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1. Introduction

2D string theory ha.s Ehus far bcen most thoroughlS studied in a specific background,

defined by the standard gaussian model coupled to c=25 Liouville theory. An important

open problem is to obtain an equally complete description of strings moving in other 2D

backgrounds.

One approach to this problem is based on perturbing the free action for two uncom-

pactified real fields ~, .~':

5'Liou~~ille ~' SGtin~sidn = d2z 9 1 ~0~~~ -}' Q ~Rt9~ ~-' c~2Z 9 1 ~~-rY~2 t1.1)
8~ 8~r 8~r

by an operator ~ ear ~C1 i, where Oi are operators in the c=1 gaussian model. In this paper

Rre study the example of the Euclidean Sine-Gordon model coupled to 2D gravity:

1

8 7 g (1.2)

-}- dZz g 1 (OX)2 -f- me~~ cos(PX/~~
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Here g is some background metric. In $at space the Sine-Gordon model is not conformal

for ~n ~ 0. Coupling the Sine-Gordon model to gravity produces anontrivial c = 26

conformal field theory. General covariance (a.nd hence conformal invariance is maintained

in the quantum theory for ~ _ ~, (~ _ ~, ~ = y(1 — 1p~~2~. We generally use the

notation, conventions, (and insights) of [1] o T'he c = 1 model in 2D gravity is reviewed in

~2~•

Correlation functions in the theory (1.2) will be defined by "conformal perturbation

theory." That is, introducing the verte~c operator

P —

we define correlation functions at rrt ~ 0 by the series

T13,ni~-ns ( `
~TTVQie2m(jP+j-p)1 ~ 

ni+ns 1 1~~ V4i~VP~~1lV P~~~! ~1.4~
11 ~ nl'n2>O 2 1t1.'f12.

The coefficients in the expansion (1.4) are calculated in the standard background with

Tr:. = 0 but µ ~ 0. Recent results on the c=1 matrix model have yielded a complete set of

formulae for c=1 correlators (3). In this paper we use these formulae to learn about the

theory (1.2). Our main result is the phase diagram shown in figs.2 and 3, and described

in section four. Some physical interpretations of this diagram are proposed in section five.



Z. Flown and phase transitions in 2D gravity

In this section we review some (will-known) a.8pecta of coupling conata~nt flows in the

c < 1 models coupled to 2D gravity. The discussion is meant to put the phase transitions

discussed in sections four and five into perspective.

The continuum approach to the c < 1 models begins With a "(p, q} theory" which is a

tensor product of a Liouville theory With the minimal model Mp,q. Perturbations around

this theory are defined by an action

,5 = sP,Q ~ ~ 'fir, k or, k

r,k

(2a1)

where the O,.,k are KPZ dressed operators in the Kac table, the latter being parametrized as

in [1~. One of the couplings r,.,~. must be nonzero to "set the scale," i.e., some operator must

provide an infrared cutoff on the functional integral over surfaces. Correlation functions

for nearby perturbed theories are defined by conformal perturbation expansions such as

(1.4). The nature of such eacpansions is dif~°icult to analyze in the continuum theory since

the coefficients are difficult to compute. Entez~ the anatrix ~nodelo

The solution of the continuum limit of the "q-matrix model" indicates the existence

of an infinite dimensional space of coupling constants, namely the space of real tuples

{t,.,k}, 1 < r < q, 0 < k, with all but finitely many is = 0 [4]. There is a certain amount

of evidence (5] that the continuum matru model defined by the tuple t~pk = g~Q.~~.~~ is

identical to the theory Sp,Q. Just as the path integral for (2.1) is ill-defined if ~~.,k = 0,

the (p, q~ string equation is singular for t,.,~ — t~pk = Oe The mapping from tr'k OHO T~9~ is
9

nontrivial and has only been partially worked out in some special cases (6~.

The advantage of the matrix model formulation is that the string equation and KP

flow give a complete mathematical description of the crossover phenomena for coupling

constant flow between the neighborhoods of two (p, q~ "fixed points." Choosing some

coupling, say x = tro~ko ~ to set the scale, the solution of the string equation u(x;t,.,k) will

be an analytic power series in the other couplings tr,~. After proper identification of the

is with the is this power series should correspond to conformal perturbation theory. At

genus zero the string equations reduce to a~gebraac equations for u. Hence, the power series

in an~~ ~_~~,,upling rill in general have a finite radius of convergence. Therefore, if we make

any coupling suf~'iciently large the physical description of the system must change. Let us

consider two examples of this.
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Ezampl~ 1. The flow from Ising to pure gravity in the absence of a magnetic field is

described by the equation

Letting x set the scale, for small t we may identify x with the cosmological conat~.nt a,nd i

with the coupling of the thermal operator E. The physical solution of (2.2) is determined

by the branch u = 213 for x --~► oo. Fort < ~~ .= (27x/4~1~3, u(z, t) is a convergent
power series in ~. In this regime the continuum description of the theory uses the action
S = SL;o„~~ille ~' Slsiag ~' t f e~~E. 1 Thus, fort < t~ we are perturbing the Icing fixed point
by a relevant operator. beyond the ~~dius of conaer~ence the elution to ~2.2) ffiu~t be
expanded as a convergent power series in (x/ts ~1 ~Z . We are now in the neighborhood of
the (2, 3) fixed point and in the continuum theory we should describe this power series
a.s a perturbation of the pure c = 26 Liouville theory by a certain irrelevant operator.
Thus the action is S = SL;ou,•ille -~- t -3~2 , J~ O where O is an operator in the c = 26 Liouville
theory. Although the solution to (2.2~ is analytic in the neighborhood oft = t~ the ~-model
description of the physics changes.

Example 2. It is easy to find examples of flows in coupling constants where there
must be ~ true phase transition. Consider the string equation of the (2, 2~n — 1) theories:
u~"g -f- ~~>~ tt~8 = x where we let to = x set the scale. Consider the graph of the function
f (u) = ti'n -~- ~i~l t;u4 as a function of u, and denote the value of f at the local minimum
with the largest value of u by h(ti~. If, as we change the couplings t;, h(t;) crosses through
x from below there will be a phase transition. In this case, if we simply analytically
continue the specific heat around the branch point in complex t-space u will take complex
values.

These examples suggest a general idea, which is borne out by the results of this
paper. There is a strong analogy between the coordinates T,.~k on "theory-space," a.n.d
weighted projective coordinates of complex manifold theory. First, gzavitationally dressed
operators depend on the Liouville zero mode only through a single e~rponential factor, hence
the overall normalization of the is can be changed by a shift of ~. Second, as we have
remarked, the theory is singular if all the T,.,~ = 0, reminiscent of the fact that the origin
of Cn~g is in no sense a point of ~P'~ o Third, in projective space regions in which a given
coorclinate can be scaled to one provide coordinate patches for the manifold. In T-space,

1 Actually, this is only true for small t, and the results of [6~ show that there is more to
understand in this example.
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different coordinate patches are defined by letting different operators Or,~ set the scale.
In example 1 above the change of expansion parameters from t/sl/s to z/t~ ie analogous
to the change of coordinates between two coordinate patches of weighted pro jeeti~e space.
In general, different coordinate patches correspond to different phases of the same theory.

Let us apply some of these ideas to the Sine-Gordon model. Depending on the relative
magnitudes of rn and µ~ either the cosmological constant or the Sine-Gordon interaction
will set the scale [1~. If the cosmological cone~ant sets the scale we e~cpect that correls~ors
will be expressed as power series in m2~cp'~. For example the genus aero partition fuaetion
is Z = z µzlogµ -}- µ2 f (mZµP—Z) where f ~z) has an analytic e~ansion around zero. (3n the
other hand, if µ is sma11 m sets the scale, and we expand in µ(my)-1~~2—p~. In section five
below we will find that these expectations are in accord with matrix model calculations.
We find a surprise in that there is a phase transition, possibly analogous to that of exaaaple
2 above, for 0 < p < 1 and for p > 2, while the model behaves much more like example 1
above for 1 < ~ < 2. In section five we offer a physical picture that describes these phase
transitions in terms of semiclassical field thear~.

Finally, we conclude with a few Pemarks on the relation between coupling-constant
flow and renormalization gzoup flow. A point where all but one ~ va~ushes is rather like
a fixed point of the renormalization group. At the fined points we have swell-defined
notion of matter central charge c I and bare matter-field dimensions. As in. flat spaces the
operators perturbing away from the fixed points may be divided into relevant, marginal,
and irrelevant. Since the Lionville field ~i defines the local scale, the Lionville charge ~ of
the KPZ dressed operator e~~~ t is positive for relevant, zero for marginal, and negative
for irrelevant operators. Thus, relevant operators grow in the infrared ~ --~ -~-oo, etc.
The classification of such operators is exactly the same as ~.n flat space since b~ the KPZ
formula and Seiberg's bound [l~: ~ _ ~ 1 — 1 -E- Qz (D,t —1) gives ~' < 0 for ~'~ > 1

and vice versa. In the Sine-Gordon theory for infinitesimal m the operator e'p'r/~ is
relevant for p < 2, marginal for p = 2 and irrelevant for p > 2. More precisely, in flat space
the renormalization group flow in the neighborhood of (m, p~ _ ~0, 2, is given by the $ow
diagram of the Kosterlitz-Thouless model ~7,e

Ordinary renormalization group flow is dissipative [8~. In gravity one may note, phe-
nomenc~~vgically, that tie flows by relevant perturbations of the q-matrix model between
two fixed points always increa~ea ct , while c f f = c — 240min always decreases. Con-
versely, c' ~ f always increases under irrelevant perturbations. Thus, if we perturb by an

4



irrelevant operator and we find a phase transition we mss expect that ~ f~ ha.a increased

provided we have a phase transition to another surface theory. We will show in section four

that one can perturb the Sing-Gordon model by an irrelevant operator p > 2 to obtain a

phase transition. The extremely interesting question of ~-hether this is s phase transition

to a c f f > 1 model remains open.

s. The partition function for m ~ 0.

In this section we describe the result of a matrix model calculation of a one point

function of the form (1.4). For technical reasons it is conYenient to calculate the correlation

functions of the vertex operators TAP = r~p VtP, where p > 0 here and hereafter. We

define the coupling constant

a = a r~ p~ rrir(P) (3.1)

Using the calculational techniques of [3] and conformal perturbation theory we have found

an explicit nonperturbative expression for the one-point function of the cosmological con-

sta.nt ~?~ } a - 8µ ~, where

L? — \ea~p+~~ p~ (3.2)

is the partition function. The somewhat complicated formula is given in equation (A.6) of

appendix A. In particular, defining a certain function, the "bounce factor" RQ by:

RQ _ ~—I41 ~ e"`~~ cos~~ (2 -}- iµ — ~4~~~rt 2 — ifs ~' ~q~~ ~3.3)
~r 2

we find that the amplitude

may be expressed as a polynomial in the RQ evaluated for q's at various integer multiples

of p. See eq. (A.1) for more detail.
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J.1. String Perturbation Theory

In order to study the partition function on a feed topology we must expand the

nonperturbative answer (A.1) in 1/µ. This may be obtained from the aBymptoticeapanaion

for the bounce factor:

R ~ N°°e2 _o + inpn-}~1 d n
~lo9µ -~- ~o> = 1 -~- pZ -~ ... (3.5)

~ P ~ ~ (n ~ 1 !(d/~, µ
n>1 ~~

where ~i~ denotes the expansion

,~~ ~,r (-~~kB2k r1 _ 2-z~+i, 1 .., Re~(1 - iµ) -109 X3.6)
~.~e 2~ ~ ~Zk 2
k>1

~ is the di~amma function and B2k are Bernoulli numbers.

Substitution of (3.5~ into equation (A.1) for An(µ, p~ gives an asymptotic expansion

of the form:

Anlµ~~~ ̂ ' ~ 2ra 11-~-2h`4n~P~

h>o ~

(3.?)

The very statement of KPZ scaling, namely, that the above expansion begins at order

~,n_ i is somewhat miraculous from the point of view of the matru model and implies the

existence of nontrivial combinatorial identities on Bernoulli numbers. Nevertheless we may

extract from (3.5) and (A.1) the following facts about the correlation function:

1. At each order of perturbation theory A~(pj is a pol~noaual in p of degree 4n-2-~-4h.

2. p = 0 is a zero of An(p) of order 2n. Indeed, as p -~ 0:

An~l1'~P~ ~ P2n (a ~2n-iRe,~(Z — i jt~

a~ cs.8~
2n (2n -- 2~a (2n)1

~' P µ~~-i ~ 24~z~.~x ~- 
...

3. The value ,p = 1 is a root of order n of .~n(p).

4. Moreover, the value ~ = 2 is a root of order 1 for A~ for h > 1, and in general for

rr~. a positive integer, p = m is a root of A~(p~ for h > 2 (1 -}- n(rn - 2~~.

St~t,emer ~. ~ ; ~ is easily proved by examination of (3.5). The expansion of the term in

the exponent in powers pa lµb has a maximum value of a - b for the term p2 lµ. In ~3J the

amplitude (?o ~k 1 ?'P; } was shown to be a polynomial in bounce factors Rp. It follows
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that at genus h the amplitude is a polynomial in p; of degree 2k — 2 -}- 4h. ~ A apetial case

of this result is statement one.

Statement two is easily proved frokm the low energy theorem in [3). Ae p —+ 0 we

have ?"p —~ pTu =p8µ (except in the genus afro two-point function). Statement (3.8)

immediately follows from the well-knov~n value of the specific heat [lOJ.

The proof of statements three and four is sketched in appendi~c B.

~.t. The genus zero amplitude

We now focus on the spherical topology. The above remarks show that An=°(p)

(Zn — 2~~p2i(1— p~'~Qn~p~ where Qn is a polgnomial of order n — 2 with Qn(0)~ = 1. Finding

a formula for this polynomial has proceed to be a rather difficult problem. Explicitly

expanding the formula (A.l) we find, e=perimentally, the curious result _.~

n-2
An=o(P) _(2,►,L _ 2~~P2"tl _ P~n ~ C1 — P~ri,

i=1 (3.9)

~jn~"n = _ ~,~,nP-2n+zn~P2n~1 _ P~" r(nCl P~ ~' n — 2~
~ p p} I'('LC1 — P~ ~' 1~

where r; = 1 -I- i/n. We emphasize that this is a phenomenological formula, checked for

1 < n < 11. VVe have made many unsuccessful attempts to prove (3.9) for all n. s Two

remarks might be useful to anyone else who tries:

1. ~y e~rplicit calculation, the special roots r; are not roots of the genus one amplitude. ~

2. The result ca.n be summarized as a "Ward identity" similar to those which have been

intensively studied recently in central New Jersey. Specifically, defining 7p = p7p we may

use the boundary-operator Ward-identity [12] [13] to restate the result (3.9) as

for0<E<lo
In section four we will simply assume that (3.9) holds for all n,p a.nd earplore the

physical consequences.

2 This confirms the observation of [9~ that at large energies the effective string coupling in the

c = 1 model is 9~// ^' µ
3 We thank R. Plessey for his participation in several of these efforts.

~ Thus the existence of these roots is reminiscent of the roots of the chromatic polynomial

predicted by the Beraha conjecture [11].



J.J. The special caea p = 1,2

Using discrete tachyon "Ward identities' recently derived in (13l we can give a much

snore complete description of the partition function and correlation functions for the special

cases of aSing-Gordon background with p = 1, 2.

At p = 1 the dependence on a is polynomial. Correlation functions at a ~ 0 are easily

related to correlation functions at a = 0. The general formula ezpresaing this relation is

somewhat long, so we simply quote a typical result

t.~-o.r9?- ~ea71~-a?_, } ~ zF'i(~ — 9' 1— q;1; a
sµ—y,{?o~gT_g} (3v11)

for q a positive integer.

At p = 2 (when the matter perturbation is formally marginal) the ?Z Ward identity
t~: __

of ~13] implies:

k - I _ iI,rQ +,R~ k 1

lim ~T nET2~ 1-2-}-e ~ ~ki ~ ~ 4j } -- 
7~" ~r ~7~ ~ ~~~ ~ T—q~ } ~3.1`2.~

E-+U+
i=1 j=1 ~~ ~_~ ~_~

where k;, q~ > 0, ~ ki = ~ q~ - Q, and q; -~- q~ < 2 for all paa.rs =, j . It follows that

correlation functions in this kinematic regime are given at a -~ 0 by

k 1 ~ t
~~?-ka ~ ~- Q~ e«Tz+ate z~ _ {1 _ 4a2)-4~~ Tk~ ~ ~-4~ } (3.13,

i-1 ~=1 i=1 ~=1

The correlation functions in other kinematic regimes will not be so simply related° For

example, one can show

/.I-4.r 
~eaTz-}-ar1-z} _ (1 — 4a2)-4 [1 -#- 4a2~~4 — 2)j {TqT-9> (3.14)

for2<q<4.

Using the above methods one can directly derive the specific heat:

~
~-~•I-~eaTz-~~T_,~ _logµ — log(1 — 4aZ) (3.15)

which is, of course, in accord with (3.9)e An amusing, and perhaps important, feature of

(3.15) is that it is true to ali orders of perturbation theory, since as noted in section (3.1)

p = 2 x .~ a raf ~ ~ of the correlation functions at genus h > 1.

We remark that the amplitudes (3.13)(3.15) exhibit an interesting duality between

the theory at a and at a = 1 ~(4a). This duality will be generalized below.

•~



4. Phaa~ Diagram in the a,p plane

According to (3.9) the genus zero specific heat is given by

where z = µ~'-ZcxZp2(1 - p) and we have defined an analytic function

r~n~2 ' P~~ Zn 
~4.2~

~~P~ z) = ~ n!r n 1 - -~ 1
n>1 ~ ` pJ

Some useful mathematical facts about the function $(p; i~ are collected and proved in

appendix Co In particular, H is a convergent power series in z for all real values of p

with radius of convergence R~(p) given by (C.3~ and plotted in fig. 1. On the circle of

convergence the series has one or two branch point singularities given by

z~~P~ = R~CP~ p < 1

zc ~P~ _ 
-e~'~pRC

~F~ 1 < p < 2 (4.3~

~~~p) _ -~~P) p > 2

1Vloreover, the values of S(p, z) for Iz{ > ~z~~ may be related to values within the circle of

convergence by connection formulae similar to those for the bypergeometric function.

TJsing the above facts we may draw a phase diagram as shown in fig. 2 There are six

different regions:

L, 0 < p < 1, 0 < µP-zaz ~ R~~P~I ~PZ ~l - p~~

The specific heat is a power series in a2 with real coeflicients. There is a finite radius

of convergence with singularity of the form (1 - z~z~~l/2.

II.) 1 < p < 2, 0 < ~p-zaz ~ R~CP)~~P2~P - 1))

Again we have a real power series in a2, but the branch point has moved off into the

complex plane, so there is no singularitS as we approach the dotted line in fig. 2.

III.) 2 < p < oo, 0 < µp-aa2 < R~(P)l(PZ(P -1))

There is again a finite radius of convergence with singularity (1 - z/z~~1~2 since the

branch point has moved back to the real axis. Of course, there is no singularity in passing

between regions I, II, III.

IV.~ 0 < p < 1, µp-zaz) R~~P~~~P2 ~1 - P~~
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The values in this region are defined by analytic continuation around the branch point.

Explicitly, the connection formula (C.6} gives

~Tu?-~e~To+~T A ~ jj, - ~ ,o$ea~PZ̀ 1 ~ P~~ ~ i~
2-P

1 (4.4)

p — 2 ~ ca~~ c1— p~~lo~~—p~
where p' _ (2p - 3~/(p - 2~. We have a power series in µ with complez coefficients. The ~
sign depends on the sense in which we analytically continue around the branch point.

~T., 1 < p < 2, ~t.P-~a2 > R~~P)~~PZ~P - l~~
Now again applying the same connection formula,

~.~-u?-o~°`Tp+~~'P}t, = 1 
lo8~cx2P2(P -1~~ -~' 1 g P'a - µ _ c4.5~

-- 2 - ~ ~' ~' 2 ~aZPZ~P - 1))1/~z ~)

giving a power series in µ with real coe$icients.

VI.~ 2 < p < oo, µp'2aZ > ~~CP~~~P2~.P - 1~~

In this region we use connection formula (C.8~. T`he result is a power series with

complex coefficients a.nd expansion parametea~

~az~-1/(~-1)~-c~-2)/(n-i~ (406)

the expansion is analytic neither in cx nor in µ.

The case p = 2 requires special attention as discussed in section 3.3.

Finally, we have used the coupling a which is natural from the matrix model. Changing

variables a --►musing (3.1) the phase diagram in the p, rn plane looks somewhat di$erent,
and is illustrated in fig. 3.

b. Physical interpretation

There are phase transitions when crossing the solid lines in fig. 2. In this section we
offer some qualitative physical interpretations of these transitions based on semiclassical
analysis. The following considerations are only meant to be heuristic, a.nd it would be
interesting to make them more rigorous.

The action ~1.2, may be v~ritten as

A

4~7 Z 2
(5.1)

A

-}- d2z g~~(V~Y~2. -}' m.e~~ c°'s(P.Y~~
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where for convenience we have r~scaled and shifted

m —+ 4~rrn72 ~Z,~µ)f 
/7 ~ --► 7~ -}- log~µ~2)

~ h, ~ X ~ (5.2)
P -~ PI(~ ) 'r ~ ~l7

For Q = 2/7, ~ = 1 we have a classical conformal field theory. Of course, quantum

effects are strong at c = 1, but they can be summarized by the usual KPZ/DDK renorma~l-

ization of parameters, so that y = f , Q = ~, ~ = 1 — p~2. Worjcing aemicla.ssically, the

precise value of Q turns out to be unimportant so we will take the classical value Q = 2l-y

for simplicity. The physics depends sensitively on ~ ~o we will leave this as a fr~ parameter

with 0 < ~ < 1. The equations of ffiotion follov~ing from ~5.1~ ire then

R(e~y~ -}- 1 -}- m~e— ~~ —~~~ cos pX = 0
(5.3)

~2X + mpe~~ sin pX = 0

We restrict attention to the sphere with background metric:

d~~~

the constant solutions ("vacua") of (5.3j are given by (X,,, ~) where Xn = p (2n -~- 1),

rc E 7l, a.nd ~ solves

This equation only has solutions for

log(m~~ > (1 — ~)108~ — (1 — ~)1°gCl — ~) -~' ~108~ (5.6)

in which case the zero-mode potential looks like fig. 4. (When there is no solution one

must introduce Lagrange multipliers to fix the area of the surface. See [1].~

The existence of classical solutions for m larger than a critical value explains some

features of the phase diagram of the previous section. In a phase where a solution exists

we can expand around it and therefore ice expect the partition function to be nonsingular

for µ --> 0 (1]. This is in accord with the difference between regions I, II and IV,V.

When the condition (5.6) is satisfied there are in fact tzoo allowed constant curvatures,

i.e., there are two solutions to (5.5~. F'or large values of Sri. these are approximately

e~~ ,,,~ 8 ~1/E K 1
m~ (5.?)

ebb ^'~m~~l/(1—~) ~~ 1

11



At p = 2 the sum in (6.2) behaves like a power aeries a.nd remains convergent. Mon

precisely, if we let p = 2 — is for a real we have for large n:

where

IRnpl ~ 1 e-Me(.,+Z ~µ ~ ~-sn~ fCa~~n (6.3)
n!Z — a~ n

f ~') = 4C1 ~' a2~4,e 2 
x~,~—,eta)

and 8(s) = tan'i(a/2). Thus if 4Cc~~ < 1 there is a finite interval —a~ < a < a~ along the

Re(p) = 2 axis where the series is absolutely convergent. Thus there exists an analytic

continuation of the determinant to the domain .Re(p) > 2, when we are perturbing the

Sine-Gordon theory by an irrelevant operator.

We have- just shown that, nonperturbati~ely, thew are analogs of the regions I, II a III

of section four. It is more difTicult to see if the radius of convergence in Ial will be finite,

We expect that at fixed p there is a finite radius of convergence in ~c~~. As we increase (cx~,

1 -~ E probably develops a left or right zero mode and the determinant ha.s a logarithmic

singularity, although we have not proven this. It is easy to show that for sufficiently large

~al, ~~ E (~> 1 so there is no reason for the determinant to be nonsingular. It would be

interesting to understand the singularities better and to have a ph~cal picture of how the

phase transitions are modified by topology-change.

7. mature Directions

There are several projects which would extend the present work:

1. Of course, it is important to prove {3.9,i The recent results of (13J are an important

step in this direction.

2. We also skipped over some hard analysis in section five, regazding the existence of

instanton solutions.

3. In section four we used the connection foranulae (C.4), (C.fi), (C.8). These relate different

backgrounds via the action of the discrete group S3 and are thus reminiscent of target

space duality and mirror symmetry. It would be very interesting to see if these symmetries

survive in other correlation functions.

4. We wot~Ic~ like to have an equally complete understanding of the amplitudes at genus

one which are implicitly contained in (A.1~. These would be most useful for understanding

better the nature of the transition III —~ V d'. If the transition is due to tachyon dorninance

14



that should become apparent in the behavior of the genus one amplitudes. Unfortunately,

we have not managed to recognise any special pattern in the first few amplitudes.

5. The simple result (3.15) deserves to be understood better. Naively, at p = 2 we have

a tensor product of Liouville and Sine-Gordon theories, but for ~n # 0, cos(f X) is not

exactly marginal so this is an illusion ~7~. Indeed (3.15) is sot a product, but a sum of

functions of µ and a2.

6. It would be interesting to interpret the minimal models as restricted Sine-Gordon

theories and relate the above results more directly to the c < 1 models.

The present paper also touches on some deeper issues. The matrix model defines

finite integrated correlators even for the irrelevant operators..How does it choose the finite

parts? A natural guess for the underlying principle is the W~ symmetry of the_ theory.

'I'b.is implies a corresponding ~'~ symmetry of the continuum Lionville x matter system.

Perhaps the finite parts are chosen based on the principle that the ~ ~ Ward identities

must be maintained.

A second issue is the spacetime interpretation of the Euclidean theory. If, for example,

we compactify X when a = 0 then we calculate the free energy of a string at temperature

1 /R. What happens when a ~ 0? The Euclidean Hamiltonian has now nontrivial X -

dependence. Should we interpret the calculations in terms of noneq ' 'brium statistical

mechanics?

One may also ask about the Minkowskian analog of the above results and the corre-

sponding Minkowskian spacetime interpretation. Some of the relevant issues are discussed

in [13].

Finally, we may ask the evident question: Do analogous phase transitions exist in

more realistic theories of gravity?
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Appendix A. Derivation of the formula for the correlation functions

W~ derive the formula for ~?'o(?"p7 ~,~'"~ by considering the E --► 0-~ limit of the corre-
lator ~~E(Tp _ f/n)n~'T_p)n) using the graphical rules of [3~. A short calculation yields

An~~~P~ = µ—np ~TO7p T p~

k s
~n`~-1)k 2 ~ R R p A.1

= i(-1)'~(n!)2 ~ bi _' a~~~a~,...,bk app be ~ }
L.. k ~ ~ ~ ~ ~ a. ,z ., z

where the sum rums over all partitions n = al -~- b1 -}- • • • -I- ak + bk with af, b; > 0 such that
the denominator of

C(disbi~a2~bZ,...,ak,bk~ = 1
(a~ -~- bl }~bl -~- az )(a2 -}- bz) ... (ak .+. bk ~~bk -~ a1) (A.2)

is nonzero. ,Rp is the "bounce factor" of [3~ given by

Rp _ ~-p 2 es~/~ 
cos~~(2 -}' iµ - P~~r~2 -;µ ~' P~ (A.3)~c 2

~orp> 0.
The expression (A.1) can be written wore succinctly by introducing an algebra of 1~

dimensional projection operators ~a,b for a, b E 7L.~.' not both zeros satisfying the relations

~4 ~~ (~i + b1)(a2 + bz) 
(A.4i~bi s,bz — ~~ + aZ~C~ ~ al~~aa~bs

For such an algebra we may write the factor C as

1
Tr Pa~,jl e ..?~a,~,bk = C(al,... bk) (A.5)

Such projection operators may be explicitly constructed as operators on a Hilbert space.
Let (za }, a = 0, 1, ... be an ON basis. Define ~wb~ = ~a(a -}- b)-1 ~za } so that ~zQ ~wb} _
(a -{- b)-1. Then P4,b = (a -{- b~~aa~~wbl.

Using t}ae projection operators Pa,b tie full partition function can be nicely expressed
as a determinant of an operator E:

(~-oe`~~p+~? p} _ ~?-o } = sZogDe~ (1-}- E)(1 ~- E*)-1 (A.6)

where
l ,R R* bz

~' = ~l—~pa2)~ ~ ap by —~ b (A.7)
n11 a~-b=n ~a)12 (b~~2 n2 ~'

~6



Remarks:

1. It might be an interesting exercise to obtain the above determinant directlq from

the fermion det~rrrunant in the original free-~ermion formulation of the theory.

2. Nonperturbatively the series vanishes identically atµ = 0. This follows immediately

since RpRQ is real for µ = 0 and any real momenta p, q.

3. In a similar way one ca.n write slightly more complicated formulae for the three

point function {7~?y?_Qe~p~c~Tp + aT r~}.

Appendix B. Integer roots of the amplitudes

~'he basic idea of the proof is verb simple. To all orders of perturbation theory the

bounce factor can be replaced by

p I'(2 — iµ)

Qk~P) 
(B.1)

~~+~ ~
~— i ~`

For p = n E 7L+, R~ becomes a polynomial in l~µ so that Qk(p = n) = 0 for ~ > n. On

the other hand, by KP Z scaling, we know the power of 1 /µ for the leading term in any

amplitude. If this power exceeds the order of the relevant polynomials then we may prove

vanishing theorems. For example, if we put p = rn in (A.1), then the expression must be

of the form 1~~tnm times a polynomial in µ. By KPZ scaling the genus h contribution goes

like ~ l~µ2n—l+Zh so that the appropriate contribution must vanish for h > 2 +n(m-2}~2.

The proof that p = 1 is an nth order zero is much more tedious but uses the same idea.

Having proved p = 1 is a root we take a derivative with respect to p of (A.1). Plugging in

p = 1 and using properties of gamma a.nd polygamma functions we show that ep A„ has

an expansion in 1/µ terminating at 1/E.cn. The proof then proceeds inductively and the

inductive step fails when vie consider (e~ ~nA„

We nay note parenthetically that by the above reasoning any c = 1 amplitude with

integral external momenta ~-anishes at suf~'iciently large orders of perturbation theory. This

supports the general idea that special tachyons are associated with topological field theory.

1?



Appendix C. Properties of the function H(p; s)

In this appendix we prove some useful facts about the function

~~P: Z~ = r~nt2 — P~~ n
~n!I'nl- -}.l z
n>1 ~ ~ p~

_ 1 rtn~2 - P~~r~n~P - 1~~ sin(n~p~~-s~n
~r ~ n!

n>1

niI' n - B -}-1n>~ ( t~

The ratio of gamma functions behaves at large n like

n-3~2(exp~(2 - P~1~9(Z _' P, - C1 - P,I~9C1 - P,~ ~"

n-3~2(-1~'nsir~(n~rp~~ezp~(2 - p}log(Z -- P) -}' (P -1~Iog~P 
-1~~~n

r~,-3~2~-l~n~e2p~~p - 2~log~P - 2~ - tp - I~log~P - 
l~~~n

showing that the series defining S(p; z~ converges absolutely for

(C.1)

0<p<1

1 < p < 2 (C.2)

Z <p<oo

Izl < R~~P) = exp ~P - 2,lo8IP - 2' - (P -1)1v8IP - lI (C.3)

Note that from comparing the first and third lines we have the first connection formula:

g~Pi Z) _ —~(3 ̂  Pi —z~ (C.4)

We can define analytic continuations of the function 8(p; z~ using vasions integral

representations.

Our first integral representation is the 111lellin-Barnes representation

1 '°° r~s(2 -F~~ I' -a -z da
2~ti -ice r~s~1 - P~ -~ 1~ 

~ ~~ ~j (C.5)

where z ~ IR+ and we use the standard branch of the logarithm. The integral over a

converges absolutely for all such z if p < ~ and converges for Iarg(s)I > ~~p - 1, for

1 < p < 2. For ~a) < ~z~(p)~ we can close the s integral in the right half-plane to obtain

the series in the first line of (C.1,. If Izl > ~z~(p~~ then we can close in the left half-plane,

thus droving t~1~e c~~~:l~ection formula

~~P~ z) = 1 1o8C-z~ ~' 1 gtP s 
-(-z~-i/(z-p)~ (C.6)

p-2 2-P
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for p' - 2 = 1
p—Z

Our second integral rcpresentation is the Mellin-Barnes integral

2~ri _ice r(a(P - 2) -I.. 1)
I'(-a)z'da (C.7}

where z ~ IR- . For p > 2 this converges absolutely for all such z and defines an naalytic

continuation of S. For 1 < p < 2 the integral converges absolutely for ~arg(z)~ < ~rtp - 1).

By closing into the right half-plane we obtain the series in the third line of (C.1) sad by

closing in the left half-plane we obtain the third connection formula:

~(P9 a) _ -~ logz $ 1 g~P~~ =~1/(P-1,) (C.8)
1-p p--1

where p' - 1 = 1p-1

Our third integral representation is derived from the middle series in (C.1~ using the

integral representation of the Beta function. The result is

8 z sin~rp 1 ti-p~l - t}~-2
~ ~z g~Pi Z) — ~ ~ dt 

~Z -~- aea~p~2—Pt l — t}P—1 ~ (1 ,.~ ze—iapt2—p f I _ t~p-1-- ~
(C.9)

This integral always converges at the endpoints t = 0,1 for 1 < p < ~ and defines an

analytic continuation in z for these values of p. The existence of singu.lari-ties can -be

e~cam,ined by looking for pinching of the contour. In this Ray it is easy to check that there_

are no singularities as z increases from zero to infinity through real values.

In general S(p; z) does not seem to be expressible in terms of standard special func-

Lions, although at some special values we can write 8 amore explicitly:

S(0; z} _ -log ~ + ~ - 4z

2

g . Z,~ s ~, 5 7 3 27t2 _ 1 d#
~ z' ~ 0 2 1 1 6' 6' 2' 4 ~

2 1 2 1 2712 1 d~

z

2 4 2
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V~hen p is rational, 8(p; s~ can be written in terms of generalized hppergeometric functions

a Fb. In general for fined p the branch point singularity in s is a square root singularity,

except at p .= 1, 2 where wt have a logarithmic eingularitT.

Finally we note that the set of transformations of the ~p, t) plane defined in

(C.4)(C.fi)(C.8) defines an action of the permutation group S'g oa this plane.
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Figure Captions

Fig. 1. Radius o~ convergence as a function of p.

Fig. 2. The phase diagram in the cx2 vs p plane. The solid lines indicate linen acroaa

which there are phase transitions.

Fig. 3. The phase diagram using the normalization etanda~d for vertex operators. There

arc now infinitely many separated regions where ire have a transition of the type

III --~ V I.

Fig. 4. The zero mode potential V (¢, X) = 8~ -~- ei -I- m~~ cos pX in the caac when there

are constant postive curvature solutions to the equations of motion.

Fig. 5. Particle motion of (X (r), ~(r>) for a proposed field configuration connecting large

and. sma11 geometries.

Fig. 6. A multi-instanton configuration. Many small i~.stantons of scale size r2 ~ e~•

join onto a large sphere of scale size a~Z ~ e~" o
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