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1. Lecture 1: Background And Motivation

1.1 Introduction

These lectures attempt to survey some work I have done over the past few years with Davide
Gaiotto and Edward Witten. There is a rather long (about 370 pp.) paper “Algebra of
the Infrared: String Field Theoretic Structures in Massive N' = (2, 2) Field Theory in Two

. . . . . . X |AlgebraicStructures
Dimensions,” that is thankfully nearing completion. It will be cited as [8] and 1is the basis

for everything said here. There is also a “short” (c. 53pp.) summary of the web-based
formalism “Concise Summary of Web-Based Formalism,” which has been completed, but
not yet posted on the arxiv. Finally, these notes are available at

http://www.physics.rutgers.edu/~gmoore/FloridaLectures2.pdf

Three closely related references: ] ]

1. K. Hori et. al. “Mirror Symmetry....” Clay volume. Flgf]%

. . . eidelBook
2. P. Seidel, Fukaya categories and Picard-Lefschetz theory, 15;
. i Kapranov:2014uwa
3. Recent paper of Kapranov, Kontsevich, and Soibelman: [IZ]

1.2 Goals

Let X be a Kéhler manifold, and W : X — C a holomorphic Morse function. To this data
physicists associate a “Landau-Ginzburg model.” It is closely related to the Fukaya-Seidel
(FS) category.

My goals will be:

1. To construct an A.- category of branes in this model, using only data “visible at
long distances” - that is, only data about BPS solitons and their interactions. This
is the “web-based formalism.”

4

2. To explain how the “web-based” construction of an A..-category of branes is related

to the F'S category.
3. To construct an A, 2-category of theories, interfaces, and boundary operators.

4. To show how these interfaces categorify the wall-crossing formula for BPS solitons as
well as the wall-crossing formulae for so-called framed BPS states.

5. To sketch how the formalism might be useful in formulating a theory of knot homol-
ogy.



1.3 A review of Landau-Ginzburg models

To warm up, let us review some well-known facts about the physicist’s Landau-Ginzburg
theory. We want to understand the groundstates of the model in various geometries with
various boundary conditions. We approach the subject from the viewpoint of Morse theory.

1.3.1 Supersymmetric Quantum Mechanics And Morse Theory

From a physicist’s point of view Morse theory is the thec%rty of1 5%126. computation of ground-
itten: im

states in supersymmetric quantum mechanics (SQM) . Recall that in SQM we have a

particle moving on a Riemannian manifold ¢ : R — M together with a real Morse function

h : M — R and we consider the (Euclidean) action

1., 1
SSQM:/dt <§|q\2+§|dh|2+---> (1.1)

There is a uniquely determined perturbative vacuum W(p;) associated to each critical point
p; of h. True vacua are linear combinations of the ¥(p;). How do we find them?

To find the true vacua we introduce the MSW (“Morse-Smale-Witten”) complex gen-
erated by the perturbative ground states

M = ©p,.an(p,)=0Z - ¥(pi) (1.2)

The complex is graded by the Fermion number operator F, whose value on ¥(p;) is:

f =g —n) (1.3)

where n4 is the number of + eigenvalues of the Hessian.
The matrix elements of the differential ) are obtained by counting the number of
solutions to the instanton equation:
dq =Vh (1.4)
dr
which have no reduced moduli and interpolate between two critical points.
By “counting” we always mean “counting with signs determined by certain orienta-
tions.” Getting the signs right is a highly technical business and we will avoid it altogether
in these lectures.

The space of true ground states is the cohomology H*(M, @) of the MSW complex.

1.3.2 Landau-Ginzburg Models From Supersymmetric Quantum Mechanics

Now, to formulate LG models, we apply the above picture of Morse theory to the case where
the target manifold of the SQM is a space of maps D — X where D is a one-dimensional
manifold, possibly with boundary:

M = Map(D — X) (1.5)

The Morse function is

h— —/D <¢*(A) _ %Re(g_lVV)dx) (1.6)



Here ( is a phase. For simplicity we assume that the Kahler manifold is exact and choose
a trivialization of the symplectic form w = dA.

. :P}Z)V;es g}pugly this story to our case with target space M = Map(D, X ) and superpotential

.6). If we work out the SQM action we get a 1+ 1 dimensional field theory. The bosonic

terms in the action are

1 1
/ Lagl + Svwpz+ ... (1.7)
DxR 2 2

Now, this theory has massive vacua on D = R at the critical points ¢; € X of W:
p(z,t) =g €V (1.8)

Sometimes, boundary conditions do not admit solutions with ¢ a constant vacuum. In this
case groundstates are given by solitons - solutions of §h = 0.
The stationary points of the Morse function h are solutions of the (-soliton equation

d ;
2

7i¢ OW
_ UgaTSJ (1.9)

Later we will find it useful to note that the (-soliton equation is equivalent to

1. Upwards gradient flow with potential Im(¢~1W).

2. Hamiltonian flow with Hamiltonian Re(¢™'W).

1.3.3 Solitons On The Real Line

Now suppose D = R. We choose boundary conditions of finite energy:

lim ¢ = ¢ (1.10)

T——00
where ¢; € V. Similarly, if D extends to +o0o then we require
lim ¢ = ¢, (1.11)

T—+00

with ¢; # ¢;. What is the MSW complex in this case?
. eq:LG-flow . X L.

Recall that solutions to (l.bi project to straight lines of slope i¢ in the complex W-
plane. Therefore, there is no solution for generic . There can only be a solution for

W, — W;
iC =i¢j = 22—~ 1.12
Wy - W (112)
in which case a solution projects in the W-plane to a line segment from W; to W;.

We assume that the left and right Lefshetz thimbles intersect transversally in the fiber
over a regular value of W on the line segment [W;, W;]. In this case, there will be a finite
number of classical solitons, one for each intersection point p € §;;. The MSW complex is
then:

My = Gpes,, (295(0) 0 2907 () (1.13)

eq:LG-flow

‘eq:left-infty-bc

‘eq:right-infty-bc

‘eq:MorseComplexR




The grading of the complex is

~ n(D+e¢)
="

eq:LG-flow
where D is the Dirac operator obtained by linearizing the (-soliton equation (Ib% and €
1

(1.14)

small and positive. For fixed ij the complex is g;zraded by a Z-torsor. We can now

introduce the BPS soliton degeneracies
I F
pij = —Tryg,; F(=1)7. (1.15)

These will show up in Lecture 2 (Section §E%% in Lecture 3 when we discuss
wall-crossing. We can already note that, in some sense, M;; has “categorified the 2d BPS
degeneracies.”

The differential on Mj; is given by counting solutions to the (-instanton equation:

0 r_ i¢ IJOW
(5 +ig ) o' = 59755 (1.16)

[fig: INSTANTON-ON-R
with boundary conditions illustrated in Figure II:

Figure 1: Left: An instanton configuration contributing to the differential on the MSW complex.
The black regions indicate the locus where the field ¢(x, 7) varies vary significantly from the vacuum
configurations ¢; or ¢;. The length scale here is fyy, set by the superpotential. Right: Viewed from
a large distance compared to the length scale fy, the instanton looks like a straight line x = xg,
where the vacuum changes discontinuously from vacuum ¢; to ¢;. The nontrivial 7-dependence of
the instanton configuration, interpolating from a soliton p; to another soliton ps has been contracted
to a single vertex located at 7 = 7y. This illustrates the origin of the 2-valent vertices of extended
webs in the context of LG theory.

Written out this is:

Jm o) =¢;  lim ¢(z,7) = ¢; (L.17)
lim ¢(z,7) = ¢ (z) lim o(z,7) = &7 (@). (1.18)

There is a tricky point here. In the algebraic manipulations below it is important to use the Koszul
rule. But that only makes sense when there is an integral grading. One needs to write f = fi — f; + nij,
where n;; is integral, and remove the f;, which turn out to be the phase of the determinant of the Hessian.

eq:LG-INST

| £ig: INSTANTON-ON-




Following the rules of SQM, the matrix elements of the differential are obtained by counting
the solutions with no reduced moduli, (i.e. the solutions with two moduli).
Remarks:

leq:MorseComplexR . .
1. The complex (I.I3) 1s not a standard mathematical Morse theory complex: h is

degenerate because of translation invariance. The critical set is R, parametrizing
the “center” of the soliton. But we take neither the cohomology nor the compactly
supported cohomology of of this critical set. Rather, we attach a certain Clifford
module to each critical locus. (“Quantization of the collective coordinate.”)

2. Supersymmetric quantum mechanics has two supersymmetries satsifying {Q,Q} =
2H. When the spatial domain is D = R there are more symmetries in the problem not
manifest from the SQM viewpoint. Namely the LG model has (2,2) supersymmetry:

{Q+7Q+}:H+P {QJMQ*}:Z (1 19)
{Q—aé—}:H_P {Q-HQ—}:Z‘ '
The supersymmetries of the SQM are
Qr=Q-—('Qs, O¢:=0Q- —(Qq. (1.20)

The ¢-soliton and -instanton equations are the Q¢-fixed point equations for the classi-
cal field configurations. When D is a half-line or an interval, with suitable boundary
conditions only the two-dimensional supersymmetry algebra will be preserved.

3. Now comes an important physics point: The theory is massive with a length scale
lyy corresponding to the inverse of the lightest soliton. Physical correlations should

decay exponentiall\llg beyond that scale. We can picture the solitons and instantons
[fig: INSTANTON-ON-R

as in Figure II.

1.4 LG Models On A Half-Plane And The Strip
1.4.1 Boundary Conditions

If D has a left-boundary z; < x or a right boundary x < x, at finite distance then we need
to put boundary conditions to get a good Morse theory, or QFT.

1. At = zy,z,, the boundary value ¢? must be valued in a maximal Lagrangian
submanifold Ly, £, of X in order to have elliptic boundary conditions for the Dirac
equation on the fermions.

2. The theory is simplest when the Lagrangian submanifolds are exact: t*(\) = dk, for a
single—valFued k, and we will make that assumption here. Indeed, the Morse function
eqg:llorserun

(T.6) 15 replaced by h — h + k(¢?), where the sign is for the negative/positive half-
plane, respectively.

eq:22susy

manifest



[
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Figure 2: A pair of Lagrangian submanifolds L, L, embedded in the v — v plane. L, and L,
intersect at the one point indicated. wu is plotted horizontally and we assume that L,, L, are
embedded in the half-plane u > 0.

We are certainly interested in X which is noncompact (since we want W to be non-
trivial) and we are typically interested in noncompact Lagrangians. Now, we want to
have well-defined spaces of quantum states on an interval H., r,, invariant under separate
Hamiltonian symplectomorphisms of the left and right branes.

The generators of the MSW complex in this case can be identified with the intersection
points

£ e, (1.21)

where we regard the (-soliton equation (E%%ow in z and £(4%) means the flow has
been applied for a range (Ax).

But now there is a problem: Intersection points can go to infinity as the length of the
interval is changed (or if independent Hamiltonian symplectomorphisms are applied to left
and right branes).

Example:f Coilsider ("W = i¢? and consider the candidate left and right branes shown
lg:l.agrangians

in Figure b We regard the (-soliton equation as a flow in z, and if ¢ = u + iv is the
decomposition into real and imaginary parts then

Oru=1u O0z0 = —v (1.22)

Therefore, the flow in « of £, will not intersect £, for sufficiently large x. Therefore there
will be supersymmetric states for small width of [z, ;.| but none for large width of [z, ,].
This is a problem for the kind of “partially topological field theory” we are studying.

|AlgebraicStructures Lo L .
In [8] we find that there are two distinct criteria we could impose on the allowed

Lagrangians to avoid the above problem. In these lectures we focus on just one namely,
we will restrict the Lagrangians to be Branes of class T,: Choose a phase k # £(, and
constants ¢, ¢’. The precise choices don’t matter too much, although which component of
the circle k sits in is significant. Branes of class T}, are based on Lagrangians which project

fig:Lagrangians




Figure 3: The rays in the complex W-plane that start at critical points and all run in the 1k
direction fit into the semi-infinite strip 7, which is shown as a shaded region.

under W to a semi-infinite rectangle in the W-plane:

Re (v 1W)| < ¢
m (W) > ¢,

(1.23)

anyrays
as in Figure E [hie Tor this is that, under the x-flow of the (-soliton equation we have

d ~ 1 _ _ 1. ¢
T-Re (k 1W):—§{Re(g W), Re(s~ W)} = ZIm(E)|dW\2 (1.24)

Then, points at infinity flow very fast out of the rectangle and hence intersection points
£§A$) N L, always sit in a bounded region and cannot escape to infinity.

1.4.2 LG Ground States On A Half-Line

Now, we consider the theory on the positive half-plane. We choose ( so that it does not
coincide with any of the (;; defining the solitons for D = R. What are the groundstates
preserving Q¢ supersymmetry?

The MSW complex M, ; is generated by the (-solitons on the half-plane satisfying
the above boundary conditions.

The grading on the complex is a little nontrivial. We only know how to do it when X
is Calabi-Yau. In this case case we define

w _ vol

_Q—|5

(where Q trivializes Kx and is normalized so that Q€ is the volume form on X) and we

(1.25) |dommy

need to be able to define a single-valued logarithm ¢. In this case we define the fermion
number (on the interval) to be:

1 _

f=—-nD) 22— (1.26) [cge
2 27

where ¢ = 9¥(¢?). On a half-line we drop ¢, or @, as appropriate.

The differential on the complex is given by countl ng % instantons. The picture of the
fig:HALFPLANE-INSTANTON-1

instantons on the half-plane is shown in Figure |4



T =400 |

L ¢ — @;

P
T =—00 lébgl,j

Figure 4: An instanton in the complex M, ;. The solitons corresponding to p1,ps € £N Rg are
exponentially close to the vacuum ¢; except for a small region, shown in turquoise, of width fy.

In addition, the instanton transitions from one soliton to another in a time interval of length /vy,
indicated by the green square. At large distances the green square becomes the 0-valent vertex used
in extended half-plane webs.

1.4.3 LG Ground States On The Strip

The story on the strip is very similar to the half-plane, but there is an interesting wrinkle
that provides a nice example where naive categorification of formulae for BPS degeneracies
fails.

We consider the LG theory on R X [zy, x,]. When |z, — x¢| > ¢y the (-solitons must
nearly “factorize” so there is a natural isomorphism:

Mg, c, = @ievMg,; @ M; ¢, (1.27)
So if we define the BPS degeneracy of the half-line solitons:
Wi, = TrML’iei”}- (1.28)
then the Euler-Poincaré principle guarantees

Beoc, = 3 MLyttt (1.29)
Y%

Now, the naive categorification would state:

?
H*(Mgz,gr) = @iEVH*(MLZ,i) ® H*(Mi,[lr)- (1.30)

Here we have used the natural differential on the tensor-product complex. It corre-
fig:NaiveStripDifferential

WX on,
sponds to the (-instantons of Figure b: As we will see, equation (Il .3”; is wrong. The reason

is that there are other (-instantons which are also relevant. One example is a (-instanton
fig:StripInstanton

that looks like Figure 6:

fig:HALFPLANE-INCS

‘ eq:appxt-complex-

‘eq:WittenIndexFac

wrong

|subsubsec:BoostSol

We will interpret this figure more precisely in Lecture 2 at the end of Section §2.T.T.
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Figure 5: Naive differential on the strip.

Instanton corrections to the naive
differential

[

Figure 6: An instanton correction to the naive differential on the strip.

1.5 The Fukaya-Seidel Category, d’aprés Les Physiciens

Finally, we sketch the Fukaya-Seidel (FS) category, at least the way a physicist would
approach it. 2

Fix ¢. Our objects will be branes based on Lagrangians in class Ty, where & is in one
of the two components of U(1) — {£(}. The morphism space is the MSW complex My, ..
generated by solutions of the (-soliton equation.

Then, to compute the differential M;, we count (-instantons with one-dimensional
moduli space. (That is, zero-dimensional reduced moduli space.)

To compute the higher A,.-products we follow the example of open string field theory
in light-cone gauge. W%'di-\v/aid?dug tlcle interval into equal length subintervals and consider
the diagram in Figure HE,M

We have to integrate over the moduli - the relative positions of the joining times. When
the fermion numbers of the incomming and outgoing states are such that the amplitude is
not trivially zero the expected dimension of the moduli space will be zero, and in fact the

2We thank Nick Sheridan for many useful discussions about the mathematical approaches to the FS
category.

~10 -

fig:NaiveStripDif

fig:StripInstantc




::KnotHomology‘

Figure 7: (a) n open strings all of width w come in from the past (7 = —o0) and a single one of
width nw goes out to the future (7 = +00). There are n — 1 values of 7 at which two open strings
combine to one. The linearly independent differences between these critical values of 7 are the n—2

real moduli of this worldsheet. (b) The picture in (a) can be slightly modified in this fashion so
that H becomes smooth. The moduli are still the differences between the critical values of 7.

solutions will only exist for a finite set of critical values 7; — 7341 where the strings join.
The amplitude is obtained by counting over the finite set of solutions to the (-instanton
equation.

Remark: The A..,-category we have sketched above is not precisely what we one finds in
the papers in the literature. (See, for example eld.elBoc{fr understanding from experts in
the subject is that what we have described is well-known to be conceptually the correct
definition, but it does not appear in papers because there are some technical difficulties in
handling the PDE’s. We fully expect it to be As-equivalent to the standard mathematical

construction.

1.6 Two Motivations For The Theory Of Interfaces

Now we sketch in some detail two of the motivations for this work, and in particular the
contents of Lecture 3 on interfaces and categorified wall-crossing.

1.6.1 Motivation 1: Knot Homology

fig:Worldsheets

i Itten:2011pz . . iotto:2011nm
We follow the approach of Witten [I8] as further developed by Gaiotto and Witten 6' .

Let L C M3 be a link in an oriented 3-fold. We would like to construct a (doubly
graded) chain complex IC/(E) whose Euler character gives interesting knot polynomials
such that there are chain maps associated with knot bordisms obeying natural topological
conditions.

The complex is associated with a certain list of data, and the first piece of data is a
choice of a compact simple Lie group G together with an irreducible representation R, of
G associated to each connected component L, of L.

Witten’s approach starts with the famous 6d (2,0) theory for g = Lie(G) on a six-
manifold

R x M3 x D (1.31)

where D is a cigar. Since nobody knows what the (2,0) theory is we then KK reduce with
respect to the U(1) symmetry of the cigar to get a description in terms of 5d SYM on

R x Mz x Ry (1.32)
~~ ~~ ~—
zo zl 22 23 y

— 11 —



where underneath the factors we have written typical coordinates on these spaces.
Witten’s basic idea is that Ig(f) is a Morse-Smale-Witten complex generated by solu-
tions of the Kapustin-Witten (KW) equations on My = M3 x R, where the differential on
the complex is obtained by counting solutions to a certain 5d equation (written indepen-
dently by A. Haydys and E. Witten). The boundary conditions on the 4d and 5d equations

at y = 0 are slightly subtle. At generic points of M3 they are Nahm pole boundary condi-
WItten:2011pz,Mazzeo0:2013zga,Witten:201

tions and near L, they encode the data of the link, in particular R,. See [I8, 14,17, 19] for
detailed discussion. It is also convenient to put boundary conditions at y = oo to reduce
the structure group from G to an abelian subgroup.

The connection to our story starts to emerge when we consider the special case

My= R x C (1.33)
~~ ~~
z! z=x2+iz3

(Here we deliberately use the same notation for the Riemann surface C' that is often used
for the ultraviolet curve in theories of class S.) In this case, the KW and HW equations are
identical to those of a Landau-Ginzburg model on a spacetime R? that should be thought
of as the z° — z! plane:

R x_ R (1.34)
0 1

The data (X, W) of the model is then given by:

1. The target space of the model is a space of complexified gauge fields on a principal
Ge-bundle E¢ — Mj where
Ms;=C xRy (1.35)

with complex gauge field A = A +i¢. (Here A is a unitary connection on a principal
G bundle E.) The boundary conditions at y — 0, co that encode the link and its data
{R,} are used in the precise definition of the allowed gauge potentials ¢/¢. Then

X =U°/G° (1.36)
for a suitable group of complexified gauge transformations G°.

2. The Kahler metric and symplectic structure are:

ds®> = [ Tr(0Ax35A) (1.37)

M3

w= [ Tr(6A*50). (1.38)

M3

3. The holomorphic superpotential is the Chern-Simons form

We) = [ TAdd A (1.39)

Mg

- 12 —



This formulation, while exact, is not easy to work with because the target space of
the LG model is infinite-dimensional. In some situations the problem can be reduced to

questions about a finite-dimensional LG model. This is one of the main results of Gaiotto
iotto:2011nm

and Witten [6].

The basic idea is to describe the link in M3 = R x C' as an evolving set of points in C,
fig:KNOT-HOM-4

zq(z'), a =1,...n, as in Figure &:

Figure 8: This figure depicts the link L in the boundary at y = 0 at a fixed value of z°. It is
presented as a tangle evolving in the x! direction and therefore can be characterized as a trajectory
of points z,(z!) in the complex z = z? + iz® plane. The tangle is closed by “creation” and
“annihilation” of the points z, in pairs (with identical values of k).

We first consider the case where the z,(z!) are constant and study the MSW complex
in that case, finding equivalence to certain LG models with finite-dimensional target space.
Then, when we introduce “slow” z'-dependence we have a family, parametrized by !,
of LG models, a so-called “Janus” or “interface” of theories: See the discussion in Lecture
. |[subsec:LG-Interface
3, Section B.T.
Gaiotto and Witten studied the case that C = C or CP! and G = SU(2) or G = SO(3).

In this case the representations on the link components define positive integers k, at the

points z, (so the representations have dimension k, + 1). They showed that, in the case
that z,(z') are constant, the stationary points of the CS-LG theory correspond to “opers
with monodromy-free singularities” on Mj. By this we mean the following:

We have a flat gauge SL(2,C) gauge field

Dy = 0o + Aq a=2z2Y (1'40)
The gauge fields obey boundary conditions:

1

fig:KNOT-HOM-4

dy 2dz
A—>@<O —dy>+.“ 2 # 20,y =0 (1.41)

~13 -



For y — oo at fixed z we have

A%_% c 0 + &dz ¢ 07 dy a0 (1.42) ‘eq:y-infty-bc
£ \0 —c 0 —c 0 —c1

where c is complex, ¢; is real, and £ is a phase, with a flat section:

DgS =0
Dys—0 (1.43) [eq:F1t-Sec]
and moreover has the properties that for y — 0 at fixed z, &also at z = 2,7 &
n
sAD,s=K(z):= H(z — 2q)Fa, y—0 (1.44) ‘ eq:Flt-Sec-bc-1
a=1

Now, opers with monodromy-free singularities have known connections to the Gaudin
model, WZW models, and free-field representations of conformal blocks. Using this, the
problem is simplified to a study of the following Landau-Ginzburg theory, which we call
the Yang- Yang-Landau-Ginzburg model:

1. Fix n distinct points z, € C labeled with positive integers k, and let ¢ := %Za kq.
The target space of the model is a covering space of the configuration space C(¢; {24 })
of ¢ distinct, but indistinguishable points w;, i =1,...,gon C := C —{z1,...,2,}.

2. To define the covering space X we introduce the function:

W = Z ko log(w; — z4) — Z log(w; — w;)? — CZ wj (1.45) ‘ eq:YangYanghi-1
ia i<j i

where ¢ is a nonzero complex number related to the boundary conditions of the oper

at y = oo. The target space X of the YYLG model should be the smallest cover on

which W is single-valued as a function of the w;.

3. We simply take the obvious Euclidean metric on X induced from Y, |dw;|*.

Now, as the z,(x!) evolve we have a family of theories, and when the z, undergo
braiding or creation/fusion then we have interfaces between the theories. In a way we will
describe in Lecture 3 we can construct a complex out of these interfaces, and this will be
the knot homology complex.

1.6.2 Motivation 2: Spectral Networks

Consider a Hitchin system, say for SU(N), on a (punctured) Riemann surface C. The
spectral curve is

Y= {det(A —¢) =0} Cc T*C (1.46)

and is an N : 1 branched cover
m:3X—C (1.47)
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One of the mathematical outcomes of the paper P was the definition of a “nonabelian-
ization” map, a kind of inverse of the standard abelianization map of Higgs bundle theory.
The statement is that, given a flat C*-connection on a complex line bundle

(L,VYP) = % (1.48)
we can push it forward to a flat rank N bundle
(E,V)—=C (1.49)

To do this, fix a phase (. One constructs a network of paths on C' where the edges are

integral curves
z
/ (A=) =¢ (1.50)

and where 7, j label two sheets of the cover.

How to construct the actual network is a long story. One begins from branch points,
fig:SpectralNetworkBranchpoint?2

(assumed simple) where three edges emerge as in Figure 9:

ji ,
\/'J
Near a (simple)

branch point of
type (ij):
]I

Figure 9: WKB paths in the neighborhood of a simple branchpoint exchanging sheets ij.

. . leq:edge-equation
The edges are then evolved using the equation (T.50), supplemented by some local rules

at intersections. Call the spectral network W,. Away from W/; we have an isomorphism
E =7.(L) (1.51)

To define (F, V) everywhere we say what its parallel transport is along a path

Pz 22 (1.52)
We say the parallel transport is
F() = Pexp [ V= Q0,057 (1.53)
P iyt
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Figure 10: The lift of a path p from z to 2’ is associated with a framed BPS state. Its “charge”
is the relative homology class ;; of this path.

where the sum is over homology paths 7;; on X beginning and ending at preimages z%i)
(" . . [fig:GammalJ-Prime
and zy ’ as in Figure T0

Moreover,
Vyiyr = exp/ vab (1.54)
Yij!
and the Q(gp, 9, 7ij7) are integers, known as “framed BPS degeneracies” . The crucial aspect
of this definition is that if we consider a family of srgall Dpaths where the endpoint crosses
1g:lDe

X R tourRulel
one of the edges of a spectral network, as in Figure [T1

+ E U\ Yig ex V ab ex V ab ex V ab
) ( ZJ)( p/pfﬁ) ) < p/;“ ) < P/p‘g) )

Yij €5 (2,2 “

where p(7;;) is another set of integers, known as “2d BPS soliton degeneracies.”

Now, in this Hitchin situation physicists associate a canonical 141 dimensional quan-
tum field theory S, to each point z € C'. The vacua of S, are in 1-1 correspondence with
the preimages z(® and in the above construction there are physical interpretations:

1. p corresponds to an interface between theories S,, and S,,.

2. Q(gp, 9, ij) correspond to degeneracies of BPS states of particles bound to the inter-
face.

~16 -
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3. u(vij) correspond to degneracies of 2d soliton states within the theory S,.

eq:FRWC
4. The rule (l.%S; corresponds to a wall-crossing formula for the framed BPS states.

Remark: The quantum field theory S, is in general not a Landau-Ginzburg theory, but
it has many of the same features: It has massive vacua and (2,2) supersymmetry. Pairs
of critical points of the LG superpotential W correspond to relative homology classes ;;
and differences of critical values of W, i.e., central charges in solitons sectors, correspond

t
© f'yu A |AlgebraicStructures
One of the goals of [8]1s To categorify this story and replace the BPS degeneracies by

chain complexes and the wall-crossing formula by a statement about suitable categories.
|subsubsec Cat-S-Wall

We achieve this goal in Lecture 3 in Section §3.4.1

2. Lecture 2: The Web Formalism

2.1 Boosted Solitons And (-Webs

fig:StripInstanton
Now we would like to interpret more precisely the meaning of Figure 6.

2.1.1 Boosted Solitons

Recall that (-instantons satisfy

0 1 i¢ UE)W
(35 +155) o' = 59" 50 (21)

and we are interested in solutions for arbitrary phase (.
Recall too that (-solitons on D = R satisfy

i(bl _ IJEaW

i 2.2
dz” 77 2097 (22)
and with boundary conditions (¢;,¢;) at © = —oo,+o0o only exist for special phases i(j;
given by the phase of the difference of critical values W; — Wi.

We can use solitons of type ij to produce solutions of the (-instanton equation on the

Euclidean plane by taking the ansatz:

oo (@, 7) 1= ¢i9MO" (cos pa + sinyr), (2.3)
obeys
o .0 ooste ieGi 174
(% . 15) Sl (0 ) = S G (g a) (2.4)

so we choose the rotation u so that
el“gji = C (25)

We call such solutions to the (-instanton equation (-boosted solitons. A short computation
show that the “worldline” (i.e. the region where the solution is not exponential close to
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N
< Stationary

soliton ¢ ~ d)j

“'Boosted
soliton”

O =P

A Wy, ~
£ —— 1

“

Figure 12: The boosted soliton. A short computation show that the “worldline” is parallel to the
complex number z;; 1= z; — z; where z; = CW;. ‘fig:BoostedSolitc

one of the Vacua ¢; or éb arallel to the complex number z;; 1= z; — z; where z; = ( Wi;.
fig:Boosted oﬁlton lorida

See Figure uz

X fig:StripInstanton
Now we can start to interpret the “extra” (-instanton illustrated in Figure 6. The

idea is that if the width of the interval is much larger than ¢y then the (-instanton is
well-approximated, away from the boundaries, by a boosted soliton. There is some kind
of “emission amplitude” and “absorption amplitude” associated with the region where
the boosted soliton joins the boundaries. In order to discuss these we first consider the
(-instanton equation on the plane, but with some unusual boundary conditions.

2.1.2 Fan Boundary Conditions

We would like to make a solution to the (-instanton equation that looks like several boosted
solitons at infinity. Thus suppose we have a cyclic fan of solitons:

F = Wl 20

We would like to have a solution which looks like the coges%)])%%isng boosted solitons as z
1g:
moves clockwise around a circle at infinity, as in Figure

Note this only makes sense when the phases of the successive differences z;, ;, , are
clockwise ordered. We call such a sequence of vacua a cyclic fan of vacua.

If the index of a certain Dirac operator is positive then we expect, from index theory,
that there will be (-instantons which approach such a cyclic fan of solitons at infinity. In
fact, physicists studying domain wall Junctlons have in fact established the existence of

ICarroll: 1999wr,Gibbons:1999np
such solutions in some special cases [T, 9]. We will assume that a moduli space of such

solutions M (F) exists. Based on physical intuition we expect these moduli spaces to satisfy
two crucial properties:

~ 18 —



Figure 13: Boundary conditions on the (-instanton equation defined by a cyclic fan of solitons.

1. Gluing: Under favorable conditions, two solutions which only differ s1gn1ﬁcantly from

fig:WEDGES

fig:GluedSolution

fan solutions inside a bounded region can be glued together as in Figure [[4 This
fig:Zetaleb
process can be iterated to produce what we call (-webs, shown in Figure [I5:

2. Ends: The moduli space M(F) can have several connected components. Some of
these components will be noncompact, and the “ends,” or “boundaries at infinity,”
of the moduli space will be described by (-webs.

Two such solutions can be
“glued” using the boosted
soliton solution -

Figure 14: Gluing two solutions with fan boundary conditions to produce a new solution with fan
boundary conditions. The red regions indicate where the solution deviates significantly from the
boosted solitons and the vacua. When the “centers” of the two (-instantons are far separated the
approximate, glued, field configuration can be corrected to a true solution.

The compact connected components of (-webs are called (-vertices. We are most
interested in the (-vertices of dimension zero: These will contribute to the path integral of
the LG model with fan boundary conditions provided the fermion number of the outgoing
states sums to 2. We claim that counting such points for fixed fans of solitons produces
interesting integers that satisfy L., identities. We will state that a bit more precisely later.

This picture is the inspiration for the web-formalism, to which we turn next. It will
give us the language to state the above claim in more precise terms.

~19 —
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We call this
picture a
C-web:w

Figure 15: Several solutions can be glued together to produce a (-web solution fig:ZetaWeb

2.2 The Web Formalism On The Plane

Now switch to a mathematical formalism that we call the web-based formalism for describ-
ing the above physics.

2.2.1 Planar Webs And Their Convolution Identity

Definition: The vacuum data is the pair (V,z) where V is a finite set called the set of
vacua and z : V — C defines the vacuum weights.

Remarks:

1. Vacua are denoted i, j,--- € V. The vacuum weight associated to ¢ is denoted z;.

2. The vacuum weights {z;} are assumed to be in general position. This means

{z1,...,2n}eV:=CN —¢ (2.7) ‘ eq:VacWtSpace

where € is the exceptional set. Thus, z;; # 0 for ¢ # j. Moreover, no three vacuum
weights are colinear and finally there are no exceptional webs. 3

Definition: A plane web is a graph in R?, together with a coloring of the faces by vacua
such that the labels across each edge are different and moreover, when oriented with i
on the left and j on the right the edge is straight and parallel to the complex number
zij = z; — zj. We take plane webs to have all vertices of valence at least two.

Definition The deformation type of a web is the equivalence class under stretching of
internal edges and overall translation. There is a moduli space of deformation types and
it can be oriented. We denote an oriented deformation type by tv.

) ) ) o If ig : DIFFERENT-DEFORMATION-
Example: An example of two different deformation types of web is shown in Figure [16:

A key construction we can make with webs is known as convolution. To define it we

introduce some terminology:

3 Exceptional webs are defined to be Wetﬁ whose .deformation space has a dimension larger than the
. . . lgebraicStructures
expected dimension 2V — E. For details see [S]:
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is i

Figure 16: The two webs shown here are considered to be different deformation types, even though
the web on the left can clearly degenerate to the web on the right. fig:DIFFERENT-DEEF

1. The local fan at a vertex v € to: is denoted I,(w).

2. The fan of vacua at infinity: is denoted I (tv).

. fig:LocalGlobalFan
For example see Figure [T7:

For a web w there are two kinds of cyclic fans we
should consider:

Local fan of vacua at a vertex v: L, (m)

Fanofvacuaco:  F_.1ma!

Figure 17: Illustrating the local fan of vacua and the fan of vacua at infinity for a web tv. ‘ fig:LocalGlobalFe

Now, suppose we have two webs v and to’ such that there is a vertex v of to we have
I,() = Io(w'). (2.8)

Then define v *, v’ to be the deformation type of a web obtained by cutting out a small
disk around v and gluing in a suitably scaled and translated copy of the deformation type
e oY £ig:CONVOLUTION
of '. The procedure is illustrated in Figure [IR:
The upshot is that if W is the free abelian group generated by oriented deformation

types of webs then convolution defines a product

WxW oW (2.9)

. . « . y [ChapotonLivernet
(making it a “pre-Lie algebra” in the sense of [4]).

Now, we consider the taut webs. These are, by definition, those with only one internal

degree of freedom. That is, the moduli space of the taut webs is three-dimensional. See
Fi Eyz;:ngldTautSlldlng
igure IT9:

— 21 —



Figure 18: Illustrating the convolution of a web to with internal vertex v having a fan I,,(w) =
{41, 42, j3,ja} with a web w’ having an external fan I (') = {j1, j2, 73, Ja} ‘ fig:CONVOLUTION

21
A rigid web has d(w) = 0. iq 72
It has one vertex: ) f

i3

A taut web has d(w)
=1:

A sliding web has d(w)
=2

Figure 19: Illustrating rigid, taut, and sliding webs with 0, 1, and 2 internal degrees of freedom. ‘ fig:RigidTautSlic

We define the taut element to be the sum over all the taut webs:

t:= z 10. (2.10) ‘eq:taut-planar
d(r)=3

we can coherently orient all the taut webs in, say, the direction of getting larger.
Now the key theorem is that
txt=0. (2.11)

The proof is that if we expand this out then we can group products in pairs which cancel.
The pairs correspond to opposite ends of a moduli space of “slidin&&Ewebs, with two internal

. L. . . fig:TAUT-SQ
degrees of freedom. The idea is illustrated in Figure 20:

2.2.2 Representation Of Webs

Definition: A representation of webs is a pair R = ({R;;}, {K;;}) where R;; are Z-graded
Z-modules defined for all ordered pairs ¢j of distinct vacua and Kj; is a degree —1 symmetric
perfect pairing

Kij : Rij ® Rji — L. (2.12)
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Figure 20: The two boundaries of the deformation type of the sliding web shown on the right
correspond to different convolutions shown above and below. If we use the lengths L, Ly of the
edges as coordinates then the orientation from the top convolution is dLs A dL;. On the other
hand the orientation from the bottom convolution is dL; A dLs and hence the sum of these two
convolutions is zero. This is the key idea in the demonstration that t x t = 0.

Given a representation of webs, we define a representation of a cyclic fan of vacua
1= {il,ig,...,’in} to be

Rr:=Ri iy @ Riy iy ® - @ Ry 4 (2.13)

when [ is the cyclic fan at a vertex of a web we refer to Ry () to as the representation of
the vertex. Elements of this representation are called interior vectors.
Next we collect the representations of all the vertices by forming

R™ .= @Ry (2.14)
where the sum is over all cyclic fans of vacua. We want to define a map
p(ro) : TR™ — Rt (2.15)
where for any Z-module M we define the tensor algebra to be
TM:=M&MPaM3g... (2.16)

In fact, the operation will be graded-symmetric so it descends to a map from the symmetric
algebra SR™ — Rint,

We now define the contraction operation:

We take p(1v)[r1, ..., 7] to be zero unless n = V (tv) and there exists an order {vy, ..., v, }
for the vertices of v such that r, € Ry, (). If such an order exists, we will define our map

p() : uey ) R, (m) = Rl (w) (2.17)

~93 —

fig:TAUT-SQUARE

eq:Rint-def

eq:web-rep-1



as the application of the contraction map K to all internal edges of the web. Indeed, if an
edge joins two vertices vy, vy € V(to) then if Ry, (w) contains a tensor factor R;; it follows
‘that‘R Ly () cow%tB%bré% a tensor factor R;; and these two factors can be paired by K as shown
in Figure gl:

Figure 21: The internal lines of a web naturally pair spaces R;, ;, with R;, ;, in a web represen-
tation, as shown here.

It is not difficult to see that the convolution identity t+t = 0 implies that p(t) satisfies
the axioms of an Ly, algebra p(t) : TR® — RNt

> €55, p(O[P(B[S1], S2] =0 (2.18)
Sha(S)
where we sum over 2-shuffles of the ordered set S = {r1,...,r,} and €g, g, is a sign factor

|AlgebraicStructures

discussed at length in [8].

Definition: An interior amplitude is an element 5 € R™ of degree +2 so that if we define
ef € TR™ © Q by the exponential series then

p(t)(e?) = 0. (2.19)

Definition: A Theory T consists of a set of vacuum data (V, z), a representation of webs
R = ({Ri;},{Kij}) and an interior amplitude .

Remark: If 3 is an interior amplitude and we define pg(t0)[r1, ..., 7] := p(w)[r1,..., 74, €]
then pg(t) : TR™ — R™ satisfies the Lo, Maurer-Cartan equation.

2.2.3 Realization Via LG Models

1. Vacua: V is the set of critical points of W.
2. Vacuum weights: z; = (W;

3. Web representation:
Rij i= @pes, 20 1 (p) (2.20)

and the contraction K is defined by the path integral.
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4. Interior amplitude: Suitably interpreted, the path integral leads to a counting of
(-instantons with fan boundary conditions and defines an element in R™ which is an
interior amplitude 5. This follows from localization of the path integral on the moduli

sagce of %—instantons and the fact that the path integral must create a Q¢-closed state
Iftﬁ ebraicStructures

I-

2.2.4 Examples: Theories With Cyclic Weights

Two useful examples have V = Z/NZ. We break the cyclic symmetry and label vacua by
i€{0,...,N — 1} with weights:

VY iz =eFE p=0,---N—1 (2.21)

The first example is 7I9N with a single chiral superfield and superpotential

_ NI iy N

The web-representation is
Rij = Z[l] 1< j
Rij =7Z 1> (2.23)

At a vertex of valence n we have deg Ry = n—1 and hence only 3-valent vertices contribute
to the MC equations, .so the only nonzero amplitudes are ﬁijfg € sz?{g :f%{l‘EgAiP EE_<1 j<k<
N — 1. The Ly equations come from the two taut webs of Figure bZ:

Figure 22: The two terms in the component of the L., equations for i < j < k < t.

and are just:
bijkbikt — bijtbjkt =0 1< g < k<t (2.24)

A more elaborate set of examples is provided by the mirror dual to the B-model on
N—1 - . . . eq:Cyclic
CP with SU(N) symmetry. This again has vacuum weights (Z.bl I but now we take
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Ry=AY, i<

Rij = Anyj—i 1> (2.25)

where Ay is the ¢-th antisymmetric power of a fundamental representation of SU(N) and
v1 N\ V2
Kij(v1 ® v2) = Kyj
with k;; € {£1}. AnESl{ (M]g )Iinvariant ansatz for the interior amplitude reduces the L
eq.: e -
MC equations to (2:24) above.

2.3 The Web Formalism On The Half-Plane

Fix a half-plane H C R? in the (x,7) plane. Most of our pictures will take the positive or
negative half-plane, x > xy or x < x,, but it could be any half-plane.

Definition: Suppose OH is not parallel to any of the z;;. A half-plane web in H is
a graph in the half-plane, which allows some vertices to be subsets of the boundary. We
apply the same rule as for plane webs: Label connected components of the complement of
the graph by vacua so that if the edges are oriented with ¢ on the left and j on the right
then they are parallel to z;;.

We can again speak of a deformation type of a half-plane web u. Now translations
parallel to the boundary of H act freely on the moduli space. Once again we define half-
plane webs to be rigid, taut, and sliding if d(u) = 1,2,3, respectively. Similarly, we can
define oriented deformation type in an obvious way and consider the free abelian group

Wy of oriented deformation types of half-plane webs in the half-plane H. Some examples
If g : BNDRFT/ FRATIFPLANE-TAUTWEB

where H = Hy, is the positive half-plane are shown in Figures 23 and 24:

e

Figure 23: Two examples of rigid positive-half-plane webs.

Figure 24: Four examples of taut positive-half-plane webs

There are now two kinds of convolutions:
1. Convolution at a boundary vertex defines

noc (220)
vol

fig:BNDRY-WEB-1

fig:HALFPLANE-TAT

*: Wy X Wy — Wy (2.27)
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2. Convolution at an interior vertex defines:

* 1 Wiy x W — Wy (2.28)

We now define the half-space taut element (oriented in the direction in which the web

= > u (2.29)
d

gets bigger):

The convolution identity is
ty x by +ty x t, = 0. (2.30)

The idea of the _Proof is the same as in the planar case. An example is shown in Figure
|f:|59; : BLK-BDRY-WEBIDEN

Figure 25: An example of the identity on plane and half-plane taut elements. On the right
is a sliding half-plane web. Above is a convolution of two taut half-plane webs with orientation
dyNdliNdly. Below is a convolution of a taut half-plane web with a taut plane web. The orientation
is dy A dly A dly. The two convolutions determine the same deformation type but have opposite
orientation, and hence cancel.

2.4 Categorification Of The 2D Spectrum Generator

Given a half-plane and a representation of webs we can introduce a collection of chain
complexes R;; that will play and important role in what follows.
One way to motivate the R;; is to recall the Cecotti-Vafa-Kontsevich-Soibelman wall-

Cecotti;l 992rmZI%ontsev1ch 2008f 3§ F
crossing formula [3; I3] for the Witten 1ndlces BPS deg;zenerames i (1) of 2d
dm,Cecottl: 1’992qh i

ndley. otti®1992rm
solitons. The p;; were extensively studied in I[ Z, dj where the wall-crossing phenomenon

was first discussed. One way to state the formula uses the matrix of BPS degeneracies

fig:BLK-BDRY-WEBI]

1+ @zijé'}-lﬁijeij = ® (1 + ,uijeij) (231) ‘ eq:2d-CVKS-prod

Zij eEH
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where we assume there are N vacua so we can identify V = {1,..., N}, e;; are elementary
N x N matrices, 1 is the N x N unit matrix, and in the tensor product we order the
factors left to right by the clockwise order of the phase of z;;. Continuous deformations of
the Kahler metric g;; or the superpotential will lead to jumps of the p;; Whgnzgé,-_g]%(_)rr%gd
parallel. The wall-crossing formula states that nevertheless, the matrix (b%mm‘ﬁ?
constant as long as _I%g_g%%fsgnﬁggs of leaves H.

The matrix (b%T)mn%tTmes called the “spectrum generator.” We now “categorify”
the spectrum generator, and define ]3%-]- from the formal product

ﬁ = @gj:lﬁijeij = ® (Z -1+ Rijeij) (232)
zijGH

Note that Eu = Z is concentrated in degree zero and ﬁij = 0 if z;; points in the opposite
half-plane —H. If J = {4j1,...,jn} is a half-plane fan in H then we define

Ry:= Rj g, @ @ Rj,_y j, (2.33)
and ﬁij is just the direct sum over all R; for half-plane fans J that begin with ¢ and end
with j.

Remarks:

1. We can “enhance” the (categorified) spectrum generator R with “Chan-Paton fac-
tors.” By definition, Chan-Paton data is an assignment i — &; of a Z-graded module
to each vacuum 7 € V. The modules &; will be referred to as Chan-Paton factors.
The enhanced spectrum generator is defined to be

~

R(E) := @ jevRij(E)ei; = (BicvEieir) R (®jevEjej;)” (2.34)

leq: 2d-CVKS-prod . .
2. Phase ordered products such as (b.gl ) have also appeared in many previous works
on Stokes data, so the R;; can also be considered to be “categorified Stokes factors”
and R is an “categorified Stokes matrix.”

3. If we consider a family of theories where the rays z;; and z;; pass through each other
then the categorified spectrum generator R is in general not invariant. In Lecture 3
will discuss the categorified version of the above wall-crossing formula.

2.5 A,-Categories Of Thimbles And Branes
2.5.1 The A..-Category Of Thimbles

We now want to define the A..-category of Thimbles, denoted Uac: Suppose we are given
the data of a Theory T and a half-plane . Then Uac has as objects the vacua i,j,--- € V
(as we will see, they are better thought of as Thimble branes T;,T;,...). The space of
morphisms Hom(j, 7), (which we also denote as Hop(i, j) := Hom(j, ) since many formulae
in Aso-theory look much nicer when written in terms of Hop) is simply

Hop(i, j) := Ry (2.35)
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We can enhance the category with Chan-Paton factors. The morphism spaces are simply

The corresponding category is denoted Yac(E).
Now we need to define the A,-multiplication in Lac(E) of an n-tuple of composable
morphisms. As a first step, for any half-plane web u we define a map

p(u) : TR(E) ® TR™ — R(€) (2.37)

It will be graded symmetric on the second tensor factor. As usual, we define the element

p)[rd, . ) (2.38)

by contraction. We will abbreviate this to p(u)[P;S] where P = {r{,...,r2} and S =
{r1,...,rn}. We define p(u)[P; S] to be zero unless the following conditions hold:

e The numbers of interior and boundary vertices of u match the number of arguments
of either type: Vy(u) = m and V;(u) = n.

e The boundary arguments match in order and type those of the boundary vertices:
Tg € ]%J;a(u)(g).

e We can find an order of the interior vertices V;(u) = {v1,...,v,} of u such that they
match the order and type of the interior arguments: r, € Ry, -

If the above conditions hold, we will simply contract all internal lines with K and
contract the Chan Paton elements of consecutive pairs of 2 by the natural pairing &®E& =
0;;Z. With this definition in hand, we can check that the convolution identity for taut
elements implies a corresponding identity for p[ty]:

D e p(t)[Pr,p(60)[Po; S1l, P Sl + > e p(t0)[P; pl()[S1], S2] = 0. (2.39)
Shy(S),Pas(P) Sha(S)
where Pas(P) is the set of partitions of the ordered set P into an ordered set of three

eq.: —rel-rno

disjoint ordered sets, all inheriting the ordering of P. We call (| e ~ relations.

The most important consequence of these identities is that if we are given an interior
amplitude 3, we can immediately produce an A, category where the multiplication

ps(ty) : TR(E) — R(E) (2.40)
is defined by saturating all the interior vertices with the interior amplitude:
sy, ] = plba)Irf, i €. (2.41)

. . X eq:big-rel-rho = |
This has the effect of killing the second term in (b.hgi and combining the first summand

into the usual defining relations for an A..-category. The product is illustrated in Figure
5 g AINFTY-PRODUCT

. eq:big-rel-rho . .
Remark: The conceptual meaning of (2. 1s that there is an L., morphism from the

Lo algebra R™ to the L., algebra of the Hochschild cochain complex of the A, category

Kapranov:2014uwa

Yac(E). The paper [12] shows that in the present context the map is in fact an L

isomorphism.
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Figure 26: Illustrating the A..-product on time-ordered boundary vectors r¥,... r2. We sum

over taut half-plane webs u, indicated by the green blob, and saturate all interior vertices with the
interior amplitude f.

2.5.2 The A, -Category Of Branes

We define a Brane, denoted B = (&, B) to be a choice of Chan-Paton data £ together with
a boundary amplitude, that is, a degree +1 element

B e R(¢) (2.42)
which solves the Maurer-Cartan equations
> B
S a6 [B%] = paltoe) =] = 0. (2.43)
n=1

The category of Branes is denoted Bt. It depends on the Theory T and the half-plane
H. Its objects are Branes 8 = (£, B) where £ is any choice of Chan Paton data £ and B
is a compatible boundary amplitude. The space of morphisms from By to 21 is defined
by simply modifying the enhanced spectrum generator to

HOp(%l, %2) = (@ié‘}eii) & ﬁ & (@1512611)* . (2.44)

In order to define the composition of morphisms

0 € HOp(%o, %1), 09 € HOp(’Bl, ’32), e 75n S HOp(%nfl, %n) (2.45)
we use the formula
Mo 00) = pia(t30) (e 51, G Gy —— (2.46)
n\01,...,0n) ‘= Pt 1_807 171_81727"'7n71_8n . .

Note that M, (61,...,9,) € Hop(Bo,B,). After some work (making repeated use of the
fact that the B, solve the A-Maurer-Cartan equation) one can show that the M, satisfy
the Aso-relations and hence Bt is an A.-category.

Remarks:
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— . leq:BraneMultiplications i . fig: AINFTY-PRODUCT
1. The multiplication (2.46) can be illustrated much as in Figure 26. The only difference

is that now the boundary vectors 77 don’t have to saturate all boundary vertices.
Rather, boundary vertices between 7“,‘3 and r,‘? 41 can be saturated by the boundary
amplitude By.

2. For each vacuum 7 we define the Thimble Brane ¥; to be the brane with CP data
E(%;); = 6; ;7 with boundary amplitude B(¥;) = 0. Then the category of Thimbles
Uac is a full subcategory of Br.

2.5.3 Realization In The LG Model

Choose H to be the positive half-plane with boundary conditions set by a Lagrangian
L C X. The Chan-Paton data is given by the MSW complex:

& =My, (2.47)

fig:HALFPLANEBC

We consider amplitudes with boundary conditions shown in Figure }Zf_the
number of (-instantons satisfying these boundary conditions can be used to define an
element in By € £ ® Ry ® E*. As with the case of the interior amplitude, localization of
the path integral to the moduli space of (-instantons together with Q.-closure of the state
produced by the path integral implies that B is a boundary amplitude in the above sense.

In general Hop(B1,B2) is a space of Q¢-closed local boundary operators and the
physical interpretation of M, (d1,...,d,) is that we are taking a kind of “operator product.”
The Q, closure of the path integral implies that the M,, satisfy the A,,-MC equation.

T =400

Figure 27: Boundary conditions for general half-plane instantons with fan boundary conditions
at * — +o00 and solitons at 7 — Fo0.

Remark: If we want good morphism spaces associated to the interval [z, x,] we
need to restrict the class of Lagrangian submanifolds, as we have seen. In the web-based
formalism we definitely do not want branes of class T}, for k € U(1)—{£(}!! One way to see
this is that it is important to allow left-boundary branes which are left Lefshetz thimbles
of phase (. These are in T¢, not T},. Moreover, the construction of the category s}éoyxlgif llaoowt
depend on the particular position zy of the boundary. But again from equation (}'I’qZle_lth

|AlgebraicStructure
clear that it would depend on xy if we used branes of class T,;. In [8] 1 1s argued that the
suitable class of branes are W -dominated branes for which Im(¢™'W) — +oco at infinity.

(For right-branes on boundaries of the negative half-plane we require Im(¢~'W) — —o0.)
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Figure 28: We count rigid {-instantons in the funnel geometry to define an A,,-morphism between
the FS category and the web-based category. The branes B1,B, are in class T¢.

2.6 Relation Of The Web-Based Formalism To The FS Category

Now we would like the relate the A.-category constructed in the F'S approach and in the
web-based approach, say, for the positive half-plane. The web-based formalism applies to
branes of class T¢ and our description of the F'S category applies to branes of class T, with
K # £(.

To relate the two we strongly use the rotational non-invariance of the (-instanton
equation and consider the F'S category based on branes of class T but now the morphism
spaces are defined by solving the equation on a horizontal strip, obtained from the vertical
one by rotation by 7/2. Thus, to define the MSW complex My, o, the generators are
given by solutions of the (-instanton equation which are invariant under translation in x,
not in 7. Now we can use branes of class T; on the upper and lower boundary.

To relate the FS and web-based categories we now consider the (-instanton equation

. Ifig:FUNNEL-STRIP
on the funnel geometry of Figure 28:

A state in the far past at * — —oo on the strip is an incoming soliton, in the above
sense. A state in the morphisms in the web-based formalism gives half-plane fan boundary
conditions at infinity for the positive half-plane. But these two states determine boundary

.. . . . . |fig: FUNNEL-STRIP
conditions for the (-instanton equation on the space in Figure 287 We can therefore define

a map

U: M%17B2 — HOp(’Bl, ’32) (2.48)

The matrix elements of U are defined by counting (-instantons in the funnel geometry.
When we consider states of the same fermion number the expected dimension of the moduli
space is dimension zero and the moduli space is expected to be a finite set of points.

To prove that U is a chain map we consider the one-dimensional moduli spaces of so-
lutions to the (-instanton equation between states whose fermion number differs by 1. The
two ends correspond to (-instantons far down the strip - giving the differential on Mgy, 5,
and taut webs far out on the positive half-plane, giving the differential on Hop(B1,B2),
SO

Uo M — MY otf =0 (2.49)

where M; denotes the differential on the morphisms in the A,,-category. U can be extended
|AlgebraicStructures

to an Asc-equivalence between the categories [[8].
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Figure 29: When the difference of fermion numbers of ingoing and outgoing states is +1 there
will be a one-dimensional moduli space of (-instantons. The two typical boundaries are indicated
in (a) and (b). They lead to the two terms in the equation assuring that U is a chain map.

3. Lecture 3: Interfaces And Categorified Wall-Crossing

3.1 Motivation: Interfaces In Landau-Ginzburg Models

Suppose we have a family of superpotentials W (¢;c), parametrized by a point ¢ in a
topological space C. * Suppose @ : [z, z,] — C is a continuous path. Then we can define
a variant of LG theory based on an z-dependent superpotential:

W (¢) := W(¢; p(x)), (3.1)

so that W,(¢) is constant (in x) for < z; and for > x,. Clearly this 1 + 1 dimensional
theory no longer has translational invariance. It does, however, still have two out of the four
supersymmetries of LG theory. This is demonstrated most easily if we take the approach
via Morse theory/SQM using the Morse function on Map(R, X):

* 1 — .
n=— [ o' - jRelc Wi p(a))as (3.2

Clearly the resulting theory has a kind of “defect” or “domain wall” localized near [z, z,]
interpolating between the left LG theory defined with superpotential W, (¢) and the right
LG theory defined with superpotential W, (¢)).

We will refer to this as a (LG, supersymmetric) interface. The term “Janus” is also
often used in the literature.

Thus we have a continuous family of vacuum weights

where the vacuum ¢ is parallel transported from the vacua in the theory at x, and ¢; , are
the critical points of the superpotential W, (¢). The (-instanton equation now becomes:

0 0 il ;70W -
(55 +i55) ¢ = 397557 Bioa) (3.4
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Figure 30: An analog of the boosted soliton for the case of a supersymmetric interface.

and (-solitons are just T—inderendent solutions. The analog of boosted solitons have curved
If ig: FORCEDFLOWBOOSTEDSOLITON

worldlines, as in Figure B0
Now, we would like to define a relation of the branes in the left theory to the branes
in the right theory by “parallel-transporting” across the interface.

3.2 Abstract Formulation: Flat Parallel Transport Of Brane Categories

Suppose we have a “continuous family of Theories.” We use the term “Theory” in the
sense of the web formalism. To make sense of this one must sput a topology on the set of
: ace

eq:VaclWt
Theories. Note that the set of vacuum weights V of (2.7) carries a natural topology. Thus
we can certainly speak of a continuous map

oz >V=CN—¢ (3.5)

We call this a vacuum homotopy.

More generally, one could also define a sense in which web representations and the
interior amplitudes change continuously. So, in general, we have a continuous family of
Theories 7 () on [xg,z,]. We would like to relate 7% = T (x) to 7" = T(x,). More
precisely, we want to define an A-functor

F(p) : Be(TEH) — Be(T,H) (3.6)

where H is, say, the positive half-plane.
The functor F(gp) is meant to be a categorical version of parallel transport by a flat

connection. Thus we want:

1. An A, .-equivalence of functors:

F(p1) o F(pa) = F(p1 0 p2) (3.7)

4C can be any space, but the notation is again chosen because one of the primary motivations is the

theory of spectral networks and Hitchin systems.
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for composable paths @1, po.

2. An A,-equivalence of functors:

F(p1) = Flp2) (3.8)

for paths g1, g2 homotopic in, say, V.

We will show that one can construct such functors for “tame” vacuum homotopies,
of the type (Egg)t.a_mlglushed with success we then want to extend the construction to more
general vacuum homotopies for paths of weights which cross the exceptional walls €. But
you don’t always get what you want:

The existence of such a functor forces discontinuous changes of the web representa-

tion and the interior amplitude: This is the categorified version of wall-crossing.

The secret to constructing F(g) is the theory of Interfaces in the web-based formalism,

to which we turn next.

3.3 Interface Webs And Composite Webs
3.3.1 The A, -Category Of Interfaces

In order to understand the parallel transport of Brane categories it will actually be very
useful to consider discontinuous jumps between Theories.

Given a pair of vacuum data (V—,27) and (V*, 27) we can define an interface web by
using the data on the ne_gative and positive half-planes, respectively. Examples are shown

R |f ig: DOMATNGATID: . .
in Figures BT and B3 below. We can define the taut element t—* and write a convolution

identity.
If we are given left and right Theories (7,7 ") then we can define a representation
of interface webs:

1. Chan-Paton factors now depend on a pair of vacua 5]-_7]-;.
2. At a boundary vertex we have the representation:

Ry(€) =&, 5 @R} @& @R; . (3.9)

) ) Lo {fig: DOMAINWALL-CHANPATON
associated to the picture in Figure BT, where J = (J_, J).

Now the categorified spectrum generator is given by the product

E((C/') = (@i,i’gii’ €ii & ei/i/) ® ﬁ(Ti, Hi)tr & E(TJF, HJr) & (@J’]lgjj/ €jj & ej/j/)* (310) ‘ eq:Inf-Vac-Homs2

. |fig;DOMAINWALL-CHANPATON
See Figure BT for a typical summand.
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Figure 31: Conventions for Chan-Paton factors localized on interfaces. If representation spaces
are attached to the rays then this figure would represent a typical summand in Hom(j,m,j1, j175,)-
We order such vertices from left to right using the conventions of positive half-plane webs.

Now an interface amplitude is a degree one element B—1 € ﬁ(é’ ) satisfying the A,-MC
equation:

1
p(t—T) <71 _B_+;eﬂ;eﬂ+> =0 (3.11)

We define an Interface to be a pair
ot =&, BT) (3.12)
and we can define an A..-category of Interfaces, denoted
Be(T—,T71). (3.13)

The objects of Bt(7T~,7 ") are Interfaces, for some choice of CP data %nd the space of

,+ eq: B

morphisms between J, ’+ and J is the natural generalization of (2.

Hop(3,°",3,°7) = (@0 € @ ei/i/)®]§(7’7,7-[7)tr®]§(7ﬂ+,% )® (69]3/5 v ejj @ e )*

| £ig:DOMAINWALL~CH

(3.14)
:BraneMultiplications

The Aso-multiplications are given by the natural generalization of equation (Iz 46): we just
contract with the taut element t;; — t—F and saturate all interior vertices with the left or
right interior amplitude 87, B7.

Remarks:

1. An Interface between the emC%t%RE}Vleor%f and itself is precisely the data of a Chain

complex. See Figure sz tor the explanaftion.

2. The identity Interface. A very useful example of an Interface is the identity Interface
J0o € Be(T,T). The CP spaces are

E(I0)i; = 6,7 (3.15)
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Figure 32: The only taut interface web when 7%, 7" are the trivial theory has two boundary
vertices. The boundary amplitude is associated to a single boundary vertex: B € £ ® £* is a
morphism of £ of degree one. There is only one taut web, shown above. The MC therefore says
that B2 = 0. Thus as Interface between the trivial theory and itself is the same thing as a chain
complex. ‘ fig:INTFCE-TRIV-T

and
R(E) = @i iR © Rjeij @ eij (3.16)

where the superscripts £+ indicate that R is defined with respect to the positive,
negative half-plane, respectively. To define the interface we take Bz to have nonzero
component only in summands of the form R;;®R;; corresponding to the fan {4, j; j,i}.
The vertex looks like a straight line of a fixed slope running through the domain wall.
The boundary amplitude is the element iI%D]_%fﬁ® Rﬂé Egiven by K;; ! and the Maurer-

S . fig: TERF
Cartan equation is proved by Figure B3:

3. Landau-Ginzburg interfaces and branes in the product theory: In the context of
Landau-Ginzburg models we can consider interfaces between a theory defined by
(X1, W1) on the negative half-plane and (X3, Ws) on the positive half-plane. By the
doubling trick we would expect such interfaces to be related to branes for the posi-
tive half-plane of the theory based on (X x X3, Wi + W3). This is morally correct,
but there are two closely related subtleties which should be pointed out. First, from
the purely abstract formalism, if we try to related Interface amplitudes for a pair of
Theories 7,7 " to boundary amplitudes for 7~ x 7+ we will, in general, fail: The
vacua of the product theory are labeled by (j_,j+) but the slopes of the edges of
the webs are the slopes of z;1 ;2 + Zj1 g2 In general half-plane fans for the product
theory will have nothing to do with pairs of half-plane fans in the left and right the-
ories. The two concepts will be equivalent, however, in the special case that the web
representations are of the form

_ - - “Speci
Rt j),62.52) =0t 2 Bjt 2 @051 j2 By o (3.17) [eq:SpecialRep
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Second, on the Landau-Ginzburg side, if we literally take the product metric and the
product superpotential then the Morse function h1+ ho is too degenerate: The critical
manifolds are R x R, corresponding to a center of mass collective coordinate for two
separate solitons. We must perturb the theory by perturbing the superpotential with
AW (¢1, ¢2). Generic such perturbations will in fact produce MSW complexes giving

X eq:SpecialRe
web representations of the form (3:

Figure 33: Examples of taut interface webs which contribute to the Maurer-Cartan equation for
the identity interface J0 between a Theory and itself.

3.3.2 Composition Of Interfaces

A crucial new ingredient is that Interfaces can be composed. Suppose we have a situation
fig:CompInterfacel

as shown in Figure 34 with a pair of Interfaces 370 and J3%:

Figure 34: Two interfaces between a sequence of three Theories.

then we will produce a new Interface, denoted

30RO € Be(T,TH) (3.18)
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. . fig:CompInterface2
as shown in Figure I35:

J 1 =0 0¥ ‘He

Figure 35: The Interface resulting from the “operator product” of the two Interfaces.

The key idea in the construction is to use “composite webs” ¢ = (u™,s,u™). An
If ig: COMPOSITEWEB1

example is shown in Figure 136:

Figure 36: An example of a composite web, together with conventions for Chan-Paton factors. In
this web the fan of vacua at infinity has Joo(¢) = {j1,...Jh;J1,---,Jm} Reading from left to right
the indices are in clockwise order.

Again one can develop the whole web theory, write taut elements and a convolution
i . . . i |[AlgebraicStructures
identity. (The convolution identity has some novel features. See [8] Tor details.) The upshot

is that the product Interface 370 X 3%% has

1. Chan-Paton data:

ORI = @l @ E, (3.19)
2. Interface amplitude:

11
1-B-0"1- B0+

where t. is the taut element for composite webs.

(3.20)

BEO ) = palt) |

Using the convolution identity (omitted here) one can show that it indeed satisfies
the Maurer Cartan equations for an ibntc%rface amplitude between the theories 7~ and
eqg:.Lomb—

T+ with Chan-Paton spaces (3.19).
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Now one can show that we have an A..-bifunctor

Be(T, 7% x Be(T°,TH) = Be(T,TT) (3.21)

fig:InterfaceBiFunctor

This is illustrated in Figure B7

Figure 37: Illustrating the bi-functor property: We take the “OPE” of both local boundary
operators on the interfaces, and of the interfaces, shown in (a), to produce a local operator on an
interface, shown in (b).

‘fig:InterfaceBiFt

An important special case is the case where 7~ is the trivial Theory so that Bt(7 —,7°) =

Br(TY). Then we see that an Interface in Br(T°, TT) gives an A -functor on categories
of Branes:

Br(T°) x Be(T,TH) — Be(TT) (3.22)

Physically: We are moving a 0,+ interface into a boundary and mapping a boundary
condition for Theory 7V to one for Theory 7.

Thus, our quest for parallel transport of Brane categories will be fulfilled if we can find
suitable Interfaces J[p] associated with paths between theories 7 and 7.

3.3.3 Homotopy of Branes and Interfaces

Part of the A.o-structure of the category of Branes and Interfaces is that the Hop spaces
have a differential: If 6 € Hop(B1,B2) then

Mi(6) = psti) (=0 1 (329

and M; o M; = 0, when this makes sense. We can thus define a notion of homotopy
equivalence of Branes (and entirely parallel definitions apply to Interfaces):

1. Two morphisms are homotopy equivalent if §; — do = M;(d3).

2. Two Branes are homotopy equivalent, denoted, B ~ B', if there are two Mj-closed
morphisms ¢ : B — B’ and ¢’ : B’ — B which are inverses up to homotopy. That is:

My(5,8") ~ Id My(8,6) ~ Id. (3.24)

where Id is the natural identity in @;& ® &£

40 —



3.3.4 An A, 2-Category Of Interfaces

A natural question to ask about the composition of Interfaces is whether it is associative.
In fact, to define the composite webs we need to choose positions on the x-axis of the two
domain walls and where the final interface should be located. These positions can influence
the set of composite webs. So we should really denote the product of Interfaces by

(3770 %4 307+)x_’07x0’+7x_7+ (3.25)

However, one can show that the product only depends on these positions up to homotopy
equivalence. The proof, which is somewhat long involves developing a theory of webs
which are time-dependent. Similarly, one can prove that the composition is associative, up

. i X lgebraicStructures
to homotopy equivalence. All the details are in [g].

The net result of this is that we have what might be called an “A.-2-category” struc-
ture:

1. The objects, or O-morphisms are the Theories.
2. The 1-morphisms between two Theories are Interfaces 3.

3. The 2-morphisms between two 1-morphisms are the boundary-changing operators on
the Interface.

fig:TwoCategoryInterfaces

This is illustrated in Figure BS:

Figure 38: Illustrating the two category of Theories, Interfaces, and boundary operators.

3.4 An example of categorical transport

We will now sketch how one can actually construct a parallel transport interface for a tame
vacuum homotopy:

oz {z@)})eCV—¢ (3.26)

which does not cross the exceptional walls €. We assume p(x) only varies on a compact
set [xg, x,].
Our goal is to define an Interface

Ip] € Be(THTT) (3.27)

— 41 —
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so that if p'(x) ~ ?(x) give homotopic paths of vacuum weights with fixed endpoints
then J[p!] and J[p?] are homotopy-equivalent Interfaces, and such that if we compose two
paths then

J[p'| W I[p?] ~ I[p" * ] (3.28)

where ~ means homotopy equivalence.

The key is to construct an analogous theory of curved webs where the ij edges have
tangents at (z,7) parallel to z;(x) — z;j(x). One crucial new feature emerges for curved
webs. Following the tangent vectors, sometimes the edges are forced to go to infinity at
finite values of x. These special values of x are known as binding points. We can have

N . . . fig:FUTURESTABLE-1 = . . ) ]
“future stable” binding points as in Figure B9 or “past stable” binding points as in Figure

|fig:PASTSTABLE-1
Aa0.

1= (M4}

Figure 39: Near a future stable binding point xg of type ij the edges of type ij and of type ji
asymptote to the dashed green line = xy. Figure (a) shows the behavior of edges of type ij and
Figure (b) shows the behavior of edges of type ji.

Figure 40: Near a past stable binding point xy of type ij the edges of type ij and of type ji
asymptote to the dashed green line x = zy. Figure (a) shows the behavior of edges of type ji and
Figure (b) shows the behavior of edges of type ij.

The binding points zg are characterized as the values of z for which
Zij(l‘o) € IRJF (329)

The future/past stability is determined by the sense in which Re (z;;(x)) passes through
zero as x passes through xg:

1. Future stable binding point: As x increases past g z;;(x) goes through the positive
imaginary axis in the counter-clockwise direction.
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2. Past stable binding point: As x increases past xg z;;(x) goes through the positive
imaginary axis in the clockwise direction.

Now we define Chan-Paton data of the desired Interface. For each binding point zg
of type ij introduce a matrix with chain-complex entries. It depends on whether zg is
future-stable or past stable:

Sij(xo) :==7Z -1+ Ryjei; future stable (3.30)

Sij(z0) =7 -1+ Rjeij past stable. (3.31)

We will refer to S;;(zo) as a categorified S;;j-factor, or just as an S;j-factor, for short. Then
we define the Chan-Paton factors of the Interface to be:

®jpevéijeiy =) Q) Silao) (3.32)

1#£] ToEY 45 Ukij

eq: TautCurvedCP . . X
where the tensor product on the RHS of (b.%?i 1s ordered from left to right by increasing
values of xg. The amplitudes for the Interface are simply given by evaluating the taut curved
web on the interior amplitude: p(teurveq)(€?). (This formula needs some interpretation. See

|AlgebraicStructures
[8] for defails.) In this way we get an Interface

Ilp] € Be(THTT). (3.33)

associated to the tame vacuum homotopy @(z). It satisfies the desired properties for
parallel transport.
. L eq:trspt-1
In particular, thanks to the composition property (b.bSi we can break up J[p] as a

. X fig:ElementaryInterfaces
product of Interfaces as in Figure B1:

-

X

~un ‘

-J = 2.,

Figure 41: Breaking up the path g into elementary paths we need only produce special interfaces
for “trivial” transport, and for transport across S-walls.

We need only construct then the Interfaces for crossing the S;; walls. These are denoted

ijff for past and future stable crossings, respectively. The amplitudes can be described
! L [AlgebraicStructures ».f .
quite explicitly. See [8]. The functors (-) X S;;’ are closely related to mutations.

3.4.1 Categorified S-Wall-Crossing

We now return to one of our motivations from Lecture 1.
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Given an Interface 7T associated with a path of theories the framed BPS degeneracies
are, by definition:
QO i) = Tregon,, (1) (3.34)
If we consider a path g, whose endpoint terminates with z(x), which crosses an ij
binding point as x increases past zg (and hence z(x) crosses an S;j-wall) then the matrix
of Witten indices
: ZQ [02], k, O)ero- (3.35)
jumps by
F-(1+ p;e Tii € Nij
Fr—>{ (L4 pijeig) - 2 € A (3.36)
F- (1= pjieij) @i € Yij
This is the framed wall-crossing. Now, since the Witten index of R;; is j;; we recognize
the formula for the change of the Interface

Ilpa] = s W SD (3.37)
as x crosses the binding point as a categorification of the S-wall crossing formula.

Example: Consider the Theory 7V=2 above, that is W ~ ¢ — z¢. The family is
parametrized by z € C' with C = C*. There are two massive vacua at ¢+ = +z1/2. We
choose a path p defined by z(z) in C* where = € [¢,1—¢] for € infinitesimally small and pos-
itive with z(z) = ¢1=29)7 There are two binding points of type +— at z = 1/3—01,1-07
and one binding point of type —+ at z = 2/3 — 0". They are all future stable. The wall-
crossing formula for the framed BPS indices amounts to a simple matrix identity:

e

where the three factors on the LHS reflect the wall-crossing across the three S;;-rays, and
the matrix on the right accounts for the monodromy of the vacua. The categorification of

:Spl-Fr-we
the wall-crossing identity (l!e}E}Si at Toast zsltlt}%e level of Chan-Paton complexes, is obtained
eq.: -Fr-W
by generalizing the left-hand-side of (3: 0:

z o\ (z zip)\( z o\ [e_¢c.
(Z[fﬂ Z) <0 Z )(Z[f2] Z)_<5+— 5++) (339)

Here £&_ = Z|[f1], while

577 - 5++ - Z ) Z[fl + fQ] (34.0)
is a complex with a degree one differential (note that f; + fo = 1) and
5_1__ = Z[fg] D Z[fg] D Z[fQ + 1] (3.41)

eq: CP-prod
is another complex with a degree one differential. The matrix of complexes (l3.&39; 1S quasi-
isomorphic to the categorified version of the monodromy:

0 Z[1-f]
(Z[f2] . ) (3.42)
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3.5 Categorified Wall-Crossing Ror 2d Solitons

The standard Wall—crossm% formula for BPS indices of 2d solitons was studied by Cecotti

ecotti:199
and Vafa in 2 [t 1s associated with a homotopy of vacuum Welghts so that the cyclic
If ig: CAT-CVWC-BPSRAYS

orders of the central charges gets reversed, as in Figure B2:

= =

. .

Figure 42: For the path of vacuum weights in Figure [fig: CAT-CVWC-1] we have BPS rays crossing
as in the standard marginal stability analysis of the two-dimensional wall-crossing formula. ‘ fig:CAT-CVWC-BPSE

ig:CAT-CVWC-1
We can reahze this by the explicit homotopy of vacuum weights shown in Figures iZIS

:CAT-CVWC-2
and iZ[ZI.

Figure 43: An example of a continuous path of vacuum weights crossing a wall of marginal
stability. Here 2z = a and z; = b with a,b real and ¢ < 0 < b. They do not depend on z, while
zj(x) = iz. We show typical vacuum weights for negative and positive x and the associated trivalent
vertex. All other vacuum weights are assumed to be independent of z. As x passes through zero
the vertex degenerates with z;; () and z;;(z) becoming real. Note that with this path of weights
the {i,j, k} form a positive half-plane fan in the negative half-plane, while {k, j,7} form a negative
half-plane fan in the positive half-plane. If we choose 2y < 0 < z, there is an associated interface
J.~. (We suppress the dependence on xy,x, in the notation.) The only vertices are divalent
vertices. These are all the standard amplitude K ! familiar from the identity Interface J9, except
for aZ3 € RY @ RV, fig:CAT-CVWC-1

The wall-crossing of the BPS indices is a special case of the famous Kontsevich-

Soibelman wall-crossing formula:

(U i eag) (U g ean) (4 pggege) = (1 g e) (1 i e) (L g ege) - (343)

which gives:

=t

2 = 0 340

) = wiy oy g
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Figure 44: In this figure the path of weights shown in Figure [fig:CAT-CVWC-1] is reversed.
Again, z; = a and z; = b with a,b real and a < 0 < b, but now z;(z) = —ixz. We show typical
vacuum weights for negative and positive z and the associated trivalent vertex. All other vacuum
weights are assumed to be independent of z. Note that with this path of weights the {4, j, k} form
a positive half-plane fan in the positive half-plane, while {k, j,i} form a negative half-plane fan in
the negative half-plane. In order to define an interface we choose initial and final points for the
path —x, < 0 < —xy so that, after translation, it can be composed with the path defining J.-.
The interface J~  has several nontrivial vertices. See Figure [fig:CAT-CVWC-8].

To categorify this we seek to define Interfaces:
j<> S %t(Te7TT) & j>< S %t(TT, Tz) (345)

(where the notation is meant to remind us how the half-plane fans are configured in the
negative and positive half-planes). Now, the essential statement constraining these In-
terfaces is that the composition of the Interfaces should be homotopy equivalent to the
identity Interface:

j<> & j>< ~ 307‘[ & /j>< IZ /j<> ~ 307’7‘ (346)

|AlgebraicStructures ~ ~ .
In [8] " we construct such Interfaces J~. and J.~ and show that the construction re-

quires the relation:

2 _ p)
2 _ pM)
Ry =Ry,
Rgi) — RZ%) = (Rij ® Rjk)Jr — (RZ’]’ & Rjk)i
_ (p+ — + —
- (Rl.j - Rl.j) ® (Rjk - Rjk,)
where the superscript & on the right hand side refers to the sign of (—1)f. Although
eq {Cat-2dwc
the categorified spectrum generator will jump, in general, the equation (b.ﬁ?) is clearly a
. T

. . . eq:W-indx-wc
categorification of the wall-crossing formulae (ES.EIZH.

3.6 Potential application to knot homology

(3.47)

To conclude, let us return to the motivation from knot homology. We consider the presen-
E?ti%%o%gl?oﬁ?fgle in Ms =R x C, with C =C, and G = SU(2) or G = SO(3) as in Figure
%Tgmlained, when the z, are constant the Morse complex proposed by Witten
is related to that of a Landau-Ginzburg theory called the Yang-Yang theory, described
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Sarroll:1999wr|

eq:YangYangW-1 |subsec:LG-Interface

by superpotential (T.45). As the z4(z!) evolve we have, by the ideas of Section §3.1 an
interface between LG theories.

In fact, the original theory at large negative !

corresponds to an oper with no sin-
gularities and is the trivial theory. Likewise, the final theory at large positive z! also
corresponds to an oper with no singularities and is again the trivial theory. Recall that an
Interface between the trivial theory and itself is nothing other than a chain complex. To
construct this complex we can proceed by breaking up, theEPath into elementary paths for

. . . fig:ElementaryInterfaces
which we compute elementary Interfaces as in Figure AT:

It is clear that there will be three kinds of elementary Interfaces we must understand:
Let us denote the YY theory appropriate to a fixed value of #! by T ({24}, {ka}). (It turns
out that boundary conditions at infinity forces the number q of chiral fields w; to be given
by g = % > o Ka, s0 there is no need to indicate ¢.)

1. If the path pailm braids two points z,, () and z,,(x) while all other points z,(z),
for a # aj,ay are fixed (on some small interval in x) then there will be braiding
Interfaces ’Ji(pa@) between the theory T ({z,}, {ks}) and itself. The superscript
indicates whether the braiding is clockwise or counterclockwise. These will be very
similar to the S-wall interfaces discussed above.

2. If two points z,, () and 24, (z) annihilate (and then necessarily k4, = kq,) then there
will be a fusing Interface between T ({zg},{kq}) and the theory with z,, and z,,

eliminated. Let us denote it by J<(a1,a2) These can probably be constructed using
lgebraicStructures

8], but the full details have not been worked

P

a theory of cluster webs described in |

—

out yet.

3. The creation Interface 37 (a1, az) will just be the time reverse of the fusing Interface.

fig:KNOT-HOM-4
Now, a tangle such as shown in Figure %ﬁgmqmered instruction of creation of
pairs of points, braidings of points, and annihilations of pairs of points. Let us denote the
corresponding ordered set of Interfaces for the tangle as J1,...,Jn for some N where each
Js is one of the four types of interfaces described above. Then we can use the interface
product X described above to construct

J(Tangle) :=7; X --- X Jy. (3.48)

This is an Interface between the trivial theory and itself. As just mentioned, it is therefore a
chain complex. Let us call it I/C\(L) We conjecture that the chain complexes so constructed
define a knot homology theory. The required double-grading comes about as follows: The
R;; and Chan-Paton data have the usual grading by (=1)7. The second grading comes
from integrating dW on cycles.
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