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NO EXOTICS IN PURE
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RUTGERS — An application of
results on

paces has led to a proo
a conjecture of GMN. p.A12
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By G. Moore, A. Royston, and
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An instanton correction to the differential

Operadic Structures Found in
Infrared Limit of 2D LG Models

NOVEL CONSTRUCTION OF d ON INTERVAL

Hope Expressed for Categorical WCF
By D. Gaiotto, G. Moore, and E. Witten

PRINCETON - A Morse-theoretic formulation of LG models has revealed oco-
structures familiar from String Field Theory. LG models are nearly trivial in

WILD WALL
CROSSING
IN SU(3)

EXPONENTIAL
GROWTH OF Q

By D. Galakhov, P. Longhi, T. Mainiero,
G. Moore, and A. Neitzke

AUSTIN — Some strong coupling
regions exhibit wild wall crossing.

"I didn’t think this could happen,”
declared Prof. Nathan Seiberg of the
Institute for Advanced Study in
Princeton. Continued on p.A4




Semiclassical framed BPS states arXiv:1512.08924

L"2-Kernels Of Dirac-Type Operators On _
Monopole Moduli Spaces arxiv:1512.08923

Brane bending and monopole moduli arXiv:1404.7158

Parameter counting for singular monopoles on Rs arXiv:1404.5616




Goal Of Our Project

Recently there has been some nice progress in
understanding BPS states in d=4, N=2
supersymmetric field theory:

No Exotics Theorem, Wall-Crossing Formulae,
Exact Results For Line Defect Vev’'s

What can we learn about the differential

geometry of monopole moduli spaces
from these results?
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Lie Algebra Review: 1/4

Let G be a compact simple Lie group with Lie algebra g.

X € g isregular if Z(X) has minimal dimension.

Then Z(X) =t is a Cartan subalgebra.
T = exp[Qﬂ't] is a Cartan subgroup.

AY, == Hom(T,U(1)) character lattice
Ag .= Hom(U(1),T) exp(27rX)=1

Art CAL C Ay C Y
Aoy CAg C A CH



Lie Algebra Review: 2/4

Moreover, a regular element X
determines a set of simple roots ] © tv

and simple coroots H,, :=Hjet

A’rt — @IZOAI C tv

Ac'r = @®/ZHy Ct






Nonabelian Monopoles

Yang-Mills-Higgs system for compact simple G

(A, X) JeaTt(F*F+ DX % DX)
F=xDX  onR?

F = yvol(S2) + - - Lo

Xoo €g regular =y t o5 Hy
Ym € Aer CtC g

Tm — 27}21 annHI n'{n € 4

X = Xogo— 22 -



Monopole Moduli Space

M ('ym; Xoo ) SOLUTIONS/GAUGE TRANSFORMATIONS

If M is nonempty then [Callias; E. Weinberg]:
. . L I
dimM (ym; Xoo) = 432, 1,

Known: M is nonempty iff all magnetic charges nonnegative
and at least one is positive (so 4 <dim M )

M has a hyperkahler metric. Group of isometries with Lie algebra:

R> @ so(3) Dt

Translations Rotations Global gauge transformations



Action Of Global Gauge Transformations

Het o) G(H) Killing vector field on M
A = A;dx* + Xdx* F = xF

Directional derivative

. JA A
along G(H) at [A] e M e — —De

e:R3 — g

lim, .o €(x) = H D2e =0



Strongly Centered Moduli Space

P

M (Ym; X / > x R << Mo
Orbits of translations Orbits of G(X_)

M(Ym; Xoo) = R? x 22740

Higher rank is different!
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Singular Monopoles

F =ypvol(S?%) + .-+ X = X — Lz
T — OO

AND

F=Pvol(S*)+--- X —-—-L+0(r 13
z — 0

Use: construction of ‘t Hooft line defects ( 'line operators’)

Kapustin; Kapustin-Witten



Example: A Singular Nonabelian SU(2)
Monopole

X =zh(r)Hy A= 3(£1— cosf)dpH,
r) ™

fi(r) + f(r)h(r) =0

B Inyi egs:
Ogomoinyl €qs r2h'(r) + f(r)? —1=0

h('r) = Mw COth(mW’f' _l_ C) — % f(T) — sinhg;’zw‘;fr{—c)

(‘t Hooft; Polyakov; Prasad & Sommerfield took c=0)

c > 0 is the singular monopole: Physical interpretation?
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Singular Monopole Moduli Space

- SOLUTIONS/GAUGE
M (P§ Ym s Xoo) TRANSFORMATIONS

When is it nonempty?

What is the dimension?

If P=7_ is Pscreened ornot?

Is the dimension zero?

or not?




Dimension Formula

Assuming the moduli space is nonempty repeat
computation of Callias; E. Weinberg to find:

dimM = 2ind(L) = lim._,o+ Tr ( L1-2_|_6 i L?+e)

For a general 3-manifold we find:

dlmﬂ — fMg—S dJ(e) — 4 ZI ’FL,,In

e

Relative magnetic charges.



Dimension Formula
S ~ |
dimM =4>  n,,
nt H; = — P~
Y, fromr— oo and—-P fromr—20

P~ : Weyl group image such that (oq, P‘) <0

(Positive chamber determined by X__ )



D-Brane Interpretation

Intuition for relative charges comes from
D-branes. Example: Singular SU(2)
monopoles from D1-D3 system

_ D1
L2 L1 ¥ — (371 o 0 p2)

0 To — £2

p: pl







Application: Meaning Of The Singular
‘t Hooft-Polyakov Ansatz

X = (mw coth(mwr +¢) — L)z H
Ym = P =H = n,, =2
= dimM = 8

Two smooth monopoles in the presence of minimal SU(2)
singular monopole.

They sit on top of the singular monopole but have a
relative phase: ¢~ ¢ = Si]_’l(’(b/z)

Two D6-branes on an O6" plane;
Moduli space of d=3 N=4 SYM with two massless HM



Properties of M

Conjecture:
M(P;ym; Xoo) # 0 4= VI 7L >0

M Hyperkéahler (with singular loci - monopole bubbling)
[Kapustin-Witten]

D) i B

Isometries as before, but without translation.
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N=2 Super-Yang-Mills
Second real adjoint scalar Y

Vacuum requires [X_,Y_]=0.
(Tlo=Y +iX
Meaning of {: BPS equations on R? for preserving
Q+¢ ¢
F=B=xDX E=DY



C And BPS States
BPSbound: E > —Re((™'Z,) ~e€T

Definition: BPS states saturate the bound.

Framed BPS states: Phase C is part of the
data describing ‘t Hooft-Wilson line defect L

—BPS
(Laf)/: ) (AS MCoulomb

Smooth/unframed/vanilla BPS states:

¢ =2, (w)/|Z,(w)|  HEPS(v;u)



Semiclassical Regime

Definition: Series expansions for
ap(a;A) converges: |{(a, a)| > c|A|

Local system of charges has natural duality frame:

[' C Awt © A (Trivialized after choices of
v = 76 D Ym cuts in logs for ag,. )

A(t) = e~ mt/hY Ao limy_yy oo HBPS (v uy)

In this regime there is a well-known semiclassical
approach to describing BPS states.



Collective Coordinate Quantization

At weak coupling BPS monopoles are heavy:
Use moduli space approximation

The semiclassical states at (u,C) with electromagnetic
charge v¢ & y,, should be described in terms of
supersymmetric quantum mechanics on

E(P77m;Xoo) OR M(’Ym§XOO)

What sort of SQM?  How is (u,() related to X_?

How does 1% have anything to do with it?




What Sort Of SQM?

(Sethi, Stern, Zaslow; Gauntlett & Harvey ; Tong; Gauntlett, Kim, Park, Yi;
Gauntlett, Kim, Lee, Yi; Bak, Lee, Yi; Bak, Lee, Lee, Yi; Stern & Yi)

N=4 SQM on M(y,X_) with a potential:

S=L(zI2=1 GOL) |2 +--)

cl . 4w L Bo
yoo e 9(2) YOO | 271-XOO

{Q, Zp,} N X“ l States are

spinors on M

Qs =x"(D+GYE)), =D



How is (u,C) related to Xoo?

Need to write X_, Y as functions on the
Coulomb branch

Xoo =Im(("ta(u)) := X
Voo :=Im(C " tap(u;A)) =Y
Nicely encodes quantum corrections, e.g.

goes beyond the weak-potential approximation.
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Semiclassical BPS States: Overview

Qs=x"(D+G(Y)), =D

Semiclassical framed or vanilla BPS states
with magnetic charge vy will be:

a Dirac spinor ¥ on M(y,,) or E(ym) DV =(

Must be suitably normalizable:  kery2 D

% Must be suitably equivariant..ff
% Many devils in the details.... ilﬁ




States Of Definite Electric Charge

M has a t-action: G(H) commutes with D

Cartan torus T of adjoint group acts on ﬂ

T =t/Ap, == ~¢c AY = Ay

Organize L>-harmonic spinors by T-representation:

ker;:D = @, kerf;D



Framed BPS States: The Answer

L is an ‘t Hooft line defect of charge P and phase (




Vanilla BPS States & Smooth Monopoles

Begin analysis on universal cover: M~

Physical states ¥ must descend to M

-- Electric Charge --
Tactson M, and T =t/A

States VY of definite electric charge
transform with a definite character of t:

QAlS A;/n,'w = Art



Separating The Center Of Mass

P e

M((Ym; Xoo) = R x R x My
D = Deom + Do
VU =WVeom ® Vo
DcomVWcom =0 DoWo =0

Separating the COM involves the nontrivial identity:

(G(Xoo)a G(H))metric — (’Yma H)Killing



L2 - Condition
M (Y Xoo) = R3 x R x M,

No L? harmonic spinors on R*
Only “plane-wave-normalizable” in R?

\I/() - kerLz D()

Note: The L2 condition is crucial!
We do not want extra’” internal d.o.f.

Contrast this with the hypothetical
“instanton particle” of 5D SYM.



Semiclassical Smooth BPS States

27?7

HBPS (y; 1) = (ker(Deom) ® kerz2Dg)”"
X =Im(¢" " a(u))
Y =Im(("tap(u;A))

¢ = —2Zy(u)/|Zy(u)



Tricky Subtlety: 1/3
Spinors must descendto M = Mv/ )

) = 7, Generated by isometry ¢

Subtlety: Imposing electric charge
guantization only imposes invariance under
a proper subgroup of the Deck group:

exp2nGN) | =T A€ Apy

exp[2nG(N\)] = pHN)



Put differently:

T acts on M, so choosing a point m, € MU
f:T —=T-mygC M
fo :m(T,1) — (M, mpg)
fe i Npw — Z
fri=p

Using the relation of M to rational maps from P!
to the flag variety we prove:

M()\) — ()\7 ’Ym)



Tricky Subtlety: 3/3
) exp|2mG(N)| = PpH (M)

only generate a subgroup rZ, wherer is,
roughly speaking, the gcd(magnetic charges)

‘ Extra restriction to Z/rZ invariant subspace:
Z.[rZ
(ker(Deom ) ® kerp2Dg) '



Combine above picture with
results on N=2,d=4:

No Exotics Theorem

Wall-Crossing

Exact Results On Line Defect VEV's
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Exotic (Framed) BPS States

EEPS ’}—[BPS 50(3)rot D SU(2)R -reps

Vanilla BPS: 'H,]?PS = pnh ® b(7)

Half-Hyper from COM: prp = (%7 O) D (03 %)

Framed BPS: No HH factor:

o =p(y)

Exotic BPS states: States in h(y)
transforming nontrivially under su(2),

Definition:



No Exotics Conjecture/Theorem

Conjecture emn): su(2), acts
trivially on h(y): exotics don’t exist.

Theorem: It’s true!

Diaconescu et. al. : Pure SU(N) vanilla and framed
(for pure ‘t Hooft line defects)

Sen & del Zotto: Simply laced G (vanilla)

Cordova & Dumitrescu: Any theory with ~Sohnius”
energy-momentum supermultiplet (vanilla, so far...)



Geometry Of The R-Symmetry
dimRM — 4N

Riemannian holonomy: SO(4N)

Hyperkahler holonomy: USp(2N)
SU(2); is the commutant of USp(2N)

Collective coordinate expression

T T A A
for generators of su(2), I Wi X5 X
This defines a lift to the spin bundle.

Generators do not commute with
Dirac, but do preserve kernel.



Wi have so(3) action of rotations. Suitably
M M defined, it commutes with su(2);.

Again, the generators do not commute
with D,, D, but do preserve the kernel.

H(L,y,u) 2 ker)s D

HBFS (5 u) = ker 4 Dy

Equality of $0(3)rot ® su(2)r - reps.



Geometrical Interpretation Of The
No-Exotics Theorem -1

p:SUQR2)g x USp(2N) — Spin(4N)
p:(—-1,1) = vol :=T1...14N

All spinors in the kernel
have chirality +1

mmm) IndD. = dimker Dy



So, the absolute number of BPS
states is the same as the BPS
index!

This kind of
guestion arises

frequently in
BPS theory...




Geometrical Interpretation Of The

No-Exotics Theorem - 2
Choose any complex structure on M.

S 2 ANHTM)Q K 1/2
Qg iQ4 ~ 5 Go’l(y)/\
su(2), becomes Lefshetz sl(2)”

I*[poa = 5(qg — N)1

It ~ wh2A I~ ~ 1 (w??)




Geometrical Interpretation Of The
No-Exotics Theorem - 3

H)3(0+ Go(Y))

vanishes except in the middle degree g =N,
and is primitive wrt ~Lefshetz sl(2)”.

VY €t



Adding Matter-1/2

(Manton & Schroers; Sethi, Stern & Zaslow; Gauntlett & Harvey ;
Tong; Gauntlett, Kim, Park, Yi; Gauntlett, Kim, Lee, Yi; Bak, Lee, Yi)

Add matter hypermultiplets in a quaternionic representation R of G.

Bundle of hypermultiplet fermion zeromodes
defines a vector bundle & over M :

& =associated bundle to the universal bundle.

Universal connection is hyperholomophic



Adding Matter-2/2

(work with Daniel Brennan)

Real rank of &

d= 3, | sien(Gu, X) + mr) Gy ) + 140, P

Sum over weights uof R. Mgy ‘= Im(C_l’m)

EQC2XWopW

States are now L?-sections of

SQANW — Mg , M




Geometrical Interpretation Of The
No-Exotics Theorem - 4

H) 3 (0 + G (Y); A*W)

vanishes except in the middle degree q =N,
and is primitive wrt ~Lefshetz sl(2)”.

SU(2) N=2* m — 0O recovers the famous
Sen conjecture
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Semiclassical Wall-Crossing: Overview

Easy fact: There are no L?> harmonic spinors for ordinary Dirac
operator on a noncompact hyperkahler manifold.

‘ 1 Semiclassical chamber (Y_=0) where all populated
magnetic charges are just simple roots (M, = pt)

Other semiclassical chambers have nonsimple magnetic charges filled.

‘ Nontrivial semi-classical wall-crossing

(Higher rank is different.)

‘ Interesting math predictions



Jumping Index

The L*-kernel of D jumps.
No exotics theorem mmp

Harmonic spinors have definite chirality

m=) |2 index jumps! How?!

Along hyperplanes in Y-space zeromodes mix with
continuum and D* fails to be Fredholm.

(Similar picture proposed by M. Stern & P. Yi)

We give explicit formulae for these hyperplanes.




How Does The BPS Space Jump?

Unframed/
smooth/
vanilla:

Framed:




Framed Wall-Crossing: 1/2

Q(L,v; X,Y) = Trgy®s
“Protected spin characters”
F(L) =3 er UL, v X, V)V,
Where does it jump?

W(’Yh) = {(Xa y) : (’Yh,ma y) + <7h,87X> — 0}
HBPS (’7hau) 7& 0




Framed Wall-Crossing: 2/2

F(L) = > er &L, v X, V)V,
How does it jump across W(y,) ?
V’Yl V’Yz — yhl”yz)v’yl-l-’yz
F(L) — SF(L)S™1

S is an operator-valued function of V.



Example: Semiclassical Vanilla
Wall Crossing

Does not exist for g = su(2) (Seiberg & Witten 1994)

g — 511(3) [Gauntlett, Kim, Lee, Yi (2000) ]

Ym = H1 +Ho =v1.m + Yom

V¢ = niag + neae =97 + 75

“Constituent BPS states exist”’



Why choose y,, =H, +H, ??
Mo(X;Ym) = Taub-NUT:

Zeromodes of D, can be explicitly computed
[C. Pope, 1978]

What do the zeromodes look like ?7?




0.035
0.030 —
0.025 —
0.020 -
0.015 —
0.010 -

0.005

Uy ~ rb=1)/2e=C—plr/2

-«

or — >

:

— M -
Fmax = [C—pn] — TDenef




Example: Semiclassical Framed

Wall-Crossing
~ Well-known spectrum of
g — 5U(2) t — R smooth BPS states
C [Seiberg & Witten]:
O T @ —  Ya.=na® H,

W)  W(n+1)
W(’Yh) = {y‘(f)/h,may) + <’7h,87X> — 0}

Line defectL: P = S H,

F(L) = > er &L, 7; X, V)V,



Explicit Generator Of PSC’s
ViV = yVo Wy

1 e e
- _ —=nNn n n n
V'Y—Vnea—l—an—y 5 m /] Vl'm

F(Ce) = [y?* Vi Vst (Ue(fe) — y? Vs U1 (fe))]"
Up(cos 0) = sin((£4-1)0)

sin @

f.‘,’ — % [y_2V2 uE y2V2_1 (1 + y—1V12‘/22€—|—2)]

‘ Predictions for ker D for infinitely many moduli
spaces of arbitrarily high magnetic charge.
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Future Directions -1/4

Add matter and arbitrary Wilson-'t Hooft
lines. (In progress with Daniel Brennan)

Understand better how Fredholm property fails by
using asymptotic form of the monopole metric.

Combine the localization result of

Ito, Okuda, Taki with ~"Darboux expansion” of
GMN to get an interesting L?-index theorem on
(noncompact!) monopole moduli spaces ?



Future Directions -2/4

(In progress with Daniel Brennan & Andy Royston)

Understand better how Fredholm property of D fails:

Use asymptotic metric for moduli space for widely
separated monopoles with charges € {simple roots}




Future Directions -3/4

(In progress with Anindya Dey)

There are methods to compute vev’s of susy line defects on
R3 x St exactly.

<L> — Z’Y Q(L, ")/)y,-y GMN-2010
L¢ = TraPexp [; 5 (CTlo + A+ (p)

Weak coupling expression
+ known nonperturbative

corrections. \

<Tr2LC> T \/y7m+ve



Future Directions -4/4

Localization computations of the same quantities by Ito,
Okuda, Taki (2011) give expressions like:

(L) =32, "0 Z(P,v, a)
a, b: complexified Fenchel-Nielsen coordinates

Involves integrals over moduli
Z(P, U, Cl) spaces of singular monopoles of
characteristic classes.



So, What Did He Say?

Recent new old

Recent results on N=2 d=4
imply new results about the
differential geometry of old
monopole moduli spaces.




