Three Birthday Nuggets For Igor

Gregory Moore  Rutgers




JOURNAL OF FUNCTIONAL ANALYSIS 44, 259-327 (1981)

Two Constructions of
Affine Lie Algebra Representations and
Boson—Fermion Correspondence in
Quantum Field Theory

I. B. FRENKEL

Department of Mathematics, Yale University, New Haven, Connecticut 06520

Communicated by the Editor

We establish an isomorphism between the vertex and spinor representations of
affine Lie algebras for types D" and D!*',. We also study decomposition of spinor
representations using the infinite family of Casimir operators and prove that they
are either irreducible or have two irreducible components. We show that the vertex
and spinor constructions of the representations can be reformulated in the language
of two-dimensional quantum field theory. In this physical context, the two
constructions yield the generalized sine-Gordon and Thirring models, respectively,
already in renormalized form. The isomorphism of representations implies an
equivalence of these two models which is known in quantum field theory as the
boson—fermion correspondence

Contents. Introduction. Simple Lie algebras: Basic results. Partl. Two
constructions of affine Lie algebra representations. 1. Structural theory of affine Lie
algebras. 2. Vertex representations. 3. Spinor representations. 4. Isomorphism
between the two constructions of representations. Part II. Boson—fermion
correspondence in quantum field theory. 1. Current algebras. 2. Boson fields and
generalized sine-Gordon model. 3. Fermion fields and generalized Thirring model.
4. Boson—fermion correspondence. Appendix. Laguerre polynomials and Bateman
Junctions.,



Geometry-Symmetry-Physics Seminar

Dinner discussions: Igor would present his

broad and beautiful vision of what is and is

not important in the development of math.
Very original viewpoints.



On the work of Igor Frenkel

Introduction
by Pavel Etingof

Igor Frenkel is one of the leading representation theorists and mathe-
matical physicists of our time. Inspired by the mathematical philosophy
of Herman Weyl, who recognized the central role of representation the-
ory in mathematics and its relevance to quantum physics. Frenkel made
a number of foundational contributions at the juncture of these fields.
A quintessential mathematical visionary and romantic. he has rarely fol-
lowed the present day fashion. Instead, he has striven to get ahead of
time and get a glimpse into the mathematics of the future — at least a
decade. no less. In this, he has followed the example of 1. M. Gelfand,
whose approach to mathematics has always inspired him. He would often
write several foundational papers in a subject. and then leave it for the
future generations to be developed further. His ideas have sometimes
been so bold and ambitious and so much ahead of their time that they
would not be fully appreciated even by his students at the time of their
formulation, and would produce a storm of activity only a few years later.
And, of course. as a result, many of his ideas are still waiting for their
time to go off.

This text is a modest attempt by Igor’s students and colleagues of vari-
ous generations to review his work., and to highlight how it has influenced
in cach case the development of the corresponding field in subsequent
years.

o



“Physicists ... they always
know what to do.”




NUGGET 1

Moonshine Phenomena,
Supersymmetry,
and Quantum Codes



A. SOME BACKGROUND



Philosophy — 1/2
We can divide physicists into two types:

Our world is a random choice drawn from a huge ensemble:




Philosophy — 2/2
The fundamental laws of nature are based on some
beautiful exceptional mathematical structure:




Finite-Simple Groups
Jordan-Holder Theorem: Finite simple
groups are the atoms of finite group theory.

Ly, p=prime A, n=5 SL,(F,) etc

Conformal Field Theories with Sporadic Group

Symmetry



Presenter
Presentation Notes
M stands for ”Monster”  but it could also stand for “Magic”  because there are many truly amazing properties it satisfies. 
|M| \sim 10^{54}. |Co1| \sim 4 x 10^{18}.  |M24| \sim 2 x 10^8. 


McKay & Conway-Norton 1978-1979

J= zlnq" = q~' 4+ 196884 q + 21493760 q* + 864299970 > + ---
n

Compare with the dimensions of the 194 irreps of M

R, =1,196883, 21296876, 842609326, 18538750076, 19360062527,
293553734298,...., ~ 2.6 X 10%°

1 =Ry Ji =Ry R
J,=R;+R,+R; J3=2R{+2R; + Rz +Ry

A way of writing J,, as a positive linear combination of the
R; forall nis a “solution of the Sum-Dimension Game.”

There are infinitely many such solutions!!



McKay & Conway-Norton 1978-1979

Which, if any, of these solutions is interesting?

Every solution defines an infinite-dimensional
Z-graded representation of M

V=q 'R ®qRL DR) ®q*(RL R, DR3) D -
Now for every g € Ml we can compute the character:
x(q;9) =Try g q"

A solution of the Sum-Dimension game
is modular if the y(q; g) is a modular
function in [((m) where g™ = 1.




Amazing Fact Of Monstrous Moonshine

There is a unigue modular solution
of the Sum-Dimension game!

Moreover the y(q; g) have
very remarkable properties
(" 'genus zero” etc.)

Much of this is explained by 2d conformal field
theory - thanks to the foundational work of
Frenkel, Lepowsky, and Meurman.



New Moonshine

Eguchi, Ooguri, Tachikawa 2010

There are analogous moonshine
phenomena relating the elliptic genus of
K3 to M24.

Cheng, Duncan, Harvey (2012,2013)
“Umbral Moonshine”



The New Moonshine Phenomena
Remain Unexplained

There is no known analog of the FLM
construction explaining umbral moonshine.

Despite 12 years of intense effort by a small,
but devoted, community of physicists and
mathematicians....

We don’t understand something about symmetries
of 2d conformal field theories.

It might be something important. Or maybe not.



.

Why Should Physicists Care? 1/2

CFT explanation of Monstrous Moonshine by
Frenkel, Lepowsky, Meurman, & Borcherds drove
many developments in 2d CFT, especially RCFT

Techniques introduced to explain moonshine — orbifolds,
VOA, holomorphic CFT have played a key role in other aspects
of physics and have led to many important advances...

e.g. modular tensor categories are a
direct descendent of this research --


Presenter
Presentation Notes
Of course, modular tensor categories have played an important role in 
Some of Nick’s work. 


Why Should Physicists Care? 2/2

History repeats
itself

Lightning does

not strike twice m



RCFT Approach To FLM

For the original Monstrous Moonshine:
24 free chiral bosons with target space

the Leech torus := R%**/A

A c R?%* is the Leech lattice,

D25-brane

Moreover, target space torus has a very
special “B-field”
S=[d%( Gy 0ix¥ dtxY + Bm,eijaixuajx")



Presenter
Presentation Notes
Later I will show you how you can construct the Golay code for yourself 
At your own kitchen table – were you so inclined



Zz _Orb|f0|d

Now gauge the global symmetry:
X - —x forx € R**/A

Hy =Hy © Hy



Nontrivial Gauge Bundle on S?
Twist Fields

Identify order two points in the torus R%*/A

T,(A) == A/2A

Orbifold breaks translation symmetry
on Leech torus down to T, (A)

B —field defines a symplectic form on T, (A)

B(11,4,) = (—1)M42



Noncommutative Translations - 2/2

Unbroken translation symmetry realized on
Hilbert space as a Heisenberg group:

0-> Z, — }[(TZ(A))—> T,(A) - 0

T(A1)T(A2) = €(A4,22)T (44 + 43)

E(Al'AZ) . 1A A
6(/12»/11)_ ( 1)

Early example of noncommutative
geometry on D-branes induced by a B-field




S is the unique irreducible
representation of the
Heisenberg group H (T, (A)):

Construct it using y —matrices.

S$ :  Spinor representation ”

H=F QRS =H:DH:



FLM Module

Hreiy = }[X D 7'[;

FLM & Borcherds:

The automorphism group of the VOA
Hrry is the Monster Group



Payoff: Conceptual Explanation of
Modularity

L _c
1
mmmmm) Modularity

This is the gold standard for the conceptual
explanation of Moonshine-modularity

A truly satisfying conceptual explanation

of genus zero properties remains elusive.

g

Important progress: Duncan & Frenkel 2009;
Paquette, Persson, Volpato 2017



B. STATEMENT OF THE PROBLEM



1988:

Beauty and the Beast: Superconformal Symmetry
in a Monster Module

L. Dixon''*, P. Ginsparg? ** and J. Harvey> ***

1.3 Physics Department, Princeton University, Princeton, NJ 08544, USA
2 Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract. Frenkel, Lepowsky, and Meurman have constructed a representation
of the largest sporadic simple finite group, the Fischer—Griess monster, as the
automorphism group of the operator product algebra of a conformal field
theory with central charge ¢ = 24. In string terminology, their construction
corresponds to compactification on a Z, asymmetric orbifold constructed from
the torus R**/A, where A is the Leech lattice. In this note we point
out that their construction naturally embodies as well a larger algebraic
structure, namely a super-Virasoro algebra with central charge ¢ = 16, with the
supersymmetry gencrator constructed in terms of bosonic twist fields.



(Super-) Conformal Symmetry:

— (n® —n)8nimo n,meZ

[Ln» Lm] — (Tl — m)Ln+m + 12

C
T(z) = Ez—n—an T ~ 7, 20w | oTw)

z—w)r (z—-w)?2 z—w
Nnez

Superconformal symmetry = supercurrent:

3
_‘]'
(Z) F( ) 2 F(“’) a]F(W)

3 Z—w)2 z—w
Tp(z) = z G-z "2 ( )
T

: 2T
Tp@Tpw) ~ osg + 2t



Presenter
Presentation Notes
Nick has explored applications of these superconformal algebras 
To condensed matter in interesting ways – for example generating 
interesting states like Read-Rezayi and others. 


Hpgp = Hp D Hr

has fields with conformal dimension in Z

N | =

“spin lift” - itisa 2d spin conformal field theory”



What is the actual
supercurrent?

Not known.
Not easy.

Today | will fill in this gap.
It is very recent work with R. Singh



C. ALITTLE MORE BACKGROUND



In one of our (several) attempts to
explain Umbral Moonshine, Jeff Harvey
and | discovered a curious relation
between supercurrents in certain
superconformal 2d field theories and
guantum error correcting codes.

Moonshine, Superconformal Symmetry, and Quantum
Error Correction

Jeffrey A. Harvey,' Gregory W. Moore?



A WZW Model Equivalent To K3

Amazing result of GTVW: The supersymmetric
sigma model on a special K3 surface is isomorphic
to the product of 6 copies of (a spin lift of a)
bosonic k=1 SU(2) WZW model !

So it must be possible to write
Tr(z) of dimension (3/2,0)

C 1
) | 7T(W) |

(z—w)3 z—w

Tp(z)Tp(w) ~



Frenkel-Kac-Segal

Witten’s Nonabelian Bosonization

2
S——faxé‘x X ~x+2m
e\/—i(§+w R)x (Z) R e\/—E(E—W R))Z(Z)

At R=1 we have a theory equivalent to the SU(2); WZW model

B(z) = %ax@,/i(z) _ o VEx(y)

Gives an su(2) — current algebra.



Chiral Fields Of Dimension 3/2
SU(2),=1 =Periodic boson withR =1

+X(2)

e SU(2) doublet (T Qbit”’)

Conformal dimension = 1/4
So in WZW for SU(2)°

iv2
Ve €aes = eXP<T(E1 X1t € Xy + -+ €6 X )) e; €{x1}

1

: . 3
= 2% vertex operators of conformal dimension = (4) X 6 = E



Chiral Fields Of Dimension 3/2

i V2 |
Verezes = exp<7(€1 X1t €3 Xy + -+ €6 X )) € €111}

Ve, e,,...ec SPana 2% dimensional vector space
of holomorphic (3/2,0) operators.

ldentify this space with the space of states in a
system of 6 Qbits.

Forany s € (C?)®® write V.



Which Ones Are Supercurrents?

’ [ )

The V, have OP

s¥4s p sxABg
2 ] (ZZ) +
Z12 Z12

SS SS
Vs(z)Vs(22) ~ =5+ —T(2;)
Zip 212

J4JE (z,) +)-

JA :generators of SU(2)° affine Lie algebra, A=1,..., 3-6 =18

>4 »48 generate 1- and 2- Qbit errors

¢ 1
— =T(w)
/N

(z—w)3 z—w

Tr(2)Tr(W) ~ + -



N=1 Generator

Using results of GTVW itis Vi for

Y = [@] + i [123456] + ([1234] + [3456] + 1256]) + i([12] + [34] + [56])
+ ([135] + [245] + [236] + [146]) — i([246] + [235] + [136] + [145])

[135] = | —,+,—,+,—,+)

Obtained by tedious translation from the susy for the K3 sigma model....

Is there a code governing this quantum state?

Yes!l It is a code over [F, : "hexacode”



Codes Over [F,

\

Hexacode: Hy c [F§

H¢ ¢ Aspecial 3-dimensional subspace
of the 6-dimensional vector space F§



[F, & The Quaternion Group
Q= {£1,tic",+ioc*, ticg? } cSU(2)

Group of special unitary bit-flip and phase-flip errors in theory of QEC.

h
15{+1}> 0S5 F 27,07, >0
o =(g 1) ry=(° 0 o)
W= ) we=(] 0

h(xX)h(y) = cxy h(x +y)

Cx,y i@ nontrivial cocycle with some nice properties.



N=1 Generator And The Hexacode
For w = (x4, X5, ...,Xg) € FS define
h(w) = h(x1) ® h(xy) @ - Q@ h(xs)

For general w,,w, € F¢
h(wy)h(wy) = x(wy, wp)h(wy + wy) 5 L2 4
cannot remove signs y .

But! On the hexacode:

h(Wl)h(Wz) — h(Wl —+ Wz) Wy, W, € ‘7_[6 C [F?L

P=2° ) kW) @emP

WE?’[6



Consequences: 1/2

Vg generates an N=1 superconformal symmetry:

SS SS
Ve(2))Ve(2) ~ 5+ —T(2;)
Zip 212

S

J45(z5) +Y-

Z12

¥4 »48 generate 1- and 2- qubit errors
PraAy =0 & YI4ABY =

Im P is a QEC! = Tr = Wy



Conway Group Moonshine

[Frenkel, Lepowsky, Meurman; Duncan; Duncan-Mack-Crane]

Susy sigma model with target
X = Cartan torus of E8, with special B-field.

VWSZ 1) qu_(z 2)
Yy Yy

~ —3 ~+ —T(Zz
Z12 212

Youncan € Im P: error-correcting code
associated with the Golay code

TF — VLPDuncan



D. SOLUTION OF THE PROBLEM



Now we will use these ideas
to fill in the old gap in the
Beauty & Beast paper

Hpgp = Hy D Hr

}[T:?'@S



For every spinor ¥ € § we have a
dimension 3/2 primary field Vi

Jeff and | speculated that once again a
supercurrent would be determined from a
special spinor determined by a code.

But now we need to know about
the OPE of bosonic twist fields .....

Much more challenging .....



With a student,
Ranveer Singh,
we have indeed realized the
supercurrent in this way

Vg (21)Vy(22) ~

Yy 19y 1 .
~ e TE) ) K@@

3
Z 8 z Z
12 12 12 1 1Z2=a




Yy 1Py 1 .
~ e TE) ) K@D
le 8Z12 Z1?

A:A2=4

T(A) € H(T,(N))
Construct an Abelian subgroup £ © f]—[(TZ (A))

p =-12 2 T
[A]eL

IS a rank one projection operator.



Constructing a suitable £ © }[(Tz (A))
requires a lattice A, € A such that

‘AerZ‘EJASC — Al 'Az ==C)ﬂQOClZE
2N C A, C A

212 212
ALEA,., > A% =0mod4

Nonzero 1 € A, = 1* > 4



Choose an isomorphism T, (A) = IF%4

L—> C c F5*
Supercurrent = Vi for¥ € Im(P)
2=4 = (¥,T)Y) =0
because of the error correcting properties of C

Vy is a superconformal
currentin Hggp



Example of a sublattice Ag,

Dong, Li, Mason, Norton:
There is an isometric embedding

of L(\/f) into the Leech lattice for
every Niemeier lattice L

Aee = A(V?2)

Are there others?
Does Hpgp have N>1 supersymmetry ?



NUGGET 2

Time Reversal In
Chern-Simons-Witten Theory



When does 3d Chern-Simons-Witten
theory have a time reversal symmetry?

General theory based on compact group G
and a “level” k € H*(BG; Z)

Which (G, k) give
T-reversal invariant theories?

Related: When does Reshetikhin-Turaev-Witten
topological field theory factor through
the unoriented bordism category?



Some nontrivial examples of
T-invariant CSW theories
appeared in several recent papers

[Seiberg & Witten 2016; Hsin & Seiberg 2016; Cordova, Hsin & Seiberg |

G= PSU(N) k=N

But there is no systematic
understanding.



With my student Roman Geiko
we have recently carried out a
systematic study for

Spin Chern-Simons Theory with
torus gauge group G = U(1)"

S—lfKAdA
4 YT

K;; + r Xr nondegenerate, integral
symmetric matrix: determines integral lattice L



Classical T-reversal:
3 U € GL(r,Z) such that

UKUY = —K
(Note: o(L) = 0)

But there can be quantum T-reversal
symmetries not visible classically.

Rank 2 examples studied by
Seiberg & Witten; Delmastro & Gomis



The quantum theory does not

depend on all the details of L
What does it depend on?

Finite Abelian group D(L) := LV/L

a.k.a group of anyons” a.k.a. group of 1-form symmetries”

Quadratic Function (spin of anyons) :

aw () =5 (%% = W) + = (W, W) mod Z

1 z eZnqu(x) B eZTL’l'O-gL)
VIDWDI &5, -




Theorem
[ Belov & Moore; Freed,Lurie,Hopkins, Teleman]

The quantum theory only depends on the
equivalence class of the triple (D, g, )

qg:D - R/Z o € 71/247

1 ZeZTEi q(x) o Zﬂi%
NI — €

XED

Conversely, every such triple arises
from some torus CSW theory



Equivalence of triples
(D,q,0) = (D',q',0)
3 isomorphism f:D — D’
3 A eD
q(x) = q'(f(x) +4°)



T-Reversal Criterion
[((D,q,0)] =[(D,—q,—0)]

q: Determines the spin of anyons

b: Determines the braiding of anyons



Simpler Problem: The Witt Group (1936)

b(x,y) =qx+y)—qlx)—q(y)+q(0)

Throw away g, g and just keep b.

Classify [(D, b)]|
[(DlJbl)] + [(Dz,bz)] = [(Dl @ Dz, bl @ bZ)]

Abelian monoid DB



Submonoid Spf Split forms:
D - Dl 69 Dz

D, = 2)1l
Witt = DB/Spfl

Abelian group whose structure is known.
Roughly speaking:

Witt = (Z;)” @ (Z4)™



Spt c DB':= {[D,b] =[D,—-b]} c DB

Roman computed generators for the
(infinite) Abelian subgroup

DB /Spt

and then refined it to
T —invariant triples



Theorem: A T-invariant triple
(D, g,5)] must be a direct sum of

9 b q o mod 8
Z/p", p=1mod4 Xpr ux?/p" r(p? —1)/2

o v /p" r(p? —1)/2 + 4r
Z/p". p=3mod4 Xopr ux?/p" r(p? —1)/2
7/2 Ay 22 /4 —1/8 0
(Z./2)? Eo xy/2 0
(2/4)4 44422 (;IZ% —|— ;II% —|— 5;1.% —|— 51_21)/8 —1
Z)2" X ZL)2", r>1 FEor xy /2" +alx/2 4+ y/2) 0
22 X Z)2™ m =2 | Fom (22 + xy + y?2) /2™ 4(m+1)
(Z/Q-m)4_ m > D) 4‘42m Z;l:l ;.I:?/Qm-i—l 4
(Z/27)?, m > 2 Agm + Bom | 22/27mF1 4 342 /2] 4(m + 1)
(Z)2)?, r > 3 Agn + Don | 22 /271 4 792 J2n ] 0
7. /97 _1 r 2 3 3}1271 + ngn lf'a__ T 2.71—1—1 1 Sy_. 2?14-1 An,

i=1 ;

Table 3. T-invariant quartets. Here, (_Tl) = 1, (@)

P p

_ (9—) — Lr>1lm>=2n3>3

a € {0,1}. Note, we can add 1/2 to ¢ and 4 to ¢ in any line to obtain another quartet.




Example: L =A4, andL = D, can be
primitively embedded into Eg (Nikulin)

These are positive definite, and
cannot be T-invariant classically

Nevertheless, they are
guantum T-invariant



Conjecture for the general case:

(G, k) » CSW(G,k) » MTC(G, k)

o &
Modular Tensor Categories



There is a mathematical notion of a
Witt group of (pointed,nondegenerate)

braided fusion categories.
[Davydov, Muger, Nikshych, Ostrik 2010]

CONJECTURE

CSW(G, k) is T-invariant iff
IMTC(G, k)| is order 2 in Wittt



Compatible with the physical
interpretation of Witt equivalence
corresponding to the existence of a
topological defect.

We can also confirm the conjecture
for examples of Seiberg et. al.
using higher central charges”

[Ng, Schopieray, Wang 2018;
Kaidi, Komargodski,Ohmori,Seifnashri, Shao 2021]



NUGGET 3

Two Developments In
The Relation Of SYM And
Four-Manifold Invariants



Families Of Four-Manifolds - 1/3

Consider a twisted VM in d=4 N=2
SYM on four-manifold X

Z[guv] — f [dVM]exp[—S[VM; guv]]

Witten (1988): Z[gw] is constant on MET (X)



Families Of Four-Manifolds - 2/3

Couple to twisted (truncated)
conformal supergravity:

Z\ 9 Yur| = [ [dVM]exp[—S|VM; g, Wy | ]
Q9,, =¥,, Cotangent vectoron MET (X)

Defines a closed differential form on
MET (X)/Dif f*(X)
[Z| 9w, Puv| 1 € H*(BDIff*(X))

New invariants?



Donaldson-Witten a la Baulieu-Singer
P->X G = Aut(P)
G —equivariant cohomology of A (P)
g
(27 (AP)) ® 5*(LieG))
Q A, =Yy QYy=-Dy¢ Qp=0

Atiyah & Jeffrey + Baulieu & Singer

Zpw :Pushforward in G —equivariant cohomology.



Ga = Dif f*(X)
G4 —equivariant cohomology of MET (X)

quvijuv QY CD +VCDH Qd* =0

Action e ™ is a closed equivariant class
inthe G X G,; — equivariant

cohomology of MET (X) X A(P)

Push-forward in G —equivariant cohomology
isa G; —equivariant class on MET (X)



Yy

QA,uzlpu quv

leuz_ u¢ -|—CI)UF0M quuv

V,®, + o,

Qp=0 —d%Y, Qd* =0
S = Switten T fvol(g) LIJMVA;W T -
X

_ + --- = heroic computations
QoA =T,
O( W) . by Jay & Vivek

Q O = qdo™ 1 1,0+



“K-Theoretic Donaldson Invariants’

y [
Jan Manschot Gregory Moore - Xinyu Zhang

e

-

| ! =
e

\
~
_
N




Five Dimensions
Partial Topological Twist of 5d SYM on X x S*

Reduces to SQM on the moduli space of instantons:
(Requires that M be Spin-c)

R=RA
Z[R] = E:de/z f A(T M)
k=0 M

[Nekrasov (1996); Losev, Nekrasov, Shatashvili; Gottsche et. al. .... ]

+ interesting story including observables...



Chern-Simons Observables
U(1);,s sSymmetry with current | =Tr(f A f)

Couple to background [F( )
gauge field A: S

2
0(n)=f Tr(ada+—a3>
5(n)xs1 3

2
=f F(A)/\Tr(ada+—a3)
XxS1 3

Z(R,n) = (M)

€ H2(X,7)



Five Dimensions

Z(R,n) = Z RAk/2 f ec1 (L) A(M,)
k=0 M
Using both the Coulomb branch integral
(a.k.a. the U-plane integral) and,
independently, localization techniques,
we reproduce & generalize



K-THEORETIC DONALDSON INVARIANTS VIA INSTANTON
COUNTING

LOTHAR GOTTSCHE. HIRAKU NAKAJIMA. AND KOTA YOSHIOKA

To Friedrich Hirzebruch on the occasion of his eightieth birthday

ABSTRACT. In this paper we study the holomorphic Euler characteristics of determinant
line bundles on moduli spaces of rank 2 semistable sheaves on an algebraic surface X.
which can be viewed as K-theoretic versions of the Donaldson invariants. In particular
if X is a smooth projective toric surface, we determine these invariants and their wall-
crossing in terms of the K-theoretic version of the Nekrasov partition function (called
5-dimensional supersymmetric Yang-Mills theory compactified on a circle in the physics
literature). Using the results of [43] we give an explicit generating function for the wall-

crossing of these invariants in terms of elliptic functions and modular forms.

VERLINDE FORMULAE ON COMPLEX SURFACES I:
K-THEORETIC INVARIANTS

L. GOTTSCHE, M. KOOL, AND R. A. WILLIAMS

ABsTRACT. We conjecture a Verlinde type formula for the moduli space of
Higgs sheaves on a surface with a holomorphic 2-form. The conjecture spe-
cializes to a Verlinde formula for the moduli space of sheaves. Our formula
interpolates between K'-theoretic Donaldson invariants studied by the first
named author and Nakajima-Yoshioka and K-theoretic Vafa-Witten invari-
ants introduced by Thomas and also studied by the first and second named
authors. We verify our conjectures in many examples (e.g. on K3 surfaces).



b; (X) =1
Derived a wall-crossing formula
Differs from GNY.

Agrees with GNY,
suitably interpreted

This raises some puzzles...



Z(R,n) = [VR(T) C(T)nz Fn(r,v(r))]qo

o 9r3b2 1 ) 02)2 +(%)2

N VI-RZu+ R u_(ﬁ: v
1

9, (T,fv(ﬂ) - 9, (T,%m))
] - C(t) =

Uy T’iv(T) Pa(®)

E.(t,z) : Mock Jacobi form



b; (X) > 1

ZRn) = ) §FGERN)

SEU,
22)(+3 0—Xh 1+R E
GRM) = = 5. SW () (1)

(1-R?)2



This should generalize to 6d SYM on X X [

A(My) = EU(My, q)

Conjecture:

Integrals in elliptic cohomology of
distinguished classes defined by
the susy sigma model with target
space M, define smooth
invariants of four-manifolds



Happy Birthday Igor!!
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