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Two Important Problems In
Mathematical Physics

1. Given a QFT what is the spectrum of the

Hamiltonian? and how do we compute forces,
scattering amplitudes, operator vev’s ?

2. Find solutions of Einstein’s equations,

and how can we solve Yang-Mills equations on
Einstein manifolds?



Today, | will have something to say about
each of these problems...

in the restricted case of d=4 quantum field
theories with ~ N=2 supersymmetry.”

(Twice as much supersymmetry as in potentially
realistic supersymmetric extensions of the
standard model.)



What we can say about Problem 1

n the past 5 years there has been much
orogress in understanding a portion of the
spectrum —the BPS spectrum” —

of these theories.

A corollary of this progress: many exact results
have been obtained for "'line operator’ and
“surface operator’” vacuum expectation values.



What we can say about Problem 2

It turns out that understanding the BPS
spectrum allows one to give very explicit
constructions of "hyperkahler metrics” on

certain manifolds associated to these
d=4, N=2 field theories.

Hyperkahler (HK) manifolds are Ricci flat, and
hence are solutions to Einstein’s equations.



Moreover, the results on surface
operators” lead to a construction of
solutions to natural generalizations of the
Yang-Mills equations on HK manifolds.
(Hyperholomorphic connections.)

(On a 4-dimensional HK manifold a
hyperholomorphic connection is the same thing as

a self-dual Yang-Mills instanton.)



New Int rrelatiOn-s,
Dlrectlhpgi&Prpblems

:l’,l.'l.._ |': n

A good developme__t sh'EJd epen up new questions
and directions of research and provide interesting
links to other lines of enqulry

It turns out that solvmgi ébove problems leads to
interesting relations toﬁ‘h o

Hitchin systemes, irttegrab1e systems, moduli
spaces of flat connet‘trons on surfaces, cluster
algebras, Telchmuller theory and the "higher
Teichmdller theory” 'of Fock & Goncharoy, ....
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d=4,N=2 Superalgebra
Poincare superalgebra 5 = 50 . 51

59 = poin(1,3) @ su(2Q)rp Du(l)g @ C- Z
51 — [(27 17 2)—I-l D (17 27 2)—1]

4Q4, Q4 Qppt =207 Prd’p

{QaAv QQB} — QeaﬁeABZ



Constraints on the Theory

Representation theory: Field and particle
multiplets

Lagrangians: Typically depend on very few
parameters for a given field content.

BPS Spectrum: Special subspace in the
Hilbert space of states



Example: /=2 Super-Yang-Mills
a=1,...,dimG
Gauge fields:
a
Au
Doublet of gluinos:
a
3,1 wa,Z
Complex adjoint scalars:

a

¥



Hamiltonian & Classical Vacua

The renormalizable Lagrangian is completely

determined up to a choice of Yang-Mills
coupling g~.

E=g2/[,dTr (EQ B \DW)
+972 [e A2 Tr ([0, ©]?)

— —

Classical Vacua: ) — B —= ()
p = Diag{al,...,a""} e t® C



Quantum Moduli Space of Vacua
Claim: The continuous vacuum degeneracy is
an exact property of the quantum theory:

1 Q) ueB:=txC/W
(Q(u)|Tre®[Q(uw)) = us

Physical properties depend on
the vacuum [2(u))



Low Energy: Abelian Gauge Theory

(Q(u)|¢|(u)) = Diag{a’,...,a"}

mmmp Unbroken gauge symmetry: U(l)r
(r= Rank = K-1)

Low energy theory is described by an
N=2 extension of Maxwell’s theory:

mmmmP [axwell fields F, 1=1,... r.i.e.
F e Q?(RY3,t) & their superpartners



Low-Energy Effective Action

N=2 susy constrains the low energy effective
action of the Maxwell theory to be of the form

S:fImT[JFI*FJ—I—ReTIJFIFJ+...

_ 017 | Ar
TIJ — 1
7 e%J

is a symmetric, holomorphic matrix function of the
vacuum parameters u.



Electro-magnetic Charges

The theory will also contain “dyonic particles’” —
particles with electric and magnetic charges for
the various Maxwell fields F, 1=1,... r.

(Magnetic, Electric) Charges:
e | _
vy=(p,qr) I=1,...,r

On general principles they are
in a symplectic lattice I,




Dirac Quantization:

<V1, ”Yz> — Z?{Clz,l — p&h,f c 7



BPS States

Superselection sectors: H —= @WEF%W

Taking the square of suitable Hermitian combinations of susy
generators and using the algebra shows that in sector J(,




The Central Charge Function

The central charge function is a linear function

/' = C
Z’71+’Y2 — Z’Yl T Z’Y2

This linear function depends holomorphically on the
vacuum manifold @. Denote it by Z(u).

On HSPS B = ‘27 )|

Knowing Z (u) is equivalent to know




General d=4, N=2 Theories

1. A moduli space B of quantum vacua,

(a.k.a. the "Coulomb branch”).

The low energy dynamics are described by an
effective =2 abelian gauge theory.

2. The Hilbert space is graded by an integral
lattice of charges, I, with integral

anti-symmetric form. There is a BPS subsector
with masses given exactly by |Z (u)].



So far, everything I've said follows
fairly straightforwardly from general
principles.

But how do we compute Zy(u) and
7,(u) as functions of u ?



Seiberg-Witten Curve

Seiberg & Witten showed (for SU(2) SYM) that

7(u) can be computed in terms of the periods of
a meromorphic differential form A on a

Riemann surface X both of which depend on u.

u = (Trp?)




The Promise of Seiberg-Witten Theory

So Seiberg & Witten showed how to determine
the LEEA exactly as a function of u, at least for

G=SU(2) SYM.

They also gave cogent arguments for the exact
BPS spectrum of this theory.

So it was natural to try to find the LEEA and the
BPS spectrum for other d=4 N'=2 theories.



Extensive subsequent work showed
that this picture indeed generalizes to

all known solutions for the LEEA of
N=2 field theory:



The family of Riemann
surfaces is usually called the
“Seiberg-Witten curve” and
the meromorphic differential
thereupon is the Seiberg-
Witten differential.”

°u

But, to this day, there is no general algorithm

for computing the Seiberg-Witten curve and
differential for a given N=2 field theory.



Singular Locus

Fﬂ =Sy

On a special complex

codimension one sublocus |
Bgngular  the curve
degenerates

new massless degrees of
freedom enhance the

Bsin ular
Maxwell theory 5

B




But what about the BPS spectrum?

In the 1990’s the BPS spectrum was only
determined in a handful of cases...

( SU(2) with (N=2 supersymmetric) quarks flavors: N; = 1,2,3,4, for
special masses: Bilal & Ferrari)

In the past 5 years there has been a great deal of

progress in understanding the BPS spectra in these
and infinitely many other =2 theories.

One key element of this progress has been a much-
improved understanding of the ~"wall-crossing
phenomenon.”
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Recall the space of BPS states is:
HEPS = {4 By = | Z,(u) |y}

It is finite dimensional.

It is a representation of so(3) & su(2);

It depends on u, since Z (u) depends on u.

But even the dimension can depend on u !



BPS Index

As in the index theory of Atiyah & Singer, 78"

is Z, graded by (-1)F so there is an index, in
this case a Witten index, which behaves much
better (piecewise constant in u):

Q(y) = Tryers (2J3)3(— 1)

J; is any generator of so(3)



The Wall-Crossing Phenomenon
But even the index can depend on u !
Q) = Q(y;u)

BPS particles can form bound states which
are themselves BPS!

Q@ «————— o
M1 72
R



Denef’s Boundstate Radius Formula

ng(u) _ <”71,72> |2y (u)+Z4, (u)

QIm(Zﬂ (U) Zyg (u)* )

The Z’s are functions of the moduli ue @

So the moduli space of vacua @ is divided
Into two regions:

<71772>Im(Z125) > () % <71772>Im(Z125) < 0



it FE ..n.,..m.. .
¥

S

(eI




Wall of Marginal Stability
! u

| ms
Consider a path of |/
vacua crossing the wall: u, " u

R

Exact binding energy:

Lyt ()] = (|2, (w)] + |2, (w)]) <0

MS(v1,72) = ulZy, (u) || Zy,(u)}



The Primitive Wall-Crossing Formula
(Denef & Moore, 2007)

Z1+Z
R12 — <717’72>2I|m1(2122£<)

Crossing the wall: Im(leék) 0

71 Y2
AH = (le) X /H,]iPS X HSZPS

2J12 + 1 = [{71,72)]




Non-Primitive Bound States

But this is not the full story, since the same

marginal stability wall holds for charges
N; v, and N, vy,

The full wall-crossing formula, which

describes all possible bound states which
can form is the Kontsevich-Soibelman
wall-crossing formula™



Line Defects

There are now several physical derivations of
this formula, but —in my view -- the best
derivation uses "line operators” — or more
properly - 'line defects.”

These are nonlocal objects associated with
dimension one subsets of spacetime.
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Interlude: Defects in Local QFT

Extended operators’” or defects” have been
playing an increasingly important role in recent
years in quantum field theory.

Pseudo-definition: Defects are local
disturbances supported on positive
codimension submanifolds of spacetime.



Examples of Defects

Example 1: d=0: Local Operators

Example 2: d=1: 'Line operators”

Gauge theory W(f) _ Pexp ng

Wilson line:

4d Gauge theory Sz
‘t Hooft loop: w

Example 3: Surface defects: Couple a 2-dimensional field
theory to an ambient theory. These 2d4d systems play an
important role later.

F ~msinfdfdey + - - -



Extended QFT and N-Categories

The inclusion of these extended objects
enriches the notion of quantum field theory.

Even in the case of topological field theory, the usual
formulation of Atiyah and Segal is enhanced to
“extended TQFT’s” leading to beautiful relations to
N-categories and the cobordism hypothesis” ...

D. Freed; D. Kazhdan; N. Reshetikhin; V. Turaev; L. Crane; Yetter; M. Kapranov;
Voevodsky; R. Lawrence; ). Baez +J. Dolan ; G. Segal; M. Hopkins, J. Lurie, C.
Teleman,L. Rozansky, K. Walker, A. Kapustin, N. Saulina,...



A CAUTION

=

SLIPPERY
SLOPE
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We will now use these line defects
to produce a physical derivation of
the Kontsevich-Soibelman
wall-crossing formula.

Gaiotto, Moore, Neitzke; Andriyash, Denef, Jafferis, Moore



Supersymmetric Line Defects

Our line defects willbeat R, x{0}c R'?

A line defect L is of type £ =e'’ if it preserves:
A 0 ABA
Qa _l_ CO@BQ

Example: L: = exp thxﬁ (29‘2 A

DN o™y
<l
~

Hr = Oyer+yoHi g

Physical picture for charge sector y: As if we inserted
an infinitely heavy BPS particle of charge y 7



Framed BPS Index

E

—Re{zﬁc/cwzm[ k> —Re(ny/C)

—Re(Z,/()

Framed BPS States are states in | , which
saturate the bound.

Q(L;vy) = Try, . (—1)2/s



Framed BPS Wall-Crossing

Piecewise constant in C and u, but has wall-crossing
across BPS walls’’ (only defined for C2(y)#= 0):

W, = {(u,C) : Zy(u)/¢ € R_}

BPS particle of charge y binds to the defect states in
charge sector 7. to make a new framed BPS state:

r o <’77’70>
Y 2ImZ-, (u) /¢ .




Halo Picture

But, particles of charge v, and indeed n 7y for any n>0
can bind in arbitrary numbers: they feel no relative
force, and hence there is an entire Fock space of

boundstates with halo particles of charges n .




Framed BPS Generating Function

F(L) =Y Q(Liv)X,

X”Yl X’Yz — (_1) <W1”72>X’Y1 +7Y2

(The sign takes account of the fact that some halo particles are bosonic or fermionic.)

When crossing a BPS wall W, the charge sector 7,
gains or loses a Fock space factor

X, —(1- (_1)<%'YC>X7)<%%>Q(’Y)X%



Description via Differential Operators

So the change of F(L) across a BPS wall W_ is
given by the action of a differential operator:

F(L) —» Ky F(L)
K, =(1- XW)D”

Dy Xy 1= <%,0>Xp



|
Derivation of the \:/vall-crossing formula

mzZ >0  MS(v1,72)  mZiZ <0




The Kontsevich-Soibelman Formula

Q(rivyi+rayz;—) _ Q(riy2+ravyz;+)
H/‘ KTl”Yl +7r27y2 - H\ K?“l’)’l +7r27y2

!
e W o

(D



Example 1: The Pentagon ldentity
' = Zy1 & Zys
(V1,72) = +1

K’VZ K’Vl — K’Vl K%-I-’Yz sz

Related to consistency of simple superconformal field
theories (“Argyres-Douglas theories”) coherence
theorems in category theory & associahedra, 5-term

dilogarithm identity, ...




Example 2
I' = Zry1 @ Zryo

(V1,72) = +2

KKy, =11 K% Tl

1) = K71K271—|-W2K371—|-272 S

ly =--- K2W1+3’Y2K’Y1+2’Y2K’YQ



The SU(2) Spectrum




(No) Wild Wall Conjecture

For other values of < y,, ¥,> rearranging K, K,
produces exponentially growing BPS degeneracies.

This is in conflict with basic thermodynamics of QFT,
and hence for physical reasons we expect that there
are never any such wild wall crossings”

This seems very nontrivial from the mathematical
viewpoint.



Only half the battle...

The wall crossing formula only describes the
CHANGE of the BPS spectrum across a wall of
marginal stability.

It does NOT determine the BPS spectrum!

We'll return to that in Part 8, for theories of
class S.



XX

el Political Advertisement
VieaEs

v

\‘\ 5

e

There are other physical
derivations of the KSWCF due to
Cecotti & Vafa and
Manschot, Pioline, & Sen.
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Strategy

Compactification on a circle of radius R leads to a
3-dimensional sigma model with target space ¥,

a hyperkahler manifold.

In the large R limit the metric can be solved for easily.
At finite R there are mysterious instanton corrections.

Finding the HK metric is equivalent to finding a
suitable set of functions on the twistor space of 9.

The required functions are solutions of an explicit
integral equation (resembling Zamolodchikov’s TBA).



Low Energy theory on R3 x S

(Seiberg & Witten)

3D sigma model with target space M

4D scalars reduce to 3d scalars: aI (513) c b

I _ I 7.4
Pe = fsl A4d$ Periodic
Wilson

Pm, I = 5551 (ADvI)4d$4 scalars



Seiberg-Witten Moduli Space W
[ Q@ R/217Z

l

> 5

( mm—) Reclation to integrable systems)




Semiflat Metric

The leading approximation in the R — oo
limit is straightforward to compute:

g* = da' Rlm7yyda’ + dzpgr—dz,
dzr = dom.1 — Tr7dp?

Singular on B,



Twistor Space

p
Z:= M x CP'SCP!
Fiber above (is M in complex structure

Hitchin Theorem: A HK metric g is equivalent to
a fiberwise holomorphic symplectic form

W € Q%/Cpl ® O(2)
we=Clwy +wz+lw. (eCH



UZT*"RQC*2C*x---x(C*

Contraction with y defines canonical "Darboux functions™ Y,
— (—1){72)
Y”Yl Y’VQ — ( 1) ’ Y’Yl +v2
Canonical holomorphic symplectic form:

wr = €?dlogY,, AdlogY,,



The "Darboux functions”

So we seek a suitable” holomorphic maps

V. UxCr —=T*"xC
such that
we = V*(wr) = €?dlog Y, A dlog s,
solves the problem.

yv(u, Pes Pm; C) _ y*(YW)



Darboux Functions for the Semiflat
Metric

For the semiflat metric one can solve for the
Darboux functions in a straightforward way:

y;;f = exp [WRC_le(U) + 10~ + 7TR<7W}

(Neitzke, Pioline, Vandoren)

Strategy: Find the quantum corrections to the metric
from the quantum corrections to the Darboux

functions: .
_ S uantumecorrection
Y, = sty



Riemann-Hilbert Problem

The desired properties of the exact functions

y’y(uy Pes Pm; C) _ y*(YV)

lead to a list of conditions which correspond
to a Riemann-Hilbert problem for %, on the

(-plane.



Solution Via Integral Equation

(Gaiotto, Moore, Neitzke: 2008)

+2_rer (7 7)Y )KS x log(1 = V)
Ky * f = [y dC'R(CGCNF(C)

W, = {C‘Zv/c < 0}



Remarks

1. Solving by iteration converges for large R for
sufficiently tame BPS spectrum.

(A typical field theory spectrum will be tame; a typical
black hole spectrum will NOT be tame!)

2. The HK metric carries an imprint” of the BPS
spectrum, and indeed the metric is smooth iff the
KSWCEF holds!

3. The coordinates %, are cluster coordinates.



Other Applications of the Darboux
Functions

The same functions allow us to write explicit
formulae for the vev’s of line defects:

(L¢)mem = ny Q(Le, 7)Y~ (m)

» Exact results on line defect vevs. (Example below).

» Deformation quantization of the algebra of
holomorphic functions on M



Generalized Darboux Functions &
Generalized Yang-Mills Equations

In a similar way, surface defects lead to a
generalization of Darboux functions.

These functions also satisfy an integral equation strongly
reminiscent of those used in inverse scattering theory.

Geometrically, these functions can be used to
construct hyperholomorphic connections on M

(A hyperholomorphic connection is one whose fieldstrength is
of type (1,1) in all complex structures. )
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We now turn to a rich set of examples of d=4,
N=2 theories,

the theories of class S.

(“S” is for six )

In these theories many physical quantities
have elegant descriptions in terms of Riemann
surfaces and flat connections.



The six-dimensional theories

Claim, based on string theory constructions:

There is a family of stable interacting field theories, S[g],

with six-dimensional (2,0) superconformal symmetry.
(Witten; Strominger; Seiberg).

These theories have not been constructed — even by
physical standards - but some characteristic properties of

these hypothetical theories can be deduced from their
relation to string theory and M-theory.

These properties will be treated as axiomatic. Later
they should be theorems.



Theories of Class S

Consider nonabelian (2,0) theory S[g] for "gauge algebra” g
The theory has half-BPS codimension two defects D

Compactify on a Riemann surface C with D,
inserted at punctures z,

so(5)r — so(3)r @‘30(2)3

|

Twist to preserve d=4,N=2

J

e, 1007 Type Il duals via
GMN, 2000 S [g (] D] _ Typelldualsvia
Y, 9 geometric engineering

Gaiotto, 2009 KLMVW 1996 i



Most natural’”’ theories are of class S:

For example, SU(K) N=2 SYM coupled to
“quark flavors”.

But there are also (infinitely many) theories of class S

with no (known) Lagrangian, e.g. Argyres-Douglas
theories, or the trinion theories of (Gaiotto, 2009).



Relation to Hitchin systems

- Slgl o
N

S[Q,CD 5D g SYM

NZe

F+ R*[p,¢] =0
c-Model: RLQ — M 61490 —




Effects of Defects

o~ et L >

Physics depends on choice of éa & ta

Physics of these defects is still being understood: (Gaiotto,
Moore, Tachikawa; Chacaltana, Distler, Tachikawa)



Relation to Flat Complex Gauge Fields

If (gp, A) solves the Hitchin equations then

A= <o+ A+ RGP
is flat:

F=dA+ANA=0

MC =~ a moduli space of flat SL(K,C) connections.



We will now show how
Seiberg-Witten curve & differential A
Charge lattice & Coulomb branch 3

BPS states

Line & surface defects

can all be formulated geometrically in terms of

the geometry and topology of the UV curve C
and its associated flat connection 4.



UV Curve

Seiberg-Witten Curve ‘1'
Y det(A — ¢(2,2)) =0 C T*C

A = pdq >\|§] SW differential

For g=su(K) Tm: 2 —C
5 X is a K-fold branched cover
\
C

AN E0(2) + - + ok (2) = 0




Coulomb Branch & Charge Lattice
3 X
oY

E?aur::?b B = {u — (¢27 . °7¢K)}

{ Meromorphic differential with prescribed singularities at z, }

Local system of charges ' = H1 (Z; Z)

(Actually, I' is a subquotient. Ignore that for this talk. )




BPS States: Geometrical Picture

Label the sheets of the covering > — C by i,j,=1,..., K.

A WKB path of phase ¢ is an integral path on C

<)\z — )\j, 8t> — 67;19

where i, j are two sheets of the covering.

Generic WKB paths have both
ends on singular points z,

Separating WKB paths begin on
branch points, and for generic ¢,
end on singular points




WKB paths generalize the trajectories of quadratic
differentials, of importance in Teichmuller theory:
(Thurston, Jenkins, Strebel,Zorich,....)

A+ o =0

!

NS NE=20(2) 4+ 4 e (2) =



String Webs —1/4

But at critical values of 3=3_ “'string webs appear”:




String Webs — 2/4

Closed WKB path




String Webs — 4/4

At higher rank, we get string vk
junctions at critical values of 5: 4 jk

A string web’’ is a union of WKB paths with
endpoints on branchpoints or such junctions.

These webs lift to closed cycles y in X and
represent BPS states with

7oy = ggv A\ = Ve

Z|



Line defects in S[ g,C,D]

6D theory S[g] has supersymmetric
surface defects:

c=R x {0} x g

L Line defect in 4d labeled by
@,C a closed path (.




Line Defect VEVs
(TrLgc) =2, Q(Lg,¢, 7)Yy = TrP exp pr

Example: SU(2) SYM Wilson line
L¢ = exp Jg, 5 (% + A+ %%_ﬁ)

Large R limit
gives expected

terms l

<Tr2LC> T \/y7m+ve



Canonical Surface Defect in S[g,C,D]

For z € C we have a canonical surface defect S,

n L C
O-oi

This is a 2d-4d system. The QFT on the surface S,
is a d=2 susy theory whose massive vacua are naturally
identified with the points on the SW curve covering z.

o =RU x {0} x {z}

There are many exact results for S,. As an example we turn to
spectral networks...
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As we have emphasized, the WCF does
not give us the BPS spectrum.

For theories of class S we can solve this
problem — at least in principle — with the
technique of spectral networks.



What are Spectral Networks ?

Spectral networks are combinatorial
objects associated to a covering of Riemann
surfaces 2 — C




Spectral networks are defined by the
physics of two-dimensional solitons on the
surface defect s,

Paths in the network are constructed from WKB
paths of phase ¢ according to known local rules

The combinatorial method for extracting the
BPS spectrum in theories of class S is based on
the behavior under variation of the phase ¢



Movies:
http://www.ma.utexas.edu/users/neitzke/spectral-
network-movies/

MO

W< 1,



Movies: http://www.ma.utexas.edu/users/neitzke/spectral-network-movies/

¥ < ¥, ¥ >






Finding the BPS Spectrum

One can write very explicit formulae

for the BPS degeneracies ()(y) in
terms of the combinatorics of the

change of the spectral network.

GMN, Spectral Networks, 1204.4824



Mathematical Applications of
Spectral Networks

Spectral networks are the essential data to construct
a symplectic nonabelianization map”

Uy M(E,GL(1);m) - Mp(C,GL(K);m).
vabelian N vnonabelian _ d_l_ A

They thereby construct a system of coordinates
on moduli spaces of flat connections which

generalize the cluster coordinates of Thurston,
Penner, Fock, Fock and Goncharov.



Application to WKB Theory

The equation for the flat sections
d _
(£ +A) T =0

is an ODE generalizing the Schrodinger equation (K=2 cover)

The asymptotics for / — 0, co is a problem in WKB
theory. K>2 is a nontrivial extension of the K=2 case.

The spectral network can be interpreted as the
network of Stokes lines for the {—0, co asymptotics
of the differential equation.
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Conclusion: Main Results

1. A good, physical, understanding of wall crossing.
Some understanding of the computation of the BPS
spectrum, at least for class S.

2. A new construction of hyperkahler metrics and
hyperholomorphic connections.

3. Nontrivial results on line and surface defects in
theories of class S: Vev’s and associated BPS states.

4. Theories of class S define a conformal field theory
with values in d=4 N=2 quantum field theories.”
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Conclusion:
Some Future Directions
& Open Problems

1. Make the spectral network techniqgue more
effective. Spectrum Generator?

2. Geography problem: How extensive is the class S?
Can we classify d=4 N=2 theories?

3. Can the method for producing HK metrics give an
explicit nontrivial metric on K3 surfaces?

4. + many, many more.



Conclusion: 3 Main Messages

1. Seiberg and Witten’s breakthrough in 1994,
opened up many interesting problems. Some were
quickly solved, but some remained stubbornly open.

But the past five years has witnessed a renaissance of
the subject, with a much deeper understanding of the
BPS spectrum and the line and surface defects in

these theories.




Conclusions: Main Messages

2. This progress has involved nontrivial and

surprising connections to other aspects of Physical
Mathematics:

Hyperkahler geometry, cluster algebras, moduli
spaces of flat connections, Hitchin systems,
instantons, integrable systems, Teichmdller theory, ...




Conclusions: Main Messages

3. There are nontrivial superconformal fixed points in
6 dimensions.

(They were predicted many years ago from string theory.)

We have seen that the mere existence of these theories leads
to a host of nontrivial results in qguantum field theory.

Still, formulating 6-dimensional superconformal theories in a
mathematically precise way remains an outstanding problem
in Physical Mathematics.




A Central Unanswered Question

Can we constructS[g | ?
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Generalized Conformal Field Theory

Twisting

; For some C, D there are subtleties in the 4d limit.

S[g,C,D] only depends on
the conformal structure of C.

“Conformal field theory valued in d=4 N=2 field theories”
(Moore & Tachikawa)

Space of coupling constants = M, |

This is the essential fact behind the AGT conjecture,
and other connections to 2d conformal field theory.



Gaiotto Gluing Conjecture -A

D. Gaiotto, ~'N=2 Dualities”

Slogan: Gauging = Gluing
D, LR

=0

P:O P#

Gauge the diagonal G < G| x G; symmetry with q = e?™* :

S[ga CL7 DL] XG.q S[Q) CR) DR]
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Gaiotto Gluing Conjecture - B

Glued surface: zp2r =q wmp (7 X, CR
S[Q,CL ><q CR,DLR] — SL XG,q SR

Nevertheless, there are situations where one gauges just
a subgroup — the physics here could be better
understood. (Gaiotto, Moore, Tachikawa)



