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Moonshine Phenomena,
Supersymmetry,
and Quantum Codes



1.A: Some Background



RCFT Approach To FLM

The original RCFT explanation of Monstrous
Moonshine begins with 24 free chiral bosons
with target space the Leech torus ;= R**/A

A c R?%* is the Leech lattice,

D25-brane

Moreover, target space torus has a very
special *B-field”
S=[d%( Gy 0ix¥ dtxY + Bm,eijaixuajx")


Presenter
Presentation Notes
Later I will show you how you can construct the Golay code for yourself 
At your own kitchen table – were you so inclined



Zz _Orb|f0|d

Now gauge the global symmetry:
X - —x forx € R**/A

Hy =Hy © Hy



Nontrivial Gauge Bundle on S?
Twist Fields

Identify order two points in the torus R%*/A

T,(A) == A/2A

Orbifold breaks translation symmetry
on Leech torus down to T, (A)

B —field defines a symplectic form on T, (A)

B(11,4,) = (—1)M42



Noncommutative Translations - 2/2

Unbroken translation symmetry realized on
Hilbert space via a nontrivial central extension

0-> Z, — }[(TZ(A))—> T,(A) - 0

T(A1)T(A2) = €(A4,22)T (44 + 43)

E(Al'AZ) . 1A A
6(/12»/11)_ ( 1)

Early example of noncommutative
geometry on D-branes induced by a B-field




Let & be the unique irreducible
representation of the

Heisenberg group H (T, (A)):

Construct it using y —matrices.

S$ :  Spinor representation ”

H=F QRS =H:DH:



FLM Module
_ qr+ +
}[FLM — }[A @ }[T
FLM & Borcherds:

The automorphism group of the VOA
Hrry is the Monster Group



Payoff: Conceptual Explanation of
Modularity

mmmmm) Modularity

This is the gold standard for the conceptual
explanation of Moonshine-modularity

A truly satisfying conceptual explanation

of genus zero properties remains elusive.

Important progress: Duncan & Frenkel 2009;
Paquette, Persson, Volpato 2017



1.B: Statement
Of The Problem



1988:

Beauty and the Beast: Superconformal Symmetry
in a Monster Module

L. Dixon''*, P. Ginsparg? ** and J. Harvey> ***

1.3 Physics Department, Princeton University, Princeton, NJ 08544, USA
2 Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract. Frenkel, Lepowsky, and Meurman have constructed a representation
of the largest sporadic simple finite group, the Fischer—Griess monster, as the
automorphism group of the operator product algebra of a conformal field
theory with central charge ¢ = 24. In string terminology, their construction
corresponds to compactification on a Z, asymmetric orbifold constructed from
the torus R**/A, where A is the Leech lattice. In this note we point
out that their construction naturally embodies as well a larger algebraic
structure, namely a super-Virasoro algebra with central charge ¢ = 16, with the
supersymmetry gencrator constructed in terms of bosonic twist fields.



(Super-) Conformal Symmetry:

— (n® —n)8nimo n,meZ

[Ln» Lm] — (Tl — m)Ln+m + 12

C
T(z) = Ez—n—an T ~ 7, 20w | oTw)

z—w)r (z—-w)?2 z—w
Nnez

Superconformal symmetry = supercurrent:

3
_‘]'
(Z) F( ) 2 F(“’) a]F(W)

3 Z—w)2 z—w
Tp(z) = z G-z "2 ( )
T

: 2T
Tp@Tpw) ~ osg + 2t



Presenter
Presentation Notes
Nick has explored applications of these superconformal algebras 
To condensed matter in interesting ways – for example generating 
interesting states like Read-Rezayi and others. 


There are no dimension 3/2 fields in Hg; i

Associated to a nonanomalous Z, is a
“spin lift” - a 2d spin conformal field theory”
[Lin & Shao: systematic study]

Hpgp = Hp D Hy

has fields with conformal dimension in Z + %



What is the actual
supercurrent?

Not known.
Not easy.

Today | will fill in this gap.
It is very recent work with R. Singh



1.C: Solution
Of The Problem



In one of our (several) attempts to
explain Umbral Moonshine, Jeff Harvey
and | discovered a curious relation
between supercurrents in certain
superconformal 2d field theories and
guantum error correcting codes.

Moonshine, Superconformal Symmetry, and Quantum
Error Correction

Jeffrey A. Harvey,' Gregory W. Moore?



Work with Jeff focused on a K3 sigma model
and Conway Moonshine

We showed that the superconformal
current could be constructed using a
special spinor determined by a code.

Jeff and | speculated the same pattern
would appear in the construction of the
superconformal generator in Hpggp

This turns out to be correct



With a student,
Ranveer Singh,
we have indeed realized
the supercurrent in this way




For every spinor ¥ € § we have a
dimension 3/2 primary field Viy € H

Vi (21)V(2;) ~

Yy 1Yy
~ T3 + ——T(Zz)
Z12 3 Z1?

Forany W such that k; (W) = 0
forall L€ A: A% =4

= Vg is a supercurrent



We need to compute k; (V)

We need to know about
the OPE of bosonic twist fields .....

.... challenging .....



THE CONFORMAL FIELD THEORY OF ORBIFOLDS

Lance DIXON!2

Joseph Henry Laboratories, Princeton University, Princeton NJ 08544, USA

Daniel FRIEDAN?

Enrico Fermi and Jumes Franck Institutes and Department of Physics, University of Chicago,
Chicago, 11. 60637, USA

Emil MARTINEC*?
Joseph Henry Laboratories, Princeton University, Princeton NJ (08544, USA

Stephen SHENKER®

Enrico Fermi and James Franck Institutes and Department of Physics, University of Chicago,
Chicago, TL 60637, USA

Conformal Field Theories, Representations
and Lattice Constructions

L. Dolan!, P. Goddard 2, P. Montague 2

1 Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599,
U.S.A.
2 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver

Street, Cambridge, CB3 9EW, UK.

Received: 15 September 1994 /Accepted: 23 October 1995



P Py 1 -
~ Y : qu T(Zz) 4+ — E Kl(qj)elﬂx(zz)
zi, 871 “12 571,

kA (P) ~ (¥, T()WP)

T(A) € H(T,(N))



A Strategy To Find A Suitable W

For any Abelian subgroup £ c IH“(TZ (A))

p— 2 T(A)
[A]leL

is proportional to a projection operator

A

L maximal = P is rank one

So we seek maximal subgroups £ such
that Vy is a supercurrent for ¥ € Im(P)



Method to find a suitable £ C }[(TZ (A)) :
Find a lattice A, < A such that

‘AerZ‘EJASC — Al 'Az ==C)ﬂQOClZE
2A A, C A

212 212
ALEA, = A*=0mod4

Nonzero 1 € A, = 1* > 4



Choose an isomorphism T, (A) = IF%4

L->L—-> C c F5*

=4 = (Y, TADY¥Y)=0

because of the error correcting properties of C

Existence of A, = Vy is a superconformal
currentin Hggp forV? € Im P



Example of a sublattice Ag,

Dong, Li, Mason, Norton:
There is an isometric embedding

of V2L into the Leech lattice for
every Niemeier lattice L

Age = V2A

Are there others?
Does Hggp have N > 1 supersymmetry ?



Embarrassment Of Riches

Dong, Li, Mason, Norton: There are

5163643468800000
embeddings V2A & A

For each embedding t we get a self-dual
doubly even code C}, c F5*

Inequivalent codes give
different supercurrents



Theorem (Pless and Sloane): There are 9 inequivalent
self-dual doubly even dimension 12 codes in F5*

So, our construction can yield up to
9O distinct supercurrents

We are trying to find V'

Using the quaternary Golay code
we can show that V' = 2



Time Reversal In
Chern-Simons-Witten Theory



When does 3d Chern-Simons-Witten
theory have a time reversal symmetry?

General theory based on compact group
G anda level” k € H*(BG; 7Z)

Which (G, k) give
T-reversal invariant theories?

Related: When does Reshetikhin-Turaev-Witten
topological field theory factor through
the unoriented bordism category?



Some nontrivial examples of
T-invariant CSW theories
appeared in several recent papers

[Seiberg & Witten 2016; Hsin & Seiberg 2016; Cordova, Hsin & Seiberg |

G= PSU(N) k=N

But there is no systematic
understanding.



With my student Roman Geiko
we have recently carried out a
systematic study for

Spin Chern-Simons Theory with
torus gauge group G = U(1)"

S—lfKAdA
4 YT

K;; + r Xr nondegenerate, integral
symmetric matrix: determines integral lattice L



Classical T-reversal:
3 U € GL(r,Z) such that

UKUY = —K
(Note: o(L) = 0)

But there can be quantum T-reversal
symmetries not visible classically.

Rank 2 examples studied by
Seiberg & Witten; Delmastro & Gomis



The quantum theory does not

depend on all the details of L
What does it depend on?

Finite Abelian group D(L) := LV/L

a.k.a group of anyons” a.k.a. group of 1-form symmetries”

Quadratic Refinement (spin of anyons) :

aw () =5 (%% = W) + = (W, W) mod Z

1 z eZnqu(x) B eZTL’l'O-gL)
VIDWDI &5, -




Theorem
[ Belov & Moore; Freed,Lurie,HopkinsTeleman]

The quantum theory only depends on the
equivalence class of the triple (D, g, )

qg:D - R/Z o € 71/247

1 ZeZTEi q(x) o Zﬂi%
NI — €

XED

Conversely, every such triple arises
from some torus CSW theory



Equivalence of triples
(D,q,0) = (D',q',0)
3 isomorphism f:D — D’
3 A eD
q(x) = q'(f(x) +4°)



T-Reversal Criterion
[((D,q,0)] =[(D,—q,—0)]

q: Determines the spin of anyons

b: Determines the braiding of anyons



Simpler Problem: The Witt Group (1936)

b(x,y) =qx+y)—qlx)—q(y)+q(0)

Throw away g, g and just keep b.

Classify [(D, b)]|
[(DlJbl)] + [(Dz,bz)] = [(Dl @ Dz, bl @ bZ)]

Abelian monoid DB



DB =@, DB,
Odd p: DB, is generated by forms on Z/p" Z

Xpr: b(1,1) =p™"  Ypr: b(L,1)=6p~"

0: Quadratic nonresidue modulo p"

p = 2 Many generating forms:

AZT, BZT, CZT, r ) FZT



Submonoid Spf Split forms:
D - Dl 69 Dz

D, = 2)1l
Witt = DB/Spfl

Abelian group whose
structure is known.



Wall, Miranda, Kawauchi & Kojima

determine relations on the generators
Witt =@, Witt,
podd: Witt, =@s1 Wy

p—1

kK ~ 1) _ _
W=7, DL, (-5)-07-1

p—1

sz' = 7y (—%)=(—1) 7 = -1




Spt c DB':= {[D,b] =[D,—-b]} c DB

Roman computed generators for the
(infinite) Abelian subgroup

DB /Spt

and then refined it to
T —invariant triples



Theorem: A T-invariant triple
(D, g,5)] must be a direct sum of

9 b q o mod 8
Z/p", p=1mod4 Xpr ux?/p" r(p? —1)/2

o v /p" r(p? —1)/2 + 4r
Z/p". p=3mod4 Xopr uxz? /p" r(p? —1)/2
Z/2 Ay 22 /4—1/8 0
(Z./2)? Eo xy/2 0
(2/4)4 44422 (;IZ% —|— ;II% —|— 5;1.% —|— 51_21)/8 —1
2)2" X ZL)2", r>1 FEor xy /2" +alx/2 4+ y/2) 0
Z)2™ X Z)2™ m =2 | Fom (22 + xy + y2) /2™ 4(m+1)
(Z/Q-m)al_ m > D) 4‘42m Z;l:l ;I:?/Q?n.—i—l 4
(Z/27)?, m > 2 Aom + Bom | a2 /2mF1 4 342 j2m 1 4(m+1)
(Z)2)?, r > 3 Agn + Don | 22 /271 4 792 J2n ] 0
Z or _1 r 2 3 3}1271 + ngn .3__ T 2.71—1—1 1 5?/_. 2?14-1 An,

i=1 :

Table 3. T-invariant quartets. Here, (_Tl) = 1, (@)

P p

_ (9—) — Lr>1m>=2n>3

o € {0,1}. Note, we can add 1/2 to ¢ and 4 to ¢ in any line to obtain another quartet.




Example: L =A4, andL = D, can be
primitively embedded into Eg (Nikulin)

These are positive definite, and
cannot be T-invariant classically

Nevertheless, they are
guantum T-invariant



Conjecture for the general
(non-spin) case:

(G, k) » CSW(G, k) » MTC(G, k)

. Moore &
Witten Seiberg

WZW (G, k)



Definition [Lee & Tachikawa; Kong & Zhang]. The time
reversal of an MTC C with braiding
Byy:x @y — y &® x and ribbon structure

0.:x — xisthe MTC C"°" with

rev . -1 rev ... n—1
BX,Y T By,x HX T HX

A CSW theory is time reversal invariant
if there is an equivalence of MTC's

MTC(G, k)" = MTC(G,k)



There is a mathematical notion of a
Witt group of (hondegenerate) braided

fusion categories.
[Davydov, Muger, Nikshych, Ostrik 2010]

C; ~ C, ifthere exist fusion
categories Dy and D, such that

C: ®Z(Dy) =C, Q Z(D,)



CONJECTURE

A (bosonic) CSW (G, k) is T-invariant
ff
IMTC(G, k)| isorder 2 in Wittt



Condition On Higher Gauss Sums

Higher Gauss sums Y., d20 studied in

[Ng, Schopieray, Wang 2018;
Kaidi, Komargodski,Ohmori,Seifnashri, Shao 2021]

are all real.

The examples of Seiberg et. al. satisfy
this condition.



Topological Interfaces

It is always true that C @ C™¢Y = Z(D) and
therefore there is a topological gapped

boundary condition for C Q) C"¢"
[Freed & Teleman]

Conjecture is equivalent to existence
of a topological interface between
CS(G, k) and its time-reversal

(Related to work of Kapustin & Saulina.)



U-Plane For 5d SYM And
Four-Manifold Invariants




“K-Theoretic Donaldson Invariants’

y [
Jan Manschot Gregory Moore - Xinyu Zhang

e

-

| ! =
e

\
~
_
N




Five Dimensions
Partial Topological Twist of 5d SYM on X x S*

Reduces to SQM on the moduli space of instantons:
(Requires that M be Spin-c)

R=RA
Z[R] = E:de/z f A(T M)
k=0 M

[Nekrasov (1996); Losev, Nekrasov, Shatashvili (1997); ....]

+ important generalization ...



Chern-Simons Observables
U(1);,s sSymmetry with current | =Tr(f A f)

Couple to background F( ) ,
gauge field A: il 7

0(n)=f Tr(ada+ a)+
X(n)xS1 3

= Jy 1 FLA) ATT ( ada + §a3) + susy completion

Z(R,n) = ( eM)



Five Dimensions

Z(R,n) = Z Rk/2 j ch(L(n)) A(M,)
k=0 Ml
Using both the Coulomb branch integral
(a.k.a. the U-plane integral) and,
independently, localization techniques,
we make contact with the work of
mathematicians



K-THEORETIC DONALDSON INVARIANTS VIA INSTANTON
COUNTING

LOTHAR GOTTSCHE, HIRAKU NAKAJIMA. AND KOTA YOSHIOKA

To Friedrich Hirzebruch on the occasion of his eightieth birthday

ABSTRACT. In this paper we study the holomorphic Euler characteristics of determinant
2 OO 6 * line bundles on moduli spaces of rank 2 semistable sheaves on an algebraic surface X,
¢ which can be viewed as K -theoretic versions of the Donaldson invariants. In particular
if X is a smooth projective toric surface, we determine these invariants and their wall-
crossing in terms of the K-theoretic version of the Nekrasov partition function (called
5-dimensional supersymmetric Yang-Mills theory compactified on a circle in the physics
literature). Using the results of [43] we give an explicit generating function for the wall-
crossing of these invariants in terms of elliptic functions and modular forms.

VERLINDE FORMULAE ON COMPLEX SURFACES I:
K-THEORETIC INVARIANTS

L. GOTTSCHE, M. KOOL, AND R. A. WILLIAMS

ABSTRACT. We conjecture a Verlinde type formula for the moduli space of
Higgs sheaves on a surface with a holomorphic 2-form. The conjecture spe-
2 O 1 9 : cializes to a Verlinde formula for the moduli space of sheaves. Our formula
interpolates between A -theoretic Donaldson invariants studied by the first
named author and Nakajima-Yoshioka and K -theoretic Vafa-Witten invari-
ants introduced by Thomas and also studied by the first and second named
authors. We verify our conjectures in many examples (e.g. on K3 surfaces).



by (X) =1

Derived a wall-crossing formula

Differs from GNY.

Agrees with GNY.
(Suitably interpreted.)

This raises some puzzles...



Z1(R,n) = ®/(R,n)

Z1, (R,n)

JeEH*(X,R): | =+] &J*=1&] € Positive LC

ZSJ.W : Contribution of SW invariants

®/(R,n): 4d Coulomb branch integral

One can deduce ZS{W from ®/

For 5d SYM gauge group of rank 1:
Coulomb branch =C

Measure is singular at 4 special points and oo



SW special Kahler geometry is subtle

a: cylinder valued

F ~ R 2Lis(e 2R%) 4 ...

+Instanton corrections

[Nekrasov, 1996]



Modular Parametrization Of U —plane

U 2
(ﬁ) + ﬂ(’l’)z =8+

4(R% + R™%)

) Hauptmodul for ['°(8)

ix? \ /
\f
|
4 a8 6



drdtv(t) C(x)" W/ (T, ?n)

9,°7" 1

n°  J1-2R2%u(r) + R*

4u(t) = 1i(r)* — 8

9, (T, %T)) V1 (T’ @)
U, (7) Uy (

C(t) =




k* _
LIJ](TJ Z) — Z (6_1_- Eé ) q_Te—ZTCl k-z (_1)k.K

Imt

E,{=Erf<W <k+ ImZ).]>

g0z 1 9, (T, %T))
v(1) = - 2 - C(r) =
J1-2R%u(t) + R 9,(0)

drdt v(7) C(0)" W/ (T, @n)



Wall-Crossing Formula @ oo

o) — ) =|v C”ZG)“’]qO

zlsgn{(k%h?n?(rﬂ) }_U_)]}] e R e

k

v.C, 077" are functions of T and of R

Subtle order of limits: R > 0 vs. 37 — oo



A. First expand in R around R = 0 then take
the constant g° term at each orderin R

This agrees with GNY

B. First expand in g and extract the constant g° term
1. Results differ from GNY

2. Terms involving negative powers of R

Z(R,n) = Z RAk/2 f pC1(L(n)) A(Mk)
k=0 M

k



Did we make a technical mistake?
Probably not:

Using toric localization and the 5d
instanton partition function we
derived exactly the same formula for
wall-crossing @ oo



Moreover, using the wall-crossing behavior of
®/ (R, n) at the strong coupling cusps allows

one to derive Zgw = partition function for by > 1

22)(+3 0—Xh 1+R g
G(R,n) = SW
(Fon) (1—1732)%"2+Xh 2 SW(c) ( 5’3)

ZRn) = ) §IGERN)
SEUY

Agrees with, and generalizes, GKW Conjecture 1.1



Explicit evaluation of our
U-plane integral ®/
for special values of | involves
some interesting technical
considerations in the theory
of Jacobi-Maass forms



The Special Period Point

For any manifold with b = 1
3 special J, such that ‘PJO factorizes:

Who(z,z) = f(z,2) 0,_(1,2)

1 .
f(r,z) = i 0-E] q 3 e2mikz



Measure As A Total Derivative

O=dA A=dtH G

Where we can write G explicitly so that A is:

1. Well-defined
2. Nonsingular away from t € { cusps}
3. Good g; expansion near cusps



Harmonic Jacobi-Maass Forms

These conditions determine G uniquely.

Modular completion of an Appel-Lerche sum

F(t,2) ez (17" s
T,Z) ~ .
g ATl Z 42 —1
0,(27) L 1+e q
- v(7)
Z =Ny —(— Ng =N ]

2



The modular completion is not unique

because we can add a meromorphic
nov(r))
2

modular function to F (T,

We need to choose the one
with no unwanted poles
in the fundamental domain.

This is technically challenging
for general values of n,



All this should generalize to (anomaly-free)
6d SYM theorieson X X [




So far, we did not use any K-theory in describing
the K-theoretic Donaldson invariants”

It would be very desirable to do so, because the 6d
version, analogously formulated could be quite interesting:

Conjecture:

Integrals in elliptic cohomology of
distinguished classes defined by
the susy sigma model with target
space M, define smooth
invariants of four-manifolds



Summary

The FLM/Beauty & Beast formulation of the
Monster group has underlying extended
superconformal symmetry with N' = 2

Complete classification of T-invariant quantum
spin CSW theories for torus gauge group.
The general case is stated, conjecturally,

in terms of a Witt group

Twisted 5d SYM computes A-genera of instanton
moduli spaces, but the physical path integral leads
to puzzling discrepancies with the mathematical
results of GNY/GKW and the general predictions
of UV localization.
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