Three Pedestrian Overpasses

 Between Number Theory And PhysicsGregory Moore Rutgers

Moonshine Phenomena,

Supersymmetry,
 and Quantum Codes

1.A: Some Background

RCFT Approach To FLM

The original RCFT explanation of Monstrous Moonshine begins with 24 free chiral bosons with target space the Leech torus $:=\mathbb{R}^{24} / \Lambda$

$\Lambda \subset \mathbb{R}^{24}$ is the Leech lattice, D25-brane

Moreover, target space torus has a very special "B-field"
$S=\int d^{2} \sigma\left(G_{\mu \nu} \partial_{i} x^{\mu} \partial^{i} x^{\nu}+B_{\mu \nu} \epsilon^{i j} \partial_{i} x^{\mu} \partial_{j} x^{\nu}\right)$

\mathbb{Z}_{2}-Orbifold

Now gauge the global symmetry:

$$
\vec{x} \rightarrow-\vec{x} \text { for } \vec{x} \in \mathbb{R}^{24} / \Lambda
$$

$\mathcal{H}_{\Lambda}=\mathcal{H}_{\Lambda}^{+} \bigoplus \mathcal{H}_{\Lambda}^{-}$

Nontrivial Gauge Bundle on S^{1}

Twist Fields

Identify order two points in the torus $\mathbb{R}^{24} / \Lambda$

$$
T_{2}(\Lambda):=\Lambda / 2 \Lambda
$$

Orbifold breaks translation symmetry on Leech torus down to $T_{2}(\Lambda)$
B-field defines a symplectic form on $T_{2}(\Lambda)$

$$
B\left(\lambda_{1}, \lambda_{2}\right)=(-1)^{\lambda_{1} \cdot \lambda_{2}}
$$

Noncommutative Translations - 2/2

Unbroken translation symmetry realized on Hilbert space via a nontrivial central extension

$$
\begin{gathered}
0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathcal{H}\left(T_{2}(\Lambda)\right) \rightarrow T_{2}(\Lambda) \rightarrow 0 \\
T\left(\lambda_{1}\right) T\left(\lambda_{2}\right)=\epsilon\left(\lambda_{1}, \lambda_{2}\right) T\left(\lambda_{1}+\lambda_{2}\right) \\
\frac{\epsilon\left(\lambda_{1}, \lambda_{2}\right)}{\epsilon\left(\lambda_{2}, \lambda_{1}\right)}=(-1)^{\lambda_{1} \cdot \lambda_{2}}
\end{gathered}
$$

Early example of noncommutative geometry on D-branes induced by a B-field

Let \mathcal{S} be the unique irreducible representation of the Heisenberg group $\mathcal{H}\left(T_{2}(\Lambda)\right)$:

Construct it using γ-matrices.
$\mathcal{S}:$ "Spinor representation"
$\mathcal{H}_{T}=\mathcal{F} \otimes \mathcal{S}=\mathcal{H}_{T}^{+} \bigoplus \mathcal{H}_{T}^{-}$

FLM Module

$$
\mathcal{H}_{F L M}=\mathcal{H}_{\Lambda}^{+} \bigoplus \mathcal{H}_{T}^{+}
$$

FLM \& Borcherds:

The automorphism group of the VOA $\mathcal{H}_{F L M}$ is the Monster Group

Payoff: Conceptual Explanation of

This is the gold standard for the conceptual explanation of Moonshine-modularity A truly satisfying conceptual explanation of genus zero properties remains elusive.

Important progress: Duncan \& Frenkel 2009; Paquette, Persson, Volpato 2017
1.B: Statement Of The Problem

1988:

Beauty and the Beast: Superconformal Symmetry in a Monster Module

L. Dixon ${ }^{1, \star}$, P. Ginsparg ${ }^{2, \star \star}$ and J. Harvey ${ }^{3, \star \star \star}$
${ }^{1,3}$ Physics Department, Princeton University, Princeton, NJ 08544, USA
${ }^{2}$ Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract

Frenkel, Lepowsky, and Meurman have constructed a representation of the largest sporadic simple finite group, the Fischer-Griess monster, as the automorphism group of the operator product algebra of a conformal field theory with central charge $c=24$. In string terminology, their construction corresponds to compactification on a \mathbf{Z}_{2} asymmetric orbifold constructed from the torus $\mathbf{R}^{24} / \Lambda$, where Λ is the Leech lattice. In this note we point out that their construction naturally embodies as well a larger algebraic structure, namely a super-Virasoro algebra with central charge $\hat{c}=16$, with the supersymmetry generator constructed in terms of bosonic twist fields.

(Super-) Conformal Symmetry:

$$
\begin{aligned}
& {\left[L_{n}, L_{m}\right]=(n-m) L_{n+m}+\frac{c}{12}\left(n^{3}-n\right) \delta_{n+m, 0} \quad n, m \in \mathbb{Z}} \\
& T(z)=\sum_{n \in \mathbb{Z}} z^{-n-2} L_{n} \quad T(z) T(w) \sim \frac{\frac{c}{2}}{(z-w)^{4}}+\frac{2 T(w)}{(z-w)^{2}}+\frac{\partial T(w)}{z-w}+\cdots
\end{aligned}
$$

Superconformal symmetry \Rightarrow supercurrent:

$$
\begin{aligned}
T(z) T_{F}(w) & \sim \frac{\frac{3}{2} T_{F}(w)}{(z-w)^{2}}+\frac{\partial T_{F}(w)}{z-w}+\cdots \\
T_{F}(z) T_{F}(w) & \sim \frac{\frac{\hat{c}}{4}}{(z-w)^{3}}+\frac{\frac{1}{2} T(w)}{z-w}+\cdots
\end{aligned}
$$

There are no dimension $3 / 2$ fields in $\mathcal{H}_{F L M}$

Associated to a nonanomalous \mathbb{Z}_{2} is a "spin lift" - a "2d spin conformal field theory"
[Lin \& Shao: systematic study]

$$
\mathcal{H}_{B \& B}=\mathcal{H}_{\Lambda} \oplus \mathcal{H}_{T}
$$

has fields with conformal dimension in $\mathbb{Z}+\frac{1}{2}$

What is the actual supercurrent?

Not known.

 Not easy.

Today I will fill in this gap.

It is very recent work with R. Singh
1.C: Solution Of The Problem

In one of our (several) attempts to explain Umbral Moonshine, Jeff Harvey and I discovered a curious relation between supercurrents in certain superconformal 2d field theories and quantum error correcting codes.

Moonshine, Superconformal Symmetry, and Quantum Error Correction

Work with Jeff focused on a K3 sigma model and Conway Moonshine

We showed that the superconformal current could be constructed using a special spinor determined by a code.

Jeff and I speculated the same pattern would appear in the construction of the superconformal generator in $\mathcal{H}_{B \& B}$

This turns out to be correct

With a student, Ranveer Singh,
we have indeed realized the supercurrent in this way

For every spinor $\Psi \in \mathcal{S}$ we have a dimension $3 / 2$ primary field $V_{\Psi} \in \mathcal{H}_{T}$
$V_{\Psi}\left(z_{1}\right) V_{\Psi}\left(z_{2}\right) \sim$

$$
\sim \frac{\bar{\Psi} \Psi}{z_{12}^{3}}+\frac{1}{8} \frac{\bar{\Psi} \Psi}{z_{12}} T\left(z_{2}\right)+\frac{1}{z_{12}} \sum_{\lambda: \lambda^{2}=4} \kappa_{\lambda}(\Psi) e^{i \lambda \cdot x\left(z_{2}\right)} \ldots
$$

For any Ψ such that $\kappa_{\lambda}(\Psi)=0$ for all $\lambda \in \Lambda: \quad \lambda^{2}=4$ $\Rightarrow V_{\Psi}$ is a supercurrent

We need to compute $\kappa_{\lambda}(\Psi)$

We need to know about the OPE of bosonic twist fields

.... challenging

THE CONFORMAL FIELD THEORY OF ORBIFOLDS

Lance DIXON ${ }^{1,2}$
Joseph Henry Laboratories, Princeton University; Princeton NJ 08544, USA
Daniel FRIEDAN ${ }^{3}$
Enrico Fermi and Jumes Franck Institutes and Department of Physics, University of Chicago, Chicago, II. 60637, USA
Emil MARTINEC ${ }^{4.5}$
Joseph Henry Laboratories, Princeton Unitersity, Princeton NJ 08544, USA
Stephen SHENKER ${ }^{6}$
Enrico Fermi and James Franck Institutes and Department of Physics, University of Chicago, Chicago, IL 60637, USA
\section*{Conformal Field Theories, Representations} and Lattice Constructions

L. Dolan ${ }^{1}$, P. Goddard ${ }^{2}$, P. Montague ${ }^{2}$

1 Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599, U.S.A.

2 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, CB3 9EW, U.K.

Received: 15 September 1994/Accepted: 23 October 1995

$$
\sim \frac{\bar{\Psi} \Psi}{z_{12}^{3}}+\frac{1}{8} \frac{\bar{\Psi} \Psi}{z_{12}} T\left(z_{2}\right)+\frac{1}{z_{12}} \sum_{\lambda: \lambda^{2}=4} \kappa_{\lambda}(\Psi) e^{i \lambda \cdot x\left(z_{2}\right)} \ldots
$$

$\kappa_{\lambda}(\Psi) \sim\langle\Psi, T(\lambda) \Psi\rangle$

$$
T(\lambda) \in \mathcal{H}\left(T_{2}(\Lambda)\right)
$$

A Strategy To Find A Suitable Ψ

For any Abelian subgroup $\hat{\mathcal{L}} \subset \mathcal{H}\left(T_{2}(\Lambda)\right)$

$$
P=\sum_{[\lambda] \in \hat{\mathcal{L}}} T(\lambda)
$$

is proportional to a projection operator
$\hat{\mathcal{L}}$ maximal $\Rightarrow P$ is rank one
So we seek maximal subgroups $\hat{\mathcal{L}}$ such that V_{Ψ} is a supercurrent for $\Psi \in \operatorname{Im}(P)$

Method to find a suitable $\hat{\mathcal{L}} \subset \mathcal{H}\left(T_{2}(\Lambda)\right)$:
Find a lattice $\Lambda_{S C} \subset \Lambda$ such that

$$
\lambda_{1}, \lambda_{2} \in \Lambda_{s c} \Rightarrow \lambda_{1} \cdot \lambda_{2}=0 \bmod 2
$$

$$
2 \Lambda \underset{2^{12}}{\subset} \Lambda_{S C} \subset \Lambda
$$

$$
\lambda \in \Lambda_{S c} \Rightarrow \lambda^{2}=0 \bmod 4
$$

$$
\text { Nonzero } \lambda \in \Lambda_{s c} \Rightarrow \lambda^{2}>4
$$

Choose an isomorphism $T_{2}(\Lambda) \cong \mathbb{F}_{2}^{24}$

$$
\begin{gathered}
\hat{\mathcal{L}} \rightarrow \mathcal{L} \rightarrow \mathcal{C} \subset \mathbb{F}_{2}^{24} \\
\lambda^{2}=4 \Rightarrow\langle\Psi, T(\lambda) \Psi\rangle=0
\end{gathered}
$$

because of the error correcting properties of \mathcal{C}
Existence of $\Lambda_{S C} \Rightarrow V_{\Psi}$ is a superconformal current in $\mathcal{H}_{B \& B}$ for $\Psi \in \operatorname{Im} P$

Example of a sublattice $\Lambda_{S c}$

Dong, Li, Mason, Norton:

There is an isometric embedding of $\sqrt{2} L$ into the Leech lattice for every Niemeier lattice L

$$
\Lambda_{S C} \cong \quad \sqrt{2} \Lambda
$$

Are there others?
Does $\mathcal{H}_{B \& B}$ have $\mathcal{N}>1$ supersymmetry ?

Embarrassment Of Riches

Dong, Li, Mason, Norton: There are

5163643468800000

embeddings $\sqrt{2} \Lambda \hookrightarrow \Lambda$
For each embedding ι we get a self-dual doubly even code $\mathcal{C}_{12}^{\iota} \subset \mathbb{F}_{2}^{24}$

Inequivalent codes give different supercurrents

Theorem (Pless and Sloane): There are 9 inequivalent self-dual doubly even dimension 12 codes in \mathbb{F}_{2}^{24}

So, our construction can yield up to 9 distinct supercurrents

We are trying to find \mathcal{N}

Using the quaternary Golay code we can show that $\mathcal{N} \geq 2$

Time Reversal In

Chern-Simons-Witten Theory

When does 3d Chern-Simons-Witten theory have a time reversal symmetry?

General theory based on compact group

$$
G \text { and a "level" } k \in H^{4}(B G ; \mathbb{Z})
$$

Which (G, k) give
T-reversal invariant theories?

Related: When does Reshetikhin-Turaev-Witten topological field theory factor through the unoriented bordism category?

Some nontrivial examples of T-invariant CSW theories

appeared in several recent papers
[Seiberg \& Witten 2016; Hsin \& Seiberg 2016; Cordova, Hsin \& Seiberg]

$$
\begin{gathered}
G=P S U(N) \quad k=N \\
\text { But there is no systematic } \\
\text { understanding. }
\end{gathered}
$$

With my student Roman Geiko we have recently carried out a systematic study for

Spin Chern-Simons Theory with torus gauge group $G \cong U(1)^{r}$

$$
S=\frac{1}{4 \pi} \int K_{I J} A_{I} d A_{J}
$$

$K_{I J}: r \times r$ nondegenerate, integral symmetric matrix: determines integral lattice L

$$
\begin{aligned}
& \text { Classical T-reversal: } \\
& \exists U \in G L(r, \mathbb{Z}) \text { such that } \\
& U K U^{t r}=-K \\
& \text { (Note: } \sigma(L)=0)
\end{aligned}
$$

But there can be quantum T-reversal symmetries not visible classically.

Rank 2 examples studied by Seiberg \& Witten; Delmastro \& Gomis

The quantum theory does not depend on all the details of L

 What does it depend on?Finite Abelian group $\mathcal{D}(L):=L^{\vee} / L$
a.k.a "group of anyons" a.k.a. "group of 1-form symmetries"

Quadratic Refinement (spin of anyons) :
$q_{W}(x)=\frac{1}{2}(\tilde{x}, \tilde{x}-W)+\frac{1}{8}(W, W) \bmod \mathbb{Z}$

Theorem

[Belov \& Moore; Freed,Lurie,HopkinsTeleman]

The quantum theory only depends on the equivalence class of the triple ($\mathcal{D}, q, \bar{\sigma}$)

$$
\begin{aligned}
& q: \mathcal{D} \rightarrow \mathbb{R} / \mathbb{Z} \quad \bar{\sigma} \in \mathbb{Z} / 24 \mathbb{Z} \\
& \frac{1}{\sqrt{|\mathcal{D}|}} \sum_{x \in \mathcal{D}} e^{2 \pi i q(x)}=e^{2 \pi i \frac{\bar{\sigma}}{8}}
\end{aligned}
$$

Conversely, every such triple arises from some torus CSW theory

Equivalence of triples

$$
(\mathcal{D}, q, \bar{\sigma}) \cong\left(\mathcal{D}^{\prime}, q^{\prime}, \bar{\sigma}\right)
$$

\exists isomorphism $\quad f: \mathcal{D} \rightarrow \mathcal{D}^{\prime}$

$$
\begin{gathered}
\exists \Delta^{\prime} \in \mathcal{D}^{\prime} \\
q(x)=q^{\prime}\left(f(x)+\Delta^{\prime}\right)
\end{gathered}
$$

T-Reversal Criterion

$$
[(\mathcal{D}, q, \bar{\sigma})]=[(\mathcal{D},-q,-\bar{\sigma})]
$$

q : Determines the spin of anyons
b : Determines the braiding of anyons

Simpler Problem: The Witt Group (1936)

$b(x, y)=q(x+y)-q(x)-q(y)+q(0)$
Throw away $q, \bar{\sigma}$ and just keep b.

$$
\text { Classify }[(\mathcal{D}, b)]
$$

$\left[\left(\mathcal{D}_{1}, b_{1}\right)\right]+\left[\left(\mathcal{D}_{2}, b_{2}\right)\right]:=\left[\left(\mathcal{D}_{1} \oplus \mathcal{D}_{2}, b_{1} \oplus b_{2}\right)\right]$
Abelian monoid $\mathcal{D B}$

$\mathcal{D B}=\bigoplus_{p} \quad \mathcal{D} \mathcal{B}_{p}$

Odd $p: \mathcal{D} \mathcal{B}_{p}$ is generated by forms on $\mathbb{Z} / p^{r} \mathbb{Z}$

$$
X_{p^{r}}: \quad b(1,1)=p^{-r} \quad Y_{p^{r}}: \quad b(1,1)=\theta p^{-r}
$$

θ : Quadratic nonresidue modulo p^{r}
$p=2$ Many generating forms:

$$
A_{2} r, B_{2} r, C_{2} r, \ldots, F_{2} r
$$

Submonoid $\mathcal{S} \mathcal{P} \ell$ Split forms:

$$
\begin{gathered}
\mathcal{D}=\mathcal{D}_{1} \oplus \mathcal{D}_{2} \\
\mathcal{D}_{1}=\mathcal{D}_{1}^{\perp}
\end{gathered}
$$

Witt $:=\mathcal{D B} / \mathcal{S p l}$

Abelian group whose structure is known.

Wall, Miranda, Kawauchi \& Kojima

 determine relations on the generators$$
\mathcal{W i t t} \cong \bigoplus_{p} \mathcal{W i t t}_{p}
$$

p odd: ${\mathcal{W} \text { ut }_{p}}_{\cong \bigoplus_{k \geq 1} \mathcal{W}_{p}^{k}, ~}^{\text {and }}$

$$
\begin{array}{cl}
\mathcal{W}_{p}^{k} \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \left(-\frac{1}{p}\right)=(-1)^{\frac{p-1}{2}}=1 \\
\mathcal{W}_{p}^{k} \cong \mathbb{Z}_{4} & \left(-\frac{1}{p}\right)=(-1)^{\frac{p-1}{2}}=-1
\end{array}
$$

$\mathcal{S p l} \subset \mathcal{D B}^{T}:=\{[\mathcal{D}, b]=[\mathcal{D},-b]\} \subset \mathcal{D B}$

Roman computed generators for the (infinite) Abelian subgroup

$$
\mathcal{D B}^{T} / \mathcal{S p l}
$$

and then refined it to T-invariant triples

Theorem: A T-invariant triple $[(\mathcal{D}, q, \bar{\sigma})]$ must be a direct sum of

\mathscr{D}	b	\hat{q}	$\sigma \bmod 8$
$\mathbb{Z} / p^{r}, p \equiv 1 \bmod 4$	$X_{p^{r}}$	$u x^{2} / p^{r}$	$r\left(p^{2}-1\right) / 2$
	$Y_{p^{r}}$	$v x^{2} / p^{r}$	$r\left(p^{2}-1\right) / 2+4 r$
$\mathbb{Z} / p^{r}, p \equiv 3 \bmod 4$	$X_{p^{r}}$	$u x^{2} / p^{r}$	$r\left(p^{2}-1\right) / 2$
$\mathbb{Z} / 2$	A_{2}	$x^{2} / 4-1 / 8$	0
$(\mathbb{Z} / 2)^{2}$	E_{2}	$x y / 2$	0
$(\mathbb{Z} / 4)^{4}$	$4 A_{2^{2}}$	$\left(x_{1}^{2}+x_{2}^{2}+5 x_{3}^{2}+5 x_{4}^{2}\right) / 8$	4
$\mathbb{Z} / 2^{r} \times \mathbb{Z} / 2^{r}, r \geqslant 1$	$E_{2^{r}}$	$x y / 2^{r}+\alpha(x / 2+y / 2)$	0
$\mathbb{Z} / 2^{m} \times \mathbb{Z} / 2^{m}, m \geqslant 2$	$F_{2^{m}}$	$\left(x^{2}+x y+y^{2}\right) / 2^{m}$	$4(m+1)$
$\left(\mathbb{Z} / 2^{m}\right)^{4}, m \geqslant 2$	$4 A_{2^{m}}$	$\sum_{i=1}^{4} x_{i}^{2} / 2^{m+1}$	4
$\left(\mathbb{Z} / 2^{m}\right)^{2}, m \geqslant 2$	$A_{2^{m}+B_{2^{m}}} x^{2} / 2^{m+1}+3 y^{2} / 2^{m+1}$	$4(m+1)$	
$\left(\mathbb{Z} / 2^{n}\right)^{2}, r \geqslant 3$	$A_{2^{n}}+D_{2^{n}}$	$x^{2} / 2^{n+1}+7 y^{2} / 2^{n+1}$	0
$\left(\mathbb{Z} / 2^{r}\right)^{4}, r \geqslant 3$	$3 A_{2^{n}}+C_{2^{n}}$	$\sum_{i=1}^{3} x_{i} / 2^{n+1}+5 y^{2} / 2^{n+1}$	$4 n$

Table 3. T-invariant quartets. Here, $\left(\frac{-1}{p}\right)=1,\left(\frac{2 u}{p}\right)=1,\left(\frac{2 v}{p}\right)=-1, r \geqslant 1, m \geqslant 2, n \geqslant 3$, $\alpha \in\{0,1\}$. Note, we can add $1 / 2$ to \hat{q} and 4 to σ in any line to obtain another quartet.

Example: $L \cong A_{4}$ and $L \cong D_{4}$ can be primitively embedded into E_{8} (Nikulin)

These are positive definite, and cannot be T-invariant classically

Nevertheless, they are quantum T-invariant

Conjecture for the general (non-spin) case:

$$
(G, k) \rightarrow \operatorname{CSW}(G, k) \rightarrow \operatorname{MTC}(G, k)
$$

Definition [Lee \& Tachikawa; Kong \& Zhang]: The time reversal of an MTC \mathcal{C} with braiding $B_{x, y}: x \otimes y \rightarrow y \otimes x$ and ribbon structure $\theta_{x}: x \rightarrow x$ is the MTC $\mathcal{C}^{r e v}$ with $B_{x, y}^{r e v}:=B_{y, x}^{-1} \quad \theta_{x}^{r e v}:=\theta_{x}^{-1}$

A CSW theory is time reversal invariant if there is an equivalence of MTC's

$$
\operatorname{MTC}(G, k)^{r e v} \cong \operatorname{MTC}(G, k)
$$

There is a mathematical notion of a

 Witt group of (nondegenerate) braided fusion categories.[Davydov, Müger, Nikshych, Ostrik 2010]

$$
\mathcal{C}_{1} \sim \mathcal{C}_{2} \text { if there exist fusion }
$$ categories \mathcal{D}_{1} and \mathcal{D}_{2} such that

$$
\mathcal{C}_{1} \otimes Z\left(\mathcal{D}_{1}\right) \cong \mathcal{C}_{2} \otimes Z\left(\mathcal{D}_{2}\right)
$$

CONJECTURE

A (bosonic) $\operatorname{CSW}(G, k)$ is T-invariant iff
[MTC $(G, k)]$ is order 2 in \mathcal{W} itt

Condition On Higher Gauss Sums

Higher Gauss sums $\sum_{x} d_{x}^{2} \theta_{x}^{n}$ studied in

[Ng , Schopieray, Wang 2018;
Kaidi, Komargodski,Ohmori,Seifnashri, Shao 2021]

are all real.

The examples of Seiberg et. al. satisfy this condition.

Topological Interfaces

It is always true that $\mathcal{C} \otimes \mathcal{C}^{\text {rev }} \cong Z(\mathcal{D})$ and therefore there is a topological gapped boundary condition for $\mathcal{C} \otimes \mathcal{C}^{\text {rev }}$ [Freed \& Teleman]

Conjecture is equivalent to existence of a topological interface between $C S(G, k)$ and its time-reversal
(Related to work of Kapustin \& Saulina.)

U-Plane For 5d SYM And Four-Manifold Invariants

"K-Theoretic Donaldson Invariants"

Five Dimensions

Partial Topological Twist of 5d SYM on $\mathrm{X} \times S^{1}$

Reduces to SQM on the moduli space of instantons:
(Requires that \mathcal{M} be Spin-c)

$$
\mathcal{R}:=R \Lambda
$$

$$
Z[\mathcal{R}]=\sum_{k=0}^{\infty} \mathcal{R}^{d_{k} / 2} \int_{\mathcal{M}_{k}} \hat{A}\left(T \mathcal{M}_{k}\right)
$$

[Nekrasov (1996); Losev, Nekrasov, Shatashvili (1997);] + important generalization

Chern-Simons Observables

$U(1)_{\text {inst }}$ symmetry with current $J=\operatorname{Tr}(f \wedge f)$
Couple to background $n:=\left[\frac{F(A)}{2 \pi}\right] \in H^{2}(X, \mathbb{Z})$
\quad gauge field A :
$\mathcal{O}(n)=\int_{\Sigma(n) \times S^{1}} \operatorname{Tr}\left(a d a+\frac{2}{3} a^{3}\right)+\cdots$
$=\int_{X \times S^{1}} F(A) \wedge \operatorname{Tr}\left(a d a+\frac{2}{3} a^{3}\right)+$ susy completion

$$
Z(\mathcal{R}, n):=\left\langle e^{\mathcal{O}(n)}\right\rangle
$$

Five Dimensions

$$
Z(\mathcal{R}, n)=\sum_{k=0}^{\infty} \mathcal{R}^{d_{k} / 2} \int_{\mathcal{M}_{k}} \operatorname{ch}(L(n)) \hat{A}\left(\mathcal{M}_{k}\right)
$$

Using both the Coulomb branch integral (a.k.a. the U-plane integral) and, independently, localization techniques, we make contact with the work of mathematicians

K-THEORETIC DONALDSON INVARIANTS VIA INSTANTON COUNTING

LOTHAR GÖTTSCHE, HIRAKU NAKAJIMA, AND KŌTA YOSHIOKA

To Friedrich Hirzebruch on the occasion of his eightieth birthday

2006:

Abstract. In this paper we study the holomorphic Euler characteristics of determinant line bundles on moduli spaces of rank 2 semistable sheaves on an algebraic surface X, which can be viewed as K-theoretic versions of the Donaldson invariants. In particular if X is a smooth projective toric surface, we determine these invariants and their wallcrossing in terms of the K-theoretic version of the Nekrasov partition function (called 5-dimensional supersymmetric Yang-Mills theory compactified on a circle in the physics literature). Using the results of [43] we give an explicit generating function for the wallcrossing of these invariants in terms of elliptic functions and modular forms.

VERLINDE FORMULAE ON COMPLEX SURFACES I: K-THEORETIC INVARIANTS

L. GÖTTSCHE, M. KOOL, AND R. A. WILLIAMS

Abstract. We conjecture a Verlinde type formula for the moduli space of Higgs sheaves on a surface with a holomorphic 2-form. The conjecture specializes to a Verlinde formula for the moduli space of sheaves. Our formula interpolates between K-theoretic Donaldson invariants studied by the first named author and Nakajima-Yoshioka and K-theoretic Vafa-Witten invariants introduced by Thomas and also studied by the first and second named authors. We verify our conjectures in many examples (e.g. on K3 surfaces).

$$
b_{2}^{+}(X)=1
$$

Derived a wall-crossing formula

Differs from GNY.

Agrees with GNY.
(Suitably interpreted.)
This raises some puzzles...
$Z^{J}(\mathcal{R}, n)=\Phi^{J}(\mathcal{R}, n)+Z_{S W}^{J}(\mathcal{R}, n)$
$J \in H^{2}(X, \mathbb{R}): \quad J=* J \& J^{2}=1 \& J \in$ Positive $L C$
$Z_{S W}^{J}$: Contribution of SW invariants
$\Phi^{J}(\mathcal{R}, n): 4 \mathrm{~d}$ Coulomb branch integral
One can deduce $Z_{S W}^{J}$ from Φ^{J}
For 5d SYM gauge group of rank 1: Coulomb branch $=\mathbb{C}$

Measure is singular at 4 special points and ∞

SW special Kahler geometry is subtle

a : cylinder valued

$$
\begin{aligned}
\mathcal{F} & \sim R^{-2} L i_{3}\left(e^{-2 R a}\right)+\cdots \\
& + \text { Instanton corrections }
\end{aligned}
$$

[Nekrasov, 1996]

Modular Parametrization Of U-plane

$$
\begin{gathered}
\left(\frac{U}{R}\right)^{2}+\tilde{u}(\tau)^{2}=8+4\left(\mathcal{R}^{2}+\mathcal{R}^{-2}\right) \\
\tilde{u}(\tau)=2\left(\frac{\vartheta_{2}(\tau)}{\vartheta_{3}(\tau)}+\frac{\vartheta_{3}(\tau)}{\vartheta_{2}(\tau)}\right) \quad \text { Hauptmodul for } \Gamma^{0}(8)
\end{gathered}
$$

$$
\begin{gathered}
\Phi^{J}(\mathcal{R}, n)=\int_{\mathcal{F}} d \tau d \bar{\tau} \nu(\tau) C(\tau)^{n^{2}} \Psi J\left(\tau, \frac{v(\tau)}{2} n\right) \\
v(\tau)=\frac{\vartheta_{4}^{13-b_{2}}}{\eta^{9}} \frac{1}{\sqrt{1-2 \mathcal{R}^{2} u(\tau)+\mathcal{R}^{4}}} \\
4 u(\tau)=\tilde{u}(\tau)^{2}-8 \\
C(\tau)=\frac{\vartheta_{4}\left(\tau, \frac{v(\tau)}{2}\right)}{\vartheta_{4}(\tau)} \quad \frac{\vartheta_{1}\left(\tau, \frac{v(\tau)}{2}\right)}{\vartheta_{4}\left(\tau, \frac{v(\tau)}{2}\right)}=-\mathcal{R}
\end{gathered}
$$

$$
\Psi^{J}(\tau, z)=\sum_{k \in H^{2}(X, \mathbb{Z})}\left(\frac{\partial}{\partial \bar{\tau}} E_{k}^{J}\right) q^{-\frac{k^{2}}{2}} e^{-2 \pi i k \cdot z}(-1)^{k \cdot K}
$$

$$
E_{k}^{J}=\operatorname{Erf}\left(\sqrt{\operatorname{Im} \tau}\left(k+\frac{\operatorname{Im} z}{\operatorname{Im} \tau}\right) \cdot J\right)
$$

$$
v(\tau)=\frac{\vartheta_{4}^{13-b_{2}}}{\eta^{9}} \frac{1}{\sqrt{1-2 \mathcal{R}^{2} u(\tau)+\mathcal{R}^{4}}} \quad C(\tau)=\frac{\vartheta_{4}\left(\tau, \frac{v(\tau)}{2}\right)}{\vartheta_{4}(\tau)}
$$

$\Phi^{J}(\mathcal{R}, n)=\int_{\mathcal{F}} d \tau d \bar{\tau} v(\tau) C(\tau)^{n^{2}} \Psi J\left(\tau, \frac{v(\tau)}{2} n\right)$

Wall-Crossing Formula @ ∞

$$
\Phi^{J}-\Phi^{J^{\prime}}=\left[v C^{n^{2}} \Theta^{J, J^{\prime}}\right]_{q^{0}}
$$

$$
\sum_{k}\left[\operatorname{sgn}\left\{\left(k+\frac{n}{2} \frac{\operatorname{Im} v(\tau)}{\operatorname{lm} \tau}\right) \cdot J\right\}-\left\{J \rightarrow J^{\prime}\right\}\right] q^{-\frac{k^{2}}{2}} e^{-2 \pi i k n \frac{v(\tau)}{2}}(-1)^{k \cdot k}
$$

$v, C, \Theta^{J, J^{\prime}}$ are functions of τ and of \mathcal{R}

Subtle order of limits: $\mathcal{R} \rightarrow 0$ vs. $\mathfrak{J} \tau \rightarrow \infty$
A. First expand in \mathcal{R} around $\mathcal{R}=0$ then take the constant q^{0} term at each order in \mathcal{R}

This agrees with GNY

B. First expand in q and extract the constant q^{0} term

1. Results differ from GNY

2. Terms involving negative powers of \mathcal{R}

$$
Z(\mathcal{R}, n)=\sum_{k=0}^{\infty} \mathcal{R}^{d_{k} / 2} \int_{\mathcal{M}_{k}} e^{c_{1}(L(n))} \hat{A}\left(\mathcal{M}_{k}\right)
$$

Did we make a technical mistake?

Probably not:

Using toric localization and the 5d instanton partition function we derived exactly the same formula for wall-crossing @ ∞

Moreover, using the wall-crossing behavior of $\Phi^{J}(\mathcal{R}, n)$ at the strong coupling cusps allows one to derive $Z_{S W}^{J} \Rightarrow$ partition function for $b_{2}^{+}>1$

$$
\begin{gathered}
G(\mathcal{R}, n)=\frac{2^{2 \chi+3} \sigma-\chi_{h}}{\left(1-\mathcal{R}^{2}\right)^{\frac{1}{2} n^{2}+\chi_{h}}} \sum_{c} S W(c)\left(\frac{1+\mathcal{R}}{1-\mathcal{R}}\right)^{c \cdot \frac{n}{2}} \\
Z(\mathcal{R}, n)=\sum_{\xi \in \mu_{4}} \xi^{-\chi_{h}} G(\xi \mathcal{R}, n)
\end{gathered}
$$

Agrees with, and generalizes, GKW Conjecture 1.1

Explicit evaluation of our U-plane integral Φ^{J}

for special values of J involves some interesting technical considerations in the theory
of Jacobi-Maass forms

The Special Period Point

For any manifold with $b_{2}^{+}=1$

\exists special J_{0} such that $\Psi_{v}^{J_{0}}$ factorizes:

$$
\Psi^{J_{0}}(\tau, z)=f(\tau, z) \Theta_{L_{-}}(\tau, z)
$$

$$
f(\tau, z)=\sum_{k \in \mathbb{Z}} \partial_{\bar{\tau}} E_{k}^{J} q^{-\frac{1}{4} k^{2}} e^{-2 \pi i k \cdot z}
$$

Measure As A Total Derivative

$$
\Omega=d \Lambda \quad \Lambda=d \tau \mathcal{H} \hat{G}
$$

Where we can write \hat{G} explicitly so that Λ is:

1. Well-defined
2. Nonsingular away from $\tau \in\{$ cusps $\}$
3. Good q_{i} expansion near cusps

Harmonic Jacobi-Maass Forms

These conditions determine \hat{G} uniquely.
Modular completion of an Appel-Lerche sum

$$
\begin{aligned}
& F(\tau, z) \sim \frac{e^{-2 \pi i z}}{\vartheta_{4}(2 \tau)} \sum_{n \in \mathbb{Z}} \frac{(-1)^{n} q^{n^{2}-\frac{1}{4}}}{1+e^{4 \pi i z} q^{2 n-1}} \\
& z=n_{0} \frac{v(\tau)}{2} \quad n_{0}:=n \cdot J
\end{aligned}
$$

The modular completion is not unique because we can add a meromorphic modular function to $F\left(\tau, \frac{n_{0} v(\tau)}{2}\right)$

We need to choose the one with no unwanted poles
in the fundamental domain.

This is technically challenging for general values of n_{0}

All this should generalize to (anomaly-free) 6 d SYM theories on $X \times \mathbb{E}$

$$
\hat{A}\left(\mathcal{M}_{k}\right) \rightarrow \operatorname{Ell}\left(\mathcal{M}_{k}, q\right)
$$

So far, we did not use any K-theory in describing the "K-theoretic Donaldson invariants"

It would be very desirable to do so, because the 6d version, analogously formulated could be quite interesting:

Conjecture:

Integrals in elliptic cohomology of distinguished classes defined by the susy sigma model with target space \mathcal{M}_{k} define smooth invariants of four-manifolds

Summary

The FLM/Beauty \& Beast formulation of the Monster group has underlying extended superconformal symmetry with $\mathcal{N} \geq 2$

Complete classification of T-invariant quantum spin CSW theories for torus gauge group. The general case is stated, conjecturally, in terms of a Witt group

Twisted 5d SYM computes \hat{A}-genera of instanton moduli spaces, but the physical path integral leads to puzzling discrepancies with the mathematical results of GNY/GKW and the general predictions of UV localization.

Jhatsall J.fles!

