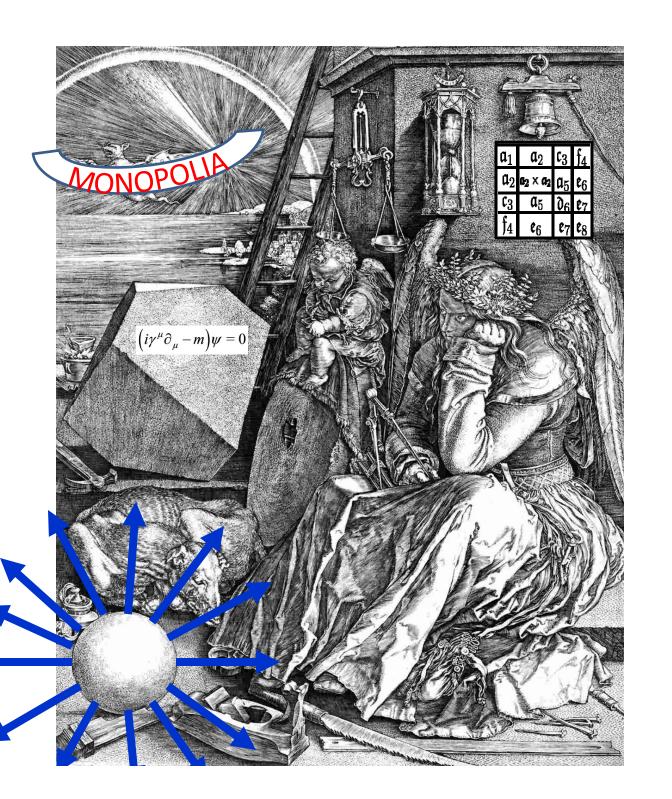
Monopolia

Gregory Moore

Nambu Memorial Symposium University of Chicago March 13, 2016



Robbert Dijkgraaf's Thesis Frontispiece

'Making the World a Stabler Place"

The BPS Times

Late Edition

Today, BPS degeneracies, wall-crossing formulae. **Tonight**, Sleep. **Tomorrow**, K3 metrics, BPS algebras, p.B6

Est. 1975

www.bpstimes.com

SEOUL, FRIDAY, JUNE 28, 2013

₩ 2743.75

INVESTIGATORS SEE NO EXOTICS IN PURE SU(N) GAUGE THEORY

Use of Motives Cited

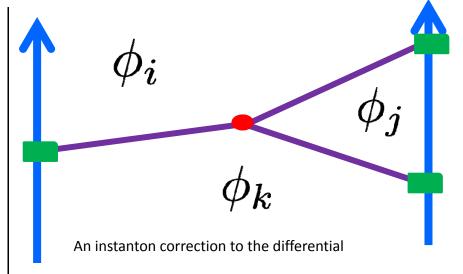
By E. Diaconescu, et. al.

RUTGERS – An application of results on the motivic structure of quiver in duli spaces has led to a proof of a conjecture of GMN. p.A12

Semiclassical, but Framed, BPS States

By G. Moore, A. Royston, and D. Van den Bleeken

h TGERS — Semiclassic и framed ы 3 states have been constructed as



Operadic Structures Found in Infrared Limit of 2D LG Models

NOVEL CONSTRUCTION OF d ON INTERVAL

Hope Expressed for Categorical WCF

By D. Gaiotto, G. Moore, and E. Witten

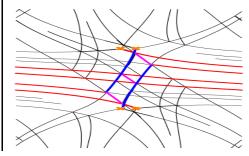
PRINCETON - A Morse-theoretic formulation of LG models has revealed ∞ -structures familiar from String Field Theory. LG models are nearly trivial in

WILD WALL CROSSING IN SU(3)

EXPONENTIAL GROWTH OF Ω

By D. Galakhov, P. Longhi, T. Mainiero, G. Moore, and A. Neitzke

AUSTIN – Some strong coupling regions exhibit wild wall crossing. "I didn't think this could happen," declared Prof. Nathan Seiberg of the Institute for Advanced Study in Princeton. Continued on p.A4



Semiclassical framed BPS states

L^2-Kernels Of Dirac-Type Operators On Monopole Moduli Spaces

Brane bending and monopole moduli

Parameter counting for singular monopoles on R3

arXiv:1512.08924

arXiv:1512.08923

arXiv:1404.7158

arXiv:1404.5616

Goal Of Our Project

Recently there has been some nice progress in understanding BPS states in d=4, N=2 supersymmetric field theory:

No Exotics Theorem, Wall-Crossing Formulae, Exact Results For Line Defect Vev's

What can we learn about the differential geometry of monopole moduli spaces from these results?

- 1 Introduction
- 2 Monopoles & Monopole Moduli Space
- 3 Singular Monopoles
- 4 Singular Monopole Moduli: Dimension & Existence
- 5 Semiclassical N=2 d=4 SYM: Collective Coordinates
- 6 Semiclassical (Framed) BPS States
- 7 Application 1: No Exotics & Generalized Sen Conjecture
- 8 Application 2: Wall-crossing & Fredholm Property
- 9 Future Directions

Lie Algebra Review: 1/4

Let G be a compact simple Lie group with Lie algebra \mathfrak{g} .

$$X \in \mathfrak{g}$$
 is regular if Z(X) has minimal dimension. Then Z(X) = t is a Cartan subalgebra.

$$T=\exp[2\pi\mathfrak{t}]$$
 is a Cartan subgroup.

$$\Lambda_G^{\vee} := \operatorname{Hom}(T, U(1))$$
 character lattice

$$\Lambda_G := \text{Hom}(U(1), T) \quad \exp(2\pi X) = 1$$

$$\Lambda_{rt} \subset \Lambda_G^{\vee} \subset \Lambda_{wt} \subset \mathfrak{t}^{\vee}$$

$$\Lambda_{cr} \subset \Lambda_G \subset \Lambda_{mw} \subset \mathfrak{t}$$

Lie Algebra Review: 2/4

Moreover, a regular element X determines a set of simple roots

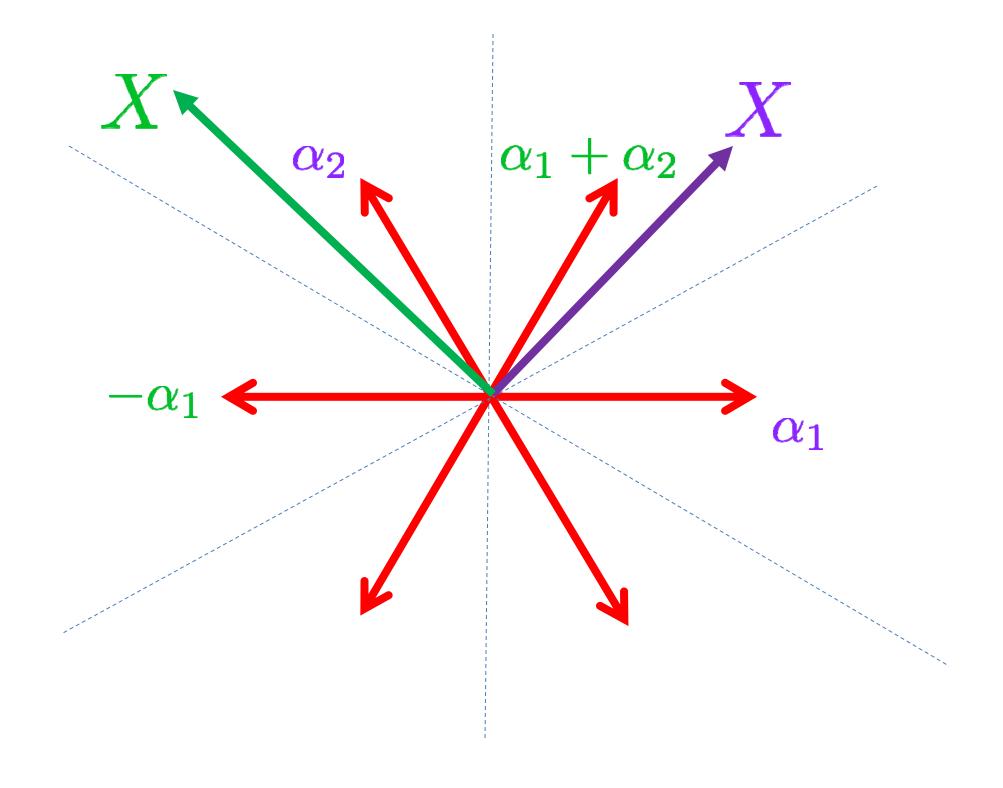
$$\alpha_I \in \mathfrak{t}^{\vee}$$

and simple coroots

$$H_{\alpha_I} := H_I \in \mathfrak{t}$$

$$\Lambda_{rt} = \bigoplus_{I} \mathbb{Z} \alpha_{I} \subset \mathfrak{t}^{\vee}$$

$$\Lambda_{cr} = \oplus_I \mathbb{Z} H_I \subset \mathfrak{t}$$



Nonabelian Monopoles

Yang-Mills-Higgs system for compact simple G

$$(A,X)$$
 $\int_{\mathbb{R}^4} \operatorname{Tr}(F*F+DX*DX)$ $F=*DX$ on \mathbb{R}^3 $F=\gamma_m \mathrm{vol}(S^2)+\cdots$ $X \to X_\infty - \frac{\gamma_m}{2r}+\cdots$ $X_\infty \in \mathfrak{g}$ regular $\longrightarrow \mathfrak{t}$ α_I H_I $\gamma_m \in \Lambda_{cr} \subset \mathfrak{t} \subset \mathfrak{g}$ $\gamma_m = \sum_{I=1}^r n_m^I H_I$ $n_m^I \in \mathbb{Z}$

Monopole Moduli Space

 $\mathcal{M}(\gamma_m;X_\infty)$ solutions/gauge transformations

If M is nonempty then [Callias; E. Weinberg]:

$$\dim \mathcal{M}(\gamma_m; X_\infty) = 4 \sum_I n_m^I$$

Known: \mathcal{M} is nonempty iff all magnetic charges nonnegative and <u>at least one</u> is positive (so $4 \leq \dim \mathcal{M}$)

 ${\cal M}$ has a hyperkahler metric. Group of isometries with Lie algebra:

$$\mathbb{R}^3 \oplus \mathfrak{so}(3) \oplus \mathfrak{t}$$

Translations

Rotations

Global gauge transformations

Action Of Global Gauge Transformations

$$H\in \mathfrak{t}$$
 \Longrightarrow $G(H)$ Killing vector field on ${\mathscr M}$

$$\hat{A} = A_i dx^i + X dx^4 \qquad \hat{F} = *\hat{F}$$

Directional derivative along G(H) at

$$[\hat{A}] \in \mathcal{M} \quad \frac{d\hat{A}}{ds} = -\hat{D}\epsilon$$

$$\epsilon:\mathbb{R}^3 o\mathfrak{g}$$

$$\lim_{x \to \infty} \epsilon(x) = H \qquad \hat{D}^2 \epsilon = 0$$

Strongly Centered Moduli Space

$$\widetilde{\mathcal{M}}(\gamma_m;X_\infty)=\mathbb{R}^3 imes\mathbb{R} imes\mathcal{M}_0$$
 Orbits of translations Orbits of $\mathsf{G}(\mathsf{X}_\infty)$

$$\mathcal{M}(\gamma_m;X_\infty)=\mathbb{R}^3 imesrac{\mathbb{R} imes\mathcal{M}_0}{\mathbb{Z}}$$

Higher rank is different!

$$\mathcal{M}(\gamma_m; X_\infty) \neq \mathbb{R}^3 \times \frac{S^1 \times \mathcal{M}_0}{\mathbb{Z}_r}$$

- 1 Introduction
- 2 Monopoles & Monopole Moduli Space
- 3 Singular Monopoles
- Singular Monopole Moduli: Dimension & Existence
- 5 Semiclassical N=2 d=4 SYM: Collective Coordinates
- 6 Semiclassical (Framed) BPS States
- 7 Application 1: No Exotics & Generalized Sen Conjecture
- 8 Application 2: Wall-crossing & Fredholm Property
- 9 Future Directions

Singular Monopoles

$$F = \gamma_m \operatorname{vol}(S^2) + \cdots \quad X \to X_{\infty} - \frac{\gamma_m}{2r} + \cdots$$
 $\vec{x} \to \infty$

<u>AND</u>

$$F = P \operatorname{vol}(S^2) + \cdots \qquad X \to -\frac{P}{2r} + \mathcal{O}(r^{-1/2})$$
 $\vec{x} \to 0$

Use: construction of 't Hooft line defects (``line operators'')

Kapustin; Kapustin-Witten

Example: A Singular Nonabelian SU(2) Monopole

$$X = \frac{1}{2}h(r)H_{\alpha} \quad A = \frac{1}{2}(\pm 1 - \cos\theta)d\phi H_{\alpha}$$
$$+ \frac{1}{2}f(r)\left[e^{\pm i\phi}(-d\theta - i\sin\theta d\phi)E_{+} + c.c.\right]$$

Bogomolnyi eqs:

$$f'(r) + f(r)h(r) = 0$$

 $r^2h'(r) + f(r)^2 - 1 = 0$

$$h(r) = m_W \coth(m_W r + c) - \frac{1}{r}$$
 $f(r) = \frac{m_W r}{\sinh(m_W r + c)}$

('t Hooft; Polyakov; Prasad & Sommerfield took c = 0)

c > 0 is the singular monopole: Physical interpretation?

- 1 Introduction
- Monopoles & Monopole Moduli Space
- 3 Singular Monopoles
- 4 Singular Monopole Moduli: Dimension & Existence
- 5 Semiclassical N=2 d=4 SYM: Collective Coordinates
- 6 Semiclassical (Framed) BPS States
- 7 Application 1: No Exotics & Generalized Sen Conjecture
- 8 Application 2: Wall-crossing & Fredholm Property
- 9 Future Directions

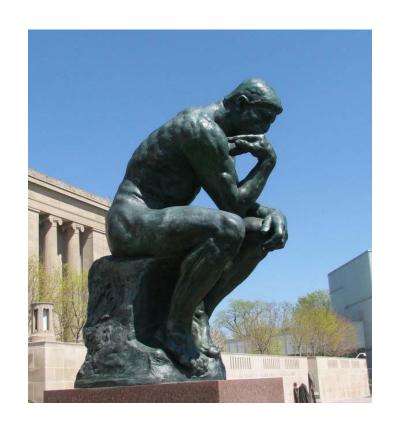
Singular Monopole Moduli Space

$$\overline{\mathcal{M}}(P;\gamma_m;X_\infty)$$
 Solutions/gauge transformations

When is it nonempty?

What is the dimension?

If $P = \gamma_m$ is P screened or not? Is the dimension zero? or not?



Dimension Formula

Assuming the moduli space is nonempty repeat computation of Callias; E. Weinberg to find:

$$\dim \overline{\mathcal{M}} = 2\mathrm{ind}(L) = \lim_{\epsilon \to 0^+} \mathrm{Tr} \left(\frac{\epsilon}{L^\dagger L + \epsilon} - \frac{\epsilon}{L L^\dagger + \epsilon} \right)$$

For a general 3-manifold we find:

$$\dim \overline{\mathcal{M}} = \int_{M_3 - \mathcal{S}} dJ^{(\epsilon)} = 4 \sum_I \tilde{n}_m^I$$

Relative magnetic charges.

Dimension Formula

$$\dim \overline{\mathcal{M}} = 4 \sum_{I} \tilde{n}_{m}^{I}$$

$$\sum_{I} \tilde{n}_{m}^{I} H_{I} = \gamma_{m} - P^{-}$$

 $\gamma_{\rm m}$ from $r \longrightarrow \infty$ and $-P^-$ from $r \longrightarrow 0$

 P^- : Weyl group image such that $\langle lpha_I, P^-
angle \leq 0$

(Positive chamber determined by X_{∞})

D-Brane Interpretation

Intuition for relative charges comes from D-branes. Example: Singular SU(2) monopoles from D1-D3 system

$$X_2$$
 X_1 $X = \begin{pmatrix} x_1 - rac{p_1}{2r} & 0 \ 0 & x_2 - rac{p_2}{2r} \end{pmatrix}$ $\gamma_m = P = (p^1 - p^2)H_lpha$

$$p^{1} < p^{2} \longrightarrow \gamma_{m} = P^{-}$$

$$dim \overline{M} = 0$$

$$p^{1} > p^{2} \longrightarrow \gamma_{m} = -P^{-}$$

$$dim \overline{M} = 4(p^{1} - p^{2})$$

$$p^{2} \longrightarrow p^{2}$$

$$p^{2} \longrightarrow p^{2}$$

$$p^{2} \longrightarrow p^{2}$$

$$p^{3} \longrightarrow p^{2}$$

$$p^{4} \longrightarrow p^{2}$$

$$p^{5} \longrightarrow p^{5}$$

$$p^{5} \longrightarrow p^{5}$$

Application: Meaning Of The Singular 't Hooft-Polyakov Ansatz

$$X = (m_W \coth(m_W r + c) - \frac{1}{r}) \frac{1}{2} H$$

$$\gamma_m = P = H \Rightarrow \tilde{n}_m = 2$$

$$\Rightarrow \dim \overline{\mathcal{M}} = 8$$

Two smooth monopoles in the presence of minimal SU(2) singular monopole.

They sit on top of the singular monopole but have a relative phase: $e^{-c} = \sin(\psi/2)$

Two D6-branes on an O6⁻ plane; Moduli space of d=3 N=4 SYM with two massless HM

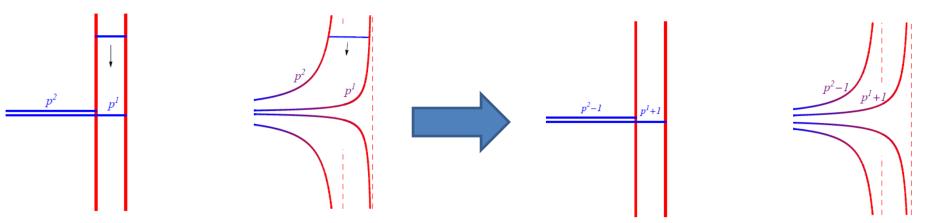
Properties of \overline{M}

Conjecture:

$$\overline{\mathcal{M}}(P; \gamma_m; X_\infty) \neq \emptyset \iff \forall I, \tilde{n}_m^I \geq 0$$

 \mathcal{M} Hyperkähler (with singular loci - monopole bubbling)

[Kapustin-Witten]



Isometries as before, but without translation.

- 1 Introduction
- Monopoles & Monopole Moduli Space
- 3 Singular Monopoles
- Singular Monopole Moduli: Dimension & Existence
- 5 Semiclassical N=2 d=4 SYM: Collective Coordinates
- 6 Semiclassical (Framed) BPS States
- 7 Application 1: No Exotics & Generalized Sen Conjecture
- 8 Application 2: Wall-crossing & Fredholm Property
- 9 Future Directions

\mathcal{N} =2 Super-Yang-Mills

Second real adjoint scalar Y

Vacuum requires $[X_{\infty}, Y_{\infty}]=0$.

$$\zeta^{-1}\varphi = Y + iX$$

Meaning of ζ : BPS equations on \mathbb{R}^3 for preserving

$$Q + \zeta^{-1}\bar{Q}$$

$$F = B = *DX$$
 $E = DY$

ζ And BPS States

BPS bound:
$$E \ge -\text{Re}(\zeta^{-1}Z_{\gamma})$$
 $\gamma \in \Gamma$

Definition: **BPS states** saturate the bound.

Framed BPS states: Phase ζ is part of the data describing 't Hooft-Wilson line defect L

$$\overline{\mathcal{H}}^{\mathrm{BPS}}(L, \gamma; u) \quad u \in \mathcal{M}_{\mathrm{Coulomb}}$$

Smooth/unframed/vanilla BPS states:

$$\zeta = -Z_{\gamma}(u)/|Z_{\gamma}(u)|$$
 $\mathcal{H}^{\mathrm{BPS}}(\gamma;u)$

Semiclassical Regime

Definition: Series expansions for $a_D(a;\Lambda)$ converges: $|\langle \alpha,a\rangle|>c|\Lambda|$

Local system of charges has natural duality frame:

$$\Gamma\subset \Lambda_{wt}\oplus \Lambda_{mw}$$
 (Trivialized after choices of $\gamma=\gamma^e\oplus \gamma_m$ cuts in logs for ${\bf a_D}$.)

$$\Lambda(t) = e^{-\pi t/h^{\vee}} \Lambda_0 \quad \lim_{t \to +\infty} \mathcal{H}^{BPS}(\gamma; u_t)$$

In this regime there is a well-known semiclassical approach to describing BPS states.

Collective Coordinate Quantization

At weak coupling BPS monopoles are heavy: Use moduli space approximation

The semiclassical states at (u,ζ) with electromagnetic charge $\gamma^e \oplus \gamma_m$ should be described in terms of supersymmetric quantum mechanics on

$$\overline{\mathcal{M}}(P,\gamma_m;X_\infty)$$
 or $\mathcal{M}(\gamma_m;X_\infty)$

What sort of SQM? How is (u, ζ) related to X_{∞} ?

How does y^e have anything to do with it?

What Sort Of SQM?

(Sethi, Stern, Zaslow; Gauntlett & Harvey; Tong; Gauntlett, Kim, Park, Yi; Gauntlett, Kim, Lee, Yi; Bak, Lee, Yi; Bak, Lee, Yee, Yi; Stern & Yi)

N=4 SQM on $\mathcal{M}(\gamma_m, X_\infty)$ with a potential:

$$S = \int \left(\parallel \dot{z} \parallel^2 - \parallel G(\mathcal{Y}_{\infty}^{\mathrm{cl}}) \parallel^2 + \cdots \right)$$

$$\mathcal{Y}_{\infty}^{\mathrm{cl}} := rac{4\pi}{g_0^2} Y_{\infty} + rac{ heta_0}{2\pi} X_{\infty}$$

$$\{Q,z^{\mu}\} \sim \chi^{\mu} \qquad \qquad \text{States are} \\ \text{spinors on } \mathcal{M}$$

$$Q_4 = \chi^{\mu} (D + G(\mathcal{Y}_{\infty}^{\mathrm{cl}}))_{\mu} := \mathbf{D}$$

How is (u,ζ) related to $X\infty$?

Need to write X_{∞} , \mathcal{Y}_{∞} as functions on the Coulomb branch

$$X_{\infty} := \operatorname{Im}(\zeta^{-1}a(u)) := X$$

$$\mathcal{Y}_{\infty} := \operatorname{Im}(\zeta^{-1}a_D(u;\Lambda)) := \mathcal{Y}$$

Nicely encodes quantum corrections, e.g.

$$G(\mathcal{Y}_{\infty}^{\mathrm{cl}}) \to G(\mathcal{Y}_{\infty})$$

goes beyond the weak-potential approximation.

- 1 Introduction
- Monopoles & Monopole Moduli Space
- 3 Singular Monopoles
- 4 Singular Monopole Moduli: Dimension & Existence
- 5 Semiclassical N=2 d=4 SYM: Collective Coordinates
- 6 Semiclassical (Framed) BPS States
- 7 Application 1: No Exotics & Generalized Sen Conjecture
- 8 Application 2: Wall-crossing & Fredholm Property
- 9 Future Directions

Semiclassical BPS States: Overview

$$Q_4 = \chi^{\mu}(D + G(\mathcal{Y}))_{\mu} := \mathbf{D}$$

Semiclassical framed or vanilla BPS states with magnetic charge $\gamma_{\rm m}$ will be:

a Dirac spinor
$$\Psi$$
 on $\mathcal{M}(\gamma_{\mathsf{m}})$ or $\overline{\mathcal{M}}(\gamma_{\mathsf{m}})$ $\mathbf{D}\Psi=0$

Must be suitably normalizable: $\ker_{L^2} \mathbf{D}$

Must be suitably equivariant...

Many devils in the details....

States Of Definite Electric Charge

 $\overline{\mathcal{M}}$ has a t-action: G(H) commutes with **D**

$$\exp[2\pi G(H)] \cdot \Psi = \exp[2\pi i \langle \gamma^e, H \rangle] \Psi$$

$$\gamma^e \in \mathfrak{t}^{\vee}$$

Cartan torus T of adjoint group acts on $\overline{\mathcal{M}}$

$$T = \mathfrak{t}/\Lambda_{mw} \longrightarrow \gamma^e \in \Lambda_{mw}^{\vee} \cong \Lambda_{rt}$$

Organize L²-harmonic spinors by T-representation:

$$\ker_{L^2} \mathbf{D} = \oplus_{\gamma^e} \ker_{L^2}^{\gamma^e} \mathbf{D}$$

Framed BPS States: The Answer

L is an 't Hooft line defect of charge P and phase ζ

$$\overline{\mathcal{H}}^{\mathrm{BPS}}(L, \gamma; u) = ???$$

$$= \ker_{L^2}^{\gamma^e} \mathbf{D}$$

$$X = \operatorname{Im}(\zeta^{-1}a(u)) \Rightarrow \overline{\mathcal{M}}(P; \gamma_m; X)$$

$$\mathcal{Y} = \operatorname{Im}(\zeta^{-1}a_D(u; \Lambda)) \Rightarrow \mathbf{D}$$

Vanilla BPS States & Smooth Monopoles

Begin analysis on universal cover: \mathcal{M}^{\sim}

Physical states Ψ must descend to M

-- Electric Charge --

Tacts on \mathcal{M} , and $T = t/\Lambda_{mw}$

States Ψ of definite electric charge transform with a definite character of t:

$$\gamma^e \in \Lambda_{mw}^{\vee} \cong \Lambda_{rt}$$

Separating The Center Of Mass

$$egin{aligned} \widetilde{\mathcal{M}}(\gamma_m;X_\infty) &= \mathbb{R}^3 imes \mathbb{R} imes \mathcal{M}_0 \ \mathbf{D} &= \mathbf{D}_{\mathrm{com}} + \mathbf{D}_0 \ \Psi &= \Psi_{\mathrm{com}} \otimes \Psi_0 \ \mathbf{D}_{\mathrm{com}} \Psi_{\mathrm{com}} &= 0 & \mathbf{D}_0 \Psi_0 = 0 \end{aligned}$$

$$\mathbf{D}_{\text{com}} \mathbf{\Psi}_{\text{com}} = \mathbf{0}$$
 $\mathbf{D}_{0} \mathbf{\Psi}_{0} = \mathbf{0}$

Separating the COM involves the nontrivial identity:

$$(G(X_{\infty}), G(H))_{\text{metric}} = (\gamma_m, H)_{\text{Killing}}$$

L² - Condition

$$\widetilde{\mathcal{M}}(\gamma_m; X_\infty) = \mathbb{R}^3 \times \mathbb{R} \times \mathcal{M}_0$$

No L^2 harmonic spinors on \mathbb{R}^4 Only ''plane-wave-normalizable" in \mathbb{R}^4

$$\Psi_0 \in \ker_{L^2} \mathbf{D}_0$$

Note: The L² condition is crucial! We do not want ``extra'' internal d.o.f.

Contrast this with the hypothetical ``instanton particle' of 5D SYM.

Semiclassical Smooth BPS States

$$egin{align} rac{????}{\mathcal{H}^{ ext{BPS}}}(\gamma;u) &= \left(\ker(\mathbf{D}_{ ext{com}}) \otimes \ker_{L^2} \mathbf{D}_0
ight)^{\gamma^e} \ &X &= \operatorname{Im}(\zeta^{-1} a(u)) \ &\mathcal{Y} &= \operatorname{Im}(\zeta^{-1} a_D(u;\Lambda)) \ &\zeta &= -Z_{\gamma}(u)/|Z_{\gamma}(u)| \ \end{matrix}$$

Tricky Subtlety: 1/3

Spinors must descend to $\mathcal{M}=\mathcal{M}/\mathbb{D}$

$$\mathbb{D}\cong\mathbb{Z}$$
 Generated by isometry ϕ

Subtlety: Imposing electric charge quantization only imposes invariance under a <u>proper</u> subgroup of the Deck group:

$$\exp[2\pi G(\lambda)]\Psi = \Psi \quad \lambda \in \Lambda_{mw}$$

$$\exp[2\pi G(\lambda)] = \phi^{\mu(\lambda)}$$

Put differently:

Tacts on \mathcal{M} , so choosing a point $m_0 \in \mathcal{M}$

$$f: T \to T \cdot m_0 \subset \mathcal{M}$$
 $f_*: \pi_1(T,1) \to \pi_1(\mathcal{M}, m_0)$
 $f_*: \Lambda_{mw} \to \mathbb{Z}$
 $f_*:= \mu$

Using the relation of M to rational maps from \mathbb{P}^1 to the flag variety we prove:

$$\mu(\lambda)=(\lambda,\gamma_m)$$

Tricky Subtlety: 3/3

$$\exp[2\pi G(\lambda)] = \phi^{\mu(\lambda)}$$

only generate a subgroup $r \mathbb{Z}$, where r is, roughly speaking, the gcd(magnetic charges)

Extra restriction to $\mathbb{Z}/r\mathbb{Z}$ invariant subspace:

$$\left(\left(\ker(\mathbf{D}_{\mathrm{com}}) \otimes \ker_{L^2} \mathbf{D}_0
ight)^{\gamma_e}
ight)^{\mathbb{Z}/\mathrm{r}\mathbb{Z}}$$

Combine above picture with results on N=2,d=4:

No Exotics Theorem

Wall-Crossing

Exact Results On Line Defect VEV's

- 1 Introduction
- Monopoles & Monopole Moduli Space
- 3 Singular Monopoles
- 4 Singular Monopole Moduli: Dimension & Existence
- 5 Semiclassical N=2 d=4 SYM: Collective Coordinates
- 6 Semiclassical (Framed) BPS States
- 7 Application 1: No Exotics & Generalized Sen Conjecture
- 8 Application 2: Wall-crossing & Fredholm Property
- 9 Future Directions

Exotic (Framed) BPS States

$$\overline{\mathcal{H}}_{\gamma}^{\mathrm{BPS}}$$
 $\mathcal{H}_{\gamma}^{\mathrm{BPS}}$ $\mathfrak{so}(3)_{\mathrm{rot}} \oplus \mathfrak{su}(2)_{R}$ -reps

Vanilla BPS: $\mathcal{H}_{\gamma}^{\mathrm{BPS}} =
ho_{hh} \otimes \mathfrak{h}(\gamma)$

Half-Hyper from COM: $ho_{hh}=(\frac{1}{2};0)\oplus(0;\frac{1}{2})$

Framed BPS: No HH factor:

$$\overline{\mathcal{H}}_{\gamma}^{\mathrm{BPS}} = \mathfrak{h}(\gamma)$$

Definition: Exotic BPS states: States in $h(\gamma)$ transforming nontrivially under $\mathfrak{su}(2)_R$

No Exotics Conjecture/Theorem

Conjecture [GMN]: $\mathfrak{su}(2)_R$ acts trivially on $h(\gamma)$: exotics don't exist.

Theorem: It's true!

Diaconescu et. al.: Pure SU(N) vanilla and framed (for pure 't Hooft line defects)

Sen & del Zotto: Simply laced G (vanilla)

Cordova & Dumitrescu: Any theory with ``Sohnius'' energy-momentum supermultiplet (vanilla, so far...)

Geometry Of The R-Symmetry

$$\dim_{\mathbb{R}} \mathcal{M} = 4N$$

Riemannian holonomy: SO(4N)

Hyperkähler holonomy: USp(2N)

 $SU(2)_R$ is the commutant of USp(2N)

Collective coordinate expression for generators of $\mathfrak{su}(2)_R$

$$I^r \sim \omega^r_{\mu\nu} \chi^\mu \chi^\nu$$

This defines a lift to the spin bundle.

Generators do not commute with Dirac, but do preserve kernel.

$\overline{\mathcal{M}}$ M have $\mathfrak{so}(3)$ action of rotations. Suitably defined, it commutes with $\mathfrak{su}(2)_R$.

Again, the generators do not commute with \mathbf{D}_0 , \mathbf{D} , but do preserve the kernel.

$$\overline{\mathcal{H}}^{\mathrm{BPS}}(L, \gamma, u) \cong \ker_{L^2}^{\gamma_e} \mathbf{D}$$

$$\mathfrak{h}^{\mathrm{BPS}}(\gamma; u) \cong \ker_{L^2}^{\gamma_0^e} \mathbf{D}_0$$

Equality of $\mathfrak{so}(3)_{\mathrm{rot}} \oplus \mathfrak{su}(2)_R$ - reps.

Geometrical Interpretation Of The No-Exotics Theorem -1

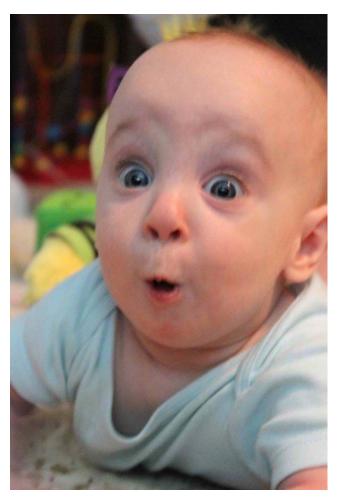
$$ho: SU(2)_R imes USp(2N) o ext{Spin}(4N)$$

$$ho: (-1,1) o ext{vol} := \Gamma^1 \cdots \Gamma^{4N}$$

All spinors in the kernel have chirality +1

So, the <u>absolute</u> number of BPS states is the same as the BPS index!

This kind of question arises frequently in BPS theory...



Geometrical Interpretation Of The No-Exotics Theorem - 2

Choose any complex structure on \mathcal{M} .

$$\mathcal{S}\cong \Lambda^{0,*}(T\mathcal{M})\otimes K^{-1/2}$$

$$Q_3 + iQ_4 \sim \bar{\partial} + G^{0,1}(\mathcal{Y}) \wedge$$

 $\mathfrak{su}(2)_R$ becomes "Lefshetz $\mathfrak{sl}(2)$ "

$$|I^3|_{\Lambda^{0,q}} = \frac{1}{2}(q-N)\mathbf{1}$$

$$I^+ \sim \omega^{0,2} \wedge \qquad I^- \sim \iota(\omega^{2,0})$$

Geometrical Interpretation Of The No-Exotics Theorem - 3

 $H^{0,q}_{L^2}(ar{\partial} + G^{0,1}(\mathcal{Y}))$

vanishes except in the middle degree q = N, and is primitive wrt `Lefshetz $\mathfrak{sl}(2)$ ''.

$$\forall \mathcal{Y} \in \mathfrak{t}$$

Adding Matter-1/2

(Manton & Schroers; Sethi, Stern & Zaslow; Gauntlett & Harvey; Tong; Gauntlett, Kim, Park, Yi; Gauntlett, Kim, Lee, Yi; Bak, Lee, Yi)

Add matter hypermultiplets in a quaternionic representation R of G.

Bundle of hypermultiplet fermion zeromodes defines a vector bundle ${\mathcal E}$ over ${\mathcal M}$:

 \mathcal{E} =associated bundle to the universal bundle.

Universal connection is hyperholomophic

Adding Matter-2/2

(work with Daniel Brennan)

Real rank of ${\cal E}$

$$d = \sum_{\mu} \left[\operatorname{sign}(\langle \mu, X \rangle + m_I) \langle \mu, \gamma_m \rangle + |\langle \mu, P \rangle| \right]$$

Sum over weights μ of R. $m_I := \operatorname{Im}(\zeta^{-1}m)$

$$\mathcal{E}\otimes\mathbb{C}\cong\mathcal{W}\oplus\overline{\mathcal{W}}$$

States are now L²-sections of

$$S\otimes \Lambda^*\mathcal{W} o \mathcal{M}_0 \ , \overline{\overline{\mathcal{M}}}$$

Geometrical Interpretation Of The No-Exotics Theorem - 4

$$H^{0,q}_{L^2}(\bar{\partial}+G^{0,1}(\mathcal{Y});\Lambda^*\mathcal{W})$$

vanishes except in the middle degree q = N, and is primitive wrt ``Lefshetz $\mathfrak{sl}(2)$ ''.

SU(2) N=2* m \longrightarrow 0 recovers the famous Sen conjecture

- 1 Introduction
- Monopoles & Monopole Moduli Space
- 3 Singular Monopoles
- 4 Singular Monopole Moduli: Dimension & Existence
- 5 Semiclassical N=2 d=4 SYM: Collective Coordinates
- 6 Semiclassical (Framed) BPS States
- 7 Application 1: No Exotics & Generalized Sen Conjecture
- 8 Application 2: Wall-crossing & Fredholm Property
- 9 Future Directions

Semiclassical Wall-Crossing: Overview

Easy fact: There are no L² harmonic spinors for ordinary Dirac operator on a noncompact hyperkähler manifold.

 \exists Semiclassical chamber (\mathcal{Y}_{∞} =0) where all populated magnetic charges are just simple roots (\mathcal{M}_{0} = pt)

Other semiclassical chambers have nonsimple magnetic charges filled.

Nontrivial semi-classical wall-crossing

(Higher rank is different.)

Interesting math predictions

Jumping Index

The L²-kernel of D jumps.

No exotics theorem

Harmonic spinors have definite chirality

L² index jumps! How?!

Along hyperplanes in \mathcal{Y} -space zeromodes mix with continuum and D⁺ fails to be Fredholm.

(Similar picture proposed by M. Stern & P. Yi)

We give explicit formulae for these hyperplanes.

How Does The BPS Space Jump?

Unframed/ smooth/ vanilla:

&

Framed:

&

Framed Wall-Crossing: 1/2

$$\underline{\overline{\Omega}}(L, \gamma; X, \mathcal{Y}) = \mathrm{Tr}_{\underline{\overline{\mathcal{H}}}} y^{2J_3}$$

"Protected spin characters"

$$F(L) = \sum_{\gamma \in \Gamma} \overline{\Omega}(L, \gamma; X, \mathcal{Y}) V_{\gamma}$$

Where does it jump?

$$\mathcal{W}(\gamma_h) := \{(X, \mathcal{Y}) : (\gamma_{h,m}, \mathcal{Y}) + \langle \gamma_{h,e}, X \rangle = 0\}$$
 $\mathcal{H}^{\mathrm{BPS}}(\gamma_h, u) \neq 0$

Framed Wall-Crossing: 2/2

$$F(L) = \sum_{\gamma \in \Gamma} \overline{\Omega}(L, \gamma; X, \mathcal{Y}) V_{\gamma}$$

<u>How</u> does it jump across $W(\gamma_h)$?

$$V_{\gamma_1}V_{\gamma_2} = y^{\langle \gamma_1, \gamma_2 \rangle}V_{\gamma_1 + \gamma_2}$$

$$F(L) \to SF(L)S^{-1}$$

S is an operator-valued function of $\ V_{\gamma_h}$

Example: Semiclassical Vanilla Wall Crossing

Does not exist for $g = \mathfrak{su}(2)$ (Seiberg & Witten 1994)

$$\mathfrak{g} = \mathfrak{su}(3)$$
 [Gauntlett, Kim, Lee, Yi (2000)]

$$\gamma_m = H_1 + H_2 = \gamma_{1,m} + \gamma_{2,m}$$
 $\gamma^e = n_1 \alpha_1 + n_2 \alpha_2 = \gamma_1^e + \gamma_2^e$
 $\mathcal{H}(\gamma_i; X, \mathcal{Y}) \neq 0$

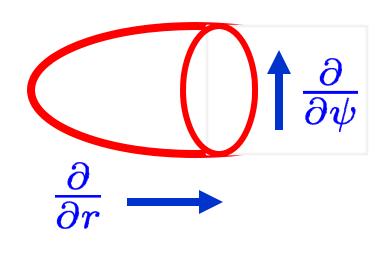
"Constituent BPS states exist"

<u>Why</u> choose $\gamma_{\rm m} = H_1 + H_2$??

 $\mathcal{M}_0(X; \gamma_m) = \text{Taub-NUT}:$

Zeromodes of D_0 can be <u>explicitly</u> computed [C. Pope, 1978]

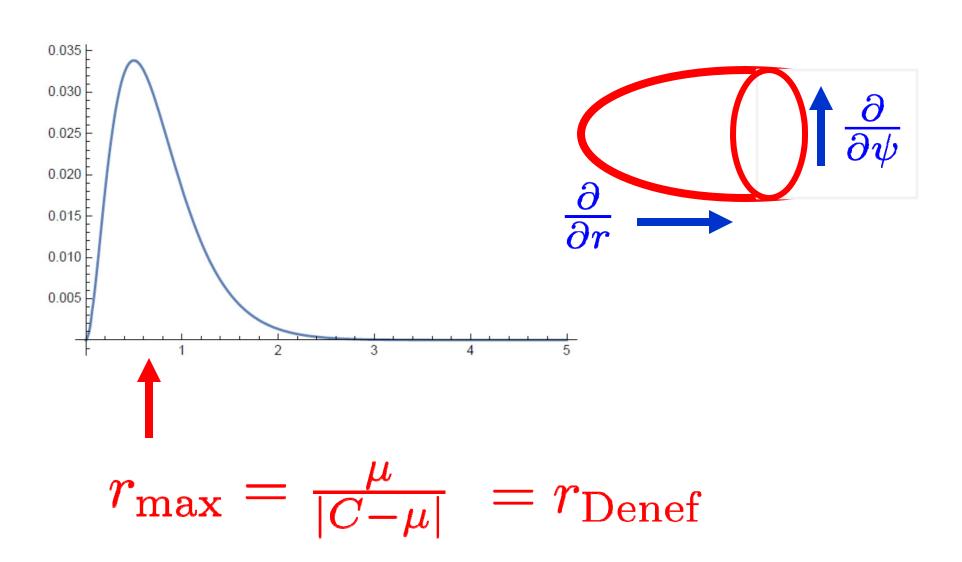
What do the zeromodes look like??



$$G(\mathcal{Y}) = C(\mathcal{Y}) \frac{\partial}{\partial \psi}$$

$$L_{\frac{\partial}{\partial \psi}} \Psi_0 = i(n_1 - n_2) \Psi_0$$
$$= i\mu \Psi_0$$

$$\Psi_0 \sim r^{(\mu-1)/2} e^{-|C-\mu|r/2}$$



Example: Semiclassical Framed Wall-Crossing

$$\mathfrak{g} = \mathfrak{su}(2)$$
 $\mathfrak{t} \cong \mathbb{R}$

$$\mathcal{C}_n$$

$$\mathcal{W}(\gamma_n)$$
 $\mathcal{W}(\gamma_{n+1})$

Well-known spectrum of smooth BPS states [Seiberg & Witten]:

$$\gamma_n = n\alpha \oplus H_{\alpha}$$

$$\mathcal{W}(\gamma_h) := \{ \mathcal{Y} | (\gamma_{h,m}, \mathcal{Y}) + \langle \gamma_{h,e}, X \rangle = 0 \}$$

Line defect L:
$$P=rac{p}{2}H_{lpha}$$

$$F(L) = \sum_{\gamma \in \Gamma} \overline{\Omega}(L, \gamma; X, \mathcal{Y}) V_{\gamma}$$

Explicit Generator Of PSC's

$$V_1V_2 = yV_2V_1$$

$$V_{\gamma} = V_{n^e \alpha + n_m H} = y^{-\frac{1}{2}n^e n_m} V_2^{n^e} V_1^{n_m}$$

$$F(\mathcal{C}_{\ell}) = \left[y^{2\ell} V_1^{-1} V_2^{-\ell} \left(\mathcal{U}_{\ell}(f_{\ell}) - y^2 V_2^{-1} \mathcal{U}_{\ell-1}(f_{\ell}) \right) \right]^p$$

$$\mathcal{U}_{\ell}(\cos \theta) := \frac{\sin((\ell+1)\theta)}{\sin \theta}$$

$$f_{\ell} = \frac{1}{2} \left[y^{-2}V_2 + y^2V_2^{-1} \left(1 + y^{-1}V_1^2V_2^{2\ell+2} \right) \right]$$

Predictions for ker **D** for infinitely many moduli spaces of arbitrarily high magnetic charge.

- 1 Introduction
- Monopoles & Monopole Moduli Space
- 3 Singular Monopoles
- 4 Singular Monopole Moduli: Dimension & Existence
- 5 Semiclassical N=2 d=4 SYM: Collective Coordinates
- 6 Semiclassical (Framed) BPS States
- 7 Application 1: No Exotics & Generalized Sen Conjecture
- 8 Application 2: Wall-crossing & Fredholm Property
- 9 Future Directions

Future Directions -1/4

Add matter and arbitrary Wilson-'t Hooft lines. (In progress with Daniel Brennan)

Understand better how Fredholm property fails by using asymptotic form of the monopole metric.

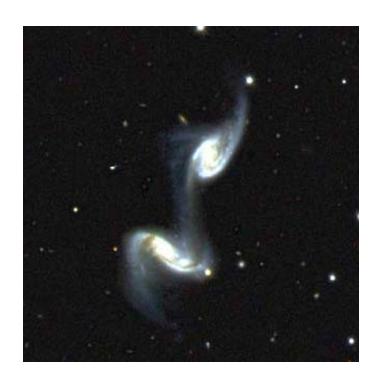
Combine the localization result of Ito, Okuda, Taki with ``Darboux expansion'' of GMN to get an interesting L²-index theorem on (noncompact!) monopole moduli spaces?

Future Directions -2/4

(In progress with Daniel Brennan & Andy Royston)

Understand better how Fredholm property of **D** fails:

Use asymptotic metric for moduli space for widely separated monopoles with charges ∈ {simple roots}



$$\mathcal{M}_0^N$$
 \downarrow
 $\mathcal{M}_0^{N_1}$
 $\mathcal{M}_0^{N_2} imes TN$

Future Directions -3/4

(In progress with Anindya Dey)

There are methods to compute vev's of susy line defects on \mathbb{R}^3 x S^1 exactly.

$$\langle L
angle = \sum_{\gamma} \overline{\Omega}(L,\gamma) \mathcal{Y}_{\gamma}$$
 gmn-2010

$$L_{\zeta} = \operatorname{Tr}_{\mathbf{2}}\operatorname{Pexp} \int_{\mathbb{R}_{t}\times\vec{0}} \left(\zeta^{-1}\varphi + A + \zeta\bar{\varphi}\right)$$

Weak coupling expression + known nonperturbative corrections.

Surprising nonperturbative correction

$$\langle {\rm Tr}_2 L_\zeta \rangle \neq \sqrt{\mathcal{Y}_{\gamma_e}} + \frac{1}{\sqrt{\mathcal{Y}_{\gamma_e}}} + \sqrt{\mathcal{Y}_{\gamma_m + \gamma_e}}$$

Future Directions -4/4

Localization computations of the same quantities by Ito, Okuda, Taki (2011) give expressions like:

$$\langle L \rangle = \sum_{v} e^{2\pi i(v,\mathfrak{b})} Z(P,v,\mathfrak{a})$$

a, b: complexified Fenchel-Nielsen coordinates

$$Z(P,v,\mathfrak{a})$$

Involves integrals over moduli spaces of singular monopoles of characteristic classes.

So, What Did He Say?

Recent new old

Recent results on N=2 d=4 imply new results about the differential geometry of old monopole moduli spaces.