Measuring The Elliptic Genus

Gregory Moore

Rutgers

AndyFest, Harvard, July 31, 2015

Nicolaus Ginsparnicus of Ithaka

Infinite Genus Swallows The Dilaton!

Greg Moore and Andy Strominger School of Natural Sciences Institute for Advanced Study Princeton, N.J. 08540 USA This talk has its origins in the D1D5-system, where Andy has done such great work.

It was an important milestone on the road to AdS/CFT

$$\mathcal{C}_M = \operatorname{Sym}^M(X)$$

$$X = K3, T4$$

Holographically dual to IIB strings on

$$AdS_3 \times S^3 \times X$$

(we won't say anything about $X = S^3 \times S^1 \dots$)

Some recent activity has centered on question:

"Do more general sequences $\{\mathcal{C}_{\mathsf{M}}\}$ have holographic duals with weakly coupled gravity?"

This talk: AdS3/CFT2. CFT's are unitary and (for simplicity) have c=6M (4,4) supersymmetry:

Put necessary conditions on partition functions $Z(\mathcal{C}_M)$ for a holographic dual of an appropriate type to exist.

Keller; Hartman, Keller, Stoica; Haehl, Rangamani; Belin, Keller, Maloney;

Miranda Cheng

Nathan Benjamin

Shamit Kachru

Natalie Paquette

Our paper: Apply criterion of existence of a Hawking-Page phase transition to the elliptic genus.

Criterion goes back to Witten and a paper of Maldacena-Strominger.

p-th/9804085v3 11 May 1998

AdS₃ Black Holes and a Stringy Exclusion Principle

Juan Maldacena and Andrew Strominger

Department of Physics Harvard University Cambridge, MA 02138

Abstract

The duality relating near-horizon microstates of black holes obtained as orbifolds of a subset of AdS_3 to the states of a conformal field theory is analyzed in detail. The

In each modular region of the τ plane there is a unique lowest (negative) action instanton. Defining

$$S_{min}(\tau) \equiv \min \left[\frac{i\pi k}{2} \left(\frac{a\tau + b}{c\tau + d} - \frac{a\bar{\tau} + b}{c\bar{\tau} + d} \right) \right], \tag{3.23}$$

the leading semiclassical approximation to the partition function is

$$Z(\tau) = e^{-S_{min}(\tau)}. (3.24)$$

At low temperatures (large β) the partition function is dominated by (3.20) corresponding to a thermal gas in AdS_3 . At higher temperatures there is a transition to the black hole phase in which (3.16) dominates. This is a sharp first order phase transition in the limit $k \to \infty$ [20].

Reminder On Elliptic Genera

$$\mathcal{E}(\tau, z; \mathcal{C}) = \text{Tr}_{\mathcal{H}_{RR}} q^{L_0 - c/24} e^{2\pi i z J_0} \bar{q}^{\bar{L}_0 - c/24} e^{i\pi(J_0 - \bar{J}_0)}$$

$$\mathcal{E}(\tau, z; \mathcal{C}) = \sum_{n,\ell \in \mathbb{Z}} c(n, \ell; \mathcal{C}) q^n y^\ell$$

Modular object: Weak Jacobi form of weight zero and index m.

Extreme Polar Coefficient

$$\mathcal{E}(\tau, z; \mathcal{C}) = \mathfrak{e}(\mathcal{C})y^m + \cdots$$

Benjamin et. al. put constraints on coefficients of elliptic genera of a sequence $\{\mathcal{C}_{\mathsf{M}}\}$ so that it exhibits HP transition. A corollary:

A <u>necessary</u> condition for $\{\mathcal{C}_{M}\}$ to exhibit a HP transition is that

$$\mathfrak{e}(\mathcal{C}_M)$$
 has at most polynomial growth in M for M $\longrightarrow \infty$

Just a necessary condition.

Shamit's Question

"How <u>likely</u> is it for a sequence of CFT's $\{\mathcal{C}_{\mathsf{M}}\}$ to have a holographic dual with weakly coupled gravity?"

We'll now make that more precise, and give an answer.

Zamolodchikov Metric

Space of CFT's is thought to have a topology. So we can speak of continuous families and connected components.

At smooth points the space is thought to be a manifold and there is a canonical isomorphism:

$$\Psi: V^{1,1}(\mathcal{C}) \to T_{\mathcal{C}}\mathcal{M}$$

$$\frac{\partial}{\partial t}|_{0}S[t] = \int \mathcal{O} \quad \Psi(\mathcal{O}) = \frac{\partial}{\partial t}|_{0} = v \in T_{\mathcal{C}}\mathcal{M}$$

$$\langle \mathcal{O}(z_{1})\mathcal{O}(z_{2})\rangle := g_{\mathbf{Z}}(v,v)\frac{d^{2}z_{1}d^{2}z_{2}}{|z_{1}-z_{2}|^{4}}$$

Strategy

Suppose we have an ensemble \mathcal{E} of (4,4) CFTs:

$$\mathcal{E} = \coprod_M \mathcal{E}_M \qquad \mathcal{E}_M = \coprod_{\alpha} \mathcal{E}_{M,\alpha}$$

$$\sum_{\alpha} \operatorname{vol}_{Z}(\mathcal{E}_{M,\alpha}) < \infty$$

Then use the Z-measure to define a probability density on \mathcal{E}_{M} for fixed M.

Strategy – 2/2

Now suppose $\{\mathcal{C}_{\mathsf{M}}\}$ is a sequence drawn from \mathcal{E} .

$$p_M(\kappa,\ell) := \sum_{\mathfrak{e} \leq \kappa M^\ell} rac{\operatorname{vol}(\mathfrak{e}; \mathcal{E}_M)}{\operatorname{vol}(\mathcal{E}_M)}$$

$$\wp(\ell) := \lim_{M \to \infty} p_M(\kappa, \ell)$$

 $\wp(\ell)$ probability that a sequence drawn from ${\cal E}$ has extremal polar coefficient growing at most like a power M^ℓ

Multiplicative Ensembles

 $\mathfrak{e}(\mathcal{C})$ is constant on each component: $\mathcal{C} \in \mathcal{E}_{M,lpha}$

$$\mathfrak{e}(\mathcal{C}_1 \times \mathcal{C}_2) = \mathfrak{e}(\mathcal{C}_1)\mathfrak{e}(\mathcal{C}_2)$$

Definition: A *multiplicative ensemble* satisfies:

$$\operatorname{vol}(\mathcal{C}_1 \times \mathcal{C}_2) = \operatorname{vol}(\mathcal{C}_1) \operatorname{vol}(\mathcal{C}_2)$$

Definition: A CFT \mathcal{C} in a multiplicative ensemble is <u>prime</u> if it is not a product of CFT's (even up to deformation) each of which has m>0.

A Generating Function

 $\mathcal{C}_{m,lpha}$ prime CFT's with c= 6m, $\ lpha=1,\ldots,f_m$ $\mathfrak{e}(m,lpha)=\mathfrak{e}(\mathcal{C}_{m,lpha})$

$$v(m, \alpha) = \text{vol}_Z(\mathcal{C}(m, \alpha))$$

$$\prod_{m=1}^{\infty} \prod_{\alpha=1}^{f_m} \frac{1}{1 - v(m,\alpha)\mathfrak{e}(m,\alpha)^{-s}q^m} = 1 + \sum_{M=1}^{\infty} \xi(s;M)q^M$$

$$\xi(s; M) = \sum_{\mathfrak{e}=1}^{\infty} \frac{\operatorname{vol}(\mathfrak{e}; M)}{\mathfrak{e}^s}$$

Some Representative (?) Ensembles

We do not know what the space of (4,4) CFT's is

We do not even know how to classify compact hyperkähler manifolds!

$$S^m K3 := \operatorname{Hilb}^m(K3)$$
 $S^m T4 := \operatorname{Hilb}^{m+1}(T4)/T4$
 $\mathcal{E} = \{(S^1 X)^{n_1} \times \cdots \times (S^r X)^{n_r}\}$
 $X = K3 \qquad X = T4$
 $X \in \{K3, T4\}$

Moduli Spaces Of The Prime CFTs -1/2

These ensembles are multiplicative.

Primes:
$$S^m X$$

$$Q_{r,s} = II^{r+8s,r}$$

$$\mathcal{N}_{r+8s,r} = O_{\mathbb{Z}}(Q_{r,s}) \backslash O_{\mathbb{R}}(Q_{r,s}) / O(r+8s) \times O(r)$$

$$\mathcal{M}(X) = egin{cases} \mathcal{N}_{4,4} & X = T4 \\ \mathcal{N}_{20,4} & X = K3 \end{cases}$$

Moduli Spaces Of The Prime CFTs -2/2

One can derive $\mathcal{M}(S^m(X))$ using the <u>ATTRACTOR MECHANISM</u>:

Dijkgraaf; Seiberg & Witten

Begin with O(5,21) (or O(5,5)) moduli space of supergravity

Consider the subgroup fixing a primitive vector u ∈ II^{r+8s,r}

The conjugacy class only depends on $u^2 = 2m$

$$O_{\mathbb{Z}}(Q_{r,s},m)\backslash O_{\mathbb{R}}(Q_{r,s},m)/O(r+8s)\times O(r-1)$$

S^m(X) for m > 1 has ``extra'' hypermultiplet of blowup modes

$$(r,s) = egin{cases} (5,0) & X = T4 \\ (5,2) & X = K3 \end{cases}$$

A Generating Function

 $\mathcal{C}_{m,lpha}$ prime CFT's with c= 6m, $lpha=1,\ldots,f_m$

$$\mathfrak{e}(m,\alpha) = \mathfrak{e}(\mathcal{C}_{m,\alpha})$$

$$\prod_{m=1}^{\infty} \prod_{\alpha=1}^{f_m} \frac{1}{1 - v(m, \alpha) \mathfrak{e}(m, \alpha)^{-s} q^m} = 1 + \sum_{M=1}^{\infty} \xi(s; M) q^M$$
$$\xi(s; M) = \sum_{\mathfrak{e}=1}^{\infty} \frac{\operatorname{vol}(\mathfrak{e}; M)}{\mathfrak{e}^s}$$

Extreme Polar Coefficient

From the formula for the partition functions of symmetric product orbifolds we easily find

$$\mathfrak{e}(S^m K3) = m+1$$

For the torus we have to work harder, since the elliptic genus vanishes.

Fortunately, that work has been done, thanks to

Counting BPS Blackholes in Toroidal Type II String Theory

Juan Maldacena, 1,2 Gregory Moore, 1,3 and Andrew Strominger²

¹ School of Natural Sciences Institute for Advanced Study Princeton, NJ 08540

(Never let Andy submit papers!)

$$\mathfrak{e}(S^mT4) = m+1$$

A Generating Function

 $\mathcal{C}_{m,lpha}$ prime CFT's with c= 6m, $lpha=1,\ldots,f_m$

 $v(m, \alpha) = \text{vol}_{Z}(\mathcal{C}(m, \alpha))$

$$\prod_{m=1}^{\infty} \prod_{\alpha=1}^{f_m} \frac{1}{1 - v(m, \alpha) \mathfrak{e}(m, \alpha)^{-s} q^m} = 1 + \sum_{M=1}^{\infty} \xi(s; M) q^M$$
$$\xi(s; M) = \sum_{e=1}^{\infty} \frac{\operatorname{vol}(e; M)}{\mathfrak{e}^s}$$

Volumes

Using results from number theory, especially the "mass formulae" of Carl Ludwig Siegel, one can - with some nontrivial work -- compute the Z-volumes of these spaces. For example:

$$\operatorname{vol}_{\mathbb{Z}}(K3) =$$

$$\pi^{-40} \frac{(131)(283)(593)(617)(691)^2(3617)(43867)}{2^{40} \cdot 3^{34} \cdot 5^{15} \cdot 7^9 \cdot 11^5 \cdot 13^4 \cdot 17^3 \cdot 19^3 \cdot 23}$$

$$\cong 1.66 \times 10^{-61}$$

$$\operatorname{vol}_{Z}(S^{M}K3) = \rho M^{42} f_{13}(M)$$

$$f_{13}(M) = \prod_{\substack{p|M}} \frac{1 - p^{-12 - 12e_p(M)}}{1 - p^{-12}}$$

$$\rho = \pi^{-42} \frac{(103)(131)(283)(593)(617)(691)(3617)(43867)(2294797)}{2^{51} \cdot 3^{35} \cdot 5^{15} \cdot 7^{10} \cdot 11^5 \cdot 13^4 \cdot 17^3 \cdot 19^3 \cdot 23^2}$$

$$\approx 5.815 \times 10^{-63}$$

Result For Probabilities

$$H_{\ell}(s) := \lim_{M \to \infty} (M+1)^{\ell s} \frac{\xi(s;M)}{\xi(0;M)}$$

$$= \lim_{M \to \infty} \sum_{e=M+1}^{2^M} \frac{\operatorname{vol}(e; M)}{\operatorname{vol}(M)} \left(\frac{(M+1)^{\ell}}{e} \right)^s$$

$$\geq \lim_{M \to \infty} \kappa^{-s} p_M(\kappa, \ell) \geq 0$$

Result For Probabilities

$$H_{\ell}(s) := \lim_{M \to \infty} (M+1)^{\ell s} \frac{\xi(s;M)}{\xi(0;M)}$$

Claim: The limit exists for all nonnegative & and

$$H_{\ell}(s) = egin{cases} 1 & s = 0 \\ 0 & s > 0 \end{cases}$$
 $\Rightarrow \wp(\ell) = 0$

Conclusion: Almost every sequence $\{\mathcal{C}_{\mathsf{M}}\}$ does not have a holographic dual

Proof - 1/3

$$\prod_{m=1}^{\infty} \prod_{\alpha=1}^{f_m} \frac{1}{1 - v(m,\alpha)\mathfrak{e}(m,\alpha)^{-s}q^m} = 1 + \sum_{M=1}^{\infty} \xi(s;M)q^M$$

So ξ (s:M) is a sum over partitions:

$$M = \lambda_1 + \dots + \lambda_k$$

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$$

Statistics Of Partitions

For large M the distribution of partitions into k parts is sharply peaked:

Moreover the 'typical" partition has 'most' parts of order: $\lambda_j \cong \sqrt{M}$

Proof - 3/3

 $\xi(s;M)$ is dominated by:

$$\xi(s; M) \cong V(\sqrt{M})^{\sqrt{M}} (\sqrt{M})^{-s\sqrt{M}} e^{2\pi\sqrt{\frac{M}{6}}}$$

$$H_{\ell}(s) := \lim_{M \to \infty} (M+1)^{\ell s} \frac{\xi(s; M)}{\xi(0; M)}$$

$$= \lim_{M \to \infty} (M+1)^{\ell s} (\sqrt{M})^{-s\sqrt{M}}$$

$$= \begin{cases} 1 & s = 0 \\ 0 & s > 0 \end{cases}$$

Some Wild Speculation:

(Discussions with Shamit Kachru and Alex Maloney)

Siegel Mass Formula:

Two lattices Γ_1 and Γ_2 are in the same genus if

$$\Gamma_1 \oplus S \cong \Gamma_2 \oplus S$$

Even unimodular lattices of rank 8n form a single genus, and:

$$\sum_{\alpha} \frac{1}{|\operatorname{Aut}\Gamma_{\alpha}|} = \prod_{p} \alpha_{p}$$

A Natural Ensemble & Measure

Consider the ensemble of *holomorphic* CFT's.

(What would they be dual to? Presumably some version of chiral gravity in 3d!)

Holomorphic CFTs have c = 24n

They are completely rigid

$$Z = \sum_{\alpha} \frac{1}{|\operatorname{Aut}(\mathcal{C}_{\alpha})|} < \infty$$

$$\mu(\mathcal{C}_{\alpha}) = \frac{1}{Z} \frac{1}{|\operatorname{Aut}(\mathcal{C}_{\alpha})|}$$

Some Wild Speculation – 3/4

$$\mathcal{E}_N = \{ \mathcal{C}(\Gamma, G) | G \subset \operatorname{Aut}(\Gamma) \& \Gamma \in II^{24N} \}$$

(Speculation: This set exhausts the set of c=24N holomorphic CFTs.)

Speculation: Using results on the mass formula for lattices with nontrivial automorphism we can again prove that sequences $\{\mathcal{C}_{\mathsf{M}}\}$ with a holographic dual are measure zero.

Even Wilder Speculation – 4/4

Define a ``genus'' to be an equivalence class under tensoring with a lattice theory of chiral scalar fields.

$$\sum_{\alpha} \frac{1}{|\operatorname{Aut}\mathcal{C}(\Gamma,G)_{\alpha}|} = \prod_{p} \alpha_{p}^{CFT}$$

Where the local densities are computed by counting automorphisms of the vertex operator algebra localized at a prime p.

HAPPY BIRTHDAY ANDY!!