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1 Setting the Scene: Black Holes in String Com-
pactification and the Attractor Mechanism

I am going to talk about some connections between black holes and certain
things that come up in number theory. I specially consider the type II string
theory on a Calabi-Yau 3-fold X.

Spacetime = product = �
4 × X. (1)

When X is small (in Planck units), physics at ordinary energies is
described by a generalization of Einstein’s general relativity. Technically
“d = 4, N = 2 supergravity ”

Action =
1

16πGN

∫
d4R(g) + · · · · · · · · · · · ·︸ ︷︷ ︸

many other terms

(2)

These other terms include, typically, lots of abelian gauge fields: gener-
alizations of Maxwell’s theory of a connection on a principal U(1) bundle.

The underlying gauge fields are actually described by differential K-
theory - but that is an other story - The important thing for today is that
particles in the theory - or states in the Hilbert space of the quantum theory
carry electric and magnetic charge. The electric and magnetic charge lattice
is

K1(X) (II B)

K0(X) (II A)

for general Calabi-Yau we think of charge vectors as

γ ∈ H3(X;�) for IIB (3)

Now,

1. since we have a generalization of GR we can have black hole solutions,

2. since we have U(1) gauge fields we can have charged black hole solu-
tions.

3. Moreover since X ×�4 has covariantly constant spinors we can have
supersymmetric spherically symmetric charged black hole solutions.

The spacetime for these solutions turns out to take the following form:
Spherical Symmetry ⇒

ds2 = −e+2U(r)dt2 + e−2U(r)dt2s2 (4)
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The Calabi-Yau metric varies as a function of r.

Turns out: In the IIB description Kähler class = constant
Complex structure evolves by gradient flow.

To define the gradient flow we use gWeil-Peterson and

U = log |Z(γ, τ)|2

|Z(γ, τ)|2 =

∣∣∫ γ ∧ Ω
∣∣2∫

Ω ∧ Ω̄

where Ω = Ω3,0 = nowhere zero holomorphic 3-form that trivializes the
canonical bundle. Moreover, the flow always reaches an attractive fixed
point at the horizon of the black hole which is entirely determined by γ

Fixed point of the flow: τ∗(γ). δΩ has no overlap with γ. By Griffiths
transversality that means

γ ∈ H3,0(X,�) + H0,3(X,�) attractor equation

The integral charge γ determines an isolated point in complex structure
moduli space by this condition on the Hodge structure.

2 Some Examples of Attractors

The attractor equation can be explicitly analyzed for some simple Calabi-
Yau manifolds and the answer turns out to be nice.

a.) X = T 6 3-dimensional complex torus.

Find τ∗(γ) : X∗ is isogenous to a product of 3 elliptic curves Eτ0 ×
Eτ0 × Eτ0 . Moreover Eτ0 = �/�+ τ0� has complex multiplications.

In fact τ0 = i
√

I4(γ) where I4(γ) =quartic polynomial in γ, related to
E7,7,

Hodd(T 6;�)︸ ︷︷ ︸
R

spinor of S0(6, 6)

⊕ �
6,6︸︷︷︸

NS︸︷︷︸
vector of S0(6, 6)

= 56 dim. sympl. lattice
E7 ⊂ Sp(56) defined by I4
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b.) Let

X = S × T 2 with S = K3 surface
H3(X) ∼= H2(S) ⊕ H2(S)

γ = pmag ⊕ qel.

Ω3,0 = Ω2,0 ∧ dz

�′9,3 = H2(S;�) ⊃ NS(S) is orthogonal to 〈p, ρ〉 = Tp,q, rankp = 20

H2,0 ⊕ H0,2 = Tp,q ⊗� (5)

“Singular K3 surface” discussed by P.-S. + Shaf., Deligne, Shioda-
Inose. We call them “attractive K3 surfaces”.

Classified by Shioda-Inose:

1-1 correspondence with even integral symmetric bilinear forms
(

p2 p · q
p · q q2

)

Let

τp,q :=
p · q + i

√−Dp,q

p2
, Dp,q = (p · q)2 − p2q2

Morally, the S-I surface is Kummer
(
Eτp,q × Eτ ′

p,q

)
with τ ′ = −pq+i

√−D
2 .

Attractive CY = Sp,q × Eτp,q

Again elliptic curves with complex multiplication are selected by the
attractor mechanism.

What is about more general Calabi-Yau manifolds?

1. Rank 2 attractor H3,0 + H0,3 = T ⊗ � is rationally generated. (In
particular all rigid CY’s)

Discussion with M.Nori (1999): he told us he could prove these are
arithmetic. Nontrivial new examples? Hard to find.

2. For Eτ both τ and j(τ) are arithmetic. But τ → j(τ) is just the minor
map.

Conjecture: Not only ist the attractor variety arithmetic but also the
flat coordinates XI , FI are arithmetic. i.e. the minor map enjoys arithmetic
properties analogous to those of the j-function.
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3 Black Hole Degeneracies and BPS States

So far we discussed how we associate to a charge γ ∈ H3(X;�) a distin-
guished complex structure → distinguished CY → distinguished supergrav-
ity solution.

But string theory is a quantum mechanical theory.
Associated with strings on �4 × X, there should be a Hilbert space of

states and this Hilbert space is graded by electric and magnetic charge

H =
⊕

γ∈K1(X)

Hγ

(Aside: Actually, the Hilbert space is really a representation of a Heisen-
berg extension of K(X), but if TorsK(X) = 0 we can ignore this.)

Within each superselection sector Hγ . There is a distinguished subspace
the space of BPS states, HBPS

γ . It is a finite dimensional vectorspace.
In each sector there is a lower bound on the spectrum of the Hamiltonian

E ≥ |Z(γ)|
Definition: HBPS

γ = states which saturate the bound.

What is the connection to the black holes?
For large charges γ the black hole is a semiclassical description of a

quantum state.
The lightwaves in this room are a solution to Maxwell’s equations, but

really it is only a semiclassical description of a quantum state of photons.
For the BPS black holes HBPS

γ is a space of groundstates, so

SBPS = log dimHBPS
γ (6)

is a kind of entropy. Now, 30 years ago Beckstein and Hawking discovered
that the laws of black hole mechanics are formally equivalent to the laws of
thermodynamics and in this equivalence:

SBH =
Area Horizon

4
(7)

This was just a formal equivalence, so it was a great step forward when
Strominger and Varta pointed out that for certain supersymmetric 5D black
holes (K3×S1)

SBPS ∼ SBH

asymptotically for large charges.
This is why physicists are interested in determining SBPS as a function

of γ. From the classical supergravity point of view one evaluates

A

4
= π |Z(γ, τ∗(γ))|2 (8)
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In particular, for K3×T 2

A

4
= π

√−Dp,q = π
√

p2q2 − (p · q)2 (9)

So we have some definite prediction for asymptotics of log dimHBPS
γ

• Test this?

• What are the exact degeneracies like?

– governed by some smooth functions f : Hodd(X;�) → �

– or are they line coefficients of cusp forms for the modular group
where an

n(n−1)/2 can only be described as a probality distribution?

To say more we need some concrete description of HBPS
γ . There are

different descriptions of the same space related by “string dualities”.

BPS states ↔ wrapped branes

Where raughly speaking - a brane is a kind of (differential) K-homology
cycle submanifold, vector bundle with connections,. . .

Very roughly: We have three descriptions

(a.) γ ∈ H3(X,�) MSLAG(γ):

D3 branes wrap SLAG cycles in homology class γ.

HBPS
γ = H∗(MSLAG(γ)) (10)

(b.) Mirror picture γ̃ ∈ Hev(X̃,�) γ̃ determines Chern classes of coherent
sheaves (element of odd derived category) γ̃ = chE√Td

HBPS
γ = H∗(Msheaves(γ̃)) (11)

(c.) When X is K3 fibered there is a third description using the heterotic
string

IIA/K3 × T 2 ×�4 ∼= Het/T 6 ×�4

More generally

IIA/K3 → X ∼= Het/K3′ × T 2

↓
�1

(12)

under this isomorphism.
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If γ̃ corresponds to classes of sheaves supported on a fiber. Then

HBPS
γ̃ =

subspace of a Fock space
explicit, rigorous

construction using vertex
operator algebra techniques

Detailes would take too long. Important point is that the description is very
explicit and it is “easy” to count dimension in this case.

Example:

Hev(K3 × T 2) = H∗(K3) ⊕ H∗(K3)
γ̃ = pmag ⊕ qel

p = 0: supported on fiber.

Tduality → dimHBPS
(0,qel)

= d

(
1
2
q2
el

)

Where
∑

d(N)qN = 1
η24 counts levels in Fock spaces of 24 oscillators and is

directly related to Göttsche’s
∑

qNχ
(
HilbNK3

)
=

q

η24

For more general K3 fibrations the explicit vertex operator description gives
1

η24 → modular forms of negative weight. Formula has the slope

∑
g∈Γ

1
η

⎛
⎝∏

j

θ(εj(g))
θ(ε′j(g))

⎞
⎠

very explicit.
What about more general charges? Nothing exact is known with any

confidence for dimHBPS
γ in 4D. About 8 or 9 years ago DVV conjectured on

exact formula for K3 × T 2:

Hev(K3 × T 2) = H∗(K3) ⊕ H∗(K3)
p q

Now T duality says:

dimHBPS
γ = D

(
1
2
p2,

1
2
q2, p · q

)

Then DVV conjectured

∑
pNqMyL D(N,M,L) ?=

1
Φ

=
1

pq
∏

(n,m,l)>0 (1 − pnqmyl)c(nm,l)
(n,m, l) ∈ �2,1

(13)
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E��(q, y;K3) =
∑

c(n, l)qnyl =
1

Δ2
s

It has always been an intriguing formula - Gritsenko and Nikulin showed
that this is Δ2

s and Δs = Denom. product for a generalized Kac-Moody
algebra. On the other hand, the argument for it was not convincing even by
the standards of the physicists! So nobody believed it. But recently D. Shih,
A. Strominger, X. Yin gave a completely independent argument by relating
4D to better understood 5D degeneracies and using the rigorous formula

∑
pNE��(q, y; SymNX) =

1∏
n>0
m≥0

(1 − pnqmyl)c(nm,l)
(14)

So maybe we have to take it more seriously.
Puzzle: It is true that

D(N,M,L) ∼ eπ
√

4NM−L2
= eπ

√
p2q2−(p·q)2

but it also predicts non zero degeneracies for states with 4NM − L2 <
0 - which ought not to be there (physically: negative area) In fact - by
the Rademacher formula. These negative discriminant degeneries completly
determine the others.

1
Φ

=
∑

pN φN (q, y)︸ ︷︷ ︸
jacobi form of negative wt

φN (q, y) =
∑

fN,μ︸︷︷︸
apply Radermacher to this

Θμ

4 The OSV Conjecture

But what can we say about exact formulae for dimHBPS
γ for other Calabi-

Yau’s X?
There was no good idea until last when Ooguri-Strominger-Vafa follow-

ing up on work of DeWit, Cardoso, Mohaupt, made a striking conjecture.
To motivate it let’s rewrite the a.e.’s. Choose a symplectic basis αI , βI for
H3(X,�)

XI =
∫

αI

Ω FI =
∫

βI

Ω (15)

The a.e.’s are then

(α) ReXI = pI

(β) ReFI = qI

Solve (α):
XI = pI + iφI , φI real.
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Now there exists a prepontential

F (0)
(
XI

)
with FI = i

∂F (0)

∂XI
(16)

so the second equation can be written as

∂F (0)

∂φI
= −qI (17)

where we define

F (0)
(
pI , φI

)
:= 2ReF (0)

(
pI + iφI

)
(18)

Moreover the classical formula for the entropy turns out to be equivalent to:

S(pI , qI) = F (0) − φIqI (19)

We recognize the entropy is a Legendre transform of the prepotential! C-
DeW-M asked what happens to these formulae when we take into account
certain corrections to the Einstein equations which are predicted by string
theory.

Their answer: (They didn’t say it this way)

Let us work near a point of maximal unipotent monodromy, so it exists
distinguished period X0 �= 0, XA-remaining periods.

It is easier to say it in the mirror picture X̃: so we work at “large radius”.
Introduction of the Gromov-Witten potential

Ftop(λ, tA) ∼ iλ−2CABCtAtBtC + ic2,AtA +
∑
n≥0

β∈H2(X̃,�)

Nh,βe2πit·βλ2h−2

tA = XA/X0 = complexified Kähler class
Nh,β = Gromov-Witten invariant

Definition: F (
pI , φI

)
:= 2ReFtop

(
λ =

4π
p0 + iφ0

, tA =
pA + iφA

p0 + iφ0

)

the we just replace F (0) → F . ! Now recall dimHBPS
γ = eSBPS

OSV conjectured

dimHBPS(p, q) ?=
∫

dφ
∣∣Ψtop

(
pI + iφI

)∣∣2 e−qIφI

=
∫

dφeF−qIφI

Ψtop

(
XI

)
= eFtop(XI )

Formula must be put in heavy quotation marks
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• dimHBPS(p, q) � index-like sum “helicity supertrace”

• Ftop only exists as an asymptotic expansion for λ → 0

• Contour? measure?

Still, it is an intriguing formulae.
It would relate sheaves on Calabi-Yau manifolds to Gromov-Witten the-

ory. Rather like the conjectural relation between Donaldson-Thomas and
Gromov-Witten invariants (but not the same). For certain limits of charges
you can evaluate the integral reliably in saddle point approximation.

Moreover - for K3 fibered CY and certain special charges we can use the
heterotic dual to compute reliably the black hole degeneracies.

⇒ We can test the OSV conjecture in these cases.
This was done by A. Dabholkar, F. Denef, G. Moore, B. Pioline
Example: IIA/K3 × T 2 = Het/T 6

Ftop = −iλ−2Cabt
atbt1 − 24 log Δ(t1)

1. Evaluate integral on RHS: 16Î13

(
4π

√
N − 1

) (
1 + O

(
e−4π

√
N

))
Îν(z) = 2π

(
z
2π

)−ν
Iν(z)

2. Evaluate LHS: p24(N): Rademacher formula

p24(N) =
∞∑

c=1

Kc,N Î13

(
4π
c

√
N − 1

)
exact!

= 16
(
Î13(4π

√
N − 1) + 2−14eiπN Î13(2π

√
N − 1) + . . .

)

Thus the agreement goes well beyond the exspected exp(4π
√

N).
We get all orders in the 1

N expansion! But nonperturbatively in N its
wrong.

We checked in a large collection of examples of K3-fibred CY’s and found
broad agreement of this type.

There were some cases where the Bessel function comes out wrong - but
those cases are murky - the OSV conjecture is ill-defined because the charges
are such that the Ftop is evaluated for a singular CY. These examples have
the defect that they are “small black holes” (horizon area is classically zero,
ir is only nonzero due to quantum corrections.)

There is no test at present for “large black holes”.
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5 Summery/Conclusion

1. Attractor mechanism has some intriguing connection to arithmetic.
Physical significance of arithmetic properties?

2. New life for old DVV formula - but puzzles.

3. OSV conjecture needs significant improvement, but has a lot of truth
in it.
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