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Glorious History Of
SYM & Four-Manifolds

Instantons (1975) )

Donaldson invariants (1982) mmmp
TQFT (1988) mmp

Seiberg-Witten Invariants (1994)
mm) Revolution of 1995



Clay Mathematics Proceedings
Volume 5, 2006

But not all questions are answered...

Will We Ever Classify Simply-Connected Smooth
4-manifolds?

Romnald J. Stern

ABSTRACT. These notes are adapted from two talks given at the 2004 Clay
Institute Summer School on Floer homology. gauge theory, and low dimen-
sional topology at the Alfred Rényi Institute. We will quickly review what we
do and do not know about the existence and uniqueness of smooth and sym-
plectic structures on closed, simply-connected 4-manifolds. We will then list
the techniques used to date and capture the key features common to all these
techniques. We finish with some approachable questions that further explore
the relationship between these techniques and whose answers may assist in
future advances towards a classification scheme.

1. Introduction



The SW revolution was based
on pure SU(2) N=2 SYM

The basic idea of topological
twisting applies to any
d=4, N=2 QFT

|Is there more to learn about
4-manifolds from Susy QFT?



This Talk
Study 4-fold invariants for ="SU(2) N=2* theory”

Interpolates between Donaldson &
Vafa-Witten invariants

Important lessons for several future generalizations

Key to explicit evaluation:
“Coulomb branch integral” aka ""u-plane integral”

Automorphic forms; indefinite theta functions;
mock modular forms:; Jacobi Maass forms
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Four-Manifolds We Consider
X: Smooth, compact, oriented, 0X = @.
For simplicity: Connected, m,;(X) =0

We assume (as in Donaldson theory) that X
admits an almost complex structure

)
b5 (X) is odd

Important: Do not assume X is spin


Presenter
Presentation Notes
This talk will be based on something called topologically twisted d=4 N=2* supersymmetric Yang-Mills theory with gauge group G = SU(2) or SO(3). 
But you don’t need to know what all that means to follow many of the main messages. 


Almost Complex Structure

T*X ® C has a basis e, (e!) i =1,2

Across patches: e’ — U';(x) e/
| Re(U) Im(U)
5:0(2) = (—Im(U) Re(U)) € 50(4)


Presenter
Presentation Notes
Need to say U(x) is unitary 


S
Preliminary: Spin“-structure — 1/3

Spin©(4) = {(uq,uy)|det(u,) = det(uy)} < U(2) X U(2)

m: Spin©(4) - SO(4)

—1
x, 0t = uy x,0" u;

Spin-c structure:
Give transition functions in Spin‘(4)
so that m(uq,,u,) =
SO (4) transition functions of T*X


Presenter
Presentation Notes
MARCOS STORY: 1998 KITP 


S
Preliminary: Spin“-structure — 2/3

Spin€(4) = { (uy,uy)|det(uy) = det(uy)} c U(2) X U(2)

Has two obvious 2-dimensional reps:
281 and 1 2

Given a spin-c structure these define
chiral spinor bundles

Wt > X


Presenter
Presentation Notes
MARCOS STORY: 1998 KITP 


c(s) = c;(detW?*) € H*(X; Z)

c(s) —2y—30
P (s) 8)( -

An ACS 7 defines a canonical spin-c structure s(7)

Spin©(4) = { (uy,uz)|det(uy) = det(uy)} c U(2) x U(2)

o: U(2) = Spin©(4): u v~ (u, (1 detu) )

To@d ~ s Fors(J) € =0
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SU(2) N=2* SYM

su(2); @ su(2)- D su(2)g @ Ggauge

|_|_I

Local Lorentz

Hypermultiplet scalars in rep:

R = 5u(2) gauge @ H O SU(2)5



Topological Twisting

Couple to background SU(2)r gauge field

Identify su(2)z with su(2), inlocal Lorentz algebra

=)

Hypermultiplet scalar fields
become spinors under twisting

What if X is not spin”?

Cure the problem by introducing an
“ultraviolet’ spin-c structure s,



So with a uv spin-c structure the
hypermultiplet scalars in N = 2* -theory
are spinors in W~

For N = 2" basic topological twisting
needs to be supplemented with extra data

It is not known how to twist the general
d=4 N=2 theory.



S
Topologically Twisted Partition Function

Data needed to formulate the partition function:

l
Ty ~0+—€H Quv == €

Juv

27T Ty

meC A:UVscale t=m/A

(UV) Spin-c structure s,,,,,
Cuv = C(Suv) € HZ(X: 1)

‘t Hooft flux v € H*(X;Z/27)


Presenter
Presentation Notes
Say: Comparison with Freedman’s topological classification of four-manifolds shows there is a huge difference between the topological and smooth categories. Very deep. 


..... and a metric g, ....

Iy = Q(AMV)

So metric should drop out....
s =f t Tr(FAF) 4+ 0(%)
X

so Z should be holomorphicin 7,,....



Operators In The TQFT

() —cohomology on depends on homology

D - Ho(X, Z) = D = NnNq1Xq + Ny X

S € H,(X;7)

O(p) = zni Tr ¢2(x;)

l

0(S) = f Tr(¢F + )



Path integral defines a "~ function™

Z,(Typ Cypy t): H (X, Z) = C
Ly (x; Tuvr Cyw» t) = e >N=2*

We evaluate this function very explicitly
and check some physical expectations.
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Mathematical Formulation
Of The Invariants

Principal SO(3) bundle P —» X
AeEAMP) MeTWT® adP ® C)

W+ —> X: Positive chirality rank two bundle
associated to uv spin-c structure s,,,

Q —fixed point equations

Ft+[M,M]=0 y DM =0
“adjoint SW equations”

[Labastida-Marino; Losev-Shatashvili-Nekrasov]



Mo kv: Component of moduli

“space” of solutions to nonabelian
monopole equations

w,(P) =v

1
k(P) = 8n2fTr(F/\F)



Math Definition Of Partition Function

2, (X; Typy Cups t) = e )N =2

2 qu f e“(x)Eul(gs; t)
M

k=0 Q.kv
wH, (X, Z) » H** (Mg ; Q)

E. . Obstruction bundle for elliptic complex

Q-symmetry:  Pathintegral - [ -



Index Computations

ci,—(2x+30
vdim M, = dimG —d (4)( )=2€dimG

N.B. Independent of instanton number k!

3
dim Mipse e = 8k — E(X +0)

3
Indexy -D = —8k + g(szw — o)

= Correlation functions on H,.(X) infinite g, - series,
even with x=0



U(1), Symmetry
Ft4+[M,M] =0 y-DM =0
U(l), : M>e'®M

U(1), acts on the moduli space M, ofthese egs.

O(x) » u(x) € Hyyy, (M)

t=%: U(1), equivariant parameter

[Labastida-Marino; Losev-Shatashvili-Nekrasov]



U(1), Localization

Z qu f eu(x)EUI(gs; t)
M

k=0 Qkv

Ft+[M,M]=0 y-DM =0

Fixed point set for M — ¢! M has TWO branches

Branch 1: Mipst kv M=0& F* =0

Branch 2: M ;,: M ~ (8 8)



U(1), Localization

f PO Eul(E,; t)
M

Q.k,v

— f eFOEul(E;t) + f eFIEul(E,; t)
M M

inst,k,v ab

First focus on the instanton contribution.



t — 0,00 Limits Of Instanton Contribution

2 qu f et Eyl (85; t)

k>0 Minst,k,v

c,(E
Ful(€st) = | [+ 1) = ¢rindexo ' nlE
L n

Leading term form — o : ¢,(E,)= 1

= Donaldson invariants
Leading term form — 0 : ¢, (E;)

sy = 8(J0): & =T*M, = " Euler character of M5 1 *



Relation To Vafa-Witten Invariants-1/2

VW invariants compute the
“Euler character of Mi,g¢ 1

and they are S-duality covariant....

Our instanton contribution also computes the
Euler character (for s, = s(J) and m - 0,)
and together with the M ,; contribution is
S-duality covariant.

Natural guess: we get VW invariants.


Presenter
Presentation Notes
Even though the topological twists of N=4 SYM are very different. 
Incidentally, 
One is not allowed to cancel Witten from this equation. 


In cases where we can compare
(such as projective surfaces)

P“% Z.,, does indeed reproduce the

Vafa-Witten invariants.

This is surprising since the DW and
VW twists are very different.

The Q-fixed point equations are
different, but can be viewed as
deformation equivalent.
(long story...)
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The partition function on a
compact manifold will equal
a sum over all the vacua.

In particular we need
to integrate over the
Coulomb branch.



Coulomb Branch Integral

In principle defined for general class S theory.

78 = fdudu:H“P
B

H 1s holomorphic and metric-independent

Y. NOT holomorphic and metric- DEPENDENT
“indefinite theta function”

B . Base of a Hitchin system

Today: u € C = B will be identified with a
modular curve
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Seiberg-Witten Review — 1/6

3
Eu yz — (.X' — ai) a; = ue;(Tyy) + mzei(Tuv)z
|
e;(1,y,) half-periods of £, = C/(Z + 1, Z)

Together with 1 € QY°(E,) s.t. % = %

Discriminant ~ n%*(t,,) H?=1(u — mzei(Tuv))z



u; = mée;(Ty,)



Special Geometry

H,(E,;Z): Fibers of a local system over B*

Definition: A "duality frame” is a
local choice of A, B —cycles

Periods of A define homomorphism Z,: H,(E,;Z) — C

a(u) = jg/l ap(u) = f/l

B

Fact: There is a locally dF
holomorphic function F(a) “D = Ua



d_a_ d_x dap [ dx dap

d2F
du Juy du Jgy T_da_daz

N.B.
7(u, m, T,,) should not be confused with 7,

lim 7(u,m, 7)) = Tyy lim 7(u, m, Tyy) = Ty
m—0 U—00



Weak Coupling Prepotential

u — oo: 3 Canonical duality frame (“weak coupling”) :

F(a,m) = Eruvaz +-

m? (log (Za) ° ;log (TX))

£, (t,,,): polynomials: Z ( )
£ E B wt=on—2 & /2, n(Tw)

[Minhahan, Nemeschansky, Warner; Dhoker, Phong] n=

A — dependence: New, and important for our story.
Derived using Nekrasov partition function in
[Manschot, Moore, Xinyu Zhang 2019]



Modular Parametrization

Remarkably: One can invert these equations and
express periods as bimodular forms in 1,1y,

5 % : B 19;}} (T)I%L (Tuv) — 19:4%} (T)ﬁf (Tuv)
m du] n°(Tyw)

812 (Tww) €23(7) + cycl.
e1(Typ)ezs (1) + cycl

m~2u(t, 7yy,) =

B =H/T'(2) =F(rQ2))



T=100U=1U

i

0
T=0 o u=u,

1 2
T=1 e u=u,

e
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Coulomb Branch Measure
7CB — f 0
F(T'(2))
Q=dtANdt HW¥P

Begin with Maxwell partition function ¥

S e Frame dependent.
T z € ~ Not holomorphic.

fluxes Meftric dependent.



The Period Point” ]
b >1 =78 =0

by =1 ZCB %0

« ] =]
H?(X; R) J* =1

] € Forward
Light Cone



Maxwell Partition Function

wJ ~ 2 o—J T fF+T() f2

fluxes

Sum over the first Chern class
A€E2L+vV, L=H3*X;7)

12
1111{ = z afE){ q 2/ pTl Az
AE2L+V
du dZT
Z = Cy, V(T,Ty,) +S — -
o v da YT dadm



Presenter
Presentation Notes
Say: derivative of Erf(x) goes to zero rapidly, so the sum is actually convergent, even though the holomorphic power of q has the wrong sign. 


Maxwell Partition Function

1 .
Z 0-E] g F emidz

AE2L+V

o du du - d°F
Z = Cyp V(T,Tyy) + Ve

X

= Erf(x;) Erf(x) :=J et dt

0

Imz

=+VImt(l+ )]

Imrt


Presenter
Presentation Notes
Say: derivative of Erf(x) goes to zero rapidly, so the sum is actually convergent, even though the holomorphic power of q has the wrong sign. 


Maxwell Coupling To s,

~ exp( f v FFf*+ TRy f0)

v dadm
Nonholomorphic!

m) 6d derivation will involve
C* —valued quadratic refinement



Presenter
Presentation Notes
SAY: THIS WAS A KEY INGREDIENT MISSING IN THE LATE 90’s AND LED TO THE PROBLEMS ENCOUNTERED THEN. It also violates folklore because people would generally expect the coupling to the background spin-c structure to be topological and holomorphic 


Remarkable Equation For v(t, 7,,,)

® dZT —
V= = (ap —at)/m

U, (v, 27) B 9,(0,27,,,)
U3(v, 27) R U3(0,27,,,)

Determines bimodular v(t, 7,,)



Holomorphic Part Of Measure

2
— O X AC

Hbare — Al AzAguv
Include observables:

'S 4 G2
H = Hpare AZ Ag Ag

Depend on duality frame —
- but the local system has nontrivial monodromy.



Local Topological Interactions

= H(u_ui) =

N(Tuw) 2477 (7)12

6
(2m) (94 (0)*03(Typ)* — 93(1)* 94 (Tyyp)*)?

_ 19:-‘ (T)l?éL (Tuw) — 1924’»} (T)ﬁf (Tuw)

N m2776(Tuv)

3

4 > i d*F A\2  9,(271,2v)
— X — /2 T 1 — | —
’ g dm? m ]922 (Tur ) U4 (27)



With all these ingredients we can
now check that the CB measure
IS Indeed monodromy invariant

and hence well-defined.
(Nontrivial!)




The measure on the Coulomb branch

IS physical and must be single-valued

Even though several couplings
in the LEET are muilti-valued.

Even though there is no gobal duality frame.

Interesting constraint on low-energy couplings



What about defining the integral
of the measure?




u —)Uj
_t
H—-q, 2 F(t,y) (1 + O(qj))

U — 00 LLe. T > Ty,

1

m =

A

Do the phase integral first.
(as in string theory)
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- Relation To Mock Modular Forms -1.1

Z&B A sum of integrals of the form
I, = L drdt (Imt)™° f(1,T)

o0

Supportofcis  f(t,T) = z c(m,n)g™ g"
bounded below et g

Strategy: Find h(t,T) such that | -
dzh = (Im71)™S f(1,7)
h (t,T) is modular of weight (2,0)

<7<



Presenter
Presentation Notes
Say in words the measure is modular invariant . Say in words that modularity of h-hat is crucial so that the finite boundaries do not contribute. 


Relation To Mock Modular Forms — 1.2

We choose an explicit solution
0-R = (Im7t)™° f(7,T)
vanishing exponentially fast at Imt — o

R is not modular, but it’s failure to
be modular must be holomorphic.

h(t,7) = h(t) + R
h(t) : mock modular form

h(D) = ) dm)q™  q = e

mez



Doing The Integral ™

Note: d(0) undetermined by diffeq but fixed
by the modular properties: Subtle!



Evaluation Of CB Integral ?

ZSBzf Q Q=ditAdT HY,
F(T(2))

AE2L+V
du

da
O=dA A=ditH G LIJ1{=076

Z=Cyp V(T,Tyy) + S5 —



Evaluation Of CB Integral ?

_1. .
\{11{: 2 (’)TE/{ q 41 e—Zm)l-z

AE2L+vV
y) = 9.6
v — Uz
G = z E/—{ q % o —2TiAZ
AE2L+V

?7? Nom lim Ej= +1



Evaluating Difference Of CB Integrals
W/ — Yl = 0~ G )12

— 1
GJ1)2 = 2 E){l»]zq—zﬂze—ZEi/l-z
AE2L+vV

E;? = Erf(xg*) — Erf(x;?)

Converges nicely!

= (Can use this to evaluate the difference

ZfB’h — ZSB’]Z by a sum of residues.



Metric & Holomorphic Anomaly

Wall crossing involves
modular functions

For the boundary at u — oo the modular parameter
T = T,y,. 1his leads to continuous metric dependence.

Closely related: Nonholomorphic in 7,

0

(?Tuv

. 2 32
ZCB =Yy 277 ZXEK /1+»/1 ]qu/br(]uv



The Special Period Point

For any manifold with b = 1
3 special J, such that ‘PJO factorizes:

plo = £ 0, (1,2)

1
_ J —FA%  _omiA
fv— aTEAq4ean
/1v



Measure As A Total Derivative

O=dA A=dtH G

Where we can write G explicitly so that A is:

1. Well-defined
2. Nonsingular away from 7 € {0,1,i oo, 7}
3. Good g; expansion near cusps



Harmonic Jacobi-Maass Forms

These conditions determine G uniquely.

Modular completion of an Appel-Lerche sum

. e—Zniz (_1)nq7’l2—%
(t,2) ~ 9,(27) 1 + e4mizg2n-1

nez

du
Z = Cyp V(T,Typy) +S % (T, Tuw)



Technical Comment On Poles

A must be nonsingular away from 7t € {0,1,i oo, 7.}

F(t,z) has poles for

1
ZZZ(Cl-l-bT) a=1mod?2 b=2 mod4

But for z = ¢, v(7,7,,) One can add a meromorphic
form to F(t, z) to cancel unwanted poles



The Integral Is a Mock Modular Form

For s, = s(J) we find 7580 =

1%

gv (Tuv' fuv) ®L_ (Tuv)/TIZX (Tuv)

V

-
g, =3 2 H(4n — Z,u)quv2

n=0



... but other s generalize ...

For CP* & ¢y, =1 (acs=c,, =3)

0 3 _
Ly :yuvz 77_2 E, G)v(_fuv)

0T,



Including Observables

ale + of 7 6 L up]

= W N = O I

11/4

Guv T 6 qlaf4

+ ..
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Contributions Of The Cusps u;

Near each cusp u;, j = 1,2,3
the description of the vacuum changes:

We have a U(1) VM coupled to a charge 1 HM.
(In the appropriate duality frame) [Seiberg-Witten 94]

There is a separate contribution to the path integral
coming from the path integral of these three LEET.

We add the contributions, because we sum over vacua:
3

Z, =758 + Z Zy7
j=1



When b} > 1 Z$B vanishes —
- we get true topological invariants:

3
—_ SW
2= )2
j=1

So it Is quite interesting to determine
the three effective actions



u; = mée;(1o)



MW7 The behavior of the CB integral
at u; uniquely fixes Z;"



Determination Of Effective Action

ZSW 2 SW(cir) 1_[ Fn] (Tyw; t)

£:C1,2Lv—/1

1
—Z()(+J) A=2y+ 30 5

X

2 (Cuv — Cir
2

2
) S-c;, S*  S-cy



Zswa(Tue) = (=20(2ra)*) 7 (485 0(ru)* 03(270)*) ™ (

X

2

=2 mod 2L

193 ( 2 Tuv )

SW (cy) (

Vo (2Tuy )

)

2

'U(Tuv) 2

V3(2Tuy )

)

X (2n((rw +1)/2)) 7 (

x 3 SW(ay) (—1)2Bw (

xel




Including Observables

B(S,c): log(S;) 5% log(T;) B(S, cuy): log(U;)

_%l)gl):‘; 144[ 31)41)4 _|_E2(.19§l_|__19211) +E§] ﬁ[l)é +ﬁj: + 28]

| [0l B+ ) + B | i v+ 2

SRR | (30 B0 — 0%+ EE | G- i+ 2By




Full Modular Transformation Law

. ATy, + b .
Zv (ﬁ: S, C;uv 4+ d) — (CTuv T d) z B,u,v(y)Z[,L(pi S' Tuv)
U
X
W = 44
2
g S
(et + d)?

= _2 . 2
D (et + )2 (p—2mic(ct+d)S*)






CONCLUDING REMARKS



Relation To Previous Results

For s(J) and m — 0 we recover and generalize
formulae of [VW;DPS] for VW invariants.

For ¢, = 0 we recover formulae
of Labastida-Lozano

Form — o ,q,, — 0 after suitable renormalization we
recover the ~"Witten conjecture” for the Donaldson
invariants in terms of the Seiberg-Witten invariants.

Recover and generalize explicit evaluation of u-plane integral
for CP?,S% x S? of Moore-Witten, Malmendier-Ono

A generalization and unification of the 1990’s formulae:



Recent Discussions Of
Holomorphic Anomaly

Duality and Mock Modularity

Atish Dabholkar,! Pavel Putrov,! Edward Witten?

Gauge theories on compact toric manifolds

Giulio Bonellit!. Francesco Fucito! 2. Jose Francisco Morales T 3. Massimiliano Ronzani 2.

Ekaterina Sysoeva* °. Alessandro Tanzini* ©



VIRTUAL REFINEMENTS OF THE VAFA-WITTEN FORMULA

LOTHAR GOTTSCHE AND MARTIJN KOOL

with an appendiz by Lothar Gottsche and Hiraku Nakajima

VERLINDE FORMULAE ON COMPLEX SURFACES I:
K-THEORETIC INVARIANTS

L. GOTTSCHE, M. KOOL, AND R. A. WILLIAMS

REFINED SU(3) VAFA-WITTEN INVARIANTS AND
MODULARITY

LOTHAR GOTTSCHE AND MARTLIN KOOL

VIRTUAL SEGRE AND VERLINDE NUMBERS
OF PROJECTIVE SURFACES

L. GOTTSCHE AND M. KOOL

SHEAVES ON SURFACES AND VIRTUAL INVARIANTS

L. GOTTSCHE AND M. KOOL



Zswa(Tue) = (=20(2ra)*) 7 (485 0(ru)* 03(270)*) ™ (

X

2

=2 mod 2L

193 ( 2 Tuv )

SW (cy) (

Vo (2Tuy )

)

2

'U(Tuv) 2

V3(2Tuy )

)

X (2n((rw +1)/2)) 7 (

x 3 SW(ay) (—1)2Bw (

xel




Comparing With GKNW

X: General X: Projective
four-manifold algebraic surface

admitting acs.

Canonical spin-c
structure determined
by the complex
structure

Arbitrary spin-c
structure s,

Further refinement of
217217217217 iInvariants computing
Xy -genus



VERLINDE FORMULAE ON COMPLEX SURFACES TI:
K-THEORETIC INVARIANTS

L. GOTTSCHE, M. KOOL, AND R. A. WILLIAMS

Conjecture 1.2. Let S be a smooth projective surface with py(S) > 0, b1 (S) =
0, and L € Pic(S). Let H,cq,cy be chosen such that there are no rank 2 strictly
Gieseker H - eemz'etabfe sheaves on S with Chern classes ¢y, co. Let vd be defined

by (1). Then y~ 5 XY MI(2.c1,¢9), ;1(L)) equals the coefficient of 29 of

i : X(Os) o\ K2
(511 : U2t )
2 =A== |\

= ‘ LKg
H (l _ IQH iz'”'-y_l n S
—1 (l — ;1?2-11.y)(l _ iQ'ny — 1 1 — l2:f "

1 ahg;
Y (=1 SW(a) ( oy Z) )
H2(S.Z) Oz3(—x,y2)

ac

>° (1 — 221y %)(l L e, _%) on—1 LEs=20)
: H ' Y Y
n—1 (1—;1~n ly 2)(l+l2n 1?;’%)




Comparison (t large) shows:

2
Sw m
f ) ~ Z'V,l ul ~ ?
Map
m + AZ
u AN — —
- ZSW L ogsw 01207
V,2 V,3 m?2
Minst uBN_E_A%

Showing that the instanton contribution
alone cannot be S-duality covariant.



Future Directions

X complex: Compute Refined Versions From Physics

With X. Zhang:
Interesting generalization to 5d SYM

Derivation from 6d (2,0) theory?

Generalization of these techniques to class S












a Motivation

g Preliminaries And Background

"3 J Summary Of Main Results

a Mathematical Formulation Of Partition Function

6 Coulomb Branch Integral: Measure & Evaluation

@) LEET Near Cusps & Explicit Results
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FAQ 1

SW94 showed the SW curve for N=2*
IS invariant under S-duality.
\What about the partition functions?

Partition functions are suitably
S-duality covariant with some
Interesting nontrivial details.

See previous talks for details.



FAQ 2.
SW94: Set q,,m* = A} fixed and take
m — oo, This gives the Nr = 0 SW curve.

Does limit of Z,, exist and give
the DW partition function?

Yes, sort of.

The limit does not exist.

But Z,, is naturally a sum of three terms.
Throwing one away, and renormalizing the
others, there is a well-defined limit.

It reproduces the DW function.

(With an interesting orientation issue.)



FAQ 3:
Szf’cuvTr(F/\F) + Q(*)
X

|s the partition function metric independent

and holomorphicin z,,, ?

Yes, when b; > 1.

Absolutely not when by = 1.
In fact, most correlators vary
continuously with metric.




(0(S)"0(p)™)

Varies continuously with metric when

l<n+r/2, r even,
(<n+(r+1)/2, r odd.

c(s) —2y—30
{z() X

€ Z
8

(i.e. all but finitely many correlators)

We derive very explicit formulae for the
holomorphic and metric anomalies.



FAQ 4:

Again using Q —symmetry the coupling to the
background spin-c connection is expected to be
holomorphic in u = (Tr(¢*))

SLEET :f () fAE + Kk (WE
X

Shapere & Tachikawa

E, : Fieldstrength of background spin-c connection

f: dynamical U(1) fieldstrength of
the Coulomb branch LEET

Yes, for k,(u) . No for k{(u).



This has important
implications for the
class S generalization

We also give explicit
formulae for these couplings.
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