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Introduction - I

This work grew out of thinking about the E8 formalism for
the C-field of M -theory. But I have written the talk so that
you don’t need to know that formalism.

The motivating question today is the following:

M-theory has a 3-form potential C, with 4-form fieldstrength
G. There is a well-known quantization law (Witten, 96)

[G] = a− 1
2
λ a ∈ H4(X, ZZ)

( Torsion will not play a role in this talk)

This rule follows from the existence of fundamental M2-
branes:

exp
(
2πi

∫

Σ

C
)

However, there are electromagnetically dual M5-branes. Thus
there must be some kind of dual fieldstrength G7 of the po-
tential which couples to the M5 brane.

What is the electromagnetic dual quantization law on [G7]?



Introduction - II

Answer: The dual quantization condition must be under-
stood in terms of the quantum mechanics of the C-field.

Using Gauss’ law for C-field gauge transformations we will
define a flux G7 with [G7] conserved.

The cohomology class [G7] is often called the Page charge.
We will find that, in the presence of [G4] 6= 0 it is noncom-
mutative.

Lattice of fluxes in H7(X, ZZ) −→ a nonabelian group.

Most of the talk is development of formalism - but there are
some applications perhaps of broader interest:

• Flux compactifications of M -theory on 7-folds. (Clarifica-
tion of G2 superpotentials.)

• 5-brane partition functions. (We can derive Witten’s theta
function directly from M -theory. This leads to some techni-
cal clarifications.)



A Useful Analogy - 3D abelian CS & Landau Problem

A closely related theory is 3d massive abelian CS:

S =
∫

Σ×IR

− 1
2e2

F ∗ F + 2πk

∫

Σ×IR

AdA

On Σ× IR the dynamics of the topological (flat) modes of A
is that of an electron on a torus H1(Σ;U(1)) in a constant
magnetic field.

Recall:
Ω =

∫

Σ

δΠ ∧ δA

H =
1
2

∫

Σ

e2Π̃ ∗ Π̃ +
1
e2

F ∗ F

Π̃ = Π− 2πkA

In this case, the long distance limit is e2 →∞.

Low energy physics is governed by the harmonic modes of A
⇒ same mathematics as the Landau problem.

For simplicity, take Σ = T 2.

The quantum mechanics of these modes is identical to the
Landau problem of an electron on the torus with B = 2πk.



Landau Problem - I

Begin with the Landau problem on the x, y-plane:

H = (Π̃x)2 + (Π̃y)2 =
(−i

∂

∂x
− B

2
y
)2 +

(−i
∂

∂y
+

B

2
x
)2

x, y ↔ harmonic modes of C

B ↔ G

Electron wavefunction ↔ C-field wavefunction.

Note that neither Πi nor Π̃i are conserved...

In the Landau problem on the plane we can define magnetic
translation operators:

P x = −i
∂

∂x
+

B

2
y P y = −i

∂

∂y
− B

2
x

These commute with H, and hence are conserved.

However, they do not commute with themselves:

[P x, P y] = iB

P x, P y ↔ Page charges



Landau Problem - II

Now consider the Landau problem on the torus. So we iden-
tify x ∼ x + 1, y ∼ y + 1:

x ∼ x + 1 ↔ Large C-field gauge transformations.

In the Landau problem the wavefunction is a section of a line
bundle with connection over T 2 with c1 = k, where B = 2πk,
k ∈ ZZ, and H is the Laplacian.

The magnetic translation operators P x, P y are not well de-
fined on the torus: Lattice translations are generated by
eiP x

, eiP y

and the quantum wavefunction satisfies:

eiP x

ψ = ψ eiP y

ψ = ψ

Translation by ~n is generated by U(~n) = einxP x+inyP y

:

U(~n)P xU(~n)−1 = P x + 2πkny



Landau problem - III

The operators

T (~a) := exp
(
iaxP x + iayP y

)

are lattice-invariant iff (ax, ay) is a k-torsion point. More-
over, these operators form an Heisenberg group

T (~a)T (~b) = e−2πik|~a×~b|T (~b)T (~a)

This is the kind of nonabelian group which will replace the
naive lattice of flux quantization.

The lowest Landau level is of dimension = k, and provides
a representation of the Heisenberg group - this is analogous
to the 5-brane partition function.

In the lowest Landau level δΠ̃ = 0 ⇒ a topological theory
with

Ω =
∫

δΠ̃δA + 2π

∫

Σ

kδAδA → 2π

∫

Σ

kδAδA

T (~a) ∼ Wilson, ’t Hooft, or Verlinde operators, depending
on context

Wavefunction ∼ conformal blocks.



Why Page charge has not really been defined, yet

The usual discussion goes like this:

`−3d ∗G =
1
2
G2 − I8

So, if G = dC then

d(−`−3 ∗G +
1
2
CG− I7) := dP = 0

Now consider Y = X × IR so

P = PX + P0dt

dXPX = 0 ⇒ define [PX ] ∈ H7
DR(X),

ṖX = dXP0 ⇒ [PX ] is conserved.

This conserved cohomology class is the Page charge.

Criticism:

• [G] 6= 0 ⇒ C does not exist.

• [PX ] is not quantized because we can shift C by any real
harmonic form θ. C → C + θ ⇒

[PX ] → [PX ] +
1
2
[θ] ∧ [G]

e.g. X = R3 × S3 × S4, G = ωS4 , θ = xωS3 , 0 < x < 1.



Introducing a basepoint

The first difficulty is minor.

Topological sectors are labelled by a ∈ H4(Y, ZZ).

For each topological sector choose a basepoint C•

C = C• + c, G = G• + dc

c ∈ Ω3(Y ), BUT! C• /∈ Ω3(Y ).

S = 2π

∫

Y

− 1
2`3

G ∧ ∗G

+2π

∫

Y

{
c
(1
2
G•2 − I8(g)

)
+

1
2
cdcG• +

1
6
c(dc)2

}
+ Φ•

In this way we treat the CS term as a function.

But when ∂Y = X it is really a section of a line bundle with
connection.

Ignoring this fact can lead to problems.



Digression: The E8 formalism

You do not need to know the E8 model for the C-field to
follow this talk.

However, for those who know, recall the main elements:

1. The gauge invariant information in C is encoded in the
membrane coupling, which defines an element of Ȟ4(Y,U(1)).

2. A “C field” is defined to be

Č = (A, c) A ∈ A(P (a))

such that the membrane coupling is

∼ exp 2πi

∫

Σ

[CS(A)− 1
2
CS(ω) + c]

The gauge-invariant fieldstrength is:

G = trF 2 − 1
2
trR2 + dc = G• + dc

In this framework, a choice of basepoint can be simply a
choice of connection A• together with a choice of metric.

N.B. The space of C-fields is fibered over the space of met-
rics! G depends on a metric.



Hamiltonian Formalism for the C-field

We have now solved the first difficulty with the standard
discussion of Page charge. Let us turn to the second: The
quantization of [PX ].

We will discuss it in the Hamiltonian formalism.

Y = X × IR

The Hamiltonian formalism is straightforward:

Phase space: (c, Π) ∈ Ω3(X)× Ω7(X)

Ω =
∫

X

δΠ ∧ δc

H =
1
2

∫

X

[
`3

2π
Π̃ ∗ Π̃ +

2π

`3
GX ∧ ∗GX

]

Π̃ := Π− 2π

(
1
2
cG•,X +

1
3
cdc

)

Neither Π nor Π̃ is conserved....



Page charge in Hamiltonian formalism

What is conserved is:

PX =
1
2π

Π̃ +
(
G•,Xc +

1
2
cdc

)
+ Ξ•

where Ξ• is any “trivialization”

dΞ• =
1
2
G•,X2 − I8

Spatial components of EOM:

G = dXPX = dΠ̃ + 2π(
1
2
G2

X − I8) = 0

This is the classical Gauss law for C-field Gauge invariance:

L = Π ∧ ċ−H + c0G

[PX ] is the conserved Page charge - expressed in Hamiltonian
formalism.

We still need to understand why it is quantized.



Gauss Law, and a Paradox

The quantization of [PX ] should be understood by thinking
about the quantum wavefunction of the C-field.

Π ∼ −i
∂

∂c

Page charge quantization follows from the Quantum Gauss
law for large C-field gauge transformations.

“Gauge invariance”

c → c + dΛ Λ ∈ Ω2(X) small

c → c + ω ω ∈ Ω3
ZZ(X) all

(Actually, the gauge group is slightly bigger...)

Gauge invariant wavefunctions satisfy:

ψ(c + ω) = (phase)ψ(c)



How the quantum Gauss law quantizes [PX ]

As in ordinary gauge theory, the Gauss law is the generator
of gauge transformations, so

e−2πi
∫

ΛdXPX ψ = ψ ∀Λ ∈ Ω2(X)

So:
e2πi

∫
dXΛ∧PX ψ = ψ ∀Λ ∈ Ω2(X)

Generalize to large gauge transformations:

e2πi
∫

ω∧PX ψ
?=ψ ∀ω ∈ Ω3

ZZ(X)

Note
PX =

1
2π

Π + · · ·

So
ei

∫
ωΠψ(c) = ψ(c + ω)

Morally, the operator equation

e2πi
∫

ωPX = 1 ∀ω ∈ Ω3
ZZ(X)

means the eigenvalues of PX satisfy [PX ] ∈ H7(X, ZZ), as in
the naive discussion.

However, there is a problem...



Page charges don’t commute

It is convenient to define

P (φ) =
∫

X

φ ∧ PX

for φ ∈ H3(X).

Easy computation:

[P (φ1), P (φ2)] =
i

2π

∫
φ1 ∧ φ2 ∧G

⇒ Page charges don’t commute!

This leads to an anomaly in the Gauss law:

U(ω) = e2πiP (ω) = e2πi
∫

ωPX

Now
U(ω1)U(ω2) = e−iπ

∫
ω1ω2GU(ω1 + ω2)

If the prefactor is a nontrivial phase we cannot consistently
impose U(ω)ψ = ψ for all ω!



Anomaly in the Gauss law

(Nontrivial) fact: If X is a spin 10-manifold then

∫

X

ω1ω2G ∈ ZZ ∀ω1, ω2 ∈ Ω3
ZZ

(Proof: Wu classes and Steenrod algebra....)

⇒ we only have a ZZ2 anomaly.

Still - if present it would mean we would have “1/2-membranes”
...

Also - when we come to the 5-brane - failure to account for
this factor of 2 leads to the wrong (fourth power) of the
5-brane partition function.



Gauss law - Resolution

The anomaly arose because we failed to take into account
the fact that the action of M -theory is really a section of a
line bundle with connection.

To illustrate the point consider again the Landau problem

ψ(~x + ~n) ?= e
i
∫ ~x+~n

~x
A
ψ(~x)

We can say:

einxPxψ = ψ ⇔ ψ(x + nx, y) = e−i
∫

Aψ(x, y)

einyPyψ = ψ ⇔ ψ(x, y + ny) = e−i
∫

Aψ(x, y)

But then

ei(nxPx+nyPy)ψ = e
−i

∫
4

F
ψ = e−iπknxny

ψ



Gauss law - Resolution II

Similarly, in M -theory

exp 2πi

∫
1
6
CGG− CI8

is a section of a line bundle over the space of C-fields.

This bundle has connection and curvature

A ∼ 2π

∫
δC(

1
2
G2 − I8)

F ∼ π

∫
GδCδC

A (long) technical analysis leads to a consistent form of the
Gauss law:

exp
(
2πi

∫
ωPX

)
ψ = f•(ω)ψ

Upshot:

1. f•(ω) = ±1, is a function explicitly constructed from C.
It satisfies the ZZ2 cocycle law, and is not linear in ω!

2. The Gauss law makes a specific choice of Ξ•

PX =
1
2π

Π̃ +
(
G•,Xc +

1
2
cdc

)
+ Ξ•



A word about the proof

Need to evaluate holonomies around cycles defined by c ∼
c + ω.

Using the connection find

ψ(c + ω) = eω(c)ψ

eω(c) := ϕ(Č• + c, ω)∗e−2πi
∫

X
( 1

2 G− 1
6 dc)cω

The subtle piece is ϕ(Č•+c, ω) defined as follows (a construction

first appearing in Witten’s paper on 5-branes)

Given Č and ω on X we construct a ω-twisted C-field on
X × S1.

( The E8 model helps a lot here: We glue (A, c) to (Ag, c)
where g is a nontrivial E8 gauge transformation constructed
from ω.

ϕ(Č• + c, ω) ∼ exp iπη( /DA) + · · ·)



The Page Charge Group

Now that we have a consistent Gauss law we can discuss the
quantization of the Page charges.

Recall P (φ) =
∫

φPX and [P (φ1), P (φ2)] = i
2π

∫
φ1φ2G.

U(ω)P (φ)U−1(ω) = P (φ)−
∫

ωφG

Thus, P (φ) isn’t even gauge invariant! (In the presence of
G-flux.)

Since we wish to work with gauge invariant objects we define:

T (φ) := e2πiP (φ)

so
U(ω)P (φ)U−1(ω) = e2πi

∫
φωGT (φ)

so T (φ) is gauge invariant if
∫

φωG ∈ ZZ ∀ω ∈ H3(X, ZZ)

⇒ we can have a nontrivial Heisenberg group

T (φ1)T (φ2) = e−iπ
∫

φ1φ2GT (φ1+φ2) = e−2πi
∫

φ1φ2GT (φ2)T (φ1)



When is the Heisenberg extension nontrivial?

We study the bilinear form on H3(X, ZZ):

B(ω1, ω2) :=
∫

ω1ω2G

• ZZ-valued
• antisymmetric

⇒ we can choose a basis of integral forms

B =
(

0 k1

−k1 0

)
⊕

(
0 k2

−k2 0

)
· · · ⊕

(
0 kr

−kr 0

)
⊕ 0b3−2r

Case I: ki = 0, so B = 0 ⇒ P (φ) are all gauge invariant and
simultaneously diagonalizable.

[PX ] ∈ H7(X, ZZ)

Case II: ki 6= 0.
For simplicity assume B is nondegenerate and ki = k.

Then we can split:

H3(X, ZZ) = Λ1 ⊕ Λ2

So that

B = k

(
0 1
−1 0

)



Nontrivial Page charge group

Choose a symplectic basis αI , βI so

The page charge group is generated by

UI = T (
1
k

αI) VI = T (
1
k

βI)

Relations:

Uk
I = V k

I = 1 UIVJU−1
I V −1

J = e
2πi
k δIJ

The gauge invariant operators form a representation of a
finite Heisenberg group

0 → ZZ/kZZ → H→ H3(X, ZZ/kZZ) → 0



The long distance limit in M-theory

In the M-theory case the long distance limit ` → 0 is gov-
erned by the harmonic modes of C.

These modes are again goverend by an effective Landau
problem and behave analogously to the topological field the-
ory above with an effective symplectic form:

Ω =
∫

δΠ̃δc + π

∫

Σ

Gδcδc → π

∫

Σ

Gδcδc

Thus, in the analogy to 3d abelian Chern-Simons

k → 1
2
[G]



Application: The 5-brane partition function

The 5-brane partition function is interesting because

1. 6D (2,0) superconformal field theory

2. 5-brane instantons are important for moduli stabilization,
and decay of deSitter vacua in string theory.

We will show how our Gauss law together with the quantum
mechanics of the harmonic modes of the c-field can be used
to derive the 5-brane partition function discussed by Witten.



Use AdS/CFT

ds2 = (k2/3`2)
[
dr2 + e2rds2

D6
+

1
4
ds2

S4

]

X = D6 × S4

G → G∞ = kωS4 + Ḡ

So we expect (k À 1)

Z(M/Y ) = ZM5
U(k)



Singleton sector

We can say something about the “singleton sector”

U(k) =
SU(k)× U(1)

ZZk

U(1) ∼ C.O.M. for k 5-branes - couples to the harmonic
modes c∞,h.

To write the general form of the partition function we use
the symplectic form

〈ω1, ω2〉 =
∫

D6

ω1 ∧ ω2

H3(D6, ZZ) = Λ1 ⊕ Λ2

Then
ZM5

U(k) =
∑

β∈Λ1/kΛ1

ζβΨβ(c∞,h)

• ζβ is the contribution of the SU(k)/ZZk (0, 2) theory. β
labels “’t Hooft sectors.”

Note that dimensional reduction on S1, D6 = D5×S1, yields
SU(k)/ZZk gauge theory and we have a natural symplectic
splitting with

Λ1 = H2(D5, ZZ/kZZ)

so β is literally an ’t Hooft sector label. (Witten).



Page charge is dual to ’t Hooft sector

• We’ll derive a formula for Ψβ below in terms of theta func-
tions. It shows that the Heisenberg group of Page charges
acts via

T (φ1)Ψβ = Ψβ+φ1 φ1 ∈ Λ1/kΛ1

T (φ2)Ψβ = e2πik〈φ2,β〉Ψβ φ2 ∈ Λ2/kΛ2

So the AdS dual interpretation of the ’t Hooft sector
label is the “Page charge.”

• Note the sense in which the AdS partition function is a
“vector in a Hilbert space” is that - as a function of c∞,h it
is in the linear span of Ψβ .



Sketch of proof

1. As in the holographic RG, evolution in r = Euclidean
time evolution.

2.

Ψ(r) = e
−

∫ r

r0
dr′e2r′H

Ψ(r0)

so r → +∞ projects to the groundstate of

H =
1
2

∫

X

[
`3

2π
Π̃ ∗ Π̃ +

2π

`3
GX ∧ ∗GX

]

3.

c → c∞ = ch + c′ + c′′ ∈ H(X)⊕ ImδX ⊕ ImdX

` → 0 ⇒ use a BO approximation (“integrated out massive
modes”) to isolate ch dependence:

Ψ = Ψ0(c′, c′′)Ψh(ch)



Sketch proof - II

4. Choose an integral basis: ch =
∑b3

1 caωa,

hab =
∫

ωa ∗ ωb Bab =
∫

X

Gωaωb = k

∫

D6

ωaωb

Hh = hab

(−i
∂

∂ca
− πBaa′ca′

)(−i
∂

∂cb
− πBbb′cb′

)

5. This is literally the Landau problem⇒ overcomplete basis
of states:

ψ ∼ e−
π
2 Bzz̄+vz

Translating to the geometrical language:

Ψv(c) = e
−πk

2

∫
D6

c∗c+
∫

v(1+i∗)c

6. These states are not gauge invariant. The average over
large gauge transformations gives a projection to gauge in-
variant states:

Ψv =
∑

ω∈H3
ZZ

(X)

(eω(c))∗Ψv(c + ω)



Sketch proof - III

Ψv =
∑

ω∈H3
ZZ

(X)

(eω(c))∗Ψv(c + ω)

7. Written out explicitly this is

Θ̄v =
∑

ω∈H3
ZZ

(Z6)

exp
{
−πk

2

∫

D6

(c + ω) ∗ (c + ω)− iπk

∫

D6

c ∧ ω

}

ϕ(Č•, ω) exp
{∫

D6

v ∧ (1 + i∗)(c + ω)
}

where:

• ϕ(Č, ω) is computed for X = D6×S4, and depends on the
the metric.

• H3(D6, IR) has complex structure Jω = − ∗ ω. Thus ω
couples to c(1,0) and v(0,1).

• The span of the functions Θ̄v is finite dimensional, of di-
mension k: To see that we need the chiral splitting.



The chiral splitting

We want to interpret this as a sum over flux sectors in the
(2, 0) theory.

But fluxes in the (2, 0) theory should be self-dual!

8. Choose a Lagrangian decomposition

H3 = Λ1 ⊕ Λ2

Then Poission summation: ⇒

Ψv =
∑

β∈Λ1/kΛ1

ζβ(v)Ψβ(c)

Ψβ(c) = e
−πk

2

∫
D6

c∗c+c(1,0)Imτc(1,0)

Θβ,k/2(c1,0 + θ + τφ, τ)

The characteristics are defined by the cocycle:

ϕ(C•, ω) = exp
[
2πi(θInI + φIm

I) + iπk
∑

nIm
I

]



Comments on the result

1. Only derived for large k but we expect it is true for all k,
including k = 1.

2. Recall G = trF 2 − 1
2 trR2 + dc, the space of C-fields is

fibered over metrics. If we change the metric, g1 → g2:

ϕ(Č1, ω)
ϕ(Č2, ω)

= exp[2πik

∫

Z6

ωCS(g1, g2)]

Slogan: Characteristic = CS(g).

⇒ characteristics are smooth functions of the metric ⇒ po-
tential suppression of 5-brane amplitudes:

Θ ∼ qθ2/2 + · · ·

3. If we did not twist the Θ function by ϕ then the chi-
ral splitting leads to the wrong theta functions. Θβ,2k ∼
(Θβ′,k/2)4.

4. There can be a further shift of v → v +κ due to quantum
effects.



Conclusions

1. We identified the quantization of [G7] with the quantum
mechanical Gauss law for large C-field gauge transforma-
tions.

2. When [G] 6= 0 the CS term is a section of a line bundle
with curvature

F = π

∫
GδCδC

3. There is a strong analogy with the Landau problem:

Page charge ↔ magnetic translation operator

4. The Page charge group in general is not the naive H7(X, ZZ)+
shift, but rather a Heisenberg group determined by

B(ω1, ω2) =
∫

Gω1ω2

5. These remarks have applications to 5-brane partition
functions.

6. We expect analogous phenomena in the typeII string.
This should have important implications for the relation to
K theory for nontorsion H-flux.


