr(B1v2 — B271) is a two-cocycle on the Lie algebra
so(2n). Tt follows that the elements m of A do not close to form a Lie sub-algebra of A,
but rather they generate a Lie algebra g which fits in a central extension of Lie algebras:

0—-C—g—0(qC)—0 (18.131)

. |lapp:LieAlgebraCoho X . . .
See Appendix [B below for a very brief précis of the relation of Lie algebra cohomology to

central extensions. As explained there, the extension is only nontrivial if the cocycle is

nontrivial. In fact, in the presenlt case_the cocycle can be trivialized! To see this note that
eq:llegenl

in the block decomposition (TS. we have
([m1,mo))11 = [a1, a2] + Biye — Bomn (18.132)
and therefore, the linear functional f(m) := 1Tr(a) trivializes w, i.e. w = df, where d is

the Chevalley-Eilenberg differential. In particular, if we define

n

1
Tr(a) 1= 5 Z (aji(&jai - aid]’) + vija;a; + ﬁijdi@j) (18.133)
2,7=1

1
2

=m —

)

then we can compute

- 1 1
(M1, ma] = [mq — 5”[&(041) -1,mao — §TT(042) 1]

= [mﬂ - %Tr(ﬁl’m — o)1 (18.134)

—

= [m1, mo]
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:FockSpinEquiv‘

and therefore m — m is a homomorphism of Lie algebras.
. . . eq:FermOsc-2 i
Note that if we express m in terms of e; using (I%.BB{ then we obtain an element
of spin(2n) ® C, which becomes an element of spin(2n) when we impose the condition
m* = —m. It follows that
g =spin(2n) ® Ce C (18.135)

At the group level we know from (%!)‘Etl%at I'(t,s) = Pin(t, s) x Ry and hence we can
identify g with the Lie algebra of the complexified Clifford group I'.(d).
Corresponding to the central extension of Lie algebras there is a central extension of
groups:
1—-C"—T.(2n) - 0(¢;C) =1 (18.136)

In particular, we have the group multiplication:

9192 = c(g1,92)9192 (18.137)

where ¢(g1,92) is a group cocycle related to w. Locally, the extension splits, thanks to the
splitting of the Lie algebras, but the extension does not split at the group level, ultimately
because the cover Spin(2n) — O(2n) is nontrivial.

18.4.6 The Fock space bundle as a Spin(2n)-equivariant bundle

Let us now return to the question of lifting the Spin(2n) action on CmptCplxStr(M, Q) =
G(V, Q) to the bundle Hp. We summarize the situation so far. We have described a bundle
of Fock spaces

Hr — CmptCplxStr(M, Q) = O(2n)/U(n) (18.138)

where the isomorphism is obtained by choosing a complex structure I on M, or, equiva-
lently
Hr — G(V,Q) =2 0(q;C)/LD (18.139)

where the isomorphism is obtained by choosing a maximal isotropic subspace W in V. The
two fibrations are related by identifying W with the I = —i eigenspace in V. We have
seen that neither O(2n) nor O(g; C) lifts to define an equivariant structure on Hp. We will
show that rather, the spin double covers do lift.

The key will be to understand how Bogoliubov transformations change the vacuum line.
Suppose we make one choice of harmonic oscillators {a;,a;} with a corresponding vacuum
line generated, say, by the state |0)y. Thus a;|0)yy = 0. Now consider a Bogoliubov
transformation generated by g = exp(m) € O(q;C). If the Bogoliubov transformation is

g= (é g) (18.140)

e™(0) (18.141)

implemented by the matrix

then

will generate the vacuum line relative to the new oscillators {b,} = {b;,b;} defined in
eq:bogli—
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Let us now try to write the new vacuum state more explicitly in terms of the operators
ao and |O)w. If D is invertible then we can write

(1)) ()

(18.142)
e 0S ex[az 0 - 00
%P oo Plo —atn | P [\ R o
where
S=BD!
R=D"C
A'=A-BD'C (18.143)
6&7 — A/
e =D

Note that by the defining relations of O(g; C) the matrices R, S are antisymmetric. There-
fore we have

O — o3 2ig Sigily 307 1 0350 o3 3, 5 Rijaia; (18.144)
where k is a nonzero scalar and therefore the new vacuum line is spanned by

~ 1S g aa
€™0) = ke Zig S |0) (18.145)

This is the fermionic analog of a squeezed state.
More precisely, for a complex anti-symmetric n x n matrix .S define the squeezed state

1Y = prw <e% i Sij@i@f) 10V (18.146)

g= <é g) (18.147)

~ q:GaussDecomped.: GaussDecomp-2
We want to compute ppw(g)|S). Now using (I18 142) and (II8.143) we know that

AB 1S\ [AAS+B\ [1g-S) (%0 10
(c D> (o 1)‘(0 CS+D>_<0 1)(0 *> (* 1> (18.148)

g-S:=(AS+ B)(CS+ D)™* (18.149)

Now consider g which is a lift of

where

leq: GaussDecomp-2
follows immediately from the general formulae of (I8.143). Let LD C O(q; C) be the group

of block-lower-diagonal matrices. That is, those with B = 0. Then S is a coordinate in

a dense open set of the homogeneous space O(q; C)/LD. Because there is a group action
from the left we know that

91 (92-5) = (9192) - S (18.150)
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provided the relevant matrlceg are dlI}G\éertlble so that the formula makes sense.
eqg:le o

Therefore, thanks to (IS. we know that

prw (9)]S) = K(g,5)g - SHw (18.151)

where (g, 5) is a scalar, at least for those transformations such that det(C'S + D) # 0.

Once we know how the vacuum transforms, that is, once we have computed (g, S) in
ActQnVac
(I%. [51 ; we can lift the transformation g on G(V, Q) to the entire Fock bundle since the

other states are obtained by acting with oscillators, and these just transform in the vector
eq:compat-condit
representation. (See (I8.94 above.)
leq: compt— peotipt -kappa-4
In equations (I¥.189)- (II¥.193) below we will see how to compute x(g,.S) once we have

a good formula for the overlaps (51|S2). Therefore, in order to compute (g, S) we need a
key identity for the the overlaps of squeezed states. One way of stating the identity is: 4°

eq:ActOnVac

1
(Olexp —3 Z Sijaiaj | exp ZTZ]aZaJ det(1 — ST) :=pf(1 — ST)
]
(18.152) Eqw&verél.@pal
based on on
Remarks fermionic quantum

1. Note that we could replace the operator in the vev with the group commutator, so
eq:centr

that this is an exponentiated version of the identity (|

2. The notation pf(1 — ST) is something of an abuse because neither 1 nor ST nor the
difference 1 — ST is an antisymmetric matrix. The notation is just meant to denote
the canonical squareroot of det(1 — ST') when S, T are antisymmetric.

3. Note that the bra- dual to the ket |.S) is
(S| = w{Olppw (e % Zus S (18.153)
So in math notation we would write instead:

h(eQSwazaj 62T’Lja1a]) — pf(l — ST) (18154)

We need to define pf(1 — ST') and prove thé'—:se formulae. Here we will follow the very
o Nele) roups
elegant discussion of Pressley and Segal n order to do this we need the notion of the

Pfaffian of an antisymmetric matrix.

Reminder: Properties of Pfaffians

4> There is an easier r%ofelga eocé on (f: C1|11[1_lleoenzlc Gaussian integrals and the fermionic coherent state repre-

sentation. See Section 2T.6 below.
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1. If S;; is an N x N antisymmetric matrix then pf(S) := 0 for N odd, and if N = 2n
is even the Pfaffian of S, denoted pf(S) is defined by

1 )
pf(5) = — D sign(0)Sy1)0(2) ** So(2n—1),0(2n)
2" o (18.155)

= 512534 -+ Son—1,2n £

In particular, if S is skew-diagonal
0 M\ 0 Ay
S — . 18.156

pf(S) =[N (18.157)

then

Manual
2. Some important properties are the following (See Igszie Sections 23.12 and 24.4 for
more details):

3. pf(9)? = detS

4. pf(RSR!) = det(R)pf(9)

5. If we define the 2-form wg := %Sijdidj € A°W then
Wy

=5 — pf(S)ay ---an (18.158)

n!

Now consider expanding the exponential to get:
1 _
exp | 5D Syaia | 10y = [0) + zj:pf(Sf)\D (18.159)
ij

Here we denote an ordered multi-index by I = {i; < 49 < ---ig}. We need only consider
multi-indices of even length |I| = 2¢. We denote

‘I> = ay, "'ELZ'%‘O> (18160)

Also, given an multi-index we let Sy be the (2¢) x (2¢) antisymmetric matrix obtained by
retaining the rows and columns enumerated by the elements of I. For example, if I = {1,3}

and S and n > 1 then
Sy = ( 0 0“3) (18.161)
—ai3 0

Now let us consider the inner product of such fermionic squeezed states. The Dirac
conjugate of |I) is the linear functional:

(I] = (Olaiy, -~ ai, (18.162)
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Note that
(I|J) = dr,4 (18.163)

It thus follows that

1 1
(Olexp | =5 > Sijaia; | exp | o> Tyaza; | 0) =1+ pf(Spf(Tr)  (18.164)
ij ij I

Note well that this is a polynomial in the matrix elements of S and T

Now, suppose that S is any invertible N x N matrix and 7" is any N x N matrix.
Then, we certainly have:

det(1 — ST) = detSdet(S~! — T) (18.165)
If ST are anti-symmetric and S is invertible then it is therefore sensible to define
pf(1 — ST) := pf(S)pf(S~! — T) (18.166)

The RHS is a rational expression in the matrix elements S;; but since its square is a
polynomial it must in fact be a polynomial.

Now, for a multi-index I let I’ be the ordered complementary multi-index. So, for
example, if 2n = 6 and I = {1 < 4} then I’ = {2 < 3 < 5 < 6}. Let £ be the sign of the
permutation

{1,2,....20} = {1, 1"} = {i1, ... i, 7). iy} (18.167)

where k + k' = n. Then we claim that if R and T are antisymmetric matrices then

pf(R+T) = erpf(R)pf(Ty) (18.168)
I

In this sum we have included I = (), with the definition pf(Rp) := 1, and similarly for I’.
The same convention will be used in similar sums below.
The proof is to consider the associated 2-forms wgr and wr and then expand

1
n! (WR + wT — ' Z < )
- Z Hmewgfk
k
=" > pf(R)pH(Tr)asar

k |I|=k

= (Z z-:[pf(R[)pf(Tp)) ap---Gon
I
:pf1ST-def
Applying this to (elg. i663 we find

(18.169)

eq:pf1ST-def

(1= 57) = Serl-t )12 S)pE((S ™)1 )pE(T) (18.170)
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so now we must simplify pf(S)pf((S~1)s).
Now we use a curious identity from linear algebra

pf(S)pE((S™1) ) = (—1)1V2e pf(Sr) (18.171)

The proof is discussed in the remark be ll
e

DI-PF
Now, finally, we apply (I18 I7T) to (uzs 170 ) to get

pf(1—ST) = > pf(Sy)pf(Tr) (18.172)
I

Overlap-1
This completes the proof of (l% [52]. &

JDI-PF
Remarks: Here we give an extended commentary on the identity (I% I7T).

1. An identit frlodm linear algebra known as Jacobi’s determinantal identity (see, e.g.
I 1
eq. 11 of sfates that, for any matrix S

detSdet((S™1) ;) = det(Sy) (18.173)
with the sign as above, provided I and I’ inherit their ordering from {1,...,n}.

leq: JacobiDetIdent
2. One proof of (I8.173) makes use of Grassmann integrals. Consider the integral

/H daidXi H dnadl/anp[XiSijej + NaXa + Vaga] (18'174)
i=1 ael’

Integrating out first (6, ) and then (n,v) gives detSdet(S~!);.. On the other hand,
integrating out first (1, v) and then (6, x) gives detSy. This elegant proof was pointed
out to me by N. Arkani-Hamed.

leq: JacobiDetIdent
3. Now, if in addition S is antisymmetric it follows from (I18 I73) that

pf(S)pf((S™H) 1) = £pt(S1) (18.175)

The sign cannot depend on the matrix elements s;; since the LHS and RHS are
rational expressions in the matrix elements, but it can depend on I and I’. To check
the sign, evaluate left and right hand sides for the case that S is skew diagonal.

leq: JacobiDetIdent
4. There is a nice conceptual interpretation of the identity (|18 I73). Suppose V is

a vector space over x of dimension n. Then we claim that there is a canonical

isomorphism
¢ AW (A”*’“VV> ARy (18.176)
it is defined by
(VA Av) @ (ar A v A ap—k) — Z€[<U]/,Oé>’l}[ (18.177)
I
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where

<U[/,a> = det(vis,aj> (18178)

Now, let {u;} be an ordered basis for V' and {u;} the dual basis. Choose another
basis w; = Sj;u; so that w; = (S~ ) ;iw;. Then, by naturalness we must have

c:(wg A ANwy) @ Wp — wr (18.179)

as well as
c:i(ur A Auy) @ Up — ug (18.180)

That is the meaning of naturalness: We have the same formula in any basis. On the
leq: JacoleetIdent

other hand, expressing the w’s in terms of the u’s we are lead to the identity (I8.173).

The next preliminary we need is the observation that if g € O(g;C) is in block form
:OnnBlockForm

an is antisymmetric then
det(CS + D) (18.181)

is a square of a polynomial in the matrix elements of S. This follows from our ke?(z identit
:Onn-Block-Rels-alt

Overlap-1
(I% [52) a)Bove for if D is invertible then by the defining relations (|18 85) of U(q;C) we
know that D~!'C is an antisymmetric matrix but then we can write

det(C'S + D) = det(D)det (1 + (D~'C)S) (18.182)

and now the RHS has a squareroot as a polynomial in the matrix elements in S. This

formula can be extended to D noninvertible. &Need to extend to
D noninvertible. &

Now the expression det(C'S + D) has a very nice group multiplication property. If

g192 = g3 and so
A1 Bl A2 B2 A3 BB
— 18.183
(01 D1> <C2 D2> <C3 D3> ( )

C3S + D3 = (Cl(gg . S) + Dl)(CQS + Dg) (18.184)

then we claim that

and hence

det(C5S 4+ D3) = det(Ci(g2 - S) + D1)det(CaS + Do) (18.185) ‘eq:Dq-grp-cocyc‘

eq:0g-grp-22 . X
The proof of (I% lng) 1s sketched in an exercise below.

The fact that det(C'S+ D) admits a square root as a polynomial in S allows us to give

a convenient formulation of the Spin group: 46

Proposition: Consider the group of pairs (g, f) where g € O(¢;C) and f is a polynomial
function on n X n antisymmetric matrices S such that

(f(S))? = det(CS + D) (18.186) ‘ eq:alt-def-spin

46This generalizes nicely to the metaplectic double cover of the symplectic group in the case of bosons.
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The group multiplication is

(91, f1)(92, f2) = (9192, f3) (18.187)

eq:0g- —cocyc
where (see (IIS. :

f3(S) = fi(gz2 - 5) f2(5) (18.188)
Claim: This group is isomorphic to Pin™(2n)..

Proof: The group is clearly a 2 : 1 covering of the group O(q;C) since f(S) is deter-
mined by g up to sign. We need only show it is nontrivial on the connected component of
the identity. The proof is that the group cocycle in defining the sign of f is precisely that
used to define the Pin double cover. We can demonstrate this by considering an elementary
loop in the group O(q; C). Consider, for example the loop Wléic:lh_ré)ot_at_es {e1,e2} by R(0)
and leaves the remaining e; fixed. Using the transformations (IIX. ese transformations
correspond to a loop of elements g(f) € O(¢;C) with B=C =0and D = A" !is a
diagonal matrix with all diagonal entries 1 except for the 11 element which is e . For
this loop of matrices f(5)? = e and taking the squareroot of f produces the necessary
cocycle. &

We are now finally ready to compute (g, S) in (E%i_f'?l%l.l_hvae restrict to g such that

prw(g) are unitary, so g € Spin(2n) and g € U(2n) N O(q; C) = O(2n). Then we have

w(S1]S2)w = w(S1|prw(3) prw (3)|S2)w

N . (18.189) |eq:compt-kappa-1
= (9, 51)"K(g, S2)w (g - Silg - S2)w | |

and hence

#(9,51)"K(G, S2)pf(1 — g - S1g - S2) = pf(1 — 5152) (18.190) |eq:compt-kappa-2)]

Now, using the property that g € U(2n) it is straightforward to compute:
det [(C'Sy + D)™ (CSy + D) + (ASy + B)'"(AS; + B)]

det(C'S; + D)trdet(CSy + D) (18.191)
= det(CSy + D) 1det(CSy + D) 'det(1 — 51 55)

det(l —g-Sig-952) =

. . . . leq: compt-kappa-2
where we have just used antisymmetry of S and unitarity of g. It follows from (II8.190)

that

(k(§,51)*k(,52))* = (det(CSy 4+ D))*det(CSy + D) (18.192) ‘ eq: compt-kappa-S‘

and therefore

#(7,9)% = det(CS + D) (18.193) ‘eq:compt—kappa—ll‘

so k(g,S) is one of the two squareroots. From this, and the above characterization of the
Spin group we have finally constructed Hp as an equivariant bundle over G(V, @), at least

on a dense Open Set. &Need to explain
. . . . . . more that it is the
We summarize this long computation in the following beautiful statement: “right” square root
for the spin action.

*
Theorem: The action of g € Spin(2n) on squeezed states is given by

prw (9)|S)w = /det(CS + D)|g - S)w (18.194)
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— . leq:BlockForm-iii |
where g = Ad(g) € SO(2n) has block decomposition (IS.147) when considered as an element

of O(q;C) and g-S = (AS+B)(CS+ D)~L. The inverse image § of g under Ad determines
the choice of the square root. That is, the fermionic vacuum transforms as an automorphic
form of weight 1/2.

Remarks:

1. With a little algebraic geometry we can extend it to the entire isotropic Grassmannian
G(V,Q). For details see Pressley and Segal.

2. A very similar story }]%olds for representations of the metaplectic group by systems of
sec:.bosons

free bosons. See elow.

3. It is worth giving a more %eometrical interpretation to some of these expressions which
. . . subsubsec:GeometricSpinRep . i
will be useful in Section §I8.4.7 below. The Grassmannian G(V, @) is a homogeneous

space for O(q;C). If we think of W as the span Qrf_:ghe oscillators {a;} and V? as
the span of {a;} then it acts according to (I¥.68). More invariantly, given W, a
maximal isotropic subspace of V, we identify W with the I = —i subspace of a
complex structure I on M and then define W to be the I = +i subspace. Then
O(q; C) transforms W & W to W’/ @ W’ with W’ = Span{b;} and W’ = Span{b;}.
(Warning: Since we are using general Bogoliubov transformations we are changing
the #-structure.) Since we are focusing on the vacuum line through |0)y which is, by
deﬁn}tion, the annihilator of W it is more natural to think of e(Vlé OC?%_%S the space of
the W’s. The stabilizer of the span of {a;} under the action (;%:683 is the subgroup
of O(q; C) with Bij =0:

LD = {g— (é At31>} € 0(;C) (18.195)

.. . leq: GaussDecomp-1
Then, on the subset of O(q; C)/LD where D is invertible (I8.142) shows that we can

regard the antisymmetric matrix .S as a set of coordinates. More invariantly, we can

interpret S;; as the matrix of an operator S : W — W. Given such an operator its
graph is the linear subspace of V

Graph(S) := {S(w) @ wlw e W} CV (18.196)

Note that Graph(S) is isotropic iff S is skew symmetric. This follows from the
identity:

Q(S(w1) ® wy, S(w2) ® W) = Q(S(w1), w2) + Q(wr, S(w2)). (18.197)

Therefore Graph(S) is isotropic iff in oscillator basis the matrix S;; is antisymmetric.
the new oscillators b; = Sj;a; + a; span W’ and from W’ we construct W’. The
squeezed state |S) spans a line which is the line annihilated by W’. The set of isotropic
subspaces which can be written as Graph(.S) for some antisymmetric matrix S forms
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a dense open set Uy of one component of G(V, Q). The complement of Uy in that
component is the set of W’ so that W/ NW # {0} and is of complex codimension one.
The open sets Uy, for different choices of maximal isotropic subspaces form an atlas
for G(V,Q). The map from isotropic spaces Graph(S) to the vacuum line through
the squeezed state |S)y will play an important role in the next section.

Exercise
Let S be a (2n) x (2n) matrix and let I and I’ be complementary multi-indices.

Prove or give a counterexample to the hypothetical equation

pE(S)PE(Sy) =pE(S) (18.198)

Exercise

Compute the generating function

1 B g 1 _
(Olexp —3 E Sijaiaj | e e¥i%exp 3 E Tija:a; | |0) (18.199)
1) )

Hint: Consider the x;,y; to be generators of a Grassmann algebra.

. ) eq:0q-grp-22
Exercise Proof 0! equation (l% I35
eg:Og—%rE— 2

Prove (II8.

One answer: Compute

A1 By Ay By 1S
18.200
(o) (o) () 1520

. . eq: g-on-0DL
in two ways using the refinement of (I[S.

AB\(18\ (1g-S\ ((CS+ D)1t 0 10
<C D) (0 1) B (0 1 ) ( 0 (CS+D)> <* 1) (18.201)
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ometricSpinRep ‘

(corresponding to a coordinate system on a homogeneous space). Therefore

Ay B\ (A2 Ba\ (1 S\ (A By 1gs-S\ ((CaS + Do)t 0 10

. 1g1- (92 . S) (C’lS/ + Dl)tr,—l 0 10 (CQS+ D2)tr,—1 0
= o 1 0 (C18"+ D)) \x1 0 (CoS + Dy)

_ (Lo (92-9)) ((C1S"+ Dy 0 (C2S + Do)t 0 10

(18.202)

where S" =gy - S.

eq:0verlap-1

Exercise Alternative ro%f ofl ( >
eq:uve ap-—
a.) Check equation (;%.ISZi for the case that S and T are simultaneously skew-

diagonalizable. (This is easy.)
b.) Now consider a family of fermionic states:

t t
|Q(t)> = exp[—§Sijaiaj]exp[§Tij&idj] |0> (18203)

Note that c¢(t) = (0|€2(¢)) is equal to 1 for t = 0 and we wish to compute it for t = 1. Show
that |Q(t)) is annihilated by the set of operators

(1 —2ST)jia; +tTa;  i=1,...,n (18.204)

Oc.) 1Derlive a simple differential equation for ¢(t) and use it to reduce the proof of
eq:uverlap—
(I%. l52.i to the easy case where S, T are simultaneously skew-diagonalizable. 47

18.4.7 Digression: A geometric construction of the spin representation

In this section we are again following closely the beautiful presentation of Pressley and
Segal in &5%%5011 for this digression is that the geometrical interpretation of repre-
sentation theory is very beautiful, unifying as it does different mathematical perspectives
on a single object. Another reason is that it provides an elegant and rigorous approach to
the quan‘ciza_utic?onG(irf;> 1Iielgmionic quantum field theories, and this was in fact one of the central
points of .

Let us begin with a broader view of a geometric interpretation of representations of
Lie groups more generally. To do this we must take another step back and describe an

important general idea in complex geometry. That idea is the correspondence between

47T thank Y. Nidaiev for suggesting this line of proof.
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holomorphic line bundles over a complex manifold X and maps of X into a projective
space based on the following two constructions:

Construction 1: Let X be a complex manifold. Then given a holomorphic map:
f: X —=PWV) (18.205)

(where P(V) is the projective space of a complex vector space V') we can produce a holo-
morphic line bundle Ly over X.

The map f — Ly is easy: We viewet%lgog)rp?éiegltive space P(V') as the space of complex
lines in V. Therefore to give a map (I8. s to give, for each x € X, a complex line
f(z) C V. But this is just the data needed to construct a line bundle 7y : Ly — X. It is a
subbundle of the trivial bundle X x V' whose fiber at x is just the line (L¢)[, = f(z), i.e.

Li:={(z,v)lve flx)}Cc X xV. (18.206)

We take 71 (z,v) = x, so the fiber is a complex line. Everything varies holomorphically, so
m : Ly — X is a holomorphic line bundle.
Note that the projection 7o : X x V' — V is holomorphic so that if & € VV then
Sq := a0 o defines a map
sq: Ly —C (18.207)

which is, moreover, linear on the fibers of L. Because it is defined for every fiber and is
linear on each fiber we can view s, as a holomorphic section of LY and hence we have an
injective map

Up: VY 5 T(X;LY). (18.208)

Construction 2: Suppose X is a complex manifold and  — X is a holomorphic line
bundle which admits holomorphic sections such that for every x there exists s € I'(X; Q)
such that s(z) # 0. Then we can construct a map

fo: X = P(1) (18.209)

where

Vo :=T(X;Q)Y (18.210)

The most conceptual way to construct the map fq is to recall that for any vector space
there is a natural 1-1 correspondence between lines in V' and hyperplanes in VV: Given a
line ¢ C V the annihilator in V'V is a hyperplane. Apply that to V' = V. Thus, it suffices
to show how, for each = € X, to construct a hyperplane in I'(X; Q). This is simply done
by considering the set of sections such that s(z) = 0.

Let us give a slightly more concrete description of fg. Define a map fg : X — P(Vp)
by evaluation at x as follows: For any x choose a local trivialization v, : ), = C. Then
define a linear functional on I'(X; @) by

Uy 5+ Pp(s()). (18.211)
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This is clearly a nonzero linear functional on I'(X; Q) and hence a vector in Vg. This
vector depends on z as well as on the choice of trivialization 1,. However, any two triv-
ializations of @, differ by an element of Aut(C) which is canonically a nonzero complex
number. Therefore the line £, ¢ C Vg through /, ,, does not depend on the choice of local
trivialization v,. The line £, ¢ is, by definition, fg(x).

Given these constructions it is natural to ask how Ly, compares with LY and how f Ly
compares with f, and whether ¥, above is an isomorphism. Under “good” conditions, for
example if X is a smooth compact Kdhler manifold and L has a suitable first Chern class
we will indeed have

Ly =LY (18.212)

foy =7 (18.213)
. . . .. . . riffithsHarris
and ¥y will be an isomorphism. This is the Kodaira embedding theorem. See }%Bf.iﬂmprovement

needed here. &

Example: We illustrate these constructions with the important example of holomorphic
line bundles over CPY = Gr{(CN¥*!). Denote a point in CPY by [Xo : X7 @ --- : Xp]
where the square brackets indicate the usual equivalence relation

[(Xo: X1 Xn|=[AXo: AX1 - 1 AXN] (18.214)

and of course at least one X; is nonzero. Choose a positive integer d and consider the
vector space Vy = Vy(CVF1) of homogeneous degree d polynomials on CN*1. Think of
such polynomials as expressions 48
> cruyuyy (18.215)
I|=d

Now, we claim that there is a canonical map f; : CPN — P(V,/), for if we have [Xq : --- :
Xn] € CPN then for each choice (X, ..., Xy) in the equivalence class we have a nonzero
linear functional on Vj taking

e uy = > X X (18.216)
I|=d I|=d
Therefore, associated to the equivalence class [Xp : --- : Xn] € CPV is a well-defined line

in V. Since we have assigned a line in V) to each point in CP" we have defined the map

Ja-

Another more concrete way of describing the maps f; might be helpful. First choose
N = 1. Then a map
fq:CP! - CP? (18.217)

can be defined by

fa:[Xo: X1 = [X&: XXy - XE2XTE 0 XX X (18.218)

48Unlike the multi-indices we have been using until now, here repeated entries are allowed.
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On the other hand, if d = 1 and we take any N then we could of course take f1 to be the
identity map:
fiiXo:: Xn] = [Xo:-: Xn] (18.219)

The general case with d > 1 and N > 1 is a simple generalization of these. It is helpful to
state it more invariantly. Let U be a complex vector space of dimension N + 1. Then the
general case is a map

fa:P(U) = P(Sym(U)) (18.220)

We can write it explicitly by choosing a basis for U and then using that to construct a
corresponding basis of

((N;r 1>> _ (N +1)(N +d!2)...(N+d) s

homogeneous expressions. 49

What holomorphic line bundles do we get from these functions f;? The line Ly, is
particularly easy to describe: It is called the tautological line bundle. 1f we take fi : P(U) —
P(U) to be the identity map the line bundle Ly, is just the subbundle of P(U) x U whose
fiber above a point ¢ C U in P(U) is the one-dimensional subspace £ C U. The bundle Ly,
is commonly denoted O(—1).

The tautological line bundle is very important. Its first Chern class generates the
integral cohomology of CPY and all holomorphic line bundles are powers of O(—1). In
particular Ly, turns out to be (L, )®?. It is usually denoted O(—d).

Following through the above definitions (and using the fact that CPY is smooth,
compact, and Ké&hler) one can check that the space of holomorphic sections of the line
bundle L} (also denoted O(d)) is naturally isomorphic to the vector space of homogeneous
degree d polynomials in IV + 1 variables. We can think - informally - of the holomorphic
sections as homogeneous degree d polynomials Z| I)=d cIXéO e XJZ%V. Although trying to
assign a value to such a polynomial at a point of CPY does not make sense, the zero set of
the polynomial in CPY is a well-defined subvariety of CP". For example for N = 1 there
will be precisely d zeroes and hence d points in CP!, counted with multiplicity. This turns
out to be quite significant because the theory of divisors shows how zero-sets of sections of

. . . . riffithsHarris
holomorphic line bundles can be used to characterize them uniquely. See .

If we return to the line bundle Ly, = O(—d) then we see it has no holomorphic
sections. After all, any putative holomorphic section ¢V of O(—d) would have to pair
with a holomorphic section s of O(d) to produce a holomorphic function (s,t"), and by
Liouville’s theorem this function would have to be constant. But then, if s has zeroes, t"
would have to have poles, so it wouldn’t be holomorphic. Note that there is a big difference
between I'(X; L)Y and T'(X;LV) !

eq:Lf-def

Finally, note that if f : X — P(V') then the line bundle L — X defined in (&%_20—6%‘18

just the pullback f*Opy(—1).

“OIn the literature on algebraic geometry the map fq is known as a Veronese map. Veronese considered
the case N =2 and d = 2.
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Now, let us apply these general constructions to the representation theory of compact

Lie groups G. Here is a lightning summary of some basic definitions.

1

Up to conjugation, G has a unique maximal abelian subgroup, the Cartan torus
T C G. We have T'= U(1)" for some integer r known as the rank of G.

If p: G — U(V) is a unitary representation of G on a complex vector space V then,
restricted to T" the representation must decompose as a sum of one-dimensional rep-
resentations of T', V' = ©L, where 1 € Hom(T',U(1)) are characters on T'. (Unitary
irreps of T are in one-one correspondence with such characters.)

The set of homomorphisms Hom(7,U(1)) is a lattice because if p; and po are char-
acters then so is py'p5? for any integers ni,no € Z. This lattice is known as the
weight lattice of G and characters in this lattice are referred to as weights in this
context. The characters p which appear in the decomposition V' = @ L, of a unitary
representation V' of G are known as the weights of the representation.

. It is often useful to use the exponential map to view the weight lattice as a subspace

of Hom(t,R), where t is the Lie algebra of 7. One can choose a basis for t of simple
roots (see below) with corresponding simple coroots H; so that T is the set of group
elements ¢ = exp[Y_._; OsH;] where 05 ~ 05 + 2. Then the most general weight is
of the form

p(t) =] e (18.222)
S
for integers ng and the corresponding element of Hom(t, R) maps

> 0.H, ) bsn, (18.223)
S S

where 6, € R. We freely will pass between the multiplicative and additive interpre-
tation of weights below.

The nonzero weights of the adjoint representation g. = g ® C play a special role and
are called roots. Now henceforth assume that G is simple. A key step in representation
theory is to show that for each root there is a canonically associated subalgebra of
ge which is isomorphic to si(2,C). We denote it sl(2,C), C g.. Its intersection
with t is generated by a canonically normalized generator H, known as a coroot.
The normalization conditions is (viewing weights additively) a(H,) = 2, and indeed
B(H,) = 289 ywhere (-,+) is the Killing form. °° Then si(2,C), has canonical

()
generators Fi, and H, with

[Eo, E_o] = Hy [Ho, Eio) = £2E4, (18.224)

One can prove that if a is a root then so is —a. A choice of positive roots is a
maximal set of roots not containing the pair {a, —a}. If a, 8 are roots o 4+ 5 might

50Note that the expression is linear in 8 but not in a. It is true that H_o = —Hg.
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(or might not) be a root but a — 3, if nonzero, is never a root. Therefore, given a
set of positive roots there is a canonically defined set of simple roots «; which cannot
be decomposed as sums of other positive roots. The H; above are the corresponding
simple coroots.

7. Given a choice of positive roots a dominant weight X is a weight such that (considered
additively) A\(H,) > 0 for all @ > 0 and an anti-dominant weight A is one such that —\
is dominant. Given a choice of positive roots there is a 1-1 correspondence between
irreducible representations V' of G and dominant (or anti-dominant) weights. Roughly
speaking, the representation V) corresponding to a dominant weight A has a unique
highest weight vector which is annihilated by E,, for all « > 0. One can then build the
representation by acting on this vector with lowering operators F_,, for a > 0. If A €
Hom(t, R) is suitably quantized (which is guaranteed if it exponentiates to a character
in Hom(7,U(1))) and we mod out by null vectors the resulting representation V) is
finite dimensional.

8. If A is dominant then V)Y has lowest weight vector with weight —A\.

Now, to bring in holomorphic geometry we summarize a few more facts. The com-
plexification G. of G is a holomorphic manifold. Roughly speaking, we exponentiate the
generators of the Lie algebra g of G with complex coefficients. Put differently, we expo-
nentiate the complex Lie algebra g. and complete to form a group. Now, given a choice
of Cartan subgroup 7' together with a choice of positive roots there is a canonically de-
termined “upper triangular” subgroup BT C G, given by exponentiating H, and E, for
a > 0. A good example to bear in mind is the group U(n) with 7" the subgroup of diagonal
matrices. Then with respect to a standard choice of positive roots BT is just the subgroup
of GL(n,C) of upper triangular matrices.

Now, if x : T'— U(1) is a unitary character then it has a holomorphic extension to a
multiplicative character y : BT — C*. Therefore, we can define an associated holomorphic
line bundle over G./B*

L, =G.xg+ C={]g, 2| [gb, z] = [g, x(b)z] Vbe BT, ge G,z € C}  (18.225)

Notice that there is a well-defined projection 7 : £, — G./B* given by 7 : g, 2] — gB*.
Now, a crucial point is that

The vector space of (C*, holomorphic) sections of the bundle 7 : L, — G./B™ is naturally
isomorphic to the vector space of (C*, holomorphic) B -equivariant functions f : G. — C.

The phrase “BT-equivariant” just means that f(gb) = x(b~1)f(g). The equivalence is
established as follows: Suppose first we have a section s of 7 : £, — G./B™. Now, choose
g € G¢. Form the coset gB™. Then the section s(¢gB™) gives us an equivalence class [h, z].
Since it is in the fiber above gB* we have hB* = gB™. In particular, that equivalence
class must have a representative (g,z,) where the first entry is exactly g. We use that
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representative to define f(g) := z4. The resulting function is clearly equivariant. Proof: We
have s(gB™) = s(¢gbB™) and so [g, zg] = [gb, zg) but, by definition, [gb, zg] = [g, X(b)zg].
Putting these two equations together we see that f(g) = x(b)f(gb). Conversely, given
such an equivariant function we can define a section: s : gB* +— [g, f(g)]. (Because f is
equivariant this formula for s is well-defined.)

Moreover, the vector space of (C*°, holomorphic) Bt-equivariant functions f : G. — C.
is naturally a representation of G.. Indeed, given an equivariant function f and g9 € G,
we can define a new equivariant function L(gg) - f whose values are

(L(g0) - /)(9) == Flg5'9) (18.226)

The reason for the annoying inverse in g, L on the RHS is that this way we get a represen-
tation L(go)L(gh) = L(gogh). Note that since the multiplication by gy ' is on the left the
equivariance property is not spoiled, even for GG nonabelian. The representation we produce
this way depends on the character y and is known as an induced representation. If we take
C° sections then it is infinite dimensional and has no reason to be irreducible. However,
if we take holomorphic sections then, it can be shown, I'(L,, G./B™) is finite dimensional
and irreducible. This representation is the holomorphically induced representation.

The finite-dimensionality follows once one realizes that G./BT = G/T is compact
and we are essentially solving a Cauchy-Riemann like equation ds = 0. The irreducibility
follows from a basic decomposition theorem of matrices known as the Bruhat decomposition.
Let N~ be the group generated by exponentiating F_,, for « > 0. For G. = GL(n,C) this
would be the lower triangular matrices with 1 on the diagonal. The orbits of N~ on G./B™
are cells of dimensions related to properties of the Weyl group. There is one open dense
orbit of maximal dimension. Now, if I'(G./B™;L,) were reducible there would be two
linearly independent lowest weight vectors s; and so. But these are invariant under N .
Therefore, therefore s1/s5 is constant on the N~ orbit of 1-B*. But this is a function, which
if constant off of a codimension one subspace must be constant everywhere, contradicting
linear independence of s1 and ss.

Now, conversely suppose G is a compact simple Lie group, and suppose it has an
irreducible representation on a complex finite-dimensional vector space V and we choose
positive roots so we can identify V' = V) where X is a dominant weight. Then the represen-
tation extends to a holomorphic representation of the complexification p. : G. — GL(V),
and there is a multiplicative holomorphic character x : BT — C*. The dual representation
VY has a lowest weight vector v and the action p¥(B*) on v is via the character x5 '. The
lowest weight vector generates a line vC C V). Now p/(g) acts on the projective space
P(V') since a linear transformation takes lines to lines. It is a transitive action and the
stabilizer of vC is just BT. Therefore, we get a map

fr:Ge/BT = P(VY) (18.227)

From our Construction 1 above we automatically get a holomorphic line bundle Ly, —

G./B*. Tracing through the definitions one can show that this line Ii-IS lexsactvly the associated
eqg:hno ecv-vee

line bundle discussed above: Ly, = L,,. Moreover, thanks to (I%.Z()Si we get an injective
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map
g, = VA= T(LY)) (18.228)

Again, following through definitions one can check that this map is Ge-equivariant. There- amore detail. &
fore, this is an isomorphism of representations, thus giving a beautiful geometrical inter-
pretation to the irreducible representations of G.

The result of all the above is the very beautiful Borel-Weil-Bott theorem:

Theorem : Let G be a simple Lie group. Choose a system of positive roots, thus deter-
mining a Borel subgroup B C G.. For any weight A let £,, — G./B™ be the induced
holomorphic line bundle from the character on T.

a.) Ly, has no holomorphic sections unless X is anti-dominant.

b.) If X is dominant then T'(G./B™, L ) is a representation of G.. which is isomorphic

to the representation Vj. &We didn’t explain
(a). &

Example 1: Representations of SU(2). We take T to be the subgroup of SU(2) of diagonal
matrices. It is isomorphic to U(1) and hence the characters are labeled by A € Z:

€i9 0 )
iy e ] e (18.229)
We choose positive roots so that BT is the group of upper triangular matrices

b11 b12
b= 18.230
() 523)

with b11b09 = 1. With this choice of positive roots we have

Fu (0 1) B- (0 0) Hy = (1 0) (15231
00 10 0 -1

The holomorphic extension of xy is xa(b) = b7;. A holomorphic section of £, is
equivalent to an equivariant holomorphic function

f:SL(2,C) = C (18.232)

such that
Fgb) = xa(v™ ") f(9) (18.233)

Let us unpack what this means:
Equivariance with respect to matrices of the form

(é f) eB* zeC (18.234)

implies

f(ih=n(ien) ()esae s
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which implies that f is only a function of (r,#). 5! Next, invariance with respect to diagonal
matrices

0z !

re szt rs r s
4 <ta: ux_1>) =2 <t u)) <t u) € SL(2,C) (18.237)

Therefore, f(r,t) is homogeneous of degree —A. If A > 0 there are no holomorphic functions,

(x 0 > eBt zecC (18.236)

implies

as promised by the above theorem. If A\ < 0 then f(r,¢) is a homogeneous polynomial of
degree d := |A|. The space V4(C?) is well-known to be a standard presentation of the
irreducible spin j = d/2 representation of SU(2) of dimension d + 1. Indeed, if

gt = (TO SO) € SU(2) (18.238)
o uo

and if we choose a basis for V(C2) of the form f,(r,t) := r"t¢ ™, 0 < n < d, then we can
compute the matrix elements of the representation. By definition:

(L(go) - fn)(r,t) = fulror + sot, tor + uot) (18.239)
and hence
Ligo) - fn = > DD (90) fr (18.240)

d— e der—
D = X (0)(" " bt e (18.241)

prg=n' \P

The functions Dfﬁl(go) on SL(2,C) are - up to normalization - known as Wigner functions
and special cases include standard functions such as Legendre, associated Legendre, and
spherical harmonics.

Example 2: Antisymmetric tensors of U(n). We now consider the geometrical interpre-
tation of the k' antisymmetric representation of U(n). Consider the Grassmannian of
k-planes in an n-dimensional complex vector space V:

Grp(V) = {W C V|dimcW = k} (18.242)

This is a complex manifold. Then there is a natural holomorphic line bundle DET —
Gry(V). The fiber above a subspace W € Gry (V) is A¥(W). It corresponds to a holomor-
phic map fprr : Gri(V) — P(A*V) defined by mapping the subspace W to the complex
line A¥W which is a line in the (Z) -dimensional vector space A¥V.

SUf rt # 0 then we can always choose one x to set 7z + s = 0 and another to set tz +u = 0, so f cannot
be a function of s or u. If r = 0 then st = —1. In particular s is not independent of t and we can choose
an z to set tx +u = 0. If £ = 0 then ru = 1 and a similar argument applies.
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For dim¢V = n we claim that, as representations ofHU1 (n),VAk(V) is isomoprhic to
eq.no ecv—-vee
I'(Gry(V),DETY). According to our general principle (IT%: above we have a map

A*(V)Y = I'(Grp(V),DETY) (18.243)
In our case it can be defined directly as follows: First A¥(V)Y = A¥(VV). It suffices to
define the map for elements o € A*VV of the form a = a3 A-- - Aoy, with a; € VY and then
extend by linearity. The corresponding section s, is a holomorphic map DET — C which
is linear on the fibers. An element of DET in the fiber above W is of the form wy A« Awy,
for some vectors w; € W. We then define

Sa(wi A+ Awyg) = det(ay(w;)) (18.244)

eq:BWB-map-1k

The map (l%.ZZBi is clearly injective. Some algebraic geometry allows one to show that
it is surjective, so we get an isomorphism. (Grg(V') is smooth compact and Kéahler.) It
is clearly equivariant. Thus DET" has holomorphic sections and therefore DET has no

holomorphic sections. This is in accord with our discussion of holomorphic line bundles
over CPYN = Gry(CN*1).

Remark: The map fpgr is very important in algebraic geometry. It is known as the
Pliicker embedding. Let us describe it a bit more explicitly. If we choose a basis for V' then,
given a basis for W we associate a k x n complex matrix whose rows are the components
of the basis elements of W. Therefore, the space of k-dimensional subspaces together with
ordered basis can be identified with the subspace of the matrices M., (C) which have rank
k. Call this subspace M., (C). Left action by GL(k,C) corresponds to a change of basis
for W and hence we can identify

Gri(V) = GL(k,C)\M},,,(C). (18.245)
To give the Pliicker coordinates of a point in the Grassmannian we start with W, choose

a basis for W and therefore a matrix A € M}, (C) and associate to it the vector of k x k
minors of A. The map descends to a map from the quotient GL(k,C)\Mp,,,(C) to the

projective space P(AFV) = cP(M). To see that the map is an embedding note that for
[w] € P(A¥V) we can define a subspace V,, C V as the set of vectors such that v A w = 0.
If [w] is in the image of the Pliicker map applied to W then clearly W C V,,. On the other
hand, if wq, ..., wy is a basis for W then we can extend it to a basis for V' to show that in fact
V., = W. (Indeed, simple considerations of linear algebra show that for any [w] € P(AFV)
the map v — v A w has kernel of dimension < k.) Therefore, we can reconstruct W from
the equation v A w = 0 and hence the Pliicker map is an embedding.

One can show that these Pliicker coordinates satisfy a set of quadratic relations which
in fact define the image of the Grassmannian under the Pliicker embedding. This exhibits
the Grassmannian as an explicit algebraic variety, indeed as an intersection of quadrics.

arris
See
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Let us now apply these ideas to the Spin group to get a nice geometric insight into one
sense in which the Spin representation is a “squareroot.” (We are again following Pressley
and Segal, chapter 12.)

We apply the above correspondence between maps to projective space and holomorphic
line bundles. In our context of fermions note that given a point in the Grassmannian
G(V, @) of maximal complex isotropic subspaces of V' we automatically have a Fock space
and in particular a vacuum line. That is, the quantum vacuum defines a map

fvac : g(V, Q) — P(A*W) = P(Sc) (18.246)

To define this more precisely, choose a decomposition V. = W @ W. Then fy,. maps
W' e G(V,Q) to the line in A*W annihilated by W’. The corresponding line bundle is called
the vacuum line bundle Yac — G(V, Q). (Pressley and Segal call this the Pfaffian bundle
PF — G(V, Q) for reasons explained below.) We then have a BWB-type interpretation of
the spin representation:

Theorem The pin representation of Pin™(2n) can be identified with the holomorphic
sections T'(Yac").

This is the geometical interpretation of the spin representation we wanted to find. Now
we have two geometrical results which beautifully reflect representation-theory facts.
Let

Gr(W) = I}_,Gry (W) (18.247)

be the complete Grassmann variety of W. There is a natural embedding of Gr(W) into
G(V,Q). If Wy C W then we can define W’ := Wit @ Wy € G(V,Q). Here Wit ¢ W
is the orthogonal complement in the Hilbert space inner product h. The space W' is
maximal isotropic in V. The map ¢; which takes W; — W’ embeds the Grassmannian of
the n-dimensional complex vector space W into the isotropic Grassmannian of (V, Q).

We thus have the diagram

Gr(W) —= G(V, Q) — Grp(V) (18.248)
lfDET lfvac lfDET
PA*IV) —— P(A*W)  P(A*V)

where fpgr is the Pliicker embedding.
To check that the square on the left is commutative note that we can interpret Wf‘@Wl
as a space of annihilation operators of the form:

n
bi:ai+ZRijaj 1< <k
=kt 1 (18.249)
b; = a; i=k+1,...,n
by choosing a;, ¢ = 1,...,k to be a basis for Wf‘ and a;, ¢t = k+1,...,n to be a basis
for Wi. Then the line annihilated by the {b;}"_; is generated by @ - --ax|0). Since the scheck. This is not

quite right. &
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square commutes we have

/£ (Vac) = DET(W) (18.250)

This is related to the fact that U(n) (or rather, a double cover) acts on the spaces A*TW
as the k" anti-symmetric power of the fundamental.
Secondly
15(DET(V)) 2 (Vac)? (18.251)

reflecting the fact that the spin representation is a squareroot of the left regular represen-
tation A*V of the Clifford algebra.

Remarks

1. The beautiful story of the Borel-Weil-Bott theorem goes further. One can show that
G/T = G./B* as manifolds, and indeed with a choice of positive roots G/T can be
given a complex structure so that these are isomorphic as complex manifolds. G/T
is obviously compact and G./B™ is obviously holomorphic.

One can also define natural symplectic forms on G/T so that, if G is compact, it has
finite symplectic volume. These forms are compatible with the complex structures
and make G /T into a K&hler manifold with left-invariant metric.

The Lie algebra g has a natural adjoint action of the group. For matrix groups
Ad(g) : X + gXg~!. The dual representation will be represented by the transpose
inverse. To be precise we define the coadjoint action on g* as follows: If v € g* and
g € G then

(Ad*(g)v,z) := (v, Ad(g D)) Va € g (18.252)

We can therefore study the orbits of G acting on g*. By definition, the orbit O(vy)
through vy € g* is isomorphic as a manifold to G/K where K is the stabilizer of vy
under Ad*. The Kirillov-Kostant-Souriau theorem states that these orbits are in fact
naturally symplectic manifolds: To see this define an antisymmetric form on g by:

Wy (X,Y) = vo([X, Y)) (18.253)

The annihilator of this form is, almost by definition, the Lie algebra of K. Now,
antisymmetric forms on g are two-forms on g* (since cotangent vectors on g* can be
identified with elements of g). The 2-form on g* can be pulled back to O(vg). Since
the annihilator is Lie(K) the 2-form is nondegenerate. Moreover, it is easily seen to
be left-invariant, and hence it defines a symplectic form on O(vy).

It we introduce a Killing form B(X,Y) = Tr(XY) on g then we can identify g
with g* and define a symplectic form on the G-orbits in g of the form w,,(X,Y) =
Tr(vo[X, Y1)

If we choose a Cartan subalgebra in g then without loss of generality we can take
v to be in t*. It turns out that if vg = A € Ay then the orbit O(\) has integral
symplectic volume. We can therefore expect to quantize this symplectic manifold.
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The resulting Hilbert space will be a representation of G and its dimension will be
finite: Up to quantum corrections it will be the symplectic volume.

#00t DO EXAMPLE OF SU(2) *#+*

Viewed as a quantum system the action [(pdgq — Hdt) is

[laotg o) - myar (18.254)

If H(t) = Tr[Aoh(t)] for a Lie-algebra valued function h(¢) then the partition function
on the circle will just be

TrpPexp — / h(t)dt (18.255)

&This all needs a
If we introduce a choice of positive roots then we can also take a holomorphic view- leitplrzszenon to be
point. The metric g(X,Y) = wy(X,IY) is a homogeneous Kéahler metric for A a comprehensible.-.
dominant weight. When it is integral w is properly normalized for quantization of
the phase space. Now, in the Kéhler quantization - also known as the coherent state
formalism - the wavefunctions are holomorphic sections of the holomorphic bundle
L, — G/T. The important property mentioned above that I'(L,, ) is finite dimen-
sional is now easily understood: On a compact phase space there should be a finite

dimensional space of quantum states.

Some references:

1. Kirillov, Elements of the theory of representations.
2. Perelomov book on coherent states.

3. Raoul Bott, “On induced representations,” in Mathematical Heritage of Hermann
Weyl, or Collected Papers 48 (1994): 402.

4. In the physics literature there are several

H

interpreting these facts in terms
o1 xXn

of quantum mechanical path integrals e holomorphic interpretation we
stressed above can be naturally incorporated by thinking about the supersymmetric

quantum mechanics on G/T using the Kéhler structure. [ref to cite??]

2. Comment on infinite dimensions....

Exercise

Describe the line bundles O(=£d) over CP" in terms of patches and transition functions.
Use the natural patches U; defined by the points with X; # 0.
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18.4.8 The real story: spin representation of Spin(n,n)

Finally, we note a purely real analog of the above construction which is useful in geometry
and supersymmetric quantum mechanics.

We begin with an example:

Let W be a real vector space and consider of dimension n and consider V. =W @ W"V.
Note that V' admits a natural nondegenerate quadratic form of signature (+1", —1") where
we take W, WV to be isotropic and use the pairing W x WV — R. That is, if we choose a
basis w; for W and a dual basis @ for WV then with respect to this basis

01
Q= <1 o) (18.256)

The resulting Clifford algebra is Cf,, _,, = End(R2"'12"7"),

We know there is a unique irrep up to isomorphism. One way to construct it is by
taking the representation space to be A*WV. In close analogy to the complex case we let
p(w) for w € WY be defined by wedge product, wA and we let p(w) for w € W be defined
by p(w) = ¢(w) where ¢(w) is the contraction operator:

n
W)@ A A = (=1 w, )T A ADBTE AT A A (18.257)
j=1

We then extend to V' by linearity. A simple computation shows that

(18.258)

and thus the Clifford relations are satisfied.

An important example where this appears is in the quantization of fermions in super-
symmetric quantum mechanics. If M is a manifold we can consider T'M & T™* M which has
a natural quadratic form of signature (n,n) since TM and T*M are dual spaces. Note that
W =TM a maximal isotropic subspace, and a natural choice of complementary isotropic
subspace is U = T*M. Then the Clifford algebra acts on the DeRham complex A*T*M.

Now 9* = p(dxz*) is the action by wedge product, and x, = p(w,) = L(&%) acts by
contraction. Thus we realize the fermionic CCR’s
"¢t =0
X xv} =0 (18.259)
{¢“a Xl/} = 5#]/

on a Hilbert space - the DeRham complex at a point ¢ € M given by the bosonic coordinate.
The above construction can be generalized as follows:
Suppose V' is 2n-dimensional with a nondegenerate metric of signature (n,n). Thus
Cl(ny,n_) = R(2") and we wish to construct the 2"-dimensional irrep. Suppose we have
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a decomposition of V into two maximal isotropic subspaces V = W & U where W, U are
maximal isotropic. That is, with respect to this decomposition we have

0
Q= (qT g) (18.260)

where ¢ : U — W is an isomorphism.

Then, we claim, the exterior algebra A*(V/W) is naturally a 2™ dimensional represen-
tation of the Clifford algebra on V.

u € U acts on A*(V/W) by wedge product: Note that V/W acts via wedge product.
Since U is a subspace of V' it descends to a subspace of V/W and hence it acts by wedge
product. On the other hand, w € W acts by contraction

n

L(w)([vil] ASREYA [v’bn]) = Z(_l)j_lQ(w> Uij)[vil] ASRRA [Uij—l] N [Uij+1] ASRRRA [vln] (18'261)
j=1

Note that the expression Q(w,v;;) is unambiguous because W is isotropic.

There is an alternative description of the same representation since one can show that
V/W = W*. To see this note that given v, £, : w — (v,w) is an element of W* and
by = lyyy for w € W (since W is isotropic). Thus we could also have represented the
Clifford algebra on A*W*. Elements of W act by contraction and elements of U act by
wedge product (where one needs to use the isomorphism V/W = W*.)

As in the complex case there is a family of such decompositions, parametrized by a
Grassmannian of isotropic subspaces.

19. Free fermion dynamics and their symmetries

19.1 FDFS with symmetry
Finally, let us define formally what it means for a FDFS to have a symmetry.

Definition: Let (G, ¢) be a Zs-graded group with ¢ : G — Zy. We will say that (G, ¢)
acts as a group of symmetries of the FDFS if

1. There is a homomorphism p : G — Autr(Hr) of Zs-graded groups. That is, Hp is a
|subsec:PhiRepBasics

¢-rep of G. (See Section §8.1.)

‘eq:contractaa

2. There is a compatible automorphism « of the x-algebra A so that A is a ¢-representation

of G. That is, a(g) is C-linear or anti-linear according to ¢ and p and « are compatible
in the sense that:

p(9)pr(a)p(g)~" = pr(alg) - a) (19.1)

3. The automorphism preserves the real subspace M C A, and hence we have a group
homomorphism: a : G — Autg(M, Q) = O(M,Q) = O(N).
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Remarks:

1. Assuming pp is faithful and surjective (as happens for example if N is even and we
choose an irreducible Clifford module for Hg) the map a — a’ defined by

p(9)pr(a)p(g) ™ = pr(d) (19.2)

defines the automorphism of A. When A is a central simple algebra it must be inner.
The condition (3) above puts a further restriction on what elements we can conjugate
by.

2. We put condition (3) because we want the symmetry to preserve the notion of a
fermionic field. The mode space M is the space of real fermionic fields. It should
then preserve () because we want it to preserve the canonical commutation relations.
In terms of operators on Hp:

p(9)pr(e;)p(9) ™ = Smipr(em) (19.3)

where g — S(g) € O(N) is a representation of G by orthogonal matrices.

3. When constructing examples it is natural to start with a homomorphism o : G —
O(N). We then automatically have an extension to an automorphism of Cliff (M, Q).
There is no a priori extension to an automorphism of A. The data of the ¢-
representation determines that extension because a — pp(a) is C-linear. It follows
that p(g) is conjugate linear iff «(g) is conjugate linear. This tells us how to extend
a to Autg(A).

Examples

1. By its very construction, the group G' = Pin™ (V) with ¢ = 1 is a symmetry group of
the FDF'S generated by (M, Q) for M of dimension N. We can simply take p = pp.
This forces us to take o = Ad. 72

2. What about G = Pin™ (N)? In fact we can make G = Pin®(N) (which contains both
Pin®(N) as subgroups) act. We think of generators of Pin¢(N) as Ce; where |¢| = 1
is in U(1). Then p(Ce;) = (pr(e;) and a(Ce;) = Ad(e;). Again we take ¢ = 1 in this

example.

3. Now we can ask what Zs-gradings we can give, say, G = Pin"(IV). Since we take
¢ to be continuous ¢ = 1 on the connected component of the identity. Then if we
take ¢(v) = —1 for some norm-one vector then if v’ is any other norm-one vector
vv’ € Spin(N) and hence ¢(vv') =1 so ¢(v') = —1. Therefore theeor}%trégntrivial Zo-
grading is given by the determinant representation described in (7. above. If we
use this then in general there is no consistent action of (G, ¢) on the N-dimensional
FDFS. &Maybe when Cly

has real reps it is

52Note that it is Ad and not Ad. This leads to some important signs below. ok? &
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4. To give a very simple example with ¢ # 1 consider N = 2, hence a single oscillator
|subsubsec:ExplicitRepGamma

a,a and let G = Zy = (T|T* = 1). Then, in the explicit representation of T8.4.T take

p(T)+) = —=|=)

19.4
p(T)]=) = [+) 1y

and extend by linearity for ¢(T') = +1, and by anti-linearity for ¢(7") = —1, to define

p: G — Autg(Hp). In either case a(T) - e; = —eq, but a small computation shows
that
T) = +1
o) eg=12 D (19.5)
—e2 ¢(T) =—1
Note that
aT) -a=—a
(19.6)
a(T)-a=—a

in both cases ¢(T) = £1.

5. Inside the real Clifford algebra generated by e; is a group En generated by e;. This

group is discrete, has 2V*! elements and is a nonabelian extension of Zév with cocycle
determined from €i€j€;1€;1 = —1 for i # j. En is known as an extraspecial group.

Suppose T}, i = 1, ...,k with 2k < N generate an extraspecial group &, of order 2¢+1.
Thus, Tf = 1 and TiTsz-*lTj*l = —1 for i # j. Then there are many Z, gradings
¢ of & because we can choose the sign of ¢(7;) independently for each generator.
For each such choice (&, ¢) acts as a symmetrysuroup of the N-dimensional FDFS.

. . o i | subsec:ExplicitRepGamma
Using the basis for the explicit representation of I8.4.1 we can take p(1;) = pr(e2i—1).

Since the latter matrix is real the operators p(7;) can be consistently anti-linearly
. . |subsubsec:ExplicitRepGamma
extended in the basis of T8.4.T. A small computation shows that

ey () = +1
a(T)) ey =14 2 19.7
(1) e, { - (19.7)
but

_— aj j=1 ‘
oT) -3, {_% o (19.5)
(T a; =% I (19.9)

Tol-a g

independent of the choice of ¢.

&Now comment on
possibilities for ¢
and what the Dyson
classes would be.

L3

&Put general
comments on
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19.2 Free fermion dynamics

In general, the Hamiltonian is a self-adjoint element of the operator *-algebra and thus
has the form (%ﬁ%&fhl distinguish a x-invariant element h € A from the Fock space
Hamiltonian H := pp(h).

Usually, for reasons of rotational invariance, physicists restrict attention to Hamilto-
nians in the even part of the Clifford algebra, so then

h=ho+ Y hiici.i, (19.10)
k=0(2)
with ho € R and A , = (—1)k/ 2hi1~~~ik’ These elements generate a one-parameter group

of automorphisms Ad(u(t)) on A where u(t) = e7**. Related to this is a one-parameter
group of unitary operators
U(t) = pp(u(t)) = e 2 (19.11)
on Hp representing time evolution in the Schrédinger picture.
In the Heisenberg picture Ad(u(t)) induces a one-parameter group of automorphisms
of the algebra of operators and in particular the fermions themselves evolve according to

u(t) equ(t) = e; + V=1t > _ hrler, ei] + O(t?) (19.12)
1

where we have denoted a multi-index I = {i; < --- < ix}. Terms with & > 2 will clearly
not preserve the subspace M in A.

By definition, a free fermion dynamics is generated by a Hamiltonian h such that
Ad(u(t)) preserves the subspace M. (Note well, when expressed in terms of harmonic
oscillators relative to some complex structure it might or might not commute with F.)
The most general Hamiltonian defining free fermion dynamics is a self-adjoint element of
A = Cliff (M, Q) ® C which can be written with at most two generators. Therefore, the

general free fermion Hamiltonian is

v—1
h=ho+ =~ Z Ajpejen (19.13)
Z’J
where A;; = —Aj; is a real antisymmetric matriz.
Remarks

1. Note well that A;; is an element of the real Lie algebra so(N) and indeed
1
1 D Ajejer (19.14)
4.k

is the corresponding element of spin(N) = so(N).

2. As we remarked, there are two Hilbert spaces associated to the fermionic system. In
the Fock space Hr we have Hamiltonian

V=1
H=hy+~— > Ajepr(ejer) (19.15)

i7j
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—ihot the free fermion dynamics is the action of a

and, up to a trivial evolution by e
one-parameter subgroup U (t) of Spin(2N) acting on the spin representation, in the
Schrodinger picture. In the Heisenberg picture the corresponding dynamical evolu-
tion preserves the real subspace M C A is given by the real vector representation:

Ad(u(t)).

3. Upon choosing a complex structure we have a second Hilbert space, the Dirac-Nambu
Hilbert space Hpy := V = W @ W and, (only in the case of free fermion dynamics)
U(t) induces an action on V. This is simply &(u(t)) on M extended C-linearly to
V = M ®C. The “Dirac-Nambu Hamiltonian” is therefore just ppy(h) := Ad(h)
acting on V', thought of as a subspace of Cliff(V, Q).

4. Any real antisymmetric matrix can be skew-diagonalized by an orthogonal transfor-
mation. That is, given A;; there is an orthogonal transformation R so that

0 X\ 0 A
AR = " 19.1
RAR (—M O)@ @<—An 0) (19.16)

The Bogoliubov transformation corresponding to R can be implemented unitarily and
hence if hg is zero then the spectrum of H must be symmetric about zero. Therefore
this is a system in which it is possible to have symmetries with x # 0. In this basis
we simply have (with hg = 0)

1
b= Moo — =(\ A, 19.1
Z]aaaa 2(1+ + An) (19.17)
The spectrum of the Hamiltonian on Hpy is {£\;} and on Hp is {5 Y, €;A;} where
€ € {:l:l}.
Exercise

Compute the time evolution on M of the one-parameter subgroup generated by the

self-adjoint operator e;. 3

19.3 Symmetries of free fermion systems

Now suppose we have a Zs-graded group (G, ¢) acting as a group of symmetries of a

finite dimensional fermion system. We therefore have the following data: (M, Q) together

with a s-representation of A = Clff(V; Q) torélthe Hilbert space Hp together with the
eqg : compa e

homomorphisms « and p satisfying (T9: *

Suppose furthermore that we have a free fermionic system, hence a Hamiltonian of the
leq:FF-Hamiltonian

form (I9.13).

53 Answer: e;(t) = cos(2t)e; + isin(2t)ese; for j # i and e;(t) = e;.
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Definition: We say that G is acting as a group of symmetries of the dynamics of the free

fermionic system if

p(9)U(s)p(g) = U(s)™9 (19.18) [eq:symn-dynamics
for some homomorphism 7 : G — Zs. Here U(s) = exp|—isH/h| is the one-parameter time
eq:s — amics
evolution operator. If (u?a.us) holds then we declare g with 7(g) = —1 to be time-reversing
symmetries.

1. The above definition looks like a repeat of our previous definition of a symmetry
sec: n

of the dynamics from Section §9. e data (M,Q,Hr,G,p,a,p, H) determine

p(9)Hp(g)~t. With our logical setup here, a symmetry of the fermionic system is a

symmetry of the dynamics if there is some homomorphism x : G — Zs so that

p(9)Hp(g)™" = x(9)H (19.19)

Then because general quantum mechanics requires ¢7x = 1, we will declare g to
be time-orientation preserving or reversing according to 7(g) := ¢(g9)x(g). This
logic is reversed from our standard approach where we consider ¢ determined by
an a priori given homomorphism G — Autqem (PH) together with an a priori given
homomorphism 7 determined by an a prior: action on spacetime.

2. There will be physical situations, e.g. a single electron moving in a crystal where
there is an a priori notion of what time-reversing symmetries should be and how
they should act on fermion fields.

3. Let us see what the above definition implies for the transformatioC% of the oscillators

under Ad. Choose an ON basis for (M, Q) satistying (e 3). Then, in terms of
operators on Hp: &Maybe S, ;
p(9)pr(e)p(9)™ = Smjpr(em) (19.20) heq:Rot-Ferm-Osc
m

Or, equivalently:
alg) e = Smjem (19.21)
m

SO

PV Hplo) ™ = ho + 6(9); S (SAST)mnpr (emen)
e (19.22)

= x(9)H

This shows that
1. If x(g) = —1 for any g € G then hy = 0.

2. The matrix A must satisfy

S(9)45(9)"” = 7(g)A (19.23)
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for all g € G, where 7(g) is either prescribed, or deduced from 7 = ¢ - x, depending
on what logical viewpoint we are taking.

cgh
The condition (E@‘%B) can be expressed more invariantly: Given o : G — O(M, Q)
there is an induced action Ad, ) on o(M, @), and we are requiring that

A= 1(g)A. (19.24)

19.4 The free fermion Dyson problem and the Altland-Zirnbauer classification

There is a natural analog of the Dyson problem suggested by the symmetries of free
fermionic systems:

Given a finite dimensional fermionic system (M,Q,Hr,pr) and a Zy-graded group
(G, @) acting as a symmetry on the FDFS via (o, p), what is the ensemble of free Hamil-
tonians for the FDFS such that (G, ¢) is a symmetry of the dynamics?

Note welll We have changed the Dyson problem for the ¢-rep Hr of G in a crucial
way by restricting the ensemble to free fermion Hamiltonians.

Our analysis above which led to (e -23) above shows that the answer, at one level, is

immediate from (19.23): We have the subspace in o(Q;R) satisfying (
e

A_). Somewhat
surprisingly, this answer depends only on « and 7 as is evident from (19.24). For a given
7 there can be more than one choice for ¢ and y.

However, the answer can be organized in a very nice way as noticed by Altland and
Zirnbauer [4]7 Such froe fermion ensembles can be identified with the tangent space at the
origin of classical Cartan symmetric spaces. This result was proved more formally in a
subsequent paper of Heinzner, Huckleberry, and Zirnbauer E{lﬂ In the next section we

explain the main idea.

19.4.1 Classification by compact classical symmetric spaces

Let us consider two subspaces of o(2n;R):

£ = {A]Ady ) (A) = A} (19.25)
p = {A]Ady ) (A) = 7(9) A} (19.26)

p is of course the ensemble we want to understand. If 7 = 1 it is identical to £ but in
general, when 7 # 1 it is not a Lie subalgebra of o(2n;R) because the Lie bracket of two
elements in p is in €. This motivates us to define a Lie algebra structure on

g=tdp (19.27)

by
[k1 @ p1, k2 @ pa] = ([k1, k2] + [p1,p2]) ® ([p1, k2] + [k1,Dp2]) (19.28)
One can check this satisfies the Jacobi relation.

Note that we have an automorphism of the Lie algebra which is +1 on € and —1 on p,
so this is a Cartan decomposition.
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Both £ and g are classical Lie algebras: This means that they are Lie subalgebras of
matrix Lie algebras over R, C, H preserving a bilinear or sesquilinear form.

To prove this for €2 Note that we have a representation of G on o(M; Q) = o(2n;R).
If G is compact this representation must decompose into irreducible representations. The
group algebra is therefore a direct sum of al%ebras of the form nK(m) where K = R, C, H.

. leq : Wey ety I Thm—2 . . .

By the Weyl duality theorem (B:45),(R.46) the commutant is mK(n). Since £ is, by def-
inition, the commutant, when restricted to each irreducible representation exp[t] must

generate a matrix algebra over R, C, H. Therefore, £ is a classical Lie algebra.
A similar argument works to show that g is a classical Lie algebra. There is a Lie
algebra homomorphism

g — o(M,Q) ®o(M,Q) (19.29)
given by

k®op—(k+p @(k—p) (19.30)

Now, we can characterize g as the commutant of a representation of G on M & M given
by &Should a(g) be
0 denoted S(g)7 &

g (@9 (g) =1 (19.31)

0 ag)

(9) O

We embed g into o(M) & o(M). The matrices in the commutant of the form = ® 15 is
isomorphic to £ and the matrices in the commutant of the image of G which are of the

g (ao a(9)> 7(g) = —1 (19.32)

form z ® o2 is isomorphic to p. Hence € and g are both classical real Lie algebras. &explain why we
don’t need to worr;
Next, note that the Killing form of o(M; Q) restricts to a Killing form on £ and on g. Sbout other Kinds of
matrices in the

It is therefore negative definite. I—%gnce the real Lie algebras ¢ and g are of compact type.  commutant. &
This proves the theorem of FZS]
Theorem: The ensemble p of free fermion Hamiltonians in Cliff (M, Q)®C compatible

with (a, 7) is the tangent space at the identity of a classical compact symmetric space G/ K.
|app : SymmetricSpaces

We have collected a few definitions and facts about symmetric spaces in Appendix IC.

19.4.2 Examples of AZ classes

1. Let G = Spin(2). Choose an ON basis {e; } for M and consider G to be the subgroup

generated by %612 + -+ l?ﬁﬁsldg’i' Then take p = pr and a = Ad. If we choose

eq: ¥

the complex structure (IIR. en the group commutes with the Fermion number
operator F and the action of

1 1
Ad <eXp[9(§€12 + -+ 56271—1,271)]) (19.33)
takes
a; — 62i9ai a; — 67219@' (19.34)
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Since G = Spin(2) is connected we must take ¢ = y = 7 = 1. Therefore the free
fermion Hamiltonians which respect this symmetry have the form

n
h=hy+ Z hijdiaj (19.35)
i =1

where h;; is an Hermitian matrix. We easily compute that in this example £ = u(n)
and p = u(n) (as a vector space) so that g =€® p = u(n) ® u(n) (as a Lie algebra),
where £ is the diagonal and p is the antidiagonal. In this case

G/K = (U(n) x U(n))/U(n) (19.36)

. Let G = Zy = {1, T} and choose 7(T) = —1 and let (T be

e 0 (19.37)
0 —1n—¢
in an ON basis for (M, Q). Then £ = o(f) @ o(N — ¥) is the Lie subalgebra of N x N
of matrices of the form
A0 (19.38)
0D
and p is the subspace of matrices of the form
0 B
(0.9 o
so the symmetric space is
G/K =0O(N)/O(¢) x O(N —?). (19.40)

Explicitly, this class of Hamiltonians is:
i ¢ N
h=> > Bjiejer (19.41)
j=1£+1
where Bjj, is a real £ x (N — /) matrix.

. Let G = Pin®(1). This has two components, consisting of ( € U(1) and (T with
T? =1 and 7((T) = —1. We suppose N = 2n and for ¢ = €l we let

p(¢) = pr <6Xp[9(%€12 +oet %6271—1,271)]) (19.42)

:alphbarT
and we take p(T') so that a(T') has the form (el§.3a7i with ¢ = 2k. Then ¢ = u(k) @
u(n — k) and p is the tangent space to

G/K = U(n)/(U(k) x U(n — k)). (19.43)
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4. Returning to G = Zs suppose a(T) = Iy where Iy is given in (%)Canﬂﬁfrﬁ(f) = —1.
Then € = u(n). Writing Iy = 1,, ® € we see that p consists of matrices of the form
b® (:L‘lal + x203) where b is real antisymmetric and x1, xo are real. Thus, using the
oscillators suited to Iy the Hamiltonian is of the form

1 n
h = 5 Z (ﬁij(iidj + ﬁz‘jajai) (19.44)
ij=1
where 3;; is complex antisymmetric. In this case G/K = SO(2n)/U(n).

It is interesting to compare the AZ ensembles with the ensembles of Hamiltonians one
would meet in Dyson’s 3-fold way or in the 10-fold way in the above examples. In each
example there are two relevant Hilbert spaces to consider, namely Hpy and Hp.

In example 1 above, for example, Hpy has isotypical decomposition:

Hpn =C"@ Vo @ C"® Vo (19.45)

where V;, denotes the one-dimensional irrep of Spin(2) of charge ¢ (normalized to be inte-
gral). The commutant for these irreps is D = C. The ensemble of commuting Hamiltonians
is therefore Herm,, (C) x Herm,,(C). Applied to the Fock space the isotypical decomposition
is
Hp = ol CH) @ Vo, (19.46)
and so Dyson’s ensemble is [ ], Herm(z)(C).
In example 2 above we have a group with more than one component and hence, in order
even to begin discussing the 3-fold or the 10-fold way classification of ensembles on Hpy

or Hp we need to choose ¢ and x. There are two possibilities: (¢(T) = +1,x(T) = —1)
and (¢(T) = —1,x(T) = +1). We discuss each of these in turn.

If (¢(T) = +1,x(T) = —1) then a (¢, x)-rep must be a graded rep of Zy and there is
one irrep, which is up to isomorphism V = C!I' with p(T) = o'. Now, in order to have
a “gapped Hamiltonian” with 0 not in the spectrum we must have 2¢ = N. Then the

isotypical decomposition of the Dirac-Nambu space is
Hpy 2RV (19.47)

The supercommutant of V is generated over C by 1 and e and is isomorphic to C/;.
Therefore, the supercommutant in Hpy is Mat,(C/l;). Typical elements can be written as
A +1iBe where A, B are ¢ x ¢ complex matrices (and the factor of i in front of B is chosen
for convenience). When we impose the Hermiticity condition we see that A and B are
Hermitian and the ensemble is therefore Hermy(C) x Herm,(C).

Now let us consider the possibility (¢(T) = —1,x(T) = +1). In this case Zo-graded

group My has two irreducible ¢-representations, namely Vi = C with p(T) acting by
2z — +Z. Here the commutant is Dy, = R for both irreps.
Now, for simplicity take ¢ = 2k and N = 2n. Given the action «(T) on the e; we
extend it to A using ¢ and get:
a(T) :aj <> a; j=1...k (19.48)
aj <> —a; j=k+1,...,n
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Now the Dirac-Nambu Hilbert space has isotypical decomposition:
Hpy 2R @ (VioV )eC e (V,oV.) (19.49)

and hence the Dyson ensemble is £ = Herm,,(R) x Herm,,(R). Now consider the ensemble

for Hp. When we make «(7T) : a <> —a compatible with pp we find a surprise: There is no o
|sec:PhiTwistedExts

consistent action! Rather, in harmony with the general principles described in Section &

(see especially (e. [ uomly the ¢-twisted extension M, acts on H p, which now must carry

a quaternionic structure, and the ensemble of commuting Hamiltonians is again different.  arinisu THiS! &
One lesson we learn is that the different choices of (¢, x) for fixed 7 lead to different

ensembles, so when discussing a “10-fold way” one must be very careful about the precise

physical question under consideration!

Exercise
Analyze the Dyson ensembles for both Hpy and H  for the remaining examples above.

19.4.3 Another 10-fold way

Remarks

1. Cartan classified the compact symmetric spaces. They are of the form G/K where G
and K are Lie groups. There are some exceptional cases and then there are several
infinite series analogous to the infinite series A, B, C, D of simple Lie algebras. These
can be naturally organized into a series of 10 distinct classical symmetric spaces.
Thus, the Altland-Zirnbauer argument provides a 10-fold classification of ensembles
of free fermionic Hamiltonians. This gives yet another 10-fold way! We will relate it
to the 10 Morita equivalence classes of Clifford algebras (and thereby implicitly to
the 10 real super-division algebras) below. That relation will involve K-theory.

. L. . . |eg:Clasig@afidpaCartSpace-10 L.
2. Using the description of the 10 classes given in (IC.7) - (IC.I7) one can give a description
ile

of the 10 AZ classes along the following lines. Recalling (IS we can, with a
suitable choice of complex structure as basepoint write the free fermion hamiltonian
as 1

h = Z Wijaiaj + 5 Z (Zijdiaj + Zl-jajai) (19.50)

iJ 0J
where W;; is hermitian and Z;; is a complex antisymmetric matrix. Then the 10
. Lo irnbauer

cases correspond to various restrictions on W;; and Z;;. See Table 1 of :ZM . &Should probably

reproduce that table
here and explain the

19.5 Realizations in Nature and in Number Theory entries in detail. &

1. For realizations of the various AZ classes in physical systems see the descriptions in
Zirnbauerl,Zirnbauer?2

43, 44].

2. For realizations of the various classes in Number Theory see the review by Conrey
O e

&Find a more up to
date review. &
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20. Symmetric Spaces and Classifying Spaces

20.1 The Bott song and the 10 classical Cartan symmetric spaces

Now we will give an elegant description of how the 10 classical symmetric spaces arise

directly from the representations of Clifford algebras. This follows a treatment by Milnor
ilnorMorse [AtiyahSingerSkew

. Then, thanks to a paper of Atiyah and Singer [9] we get a connection to the classifying

spaces of K-theory. Milnor’stconstruction was discussed in the context of topological
one

insulators by Stone et. al. in .

We begin by considering the complex Clifford algebra Cfs; and an irreducible repre-

. . . . d—1|9d—1 .
sentation, which, as a graded representation is S, = C? 27" However, we will here

consider the Clifford algebra as an ungraded algebra and hence we forget the grading on
the representations. Give it the standard Hermitian structure. We can then take the rep-
resentation of the generators J; = p(e;) so that J? =1, JZT = J; and hence J; are unitary.
Then we define a sequence of groups

GoDGlDGQD"' (20.1)
We take Go = U(2r) where we have denoted 2¢ = 2r and we define
Gr={9€GolgJs=Jsg s=1,...,k} (20.2)

We claim that G; =2 U(r) x U(r). One way to see this is to note that Gy, is the commutant
of the image of Cl;, in End(S.). As an ungraded algebra C/¢; has two irreps and so we can
write S, as a sum of ungraded irreps of C¢; and it is easy to show (see below) that they

occur as:
S. 2 rNt @ rNy (20.3)

and therefore the algebra p(C/;) has Wedderburn type
rC & rC (20.4)
so the commutant must have Wedderburn type
C(r) @ C(r) (20.5)
and the intersection with Aut(S,), which gives precisely G, must be
G =U(r)xU(r) (20.6)

As a check on this reasoning note that we could represent

pler) = Ji = (10 10> (20.7)

and hence the matrices which commute with it are of the form

AB
(42 s
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But such matrices are unitary iff (A+ B) are unitary. So the group of such unitary matrices
is isomorphic to U(r) x U(r), as claimed. The more abstract argument will be useful in
the real case below.

Next for Go, Cly = M>5(C), so p(Cly) has Wedderburn type rC(2) and hence the
commutant is 2C(r) so the group Gy is isomorphic to U(r). As r is a power of 2 we clearly
have periodicity so that our sequence of groups is isomorphic to

UEH SUFE) xUFE) SUF) D - (20.9)

The successive quotients give the two kinds of symmetric spaces U(2r)/(U(r) x U(r)) and
(U(r) x U(r))/U(r).

Now let us move on to the real Clifford algebra C/¢_g;. We choose a real graded
irreducible representation, End(R™ IN ), with 2N = 2% Tt is convenient to define an in-
teger r by 2N = 16r. Again, we will regard the Clifford algebras as ungraded and the
representation S = RV, Denote the representations of the generators J; = p(e;), so of
course

JoJy + JiJs = =264, (20.10)

We can give S a Euclidean metric so that the representation of Pin™(8d) is orthogonal.
Therefore, JZT = —J;, so JI" = —J;, and hence J; € o(2N). However, since JZ = —1 we
have J!I" = J 1 and hence we also have J; € O(2N).

(2
Now we define a sequence of groups

GoDGI DG D - (20.11)
These are defined by taking Gy := O(2N) and for k£ > 0 defining
G ={g € GolgJs = Jsg s=1,...,k} (20.12)
Now, we claim that the series of groups is isomorphic to

O(16r) D U(8r) D Sp(4r) D Sp(2r) x Sp(2r) D Sp(2r) D

(20.13)
DU@2r)D>02r)>0(r)xO0(r)D0(r) D ---
We will show that this follows easily from the basic Bott genetic code:
RCHHeHHCRR®RR,--- (20.14)

The argument proceeds as follows. Note that G is in the commutant of the image of
the Clifford algebra C'¢_; C C¢_gq. Now, we decompose S in terms of ungraded irreps of
C/l_y. For k # 3mod4 there is a unique irrep Ng up to isomorphism, and for £ = 3mod4
there are two N. Therefore, S = N* for k # 3mod4 and S = (N;)®* @ (N, )®*
for k = 3mod4. The number of summands is the same N];t for £ = 3mod4 because the
decomposition is effected by the projection operator using the volume form Py = %(1 +twyi)
and Trg(wg) = 0 for all k. Now, the image of the Clifford algebra in End(S) (as an
ungraded algebra) will have be isomorphic to s;K(t) for & # 3mod4 and spK(t) ® spK(tx)

— 240 -

&Don’t get
Grassmannians
Gry,,m with n # m.



for K = 3mod4. Therefore, by the Weyl theorem the commutant Z(p(Cl_j)) will be
isomorphic to txK(s) for k # 3mod4 and t;K(sx) @ txK(sg) for & = 3mod4. When we
intersect Z(p(C?_y)) with Aut(S) = O(16r) we get the group Gj. In this way we determine
the following table

k | Bott clock p(Cl_y) Z(p(Cl_y)) Gy

0 R 16rR R(167) O(16r)

1 C 8rC C(8r) U(8r)

2 H 4rH HOPP (47) Sp(4r)

3 Ho H 2rH @ 2rH | HOPP(2r) @ HOPP(2r) | Sp(2r) x Sp(2r)
4 H 2rH(2) HPP(2r) Sp(2r)

5 C 2rC(4) 4C(2r) U(2r)

6 R 2rR(8) 8R(2r) O(2r)

7 ReR rR(8) & rR(8) 8R(r) @ 8R(r) O(r) x O(r)

8 R rR(16) 16R(r) O(r)

We should stress that the entries for p(Cl_y), Z(p(C?_y)), and G}, just give the iso-
morphism type. Of course, r is some power of 2 and for large d we can repeat the periodic
sequence down many steps.

The series of homogeneous spaces Gy /Gy41 for k > 0 provide examples of the Cartan
symmetric spaces (for ranks which are a power of two!). Note that the tangent space at
1 - Gky1 has an elegant description. First define gg := T1Gy = 0o(2N). Now for k > 0
define:

gk = TIGk:{aeo(QN)|aJ5 :Jsa 7k}

Observe that, for & > 0, the map 6i(a) = JkHaJk__:l acts as an involution on g; and that

s=1,... (20.15)

the eigenspace with 0 = +1 is just gx11. Therefore we can identify

pr:=1G,.,Gr/Gry1 ={a € o(2N)|aJs = Jsa  s=1,....k & aJyy1=—Jpp1a}
(20.16)
so that
Ok = Ok+1 D Pk (20.17)

20.2 Cartan embedding of the symmetric spaces

The involution 6 described above extends to a global involution 73 : G — Gy defined by
conjugation with Jyq:

7%(9) = Jer19d (20.18)
Of course, the fixed subgroup of 7 in G, is G+1 so the Cartan symmetric space is G /G-
Moreover, the Cartan embedding of this symmetric space is just

Or ={g € Glmi(g) =g~ '} C G, C O(2N) k> 0.
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1

Let us unpack this definition: The condition 74(g) = g~ is equivalent to the condition

(Jrt19)? = —1. Therefore, writing § = Jx,1g we can also write
Or={3€0@N)|*=-1  {§,J.}=0 s=1,...,k} (20.20)

The map g — ¢ = Jx119 is a simple diffeomorphism so O Gr./Gr+1, and O is also
embedded in O(2N). This manifestation of the homogeneous space will be more convenient
to work with. Note that:

e C O COp C - (20.21)

When we wish to emphasize the dependence on N we will write O, (N).

Since g = %1 is in O we have £Jp1 € Ok, as is immediately verified from the
definition. (Note that £1 are not elements of @k) Let us compute the tangent space to
Oy at Jpr1. A path through Ji.1 must be of the form Ji, €' where a € TiO) = py.
Therefore there is an isomorphism T10;, < T, H(’N)k given simply by left-multiplication
by Jrr1. Now a € TiOy, iff a'" = —a, [a,Js) = 0 for s = 1,...,k and {a, Jp11} = 0 and
therefore

pr =Ty, ,Or ={aco@2N)[{a, J;} =0, s=1,...,k+1} (20.22)

20.3 Application: Uniform realization of the Altland-Zirnbauer classes

The characterization (B?f%k is nicely suited to a realization of 8 of the 10 AZ classes
of free fermion Hamiltonians. We take a FDFS based on M = R? with @ the Euclidean
metric. We take as our symmetry group G = Pin~(k + 1) with Clifford generators T;.
We choose the nontrivial option for 7 on G, thus 7(7;) = —1 for i = 1,...,k + 1. For
a we choose the embedding of G into Oleg2N) using o(T;) = Ad(e;) (not Ad) acting on

. . Def-k-ferjenomef-p-fermion .
M C Cl_gq. Comparing the definitions (19.25) and (19.26) we find that we have precisely

(20.23)

thus neatly exhibiting examples of 8 of the AZ 10 classes.

The remaining two AZ classes follow from completely analogous manipulations for the
series U(2r) DU(r) x U(r) D U(r) D ---.

Remarks:

1. Note that our fermionic oscillators are a basis for the spin representation of Spin(8d).
So their Hilbert space will be a representation of the much larger group Spin(2N) of
dimension 2V = 22% = 227"

2. This example can be extended to compute the 3- and 10-fold classes on Hpy and Hp.
Again there are two options (¢(T;) = +1, x(T;) = —1) and (¢(T;) = -1, x(T;) = +1).
Representing the J; by real matrices on H g we can take p = pp restricted to C¢_j_1.
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20.4 Relation to Morse theory and loop spaces

The homogeneous spaces O, have a further beautiful significance when we bring in some
ideas from Morse theory.
We consider the quantum mechanics of a particle moving on these manifolds using the

action

S[q] = — / dtTr(q_I%)2 (20.24)

where ¢(t) is a path in the orthogonal group or one of the Oy.

We begin with quantum mechanics on SO(2N). We choose boundary conditions and
define Py to be the space of (continuously differentiable) paths ¢ : [0,1] — SO(2N) such
that ¢(0) = +1onx and ¢(1) = —1an. We are particularly interested in the minimal action
paths. Such paths will be geodesics in the left-right-invariant metric. The geodesics are
well known to be of the form ¢(t) = exp[rtA] with A € so(2N). We can always conjugate

A to the form
O a)g g 0 o (20.25)
—a; 0 —ay 0

where a; € R. This has action 272" a? and the boundary conditions imply that a; are
odd integers. Therefore the minimal action paths have a; = +1 and hence the space of
minimal action paths is precisely given by the conjugacy class of A € o(2N) with A% = —1.
Moreover, such paths have a very simple form:

q(t) = cosmt + Asinmt (20.26)
Now, notice a trivial but significant fact:

1. If g € O(2N) is an orthogonal matrix and g> = —1 then ¢ = —g and hence
g € 0(2N) is also in the Lie algebra.

2. If A € 0(2N) is in the Lie algebra and A% = —1 then A" = A~! and hence A € O(2N)
is also in the Lie group.

Therefore, the space of minimal action paths in Pgy is naturally identified with
Op = {g € O(2N)|¢?> = —1} C O(2N). (20.27)

Of course Oy is J; Oy where Oy is the Cartan embedding of Go/Gy = O(2N)/U(N).
Now let us consider the quantum mechanics of a particle on the orbit Oy, again with the
X leg:ParticleAction . . ~
action (20.24). We choose boundary conditions so that P; consists of maps ¢ : [0, 1] — Op
such that ¢(0) = J; and ¢(1) = —J;. The solutions to the equations of motion are of the
form 5 g(t) = Jyexp[rtA] where now A € pg implies {A, J;} = 0, which guarantees that

the path indeed remains in O. Again, the boundary conditions together with the minimal

action criterion implies that A2 = —1, so we can write:

g(t) = Jiexp[rtA] = Jy cosmt + (Jy A)sint = J; coswt + Asint (20.28)

54We use the fact that Oy is totally geodesic.
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Because A € py both A and A = J; A are both antisymmetric and square to —1: A2 =
—1 = A2, We can therefore consider A and A to be in O(2N) and hence the minimal
action paths on O are parametrized by A, or better by A, and hence the space of minimal
actions paths is naturally identified, via the mapping g(t) — A with O; C O(2N).

This stunningly beautiful pattern continues: We take

Pri={q:10.1] = Oulg(0) = Jr1 a(1) = —Jis1) (20.29)

Since Oy is totally geodesic the solutions to the equations of motion are of the form
Jpy1exp[rAt] with A € p. The minimal action paths have A2 = —1 and hence they
are of the form

g(t) = Jpyrexp[rtA] = Jpy1 cosmt + (Jpy1A) sinwt = Jpyy coswt + Asinat  (20.30)
But now A2 = —1 and A € @k+1, so we can identify the space of minimal action paths in

Pk with @k+1 .

The space of minimal action paths in the set Py of all smooth Eaths }LO 1] — Oy, from Jrt1
to —Ji+1 1s naturally identified with Ok+1 by equation (

Figure 16: The minimal length geodesics on SV from the north pole to the south pole are
parametrized by SN-1, Similarly, the geodesics in O from Ji41 to —Ji41 are parametrized by
Oy1.

Remark: A good analogy to keep in mind is the length of a path on the N-dimensional
sphere. If we consider the paths on SV from the north pole ) to the south pole & then
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the minimal length paths are great circles and are hence parametrized by their intersection
fig:DegenerateMorse

with the equator SNV~1. See Figure 6.

leg:ParticleAction

The great significance of this comes about through Morse theory. The action (20.24)
for the paths is a (degenerate) Morse function on Py, and the critical manifolds allow us to
describe the homotopy type of Pr. One considers a series of “approximations” to Py by
looking at paths with bounded action:

Pj = {q € Px|S[q] < s} (20.31)

As we have seen, the minimal action space is P;™" = O (N) C O(2N). Now — it turns out
— that the solutions of the equations of motion which are non-minimal have many unstable
modes. The number of unstable modes is the “Morse index.” The number of unstable
modes is linear in V. The reason this is important is that in homotopy theory the way P}
changes as s crosses a critical value is

Pt~ Py x DY/ ~ (20.32)

where ) is the number of unstable modes at the critical value s, and D? is a ball of
dimension A. This operation does not change the homotopy groups 7; for j < A. Therefore,
in this topological sense, Oy (N) gives a “good approximation” to Py(N).

On the other hand, the spaces Py, have the same homotopy type as the based loop spaces
Q. 0;. Indeed, choosing any standard path from —Jyy1 to Jipy1 we can use it to convert
any path in Py, to a loop 9,0, based, say, at Ji+1 by composition. Conversely, composing
the (inverse of) the standard path with any loop gives a path in Py. The importance of
relating these spaces to loop spaces is that )

ilporMorse

1. We get a nice proof of Bott periodicity %Tfi

2. We thereby make a connection to generalized cohomology theory through the notion
of a spectrum.

20.5 Relation to classifying spaces of K-theory

The fact that the Morse index for the space of paths Pr(N) (where the N-dependence
comes from the fact that the paths are in Op(N) C O(2N) ) grows linearly in N suggests
that it will be interesting to take the N — oo limit. We can do this as follows:

We make a real Hilbert space by taking a countable direct sum of copies of simple
modules of the real Clifford algebra Cf_;41). Specifically we define, for k& > 0, 55

2k {Nkﬂ ® 2(R) k#2(4) (%0.33)

R - _
(NljJrl ©® Nk+1) ® KQ(R) k= 2(4)

and for an integer n let 5 (n) be the sum of the first n representations Ny or (N;" 1 P
N, ,1)- Now define a subspace of the space of orthogonal operators Q(n) C O(H%). These
are operators which satisfy the following three conditions:

55Recall that N denote irreducible ungraded Clifford modules.
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1. They preserve separately H%(n) and H5(n)*.

2. They are just given by A = J; on Hk(n)*
3. On H%(n) they satisfy:

A?=—1
(20.34)
(A, gy =0 i=1,... k-1
We recognize that Q(n) = Op_1(N) where N and n are linearly related. (We define
O_1(N) := O(2N) so this holds for k& > 0.) Now, from this description it is easy to see

that there are embeddings
Qr(n) = Q(n+1) (20.35)
and we can take a suitable “n — oo limit” and norm closure to produce a set of operators

k |AtiyahSingerSkew . .
Q(c0) on H%. In [9] Afiyah and Singer show that this set of operators is closely related

to a set of Fredholm operators on Hlf%.

Define ¥ to be the set of all Fredholm operators on ’H%, and let §' C §° denote the
subspace of skew-adjoint Fredholm operators: A" = —A. (Formally, this is the Lie algebra
of O(H%). ) Now for k > 2 define F* C §* to be the subspace such that 56

TJ;, = —J,T i=1,...k—1 (20.36)

Now, the space of Fredholm operators has a standard topology using the operator
norm topology. Using this topology Atiyah and Singer prove

1. §* ~ Qp_1(00) = Op_s(c0), k > 1, where ~ denotes homotopy equivalence.
2. §F1 ~ QF*, and in fact, the homotopy equivalence is given by

A Jgqq cosmt + Asinmt 0<t<1 (20.37)

. . eq:MinActPath
which should of course be compared with (ZELBU ;

The relation to Fredholm operators implies a relation to K-theory because one way of
defining the real KO-theory groups of a topological space X is via the set of homotopy

classes:
KO™"X):=[X,8"] k>0 (20.38)

We summarize with a table

56For k = 3mod4 the subspace of §' satisfying (E&%aet has three connected components in the
norm topology. Two of these are co etrzapcl‘gi_l?ilgfbut one is topologically nontrivial and we take F* to be that
component. In fact for T" satisfying (Bli.BGi one can show that w17 is self-adjoint, where wip—1 = J1 -+ Jrk—1
is the volume form. The contractible components are those for which wy_17T is positive or negative - up to
a compact operator.
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sec:Bosons

k| 3*~Gr_2/Gr Cartan’s Label
0] (0/(Ox0))xzZ BDI

1 0] D

2 o/U DIII

3 U/Sp AIl

4 | (Sp/(Sp x Sp)) X Z CII

5 Sp C

6 Sp/U CI

7 U/oO Al

and the complex case is

k| &% ~ Gr_o/Gyr_1 | Cartan’s Label
0| (U/(UxXxU))xZ ATIT
1 U A

where §. is the space of Fredholm operators on a complex separable Hilbert space, and is
the classifying space for KY(X) and §! is the subspace of skew-adjoint Fredholm operators
and is the classifying space for K~1(X).
Remark: We indicate how this discussion of KO(X) is related to what we discussed
|subsec:KO-point

in Section §I3.5 above. We take X = pt. Then, KO°(pt) = Z. In terms of Fredholm
operators T the isomorphism is given by T +— Index(7") := dimker7 — dimcok?". Thus,

“invertible part of T' cancels out.” The idea that if T is lingertil}a{%e th,eI% it defines a trivial
subsec: ~poin

class was the essential idea in the definition in Section §I3.5. It 8 also worth noting the

Fredholm interpretation of KO~!(pt) = Zs in this context. For a skew-adjoint Fredholm

operator ker(T) = ker(T) so the usual notion of index is just zero. However we can form

the “mod-two index,” which is defined to be dimkerT'mod2. This is indeed continuous in

the norm topology and provides the required isomorphism.
Kok sk k>R >R sk ok ko >k skoskoskosk skoskoskok >k Sk sk sk sk Sk sk sk sk sk >R Skosk sk R ok sk sk sk Skok sk kokosk sk skok sk sk skokok skskokok kk
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21. Analog for free bosons

. . |sec: FerjsiomdSpiismics
Much of the material of Sections I8 and 19 have direct analogs for bosons. There are some
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interesting and significant sign changes. Roughly speaking, orthogonal and symplectic
groups are exchanged. The physics is of course radically different.
21.1 Symplectic vector spaces and the Heisenberg algebra

We begin with a mode space M =2 R?" now equipped with a nondegenerate anti-symmetric
form w, i.e. a symplectic form. The automorphism group Aut(M,w) will be isomorphic to
a real symplectic group. By definition a Darbouz basis is an ordered basis {v;} for M in

01
J = (_1 0) (21.1)

It is convention to write a basis of this form as Q;, P’ such that
w(P, P7) =0 (21.2)
W(QMP]) = _w(PjaQZ) = 51]

which the matrix w(v;, v;) is given by

Then
Aut(M,w) = Sp(2n;R) := {g € GL(2n,R)|gJ¢"" = J} (21.3)

The conditions on the block-diagonal form
AB
= 214
g <C D) (21.4)

A"D —C"B =1
AlTC = (AT (21.5)
BtrD —_ (BtrD)tr

are now

or equivalently

AD" —CD" =1
AB"™ = (AB™)"" (21.6
Dtr _ ( Dtr) T

~—

kXK above.

Note the sign changes from
The analog of the real Clifford algebra is the Poisson algebra Poiss(M,w) of real-
algebraic functions on M. It is infinite-dimensional and generated by functions p;, ¢ which
can be thought of as a dual basis: p;(P7) = (53, etc. If we regard w as a 2-form on M, i.e.
w € A2M* then we have w = Y1 | dp' A dg;
Quantization of the symplectic manifold (M, w) means producing a complex Hilbert
space Hp °7 and a s-representation pr of a complex *-algebra A. In this case A which

5TThe subscript F' is again for Fock
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is a deformation of the Poisson algebra Poiss(M,w) @ C. We can identify A with the
Heisenberg algebra
A = Heis(M,w) := (T(M*)®C)/T (21.7)

where 7 is the ideal generated by vv' — v'v — v/—1w(v,v’) - 1. In particular (dropping the
PF):

[d',a’] =0

[pi,pj] =0 (21.8)

lq" ;] = V—1d;;

& Need several
comments on h. &

There are two standard ways to produce irreducible *-representations of A.

21.2 Bargmann representation

The first way, which is most directly analogous to the method we used for fermions: We
complexify V := M ® C and extend w C-linearly. Then we choose a compatible complex
structure I on V:

w(lvy, Tve) = w(vy,v2) (21.9)
&Need to explain
I7r - . . . positivity property
Now we decompose V. =W @ W into I = i and I = —i eigenspaces and define a w(1v,v)>0. &

representation of the Heisenberg algebra on
Hp = Sym(W) (21.10)

which we can interpret as algebraic holomorphic functions on W. Of course, unlike the a&Need to define
fermionic case, this is an infinite-dimensional vector space. Issues of functional analysis iii'ffi&if"“f
now enter. For example, pr(q‘) and pr(p;) will be unbounded self-adjoint operators and
can only have a dense domain of definition. These kinds of subtleties are in general not
important for many standard physical considerations.

Let us choose a Darboux basis as above and take I = J itself, so that I : ¢ — p; and

I:p; = —¢'. Then if we define

@ = (i — i)
| *? | (21.11)

a' = E(pi +iq")

¢ = —=(a; )
*? (21.12)

pi = —=(a; +a’)

we have I : a; — —/—1a; and I : @' — ++/—1a’. A small computation gives the standard
CCR’s for bosonic oscillators:

lai, a5) = [a',@’] = 0

o) 37 (2113
(3] - 1
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A nice way to represent this is to consider Hp = Hol(C"™) holomorphic functions

P(z!,...,2") which are L? with respect to the inner product
dzi NdZ s, o
(1]he) = /H ﬁe 2 EE ) (2o (2 (21.14)
i

Then @’ is represented by multiplication by z* and a; is represented by 8‘;. The normalized

vacuum is ¢ = 1 and with this Hilbert space product @’ = (a;)'.
kokoskok
1. discuss operator kernels etc.
2. relation to Kéhler quantization. Interpret ¢ as holomorphic sections of a trivialized

hermitian line bundle.
sskokok

21.3 Real polarization

The second way is to form the finite-dimensional Heisenberg group. This is a central
extension of the additive group M (considered as an abelian group under vector addition)

1 —-U(1) - Heis(M,w) = M =0 (21.15)

The cocycle is '
c(v1,v9) = e~ 2901 02) (21.16)

and hence the group law could be written as:

i

(21,v1) - (22,09) := (2122675”(“’”2),1)1 + v2) (21.17)

This formula will strike some readers as strange. Perhaps a more congenial way to write
it is to represent group elements at ze”, with group multiplication

(21€"1) - (22€"2) 1= zget T2 (21.18)

23 = 2y zpe3(V102), (21.19)

The Heisenberg group is a finite-dimensional group. For example if M = R? it is isomorphic
to the group of 3 x 3 real upper-triangular matrices.

By the Stone-von Neumann theorem Heis(M,w) has a unique irreducible unitary rep-
resentation - up to isomorphism - where U(1) acts as scalars.

One way to exhibit the representation is to choose a Lagrangian decomposition of
M = Q@ P, where Q,P are maximal Lagrangian subspaces and take Hp = L?(Q, du)
where dp is the Fuclidean measure @. Now Q and P are represented by multiplication
and translation operators, respectively:

[pp (eio‘jqj) 1/)] (q) = €97 y(q)

[PF (ei,@jpj> ¢] (@) = ¥(q + B) (21.20)
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Dropping the pr’s one can check that the Heisenberg group relations are indeed satisfied:

expi (¢’ + B7p;) expi (v;¢° + 6p;) = e~ 29(v102) expi (o +795)@” + (B7 + " )pj)

(21.21)
In this representation p; acts as a differential operator
0
pr(pr) = —V =T (21.22

while pr(¢*) is a multiplication operator. (We will henceforth drop the tedious pp.) These
are unbounded operators with dense domains. The unitary groups they generate are defined
on the entire Hilbert space.

In this representation a; is the differential operator

A I
= (L 4 21.23
¢ \/§<an q> ( )

so that the unique vacuum vector is proportional to ¥y = e~2 29" This leads immediately
to the isomorphism with the Bargmann representation.

21.4 Metaplectic group as the analog of the Spin group

:def-SP
From (B i .Bei we get that the Lie algebra sp(2n; k) of the symplectic group is
sp(2n; k) = {m € Ma,(k)|m'"J + Jm = 0} (21.24)

Note well that m € sp(2n; k) iff mJ is a symmetric matrix.

As in the fermionic case we can write Lie algebra elements in the form

m = (a %) € Maty,(C) (21.25)
v -
where now 3,~ are symmetric matrices over . Note that m is antihermitian iff of = —«

and ' = —5. Such antihermitian matrices exponentiate to elements of USp(2n) = U(2n)N
Sp(2n;C) =2 O(2n;R).
X egiliegeni-bos X .
For matrices (b [:25) with 11t € sp(2n; C) define a corresponding element of the Heisen-
berg algebra:

n

- _ 1 T, __
m = .Zl (ajiajai + 5 + §5ijaiaj>
" (21.26)

1 « . B o
)=

Now by an argument completely parallel to the fermionic case we use the identity

[AB,CD] = A[B,C|D + [A,C|BD + CA|B, D] + C[A, D|B (21.27)
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to compute

P

— 1
[m1, ma] = [m1, ma] — §T1"(51’Y2 — Bam)1 (21.28) ‘eq:centrl-bos

and again the cocycle is trivializable.
An important special case is sp(2;R) = sl(2;R). The isomorphism is explicitly seen

i i i
e := §p2 h:= §(qp + pq) f= §q2 (21.29)

[h,e] = —2e e, fl=nh [h, f] = +2f (21.30)

by taking

and computing
A basis of sl(2;R) satisfying these relations is

01 —10 00
) (@) ()

(Note the signs carefully!)
Standard facts about the harmomic oscillator Hamiltonian now show that in the real

polarization with p = —id% acting on L?(R) the Lie algebra (e 99 Séxponemtiantes to a
double cover of Sp(2;R). Indeed, consider
i o 1
e+ f= 5(}92 +¢*) = i(aa + 5) (21.32)
This is well-known to have spectrum i(n+ %), n=20,1,2,.... Therefore, the one-parameter

subgroup exp[f(e + f)] has period 6 ~ 6 + 4w. Now compare with the representation above
generating SL(2;R). For this representation the one parameter group

explO(e + f)] = cos O + sin 0 (_01 (1)) (21.33)

has period 6 ~ 0 + 2.
Remark: For a very beautiful discussion of why the metaplectric group cannot be
a matrix group, and of the relation of the one parameter subgroup exp[f(e + f)] to the

. X egallectures
Fourier transform see Section 17 of .

Exercise

Write SU(1,1) generators in terms of quadratic expressions in a and af.

21.5 Bogoliubov transformations

We again consider the Bogoliubov transformations for bosonic oscillators, which have ex-
actly the same form as in the fermionic case:

b, =A:.a; +Ci:a.
i Jity Jr™ (21,34) ‘eq:BogT-Osc-l

b; = Bjidj + Djiaj 1<4,5<n

— 252 —



DsonicSqueezed‘

q:Sympl-Block-Cond-a

but now thls glife]glari acutomorphlsm of the CCR’s iff A, B, C, D satisfy (Iﬂ 5) (or equiva-
ocC ond

leg
lently) (B[ b) and hence g € Sp(2n; C).
S KA A AR KK

1. Bundle of Fock spaces over Sp(2n;R)/Gl(n;R) with A € GL(n;R) embedded as

A 0
() wan

Note that in contrast to the fermionic case this space is noncompact. Below we will relate

this to the fact that the bosonic Fock space is infinite-dimensional, in contrast with the
fermionic Fock space.

2. Holomorphic presentation Sp(2n;C)/LD.
ok KRR KK

21.6 Squeezed states and the action of the metaplectic group

Define the squeezed state |S) to be the state which in the Bargmann representation is
Ys(z) = exp[—%SijZiEj ]. At least formally we can take S;; to be any complex symmetric
matrix.

Then we can compute the Gaussian integral (again formally) to be

1
(S|IT) = ——— (21.36)
det(1 — ST)
A quick and dirty way to get the answer is to do the Gaussian integral
/ | e A2 N5 4 81yey—nmi T 55 (21.37)
—2mi

by pretending that z; and z; are independent variables. One first does the Gaussian integral
on the z; giving a determinant (det.S )_1/ 2 and we evaluate the action at the stationary point
= —S . Then one does the Gaussian integral over z; to get (det(S—1 —T))~1/2.
lee actlon of metaplectic group on |S):

1
318) = g-S 21.38
1) det(CS + D) | ) ( )
leq: GaussDecomp-1
where precisely the same reasoning as in (I¥.142) (now with R, S symmetric matrices)

leads to
g-S=(AS—-B)(CS—-D)! (21.39)

>k >k koK kokokokookookook skosk sk skoskoskoskoskoskoskoksk

1. Again choice of square-root leads to action of the metaplectic group. Give a defini-
tion of that group analogous to the definition (E%:—F%)d_?)ff—ﬁ%spm group above.

1. Infinite dimensions and Shale’s theorem.

2 ggheare_rit state (Bargmann) representation in fermionic case gives an easy derivation
of ( . above.

3. Compute “particle number creation”

4. Infinite dimensions and Shale’s theorem.
steskofe stk sk sk sksk stk s skok stk stk sk ok sk sk sk sk
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21.7 Induced representations
21.8 Free Hamiltonians

Up to a constant the general free boson Hamiltonian is an element of A of the form
h = hiv;v, (21.40)

This should beS * iPxi%riant and hence h” must be a real symmetric matrix. Now, notice
eq: -

that from (21 at we can therefore identify hJ with an element of the symplectic Lie

algebra. Thus,

The space of free boson Hamiltonians is naturally identified with sp(2n;R).

21.9 Analog of the AZ classification of free bosonic Hamiltonians

Now we define a symmetry of the bosonic dynamics to be a group G with p : G — End(Hp)
such that *#**#*
eq:gA X
An argument completely analogous to that for (h@‘%?r) applies. The symmetry opera-
tors act by

p(9)pr (vj)p ZSmJ 9)pr (vm) (21.41)

where now S(g) € Sp(2n;R). The result is that the symmetry condition is just that
A = hJ € sp(2n;R) is in the space

p={A € sp(2n;R)|S(9)AS(9)"" = x(9)A} (21.42)

For bosons the Hamiltonian will have an infinite spectrum. It is natural to assume
that the Hamiltonian is bounded below, in which case y = 1. From a purely mathematical
viewpoint one could certainly consider quadratic forms with Hamiltonian unbounded from
above or below. Consider, e.g., the upside down harmonic oscillator. Thus, one could still
contemplate systems with x % 1, although they are a bit unphysical.

Kook ok

1. Same argument applies and p is now tangent to a noncompact symmetric space.

2. Most interesting case is where p can be considered as subalgebra of a symplectic
Lie algebra.

3. Again use involutions to classify etc. etc.

(¥4

4. Bosons + fermions: Use osp etc.

kokokk

21.10 Physical Examples

21.10.1 Weakly interacting Bose gas

2
H= Z —a »ap + g Zaka apay (21.43)
p
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In the groundstate all particles have p = 0. To get low-lying excitations a, — 0, 0N + a,
in a BEC. In the low density approximation
2
H = Hy+ Z g—ma;r,ap + @ Z(a;aip +apa_p + 2apa;) (21.44)
p#0 p
ETC.
Reference: R.K. Pathria and P.D. Beale, Statistical Mechanics

21.10.2 Particle creation by gravitational fields
Ref: Birrell and Davies

21.10.3 Free bosonic fields on Riemann surfaces

Operator formalism. State associated to Riemann surface, point, and local coordinate.
Etc.

22. Reduced topological phases of a FDFS and twisted equivariant K-
theory of a point

22.1 Definition of G-equivariant K-theory of a point
22.2 Definition of twisted G-equivariant K-theory of a point

There is a general notion of a “twisting” of a generalized cohomology theory. This can be
defined in terms of some sophisticated topology (like using nontrivial bundles of spectra)
but in practice it often amounts to introducing some extra signs of phases. This is not
always the case: Degree shift in K-theory can be viewed as an example of twisting.

A simple example of a twisting of ordinary cohomology theory arises when one has a
double cover 7 : X — X. Then the “twisted cohomology” of X refers to using cocycles,
coboundaries, etc. on X that are odd under the deck transformation.

In the case of equivariant K-theory of a point, a “twisting of K¢ (pt)” is an isomorphism
class of a central extension of G. These are classified by H?(G,U(1)) and in general
twistings of K-theory are classified by certain cohomology groups.

Let 7 denote such a class of central extensions. A “twisted G-bundle over a point”
is a representation of a corresponding central extension G7. The 7T-twisted G-equiviariant
K-theory of a point is then just the G"-equivariant K-theory of a point:

K& (pt) = Ker (pt) (22.1)
22.3 Appliction to FDFS: Reduced topological phases
23. Groupoids

Category.
Group as category.
Definition of groupoid.
Examples:
Equivalence of groupoids.
Vector bundles on groupoids.
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24. Twisted equivariant K-theory of groupoids

Central extensions as line bundles over a groupoid
¢-twisted extensions
Twisting for the K-theory of a groupoid G.
(¢, x)-twisted bundle over a groupoid
twisted equivariant K-theory: Definition

25. Applications to topological band structure

Recall magnetic crystallographic group G(C'). SEE SECTION 4.1 ABOVE.
Bloch theory: Comment on Berry connection.
Insulators: £F.
*#* The canonical twisting of 7'/ /P.
Comparison with literature.

Localization: A means of exhibiting some new invariants.

A. Simple, Semisimple, and Central Algebras

A.1 Ungraded case

We review here some standard ma‘gerial fr%reralr 1g}lgebra which is not often covered in physics
courses. Some references include evertheless, the results are very powerful and
worth knowing. They are used at several points in the main text.

We consider associative algebras over a field «.

Definition An algebra A is central if its center Z(A) is precisely x.

In general the center of an algebra can be larger than k. For A = M, (k) the algebra

is indeed central. For the algebra B = M, (k) @ M,, () the center is the set of matrices
Z(B) = {zl, ® ylm|z,y € r} (A.1)

and is isomorphic to k & k, and hence B is not a central algebra.
In the literature one finds at least three different definitions of the notion of a simple
algebra:

1. A simple algebra is an algebra isomorphic to a matrix algebra over a division ring D

which contains k in its center.

2. A simple algebra is an algebra where the product is nonzero and there are no non-
trivial two-sided ideals.

3. A simple algebra is an algebra where the operator L(a) in the left regular represen-
tation are simple - i.e. diagonalizable.
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Definition 2 is usually adopted for mathematical purity and then the equivalence with
Definition 1 is regarded as a theorem, where it is known as the Wedderburn theorem. In a
proper mathematical exposition we would stop here and prove that these three definitions
are in fact equivalent.

An algebra is semi simple if it is isomorphic to a direct sum of simple algebras. If there
is more than one nontrivial summand then it is not simple because the simple summands
define nontrivial two-sided ideals.

Examples

1. Division algebras themselves are simple algebras. This is trivial by definition one. In
terms of definition two, suppose that I C D is a nonzero ideal in a division algebra.
If a € I is nonzero then on the one hand a has an inverse b (since D is a division
algebra) but then ab = 1 € I, since [ is an ideal. If an ideal contains 1 then then
I=0D.

2. An example of algebras which are not semisimple are the Grassmann algebras k[0, . .., 0,].
We refer to general elements as “superfields.” The Grassmann algebra is filtered by
the minimal number of #’s in the expansion of the “superfield.” Let F* be the sub-
space of linear combinations of elements with at least k 0’s, so F¥ D> FF+1 5 ... All
of the F* are two-sided graded ideals.

3. The group algebra L?(G) of a finite group is a semisimple algebra. This follows
by decomposing it as a direct sum of matrix algebras according to the Peter-Weyl
theorem.

A semisimple algebra has the important property that, if (p, V) is a representation and
W C V is a subrepresentation, then there is a complementary representation U so that
V =2 W @U as a representation. For example, if there is an inner product on V' which is
compatible with the algebra then U = W. This is what happens with group algebras.
Some important facts about simple algebras are:

Proposition : The center of A is a field which contains k.

Proof: It is obvious that the center of A is a commutative ring which contains k. The
nontrivial fact is that if @ € Z(A) is nonzero then it is invertible. To see why, consider
kerL(a). This is an ideal in A, for if L(a)b = 0 then ab = 0 and then if ¢ is any element
of A we have a(bc) = (ab)c = 0 and a(cb) = c(ab) = 0, because a is central. But if a is
nonzero then L(a)l = a # 0, so kerL(a) # A and therefore kerL(a) = 0. But then the
linear transformation L(a) must also be surjective. So L(a)b = 1 has a solution for some b
and therefore a is invertible. <

In a large number of places in these notes we use the following basic property of simple
algebras:
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Theorem: A simple algebra over a field x has a unique nonzero irreducible representation,
up to isomorphism, and all other representations are completely reducible and isomorphic
to direct sums of this unique irrep.

Proof: Let (p, V) be any representation of M, (D) for a division algebra D over a field x.
Then V is a vector space over x and

p: My(D) — End,(V) (A.2)
is a homomorphism of algebras. Consider

ker(p) := {M]p(M) = 0} (A.3)

Then one checks that ker(p) is a two-sided ideal in M, (D). Therefore, since M, (D) is
simple, either ker(p) = M,(D), in which case p = 0 or ker(p) = {0}. Since we assume
p # 0 it is has no kernel as a linear transformation of x vector spaces. Therefore P; = p(e;;)

is nonzero for all ¢. Consider p(1) = ). F;. Clearly, p(1) is a central projection operator
in the image of p. Let W = p(1)V, and W; = P;V. Then we claim that

W = aeW; (A.4)

clearly, if w € W then w = ), Pw so the W; span, but also P;P; = p(ejej;) = 0 for
i # j and hence the spaces W; are all linearly independent. Moreover, note that there are
canonical isomorphisms

p(eij) : Wj — Wi

(A.5)
pleji) : Wi = W
since p(e;j)p(eji) = P; and p(eji)p(ei;) = P;.
Now suppose D = k and choose an ordered basis w®, o =1,...,k for V; and define
wj(-a) = p(ejl)w(o‘). Then {w](-a)}a:17,,,7;€;j:17,,,7n is a basis for W. (For a nice block-diagonal

matrix realization of the representation use lexicographic ordering: First order by j then
by «.) Let Wj(a) denote the span of wj(-a). Note that we have

ple)w® = plei)pler)w® = 8™ (A.6)

Therefore, for any fixed o, W(® := @;‘Zle(a) is clearly isomorphic to the defining repre-
sentation k%" of M,,(x) and
Wak_ W@ (A7)

is then a direct sum of copies of the defining representation. Then V. =W @ (1 — p(1))V
is a sum of these defining representations and the zero representation.

For the general division algebra D over k we use a similar argument to show first that
the general representation is of the form D®¥ and then note that each V; must be an
isomorphic representation of D. <
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An algebra A over a field x is said to be central simple if it is simple and moreover
Z(A) = k, that is, it is also central. The matrix agebras M, (k) are central simple algebras
over k. The complex numbers C can be regarded as a two-dimensional simple algebra over
R. However, C is not a central simple algebra over R because its center is C, and contains
the ground field R as a proper subfield. Of course, C is a central simple algebra over C!

When A is central simple there are some special nice properties:

1. If B is simple and A is central simple then any two embeddings of B into A are
conjugate. In particular, an automorphism of A is an embedding of A into itself and
therefore must be inner. This is known as the Skolem-Noether theorem.

2. If B is simple and A is central simple then A®, B is simple, and Z(A®,, B) = Z(B).

3. If B is a simple subalgebra of a central simple algebra A then C' = Z(B), the central-
izer of B in A is itself simple, and Z(C') = B. If B is central simple then A = B®,C.

Example: ILLUSTRATE THESE CLAIMS WITH MATRIX ALGEBRAS. M, (C).
There is always a map

LR: A®, AP — End,(A) (A.8)

given by LR(a ® b) : x +— axb. One can show (WTheorem 4.3.1) that this map is an
isomorphism iff A is central simple over k.

Example 1: To see how this can fail when the algebra is not simple consider the
Grassmann algebra k[f1,...,60,]. In terms of the filtration F* described above note that
any map of the form z — axb with a,x,b in the Grassmann algebra must be nondecreasing
on the filtration. For example, we cannot produce linear transformations that take 6;, - - - 0;,
to superfields involving fewer than k 6’s.

Example 2: Consider the algebra A = M, (k) of n x n matrices over the field k. The
general linear transformation in End,(A) can be expressed relative to a basis of matrix
units e;; as

T: €ij — ZTkl,ijekl (Ag)
k,l
Then
T =" ThiLR(eri ® e51) (A.10)
i7j’k7l
Exercise

Consider the map p : M, (C) — M;(C) given by the determinant. Why can’t we use
this to define C as a left M,,(C) module?
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A.2 Generalization to superalgebras

Of course, a superalgebra over k is graded-central, or super-central if Z4(A) = k.

In ﬁLVVall defines a graded ideal J C A to be an ideal such that J = J° @ J!. Thus,
the even and odd parts of elements of the ideal are “independent.” Not all ideals will be
of this form. For example, in C/¢; the subalgebra z(1 + ¢), € C is an ungraded ideal, but
not a graded ideal. Then Wall defines a super-algebra to be (super-) simple if there are no
nontrivial two-sided graded ideals.

Deligne in ehms cad takes the definition:

Definition A super-algebra over k is central simple if, after extension of scalars to an
algebraic closure & it is isomorphic to a matrix super algebra End(V) or to End(V)®&D

where D is a superdivision algebra.

This is the definition one finds in Section 3.3 of Deligne’s Notes on Spinors. The super-
analog of the Wedderburn theorem shows the equivalence of these two definitions. It is
essentially proved in Wall’s paper for.

Example: The Clifford algebras over k = R, C are not always central simple in the
ungraded sense but are always central simple in the graded sense.

A.3 Morita equivalence

There is a very useful equivalence relation on (super)-algebras known as Morita equivalence.

The basic idea of Morita equivalence is that, to algebras A; and Ay are Morita equiv-
alent if their “representation theory is the same.” More technically, if we consider the
categories Mod” (A;) of left A;-modules then the categories are equivalent.

Example 1: A; = C and Ay = M,,(C) = C(n) are Morita equivalent ungraded algebras.
The general representation of A; is a sum of n copies of its irrep C. So the general left
Ai-module M is isomorphic to
M=Cq---aC (A.11)
%f—/
m  times
for some positive integer m. On the other hand, the general representation N of Ay can
similarly be written
N=zC'g---aC" (A.12)
m  times
again, for some positive integer m. Now, C" is a left As-module, but is also a right A;-
module. Then, if M is a general left A;-module we can form C" ® 4, M which is now a left
As-module. Conversely, given a left As-module N we can recover a left A;-module from

M = Homy, (C",N) (A.13)

Example 2: More generally, if A is a unital algebra then A and M, (A) are Morita
equivalent, by considerations similar to those above.
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In more general terms, a criterion for Morita equivalence is based on the notion of
bimodules. An Ay — Ay bimodule £ is a vector space which is simultaneously a left Ay
module and a right A3 module (so that the actions of A; and As therefore commute).

Now, given an A; — Ay bimodule £ we can define two functors:

F : Mod"(A;) — Mod*(Asy) (A.14)

G : ModZ(Ay) — ModL(A)) (A.15)
as follows: For M € Modl(A;) we define
F(M) := Homy, (£, M) (A.16)

Note that this is in fact a left Ao module. To see that suppose that a € Ay and T : £ — M
commutes with the left A;-action. Then we define (a - T')(p) := T'(pa) for p € €. Then we
compute

(a1 - (az - T))(p) = (az - T)(par)
= T(paiaz) (A.17)

= ((a1a2) - T)(p)
On the other hand, given a left As-module N we can define a left .4;-module by
G(N)=E&®u, N (A.18)

For Morita equivalence we would like F, G to define equivalences of categories so there
must be natural identifications of

M = E®u, Homy, (E, M) = (E®4, EY) @a, M (A.19)

N%HomAl(f;,g@AQN)%(5V®A15) ®Ra, N (A.20)

Therefore, for Morita equivalence £ must be invertible in the sense that there is an As — A
bimodule £¥ with
E®a, EV 2 A (A.21)

as A1 — Ay bimodules together with

EY @4, £ A (A.22)
as As — Ag bimodules. In fact we can recover one algebra from the other

Ay = Endy, () (A.23)

A1 2 End, (€) (A.24)

and within the algebra of k-linear transformations End(€) we have that A; and Ay are
each others commutant: A] = As.
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Moreover, £ determines £V by saying
EY = Homy, (€, A1) as left Ay module, (A.25)
EY = Homy, (€, As) as right A; module. (A.26)

Another useful characterization of Morita equivalent algebras is that there exists a full
idempotent % e € A; and a positive integer n so that

Ao = eM,(Ar)e. (A.27)

Example A; = M, (x) is Morita equivalent to Ay = M,, (k) by the bimodule £ of all
n X m matrices over k. Indeed, one easily checks that

E®a £ 2 A (A.28)
(Exercise: Explain why the dimensions match.) and

EV @u, €2 A (A.29)
Similarly, we can check the other identities above.

Remark: One reason Morita equivalence is important is that many aspects of representa-
tion theory are “the same.” In particular, one approach to K-theory emphasizes algebras.
Roughly speaking, Ky(.A) is defined to be the Grothendieck group or group completion of
the monoid of finite-dimensional projective left .A-modules. The K-theories of two Morita
equivalent algebras are isomorphic abelian groups.

The above discussion generalizes straightforwardly to superalgebras: Two superalge-
bras A; and Ay are said to be Morita equivalent if there is a matrix superalgebra End(V)
such that

A; 2 A,®End(V) (A.30)

or the other way around. This is useful because End(V') has essentially a unique rep-
resentation (actually V' and IIV) and hence the representation theory of A; and Ay are
essentially the same.

Tensor product induces a multiplication structure on Morita equivalence classes of
(super) algebras.

[A] - [B] :== [A®, B] (A.31)
If we take the algebra consisting of the ground field & itself then we have an identity element
[K] - [A] = [4] for all algebras over k. If A is central simple then there is an isomorphism

AR A°PP = End,(A) (A.32)

where on the RHS we mean the algebra of linear transformations of A as a x vector space.
Since A is assumed finite dimensional this is isomorphic to a matrix algebra over x and
hence Morita equivalent to x itself. Therefore the above product defines a group operation
and not just a monoid. If we speak of ordinary algebras then this group is known as the
Brauer group of x, and if we speak of superalgebras we get the graded Brauer group of k.

8If R is a ring then an idempotent e € R satisfies e? = e. It is a full idempotent if ReR = R.
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A.4 Wall’s theorem

al
The classification of real super-division algebras is based on Wall’s theorem H%[O% which we
quote here:

Theorem Is A is a central simple superalgbra over a field x then:

1. As ungraded algebras, either A or A° is central simple over s, but not both. We
call these cases € = +1 and € = —1, respectively.

2. By Wedderurn’s theorem we can associate a division algebra over x, denoted D by
A= M, (D) in case e = +1 or AY = M, (D) in case € = —1.

3. In case € = +1, there exists an element w € A", unique up to multiplication by
elements of x*, characterized by the condition that w? = a # 0 and the centralizer of A"
in A, as an ungraded algebra is k ® rkw and yw = —wy for all y € AL

4. In case € = —1, there exists an element w € A', unique up to multiplication by
elements of k*, characterized by the condition that w? = a # 0, the center of A as an
ungraded algebra is s + xw and A' = wA°.

5. The triple of invariants ¢ € {£1}, D, and a € k*/(k*)? characterize the central
simple superalgebra A up to Morita equivalence.

B. Summary of Lie algebra cohomology and central extensions

A central extension of a Lie algebra g by an abelian Lie algebra j is a Lie algebra g such
that we have an exact sequence of Lie algebras:

0—=3—>9g—g—0

with 3 mapping into the center of g. As a vector space (but not necessarily as a Lie algebra)
g =3 ® g so we can denote elements by (z, X) and the Lie bracket has the form

[(21, X1), (22, X2)] = (c(X1, X2), [X1, X2])

where ¢ : A%g — 3 is known as a two-cocycle on the Lie algebra. That is ¢(X,Y") is bilinear,
it satisfies
e(X,Y) = —e(Y, X) (B.1)

and the Jacobi relation requires
C([Xl,XQ], X3) + C([Xg, Xl], XQ) + C([XQ, Xg], Xl) =0. (BQ)

Two different cocycles can define isomorphic Lie algebras. If there is a linear function
f g — 3 such that

then the cocycle is said to be trivial, and the central extension is isomorphic to 3 & g as a
Lie algebra. Indeed,
¥ X = (f(X), X)
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defines an explicit Lie algebra homomorphism 1) : g — g splitting the sequence. (Exercise!)
More generally, if two cocycles differ by a cocycle of the form df then they define isomor-
phic Lie algebras. Thus, again, classifying isomorphism classes of central extensions is a
cohomology problem, in this case, Lie algebra cohomology of degree two.

Finally, Suppose that G is a Lie group central extension of a Lie group G. A cen-
tral extension of the Lie group, defined by the group cocycle cg(g1,92), also defines a
corresponding 2-cocycle on the Lie algebra by

1 d ca (et el2X2)
2mi dty |O |O g[ (et2X2,et1X1)]

cg(X1,Xo) = (B.4)

If ¢4 is nontrivial then cg will be. However, the converse statement is not correct. Indeed,
the Spin representation discussed above provides a counterexample.
B.1 Lie algebra cohomology more generally

To put this into a broader context consider the the vector spaces A¥g* of k-forms on the
Lie algebra g. We can assemble them into a complex by introducing a differential

d: AFg* — AFHig® (B.5)
defined by the equation
dw(X1, .. Xpp) = > (—D)Mw([X;, Xj],... X, XG0, (B.6)
1<j
eq:lacoh
The resulting differential (B(.Si may also be usefully expressed in terms of a Grassmann
algebra. To do this introduce a basis T, for g (so a = 1,...,dimg) and corresponding
structure constants
[Taa Tb] = fabcTc (B?)

and let 0 be the dual basis so 0%(T3) = §%. We can then identify A*g* with the Grassmann
algebra A*[0%] where 0 are of degree 1. We then define the differential to be:

1
do* = —3 Fpe20%6¢ (B.8)

Exercise
Check that this is a differential, that is, that d? = 0.

The cohomology of the complex (A*g*,d) is known as Lie algebra cohomology and
denoted H*(g). Note that it can be formulated purely algebraically. The differential defined

td hi
by (B( é)xorerelqu1valently, (eB(.Sialcso s%lmetlmes called the Chevalley-Filenberg differential.

Remark: In the theory of the topology of Lie groups there is a theorem, the Hopf-
Samelson theorem, which states that if G is compact and connected then

Hpgr(G) = H*(g) (B.9)
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The proof used both the connectedness and the compactness of G. To see that compactness
is essential consider the abelian Lie group R™ under addition. We have

R j=0

(B.10)
0 else

H o (R™) = {
but the Lie algebra cohomology is:

HZie Algebra(Rn) = A" [917 cee 7011] (Bll)

since df* = 0, since the structure constants vanish. The two are very different! For
a nice discussion of a theory that replaces this one in the noncompact case see Bott, “On
the continuous cohomology...”

B.2 The physicist’s approach to Lie algera cohomology

Suppose we have a Lie algebra g with basis Ty, a is an index running over the generators.
Let us introduce the Clifford algebra:

(¢, b} = 6%, (B.12)

where ¢%, b, are referred to as ghosts and antighosts, respectively.
We can quantize the Clifford algebra by choosing a Clifford vacuum

b'|0) =0 (B.13)

and the resulting Hilbert space is spanned by |0),¢*|0), ....
The Hilbert space is graded by the “ghost number operator” N = " c*b,, and we
have an isomorphism of the vector space of states of ghost number k with AFg*:

1
w ywal...akcal -+ ¢ |0) (B.14)

. rhostiii
Under the isomorphism (eB( I%iosfﬁlel T “hevalley-Eilenberg differential becomes what is
known as the BRST operator:

1
Q= —§fa23§ca26a3ba1 (B.15)

Exercise

: hij : ti
aﬁ) EI:O.VG that the differential d of (eB(.Siagiai)ls to @ of (eB( lgioiﬁaver the isomorphism
eq . OST111
(B( )

b.) Show directly that @ = 0.

The BRST cohomology is the cohomology of @, and is graded by ghost number.
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BRST cohomology enters physics in the quantization of theories with local gauge sym-
metry. In this context it is important to use a very natural generalization. Suppose we
have a representation p of the Lie algebra g. We can then consider the complex

Ng eV (B.16)

and introduce a differential

1
Q ="ty — §fa2g§ca2 c®3bg, (B.17)

where t, = p(T,) are the representation matrices of the rep. V.
Geometrically, the cohomology HZQ(A*g* ® V) can be identified, for G compact and
connected, with the cohomology H7,,(G; V) of a homogeneous vector bundle over the group

G.

Exercise
Check that Q* =0

C. Background material: Cartan’s symmetric spaces

Definition: A symmetric space is a (pseudo) Riemannian manifold (M, g) such that every
point p is an isolated fixed point of an involutive isometry 7,,.

Near any point p, the involutive isometry 7, can be expressed as the inversion of the
geodesics through p. That is, if (z!,...,2") are normal coordinates in a neighborhood of p
with & = 0 the coordinate of p then 7,(Z) = —Z. Importantly, 7, extends to an involutive
isometry of the full Riemannian space (M, g)

One can show that the Riemannian curvature is covariantly constant, and hence there
are three families of examples where the scalar curvature (which is must be constant) is
positive, zero, or negative.

Cartan classified the symmetric spaces and found that they are always homogeneous
spaces of Lie groups. The positive curvature examples are of the form G/K where G is a
compact Lie group and K is a Lie subgroup.

Let us first examine G/K at the Lie algebra level. The tangent space of G at 1 is the
Lie algebra g and the tangent space of K at 1 is the Lie subalgebra ¢. If we write

g=t@p (C.1)

then there is a natural identification of p with Tk (G/K). The involutive isometry 7, where
p = 1- K has a differential 0 = dr, : p — p which in fact can be shown to be the restriction
of an involutive automorphism 6 : g — g. That is, 8 is a Lie algebra homomorphism
O([X,Y]) = [0(X),0(Y)] which is an isomorphism of vector spaces and #? = Id. The
+1 eigenspace is ¢ and the —1 eigenspace is p. The property that it is a Lie algebra
automorphism implies that
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6,6 C ¢
[E.p] Cp (C.2)
[p.p] CE

The decomposition (%ﬁ%m% with 6 is called a Cartan decomposition. 5

Now let us consider G/K at the global level. The reduction of the 7, to a single
involutive automorphism 6 of g has a global analog: There is an involutive automorphism
7 of the group. (That is, 7 is a group automorphism and 72 = Id) such that dr = @ at the
identity. Given such an involutive automorphism 7 we can define a subgroup K to be the
fixed points of 7:

K ={g€G|r(9) = g} (C.3)

Given such an involution we have a Cartan embedding by the “anti-fixed points”:
G/K = 0= {g € Glr(g) = g~} (C.4)

gK — 7(g9)g L. (C.5)

Note that this is well-defined and indeed 7(7(g)g~ ') = (7(9)g~!)~! because 7 is an invo-
lution. One checks it is an embedding by looking at the neighborhood of ¢ = 1. Then
we identify dm = 6. To see it is surjective note that O admits a left G-action by twisted
adjoint action: If g9 € G and g € O then T(go)ggal € O, and the isotropy group of this
action at g = 1 is precisely K. The metric tensor is just the pullback of the usual left-
right-invariant metric —Tr(g~'dg) ® (g7 'dg). The inversion 7,, through g, € O required
by the definition is 74, : g — g«g~'gs. One easily checks that this takes O — O and is an
isometry of the metric. To see that g, is an isolated fixed point of 74, use the left G-action
to translate to g. = 1 and use the involution 6§ on g above. We see that infinitesimally it
is the exponential of elements of p which lie in O in the neighborhood of 1.

It is also worth noting that the Cartan embedding O of G/K is a totally S%eodesic
Bugsec:Fublnl udyDist

submanifold, as follows from the same reasoning used at the end of
Now that we have these definitions we give the 10 classes of compact classical symmetric
spaces:
Whenever G is a compact simple Lie group the homogeneous space (G' x G)/Ggiag is
a symmetric space. Suppose the action of the diagonal subgroup is on the right, then we
have an isomorphism of manifolds:

(G X G)/Gdiag =G (06)

where we take (g1,92) + g1g, . Warning! This is not a group homomorphism. The
involution 7 is just 7 : (g1,92) — (92,91). In particular, if we take G = U(n,R) = O(n),
G=U(n,C)=U(n),or G=U(n,H) = Sp(n) then we get a series of 3 classical symmetric
spaces:

(O(n) x O(n))/O(n) (C.7)

%A Cartan involution of a Lie algebra is an involutive Lie algebra automorphism s such that B(X,sY) is
positive definite. 6 is related to a Cartan involution. & Clarify some confusing terminology. See Helgason
II1.7 for the straight story.de
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Figure 17: K and G/K locally divide the group into a product.

(U(n) x U(n))/U(n) (C.8)
(Sp(n) x Sp(n))/Sp(n) (C.9)

Another natural series of classical symmetric spaces are the Grassmannians. These
arise from the involutive automorphism coming from conjugation

_ 1 0
7(9) = 90990 ' g0 = (Ok ) k) (C.10)
n—

We can consider Grassmannians in real, complex, and quaternionic vector spaces to get

Grr(R™) = O(n)/(O(k) x O(n — k)) (C.11)
Gr(C™) = U(n)/(U(k) x U(n — k)) (C.12)
Gry(H") = Sp(n)/(Sp(k) x Sp(n — k)) (C.13)

With a little charity (regarding cases with k # n — k as nonzero index analogs of the cases
with & = n — k) we can consider this to be three more series of classical symmetric spaces.
. . . . sec:RCH-VS L.

Finally, as discussed in Section §7; we can put real, complex, or quaternionic structures
on real, complex, or quaternionic spaces (when this makes sense). When these structures
are made compatible with standard Euclidean metrics we obtain moduli spaces of struc-
tures. This gives us:

Real structures on complex vector spaces: R® — C™. Moduli space

U(n)/O(n) (C.14)
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This comes from 7(u) = u*.

Complex structures on real vector spaces: R?® = C". Moduli space:

0(2n)/U(n) (C.15)

:C CS
This comes from 7(g) = Ipgl, ' where Ij is (?.bi.anon

Complex structures on quaternionic vector spaces: C™ — H™. Moduli space:

Sp(n)/U(n) (C.16)

Viewing Sp(n) as unitary n x n matrices over the quaternions the involution is 7(g) = —igi,

i.e. conjugation by the unit matrix times i.

Quaternionic structures on complex vector spaces: C?" = H". Moduli space:

U(2n)/Sp(n) (C.17)

Viewing Sp(n) as USp(2n) := U(2n) N Sp(2n;C) we can use the involutive automorphism

7(g) = I, 'g* Iy on U(2n). The fixed points in U(2n) are the group elements with glyg"" =
Iy, but this is the defining equation of Sp(2n,C).

leq:ClassCartSpace-10

‘eq:ClassCartSpace

‘eq:ClassCartSpace

‘eq:ClassCartSpace

When Cartan classified compact symmetric spaces he found the 10 series above (IC.7)

- (IC.I7) together with a finite set of exceptional cases.
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