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Glorious History Of 
SYM & Four-Manifolds 

Instantons (1975)

Donaldson invariants (1982)  
TQFT (1988)

Seiberg-Witten Invariants (1994) 

Revolution of 1995



But not all questions are answered…



The SW revolution was based 
on pure SU(2) N=2 SYM 

The basic idea of topological 
twisting applies to any 

d=4, N=2 QFT

Is there more to learn about 
4-manifolds from Susy QFT? 



This Talk
Study 4-fold invariants for ``SU(2) N=2* theory’’ 

Interpolates between Donaldson &
Vafa-Witten invariants  

Key to explicit evaluation: 
``Coulomb branch integral’’ aka ``u-plane integral’’ 

Automorphic forms; indefinite theta functions; 
mock modular forms; Jacobi Maass forms

Important lessons for several future generalizations
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Four-Manifolds We Consider 
𝑋𝑋: Smooth, compact, oriented, 𝜕𝜕𝑋𝑋 = ∅.

𝑏𝑏2+ 𝑋𝑋 𝑖𝑖𝑖𝑖 odd  

We assume (as in Donaldson theory) that 𝑋𝑋
admits an almost complex structure 

For simplicity: Connected, 𝜋𝜋1 𝑋𝑋 = 0

Important: Do not assume 𝑋𝑋 is spin 

Presenter
Presentation Notes
This talk will be based on something called topologically twisted d=4 N=2* supersymmetric Yang-Mills theory with gauge group G = SU(2) or SO(3). But you don’t need to know what all that means to follow many of the main messages. 



Almost Complex Structure

𝑒𝑒𝑖𝑖 → 𝑈𝑈 𝑗𝑗
𝑖𝑖 𝑥𝑥 𝑒𝑒𝑗𝑗

𝑇𝑇∗𝑋𝑋 ⊗ ℂ has a basis  𝑒𝑒𝑖𝑖 , 𝑒𝑒𝑖𝑖 ∗ 𝑖𝑖 = 1,2

Across patches:  

𝑖𝑖:𝑈𝑈 2 → 𝑅𝑅𝑒𝑒 𝑈𝑈 𝐼𝐼𝐼𝐼 𝑈𝑈
−𝐼𝐼𝐼𝐼 𝑈𝑈 𝑅𝑅𝑒𝑒 𝑈𝑈 ∈ 𝑆𝑆𝑆𝑆 4

Presenter
Presentation Notes
Need to say U(x) is unitary 



Preliminary: 𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑐𝑐-structure – 1/3
𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑐𝑐 4 ≔ { 𝑢𝑢1,𝑢𝑢2 | det 𝑢𝑢1 = det 𝑢𝑢2 } ⊂ 𝑈𝑈 2 × 𝑈𝑈 2

𝜋𝜋: 𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑐𝑐 4 → 𝑆𝑆𝑆𝑆 4

𝑥𝑥𝜇𝜇𝜎𝜎𝜇𝜇 → 𝑢𝑢1 𝑥𝑥𝜇𝜇𝜎𝜎𝜇𝜇 𝑢𝑢2−1

Spin-c structure:
Give transition functions in 𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑐𝑐 4

so that 𝜋𝜋 𝑢𝑢1,𝑢𝑢2 =
𝑆𝑆𝑆𝑆 4 transition functions of 𝑇𝑇∗𝑋𝑋

Presenter
Presentation Notes
MARCOS STORY: 1998 KITP 



Preliminary: 𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑐𝑐-structure – 2/3

𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑐𝑐 4 ≔ { 𝑢𝑢1,𝑢𝑢2 | det 𝑢𝑢1 = det 𝑢𝑢2 } ⊂ 𝑈𝑈 2 × 𝑈𝑈 2

Has two obvious 2-dimensional reps: 
2 ⊗ 1 and 1 ⊗ 2

Given a spin-c structure these define 
chiral spinor bundles

𝑊𝑊± → 𝑋𝑋

Presenter
Presentation Notes
MARCOS STORY: 1998 KITP 



𝑐𝑐 𝔰𝔰 ≔ 𝑐𝑐1(det𝑊𝑊±) ∈ 𝐻𝐻2 𝑋𝑋;ℤ

ℓ =
𝑐𝑐 𝔰𝔰 2 − 2𝜒𝜒 − 3 𝜎𝜎

8
∈ ℤ

An ACS ℐ defines a canonical spin-c structure 𝔰𝔰 ℐ

ϕ: 𝑈𝑈 2 → 𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑐𝑐 4 : 𝑢𝑢 ↦ (𝑢𝑢, 1
det 𝑢𝑢 )

𝑆𝑆𝑆𝑆𝑖𝑖𝑛𝑛𝑐𝑐 4 ≔ { 𝑢𝑢1,𝑢𝑢2 | det 𝑢𝑢1 = det 𝑢𝑢2 } ⊂ 𝑈𝑈 2 × 𝑈𝑈 2

𝜋𝜋 ∘ 𝜙𝜙 ∼ 𝑖𝑖 ℓ = 0For 𝔰𝔰 𝒥𝒥
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SU(2) N=2* SYM 

ℛ = 𝔰𝔰𝔰𝔰 2 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ⊗ℍ

𝔰𝔰𝔰𝔰 2 + ⊕ 𝔰𝔰𝔰𝔰 2 − ⊕ 𝔰𝔰𝔰𝔰 2 𝑅𝑅 ⊕ 𝔤𝔤𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

Hypermultiplet scalars in rep: 

𝑆𝑆𝑈𝑈 2 𝑅𝑅

Local Lorentz



Topological Twisting 
Couple to background 𝑆𝑆𝑈𝑈 2 𝑅𝑅 gauge field

Identify 𝔰𝔰𝔰𝔰 2 𝑅𝑅 with 𝔰𝔰𝔰𝔰 2 + in local Lorentz algebra 

Hypermultiplet scalar fields 
become spinors under twisting  

What if 𝑋𝑋 is not spin? 

Cure the problem by introducing an 
``ultraviolet’’  spin-c structure 𝔰𝔰𝑔𝑔𝑢𝑢



It is not known how to twist the general 
d=4 N=2 theory.  

So with a uv spin-c structure the 
hypermultiplet scalars in 𝑁𝑁 = 2∗ -theory 

are spinors in 𝑊𝑊+

For 𝑁𝑁 = 2∗ basic topological twisting 
needs to be supplemented with extra data



Topologically Twisted Partition Function 

𝜏𝜏𝑔𝑔𝑢𝑢 ∼ 𝜃𝜃 + 𝑖𝑖
𝑔𝑔𝑢𝑢𝑢𝑢2

∈ ℋ 𝑞𝑞𝑔𝑔𝑢𝑢 ≔ 𝑒𝑒2𝜋𝜋𝑖𝑖 𝜏𝜏𝑢𝑢𝑢𝑢

𝐼𝐼 ∈ ℂ
(UV) Spin-c structure 𝔰𝔰𝑔𝑔𝑢𝑢,
𝑐𝑐𝑔𝑔𝑢𝑢 ≔ 𝑐𝑐 𝔰𝔰𝑔𝑔𝑢𝑢 ∈ 𝐻𝐻2 𝑋𝑋,ℤ

Data needed to formulate the partition function: 

𝜈𝜈 ∈ 𝐻𝐻2 𝑋𝑋;ℤ/2ℤ

Λ: UV scale 𝑡𝑡 ≔ 𝐼𝐼/Λ

‘t Hooft flux 

Presenter
Presentation Notes
Say: Comparison with Freedman’s topological classification of four-manifolds shows there is a huge difference between the topological and smooth categories. Very deep. 



…..  and a metric  𝑔𝑔𝜇𝜇𝜇𝜇 …. 

𝑇𝑇𝜇𝜇𝜇𝜇 = 𝑄𝑄 Λ𝜇𝜇𝜇𝜇

𝑆𝑆 = �
𝑋𝑋
𝜏𝜏𝑔𝑔𝑢𝑢 𝑇𝑇𝑇𝑇 𝐹𝐹 ∧ 𝐹𝐹 + 𝑄𝑄 ∗

So metric should drop out…. 

so 𝑍𝑍 should be holomorphic in 𝜏𝜏𝑔𝑔𝑢𝑢…. 



Operators In The TQFT

𝑆𝑆 ∈ 𝐻𝐻0 𝑋𝑋;ℤ ⇒ 𝑆𝑆 = 𝑛𝑛1𝑥𝑥1 + ⋯𝑛𝑛𝑘𝑘𝑥𝑥𝑘𝑘

𝒪𝒪 𝑆𝑆 = �
𝑖𝑖

𝑛𝑛𝑖𝑖 𝑇𝑇𝑇𝑇 𝜙𝜙2 𝑥𝑥𝑖𝑖

𝒪𝒪 𝑆𝑆 = �
𝑠𝑠
𝑇𝑇𝑇𝑇 𝜙𝜙𝐹𝐹 + 𝜓𝜓2

𝑆𝑆 ∈ 𝐻𝐻2 𝑋𝑋;ℤ

𝑄𝑄 −cohomology on depends on homology



𝑍𝑍𝜇𝜇 𝑥𝑥; 𝜏𝜏𝑔𝑔𝑢𝑢, 𝑐𝑐𝑔𝑔𝑢𝑢 , 𝑡𝑡 ≔ 𝑒𝑒𝒪𝒪 𝑥𝑥
𝒩𝒩=2∗

We evaluate this function very explicitly 
and check some physical expectations. 

Path integral defines a ``function’’ 

𝑍𝑍𝜇𝜇 𝜏𝜏𝑔𝑔𝑢𝑢 , 𝑐𝑐𝑔𝑔𝑢𝑢 , 𝑡𝑡 :𝐻𝐻∗ 𝑋𝑋;ℤ → ℂ
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Mathematical Formulation 
Of The Invariants  

𝑀𝑀 ∈ Γ 𝑊𝑊+ ⊗ 𝑎𝑎𝑎𝑎𝑎𝑎 ⊗ ℂ
𝑊𝑊+ → 𝑋𝑋 ∶ Positive chirality rank two bundle 

associated to uv spin-c structure 𝔰𝔰𝑔𝑔𝑢𝑢
𝑄𝑄 −fixed point equations  

𝐹𝐹+ + 𝑀𝑀, �𝑀𝑀 = 0 𝜸𝜸 ⋅ 𝑫𝑫𝑀𝑀 = 0

``adjoint SW equations’’

[Labastida-Marino; Losev-Shatashvili-Nekrasov] 

𝐴𝐴 ∈ 𝒜𝒜 𝑎𝑎
𝑎𝑎 → 𝑋𝑋Principal 𝑆𝑆𝑆𝑆 3 bundle 



ℳ𝑄𝑄,𝑘𝑘,𝜇𝜇: Component of moduli 
``space’’ of solutions to nonabelian

monopole equations 

𝑘𝑘(𝑎𝑎) = −
1

8𝜋𝜋2
∫ 𝑇𝑇𝑇𝑇 𝐹𝐹 ∧ 𝐹𝐹

𝑤𝑤2 𝑎𝑎 = 𝜈𝜈



Math Definition Of Partition Function

𝑄𝑄-symmetry: Path integral → ∫ℳ𝑄𝑄,𝑘𝑘,𝜈𝜈
⋯

𝑍𝑍𝜇𝜇 𝑥𝑥; 𝜏𝜏𝑔𝑔𝑢𝑢, 𝑐𝑐𝑔𝑔𝑢𝑢, 𝑡𝑡 ≔ 𝑒𝑒𝒪𝒪 𝑥𝑥
𝒩𝒩=2∗

= �
𝑘𝑘≥0

𝑞𝑞𝑔𝑔𝑢𝑢𝑘𝑘 �
ℳ𝑄𝑄,𝑘𝑘,𝜈𝜈

𝑒𝑒𝜇𝜇 𝑥𝑥 𝐸𝐸𝑢𝑢𝐸𝐸 ℰ𝔰𝔰; 𝑡𝑡

ℰ𝔰𝔰 : Obstruction bundle for elliptic complex

𝜇𝜇:𝐻𝐻∗ 𝑋𝑋,ℤ → 𝐻𝐻4−∗ ℳ𝑄𝑄,𝑘𝑘,𝜇𝜇;ℚ



Index Computations 

𝑣𝑣 dimℳ𝑄𝑄,𝑘𝑘 = dim𝐺𝐺
𝑐𝑐𝑔𝑔𝑢𝑢2 − 2𝜒𝜒 + 3 𝜎𝜎

4
= 2ℓ dim𝐺𝐺

N.B. Independent of instanton number 𝑘𝑘 ! 

𝐼𝐼𝑛𝑛𝑎𝑎𝑒𝑒𝑥𝑥 𝜸𝜸 ⋅ 𝑫𝑫 = −8𝑘𝑘 +
3
8
𝑐𝑐𝑔𝑔𝑢𝑢2 − 𝜎𝜎

dimℳ𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖,𝑘𝑘 = 8𝑘𝑘 −
3
2
𝜒𝜒 + 𝜎𝜎

⇒ Correlation functions on 𝐻𝐻∗ 𝑋𝑋 infinite 𝑞𝑞𝑔𝑔𝑢𝑢 - series, 
even with x=0  



𝑈𝑈 1 𝑏𝑏 Symmetry 

𝑈𝑈 1 𝑏𝑏 acts on the moduli space ℳ𝑄𝑄,𝑘𝑘 of these eqs. 

𝒪𝒪 𝑥𝑥 → 𝜇𝜇 𝑥𝑥 ∈ 𝐻𝐻𝑈𝑈 1 𝑏𝑏
∗ ℳ𝑄𝑄,𝑘𝑘

𝑡𝑡 = 𝑚𝑚
Λ

: 𝑈𝑈 1 𝑏𝑏 equivariant parameter 

[Labastida-Marino; Losev-Shatashvili-Nekrasov] 

𝐹𝐹+ + 𝑀𝑀, �𝑀𝑀 = 0 𝜸𝜸 ⋅ 𝑫𝑫𝑀𝑀 = 0

𝑈𝑈 1 𝑏𝑏 :  𝑀𝑀 → 𝑒𝑒𝑖𝑖 𝜃𝜃 𝑀𝑀



𝑈𝑈 1 𝑏𝑏 Localization

Branch 2: ℳ𝑔𝑔𝑏𝑏:  𝑀𝑀 ∼ 0 ∗
0 0

Fixed point set for 𝑀𝑀 → 𝑒𝑒𝑖𝑖𝜃𝜃 𝑀𝑀 has TWO branches 

Branch 1: ℳ𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖,𝑘𝑘,𝜇𝜇: 𝑀𝑀 = 0 & 𝐹𝐹+ = 0

𝐹𝐹+ + 𝑀𝑀, �𝑀𝑀 = 0 𝜸𝜸 ⋅ 𝑫𝑫𝑀𝑀 = 0

�
𝑘𝑘≥0

𝑞𝑞𝑔𝑔𝑢𝑢𝑘𝑘 �
ℳ𝑄𝑄,𝑘𝑘,𝜈𝜈

𝑒𝑒𝜇𝜇 𝑥𝑥 𝐸𝐸𝑢𝑢𝐸𝐸 ℰ𝔰𝔰; 𝑡𝑡



𝑈𝑈 1 𝑏𝑏 Localization

�
ℳ𝑄𝑄,𝑘𝑘,𝜈𝜈

𝑒𝑒𝜇𝜇 𝑥𝑥 𝐸𝐸𝑢𝑢𝐸𝐸 ℰ𝔰𝔰; 𝑡𝑡

= �
ℳ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑘𝑘,𝜈𝜈

𝑒𝑒𝜇𝜇 𝑥𝑥 𝐸𝐸𝑢𝑢𝐸𝐸 ℰ̃𝔰𝔰; 𝑡𝑡 + �
ℳ𝑎𝑎𝑏𝑏

𝑒𝑒𝜇𝜇 𝑥𝑥 𝐸𝐸𝑢𝑢𝐸𝐸 ℰ̃𝔰𝔰; 𝑡𝑡

First focus on the instanton contribution. 



𝑡𝑡 → 0,∞ Limits Of Instanton Contribution

�
𝑘𝑘≥0

𝑞𝑞𝑔𝑔𝑢𝑢𝑘𝑘 �
ℳ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑘𝑘,𝜈𝜈

𝑒𝑒𝜇𝜇 𝑥𝑥 𝐸𝐸𝑢𝑢𝐸𝐸 ℰ𝔰𝔰; 𝑡𝑡

𝐸𝐸𝑢𝑢𝐸𝐸 ℰ𝔰𝔰; 𝑡𝑡 = �
𝑖𝑖

𝑥𝑥𝑖𝑖 + 𝑡𝑡 = 𝑡𝑡−𝐼𝐼𝑖𝑖𝐼𝐼𝑔𝑔𝑥𝑥 𝐷𝐷 �
𝑖𝑖

𝑐𝑐𝑖𝑖 ℰ𝔰𝔰
𝑡𝑡𝑖𝑖

Leading term for 𝐼𝐼 → 0 ∶ 𝑐𝑐𝑖𝑖𝑡𝑡𝑡𝑡 ℰ𝔰𝔰

𝔰𝔰𝑔𝑔𝑢𝑢 = 𝔰𝔰 ℐ : ℰ𝔰𝔰 ≅ 𝑇𝑇∗ℳ𝑘𝑘 ⇒ ``Euler character of ℳ𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖,𝑘𝑘 ‘’

Leading term for 𝐼𝐼 → ∞ ∶ 𝑐𝑐0 ℰ𝔰𝔰 = 1 

⇒ Donaldson invariants 



Relation To Vafa-Witten Invariants-1/2
VW invariants compute the 

``Euler character of ℳ𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖,𝑘𝑘’’

and they are S-duality covariant…. 

Natural guess:  we get VW invariants. 

Our instanton contribution also computes the 
Euler character (for 𝔰𝔰𝑔𝑔𝑢𝑢 = 𝔰𝔰 𝒥𝒥 and  𝐼𝐼 → 0, )

and together with the ℳ𝑔𝑔𝑏𝑏 contribution is 
S-duality covariant. 

Presenter
Presentation Notes
Even though the topological twists of N=4 SYM are very different. Incidentally, One is not allowed to cancel Witten from this equation. 



In cases where we can compare 
(such as projective surfaces) 

lim
𝑖𝑖→0

𝑍𝑍𝜇𝜇 does indeed reproduce the 
Vafa-Witten invariants.

This is surprising since the DW and 
VW twists are very different. 

The Q-fixed point equations are 
different, but can be viewed as 

deformation equivalent. 
(long story…) 
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The partition function on a 
compact manifold will equal 
a sum over all the vacua.  

In particular we need 
to integrate over the 

Coulomb branch. 



Coulomb Branch Integral

𝑍𝑍𝜇𝜇𝐶𝐶𝐶𝐶 = �
ℬ
𝑎𝑎𝑢𝑢 𝑎𝑎�𝑢𝑢 ℋ Ψ

ℋ is  holomorphic and metric-independent

𝚿𝚿: NOT holomorphic and metric- DEPENDENT
``indefinite theta function’’

In principle defined for general class S theory. 

Today: 𝑢𝑢 ∈ ℂ ≅ ℬ will be identified with a 
modular curve 

ℬ : Base of a Hitchin system 
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Seiberg-Witten Review

5

5a
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Seiberg-Witten Review – 1/6

𝑦𝑦2 = �
𝑖𝑖=1

3

𝑥𝑥 − 𝛼𝛼𝑖𝑖 𝛼𝛼𝑖𝑖 = 𝑢𝑢 𝑒𝑒𝑖𝑖 𝜏𝜏𝑔𝑔𝑢𝑢 + 𝐼𝐼2𝑒𝑒𝑖𝑖 𝜏𝜏𝑔𝑔𝑢𝑢 2

𝑒𝑒𝑖𝑖 𝜏𝜏𝑔𝑔𝑢𝑢 half-periods of 𝐸𝐸𝜏𝜏𝑢𝑢𝑢𝑢 = ℂ/(ℤ + 𝜏𝜏𝑔𝑔𝑢𝑢ℤ)

𝐸𝐸𝑔𝑔

Discriminant ∼ 𝜂𝜂24 𝜏𝜏𝑔𝑔𝑢𝑢 ∏𝑖𝑖=1
3 𝑢𝑢 −𝐼𝐼2𝑒𝑒𝑖𝑖 𝜏𝜏𝑔𝑔𝑢𝑢

2

Together with 𝜆𝜆 ∈ Ω1,0 𝐸𝐸𝑔𝑔 s.t. 𝐼𝐼𝑑𝑑
𝐼𝐼𝑔𝑔

= 𝐼𝐼𝑥𝑥
𝑦𝑦



𝑢𝑢3𝑢𝑢1

𝐸𝐸𝑔𝑔

𝑢𝑢2

𝑢𝑢𝑗𝑗 = 𝐼𝐼2𝑒𝑒𝑗𝑗(𝜏𝜏𝑔𝑔𝑢𝑢)

ℬ∗



Special Geometry
𝐻𝐻1 𝐸𝐸𝑔𝑔;ℤ : Fibers of a local system over ℬ∗

Periods of 𝜆𝜆 define homomorphism 𝑍𝑍𝑔𝑔:𝐻𝐻1 𝐸𝐸𝑔𝑔;ℤ → ℂ

Definition: A ``duality frame’’ is a 
local choice of 𝐴𝐴,𝐵𝐵 −cycles 

𝑎𝑎 𝑢𝑢 ≔ �
𝐴𝐴
𝜆𝜆 𝑎𝑎𝐷𝐷 𝑢𝑢 ≔ �

𝐶𝐶
𝜆𝜆

𝑎𝑎𝐷𝐷 =
𝑎𝑎𝑑
𝑎𝑎𝑎𝑎

Fact: There is a locally 
holomorphic function 𝑑 𝑎𝑎



N.B.   
𝜏𝜏 𝑢𝑢,𝐼𝐼, 𝜏𝜏𝑔𝑔𝑢𝑢 should not be confused with 𝜏𝜏𝑔𝑔𝑢𝑢

lim
𝑚𝑚→0

𝜏𝜏 𝑢𝑢,𝐼𝐼, 𝜏𝜏𝑔𝑔𝑢𝑢 = 𝜏𝜏𝑔𝑔𝑢𝑢 lim
𝑔𝑔→∞

𝜏𝜏 𝑢𝑢,𝐼𝐼, 𝜏𝜏𝑔𝑔𝑢𝑢 = 𝜏𝜏𝑔𝑔𝑢𝑢

𝑎𝑎𝑎𝑎
𝑎𝑎𝑢𝑢

= �
𝐴𝐴

𝑎𝑎𝑥𝑥
𝑦𝑦

𝑎𝑎𝑎𝑎𝐷𝐷
𝑎𝑎𝑢𝑢

= �
𝐶𝐶

𝑎𝑎𝑥𝑥
𝑦𝑦 𝜏𝜏 =

𝑎𝑎𝑎𝑎𝐷𝐷
𝑎𝑎𝑎𝑎

=
𝑎𝑎2𝑑
𝑎𝑎𝑎𝑎2



Weak Coupling Prepotential
𝑢𝑢 → ∞:∃ Canonical  duality frame (``weak coupling’’) : 

𝑑 𝑎𝑎,𝐼𝐼 =
1
2
𝜏𝜏𝑔𝑔𝑢𝑢𝑎𝑎2 +

+ 𝐼𝐼2 ( log
2𝑎𝑎
𝐼𝐼

−
3
4

+
3
2

log
𝐼𝐼
Λ

)

+𝑎𝑎2�
𝑖𝑖=2

∞

𝑓𝑓𝑖𝑖 𝜏𝜏𝑔𝑔𝑢𝑢
𝐼𝐼
𝑎𝑎

2𝑖𝑖𝑓𝑓𝑖𝑖 𝜏𝜏𝑔𝑔𝑢𝑢 : polynomials: 
𝐸𝐸2,𝐸𝐸4 ,𝐸𝐸6 wt = 2𝑛𝑛 − 2
[Minhahan, Nemeschansky, Warner; Dhoker, Phong]

Λ − dependence: New, and important for our story.
Derived using Nekrasov partition function in  

[Manschot, Moore, Xinyu Zhang 2019]



Modular Parametrization 

𝐼𝐼2 𝑎𝑎𝑎𝑎
𝑎𝑎𝑢𝑢

2

=
𝜗𝜗44 𝜏𝜏 𝜗𝜗34 𝜏𝜏𝑔𝑔𝑢𝑢 − 𝜗𝜗34 𝜏𝜏 𝜗𝜗44 𝜏𝜏𝑔𝑔𝑢𝑢

𝜂𝜂6 𝜏𝜏𝑔𝑔𝑢𝑢

𝐼𝐼−2 𝑢𝑢 𝜏𝜏, 𝜏𝜏𝑔𝑔𝑢𝑢 =
𝑒𝑒12 𝜏𝜏𝑔𝑔𝑢𝑢 𝑒𝑒23 𝜏𝜏 + 𝑐𝑐𝑦𝑦𝑐𝑐𝐸𝐸.
𝑒𝑒1 𝜏𝜏𝑔𝑔𝑢𝑢 𝑒𝑒23 𝜏𝜏 + 𝑐𝑐𝑦𝑦𝑐𝑐𝐸𝐸

ℬ ≅ ℋ/Γ(2)

Remarkably: One can invert these equations and 
express periods as bimodular forms in  𝜏𝜏, 𝜏𝜏𝑔𝑔𝑢𝑢

≅ 𝑑 Γ 2



𝜏𝜏 = 𝑖𝑖 ∞ ↔ 𝑢𝑢 = 𝑢𝑢1

𝜏𝜏 = 0 ↔ 𝑢𝑢 = 𝑢𝑢2 𝜏𝜏 = 1 ↔ 𝑢𝑢 = 𝑢𝑢3

𝑢𝑢 → ∞
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Coulomb Branch Measure 

𝑍𝑍𝜇𝜇𝐶𝐶𝐶𝐶 = �
𝑑 Γ 2

Ω

Ω = 𝑎𝑎𝜏𝜏 ∧ 𝑎𝑎 ̅𝜏𝜏 ℋ Ψ

Begin with Maxwell partition function Ψ

Frame dependent. 
Not holomorphic. 
Metric dependent.

Ψ ∼ �
𝑓𝑓𝑓𝑓𝑔𝑔𝑥𝑥𝑔𝑔𝑠𝑠

𝑒𝑒−𝑆𝑆𝑐𝑐𝑐𝑐𝑎𝑎𝑖𝑖𝑖𝑖.



The ``Period Point’’ 𝐽𝐽
𝑏𝑏2+ > 1 ⇒ 𝑍𝑍𝜇𝜇𝐶𝐶𝐶𝐶 = 0

∗ 𝐽𝐽 = 𝐽𝐽

𝐻𝐻2 𝑋𝑋;ℝ

𝑏𝑏2+ = 1

𝐽𝐽2 = 1

𝑍𝑍𝜇𝜇𝐶𝐶𝐶𝐶 ≠ 0

𝐽𝐽 ∈ Forward 
Light Cone



Maxwell Partition Function 

Sum over the first Chern class
𝜆𝜆 ∈ 2𝐿𝐿 + �̅�𝜈 , 𝐿𝐿 = 𝐻𝐻2 𝑋𝑋;ℤ

Ψ𝜇𝜇
𝐽𝐽 = �

𝑑𝑑∈2𝐿𝐿+�𝜇𝜇

𝜕𝜕�𝜏𝜏𝐸𝐸𝑑𝑑
𝐽𝐽 𝑞𝑞−

1
4𝑑𝑑

2
𝑒𝑒𝜋𝜋𝑖𝑖 𝑑𝑑⋅𝑧𝑧

𝑧𝑧 = 𝑐𝑐𝑔𝑔𝑢𝑢 𝑣𝑣 𝜏𝜏, 𝜏𝜏𝑔𝑔𝑢𝑢

Ψ𝐽𝐽 ∼ �
𝑓𝑓𝑓𝑓𝑔𝑔𝑥𝑥𝑔𝑔𝑠𝑠

𝑒𝑒−∫ �𝜏𝜏 𝑔𝑔 𝑓𝑓+2+𝜏𝜏(𝑔𝑔) 𝑓𝑓−2

𝑣𝑣 ≔
𝑎𝑎2𝑑
𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼

+𝑆𝑆
𝑎𝑎𝑢𝑢
𝑎𝑎𝑎𝑎

Presenter
Presentation Notes
Say: derivative of Erf(x) goes to zero rapidly, so the sum is actually convergent, even though the holomorphic power of q has the wrong sign. 



Maxwell Partition Function 

Ψ𝜇𝜇
𝐽𝐽 = �

𝑑𝑑∈2𝐿𝐿+𝜇𝜇

𝜕𝜕�𝜏𝜏𝐸𝐸𝑑𝑑
𝐽𝐽 𝑞𝑞−

1
4𝑑𝑑

2
𝑒𝑒𝜋𝜋𝑖𝑖 𝑑𝑑⋅𝑧𝑧

𝐸𝐸𝑑𝑑
𝐽𝐽 = 𝐸𝐸𝑇𝑇𝑓𝑓 𝑥𝑥𝑑𝑑 𝐸𝐸𝑇𝑇𝑓𝑓 𝑥𝑥 ≔ �

0

𝑥𝑥
𝑒𝑒−𝜋𝜋𝑖𝑖2𝑎𝑎𝑡𝑡

𝑥𝑥𝑑𝑑 = 𝐼𝐼𝐼𝐼 𝜏𝜏(𝜆𝜆 +
𝐼𝐼𝐼𝐼 𝑧𝑧
𝐼𝐼𝐼𝐼 𝜏𝜏

) ⋅ 𝐽𝐽

𝑧𝑧 = 𝑐𝑐𝑔𝑔𝑢𝑢 𝑣𝑣 𝜏𝜏, 𝜏𝜏𝑔𝑔𝑢𝑢 + 𝑆𝑆
𝑎𝑎𝑢𝑢
𝑎𝑎𝑎𝑎

𝑣𝑣 ≔
𝑎𝑎2𝑑
𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼

Presenter
Presentation Notes
Say: derivative of Erf(x) goes to zero rapidly, so the sum is actually convergent, even though the holomorphic power of q has the wrong sign. 



Maxwell Coupling To 𝔰𝔰𝑔𝑔𝑢𝑢

∼ exp(�
𝑋𝑋
𝑣𝑣 𝐹𝐹𝑏𝑏+𝑓𝑓+ + �̅�𝑣𝐹𝐹𝑏𝑏−𝑓𝑓−)

Folklore

6d derivation will involve 
ℂ∗ −valued quadratic refinement 

Nonholomorphic! 

𝑣𝑣 ≔
𝑎𝑎2𝑑
𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼

Presenter
Presentation Notes
SAY: THIS WAS A KEY INGREDIENT MISSING IN THE LATE 90’s AND LED TO THE PROBLEMS ENCOUNTERED THEN. It also violates folklore because people would generally expect the coupling to the background spin-c structure to be topological and holomorphic 



Remarkable Equation For 𝑣𝑣(𝜏𝜏, 𝜏𝜏𝑔𝑔𝑢𝑢)

𝜗𝜗2 𝜈𝜈, 2𝜏𝜏
𝜗𝜗3 𝜈𝜈, 2𝜏𝜏

=
𝜗𝜗2 0,2𝜏𝜏𝑔𝑔𝑢𝑢
𝜗𝜗3 0,2𝜏𝜏𝑔𝑔𝑢𝑢

Determines bimodular 𝑣𝑣 𝜏𝜏, 𝜏𝜏𝑔𝑔𝑢𝑢

𝑣𝑣 ≔
𝑎𝑎2𝑑
𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼 = (𝑎𝑎𝐷𝐷 − 𝑎𝑎𝜏𝜏)/𝐼𝐼



Holomorphic Part Of Measure

ℋ𝑏𝑏𝑔𝑔𝑏𝑏𝑔𝑔 = 𝐴𝐴1𝜎𝜎𝐴𝐴2
𝜒𝜒𝐴𝐴3

𝑐𝑐𝑢𝑢𝑢𝑢2

Depend on duality frame –
- but the local system has nontrivial monodromy. 

Include observables: 

ℋ = ℋ𝑏𝑏𝑔𝑔𝑏𝑏𝑔𝑔 𝐴𝐴4
𝑡𝑡 𝐴𝐴5

𝑐𝑐𝑢𝑢𝑢𝑢⋅𝑆𝑆𝐴𝐴6𝑆𝑆
2



Local Topological Interactions

𝐴𝐴3 ≔ exp −2 𝜋𝜋 𝑖𝑖
𝑎𝑎2𝑑
𝑎𝑎𝐼𝐼2 =

Λ
𝐼𝐼

3
2 𝜗𝜗1 2𝜏𝜏, 2𝑣𝑣
𝜗𝜗22 𝜏𝜏𝑔𝑔𝑢𝑢 𝜗𝜗4 2𝜏𝜏

𝐴𝐴18 = �
𝑖𝑖

𝑢𝑢 − 𝑢𝑢𝑖𝑖 =

2𝐼𝐼 6 𝜂𝜂 𝜏𝜏𝑔𝑔𝑢𝑢 24𝜂𝜂 𝜏𝜏 12

𝜗𝜗4 𝜏𝜏 4𝜗𝜗3 𝜏𝜏𝑔𝑔𝑢𝑢 4 − 𝜗𝜗3 𝜏𝜏 4𝜗𝜗4 𝜏𝜏𝑔𝑔𝑢𝑢 4 3

𝐴𝐴2−4 =
𝜗𝜗44 𝜏𝜏 𝜗𝜗34 𝜏𝜏𝑔𝑔𝑢𝑢 − 𝜗𝜗34 𝜏𝜏 𝜗𝜗44 𝜏𝜏𝑔𝑔𝑢𝑢

𝐼𝐼2𝜂𝜂6 𝜏𝜏𝑔𝑔𝑢𝑢



With all these ingredients we can 
now check that the CB measure
is indeed monodromy invariant 

and hence well-defined.
(Nontrivial!)



The measure on the Coulomb branch 
is physical and must be single-valued

Even though several couplings 
in the LEET are multi-valued. 

Even though there is no gobal duality frame. 

Interesting constraint on low-energy couplings



What about defining the integral 
of the measure? 



Do the phase integral first.
(as in string theory) 

𝑢𝑢 → 𝑢𝑢𝑗𝑗

ℋ → 𝑞𝑞𝑗𝑗
−ℓ2 𝐹𝐹 𝜏𝜏𝑔𝑔𝑢𝑢 1 + 𝒪𝒪 𝑞𝑞𝑗𝑗

𝜏𝜏 − 𝜏𝜏𝑔𝑔𝑢𝑢
ℓ−32 �

𝑑𝑑

⋯𝑒𝑒 −
𝑚𝑚
Λ 𝜏𝜏−𝜏𝜏𝑢𝑢𝑢𝑢

−12 𝑆𝑆⋅𝑑𝑑

𝑢𝑢 → ∞ i.e.  𝜏𝜏 → 𝜏𝜏𝑔𝑔𝑢𝑢
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𝑍𝑍𝜇𝜇𝐶𝐶𝐶𝐶 :   A sum of integrals of the form   

𝐼𝐼𝑓𝑓 = �
𝑑∞
𝑎𝑎𝜏𝜏𝑎𝑎 ̅𝜏𝜏 𝐼𝐼𝐼𝐼 𝜏𝜏 −𝑠𝑠 𝑓𝑓 𝜏𝜏, ̅𝜏𝜏

𝑓𝑓 𝜏𝜏, ̅𝜏𝜏 = �
𝑚𝑚−𝑖𝑖∈ℤ

𝑐𝑐 𝐼𝐼,𝑛𝑛 𝑞𝑞𝑚𝑚 �𝑞𝑞𝑖𝑖Support of 𝑐𝑐 is 
bounded below 

Strategy:  Find �ℎ 𝜏𝜏, ̅𝜏𝜏 such that 
𝜕𝜕�𝜏𝜏 �ℎ = 𝐼𝐼𝐼𝐼 𝜏𝜏 −𝑠𝑠 𝑓𝑓 𝜏𝜏, ̅𝜏𝜏
�ℎ 𝜏𝜏, ̅𝜏𝜏 is modular of weight (2,0) 

Relation To Mock Modular Forms -1.1    

Presenter
Presentation Notes
Say in words the measure is modular invariant . Say in words that modularity of h-hat is crucial so that the finite boundaries do not contribute. 



Relation To Mock Modular Forms – 1.2

�ℎ 𝜏𝜏, ̅𝜏𝜏 = ℎ 𝜏𝜏 + 𝑅𝑅

We choose an explicit solution  
𝜕𝜕�𝜏𝜏𝑅𝑅 = (𝐼𝐼𝐼𝐼𝜏𝜏)−𝑠𝑠 𝑓𝑓 𝜏𝜏, ̅𝜏𝜏

vanishing exponentially fast at 𝐼𝐼𝐼𝐼𝜏𝜏 → ∞

ℎ 𝜏𝜏 = �
𝑚𝑚∈ℤ

𝑎𝑎 𝐼𝐼 𝑞𝑞𝑚𝑚
ℎ 𝜏𝜏 :  mock modular form

𝑞𝑞 = 𝑒𝑒2𝜋𝜋𝑖𝑖𝜏𝜏

𝑅𝑅 is not modular, but it’s failure to 
be modular must be holomorphic. 



Doing The Integral 
𝐼𝐼𝑓𝑓 = �

𝑑∞
𝑎𝑎𝜏𝜏𝑎𝑎 ̅𝜏𝜏 𝑦𝑦−𝑠𝑠 𝑓𝑓 𝜏𝜏, ̅𝜏𝜏

𝜕𝜕�𝜏𝜏 �ℎ = 𝑦𝑦−𝑠𝑠 𝑓𝑓 𝜏𝜏, ̅𝜏𝜏

ℎ 𝜏𝜏 = �
𝑚𝑚∈ℤ

𝑎𝑎 𝐼𝐼 𝑞𝑞𝑚𝑚

𝐼𝐼𝑓𝑓 = 𝑎𝑎 0

Note:  𝑎𝑎 0 undetermined by diffeq but fixed 
by the modular properties: Subtle! 



Evaluation Of CB Integral ? 

Ω = 𝑎𝑎 Λ Λ = 𝑎𝑎𝜏𝜏 ℋ �𝐺𝐺 Ψ𝜇𝜇
𝐽𝐽 = 𝜕𝜕�𝜏𝜏 �𝐺𝐺

Ψ𝜇𝜇
𝐽𝐽 = �

𝑑𝑑∈2𝐿𝐿+𝜇𝜇

𝜕𝜕�𝜏𝜏𝐸𝐸𝑑𝑑
𝐽𝐽 𝑞𝑞−

1
4𝑑𝑑

2
𝑒𝑒−2𝜋𝜋𝑖𝑖 𝑑𝑑⋅𝑧𝑧

Ω = 𝑎𝑎𝜏𝜏 ∧ 𝑎𝑎 ̅𝜏𝜏 ℋ Ψ𝜇𝜇
𝐽𝐽𝑍𝑍𝜇𝜇𝐶𝐶𝐶𝐶 = �

𝑑 Γ 2
Ω

𝑧𝑧 = 𝑐𝑐𝑔𝑔𝑢𝑢 𝑣𝑣 𝜏𝜏, 𝜏𝜏𝑔𝑔𝑢𝑢 + 𝑆𝑆
𝑎𝑎𝑢𝑢
𝑎𝑎𝑎𝑎



Evaluation Of CB Integral ?

Ψ𝜇𝜇
𝐽𝐽 = 𝜕𝜕�𝜏𝜏 �𝐺𝐺

NO!!!   ??? lim
|𝑑𝑑+|→+∞

𝐸𝐸𝑑𝑑
𝐽𝐽 = ±1

�𝐺𝐺 = �
𝑑𝑑∈2𝐿𝐿+𝜇𝜇

𝐸𝐸𝑑𝑑
𝐽𝐽 𝑞𝑞−

1
4𝑑𝑑

2
𝑒𝑒−2𝜋𝜋𝑖𝑖𝑑𝑑⋅𝑧𝑧

Ψ𝜇𝜇
𝐽𝐽 = �

𝑑𝑑∈2𝐿𝐿+𝜇𝜇

𝜕𝜕�𝜏𝜏𝐸𝐸𝑑𝑑
𝐽𝐽 𝑞𝑞−

1
4𝑑𝑑

2
𝑒𝑒−2𝜋𝜋𝑖𝑖 𝑑𝑑⋅𝑧𝑧



Evaluating Difference Of CB Integrals  

Ψ𝐽𝐽1 − Ψ𝐽𝐽2 = 𝜕𝜕�𝜏𝜏 �𝐺𝐺𝐽𝐽1,𝐽𝐽2

�𝐺𝐺𝐽𝐽1,𝐽𝐽2 = �
𝑑𝑑∈2𝐿𝐿+𝜇𝜇

𝐸𝐸𝑑𝑑
𝐽𝐽1,𝐽𝐽2𝑞𝑞−

1
4𝑑𝑑

2
𝑒𝑒−2𝜋𝜋𝑖𝑖𝑑𝑑⋅𝑧𝑧

𝐸𝐸𝑑𝑑
𝐽𝐽1,𝐽𝐽2 = 𝐸𝐸𝑇𝑇𝑓𝑓 𝑥𝑥𝑑𝑑

𝐽𝐽1 − 𝐸𝐸𝑇𝑇𝑓𝑓 𝑥𝑥𝑑𝑑
𝐽𝐽2

⇒ Can use this to evaluate the difference 
𝑍𝑍𝜇𝜇
𝐶𝐶𝐶𝐶,𝐽𝐽1 − 𝑍𝑍𝜇𝜇

𝐶𝐶𝐶𝐶,𝐽𝐽2 by a sum of residues. 

Converges nicely! 



Metric & Holomorphic Anomaly  

Wall crossing involves  
modular functions 

For the boundary at 𝑢𝑢 → ∞ the modular parameter
𝜏𝜏 → 𝜏𝜏𝑔𝑔𝑢𝑢.  This leads to continuous metric dependence. 

Closely related:  Nonholomorphic in 𝜏𝜏𝑔𝑔𝑢𝑢

𝜕𝜕
𝜕𝜕 ̅𝜏𝜏uv

Z𝜇𝜇CB = y−
3
2𝜂𝜂−2𝜒𝜒�

𝑑𝑑

𝐾𝐾 𝜆𝜆+, 𝜆𝜆− 𝑞𝑞𝑔𝑔𝑢𝑢𝑑𝑑+
2

q𝑔𝑔𝑢𝑢
−𝑑𝑑−2



The Special Period Point
For any manifold with 𝑏𝑏2+ = 1

∃ special 𝐽𝐽0 such that Ψ𝜇𝜇
𝐽𝐽0 factorizes:  

Ψ𝜇𝜇
𝐽𝐽0 = 𝑓𝑓𝜇𝜇 Θ𝐿𝐿− 𝜏𝜏, 𝑧𝑧

𝑓𝑓𝜇𝜇 = �
𝑑𝑑∈2ℤ+𝜇𝜇

𝜕𝜕�𝜏𝜏𝐸𝐸𝑑𝑑
𝐽𝐽 𝑞𝑞−

1
4𝑑𝑑

2
𝑒𝑒−2𝜋𝜋𝑖𝑖 𝑑𝑑⋅𝑧𝑧



Measure As A Total Derivative

Ω = 𝑎𝑎 Λ Λ = 𝑎𝑎𝜏𝜏 ℋ �𝐺𝐺

1. Well-defined
2. Nonsingular away from 𝜏𝜏 ∈ { 0,1, 𝑖𝑖 ∞, 𝜏𝜏𝑔𝑔𝑢𝑢}
3. Good 𝑞𝑞𝑖𝑖 expansion near cusps 

Where we can write �𝐺𝐺 explicitly so that Λ is: 



Harmonic Jacobi-Maass Forms

These conditions determine �𝐺𝐺 uniquely. 

Modular completion of an Appel-Lerche sum 

𝐹𝐹 𝜏𝜏, 𝑧𝑧 ∼
𝑒𝑒−2𝜋𝜋𝑖𝑖 𝑧𝑧

𝜗𝜗4 2𝜏𝜏
�
𝑖𝑖∈ℤ

−1 𝑖𝑖𝑞𝑞𝑖𝑖
2−14

1 + 𝑒𝑒4𝜋𝜋𝑖𝑖 𝑧𝑧𝑞𝑞2𝑖𝑖−1

𝑧𝑧 = 𝑐𝑐𝑔𝑔𝑢𝑢 𝑣𝑣 𝜏𝜏, 𝜏𝜏𝑔𝑔𝑢𝑢 + 𝑆𝑆
𝑎𝑎𝑢𝑢
𝑎𝑎𝑎𝑎

𝜏𝜏, 𝜏𝜏𝑔𝑔𝑢𝑢



Technical Comment On Poles 

𝐹𝐹 𝜏𝜏, 𝑧𝑧 has poles for 

𝑧𝑧 =
1
4
𝑎𝑎 + 𝑏𝑏 𝜏𝜏 𝑎𝑎 = 1 𝐼𝐼𝑚𝑚𝑎𝑎 2 𝑏𝑏 = 2 𝐼𝐼𝑚𝑚𝑎𝑎 4

But for 𝑧𝑧 = 𝑐𝑐𝑔𝑔𝑢𝑢 𝑣𝑣 𝜏𝜏, 𝜏𝜏𝑔𝑔𝑢𝑢 one can add a meromorphic
form to 𝐹𝐹 𝜏𝜏, 𝑧𝑧 to cancel unwanted poles 

Λ must be nonsingular away from 𝜏𝜏 ∈ { 0,1, 𝑖𝑖 ∞, 𝜏𝜏𝑔𝑔𝑢𝑢}



The Integral Is a Mock Modular Form

For 𝔰𝔰𝑔𝑔𝑢𝑢 = 𝔰𝔰 𝒥𝒥 we find 𝑍𝑍𝜇𝜇
𝐶𝐶𝐶𝐶,𝐽𝐽0 =

�𝑔𝑔𝜇𝜇 𝜏𝜏𝑔𝑔𝑢𝑢 , ̅𝜏𝜏𝑔𝑔𝑢𝑢 Θ𝐿𝐿−(𝜏𝜏𝑔𝑔𝑢𝑢)/𝜂𝜂2𝜒𝜒(𝜏𝜏𝑔𝑔𝑢𝑢)

𝑔𝑔𝜇𝜇 = 3 �
𝑖𝑖≥0

𝐻𝐻 4𝑛𝑛 − 2𝜇𝜇 𝑞𝑞𝑔𝑔𝑢𝑢
𝑖𝑖−𝜇𝜇2



… but other 𝔰𝔰 generalize … 

𝜕𝜕
𝜕𝜕 ̅𝜏𝜏𝑔𝑔𝑢𝑢

𝑍𝑍𝜇𝜇 = 𝑦𝑦𝑔𝑔𝑢𝑢
−32 𝜂𝜂−2 �𝐸𝐸2 Θ𝜇𝜇 − ̅𝜏𝜏𝑔𝑔𝑢𝑢

For ℂℙ2 &  𝑐𝑐𝑔𝑔𝑢𝑢 = 1 (acs ⇒ 𝑐𝑐𝑔𝑔𝑢𝑢 = 3 )



Including Observables
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Contributions Of The Cusps 𝑢𝑢𝑗𝑗
Near each cusp 𝑢𝑢𝑗𝑗 , 𝑗𝑗 = 1,2,3

the description of the vacuum changes: 
We have a U(1) VM coupled to a charge 1 HM. 

(In the appropriate duality frame) [Seiberg-Witten 94] 

There is a separate contribution to the path integral 
coming from the path integral of these three LEET. 

We add the contributions, because we sum over vacua: 

𝑍𝑍𝜇𝜇 = 𝑍𝑍𝜇𝜇𝐶𝐶𝐶𝐶 + �
𝑗𝑗=1

3

𝑍𝑍𝜇𝜇,𝑗𝑗
𝑆𝑆𝑆𝑆



When 𝑏𝑏2+ > 1 Z𝜇𝜇CB vanishes –
- we get true topological invariants:  

𝑍𝑍𝜇𝜇 = �
𝑗𝑗=1

3

𝑍𝑍𝜇𝜇,𝑗𝑗
𝑆𝑆𝑆𝑆

So it is quite interesting to determine 
the three effective actions 



𝑢𝑢3𝑢𝑢1

𝐸𝐸𝑔𝑔

𝑢𝑢2

𝑢𝑢𝑗𝑗 = 𝐼𝐼2𝑒𝑒𝑗𝑗(𝜏𝜏0)



MW97: The behavior of the CB integral  
at 𝑢𝑢𝑗𝑗 uniquely fixes 𝑍𝑍𝜇𝜇,𝑗𝑗

𝑆𝑆𝑆𝑆



Determination Of Effective Action

𝑍𝑍𝜇𝜇,𝑗𝑗
𝑆𝑆𝑆𝑆 = �

𝑐𝑐𝑖𝑖𝑖𝑖

𝑆𝑆𝑊𝑊 𝑐𝑐𝑖𝑖𝑏𝑏 �
𝑖𝑖=1

12

𝐹𝐹𝑖𝑖,𝑗𝑗 𝜏𝜏𝑔𝑔𝑢𝑢; 𝑡𝑡 Δ𝑖𝑖

𝜒𝜒ℎ =
1
4
𝜒𝜒 + 𝜎𝜎 𝜆𝜆 = 2𝜒𝜒 + 3𝜎𝜎 ℓ =

𝑐𝑐𝑔𝑔𝑢𝑢2 − 𝜆𝜆
8

𝑥𝑥2 ≔
𝑐𝑐𝑔𝑔𝑢𝑢 − 𝑐𝑐𝑖𝑖𝑏𝑏

2

2
𝑆𝑆 ⋅ 𝑐𝑐𝑖𝑖𝑏𝑏 𝑆𝑆2 𝑆𝑆 ⋅ 𝑐𝑐𝑔𝑔𝑢𝑢



+

+



Including Observables



Full Modular Transformation Law

𝑍𝑍𝜇𝜇 �𝑆𝑆, �̃�𝑆,
𝑎𝑎𝜏𝜏𝑔𝑔𝑢𝑢 + 𝑏𝑏
𝑐𝑐𝜏𝜏𝑔𝑔𝑢𝑢 + 𝑎𝑎

= 𝑐𝑐𝜏𝜏𝑔𝑔𝑢𝑢 + 𝑎𝑎 𝑤𝑤�
𝜇𝜇

𝐵𝐵𝜇𝜇,𝜇𝜇 𝛾𝛾 𝑍𝑍𝜇𝜇 𝑆𝑆, 𝑆𝑆, 𝜏𝜏𝑔𝑔𝑢𝑢

�̃�𝑆 =
𝑆𝑆

𝑐𝑐𝜏𝜏 + 𝑎𝑎 2

�𝑆𝑆 =
1

𝑐𝑐𝜏𝜏 + 𝑎𝑎 2 𝑆𝑆 − 2𝜋𝜋𝑖𝑖 𝑐𝑐 𝑐𝑐𝜏𝜏 + 𝑎𝑎 𝑆𝑆2

𝑤𝑤 = −
𝜒𝜒
2
− 4ℓ



[𝑍𝑍𝜇𝜇
𝑆𝑆𝑈𝑈 2 ]

[𝑍𝑍𝜇𝜇+𝑤𝑤2 𝑋𝑋
𝑆𝑆𝑈𝑈 2 ]

[𝑍𝑍𝜇𝜇
𝑆𝑆𝑆𝑆 3 +]

[𝑍𝑍𝜇𝜇
𝑆𝑆𝑆𝑆 3 −]

[𝑍𝑍𝜇𝜇+𝑤𝑤2 𝑋𝑋
𝑆𝑆𝑆𝑆 3 + ]

[𝑍𝑍𝜇𝜇+𝑤𝑤2 𝑋𝑋
𝑆𝑆𝑆𝑆 3 − ]



CONCLUDING REMARKS 



Relation To Previous Results
For 𝔰𝔰 ℐ and 𝐼𝐼 → 0 we recover and generalize 

formulae of [VW;DPS]  for VW invariants.  

For 𝐼𝐼 → ∞ , quv → 0 after suitable renormalization we 
recover the ``Witten conjecture’’ for the Donaldson 
invariants in terms of the Seiberg-Witten invariants. 

A generalization and unification of the 1990’s formulae: 

For 𝑐𝑐𝑔𝑔𝑢𝑢 = 0 we recover formulae 
of Labastida-Lozano 

Recover and generalize explicit evaluation of u-plane integral 
for ℂℙ2, 𝑆𝑆2 × 𝑆𝑆2 of Moore-Witten, Malmendier-Ono 



Recent Discussions Of 
Holomorphic Anomaly 





+

+



Comparing With GKNW 

𝑋𝑋: General 
four-manifold
admitting acs.  

𝑋𝑋: Projective 
algebraic surface 

Arbitrary spin-c 
structure 𝔰𝔰𝑔𝑔𝑢𝑢

Canonical spin-c 
structure determined 

by the complex 
structure

?!?!?!?!?
Further refinement of 
invariants computing

𝜒𝜒𝑦𝑦 -genus 





�
ℳ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

⋯ ∼ 𝑍𝑍𝜇𝜇,2
𝑆𝑆𝑆𝑆 + 𝑍𝑍𝜇𝜇,3

𝑆𝑆𝑆𝑆

�
ℳ𝑎𝑎𝑏𝑏

⋯ ∼ 𝑍𝑍𝜇𝜇,1
𝑆𝑆𝑆𝑆

Comparison 𝑡𝑡 large shows: 

Showing that the instanton contribution 
alone cannot be S-duality covariant. 

𝑢𝑢2 ∼ −
𝐼𝐼2

12
+ Λ02

𝑢𝑢3 ∼ −
𝐼𝐼2

12
− Λ02

𝑢𝑢1 ∼
𝐼𝐼2

6



Future Directions

Derivation from 6d (2,0) theory? 

Generalization of these techniques to class S 

𝑋𝑋 complex: Compute Refined Versions From Physics

With X. Zhang: 
Interesting generalization to 5d SYM 
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FAQ 1  
SW94 showed the SW curve for N=2* 

is invariant under S-duality. 
What about the partition functions? 

Partition functions are suitably 
S-duality covariant with some 
interesting nontrivial details. 

See previous talks for details. 



FAQ 2:
SW94: Set 𝑞𝑞𝑔𝑔𝑢𝑢𝐼𝐼4 = Λ04 fixed and take   

𝐼𝐼 → ∞. This gives the 𝑁𝑁𝑓𝑓 = 0 SW curve. 
Does limit of 𝑍𝑍𝜇𝜇 exist and give 

the DW partition function? 

Yes, sort of.  
The limit does not exist. 

But 𝑍𝑍𝜇𝜇 is naturally a sum of three terms. 
Throwing one away, and renormalizing the 

others, there is a well-defined limit.  
It reproduces the DW function. 

(With an interesting orientation issue.) 



FAQ 3:  

Absolutely not when 𝑏𝑏2+ = 1.
In fact, most correlators vary 
continuously with metric. 

𝑆𝑆 = �
𝑋𝑋
𝜏𝜏𝑔𝑔𝑢𝑢 𝑇𝑇𝑇𝑇 𝐹𝐹 ∧ 𝐹𝐹 + 𝑄𝑄 ∗

Is the partition function metric independent 
and holomorphic in 𝜏𝜏𝑔𝑔𝑢𝑢 ?

Yes, when 𝑏𝑏2+ > 1.



〈𝒪𝒪 𝑆𝑆 𝑏𝑏𝒪𝒪 𝑆𝑆 𝑖𝑖〉
Varies continuously with metric when 

(i.e. all but finitely many correlators)
We derive very explicit formulae for the 

holomorphic and metric anomalies. 

ℓ =
𝑐𝑐 𝔰𝔰 2 − 2𝜒𝜒 − 3 𝜎𝜎

8
∈ ℤ



FAQ 4:  

Yes, for 𝜅𝜅2 𝑢𝑢 .  No for 𝜅𝜅1 𝑢𝑢 .

𝑆𝑆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = �
𝑋𝑋
𝜅𝜅1 𝑢𝑢 𝑓𝑓 ∧ 𝐹𝐹𝔰𝔰 + 𝜅𝜅2 𝑢𝑢 𝐹𝐹𝔰𝔰2

Again using 𝑄𝑄 −symmetry the coupling to the 
background spin-c connection is expected to be 
holomorphic in 𝑢𝑢 = 〈𝑇𝑇𝑇𝑇 𝜙𝜙2 〉

𝑓𝑓: dynamical U(1) fieldstrength of
the Coulomb branch LEET

𝐹𝐹𝔰𝔰 ∶ Fieldstrength of background spin-c connection 

Shapere & Tachikawa



This has important 
implications for the 

class S generalization 

We also give explicit 
formulae for these couplings. 
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