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A talk for GraemeA talk for Graeme
Instead of talking with more confidence about finished work I chose this work in 
progress because the topic is right.progress because the topic is right. 

Over the years I’ve learned from Graeme about many many things, and several 
of them show up prominently in this talk, including the relation of Morse theoryof them show up prominently in this talk,  including the relation of Morse theory 
and quantum field theory,  the theory of determinant lines and eta invariants, 
and, most relevant to this talk, the theory of operads. 

Newton Institute: August 1992. 

I’ve always felt ashamed that after he taught me all that I never used them in 
my work

But it always seemed wise to  wait for the operads to come to me, rather than 
the other way round.  

my work.

Somewhat surprisingly just this has happened in the course of an investigation 
involving massive QFT in 1+1 dimensions. 



Motivations
1. 1+1 dimensional Landau-Ginzburg models with (2,2) 

supersymmetry: Boundary conditions and D-branessupersymmetry:  Boundary conditions and D branes. 

2. Knot homology:

Witten reformulated knot homology in terms of Morse complexes. 
This formulation can be further refined to a problem in 
categorification of Witten indices in certain LG modelscategorification of Witten indices in certain LG models. 

3. Higgs bundles & Hitchin systems on Riemann surfaces:

GMN studied wall-crossing of BPS degeneracies. An important 
special case is related to Hitchin systems. It is clear there should 
be a “categorification”  of  our nonabelianization map, and of the 
KSWCF, and understanding LG models is an important first step.
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Definition of a Plane Web
We begin with a  purely mathematical construction.

We show later how it emerges from LG  field theory. 

Basic data:Basic data: 

1.   A finite set of ``vacua’’: 

2. A set of weights 

Definition: A  plane web is a graph in R2, together with a labeling 
of faces by vacua so that across edges labels differ and if an edge y g g
is oriented so that i is on the left and j on the right then the edge is 
parallel to zij = zi – zj . 





Remarks & Definitions
Useful intuition: We are joining together straight strings under a 
tension zij. At each vertex there is a no-force condition: 

Definition: A cyclic fan of vacua is an ordered set  

so that the rays are ordered 
counterclockwise

The set of vertices of a web w is denoted 

Local fan of vacua
at a vertex v: and at ¶



Deformation TypeDeformation Type
Equivalence under translation and stretching (but not rotating) of q g ( g)
strings subject to no-force constraint defines deformation type. 



Moduli of webs with fixed 
deformation type



Rigid Taut and SlidingRigid, Taut, and Sliding

A rigid web has d(w) = 0A rigid web has d(w)  0. 
It has one  vertex: 

A taut web has 
d(w) = 1:d(w)  1: 

A sliding web has 
d(w) = 2 



Convolution of Webs
Reduced moduli space of all webs with specified

fan of vacua I¶ at infinity. It is a manifold with corners, made of 
cells 

Definition: Suppose w and w’  are two plane webs and 
v  V(w)  such that

The convolution of w and w’ , denoted  w *v w’  is the 
deformation type where we glue in a copy of w’  into a 

ll di k t t dsmall disk cut out around v. 





Boundaries & ConvolutionBoundaries & Convolution

Reduced dimensions add under convolution:Reduced dimensions add under convolution: 

Near the boundaries of the closure of Dred(w)

b itt l tiw can be written as a convolution



The Web Group
Free abelian group generated by oriented 
deformation types.deformation types. 

``oriented’’:  Choose an orientation o(w) of Dred(w)



The taut element

Definition: The taut element t is the sum of all taut webs 
ith t d d i t tiwith standard orientation

Theorem: 





An Associative Multiplication
Convolution is not associative. 

Define an associative operation by taking an unordered 
set {v1, … , vm} and an ordered set {w1,…, wm} and saying

vanishes  unless there is some ordering of the vi   so that the fans match up. 

When the fans match up we take the appropriate convolution. 



L-¶ RelationsL ¶ Relations

This makes W   into an L¶ algebra



Half-Plane Webs & Fans -1Half Plane Webs & Fans 1
Same as plane webs, but they sit in a left- or right half-plane. 

Some vertices (but no edges) are allowed on the boundary. 

A half-plane fan is an ordered 
set of vacua, rays through

ordered 
counterclockwisecounterclockwise. 



Half-Plane Webs & Fans - 2Half Plane Webs & Fans 2

Interior vertices

time-ordered
boundary vertices. 

Local half-plane fan at a boundary vertex v: 

Half-plane fan at infinity: 



Rigid Half-Plane WebsRigid Half Plane Webs



Taut Half-Plane Webs



Sliding Half-Plane webs



Convolution Theorem for 
Half-Plane WebsHalf-Plane  Webs

Free abelian group generated by g p g y
half-plane webs 

There are now two convolutions: 

Define the half-plane 
taut element:

Theorem:





Extension to the tensor algebraExtension to the tensor algebra



Web RepresentationsWeb Representations
Definition: A representation of webs is 

a.) A choice of Z-graded Z-module Rij for every ordered 
pair ij of vacua. 

b.) A degree = -1 pairing 

For every cyclic fan of vacua introduce a fan representation: 



ContractionContraction
Given a rep and a deformation type w we define 
the contraction operation: 

by applying the contraction K to the pairs Rij
and Rji on each edge:and Rji on each edge: 





Half-Plane ContractionsHalf Plane Contractions
Similarly for half-plane fans: 

r(u) now contracts 

time ordered!



Definition of an Interior 
Amplitude



The A-¶ Category
An interior amplitude b defines an A¶ category Vacb

Objects:  i  V.   
Morphisms: 



Proof of A-¶ Relations

Apply r and evaluate on exp[b] thenApply r and evaluate on exp[b], then    

and the second line vanishes.

Hence we obtain the A¶ relations: 



Remark 1Remark 1

The morphism spaces can be defined by aThe morphism spaces can be defined by a 
Kontsevich-Soibelman-like product as follows: 

Suppose V = { 1, …, K}.  Introduce the elementary 
KxK matrices eij

phase ordered!



Remark 2: Chan-Paton FactorsRemark 2: Chan Paton Factors



Picturing Chan-Paton FactorsPicturing Chan Paton Factors



Strip-WebsStrip Webs

Now consider webs in the stripNow consider webs in the strip

Now taut and rigid strip-webs are the same, and have d(s)=0.  

sliding strip-webs have d(s)=1. 



Convolution Identity for Strip t’sConvolution Identity for Strip t s

Convolution theorem: 

where for strip webs we denote time-concatenation by





Convolution Identity on the 
Tensor Algebra

So, what does it mean? ,



A¶ BimodulesA¶ Bimodules

Applying a representation of webs and inserting anApplying a representation of webs and inserting an 
interior amplitude exp[b] one term drops out and we can 
interpret the above identity as defining an A¶ bimodule. p y g

If we add Chan-Paton spaces on the left and right  the 
bimodule is 



Proof of Bimodule IdentityProof of Bimodule Identity

Apply rApply r



Maurer-Cartan & DifferentialMaurer Cartan & Differential
If, moreover, we use for left and right morphisms a 
solution of the Maurer-Cartan equation 

becomes a differentialbecomes a differential 
on the complex 



How Convolution Identity Gives 
a Differential:a Differential: 

Apply r
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SQM & Morse Theory
(Witten: 1982) 

M: Riemannian;  h: M ö R,  Morse function

SQM: 



SQM DifferentialSQM Differential

Why d2 = 0 
n(p,p’) counts instantons

y



1+1 LG Model as SQM1+1 LG Model as SQM
X:   Kähler manifold 

W: X ö C  Holomorphic Morse function

Target space for SQM:Target space for SQM: 



1+1 Dimensional Action & BC’s1+1 Dimensional Action & BC s
Take X = C with its Euclidean metric, for simplicity. , p y

Need to constrainNeed to constrain 
fieldspace: 

At  finite boundaries f sits in a  
Lagrangian subvariety



Lefshetz ThimblesLefshetz Thimbles
Stationary points of h are solutions to the differential equation

The projection of solutions to the complex W plane sit along 

If D contains x ö -¶

p j p p g
straight lines of slope iz

If D contains x 

If D contains x ö +¶

Inverse image in X Th i lInverse image in X 
defines left and right 
Lefshetz thimbles 

They  are  maximal 
Lagrangian subvarieties of X 



Solitons For D=RScale set 
by W

For general z there is no solution But for a  suitable phase  there is a solution g z p

This is the classical soliton. 
There is one for eachThere is one for each 
intersection

(in the fiber of a regular value)



Fermionic Vacua
These critical points are almost but not quite nondegenerate. 
translation symmetry leads to a zeromode of the linearization: 

This is just the equation of motion of the fermions Dy= 0

Quantization of the fermion zeromodes gives a twofold-
degenerate groundstate with fermionic vacua



Morse ComplexMorse Complex 

Witten index: 



InstantonsInstantons
Instanton equation q

At h t di t l W i i l t d hAt short distance scales  W is irrelevant and we have 
the usual holomorphic map equation. 

At long distances  the theory is almost trivial since it has 
a mass scale, and it is dominated by the vacua of W. 



Scale setScale set 
by W





Half-Line Solitons
Classical solitons on the right 
half-line are labeled by:half-line are labeled by: 

Morse complex:Morse complex: 

Grading the complex: Assume X is CY and that we canGrading the complex: Assume X is CY  and that we can 
find a logarithm:  

Then the grading is by 



Half-Plane Instantons

Scale set 
b Wby W



A Natural Generalization



The Boosted Soliton - 1

Therefore we produce a solution of the instanton
equation with phase z ifequation with phase z if 



The Boosted Soliton -2

Stationary y
soliton

Boosted 
soliton

These will define 
edges of webs…



Solitons On The Interval
Now consider the finite interval [xl, xr] with boundary 
conditions Ll Lconditions Ll, Lr

When the interval is much longer than the scale set by 
W the Morse complex is

The Witten index factorizes nicely: 

But the differentialBut the differential  

is too naïve !



Instanton corrections to the 
naïve differential 

There will be 
instanton
corrections which, 
at long distances, 
are made by gluing 
together boosted 
solitons. 

Now we will make this more precise….
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The Morse Complex on R Gives 
a Web Representation

If I = {i1, …, in} is a 
li f d ficyclic fan define 

A typical basisA typical basis

Distinguishes aDistinguishes a 
set of solitons



Fans of Solitons
So we define a cyclic fan of solitons to be an ordered 
setset 

U th t d fi b d diti thUse these to define boundary conditions on the 
instanton equation: 

the instanton is approximately given by the

For (x,t) large, near a ray parallel to  

the  instanton is approximately given by the 
boosted soliton for that ray: 





Counting InstantonsCounting Instantons

Moduli of 
solutions of 

With fan boundary condition   F   at  ¶



Instanton Counting Defines an 
Interior Amplitude

Idea of proof:  We look at the contributions to d2=0  for one-
dimensional reduced moduli spaces of instantons. The boundaries 
look like taut webs. 



The Vacuum CategoryThe Vacuum Category

Thanks to webology we get an A¶ categoryThanks to webology we get an  A¶ category  

I t i i ll i t d t th h l hi MIntrinsically associated to the holomorphic Morse 
function W

Define Vac[W]  to be this  A¶ category. 



The Morse Complex on R+
Gives Chan-Paton FactorsGives Chan-Paton Factors

Now introduce Lagrangian boundary conditions L : g g y

For a half-plane fan  J = {j1, … , jn} define 

th d fithen  we define 

by instanton counting: 





Half-Space Instanton CountingHalf Space Instanton Counting

These are the matrix elements of 



Instanton Amplitudes Solve MC
Theorem 2: The instanton amplitudes NJ define a 
solution to the Maurer-Cartan equation for Vacbq a
enhanced by the Chan-Paton spaces EL,j. 

Proof: Again consider d2=0 for the half-plane instantons with reduced

N l b l i U i th i t i

Proof: Again consider  d 0 for the half plane instantons with reduced 
dimension =1. 

Now we can apply webology again: Using the interior 
amplitude and the solutions of MC provided by instanton
counting we get a differential on the stripcounting we get a differential on the strip.  

Conjecture: The cohomology of this differential is theConjecture: The cohomology of this differential is the 
space of BPS states on the strip. 
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The Brane CategoryThe Brane Category
Suppose  A  is an  A¶ categorypp g y

Define a new   A¶ category Br[A ]  whose objects are 
solutions of the MC equation of A[E] for some set ofsolutions of the MC equation of A[E] for some set of 
Chan-Paton factors E

Same as “twisted complexes construction” – an analog of 
the derived category for   A¶ categories



A Natural Conjecture
Following constructions used in the Fukaya category, Paul Seidel 
constructed an A¶ category FS[W] associated to a holomorphicconstructed an A¶ category FS[W] associated to a holomorphic
Morse function W: X to C. 

Br[FS[W]] is meant to be the category of A-branes of the LGBr[FS[W]]  is meant to be the category of A-branes of the LG 
model. 

But, we also think that Br[Vac[W]]  is the category of A-branes of , [Vac[ ]] g y
the LG model!

So it is natural to conjecture an equivalence of A¶

Br[FS[W]]  @ Br[Vac[W]] 
categories: 

“ultraviolet” “infrared” 
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Families of Theories

Now consider a family of Morse functions

Let  be a path in C connecting z1 to z2. 

View it as a map z: [xl, xr] ö C with z(xl) = z1 and z(xr) = z2

C



Domain Wall/InterfaceDomain Wall/Interface
Using z(x) we can still formulate our SQM!

From this construction it manifestlyFrom this construction it manifestly 
preserves two supersymmetries. 



Parallel Transport of Categories

To  we associate an   A¶ functor

(Relation to GMN:  “Categorification of S-wall crossing”) 

To a composition of paths we associate a composition of A¶
functors: 

T h t f t i t i lTo a homotopy of 1 to 2 we associate an equivalence 
of A¶ functors. 



Outline
Introduction & Motivations  

Webology

F f lit & W b

Landau-Ginzburg Models & Morse Theory

Fans of solitons & Webs

A-¶ categories of branesA ¶ categories of branes

Supersymmetric Interfaces

82Summary & Outlook 



Summary
1.We gave a viewpoint on instanton corrections in 1+1 

dimensional LG models based on IR considerationsdimensional LG models based on IR considerations. 

2. This naturally leads to L¶ and A¶ structures.2. This naturally leads to L¶ and A¶ structures. 

3. As an application, one can construct the (nontrivial) 
differential which computes BPS states on the interval. 

4 Wh th f ili f LG t ti l th i4. When there are families of LG superpotentials there is 
a notion of parallel transport of the A¶ categories.



Outlook
1. Finish proofs of parallel transport statements. 

2. Interpretation of the convolution identities in terms of 
an L¶ morphism from W   to the Hochschild cohomology

bof Vacb

3. Are these examples of universal identities for 

4 Generalization to 2d4d systems: Categorification of

p
massive 1+1 QFT?  

4. Generalization to 2d4d systems: Categorification of 
the KSWCF

5. Computability of Witten’s approach to knot homology? 
Relation to other approaches to knot homology?   


