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Introduction

Open string tachyon condensation is well-studied.

Two important points we learned

A. The K-theory class of D-branes is an invariant of open
string RG flow: Two D-branes related by open string tachyon
condensation have the same K-theory class.

B. There is an analog of Zamolodchikov’s c-function, gopen

which decreases monotonically under RG flow and defines
an action principle (BSFT):

Gijβ
j =

∂

∂λi
S S ∼ Zdisk

⇒\ question: Do A,B have analogs for closed string tachyons?

From the RG point of view we expect to flow to one of the
c ≤ 1 models - but it is hard to make that precise.

Intermediate case: condensation of localized closed string
tachyons. Adams, Polchinski, Silverstein.

Orbifold fixed locus ∼ D-brane.

This talk: Summarizes what I know about A & B in the
closed case.
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Some Models with localized closed string tachyons

1. Type II strings on Minkowski crossed with the orbifold

Cd/Γ

Where Γ ⊂ U(d) is a discrete group not in SU(d).

In some cases the lift of Γ to the spin group still allows GSO
to project out the bulk tachyon, but there are tachyons in
the twisted sectors ⇒ localized tachyons.

2: “Melvin models” or “twisted tori”

(Cd × IRd′
)/Γ

where Γ is an infinite discrete group acting by translation on
IRd′

such that only a finite quotient acts effectively on Cd,
e.g. (C× IR)/ZZ with

g0 : z → e2πiγz z ∈C
y → y +R y ∈ IR

∃ localized tachyons for R2 < |γ|.
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Methods Used

The methods used to study these models are

• D-brane probes (APS )

• N = 2 worldsheet supersymmetry and the chiral ring (Har-

vey et. al. )

• Gauged linear sigma model (GLSM) and toric geometry
(Vafa, Minwalla et. al., Martinec & Moore )

• String field theory (Okawa & Zwiebach)

There is some consensus on the picture for d = 1, 2.

Recent work of Morrison, Narayan, & Plesser discusses analogous
results for d = 3.



Qualitative pictures of the RG flow

In general, flow to the IR leads to a (partial) resolution of
the singularity.

C/ZZn →C/ZZn′ for n′ < n: Eventually decays to C.

For C2/ZZn, the picture depends on what you perturb by.

Main claim: A generic perturbation by tachyons in the chiral
ring flows to the Hirzebruch-Jung minimal resolution X , of
the singularity.

X generalizes the ALE space of the susy case.

H2(X ) = ZZr, r ≤ n− 1

−C =


−a1 1 0 · · · 0
1 −a2 1 · · · 0
0 1 −a3 · · · 0

· · · · · · · · · · · ·
...

0 0 0 · · · −ar

 , aα ≥ 2

ALE: r = n− 1, aα = 2.

Cycles with aα > 2 expand to infinity, aα = 2 don’t grow ⇒
disconnected ALE universes.
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What happened to the D-branes?

Already we can sharpen question A:

There are n fractional branes at the orbifold point. What
happens to these boundary states under RG flow?

Do they just disappear?

Given the N = 2 supersymmetry we have a category of
topological branes.

It seems unlikely that this should be destroyed by RG flow
preserving N = 2 supersymmetry.

We expect the category of D-branes to “evolve smoothly”
under RG flow.

The objects of the D-brane category at the orbifold point
are KΓ(Cd) ∼= R(Γ).

For susy orbifolds: C2/Γ,Γ = A,D,E there is indeed an
isomorphism of KΓ(C2) with the K-theory of the resolution:
This is the McKay correspondence.

Question: Is there a generalization to non-supersymmetric
(non-crepant) orbifolds and their resolutions?

But at first sight, it looks hopeless: d = 1 flows to C, which
has only the D0 brane. For d = 2, r D2’s + 1 D0, give
r + 1 < n branes.
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Chiral Ring for d = 1

We now describe more precisely how one can arrive at the
above qualitative pictures of the RG flow.

One route is via the chiral ring of the worldsheet N = 2 susy.

The jth twisted sector z ∼ ωjz has a ! chiral primary

Xj = σj/n exp
[
i(j/n)(H − H̄)

]
; j = 1, 2, · · · , n− 1

ψ = eiH ; ψ̄ = eiH̄

∆j =
1
2
Rj =

j

2n

OPE: Xn
1 ∼ 1

V ψ̄ψ ∼ 0

⇒ at the orbifold point the chiral ring

C[X]/∂W, W (X) = Xn.

The perturbed theory has W = Xn +
∑
λjX

n−j .

Xm are relevant, so in the IR the dominant term is

W → Xn′

n′ < n most relevant operator.

This is the APS picture.
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Chiral ring for d = 2

The story is much more complicated for d = 2

(Z1, Z2) ∼ (ωZ1, ω
pZ2)

We take (n, p) = 1. Lift to the spin group SU(2) × SU(2)
depends on p ∈ (−n, n).

(−1)F = (−1)p±1⇒ GSO projects out bulk tachyon for p
odd.

The chiral ring is now made of products for the two factors.

In the s-twisted sector

Ts = X(1)
s X

(2)

n{ sp
n }

{x} = x− [x] = fractional part of x.



Chiral ring - example

It is useful to label these operators by U(1)×U(1) R-charge
( s

n ,
{

sp
n

}
) and plot them in the R-charge plane.

Example: n = 10, p = 3:

• 10 elements in the chiral ring

• Chiral ring multiplication described by vector addition.

• 3 generators of the chiral ring.

• Marginal operators on the diagonal

• Relevant operators below the diagonal.
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General algorithm for the chiral ring

The general structure of the chiral ring is as follows:
n

p1
= a1 −

1
a2 − 1

a3− 1
··· 1/ar

:= [a1, . . . , ar].

p1 = p, p > 0 and p1 = p+ n, p < 0.

Let v0 = (0, n), v1 = (1, p1) and define vj by

ajvj = vj−1 + vj+1

Recursion terminates at vr+1 = (n, 0).

Result: If aα ≥ 2 then the generators of the chiral ring
are the chiral primaries associated with the vectors vα, α =
1, . . . , r.

If we let aα ≥ 1 then the continued fraction is not unique:

x− 1
y

= [x, y] = [x+ 1, 1, y + 1]

This corresponds to adding a vector

v∗ = vα + vα+1

In this way, elements in the chiral ring which are not gen-
erators can also be associated with entries in a continued
fraction expansion of n/p1.
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Toric data for the resolution

The R-charge vectors in the chiral ring are equivalent to the
data of a toric variety which is a resolution of the singularity
C2/ZZn(p).

vα →
1
n

(
n 0
−p 1

)
vα

Produces

⇒Fan for a toric variety resolving the singularity.

• All aα ≥ 2: Minimal resolution

• Some aα = 1: Nonminimal resolution.

Toric resolution ⇒ write a GLSM
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GLSM -review

U(1)r gauge theory: Σα = twisted chiral superfields,

Xi, i = 1, . . . , r + d = charged chiral superfields,

charge matrix: Qα,i.

L =
∫
d4θ

(
X̄ie

2QαiVαXi −
1

2e2α
Σ̄αΣα

)
−1

2

(∫
d2θ̃ tαΣα + c.c.

)
,

tα = ζα − iθα, have RG flow:

tα,eff(µ) = tα,bare + bα log
µ

Λ

bα =
r+d∑
i=1

Qαi

Qαi follow from relations in the fan.

For our case

Qαi = −aαδαi + δα+1,i + δα−1,i

so we have the basic trichotomy:

bα = 2− aα > 0 aα = 1
= 0 aα = 2
< 0 aα > 2
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GLSM Vacua

Uclassical =
r∑

α=1

e2α
2

(
Mα(X)−ζα

)2+
r∑

α,β=1

σ̄ασβ

r+d∑
i=1

QαiQβi|Xi|2

Higgs branch: 〈Σα〉 = 0, but 〈Xi〉 6= 0.

S~ζ = { ~X|
∑

i

Qα,i|Xi|2 = ζα} ⊂Cd+r

The Higgs branch of vacua is

X~ζ = S~ζ/U(1)r

We will describe it soon.

bα 6= 0 ⇒ Coulomb branch of vacua: 〈Σα〉 6= 0:

W̃eff = −
r∑

α=1

Σα

tα,eff(µ) +
r+d∑
i=1

Qαi log
( 1
eµ

r∑
β=1

QβiΣβ

)

Example: r = 1, n/p = a/1 = [a],

〈Σ(`)
1 〉 = Λ c exp

[
t1,bare + 2πi`

a− 2

]
= µ c exp

[
t1,eff(µ) + 2πi`

a− 2

]
, ` = 1, ..., a−2 .

` = 1, . . . , a− 2.
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Description of the Higgs branch: r = 1

Consider again r = 1, n/p = [a].

|X0|2 + |X2|2 − ζ = a|X1|2

(X0, X1, X2) ∼ (eiθX0, e
−iaθX1, e

iθX2)

ζ > 0: O(−a) → IP1 = T 2 fibration over a the polyhedron

ζ < 0 ⇒ X1 6= 0 ⇒U(1) gauge symmetry is broken

U(1) → ZZ/aZZ

Unbroken group acts (X0, X2) ∼ (ωX0, ωX2) ⇒C2/ZZa(1)

orbifold.

RG flow: ζ(µ) ∼ (2− a) log(µ/Λ)

Velocity of wall ∝ (1, 1) with speed 1−∆ = a−2
a .
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Description of the Higgs branch in general

~ζ > 0:

• Successive pairs vi, vi+1 ⇒wall.
• Each wall is IP1 = S3/U(1). These cycles generate H2(X~ζ)

−C =


−a1 1 0 · · · 0
1 −a2 1 · · · 0
0 1 −a3 · · · 0

· · · · · · · · · · · ·
...

0 0 0 · · · −ar


• for ~ζ < 0, all Xα obtain vevs breaking the gauge symmetry

U(1)r → ZZn

So Higgs branch = C2/ZZn(p).

RG Flow: The walls move with with speed 1−∆α in orthog-
onal direction.
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Nonminimal resolutions

The above picture applies to nonminimal resolutions.

Boundaries corresponding to irrelevant operators shrink.

Boundaries corresponding to relevant operators with aα = 1
are overtaken:

⇒ Far IR always produces the minimal resolution.

Generic flow: Isolated universes of ALE singularities:

[ · · · , 2, . . . , 2︸ ︷︷ ︸
`1

, · · · , 2, . . . , 2︸ ︷︷ ︸
`2

, · · · ] −→ [ 2, . . . , 2︸ ︷︷ ︸
`1

]⊕[ 2, . . . , 2︸ ︷︷ ︸
`2

]⊕· · ·

gmoore
Placed Image

gmoore
Placed Image

gmoore
Placed Image



Accounting for the branes

General proposal: The “missing branes” are accounted for
by considering the Coulomb vacua.

We take the naive point of view that the objects in the cate-
gory of LG topological branes has one ZZ summand for each
nondegenerate critical point.

C/ZZn → C: There is only D0 brane. Generically, there are
(n− 1) Coulomb vacua associated to roots of W ′:

n = (n− 1) + 1

Accounting for C2/ZZn(p): For the minimal resolution:

Higgs branch: 1 D0 brane + r D2 branes wrapping a basis
of cycles Cα of the HJ space.

In the nonsusy case: r + 1 < n.

Coulomb branch is best described by the twisted chiral su-
perpotential (Morrison-Plesser, Hori-Vafa):

W̃ = un
0 + un

r+1 +
r∑

α=1

λ′αu
pα

0 uqα

r+1 ,

where vα = (qα, pα).

Result (Martinec & Moore): For generic λ′α there are (n− r− 1)
distinct massive vacua of this superpotential.
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The special representations

We can say more: We can identify D-branes on the Higgs
branch with certain fractional branes at the orbifold point.

The D-branes on the Higgs branch generate the (compact)
K-theory of the HJ resolution:

Writing X~ζ = S~ζ/U(1)r we associate r tautological line bun-
dles corresponding to the fundamental representations:

ρj :
(
exp[iθ1], . . . , exp[iθr]

)
→ eiθj

Now “continue” from ~ζ > 0 to ~ζ < 0.

Then the vev’s of the charged fields Xα break U(1)r → ZZn.

The generator ĝ of ZZn is embedded in U(1)r as

ĝ →
(
exp[2πi

p1

n
], exp[2πi

p2

n
], . . . , exp[2πi

pr

n
]
)

Therefore, we conclude that the D2 branes singly wrapping
Cα “correspond” to the fractional branes in the representa-
tions ρpα

f of ZZn, where ρf (ĝ) = ω.

In the math literature, these are known as the “special rep-
resentations.” (Ito; Ishii; Riemenschneider)



Intersection matrix

There is a natural quadratic form on the orbifold K-theory

IndΓ( /DE∗⊗F )

which corresponds to the pairing of branes (Douglas & Fiol )

(a, b) = Iab = trR,ab(−1)F qL0− c
24

For Cd/Γ, let π∗ : R(Γ) → ZZ project to the trivial rep.

(ρ1, ρ2) = π∗

(
ρ̄1 ⊗ ρ2 ⊗ (S+ − S−)

)

For the special case C2/ZZn(p) this works out to be

I = S(p−1)/2 + S−(p−1)/2 − S(p+1)/2 − S−(p+1)/2

S = n× n shift matrix: Sij = δi,j+1.

?? How can this be related to the intersection matrix:

−C =


−a1 1 0 · · · 0
1 −a2 1 · · · 0
0 1 −a3 · · · 0

· · · · · · · · · · · ·
...

0 0 0 · · · −ar


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Quantum McKay Correspondence

Result (Parnachev & Moore): Let ei denote the fractional branes
corresponding to representations ρ⊗i

f of ZZn.
Denote
eα = epα : Special representations
eν : Remaining representations

Then, there is a basis

h0 = e0 + · · ·+ en−1

hα = eα +
r′∑

ν=1

u ν
α eν α1, . . . , r

cν = eν

where the intersection form is 0 0 0
0 −C 0
0 0 −C ′


The u ν

α are integers.

Technical point: p < 0, aα even ↔ GSO keeps all Tα.

Conjecture: The K-theory of a toric resolution of a singu-
larity Cd/Γ is a direct summand of KΓ(Cd). The comple-
mentary space is generated by the K-theory classes of the
topological LG models associated to the nondegenerate crit-
ical points on the Coulomb branch of the associated GLSM.
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Analog of the g-function?

Recall the open string case: There is an analog:

gopen = 〈0|B(a)〉 ∼ Zdisk

This has been argued to be a decreasing quantity under RG
flow. (Affeck & Ludwig; Kutasov, Marino, Moore; Friedan & Konechny).

At the conformal fixed points gopen = 〈0|B(a)〉 has a nice
interpretation in terms of the regularized dimension:

Zaa(q) := TrHaa
qL0−c/24

lim
q→1

Zaa(q) = dimHaa → (gopen)2e
πc
6τ2

For the closed string case, the analog should be Zamolod-
chikov’s c-function:

c(t) = 2z4〈T (z)T (0)〉 − 4z3z̄〈T (z)Θ(0)〉 − 6|z|4〈Θ(z)Θ(0)〉

dc

dt
= −12βiβjGij , Gij = 〈φi(z)φj(0)〉|z|4

φi: Perturbation from CFT.
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But ċ = 0

However, for the noncompact orbifolds we have

〈φi(z)φj(0)〉 = 0

because these are normalized correlators:

〈
∏

φ〉 =
〈〈

∏
φ〉〉

〈〈1〉〉

so ċ = 0 !

We would like to introduce a volume regulator so that

cV (t) = 2z4〈〈T (z)T (0)〉〉V−4z3z̄〈〈T (z)Θ(0)〉〉V−6|z|4〈〈Θ(z)Θ(0)〉〉V

dcV
dt

= −12βiβj〈〈φi(z)φj(0)〉〉V |z|4 < 0

Then for V →∞:

cV (t) = V cZ + c∂ + o(V )

Then ċZ = 0 and

lim
V→∞

dcV
dt

=
dc∂
dt

⇒ c∂ is a decreasing quantitiy.

However, it is hard to make this precise and compute c∂ .
(Note for d = 2 there is topology change at infinity - so the
volume regulator must be subtle. )



Other proposals

So, there are various proposals in the literature ...

One guess is to look at the high energy density of localized
states. For Cd/Γ orbifolds:

H = Huntwisted ⊕Htwisted

dimHtwisted = lim
q→1

Ztwisted(q) ∼ gcle
πc
6τ2

If gcl is a good analog of g2
open then we expect the “gcl-

conjecture”
gcl(UV ) > gcl(IR)

to hold under localized closed string condensation.

For Cd/Γ orbifolds

gcl =
1
|Γ|

∑
γ 6=1

1
|det(1−R(γ))|2

For C/ZZn this works nicely

gcl =
1
12

(n− 1
n

)

Indeed, decreases under the flows we described
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gcl for d = 2

For C2/ZZn(p) the situation is much less clear ...

The formula is

gcl(n, p) =
1
n

n−1∑
s=1

1
[4 sin(πs/n) sin(πps/n)]2

This can be shown to be a rational number. There is an algo-
rithm to compute it, and it depends on the partial quotients
aα. But it is very complicated.

∼ 1
720

n3

p2 for n→∞, p fixed.

While gcl decreases in many examples of flows, there are an
infinite number of apparent counterexamples to gcl(UV ) >
gcl(IR).

C2/ZZ2`(3) →C2/ZZ`(1) ⊕C2/ZZ`(−3)

via a marginal deformation.

(2`)3

9
<
`3

1

So - maybe the conjecture is just wrong.
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Possible way out

But... where do the new localized degrees of freedom come
from?

Recently Kutasov, Parnachev, and I reconsidered it and found
some evidence that gcl indeed decreases as long as we con-
sider perturbations by generators of the chiral ring, or prod-
ucts of two generators of the chiral ring.

Why is this interesting?

Even in the susy case the geometrical target C2/ZZn can lead
to a singular CFT if the “B-field through shrunken cycles”
is zero.

In the proposed counterexamples to the gcl-conjecture a min-
imal cycle in the daughter singularity appears which does not
correspond to such a cycle in the parent.

Example: ` = 3s+ 1:

2`
3

= [2s+ 1, 3]
`

`− 3
= [2, . . . , 2︸ ︷︷ ︸

s−1

, 4]

Is it possible that the flows to daughter singularities actually
produce singular CFT’s?
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Melvin Models & Delocalization of States

We’ll finish with some tangentially related remarks.

They illustrate the point that in some orbifolds the distinc-
tion between localized and delocalized is blurred.

Consider the Melvin geometry IR1,6 × (C× IR)/ZZ

g0 : z → e2πiγz z ∈C
y → y +R y ∈ IR

What are the localized states?

Classical mass formula for the groundstate in w-twist sector
Hw:

α′M2(r) = (2πRw)2 + (2r sinπ ‖ wγ ‖)2

γ = p/q Hloc = ⊕w 6=0modqHw

γ 6= p/q Hloc = ⊕w 6=0Hw

‖ x ‖= Min({x}, 1− {x})



Nearly delocalized states

γ irrational ⇒ ‖ wγ ‖ can be arbitrarily small for large w.

This leads to divergences in defining sums over twisted sec-
tors.

Example:

Zloc ∼
√
R2τ2e

2π
τ2

∞∑
s 6=0

e−πτ2R2s2 1
(sinπsγ)2

(sinπsγ)−2: Volume of delocalization.

1. There are certain Liouville numbers γ for which Z(τ) =
∞.

2. If γ = [a0, a1, a2, . . .] with ai < M then

‖ qγ ‖≥ ν(γ)
q

dimHloc(γ1)
dimHloc(γ2)

=
ν(γ2)
ν(γ1)
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Entropy of delocalization and Lyapunov exponent

3. Regulate the divergence by

γn = pn/qn = [a0, . . . , an]

dimHloc(γn) =
1
48

(qn −
1
qn

)

But qn ∼ ce
1
2 λ(γ)n, where λ(γ):= Lyapunov exponent.

So
log dimHloc(γ1)
log dimHloc(γ2)

=
λ(γ1)
λ(γ2)

Facts:

1. (Khinchin): For almost every γ

λ(γ) = λ0 =
π2

6 log 2
.

2. (Pollicott & Weiss):

λ(γ) ∈ [2 log
1 +

√
5

2
,∞)

Thus, the degree of delocalization depends sensitively on γ.
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Conclusions - Open Problems

We have a coherent picture of the decay of localized closed
string tachyons.

It suggests an interesting mathematical conjecture: The quan-
tum McKay correspondence.

However, there are several open problems and unresolved
puzzles:

1. Extension to d ≥ 3: RG flow and Quantum McKay
correspondence

2. Understanding the Coulomb branch branes better.

3. Resolving the puzzles about gcl.

4. Can we make sense of closed string tachyon decay for γ
irrational? Is it related to the Gauss map?





