WALL-CROSSING FORMULA FOR
BPS STATES & SOME APPLICATIONS

TRIESTE SPRING SCHOOL LECTURE IV
APRIL 4, 2008

BASED ON WORK DONE WITH
F. DENEFF (*hep-th/0702146*)

AND FURTHER RESULTS WITH
E. DIACONESCU (*0706.3193*)
E. ANDRIYASH

M. AGANAGIC + D. JAFFERIS

J. MANSCHOT (*0712.0573*)
1. INTRODUCTION

The "space of BPS states" has been a central concept in SUSY gauge theory & string theory for almost 30 years.

Today I'll focus on recent progress in understanding phenomena associated to marginal stability.

1. INTRODUCTION
2. WALL-CROSSING FORMULAE:
3. PHYSICAL DERIVATION
4. D6-D2-DO SYSTEM
5. D4D2DO SYSTEM: MODULAR GEN. FUNCTIONS
6. ROUTE TO OSV: ENTROPY ENIGMA & DEGENERACY DICHOTOMY
7. KONTSEVICH-SOIBELMAN FORMULA
8. OPEN PROBLEMS
A. DEFINING THE "SPACE OF BPS STATES"

For definiteness, we focus on theories with $d=4, \, N=2$ SUSY in (asymptotic) Minkowski space M_4.

HILBERT SPACE OF ONE-PARTICLE STATES, \mathcal{H}, IS A REP. OF THE $d=4, \, N=2$ ALGEBRA.

$\hat{Z} :$ CENTRAL CHARGE OPERATOR

\[
\{ \hat{Q}_{i\alpha}, \hat{Q}_{j\beta} \} = \delta_{ij} (C^n)_{\alpha\beta} \hat{P}_\mu + \epsilon_{ij} C_{\alpha\beta} \hat{Z}
\]

DECOMPOSE $\mathcal{H} = \bigoplus_{z \in \mathbb{C}} \mathcal{H}_{\hat{Z} = z}$
Lemma: $E \geq |\mathcal{Z}|$ on \mathcal{H}_Z

Proof: $N = 2 \implies$

\[
\{ Q_i \alpha, Q_j \beta \} = \delta_{ij} (C_{\alpha \beta})_{\alpha \beta} \gamma^\mu P_\mu + \epsilon_{ij} C_{\alpha \beta} \mathcal{Z}
\]

This is a 6D SUSY algebra Q_{α},

\[
\{ Q_A, Q_B \} = (C T^M)_{AB} \gamma^M
\]

with $P_4 + i P_5 = \mathcal{Z}$. But

\[
M^2 = E^2 - P^2 - |\mathcal{Z}|^2 \geq 0.
\]

Def'n: \mathcal{H}_{BPS} is the subspace of \mathcal{H} where $E = |\mathcal{Z}|$.
Now specialize to Type II string theory on $M_4 \times X$.

- M_4 is noncompact \Rightarrow to define the Hilbert space as a rep. of $W=2$ we must specify boundary cond's for the massless fields:

$$\lim_{x \to \infty} (g_{\mu\nu}, \phi, B_{\mu\nu}, RR) = \mathcal{M}_\infty \in \mathcal{M}$$

$$\mathcal{H}_{\mathcal{M}_\infty} : \text{1-particle Hilbert space depends on } \mathcal{M}_\infty$$

- Generalized Maxwell theory \Rightarrow $\mathcal{H}_{\mathcal{M}_\infty}$ is graded by electric/magnetic charge sectors:

$$\mathcal{H}_{\mathcal{M}_\infty} = \bigoplus_{\Gamma} \mathcal{H}_{\mathcal{M}_\infty}^\Gamma$$

$\Gamma \in (\text{twisted}) K$-theory$(X)$
K-THEORY TO COHOMOLOGY

Physicists usually work with cohomology

\[E \in K^0(X) \rightarrow \text{ch}(E) \sqrt{\Delta} \in H^e(X, \mathbb{Q}) \]

D-branes are sources:

\[
\begin{array}{cccccc}
D6 & D4 & D2 & D0 & p^0 & p^1 \\
H_6 & H_4 & H_2 & H_0 & Q & Q_0 \\
H^6 & H^4 & H^2 & H^0 & & \\
\end{array}
\]

Often identify \(H^6(X, \mathbb{Z}) \cong \mathbb{Z} \)
$K^0(x)/\text{torsion} = \text{LATTICE \wedge}$

$\text{Ch}(\mathcal{E}) \sqrt{\mathcal{A}} \Rightarrow \text{corresponding LATTICE in } H^\nu(x,\mathbb{Q})$

$\wedge \text{ has a \mathbb{Z} SYMPLECTIC FORM}$

$\langle \mathcal{E}_1, \mathcal{E}_2 \rangle = \text{Index } \bigoplus_{\mathcal{E}_1 \otimes \mathcal{E}_2}
= \int (\text{ch}\mathcal{E}_1 \sqrt{\mathcal{A}}) \wedge (\text{ch}\mathcal{E}_2 \sqrt{\mathcal{A}})$

\text{IN TERMS OF COHOMOLOGY}

$\langle \mathcal{\Pi}, \mathcal{\Pi}' \rangle = \int -p^0 q^0 + pq' - qp' + q_0 p_0$

\text{ PHYSICALLY: DIRAC-SCHWINERG-ZWAIRZ...}

\text{DUALITY INVT. PRODUCT OF ELECTRIC AND MAGNETIC CHARGES.}
Now we put these things together.

Consider IIA strings with

1. $X = \text{static, compact, CY 3-fold}$
2. Flat B-field: $B \in H^2(X, \mathbb{R})$
3. Flat RR fields

$\Rightarrow \quad \mathcal{N} = 2, \ d = 4 \quad \text{SUGRA}$

- Each $\mathcal{H}_{\Phi_\infty}^{\Gamma}$ is a rep of $\mathcal{N} = 2$

- Central charge $Z = Z(\Gamma; \Phi_\infty)$

So, we study the BPS spectrum

$$\mathcal{H}_{\text{BPS}} = \bigoplus_{\Gamma \in \mathcal{K}^0(X)} \mathcal{H}_{\Phi_\infty, \text{BRS}}^{\Gamma}$$

Finitely dimensional
B. DEPENDENCE ON MODULI

THE SPACES $\Phi_{\infty, \text{BPS}}$ ARE LOCALY CONSTANT BUT NOT GLOBALLY CONSTANT AS FUNCTIONS OF Φ_{∞}.

MODULI SPACE \tilde{M} IS A PRODUCT:

HYPERMULTIPLETS \times VECTORMULTIPLETS

$[\text{CPLX STR., } \phi, \text{ RR FIELDS}] \quad [\text{COMPLEXIFIED KÄHLER}]$

WE WORK AT A GENERIC HYPERMULTIPLE.

RECENT PROGRESS HAS BEEN CONCERNED WITH THE DEPENDENCE ON VECTORMULTIPLETS, IN THIS TALK,

$z = B + iJ$

- THE JUMPING LOCUS IS REAL CODIMENSION ONE
Define an index

\[\Omega(\Gamma; t_\infty) = -\frac{1}{2} \text{Tr}_{\mathcal{H}(\Omega, t_\infty, \text{BPS})} (2J_3)^2 (-1)^{2J_3} \]

(compare A. Sen's talk: he had 6th helicity supertrace.)

Technical Point:

\[\mathcal{H}(\Omega, t_\infty, \text{BPS}) = \mathcal{H}_{\frac{1}{2} \text{HM}} \otimes \mathcal{H}(\Gamma, t_\infty) \]

\[\frac{1}{2} \text{ hyper } 2(0) + \left(\frac{1}{2} \right) \text{ as spin rep } \]

\[\Omega(\Gamma; t_\infty) = \text{Tr}_{\mathcal{H}(\Gamma, t_\infty)} (-1)^F \]

Henceforth focus on \(\mathcal{H}(\Gamma; t_\infty) \)

Key Point: \(\Omega \) changes across walls of marginal stability
C. Why do we care?

PHYSICS MOTIVATION

1. The main motivation for recent work is the program, initiated by Strominger-Vafa (1995) of accounting for BH entropy via microstate counting. That goal is still not fully accomplished.

 We don't know BPS degeneracy for certain natural charge regimes, for example:

 $\Gamma \rightarrow 2\Gamma \quad \lambda \rightarrow \infty$

2. OSV Conjecture:

 Relation between

 $\Omega(\Gamma) \in \text{GW/DT/GV invariants}$

 \Rightarrow NonPTVE Topological String?
1. Physical stability of BPS states is related to math. Stability in the bounded derived category of coherent sheaves on a C.Y.: Kontsevich, Douglas, Bridgeland, Thomas, Pandharipande...

Physics \Rightarrow Predictions/Constraints on what we expect should be true.

2. Many interesting connections to automorphic forms and analytic number theory; some relations to arithmetic C.Y.'s.

3. There are several other more speculative applications, e.g. BPS algebras: generalizing Nakajima's work and suggested by type II/het duality should be closely related.
2. WALL-CROSSING FORMULAE: STATEMENT

$N=2$, $d=4$ Algebra \[\Rightarrow \]
- **Moduli of vacua \mathcal{W}**
- **Lattice of electric/magnetic charges Λ**
- **Central charge**: $Z: \Lambda \times \mathcal{W} \rightarrow \mathbb{C}$

Walls where BPS might jump

$$MS(\Gamma_i, \Gamma_j) := \{ t \mid Z(\Gamma_i, t) = \lambda Z(\Gamma_j, t), \lambda \in \mathbb{R}_+ \}$$

$$\left| Z_i + Z_j \right| = \left| Z_i \right| + \left| Z_j \right|$$

Cecotti, Intriligator, Yaafa; Seiberg & Witten: A boundstate of particles with charges Γ_i, Γ_j can decay

We want to say how many states decay.
PRIMITIVE WALL-CROSSING FORMULA:

∧ HAS SYMPLECTIC FORM \langle \cdot, \cdot \rangle

LET \quad I_{12} := \langle \Gamma_1, \Gamma_2 \rangle

\text{If} \quad I_{12} \text{Im}(z_1z_2^*) > 0
\quad \text{then} \quad \MS(\Gamma_1, \Gamma_2)

\text{If} \quad I_{12} \text{Im}(z_1z_2^*) < 0

\Gamma_1, \Gamma_2 \quad \text{PRIMITIVE, } t_{ms} \quad \text{GENERIC} \Rightarrow

\mathcal{H}_+ - \mathcal{H}_- = (\mathbf{J}_{12}) \otimes \mathcal{H}(\Gamma_1; t_{ms}) \otimes \mathcal{H}(\Gamma_2; t_{ms})

\mathbf{J}_{12} = \frac{1}{2} (I_{12} - 1)

\Delta \Omega = (-1)^{I_{12} - 1} \quad I_{12} \quad \Omega(\Gamma_1; t_{ms}) \Omega(\Gamma_2; t_{ms})
Semi-primitive wall-crossing formula

In addition to \(\Gamma_1 + \Gamma_2 \) boundstates, we can also form \(N_1 \Gamma_1 + N_2 \Gamma_2 \) boundstates

\[
MS(\Gamma_1, \Gamma_2) = MS(N_1 \Gamma_1, N_2 \Gamma_2) \quad N_1, N_2 \in \mathbb{Z}_+
\]

Consider \(N_1 = 1, \quad N_2 \geq 1 \):

\[
\bigoplus_{N_2} u^{N_2} \Delta \mathcal{H}_{\Gamma_1 + N_2 \Gamma_2}
\]

Claim: This is a \(\mathbb{Z}_2 \)-graded Fock space

\[
\mathcal{H}(\Gamma_1; t_{m_5}) \bigotimes_{k=1}^{\infty} \mathcal{F} (u^k \left(J_{\Gamma_1, k\Gamma_2} \right)) \otimes \mathcal{H}(k\Gamma_2; t_{m_5})
\]

Graded space of oscillators

In particular:

\[
\Omega_1 + \sum_{N > 0} u^N \Delta \Omega(\Gamma_1 + N\Gamma_2) = \\
= \Omega(\Gamma_1) \prod_{k > 0} (1 - (-1)^{\langle \Gamma_1, k\Gamma_2 \rangle} u^k) ^{\langle \Gamma_1, k\Gamma_2 \rangle} \Omega(k\Gamma_2)
\]
D-BRANES ARE OBJECTS IN A CATEGORY IN TYPE IIA/CY, THE SUBCATEGORY OF SUSY BRANES IS PROBABLY THE BOUNDED DERIVED CATEGORY OF COHERENT SHEAVES.

BUT WE WANT TO DESCRIBE THE (PHYSICALLY) STABLE OBJECTS.

AT WEAK STRING COUPLING, AND $J \rightarrow \infty$ \[\exists \ A \ BEAUTIFUL \ DESCRIPTION \ OF \ STABLE \ BPS \ STATES \ USING \ SUGRA. \]

IN THE SEMICLASSICAL LIMIT \[\Psi \in \mathcal{H}_{\text{BPS}} \rightarrow \text{BPS SOLUTION OF SUGRA EQUATIONS} \]

* SUPERGRAVITY ALLOWS ONE TO IDENTIFY MANY "STABLE OBJECTS" THANKS TO THE ATTRACTOR MECHANISM.
ATTRACTOR MECHANISM: (F.K.S.; STROMINGER)
\[\Gamma, \lambda \rightarrow \xi \]
SPHERICAL SYMMETRY
\[\Rightarrow \exists \text{ AT MOST ONE BPS SOLUTION OF SUGRA.} \]

IF IT EXISTS …

SCALAR FIELDS \(t = t(\gamma) \), AND
EVOLUTION FROM \(\gamma = \infty \) TO \(\gamma = 0 \)
APPROACHES AN ATTRACTIVE FIXED POINT \(t_*(\Gamma) \):

\[\tilde{\mathcal{M}}_{\nu m} \]

RADIAL MOTION TO HORIZON
Attractor flow = gradient flow for

\[\log | Z(\Gamma; t) |^2 \]

\[Z = \frac{\langle \Gamma, \omega \rangle}{\sqrt{\langle \omega, \omega^* \rangle}} \]

\[\langle \Gamma, \Gamma' \rangle = \int (-p o q' + pq' - q p' + q_o p_o) \]

\[\omega = \text{period vector} \]

In large radius approximation:

\[\omega = -e^t = -e^{B+ij} \]

\[Z \approx \frac{\frac{1}{6} p_o t^3 - \frac{1}{2} p t^2 + Q t - q_o}{\sqrt{(Im t)^3}} \]
BASIC TRICHOTOMY

1. \(\pi_*(\Gamma) \in \text{Interior}(\tilde{\mathcal{M}}) \)
 and \(\mathcal{Z}(\Gamma; t^*(\Gamma)) \neq 0 \)

"REGULAR ATTRACTOR POINT"

2. \(\exists \text{ NONEMPTY SUBVARIETY } \subseteq \tilde{\mathcal{M}} \)
 \(\mathcal{Z}(\Gamma; t) = 0 \)

3. \(\pi_*(\Gamma) \in \partial \tilde{\mathcal{M}} \)

(1.) \(\exists \text{ SPHERICALLY SYMMETRIC BPS BLACK HOLES IN } \mathcal{H}_{BPS}(\Gamma; t) \text{ FOR ALL } t \)

(2.) \(\mathcal{H}_{BPS}(\Gamma; t) = \emptyset \) IN AN OPEN REGION OF THE ZERO LOCUS.
\(\mathcal{H}_{BPS} \) MIGHT BE NONEMPTY FURTHER AWAY

(3.) CANNOT USE SUGRA TO ESTABLISH EXISTENCE; MUST USE MICROSCOPIC ARGUMENTS.
B. SPLIT ATTRACTION FLOWS

If \(\mathcal{Z}(\Gamma; t) = 0 \) has solutions in the interior of moduli space then use:

Deneef's Rule: \(\mathcal{H}(\Gamma; t) \neq 0 \iff \exists \) a split attractor flow (S.A.F.)

S.A.F.: A piecewise attractor flow, joined along walls of M.S., conserving charge at the vertices, terminating on R.A.P.'s:

\[\Gamma = \Gamma_1 + \Gamma_2 \]

Diagram:

- \(\mathcal{AF}(\Gamma) \)
- \(\mathcal{AF}(\Gamma_1) \)
- \(\mathcal{AF}(\Gamma_2) \)
- \(\mathcal{AF}(\Gamma_2') \)
- \(\mathcal{AF}(\Gamma_2'') \)
- \(\mathcal{MS}(\Gamma_1, \Gamma_2) \)
- \(\mathcal{MS}(\Gamma_2', \Gamma_2'') \)
- If such attractor flow trees exist we can construct a corresponding solution of sugra.

- Spacetime picture:

 \(\mathbb{R}^3 \)

 \((\vec{x}_i, \vec{n}_i) \)

 \((\vec{x}_z, \vec{n}_z) \)

 \((\vec{x}_j, \vec{n}_j) \)

 \((\vec{x}_n, \vec{n}_n) \)

- Near each point \(\vec{x}_i \), the solution looks like the single-centered solution: "black-hole molecules"
MULTICENTERED SOLUTIONS:

GENERAL BPS EQUATIONS

(1.) \[ds^2 = -e^{2u}(dt+\Theta)^2 + e^{-2u} d\vec{x}^2 \]
\[u = u(\vec{x}), \quad \vec{x} \in \mathbb{R}^3 \]

(2.) CHOOSE A HARMONIC MAP
\[H: \mathbb{R}^3 \rightarrow H^{ev}(x, \mathbb{R}) \]
\[H(\vec{x}) = \sum_j \frac{\Gamma_j}{|\vec{x} - \vec{x}_j|} + H_\infty \]

\[2e^{\Gamma} \text{Im}(e^{-i\alpha \omega}) = -H(\vec{x}) \]

(a.) \(\pm(\vec{x}) \) completely fixed,

(b.) \(e^{-2u(\vec{x})} = S(H(\vec{x})) \)
(3.) \(\ast_3 d \Theta = \langle dH, H \rangle \)

\[\sum_{j \neq i} \frac{\langle \Gamma_i, \Gamma_j \rangle}{|\bar{x}_i - \bar{x}_j|} = 2 \text{Im} (e^{-i \alpha \cdot \bar{z}_i}) \]

\[\text{SUGRA SOLUTION EXISTS } \iff \forall \bar{x} \in \mathbb{R}^3: \]

\[\| \bar{x} \| \leq \text{max}_{\Delta} \text{e}^{-2u(x)} \]

\[\pi e^{-2u(x)} = S(H \bar{x}) \geq 0 \]

\(\text{(A VERY NONTRIVIAL CONDITION TO CHECK ...)} \)
SPLIT ATTRACTOR CONJECTURE (DENEFF)

(a.) (Components of moduli of) multicentered solutions are in $1 \leftrightarrow 1$ correspondence with S.A.F.’s.

(b.) For a fixed (t_0, Γ) there are a finite number of S.A.F.’s.

- Useful because checking $S(H^{\infty}) > 0$ is difficult.

- H_{BPS} is partitioned by split attractor flows.

- Some interesting open problems here....

 * Quantum mixing between different attractors
 * Useful existence criterion for scaling solutions.
C. DERIVATION OF PRIMITIVE WCF:

Consider bound state of two primitive charges:

\[R = \frac{1}{2} \langle \Gamma_1, \Gamma_2 \rangle \frac{|Z_1 + Z_2|_{\infty}}{\text{Im} (Z_1 \overline{Z_2})_{\infty}} \]

Note: \(\langle \Gamma_1, \Gamma_2 \rangle \text{Im} (Z_1 \overline{Z_2})_{\infty} > 0 \)

**Note that by changing \(t \rightarrow \infty \), we can make \(\text{Im} (Z_1 \overline{Z_2})_{t \rightarrow \infty} \) while \(|Z_1 + Z_2|_{t \rightarrow \infty} \neq 0 \)

Illustrates the key point of marginal stability:
\[MS(\Gamma_1, \Gamma_2) := \left\{ \pm \epsilon \mu \nu_M \mid \frac{\nu^{-1}}{\nu} \in TR^+ \right\} \]

\[\text{NO } \Pi_1^+ + \Pi_2^- \text{ BOUND. STATE EXISTS HERE} \]

\[\text{CHANGE BC'S} \]
\[\text{@ } \Gamma = \infty \Rightarrow \]
\[R_{12} \rightarrow \infty \]

IF \(Z(\Gamma; t) \) **HAS A ZERO THEN**

THERE IS NO BOUNDSTATE OF TYPE \(\Pi_1^+ + \Pi_2^- \)

IN THE BLUE REGION.

\[Z(\Gamma; t_0) = 0 \]

\[Z \rightarrow \times \]

\[\text{ATTRACTION FLOW} \]
MACROSCOPIC ARGUMENT FOR WCF:

\[R_{12} = \frac{1}{2} \langle \Gamma_1, \Gamma_2 \rangle \frac{|Z_1 + Z_2|_\infty}{\text{Im}(Z_1 \overline{Z}_2)_\infty} \]

\[\Gamma_1 \quad t_{\infty} \quad t_2 \quad t_{\infty} \quad t_{\infty} \quad \text{MS}(\Gamma_1, \Gamma_2) \quad t_{\text{MS}} \quad \Gamma_2 \]

ELECTROMAGNETIC FIELD OF TWO DYONS

HAS SPIN:

\[J_{12} = \frac{1}{2} \left(K_{\Gamma_1, \Gamma_2} \right)_{1 - 1} \]

\(\text{quantum correction} \)

LOCALITY \(\Rightarrow \) FOR \(\Gamma_1, \Gamma_2 \) PRIMITIVE:

STATES LOST FROM \(\mathcal{H}(\Gamma; t_{\infty}) \) ARE

\((J_{12}) \otimes \mathcal{H}(\Gamma_1; t_{\text{MS}}) \otimes \mathcal{H}(\Gamma_2; t_{\text{MS}}) \)
MICROSCOPIC ARGUMENT FOR WCF:

WHEN \(\Theta = \arg \frac{Z_2}{Z_1} \rightarrow 0 \), MODEL LIGHT D.O.F. BY A QUIVER GAUGE THRT:

\[
\begin{array}{c}
\Gamma_1 \\
\bullet \\
\downarrow \text{d=1}
\end{array}
\quad \xleftarrow{\text{n+}} \quad
\begin{array}{c}
\text{d=1} \\
\bullet \\
\uparrow \text{n-}
\end{array}
\begin{array}{c}
\Gamma_2
\end{array}
\]

TRANSLATION TO SUPERGRAVITY:

STABILITY DATA: \((\Theta, -\Theta)\)

\(n_+ - n_- = I_{12}\)

GENERICALLY \(n_+ = 0\) or \(n_- = 0\).

SUPPOSE \(n_- = 0\):

\(\Theta > 0 \quad \mathcal{M} = \mathbb{C}P^{n_+-1}\)

\(\Theta < 0 \quad \mathcal{M} = \emptyset\)

\(\Delta \mathcal{H} = H^* \left(\mathbb{C}P^{n_+-1} \right)\)

\(\text{spin}(3) \cong \text{Lefschetz}\)
Quiver Quantum Mechanics

$0+1$ SUSY QED with

1 YM (A_0, \bar{x}, λ)

n_\pm CM's $(\phi_\pm^+, \bar{\phi}_\pm)$ charge ± 1

Small $|\langle \bar{x} \rangle | \Rightarrow$ Higgs branch = moduli of stable quiver reps

Large $|\langle \bar{x} \rangle | \Rightarrow$ integrate out $\phi_\pm \Rightarrow$

\[
\left(\begin{array}{c}
\text{Denef} \\
\text{QH} \\
\text{H} \\
\text{H} \end{array} \right)
\]

\[\frac{\theta^2}{2\mu} \]

\[V_{\text{eff}} = \frac{1}{2\mu} \left(\theta + \frac{n_+ - n_-}{2n} \right)^2 \]

$(n_+ - n_-)$ BPS states of spin $\frac{1}{2}(n_+ - n_- - 1)$

$\nu < 0$

$\nu > 0$

$n_+ \ \text{Higgs br.}$

$\nu = 0$

$n_+ \rightarrow \infty$

$n_+ \ \text{Higgs br.}$

BPS states

Coulomb br.
D. DERIVATION OF SEMI-PRIMITIVE WCF

HALO STATES

Suppose \(\langle \Gamma_1, \Gamma_2 \rangle \neq 0 \),

\[
\Gamma_j = \lambda_j \Gamma_2 \quad \lambda_j > 0, j = 2, \ldots, N
\]

are all mutually local integrability conditions say

\[
\begin{align*}
\text{for } j \geq 2: & \quad \frac{\langle \Gamma_j, \Gamma_1 \rangle}{|x_j - x_1|} = 2 \frac{\text{Im}(Z(\Gamma_j) \overline{Z(\Gamma_1)})}{|Z(\Gamma_1)|}\\
\Rightarrow & \quad \text{all } |x_j - x_1| \text{ are equal}
\end{align*}
\]

\[
\text{Cross } MS(\Gamma_1, \Gamma_2): \text{ HALO RADIUS } \rightarrow \infty
\]
The particles in the halo generate a Fock space with

\((J_{\Gamma_1, k\Gamma_2}) \otimes \mathcal{H}(k\Gamma_2; iTW)\) creation operators of charge \(k\Gamma_2\)

All walls \(W(\Gamma_1, N\Gamma_2)\) coincide \(\Rightarrow\) crossing a wall we lose entire Fock space:

\[\Omega(\Gamma_1) + \sum_{N \geq 1} \Delta \Omega (\Gamma_2 \rightarrow \Gamma_1 + N\Gamma_2) u^N\]

\[= \Omega(\Gamma_1) \prod_{k > 0} \left(1 - (-1)^k u^k\right)^{1\langle\Gamma_1, k\Gamma_2\rangle} |\Omega(k\Gamma_2)\rangle\]
4. D6D2D0 SYSTEM

An important and useful example is the system of 1 D6 brane wrapping X, bound to D2 & D0 branes in X.

\[H^0 \oplus H^2 \oplus H^4 \oplus H^6 \cong \Gamma = (\rho^0, \rho, Q, q_0) \]

\[D6 \quad D4 \quad D2 \quad D0 \]

Consider: \[\Gamma(\beta, n) := \Gamma = (1, 0, -\beta, n) \]

\[\beta = \text{P.D.}[\sigma] \quad \sigma \subset X \quad \text{holomorphic curve} \]

Charge of (the dual of) an ideal sheaf:

\[\text{ch} \int \sqrt{A} = 1 - \beta + ndV \]

Consider binding these to D2D0 particles with charge:

\[\Gamma_h = (0, 0, -\beta_h, n_h) \]
Plot Marginal Stability Curve

\[Z(\Gamma(\beta, n); t) = \lambda Z(\Gamma_n; t) \quad \lambda \in \mathbb{R}_+ \]

\[Z(\Gamma, t) = \frac{\langle \mathbf{T}, \omega \rangle}{\sqrt{\langle \omega, \omega^* \rangle}} \]

Sugra regime: \[\Omega = -e^t \]

\[t = B + iJ \]

\[\frac{t^3}{6} - \beta \cdot t - n = \lambda (-\beta_n \cdot t - n_n) \quad \lambda \in \mathbb{R}_+ \]
These walls extend to ∞ in the Kähler cone!

Set $z = z^P$, $P \in \mathbb{R}$

$z = x + iy$

$X = \frac{n_h}{2P \cdot \beta_h}$, $n_h < 0$

$X = \frac{n_h}{2P \cdot \beta_h}$, $n_h > 0$
Consider the halo boundstates with central particle \(\Pi(\beta, n) \) as we increase the B-field

\[B = \times P \times \text{increases} \]

halos of D2DO particles \((0, 0, -\beta n, n)\). Appear \& disappear.

For \(x > 0 \)

all \(n_k < 0 \) states have decayed.

As \(x \to +\infty \) we move into the stable region for all \(n_k > 0 \), and ever larger "atoms" become stable

General picture: Bohr model
When $\beta_n = 0$ walls look different

\[\Gamma = 1 + q_0 \frac{dV}{\Gamma_1} \quad \text{and} \quad Z = \frac{t^3}{6} - q_0. \]

Set $t = (x + iy)\tau \implies $ zero @ $z = \left(\frac{6q_0}{\tau^3}\right)^{\frac{1}{3}}$.

$q_0 > 0$

$q_0 < 0$
INTRODUCE GENERATING FUNCTION

\[Z_{D6D2D0}(u,v; t) := \sum_{n, \beta} \Omega(\Gamma(\beta, n); t) u^n v^\beta \]

SEMI-PRIMITIVE WALL-CROSSING FORMULA:

CONTRIBUTION OF FOCK SPACE GENERATED BY

\[T_h = -\beta_h + n_h dV \] **CROSSING INTO STABLE REGION:**

\[Z_{D6D2D0} \rightarrow \left(1 - (-u)^{n_h} V^{\beta_h}\right)^{n_{h^*}} n_{\beta_h}^\circ Z_{D6D2D0} \]

\[\Omega(-\beta_h + n_h dV) = \sum_{m_L, m_R} (-1)^{2m_L + 2m_R} N_{\beta_h}^{m_L m_R} \]

\[= n_{\beta_h}^\circ \]

"SPIN ZERO GV INVARIANT" \((\beta_h \neq 0) \)
EXAMPLE: $D6D0$

$$Z_{D6D0}(u) = \sum \Omega \left(l + q_0 dV : t \right) u^{q_0}$$

For $q_0 < 0$:

$$\Omega \left(q_0 dV \right) = -\chi(x)$$

$$Z_{D6D0}(u) = \begin{cases}
(M(-u))\chi(x) & \text{arg } z < \frac{\pi}{3} \\
1 & \frac{\pi}{3} < \text{arg } z < \frac{2\pi}{3} \\
(M(-\bar{u}^{-1}))\chi(x) & \frac{2\pi}{3} < \text{arg } z
\end{cases}$$

$$M(u) := \prod_{k>1} (1 - u^k)^{-k}$$
Similarly, wall-crossings for the full Z_{D6D2D0} as $x \to \infty$ build up an infinite product similar to the infinite product form of $Z_{DT}(u, v)$.

On the other hand, an argument from M-theory [Dijkgraaf, Verlinde, Vafa; Denef, Moore] implies:

\[\lim_{x \to +\infty} Z_{D6D2D0}(u, v; z^p) = Z_{DT}(u, v) \]

\[\lim_{x \to -\infty} Z_{D6D2D0}(u, v; z^p) = Z_{DT}(\bar{u}^1, v) \]
\textbf{STATES IN CORE REGION ARE COMPLICATED BOUND STATES}

\textbf{PRODUCT OF WALL-CROSSINGS} $$\Rightarrow$$

$$Z_{\text{DT}}^{1, r=0}(u, v) = \prod_{\beta > 0, \kappa > 0} (1 - (-u)^{\kappa} v^\beta)^{\kappa n_\beta^0}$$

\textbf{LIMIT FOR} $$x \to +\infty$$:

$$Z_{\text{DT}}^{1}(u, v) = \frac{Z_{\text{DT}}^{1, r=0}(u, v)}{\text{HALOS}} \cdot \frac{Z_{\text{DT}}^{1, r>0}(u, v)}{\text{CORES}}$$

$$Z_{\text{DT}}^{1, r>0}(u, v) = \prod_{\beta > 0, \kappa > 0} \prod_{l=0}^{2r-2} \left(1 - (-u)^{r-2-l} v^\beta\right)^{l + \frac{r+l}{2} \left(2r-2\right) n_\beta^r}$$
5. THE D4-D2-DO SYSTEM: MODULARITY

Now consider $p^0 = 0$

$$\Gamma = p + q + q_0 dv$$

Regular attractor point:

**P in Kähler cone if $\hat{q}_0 < 0$$

$$\hat{q}_0 = q_0 - \frac{1}{2} (\mathcal{D}_{ABC} P^C)^{-1} q_A q_B$$

These are black holes:

Horizon area $= 4 S(\Gamma) = 4\pi \left| z_*(\Gamma) \right|^2$

$$S(\Gamma) = \frac{2\pi}{\sqrt{6}} \sqrt{-\hat{q}_0} \chi(p)$$

$$\chi(p) := p^3 + c_2 \cdot p > 0 \text{ for } p \in \text{Kähler cone}$$

Expect: $\log \Omega(\Gamma; t) \sim S(\Gamma)$ for "large" Γ and "large" $Im t$
A. Rough microscopic description

For large J: Single D4 wraps $\Sigma \in |P|$

$\chi(P) = P^3 + c_2 \cdot P = \text{Euler Character of } \Sigma$

Flux $F \in H^2(\Sigma, \mathbb{Z})$

And N D6's

Compute induced RR charges:

D_2: $Q = (2\Sigma)_*(F)$

D_0: $\hat{Q}_0 = \frac{\chi(P)}{24} + \frac{1}{2}(F^-)^2 - N$

Susy \Rightarrow $N \geq 0$, $F^{2,0} = 0 \Rightarrow (F^-)^2 \leq 0 \Rightarrow$

$\hat{Q}_0 \leq (\hat{Q}_0)_{\text{max}} = \frac{\chi(P)}{24}$
\[\mathcal{M}(p, r, n) := \text{Moduli of such DH's} \]

\[\text{Hilb}^n(\Sigma) \rightarrow \mathcal{M}(p, r, n) \]

\[\Sigma \rightarrow \{ \Sigma \in \text{P} \mid F \in H^m(\Sigma) \} \]

\[\text{Roughly:} \]

\[\text{Moduli of stable objects } \Sigma \]

\[\text{in the derived category} \]

\[\text{with specified Chern classes} \]

\[\text{ch } E \sqrt{A} = p + q + q_0 \] (★)

\[= \bigcup_{F, N \text{ s.t. } \ast} \mathcal{M}(p, r, n) \]
B. INDEX OF BPS STATES

"\(\Omega(\Gamma)_{\infty} := \lim_{J \to \infty} \Omega(\Gamma; B + iJ) \)"

\[d(F,N) := (-1)^{\dim U} \chi(U(P,F,N)) \]

\[\Omega(\Gamma)_{\infty} = \text{FINITE SUM OF } d(F,N) \]

SURPRISE: WHEN \(h''(x) > 1 \) THERE ARE SPLITTINGS @ \(\infty \):

\[\Gamma = P + Q + q_0 dV \]

\[= (P' + Q' + q'_0 dV) + (P'' + Q'' + q''_0 dV) \]

WITH:

\[\sqrt{-\hat{g}_0''(P'')^3} > \sqrt{-\hat{g}_0} P^3 \]

\[\Rightarrow \text{EVEN THE LEADING ORDER ENTROPY IS CHAMBER DEPENDENT} \]

[E. ANDRIYASH + G. M.]
For $\Gamma = P + Q + q_* dV$, $P \in \text{Kähler cone}$, \exists distinguished chamber:

$$\Omega(\Gamma)_\infty := \lim_{\lambda \to \infty} \Omega(\Gamma; B + i \lambda P)$$

Claim: Limit exists and is B-independent
(Finiteness of attractor flow trees)

Henceforth work in this chamber.
C. Modularity

\[\tau \in H_1 \quad \xi \quad \psi \in \mathcal{Z}^*(H^2(X, \mathbb{C})) \]

\[Z(\tau, \overline{\tau}, \psi) := \sum_{F, N} d(F, N) \exp \left\{ -2\pi i \xi \hat{q}_0 - 2\pi i \xi \frac{1}{2}(F^+)^2 - 2\pi i F \cdot (\psi + \frac{1}{2}) \right\} \]

\textbf{Susy Partition Function of D3 Instanton}

\textbf{U-Duality} \implies \textbf{Susy Partition Function is a Jacobi Form} \implies \textbf{JACOBBI FORM}

\[Z(\tau, \overline{\tau}, \psi) = \sum_{\mu \in L^* / L} H_{\mu}(\tau) \Theta_{\mu, L}(\tau, \overline{\tau}, \psi) \]

\textbf{Siegell–Narain}

\[L := \mathcal{Z}^*(H^2(X, \mathbb{Z})) \subset H^2(\Sigma; \mathbb{Z}) \]

\textbf{Self-Dual}

\[\overline{\xi} \in L \text{ is always in } H^{11}(\Sigma) \implies d(F + \xi, N) = d(F, N) \quad \forall \xi \in L \]
• $H_\mu(\tau)$ is a vector-valued nearly holomorphic modular form of weight $w = -1 - \frac{h_1(x)}{2}$ and multiplier system M^* dual to that of $\Theta_{\mu, 1}$.

• $w < 0 \implies H_\mu$ is determined by its polar terms.

Suppress μ-index for simplicity:

$$H(\tau) = \sum_{\hat{q}_0} \Omega(\Gamma)_\infty e^{-2\pi i \hat{q}_0 \tau}$$

$$= \sum_{0 < \hat{q}_0 \leq \frac{\chi(p)}{24}} (\ldots) + \sum_{-\infty < \hat{q}_0 \leq 0} (\ldots) \text{ POLAR } \text{ NONPOLAR}$$
D. MACROSCOPIC POLAR STATES

If \(\Gamma = (0, p, q, \theta_0) = P + Q + \theta_0 dv \)

is polar: \(0 < \theta_0 \leq (\theta_0)_{\text{max}} \)

then \(Z(\Gamma; t) \) has a zero.

Indeed \(S(\Gamma) = \frac{2\pi}{\sqrt{6}} \cdot \sqrt{-\theta_0} \chi(p) \)

so no single-centered solution

but \(H(\tau) \) has \(w < 0 \) \(\Rightarrow \) some polar degeneracies are non-zero

\(\Rightarrow \) these must be realized as split attractor states.
Simple Example

Pure D4: \(\Gamma = P + q_0 dV \)

With \(q_0 = \hat{Q}_0 = (\hat{Q}_0)_{\text{max}} = \frac{\chi(P)}{24} \)

Find only one splitting

\[
\Gamma = P + q_0 dV = \Gamma_1 + \Gamma_2
\]

\[
= e^{S_1 \left(1 + \frac{c_2(x)}{24}\right)} - e^{S_2 \left(1 + \frac{c_2(x)}{24}\right)}
\]

1 D6 with flux = \(S_1 \)

1 \(\overline{D6} \) w/ flux \(S_2 \)

\(S_1 - S_2 = P \)
Moreover - you can compute the polar degeneracy:

\[
\Omega(\Gamma, t_\infty) = (-1)^{I_{12}^{-1}} |I_{12}| \Omega(\Gamma_1) \Omega(\Gamma_2) = (-1)^{I_{12}^{-1}} |I_{12}|
\]

\[
I_{12} = \langle \Gamma_1, \Gamma_2 \rangle = \frac{p^3}{6} + \frac{c_2(X) \cdot p}{12}
\]

Indeed = the correct answer for
\[
\chi(\text{moduli of pure D4}) = \chi(|P|)
\]
Describing the split attractor flows for \(0 < \hat{\varphi}_0 < \frac{x(p)}{24} \) is much more complicated...

In general, polar states can be very complicated split attractors, realized in many different ways....

But in the limit \(p \to \infty \) we can say something
EXTREME POLAR STATES

\[
H^\text{POLAR}_{(T)} = |I_p| e^{-2\pi i \tau \frac{\chi(p)}{24}} + \cdots + O(e^{-1|p|})
\]

“EXTREME POLAR” “BARELY POLAR”

E.P.S. CONJECTURE: \(\exists \epsilon < 1 \) so that

\[
\frac{\hat{q}_0^{\text{max}} - \hat{q}_0}{\hat{q}_0^{\text{max}}} < \epsilon \quad \Rightarrow
\]

POLAR STATES SPLIT AS D6\overline{D6} + HALOS:

\[
\Gamma_1 = e^{S_1(1 - \beta_1 + n_1 dV)} \\
\Gamma_2 = -e^{S_2(1 - \beta_2 + n_2 dV)}
\]
6. ROUTE TO THE OSV CONJECTURE

A. BY THE W.C.F. THE (EXTREME) POLAR DEGENERACIES GO LIKE

\[\Sigma (\text{D6-D2-DO}) \times \Sigma (\text{D6-D2-DO}) \]

B. BUT BPS INVARIANTS OF THE D6-D2-DO SYSTEM ARE RELATED TO GROMOV-WITTEN INVARIANTS COUNTING WORLDSPHET INSTANTONS IN X
So, by the W.C.F. together with results on Z_{D6D2D0}, the extreme polar degeneracies are related

$$|Z^\text{top}|^2$$

suggesting a relation like the OSV conjecture

$$\Omega(\Gamma)_\infty = \int d\phi \ |Z^\text{top}(g^\text{top}, t)|^2 e^{-2\pi g\phi}.$$

- \exists strong arguments for $|\hat{a}_0| \gg p^3$

- \exists potential counterexamples for $|\hat{a}_0| \lesssim p^3$: "entropy enigma"
In the charge regime

\[g_{\text{top}} \sim \sqrt{-\frac{g}{a^*}} \lesssim O(1) \]

The derivation in Denef-Moore breaks down.

- Barely polar degeneracies become large
- Corrections to the Cardy formula become large.

There is a good physical reason the derivation breaks down...
Entropy Enigma

Now choose $q_0 < 0$, P ample so

$$
\Gamma = (0, P, 0, q_0)
$$

has a regular attractor point

Nevertheless! we can choose q_0, Q_A so that \exists a two-centered solution with

$$
\Gamma = \Gamma_1 + \Gamma_2
$$

$$
\Gamma_1 = (r, \frac{1}{2}P, Q, \frac{1}{2}q_0) \quad \Gamma_2 = (-r, \frac{1}{2}P, -Q, \frac{1}{2}q_0)
$$

Both solutions exist
So... compare entropies

\[S(\Gamma) \text{ vs. } S(\Gamma_1) + S(\Gamma_2) \]

In fact,

\[\exists \text{ family of charges} \]

\[\lambda \Gamma = \lambda (0, P, 0, q_0) = \Gamma_1^\lambda + \Gamma_2^\lambda \]

\[\Gamma_1^\lambda = (\Gamma, \frac{\lambda}{2} P, \lambda^2 Q, \frac{\lambda}{2} q_0) \quad \Gamma_2^\lambda = (-\Gamma, \frac{\lambda}{2} P, -\lambda Q, \frac{\lambda}{2} q_0) \]

Scaling of entropies:

\[S(\lambda \Gamma) = \lambda^2 S(\Gamma) \]

But!

\[S(\Gamma_1^\lambda) = S(\Gamma_2^\lambda) \sim \left(\frac{\lambda P}{r}\right)^3 \sim \lambda^3 \]

\[\Rightarrow \text{ many implications for physics & mathematics} \]
1. Construct a family of 2-centered
 \[\tilde{\Gamma}_1^\lambda \triangleq (r, \frac{p}{2}, Q, \lambda^2 \frac{q_0}{2}) \]
 \[\tilde{\Gamma}_2^\lambda \triangleq (-r, \frac{p}{2}, -Q, \lambda^2 \frac{q_0}{2}) \]
 \[\tilde{\Gamma}_i^\lambda \text{ can be 1-centered BH's or can themselves be polar} \]

2. Attractor Formalism has a scaling symmetry under
 \[T_2 (p^0, p, Q, q_0) = (p^0, \lambda p, \lambda^2 Q, \lambda^3 q_0) \]
 \[S(T_\lambda \Gamma) = \lambda^3 S(\Gamma) \]

3. Apply to \[T_\lambda \tilde{\Gamma}_1^\lambda + T_\lambda \tilde{\Gamma}_2^\lambda = \lambda \Gamma \]
Recently, Deboer et al. showed that if we split the D2-D0 charge asymmetrically between the two centers then the coefficient of the λ^3 growth can be increased:

\[\lambda^3 \]

\[\text{DOMINATES} \]

\[\text{BUT BOTH CONTRIBUTIONS SCALE LIKE } \lambda^3. \]
DEGENERACY DICHOTOMY

- We have found contributions to $\Omega(\Delta \Gamma)_\infty$ growing like e^{λ^3}

- If indeed $\Omega(\Delta \Gamma)_\infty \sim e^{\lambda^3}$ then weak coupling OSV is wrong; since OSV $\Rightarrow \Omega(\Delta \Gamma)_\infty \sim e^{\lambda^2}$.

- But $\Omega(\Delta \Gamma)_\infty$ is an index. It is possible that $\Omega(\Delta \Gamma)_\infty = \sum \pm e^{\lambda^3} \sim e^{\lambda^2}$

- We argue that this is unlikely, but it is not excluded.
Suppose that there are “magical cancellations” and \(\Omega(\chi \pi) \propto e^{\chi^2} \).

- This raises the question of \(\dim \mathcal{H}(\Gamma; t) \) vs. \(\Omega(\Gamma; t) \).

- Physically: the dimension is relevant.

- But all tests of the Strominger-Vafa program use the index (with one exception).

- It is \& to suppose that in the exact theory, nonperturbative stringy effects give:

\[
\dim \mathcal{H}(\Gamma; t) = \Omega(\Gamma; t)
\]
IF WE GRANT THIS POINT, AND IF, MOREOVER, THERE ARE "MAGICAL CANCELLATIONS" SO THAT
\[\log \Omega(0, \lambda P, 0, 190) \sim \chi^2 \]

THEN THE SPECTRUM OF NEAR-BPS STATES TAKES A REMARKABLE FORM:

\[E^{-|z|} = 0 \sim e^{\chi^2} \text{ states} \]

\[E^{-|z|} \sim e^{-1/9 s} \sim e^{\chi^3} \text{ states} \]
7. Kontsevich–Soibelman Formula

The KS formula is a relation between $\Omega(\Gamma; t^\pm)$ across MS walls with no restriction on primitivity of constituents.

- No physical derivation yet

Evidence that k_ξ's $\Omega(\Gamma; t)$'s are the same as physical $\Sigma(\Gamma; t)$'s.

- Can recover primitive WCF

- Can recover semi-primitive WCF

- Nontrivial checks for $\text{SU}(2)$ Seiberg–Witten with $N_f = 0, 1, 2, 3$ hypermultiplets

(List two are results w/ Wu-yen Chuang)
The Kontsevich–Soibelman formula

For the lattice \(\Lambda \) of charges introduce a Lie algebra \(\mathbb{Z}[\Lambda] \) with one generator for each \(\gamma \in \Lambda \):

\[[e_{\gamma_1}, e_{\gamma_2}] = (-1)^{\langle \gamma, \gamma_2 \rangle} \langle \gamma_1, \gamma_2 \rangle e_{\gamma_1 + \gamma_2} \]

For fixed \(t \), \(\mathbb{Z} : \Lambda \rightarrow \mathbb{C} \), choose any convex angular sector \(V \)

\[
\prod_{\gamma \in \mathbb{Z}(V) \cap \Lambda} \left(\exp \sum_{n=1}^{\infty} \frac{e_{n\gamma}}{n^2} \right) \Omega(\gamma)
\]

Increasing slope

\[
\prod_{\gamma \in \mathbb{Z}(V) \cap \Lambda} \left(\exp \sum_{n=1}^{\infty} \frac{e_{n\gamma}}{n^2} \right) \Omega^+(\gamma)
\]

Decreasing slope
AT A GENERIC POINT $t \in MS(\Gamma_1, \Gamma_2)$

$Z(\Gamma; t) \parallel Z_1, Z_2 \implies$

$\Gamma = \Gamma_{a,b} = a\Gamma_1 + b\Gamma_2$

$(\Gamma_1, \Gamma_2$ primitive$)$

FOR SMALL CONE ANGLE ONLY THE LIE SUBALGEBRA $Z_1 \Gamma_1 + Z_2 \Gamma_2$ CONTRIBUTES:

$[e_{a,b}, e_{c,d}] = (-1)^{(ad-bc)}I_{12} (ad-bc)I_{12} e_{a+c,b+d}$

DEFINE:

$U_{a,b} := \exp\left(\sum_{m=1}^{\infty} \frac{e_{ma,mb}}{m^2}\right)$

$\prod_{\gamma \neq \gamma, \gamma \neq 0} U_{a_{\gamma},b_{\gamma}} = \prod_{\gamma \neq \gamma, \gamma \neq 0} U_{a_{\gamma},b_{\gamma}}$
LIE ALGEBRA IS FILTERED \Rightarrow

Heisenberg Algebra

\[
\left[e_{0,1}, e_{1,0} \right] = (-1)^{I_2} I_{12} e_{1,1}
\]

$e_{1,1}$ **CENTRAL**

\[
\Omega^{-}(\Gamma_1) \quad \Omega^{-}(\Gamma_1 + \Gamma_2) \quad \Omega^{-}(\Gamma_2)
\]

\[
\Omega_{0,1} \quad \Omega_{1,1} \quad \Omega_{1,0}
\]

\[
\Omega^{+}(\Gamma_2) \quad \Omega^{+}(\Gamma_1 + \Gamma_2) \quad \Omega^{+}(\Gamma_1)
\]

\[
\Omega_{0,1} \quad \Omega_{1,1} \quad \Omega_{0,0}
\]

$U_{0,1} U_{1,0} = U_{1,1} \quad U_{1,0} U_{0,1}$ \Rightarrow

\[
\Omega^{+}(\Gamma_1 + \Gamma_2) - \Omega^{+}(\Gamma_1 + \Gamma_2)
\]

\[
\Omega_{1,1} \quad \Omega_{1,0}
\]

\[
\Omega^{-}(\Gamma_1) \quad \Omega(\Gamma_2)
\]

\[
\Omega_{0,1} \quad \Omega_{1,1} \quad \Omega_{0,0}
\]

$\quad I_{12} \quad \Omega(\Gamma_1) \quad \Omega(\Gamma_2)
\]

$\quad U_{1,1}$

PRIMITIVE W.C. FORMULA!
SU(2) SEIBERG-WITTEN THEORY

\[\Gamma_1 = \text{MONPOLE} \]
\[\Gamma_2 = \text{DYON} \]

\[[e_{a,b}, e_{c,d}] = 2(bc-ad)e_{a+c,b+d} \]

STRONG: \(\pm (1,0), \pm (0,1) \) \(\Omega = +1 \) \(\text{HM} \)

WEAK: \(\pm (1,1) \) \(\Omega = -2 \) \(\text{VM} \)

\(\pm (n,n+1), \pm (n+1,n) \) \(\Omega = +1 \) \(\text{HM} \)

STRONG: \(U_{1,0} \cdot U_{0,1} \)

WEAK:

\((U_{0,1} U_{1,2} U_{2,3} \cdots) \ U_{1,1}^{-2} (\cdots U_{3,2} U_{2,1} U_{1,0}) \)

EQUALITY APPEARS TO BE TRUE!

\(\exists \) **NEW IDENTITIES FOR** \(N_f = 1, 2, 3 \)
8. SOME OPEN PROBLEMS

a.) PHYSICAL DERIVATION OF THE KS FORMULA

b.) HOW TO COMPUTE POLAR DEGENERACIES EFFECTIVELY?

c.) RESOLVE THE QUESTION OF THE ENTROPY ENIGMA: ARE THERE CANCELLATIONS BRINGING $e^{\lambda^3} \rightarrow e^{\lambda^2}$?

d.) IS THERE AN OSV-LIKE RELATION FOR $\Omega(\Gamma, t_*(\Gamma))$? DO THESE ENJOY AUTOMORPHY PROPERTIES?