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Introduction
Today I'll be talking about some interesting subtleties in the
quantization of Maxwell's theory and some of its generalizations.

There are many different generalizations of Maxwell's theory ...

Abelian gauge theories: fieldstrengths are differential forms F E o/- (M).

"Generalized abelian gauge theories:" - the space of gauge-invariant field con-
figurations "AIQ" is a generalized differential cohomology group in the sense of
Hopkins & Singer.

In particular "AI Q" is an abelian group.

These kinds of theories arise naturally in supergravity and superstring theories,
and indeed playa key role in the theory of D-branes and in claims of moduli
stabilization in string theory made in the past few years.



Summary of the Results
1. Manifestly electric-magnetic dual formulation of the Hilbert space of

generalized Maxwell theory.

2. The Hilbert space can be decomposed into electric and
magnetic flux sectors, but the operators that measure electric and
magnetic topological sectors don't commute and cannot be
simultaneously diagonalized.

This is surprising and nontrivial!

3. Group theoretic approach to the theory of a self-dual field.

4. In particular: the K-theory class of a RR field cannot be measured!



Generalized Maxwell Theory
Begin with generalized Maxwell theory on a spacetime M with dim M == n.

It has a fieldstrength F E [1£(M)

Action S == 7rR2 iM F * F

If M == X X IR we have a Hilbert space H.

dF == a ==i> [F] E HbR(X)

more soph isticated ...

Grade the Hilbert space by ( the topological class of ) magnetic flux:

1-l == EBm 1-lm m E H£(X, 2).



Motivating Question:
Electro-magnetic duality: An equivalent theory is based on a dual potential
with FD E nn-R(M) and

RRD == li

* there must also be a grading by ( topological class of) electric flux:

H == ttJe He e E Hn-£(X,Z),

71-l . EBem1-lem., ,

Can we simultaneously decompose 1-l into electric and magnetic flux sectors?



""Isn't it obviously true?"

For the periodic 1+1 scalar this is just
the decomposition into momentum + winding sectors!

Measure magnetic flux: J~lF where ~1 E Zg(X)

Measure electric flux: J~2 *F where ~2 E Zn-e(X)

Canonical momentum conjugate to A is II rv (*F)x.

.! F, r *F]i: J~2
r-:» .! F, r II]i; J~2

[L w1F, L w2II]

(1)

= in Jx WI dW2 = 0 (2)

where Wi are closed forms Poincare dual to ~i.



Fallacy in the argument
But! the above period integrals only measure the flux modulo torsion.

The topological sectors e and m are elements of abelian groups.

These abelian groups in general have nontrivial torsion subgroups.

Recall: A "torsion subgroup" of an abelian group G is the subgroup
of elements of finite order:

o --+ Hf(X; Z) --+ Hf(X; Z) --+ HbR(X)

The above discussion misses a very interesting uncertainty principle



What it is not:
1. We are not saying [Ei(x), Bj(y)] # 0

2. We are also not saying .l F, r *F] = L(C1, C2)t; J~2

where BEl == 01 8E2 == O2

3. Our uncertainty principle concerns
torsion classes of topological sectors.



Differential Cohomology
Correct Mathematical Framework: Deligne-Cheeger-Simons Cohomology

To a manifold M and degree l we associate IIR(M).

Definition: By "generalized Maxwell theory" we mean a field theory such that
the space of gauge inequivalent fields is iIf(M) for some f.

Simplest example: Periodic Scalar in 1+1 dimensions: F = d¢

IIl(Sl) == Map(Sl, U(l)) == LU(l)

Next we want to get a picture of the space IIi (M) in general



Structure of the Differential
Cohomology Group

Fieldstrength exact sequence:
F

flat j
fieldstre')ngth n~(M) ---+ 0r""---""'--'"

0---+ Hf-l(M;IR./Z) ---+ iIf(M)

Characteristic class exact sequence:

char.class
1 Hf(M; Z)

"""-"'V"" ~~

Topologically trivial Topological sector

Connected!

---+0



Structure of the Differential,
Cohomology Group

The space of differential characters has the form: iff == T X r X V

T: Connected torus of topologically trivial flat fields:

Wf-1 (M) == Hf-1 (M, Z) ® IR/Z

I": Discrete (possibly infinite) abelian group of topological sectors: HI! (M, Z).

V: Infinite-dimensional vector space of "oscillator modes." V rv Imdt.

Hf(M, Z)

----~/ I /7 /u ; ..;/ / ; /



Example: Loop Group of U(1)
Configuration space of a periodic scalar field on a circle:

iIl(81) == Map(81, U(l)) == LU(l)

Topological class = Winding number: w E HI (81, Z) rv Z

Flat fields = Torus 1f of constant maps: HO(Sl, JR/71) rv JR/71

Vector Space: V = nO /lR Loops admitting a logarithm.

iIl(Sl) = 1I' X Z X V
This corresponds to the explicit decomposition:

cP ( (J) = exp I 21fi¢0 + 21fi WO' + L cPn e27rin
O'

n
n#O



The space of flat fields
H£-l (X, lR/Z) Is a compact abelian group

... it is not necessarily connected! rv [Finite group] x [Torus]

Connected component of identity: W£-l (M) == H£-l (M, Z) ® lR/Z

Group of components: == Hf(M; Z)

Example: f == 2, M == S3/7Lk Hl(M;Z) rv H2(M;Z) rv Zk

HI (M; IRjZ) rv z;
Discrete Wilson lines, defining topologically nontrivial flat gauge fields.
Entirely determined by holonomy:

Xr(,) == e27fir/k == Wk r E Zk



Poincare-Pontryagin Duality
M is compact, oriented, dim(M) = n

There is a very subtle PERFECT PAIRING on differential cohomology:

iI£(M) X iIn+1-£(M) ----t IR./Z
~

([AI], [A2]) := J: [All * [A2l

On topologically trivial fields:

([AI], [A2]) = I A1dA2 mod Z
M



Example:Cocycle of the Loop Group

Recall iII(SI) = LU(l):

.p = exp(21Ti¢) ¢:~-+~

¢(s + 1) == ¢(s) + w w E Z is the winding number.

I d¢2
(<.pI, <.p2) = I ¢I ds - wI ¢2 (0) mod Z

o ds
Note! This is (twice!) the cocycle which defines the basic central extension

of LU(l).



Hamiltonian Formulation of
Generalized Maxwell Theory

Spacetime: M == X x ffi..
Generalized Maxwell fields: [A] E iI€(M).

S = 7rR2 I F * F
M

Hilbert space: 1i = L2(iIl!(X))
This breaks manifest electric-magnetic duality.

There is a better way to characterize the Hilbert space.

But for the moment we use this formulation.



Defining Magnetic Flux Sectors
Return to our question:

Can we simultaneously decompose H into electric and
magnetic flux sectors?

H
7.

EBe m He m.:, ,

For definiteness, choose the duality frame with 1{ rv L2 (fIR).
Definition: A state of definite topological class of magnetic
flux has its wavefunction supported on the component labelled by

m E HR(X, Z).

Electric flux can be defined similarly in the dual frame, 1{ rv L2 (fIn-R) but. ..



Defining Electric Flux Sectors

We need to understand more deeply the grading by electric flux
in the polarization L2(iI£).

Diagonalizing (*F)x means diagonalizing II,

II is the generator of translations.

Definition: A state of definite topological class of electric
flux is an eigenstate under translation by flat fields

\/CPf E H£-l(X, IR./Z) , 7/J(A+¢f) =exp(27ri LH e¢f)7/J(A)

The topological classes of electric flux are labelled by e E Hn
-R (X, Z).



Noncommuting Fluxes
So: the decomposition wrt electric flux is diagonalizing the group

of translations by flat fields: H£-l (X, JRjZ)

Suppose 1jJ is in a state of definite magnetic flux m E HR(X, Z):

the support of the wavefunction 1jJ is in the topological sector fIR(X)m.

Such a state cannot be in an eigenstate of translations by flat characters, if
there are any flat, but topologically nontrivial fields.

Translation by such a nontrivial flat field must translate the support of if! to
a different magnetic flux sector.

Therefore, one cannot in general measure both electric and magnetic flux .

• • • •



Group Theoretic Approach
Let S be any (locally compact) abelian group

1-£== L2(3) is a representation of 3: Vso E 3

(Ts 0 1jJ ) ( s) :== 1jJ (s + so).
»-;

Let S be the Pontryagin dual group of characters of S

1i == L2(S) is also a representation of S: \/X E S
(Mx'lj;)(s) :== x(s)'lj;(s)

But! TsoMx = X(so)MxTso·
So 1t == L2 (S): is a representation of the Heisenberg group central extension:

1 --+ U(l) --+ Heis(S X S) --+ S X S --+ 1



Heisenberg Groups
Theorem A Let G be a topological abelian group. Central extensions, G, of

G by U(l) are in one-one correspondence with continuous bimultiplicative maps
S : G x G -+ U(l) which are alternating (and hence skew).

1. S is alternating: s(x, x) == 1.

2. s is skew: s(x, y) == s(y, x)-l.

3. s is bimultiplicative:

S(XI + X2, y) == S(Xl' Y)S(X2, y) & s(x, tt: + Y2) == s(x, Yl)S(X, Y2)

If X E G lifts to X E G then s(x, y) == xyx-1y-l
-Definition: If S is nondegenerate then G is a Heisenberg group.

Theorem B: (Stone-von Neuman theorem). If G is a Heisenberg group then
the unitary irrep of G where U(l) acts canonically is unique up to isomorphism.



Heisenberg group for generalized
Maxwell theory

If S = iIf(X), then PP duality =? S = iIn-R(X):

G:= Heis(il£(X) X iln-£(X))

via the group commutator:

s (([Al], [Ap]) , ([A2], [A?D) = exp [27ri (([A2], [APD - ([Al], [A?D) ] .

The Hilbert space of the generalized Maxwell theory
is the unique irrep of the Heisenberg group G

N.B! This formulation of the Hilbert space is manifestly
electric-magnetic dual.



Flux Sectors from Group Theory

Electric flux sectors diagonalize the flat fields H£-l (X, JRjZ)

Magnetic flux sectors diagonalize dual flat fields Hn-£-l (X, JRjZ)

These groups separately lift to commutative subgroups of G:== Heis(jj£ x jjn-£).

However they do not commute with each other!

UE(rJe) :== translation operator by rJe E H£-l(X, IP&/71)
UM(TJm) :== translation operator by TJmE Hn-/!-l (X, JR/Z)

[Ue(7]e), Urn (7]rn)] = T(7]e, 7]rn) = exp (21fi L 7]e(37]rn )

T: torsion pairing, (3= Bockstein: (3('l]m) E H'!-}-f(X, Z).



The New Uncertainty Relation
[Ue(17e),Um(T}m)] = T(17e, 17m) = exp (21ri L 17e!317m)

T torsion pairing, f3 = Bockstein.

Translations by WR-1 (X) and by Wn-R-1 (X) commute

---.~ 1-l == ffie m1-le m·, ,

However: The pairing does not commute on the subgroups of all flat fields.

It descends to the "torsion pairing" or "link pairing":

Hf(x) X H~-g(X) --+ lR/tz

This is a perfect pairing, so it is maximally noncommutative on torsion.



Maxwell theory on a Lens space

83/71k X JR Hl(Lk; TR/Z) f"V H2(Lk; Z) == Zk is all torsion

Acting on the Hilbert space the flat fields generate a Heisenberg group
extension o ---t 7Lk ---t Heis(7Lk x 7Lk) ---t 7Lk x 7Lk ---t 0

This has unique irrep P = clock operator, Q = shift operator

PQ = e27ri/kQP

States of definite electric and magnetic flux Ie) = ~ L e27riem/k 1m)
vk m

This example already appeared in string theory in Gukov, Rangamani, and Witten,
hep-th/9811048. They studied AdSSxSS/Z3 and in order to match nonperturbative
states concluded that in the presence of a 03 brane one cannot simultaneously
measure 01 and F1 number.



Remarks- Principles of Quantum
Mechanics

The pairing of topologically nontrivial flat fields has no tunabale
parameter. Therefore, this is a quantum effect which does not
become small in the semiclassical or large volume limit.

In general, there are no clear rules for quantization of disconnected
phase spaces. We are extending the standard rules of quantum
mechanics by demanding electric-magnetic duality.

This becomes even more striking in the theory of the self-dual field.



An Experimental Test
Since our remark applies to Maxwell theory: Can we test it experimentally?

Discouraging fact: No region in JR3 has torsion in its cohomology

With A. Kitaev and K. Walker we noted that using arrays of Josephson
Junctions and a configuration called "superconductinq mirros,"
we can "trick" the Maxwell field into behaving as if
it were in a space with torsion.

To exponentially good accuracy the groundstates of the electromagnetic
field are an irreducible representation of Heis(Zn x Zn)

See arXiv:0706.341 0 for more details.



Self-dual fields
Now suppose dim M == 4k + 2, and £ == 2k + 1.

We can impose a self-duality condition F = *F.
This is a very subtle quantum theory: Differential cohomology is the ideal tool.

• '" .e '" .e

For the non-self-dual field we represent Hels(H (X) x H (X))

Proposal: For the self-dual field we represent: Heis(jf.e (X))

Attempt to define this Heisenberg group via

Strial([A1], [A2]) = exp 27fi([A1], [A2]).

It is skew and and nondegenerate, but not alternating!

Strial([A], [A]) == (-l)Jx V2k m Gomi 2005



Z2 -graded Heisenberg groups
Theorem A': Skew bimultiplicative maps classify Z2 -graded Heisenberg groups.

E([AJ) == 0 if J V2k m = Omod2

J V2k m = Imod2
Z2 grading in our case:

E([A]) == 1 if

Theorem B': A Z2-graded Heisenberg group has a unqiue 22 -graded
irreducible representation.

This defines the Hilbert space of the self-dual field

Example: Self-dual scalar: k == O. By bosonization 'ljJ == ei¢.
The 22-grading is just fermion number!



Relation to Nonselfdual Field
.

Remark: One can show that the nonself-dual field at a
special radius, R2 == 2h decomposes into,

1-lnsd rv EBa1-lsd a @ 1-lasd a, ,

The subscript a is a sum over "generalized spin structures" -

a torsor for 2-torsion points in H2k+1(X; Z) ® JRjZ.

For the self dual scalar a labels Rand N S sectors.

Thus, self-dual theory generalizes VOA theory



String Theory Applications

1. RR field of type II string theory is valued in differential K-theory K(X)
RR field is self dual, hence Hilbert space = unique irrep of Heis(k(X))

Hence - the full K theory class is not measurable!

2. B-fields: String theory backgrounds with nontrivial discrete fluxes for
both B2 and B6 do not exist

3. AdS/CFT Correspondence: Discrete symmetries of quiver gauge theories
are in correspondence with Heis (H:;' (X 5) ) )

X5 an Einstein-Sasaki 5-manifold



Open Problems
1. What happens when X is noncompact?

2. If one cannot measure the complete K-theory class of
RR flux what about the D-brane charge?

a.) If no, we need to make an important conceptual revision of
the standard picture of a D-brane

b.) If yes, then flux-sectors and D-brane charges are
classified by different groups ~ tension with AdS/eFT and
geometric transitions.

3. What is the physical meaning of the fermionic sectors in
the RR Hilbert space?

4. How is this compatible with noncommutativity of 7-form
Page charges in M-theory?


