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Moonshine Phenomena,
Supersymmetry, 

and Quantum Codes



1.A:  Some Background



RCFT Approach To FLM

Λ ⊂ ℝ24 is the Leech lattice,  

The original RCFT explanation of Monstrous 
Moonshine begins with 24 free chiral bosons  
with target space the Leech torus :=  ℝ24/Λ

Moreover, target space torus has a very 
special ``B-field’’

𝑆𝑆 = ∫ 𝑑𝑑2𝜎𝜎 ( 𝐺𝐺𝜇𝜇𝜇𝜇 𝜕𝜕𝑖𝑖𝑥𝑥𝜇𝜇 𝜕𝜕𝑖𝑖𝑥𝑥𝜇𝜇 + 𝐵𝐵𝜇𝜇𝜇𝜇𝜖𝜖𝑖𝑖𝑖𝑖𝜕𝜕𝑖𝑖𝑥𝑥𝜇𝜇𝜕𝜕𝑖𝑖𝑥𝑥𝜇𝜇)

D25-brane 

Presenter
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ℤ2 −Orbifold 

Now gauge the global symmetry:
�⃗�𝑥 → −�⃗�𝑥 for �⃗�𝑥 ∈ ℝ24/Λ

ℋΛ = ℋΛ
+ ⊕ℋΛ

−



Nontrivial Gauge Bundle on  𝑆𝑆1
Twist Fields 

𝑇𝑇2 Λ ≔ Λ/2Λ

Identify order two points in the torus ℝ24/Λ

Orbifold breaks translation symmetry 
on Leech torus down to 𝑇𝑇2 Λ

𝐵𝐵 −field defines a symplectic form on 𝑇𝑇2 Λ

𝐵𝐵 𝜆𝜆1, 𝜆𝜆2 = −1 𝜆𝜆1⋅𝜆𝜆2



Noncommutative Translations - 2/2
Unbroken translation symmetry realized on 

Hilbert space via a nontrivial central extension  

𝑇𝑇(𝜆𝜆1)𝑇𝑇(𝜆𝜆2) = 𝜖𝜖 𝜆𝜆1, 𝜆𝜆2 𝑇𝑇 𝜆𝜆1 + 𝜆𝜆2
𝜖𝜖 𝜆𝜆1, 𝜆𝜆2
𝜖𝜖 𝜆𝜆2, 𝜆𝜆1

= −1 𝜆𝜆1⋅𝜆𝜆2

Early example of noncommutative 
geometry on D-branes induced by  a B-field 

0 → ℤ2 → ℋ 𝑇𝑇2 Λ → 𝑇𝑇2 Λ → 0



Let 𝒮𝒮 be the unique irreducible 
representation of the 

Heisenberg group ℋ 𝑇𝑇2(Λ) :

𝒮𝒮 ∶ ``Spinor representation ‘’

Construct it using 𝛾𝛾 −matrices. 

ℋ𝑇𝑇 = ℱ ⊗ 𝒮𝒮 = ℋ𝑇𝑇
+ ⊕ℋ𝑇𝑇

−



FLM Module 

ℋ𝐹𝐹𝐹𝐹𝐹𝐹 = ℋΛ
+ ⊕ ℋ𝑇𝑇

+

The automorphism group  of the VOA 
ℋ𝐹𝐹𝐹𝐹𝐹𝐹 is the Monster Group 

FLM & Borcherds: 



Payoff: Conceptual Explanation of 
Modularity  

Modularity

𝑇𝑇ℎ𝑔𝑔 𝑞𝑞 = 𝑇𝑇𝑟𝑟ℋ𝐹𝐹𝐹𝐹𝐹𝐹𝑔𝑔𝑞𝑞
𝐹𝐹0−

𝑐𝑐
24 =

1

g

This is the gold standard for the conceptual 
explanation of Moonshine-modularity 

A truly satisfying conceptual explanation 
of genus zero properties remains elusive. 

Important progress: Duncan & Frenkel 2009; 
Paquette, Persson, Volpato 2017 



1.B:  Statement 
Of The Problem



1988: 



(Super-) Conformal Symmetry: 

𝐿𝐿𝑛𝑛, 𝐿𝐿𝑚𝑚 = 𝑛𝑛 −𝑚𝑚 𝐿𝐿𝑛𝑛+𝑚𝑚 +
𝑐𝑐

12
𝑛𝑛3 − 𝑛𝑛 𝛿𝛿𝑛𝑛+𝑚𝑚,0 𝑛𝑛,𝑚𝑚 ∈ ℤ

𝑇𝑇 𝑧𝑧 = �
𝑛𝑛∈ℤ

𝑧𝑧−𝑛𝑛−2𝐿𝐿𝑛𝑛 𝑇𝑇 𝑧𝑧 𝑇𝑇 𝑤𝑤 ∼
𝑐𝑐
2

𝑧𝑧 − 𝑤𝑤 4 +
2𝑇𝑇 𝑤𝑤
𝑧𝑧 − 𝑤𝑤 2 +

𝜕𝜕𝑇𝑇 𝑤𝑤
𝑧𝑧 − 𝑤𝑤

+ ⋯

Superconformal symmetry ⇒ supercurrent: 

𝑇𝑇𝐹𝐹 𝑧𝑧 = �
𝑟𝑟

𝐺𝐺𝑟𝑟𝑧𝑧
−𝑟𝑟−32

𝑇𝑇𝐹𝐹 𝑧𝑧 𝑇𝑇𝐹𝐹 𝑤𝑤 ∼
�̂�𝑐
4

𝑧𝑧 − 𝑤𝑤 3 +
1
2𝑇𝑇 𝑤𝑤
𝑧𝑧 − 𝑤𝑤

+ ⋯

𝑇𝑇 𝑧𝑧 𝑇𝑇𝐹𝐹 𝑤𝑤 ∼
3
2𝑇𝑇𝐹𝐹 𝑤𝑤
𝑧𝑧 − 𝑤𝑤 2 +

𝜕𝜕𝑇𝑇𝐹𝐹 𝑤𝑤
𝑧𝑧 − 𝑤𝑤

+ ⋯

Presenter
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ℋ𝐵𝐵&𝐵𝐵 = ℋΛ ⊕ℋ𝑇𝑇

Associated to a nonanomalous ℤ2 is a
``spin lift’’  - a ``2d spin conformal field theory’’ 

[Lin & Shao:  systematic study] 

has fields with conformal dimension in ℤ + 1
2

There are no dimension 3/2 fields in ℋ𝐹𝐹𝐹𝐹𝐹𝐹



Today I will fill in this gap. 
It is very recent work with R. Singh   

Not known. 
Not easy. 

What is the actual 
supercurrent? 



1.C:  Solution 
Of The Problem



In one of our (several) attempts to 
explain Umbral Moonshine, Jeff Harvey 

and I discovered a curious relation 
between supercurrents in certain 

superconformal 2d field theories and 
quantum error correcting codes. 



This turns out to be correct 

Work with Jeff focused on a K3 sigma model 
and Conway Moonshine 

Jeff and I speculated the same pattern 
would appear in the construction of the 

superconformal generator in ℋ𝐵𝐵&𝐵𝐵

We showed that the superconformal
current could be constructed using a 
special spinor determined by a code. 



With a student, 
Ranveer Singh, 

we have indeed realized 
the supercurrent in this way 



For every spinor Ψ ∈ 𝒮𝒮 we have a 
dimension 3/2 primary field 𝑉𝑉Ψ ∈ ℋ𝑇𝑇

∼
�ΨΨ
𝑧𝑧123

+
1
8
�ΨΨ
𝑧𝑧12

𝑇𝑇 𝑧𝑧2 +
1
𝑧𝑧12

�
𝜆𝜆:𝜆𝜆2=4

𝜅𝜅𝜆𝜆 Ψ 𝑒𝑒𝑖𝑖𝜆𝜆⋅𝑥𝑥 𝑧𝑧2 ⋯

𝑉𝑉Ψ 𝑧𝑧1 𝑉𝑉Ψ 𝑧𝑧2 ∼

⇒ 𝑉𝑉Ψ is a supercurrent

For any Ψ such that 𝜅𝜅𝜆𝜆 Ψ = 0
for all 𝜆𝜆 ∈ Λ ∶ 𝜆𝜆2 = 4



We need to know about 
the OPE of bosonic twist fields …..

…. challenging …..

We need to compute 𝜅𝜅𝜆𝜆 Ψ





𝜅𝜅𝜆𝜆 Ψ ∼ 〈Ψ,𝑇𝑇 𝜆𝜆 Ψ〉

𝑇𝑇 𝜆𝜆 ∈ ℋ 𝑇𝑇2 Λ

∼
�ΨΨ
𝑧𝑧123

+
1
8
�ΨΨ
𝑧𝑧12

𝑇𝑇 𝑧𝑧2 +
1
𝑧𝑧12

�
𝜆𝜆:𝜆𝜆2=4

𝜅𝜅𝜆𝜆 Ψ 𝑒𝑒𝑖𝑖 𝜆𝜆⋅𝑥𝑥 𝑧𝑧2 ⋯



So we seek maximal subgroups ℒ̂ such 
that 𝑉𝑉Ψ is a supercurrent for Ψ ∈ 𝐼𝐼𝑚𝑚 𝑃𝑃

For any Abelian subgroup ℒ̂ ⊂ ℋ 𝑇𝑇2 Λ

𝑃𝑃 = �
𝜆𝜆 ∈ℒ̂

𝑇𝑇 𝜆𝜆

ℒ̂ maximal ⇒ 𝑃𝑃 is rank one  

A Strategy To Find A Suitable Ψ

is proportional to a projection operator 



𝜆𝜆1, 𝜆𝜆2 ∈ Λ𝑠𝑠𝑐𝑐 ⇒ 𝜆𝜆1 ⋅ 𝜆𝜆2 = 0 𝑚𝑚𝑚𝑚𝑑𝑑 2

2Λ ⊂ Λ𝑠𝑠𝑐𝑐 ⊂ Λ
212 212

𝜆𝜆 ∈ Λ𝑠𝑠𝑐𝑐 ⇒ 𝜆𝜆2 = 0 𝑚𝑚𝑚𝑚𝑑𝑑 4

Nonzero 𝜆𝜆 ∈ Λ𝑠𝑠𝑐𝑐 ⇒ 𝜆𝜆2 > 4

Method to find a suitable ℒ̂ ⊂ ℋ 𝑇𝑇2 Λ ∶
Find a lattice Λ𝑠𝑠𝑐𝑐 ⊂ Λ such that 



Choose an isomorphism 𝑇𝑇2 Λ ≅ 𝔽𝔽224

ℒ̂ → ℒ → 𝒞𝒞 ⊂ 𝔽𝔽224

Existence of Λ𝑠𝑠𝑐𝑐 ⇒ 𝑉𝑉Ψ is a superconformal
current in  ℋ𝐵𝐵&𝐵𝐵 for Ψ ∈ 𝐼𝐼𝑚𝑚 𝑃𝑃

𝜆𝜆2 = 4 ⇒ Ψ,𝑇𝑇 𝜆𝜆 Ψ = 0

because of the error correcting properties of 𝒞𝒞



Example of a sublattice Λ𝑠𝑠𝑐𝑐

Λ𝑠𝑠𝑐𝑐 ≅ 2Λ

Dong, Li, Mason, Norton: 
There is an isometric embedding 
of 2𝐿𝐿 into the Leech lattice for 

every Niemeier lattice L 

Are there others?  
Does ℋ𝐵𝐵&𝐵𝐵 have  𝒩𝒩 > 1 supersymmetry ? 



Dong, Li, Mason, Norton: There are 

5163643468800000

embeddings 2Λ ↪ Λ

For each embedding 𝜄𝜄 we get a self-dual 
doubly even code 𝒞𝒞12𝜄𝜄 ⊂ 𝔽𝔽224

Inequivalent codes give 
different supercurrents 

Embarrassment Of Riches 



Theorem (Pless and Sloane): There are 9 inequivalent 
self-dual doubly even dimension 12 codes in 𝔽𝔽224

So, our construction can yield up to
9 distinct supercurrents 

We are trying to find 𝒩𝒩

Using the quaternary Golay code 
we can show that 𝒩𝒩 ≥ 2



Time Reversal In  
Chern-Simons-Witten Theory 



When does 3d Chern-Simons-Witten 
theory have a time reversal symmetry? 

General theory based on compact group
𝐺𝐺 and a ``level’’  𝑘𝑘 ∈ 𝐻𝐻4 𝐵𝐵𝐺𝐺;ℤ

Which 𝐺𝐺, 𝑘𝑘 give 
T-reversal invariant theories? 

Related:  When does Reshetikhin-Turaev-Witten 
topological field theory factor through 

the unoriented bordism category? 



Some nontrivial examples of
T-invariant CSW theories 

appeared in several recent papers

But there is no systematic 
understanding.

𝐺𝐺 = 𝑃𝑃𝑆𝑆𝑃𝑃(𝑁𝑁)

[Seiberg & Witten 2016; Hsin & Seiberg 2016; Cordova, Hsin & Seiberg ]   

𝑘𝑘 = 𝑁𝑁



Spin Chern-Simons Theory with 
torus gauge group 𝐺𝐺 ≅ 𝑃𝑃 1 𝑟𝑟

𝑆𝑆 =
1
4𝜋𝜋

∫ 𝐾𝐾𝐼𝐼𝐼𝐼 𝐴𝐴𝐼𝐼 𝑑𝑑 𝐴𝐴𝐼𝐼

𝐾𝐾𝐼𝐼𝐼𝐼 ∶ 𝑟𝑟 × 𝑟𝑟 nondegenerate, integral 
symmetric matrix: determines integral lattice 𝐿𝐿

With my student Roman Geiko
we have recently carried out a 

systematic study for 



But there can be quantum T-reversal 
symmetries not visible classically. 

Classical T-reversal: 
∃ 𝑃𝑃 ∈ 𝐺𝐺𝐿𝐿 𝑟𝑟,ℤ such that 

𝑃𝑃𝐾𝐾𝑃𝑃𝑡𝑡𝑟𝑟 = −𝐾𝐾

Rank 2 examples studied by 
Seiberg & Witten; Delmastro & Gomis

(Note: 𝜎𝜎 𝐿𝐿 = 0 )



The quantum theory does not 
depend on all the details of 𝐿𝐿

Finite Abelian group 𝒟𝒟 𝐿𝐿 ≔ 𝐿𝐿∨/𝐿𝐿

𝑞𝑞𝑊𝑊 𝑥𝑥 = 1
2
�𝑥𝑥, �𝑥𝑥 −𝑊𝑊 + 1

8
𝑊𝑊,𝑊𝑊 𝑚𝑚𝑚𝑚𝑑𝑑 ℤ

Quadratic Refinement (spin of anyons) : 

1
𝒟𝒟 𝐿𝐿

�
𝑥𝑥∈𝒟𝒟(𝐹𝐹)

𝑒𝑒2𝜋𝜋𝑖𝑖 𝑞𝑞𝑊𝑊 𝑥𝑥
= 𝑒𝑒2𝜋𝜋𝑖𝑖

𝜎𝜎(𝐹𝐹)
8

What does it depend on? 

a.k.a ``group of anyons’’   a.k.a.  ``group of 1-form symmetries’’ 



Theorem 
[ Belov & Moore; Freed,Lurie,HopkinsTeleman] 

The quantum theory only depends on the 
equivalence class of the triple 𝒟𝒟, 𝑞𝑞, �𝜎𝜎

�𝜎𝜎 ∈ ℤ/24ℤ
1
𝒟𝒟

�
𝑥𝑥∈𝒟𝒟

𝑒𝑒2𝜋𝜋𝑖𝑖 𝑞𝑞 𝑥𝑥 = 𝑒𝑒2𝜋𝜋𝑖𝑖
�𝜎𝜎
8

𝑞𝑞:𝒟𝒟 → ℝ/ℤ

Conversely, every such triple arises 
from some torus CSW theory 



Equivalence of triples

𝑓𝑓:𝒟𝒟 → 𝒟𝒟′∃ isomorphism 

∃ Δ′ ∈ 𝒟𝒟′

𝑞𝑞 𝑥𝑥 = 𝑞𝑞′ 𝑓𝑓 𝑥𝑥 + Δ′

𝒟𝒟, 𝑞𝑞, �𝜎𝜎 ≅ 𝒟𝒟′, 𝑞𝑞′, �𝜎𝜎



T-Reversal Criterion

[(𝒟𝒟, 𝑞𝑞, �𝜎𝜎)] = [ 𝒟𝒟,−𝑞𝑞,−�𝜎𝜎 ]

𝑞𝑞: Determines the spin of anyons

𝑏𝑏: Determines the braiding of anyons

𝑇𝑇



Simpler Problem:  The Witt Group (1936) 

𝑏𝑏 𝑥𝑥,𝑦𝑦 = 𝑞𝑞 𝑥𝑥 + 𝑦𝑦 − 𝑞𝑞 𝑥𝑥 − 𝑞𝑞 𝑦𝑦 + 𝑞𝑞 0

Throw away 𝑞𝑞, �𝜎𝜎 and just keep 𝑏𝑏.

Classify 𝒟𝒟, 𝑏𝑏

𝒟𝒟1, 𝑏𝑏1 + 𝒟𝒟2, 𝑏𝑏2 ≔ 𝒟𝒟1 ⊕𝒟𝒟2, 𝑏𝑏1 ⊕ 𝑏𝑏2

Abelian monoid 𝒟𝒟𝒟



𝒟𝒟𝒟 = ⊕𝑝𝑝 𝒟𝒟𝒟𝑝𝑝
Odd 𝑝𝑝: 𝒟𝒟𝒟𝑝𝑝 is generated by forms on ℤ/𝑝𝑝𝑟𝑟ℤ

𝑋𝑋𝑝𝑝𝑟𝑟: 𝑏𝑏 1,1 = 𝑝𝑝−𝑟𝑟 𝑌𝑌𝑝𝑝𝑟𝑟: 𝑏𝑏 1,1 = 𝜃𝜃𝑝𝑝−𝑟𝑟

𝜃𝜃: Quadratic nonresidue modulo 𝑝𝑝𝑟𝑟

𝑝𝑝 = 2 Many generating forms:  

𝐴𝐴2𝑟𝑟 ,𝐵𝐵2𝑟𝑟 ,𝐶𝐶2𝑟𝑟 , … ,𝐹𝐹2𝑟𝑟



Submonoid 𝒮𝒮𝒮𝒮𝒮 Split forms: 

𝒟𝒟 = 𝒟𝒟1 ⊕𝒟𝒟2

𝒟𝒟1 = 𝒟𝒟1⊥

𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲 ≔ 𝒟𝒟𝒟/𝒮𝒮𝒮𝒮𝒮

Abelian group whose 
structure is known.     



Wall, Miranda, Kawauchi & Kojima 

determine relations on the generators 

𝒲𝒲𝑝𝑝
𝑘𝑘 ≅ ℤ2 ⊕ ℤ2

𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲 ≅⊕𝑝𝑝 𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝑝𝑝
𝑝𝑝 odd:    𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝑝𝑝 ≅⊕𝑘𝑘≥1 𝒲𝒲𝑝𝑝

𝑘𝑘

−
1
𝑝𝑝

= −1
𝑝𝑝−1
2 = 1

𝒲𝒲𝑝𝑝
𝑘𝑘 ≅ ℤ4 −

1
𝑝𝑝

= −1
𝑝𝑝−1
2 = −1



𝒟𝒟𝒟𝑇𝑇 ≔ { 𝒟𝒟, 𝑏𝑏 = 𝒟𝒟,−𝑏𝑏 } ⊂ 𝒟𝒟𝒟

Roman computed generators for the 
(infinite)  Abelian subgroup 

𝒟𝒟𝒟𝑇𝑇/𝒮𝒮𝒮𝒮𝒮

and then refined it to
𝑇𝑇 −invariant triples 

𝒮𝒮𝒮𝒮𝒮 ⊂



Theorem:  A T-invariant triple 
𝒟𝒟, 𝑞𝑞, �𝜎𝜎 must be a direct sum of 



Example:   𝐿𝐿 ≅ 𝐴𝐴4 and 𝐿𝐿 ≅ 𝐷𝐷4 can be 
primitively embedded into 𝐸𝐸8 (Nikulin) 

These are positive definite, and 
cannot be T-invariant classically 

Nevertheless, they are 
quantum T-invariant 



Conjecture for the general 
(non-spin)  case: 

𝐺𝐺, 𝑘𝑘 → 𝐶𝐶𝑆𝑆𝑊𝑊 𝐺𝐺, 𝑘𝑘 → 𝑀𝑀𝑇𝑇𝐶𝐶 𝐺𝐺, 𝑘𝑘

𝑊𝑊𝑊𝑊𝑊𝑊(𝐺𝐺, 𝑘𝑘)

Witten 
Moore & 
Seiberg



Definition [Lee & Tachikawa; Kong & Zhang]: The time  
reversal of an MTC 𝒞𝒞 with braiding

𝐵𝐵𝑥𝑥,𝑦𝑦: 𝑥𝑥 ⊗ 𝑦𝑦 → 𝑦𝑦⊗ 𝑥𝑥 and ribbon structure 
𝜃𝜃𝑥𝑥: 𝑥𝑥 → 𝑥𝑥 is the MTC  𝒞𝒞𝑟𝑟𝑟𝑟𝑟𝑟 with 

𝐵𝐵𝑥𝑥,𝑦𝑦
𝑟𝑟𝑟𝑟𝑟𝑟 ≔ 𝐵𝐵𝑦𝑦,𝑥𝑥

−1 𝜃𝜃𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ≔ 𝜃𝜃𝑥𝑥−1

A CSW theory is time reversal invariant 
if there is an equivalence of MTC’s 

𝑀𝑀𝑇𝑇𝐶𝐶 𝐺𝐺, 𝑘𝑘 𝑟𝑟𝑟𝑟𝑟𝑟 ≅ 𝑀𝑀𝑇𝑇𝐶𝐶 𝐺𝐺, 𝑘𝑘



There is a mathematical notion of a 
Witt group of (nondegenerate) braided 

fusion categories. 
[Davydov, Müger, Nikshych, Ostrik 2010]  

𝒞𝒞1 ∼ 𝒞𝒞2 if there exist fusion 
categories 𝒟𝒟1 and 𝒟𝒟2 such that 

𝒞𝒞1 ⊗ 𝑊𝑊 𝒟𝒟1 ≅ 𝒞𝒞2 ⊗ 𝑊𝑊 𝒟𝒟2



A (bosonic) 𝐶𝐶𝑆𝑆𝑊𝑊 𝐺𝐺, 𝑘𝑘 is T-invariant
iff

𝑀𝑀𝑇𝑇𝐶𝐶 𝐺𝐺, 𝑘𝑘 is order 2 in 𝒲𝒲𝒲𝒲𝒲𝒲𝒲𝒲

CONJECTURE 



Condition On Higher Gauss Sums 

Higher Gauss sums ∑𝑥𝑥 𝑑𝑑𝑥𝑥2𝜃𝜃𝑥𝑥𝑛𝑛 studied in

[Ng, Schopieray, Wang 2018; 
Kaidi, Komargodski,Ohmori,Seifnashri, Shao 2021]  

are all real. 

The examples of Seiberg et. al. satisfy 
this condition. 



Topological Interfaces

Conjecture is equivalent to existence 
of a topological interface between 
𝐶𝐶𝑆𝑆 𝐺𝐺, 𝑘𝑘 and its time-reversal 

It is always true that 𝒞𝒞 ⊗ 𝒞𝒞𝑟𝑟𝑟𝑟𝑟𝑟 ≅ 𝑊𝑊 𝒟𝒟 and 
therefore there is a topological gapped 

boundary condition for 𝒞𝒞 ⊗ 𝒞𝒞𝑟𝑟𝑟𝑟𝑟𝑟
[Freed & Teleman] 

(Related to work of Kapustin & Saulina.) 



U-Plane For 5d SYM And 
Four-Manifold Invariants 



``K-Theoretic Donaldson Invariants’’ 



Five Dimensions 
Partial Topological Twist of 5d SYM on  X × 𝑆𝑆1

𝑊𝑊 ℛ = �
𝑘𝑘=0

∞

ℛ𝑑𝑑𝑘𝑘/2 �
ℳ𝑘𝑘

�̂�𝐴 𝑇𝑇 ℳ𝑘𝑘

[Nekrasov (1996); Losev, Nekrasov, Shatashvili (1997);    …. ] 

+ important generalization  … 

ℛ ≔ 𝑅𝑅 Λ

Reduces to SQM on the moduli space of instantons: 
(Requires that  ℳ be Spin-c ) 



Chern-Simons Observables 
𝑃𝑃 1 𝑖𝑖𝑛𝑛𝑠𝑠𝑡𝑡 symmetry with current 𝐽𝐽 = 𝑇𝑇𝑟𝑟 𝑓𝑓 ∧ 𝑓𝑓

= ∫𝑋𝑋×𝑆𝑆1 𝐹𝐹 𝐴𝐴 ∧ 𝑇𝑇𝑟𝑟 𝑎𝑎 𝑑𝑑𝑎𝑎 + 2
3
𝑎𝑎3 + susy completion 

𝒪𝒪 𝑛𝑛 = �
Σ 𝑛𝑛 ×𝑆𝑆1

𝑇𝑇𝑟𝑟 𝑎𝑎 𝑑𝑑𝑎𝑎 +
2
3
𝑎𝑎3 + ⋯

𝑊𝑊 ℛ,𝑛𝑛 ≔ 〈 𝑒𝑒𝒪𝒪 𝑛𝑛 〉

𝑛𝑛 ≔
𝐹𝐹 𝐴𝐴
2𝜋𝜋

∈ 𝐻𝐻2 𝑋𝑋,ℤ
Couple to background 

gauge field 𝐴𝐴:



Five Dimensions 

Using both the Coulomb branch integral 
(a.k.a. the U-plane integral)  and, 

independently, localization techniques, 
we make contact with the work of 

mathematicians

𝑊𝑊 ℛ,𝑛𝑛 = �
𝑘𝑘=0

∞

ℛ𝑑𝑑𝑘𝑘/2 �
ℳ𝑘𝑘

𝑐𝑐ℎ 𝐿𝐿 𝑛𝑛 �̂�𝐴 ℳ𝑘𝑘



2006:

2019:



𝑏𝑏2+ 𝑋𝑋 = 1

Derived a wall-crossing formula

Agrees with GNY.  

This raises some puzzles…

Differs from GNY. 

(Suitably  interpreted.) 



𝑊𝑊𝐼𝐼 ℛ,𝑛𝑛 = Φ𝐼𝐼 ℛ,𝑛𝑛 + 𝑊𝑊𝑆𝑆𝑊𝑊
𝐼𝐼 ℛ,𝑛𝑛

Φ𝐼𝐼 ℛ,𝑛𝑛 : 4d Coulomb branch integral 

𝐽𝐽 ∈ 𝐻𝐻2 𝑋𝑋,ℝ : 𝐽𝐽 =∗ 𝐽𝐽 & 𝐽𝐽2 = 1 & 𝐽𝐽 ∈ 𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒 𝐿𝐿𝐶𝐶

𝑊𝑊𝑆𝑆𝑊𝑊
𝐼𝐼 : Contribution of SW invariants

One can deduce 𝑊𝑊𝑆𝑆𝑊𝑊
𝐼𝐼 from Φ𝐼𝐼

For 5d SYM gauge group of rank 1: 
Coulomb branch = ℂ

Measure is singular at 4 special points and ∞



SW special Kahler geometry is subtle 

𝑎𝑎: cylinder valued 

ℱ ∼ 𝑅𝑅−2𝐿𝐿𝑃𝑃3 𝑒𝑒−2𝑅𝑅𝑅𝑅 + ⋯

+𝐼𝐼𝑛𝑛𝑃𝑃𝑃𝑃𝑎𝑎𝑛𝑛𝑃𝑃𝑚𝑚𝑛𝑛 𝑐𝑐𝑚𝑚𝑟𝑟𝑟𝑟𝑒𝑒𝑐𝑐𝑃𝑃𝑃𝑃𝑚𝑚𝑛𝑛𝑃𝑃
[Nekrasov, 1996] 



Modular Parametrization Of 𝑃𝑃 −plane 

𝑃𝑃
𝑅𝑅

2

+ �𝑢𝑢 𝜏𝜏 2 = 8 + 4 ℛ2 + ℛ−2

�𝑢𝑢 𝜏𝜏 = 2
𝜗𝜗2 𝜏𝜏
𝜗𝜗3 𝜏𝜏

+
𝜗𝜗3 𝜏𝜏
𝜗𝜗2 𝜏𝜏

Hauptmodul for Γ0 8



Φ𝐼𝐼 ℛ,𝑛𝑛 = �
ℱ
𝑑𝑑𝜏𝜏𝑑𝑑 ̅𝜏𝜏 𝜈𝜈 𝜏𝜏 𝐶𝐶 𝜏𝜏 𝑛𝑛2 Ψ𝐼𝐼 𝜏𝜏,

𝑃𝑃 𝜏𝜏
2

𝑛𝑛

𝜈𝜈 𝜏𝜏 =
𝜗𝜗4
13−𝑏𝑏2

𝜂𝜂9
1

1 − 2 ℛ2𝑢𝑢(𝜏𝜏) + ℛ4

4𝑢𝑢 𝜏𝜏 = �𝑢𝑢 𝜏𝜏 2 − 8

𝐶𝐶 𝜏𝜏 =
𝜗𝜗4 𝜏𝜏, 𝑃𝑃 𝜏𝜏

2
𝜗𝜗4 𝜏𝜏

𝜗𝜗1 𝜏𝜏, 𝑃𝑃 𝜏𝜏
2

𝜗𝜗4 𝜏𝜏, 𝑃𝑃 𝜏𝜏
2

= −ℛ



Ψ𝐼𝐼 𝜏𝜏, 𝑧𝑧 = �
𝑘𝑘∈𝐻𝐻2 𝑋𝑋,ℤ

𝜕𝜕
𝜕𝜕 ̅𝜏𝜏

𝐸𝐸𝑘𝑘
𝐼𝐼 𝑞𝑞−

𝑘𝑘2
2 𝑒𝑒−2𝜋𝜋𝑖𝑖 𝑘𝑘⋅𝑧𝑧 −1 𝑘𝑘⋅𝐾𝐾

𝐸𝐸𝑘𝑘
𝐼𝐼 = 𝐸𝐸𝑟𝑟𝑓𝑓 𝐼𝐼𝑚𝑚𝜏𝜏 𝑘𝑘 +

𝐼𝐼𝑚𝑚 𝑧𝑧
𝐼𝐼𝑚𝑚 𝜏𝜏

⋅ 𝐽𝐽

Φ𝐼𝐼 ℛ,𝑛𝑛 = �
ℱ
𝑑𝑑𝜏𝜏𝑑𝑑 ̅𝜏𝜏 𝜈𝜈 𝜏𝜏 𝐶𝐶 𝜏𝜏 𝑛𝑛2 Ψ𝐼𝐼 𝜏𝜏,

𝑃𝑃 𝜏𝜏
2

𝑛𝑛

𝜈𝜈 𝜏𝜏 =
𝜗𝜗4
13−𝑏𝑏2

𝜂𝜂9
1

1 − 2 ℛ2𝑢𝑢(𝜏𝜏) + ℛ4 𝐶𝐶 𝜏𝜏 =
𝜗𝜗4 𝜏𝜏, 𝑃𝑃 𝜏𝜏

2
𝜗𝜗4 𝜏𝜏



Wall-Crossing Formula @ ∞

Φ𝐼𝐼 − Φ𝐼𝐼′ = 𝜈𝜈 𝐶𝐶𝑛𝑛2Θ𝐼𝐼,𝐼𝐼′

𝑞𝑞0

�
𝑘𝑘

𝑃𝑃𝑔𝑔𝑛𝑛 𝑘𝑘 +
𝑛𝑛
2
𝐼𝐼𝑚𝑚 𝑃𝑃 𝜏𝜏
𝐼𝐼𝑚𝑚 𝜏𝜏

⋅ 𝐽𝐽 − 𝐽𝐽 → 𝐽𝐽′ 𝑞𝑞−
𝑘𝑘2
2 𝑒𝑒−2𝜋𝜋𝑖𝑖 𝑘𝑘⋅𝑛𝑛

𝑟𝑟 𝜏𝜏
2 −1 𝑘𝑘⋅𝐾𝐾

𝜈𝜈,𝐶𝐶,Θ𝐼𝐼,𝐼𝐼′ are functions of 𝜏𝜏 and of ℛ

Subtle order of limits:  ℛ → 0 vs.  ℑ𝜏𝜏 → ∞



A. First expand in ℛ around ℛ = 0 then take 
the constant 𝑞𝑞0 term at each order in ℛ

B. First expand in 𝑞𝑞 and extract the constant 𝑞𝑞0 term

2. Terms involving negative powers of ℛ

𝑊𝑊 ℛ,𝑛𝑛 = �
𝑘𝑘=0

∞

ℛ𝑑𝑑𝑘𝑘/2 �
ℳ𝑘𝑘

𝑒𝑒𝑐𝑐1 𝐹𝐹 𝑛𝑛 �̂�𝐴 ℳ𝑘𝑘

1. Results differ from GNY 

This agrees with GNY 



Did we make a technical mistake? 

Probably not:

Using toric localization and the 5d 
instanton partition function we 

derived exactly the same formula for 
wall-crossing @ ∞



𝐺𝐺(ℛ,𝑛𝑛) = 22𝜒𝜒+3 𝜎𝜎−𝜒𝜒ℎ

1−ℛ2
1
2𝑛𝑛

2+𝜒𝜒ℎ
∑𝑐𝑐 𝑆𝑆𝑊𝑊 𝑐𝑐 1+ℛ

1−ℛ

𝑐𝑐⋅𝑛𝑛2

𝑊𝑊 ℛ,𝑛𝑛 = �
𝜉𝜉∈𝜇𝜇4

𝜉𝜉−𝜒𝜒ℎ𝐺𝐺 𝜉𝜉ℛ,𝑛𝑛

Agrees with, and generalizes, GKW Conjecture 1.1

Moreover, using the wall-crossing behavior of  
Φ𝐼𝐼 ℛ,𝑛𝑛 at the strong coupling cusps allows 

one to derive 𝑊𝑊𝑆𝑆𝑊𝑊
𝐼𝐼 ⇒ partition function for 𝑏𝑏2+ > 1



Explicit evaluation of our
𝑃𝑃-plane integral Φ𝐼𝐼

for special values of 𝐽𝐽 involves 
some interesting technical 

considerations in the theory 
of Jacobi-Maass forms 



The Special Period Point

For any manifold with 𝑏𝑏2+ = 1
∃ special 𝐽𝐽0 such that Ψ𝜇𝜇

𝐼𝐼0 factorizes:  

Ψ𝐼𝐼0(𝜏𝜏, 𝑧𝑧) = 𝑓𝑓(𝜏𝜏, 𝑧𝑧) Θ𝐹𝐹− 𝜏𝜏, 𝑧𝑧

𝑓𝑓(𝜏𝜏, 𝑧𝑧) = �
𝑘𝑘∈ℤ

𝜕𝜕�𝜏𝜏𝐸𝐸𝑘𝑘
𝐼𝐼 𝑞𝑞−

1
4𝑘𝑘

2
𝑒𝑒−2𝜋𝜋𝑖𝑖 𝑘𝑘⋅𝑧𝑧



Measure As A Total Derivative

Ω = 𝑑𝑑 Λ Λ = 𝑑𝑑𝜏𝜏 ℋ �𝐺𝐺

1. Well-defined
2. Nonsingular away from 𝜏𝜏 ∈ { 𝑐𝑐𝑢𝑢𝑃𝑃𝑝𝑝𝑃𝑃}
3. Good 𝑞𝑞𝑖𝑖 expansion near cusps 

Where we can write �𝐺𝐺 explicitly so that Λ is: 



Harmonic Jacobi-Maass Forms

These conditions determine �𝐺𝐺 uniquely. 

Modular completion of an Appel-Lerche sum 

𝐹𝐹 𝜏𝜏, 𝑧𝑧 ∼
𝑒𝑒−2𝜋𝜋𝑖𝑖 𝑧𝑧

𝜗𝜗4 2𝜏𝜏
�
𝑛𝑛∈ℤ

−1 𝑛𝑛𝑞𝑞𝑛𝑛
2−14

1 + 𝑒𝑒4𝜋𝜋𝑖𝑖 𝑧𝑧𝑞𝑞2𝑛𝑛−1

𝑧𝑧 = 𝑛𝑛0
𝑃𝑃 𝜏𝜏

2 𝑛𝑛0 ≔ 𝑛𝑛 ⋅ 𝐽𝐽



The modular completion is not unique 
because we can add a meromorphic

modular function to 𝐹𝐹 𝜏𝜏, 𝑛𝑛0𝑟𝑟 𝜏𝜏
2

We need to choose the one 
with no unwanted poles 

in the fundamental domain.

This is technically challenging 
for general values of 𝑛𝑛0



All this should generalize to (anomaly-free) 
6d SYM theories on 𝑋𝑋 × 𝔼𝔼

�̂�𝐴 ℳ𝑘𝑘 → 𝐸𝐸𝐸𝐸𝐸𝐸 ℳ𝑘𝑘 , 𝑞𝑞



Integrals in elliptic cohomology of 
distinguished classes defined by 

the susy sigma model with target 
space ℳ𝑘𝑘 define smooth 

invariants of four-manifolds 

Conjecture: 

So far, we did not use any K-theory in describing
the ``K-theoretic Donaldson invariants’’ 

It would be very desirable to do so, because the 6d 
version, analogously formulated could be quite interesting:



Summary
The FLM/Beauty & Beast formulation of the 

Monster group has underlying extended 
superconformal symmetry with 𝒩𝒩 ≥ 2

Complete classification of T-invariant quantum 
spin CSW theories for torus gauge group. 
The general case is stated, conjecturally, 

in terms of a Witt group 

Twisted 5d SYM computes �̂�𝐴-genera of instanton 
moduli spaces, but the physical path integral leads 
to puzzling discrepancies with the mathematical 
results of GNY/GKW and the general predictions 

of UV localization. 
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