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1. Introduction

Topological field theory is an excellent pedagogical tool for introducing both some basic
ideas of physics along with some beautiful mathematical ideas.

The idea of TFT arose from both the study of two-dimensional conformal field theories
and from Witten’s work on the relation of Donaldson theory to N=2 supersymmetric field
theory and Witten’s work on the Jones polynomial and three-dimensional quantum field
theories. In conformal field theory, Graeme Segal stated a number of axioms for the
definition of a CFT. These were adapted to define a notion of a TFT by Atiyah.

TFT might be viewed as a basic framework for physics. It assigns Hilbert spaces,
states, and transition amplitudes to topological spaces in a way that captures the most
primitive notions of locality. By stripping away the many complications of “real physics”
one is left with a very simple structure. Nevertheless, the resulting structure is elegant, it
is related to beautiful algebraic structures which, at least in two dimensions, which have
surprisingly useful consequences. This is one case where one can truly “solve the theory.”

Of course, we are interested in more complicated theories. But the basic framework
here can be adapted to any field theory. What changes is the geometric category under
consideration. Thus, it offers one approach to the general question of “What is a quantum
field theory?”

2. Basic Ideas

It is possible to speak of physics in 0-dimensional spacetime. From the functional integral
viewpoint this is quite natural: Path integrals become ordinary integrals. It is also very
fruitful to consider string theories whose target spaces are 0-dimensional spacetimes. Nev-
ertheless, in the vast majority of physical problems we work with systems in d spacetime
dimensions with d > 0. We will henceforth assume d > 0.

What are the most primitive things we want from a physical theory in d spacetime
dimensions? In a physical theory one often decomposes spacetime into space and time as in
(1). If space is a (d — 1)-dimensional manifold Y then, in quantum mechanics, we associate
to it a vector space of states H(Yy_1).

Of course, in quantum mechanics H(Y;_1) usually has more structure - it is a Hilbert
space. But in the spirit of developing just the most primitive aspects we will not incorporate
that for the moment. (The notion of a unitary TF'T captures the Hilbert space, as described
below.) Moreover, in a generic physical theory there are natural operators acting on this
Hilbert space such as the Hamiltonian. The spectrum of the Hamiltonian and other physical
observables depends on a great deal of data. Certainly they depend on the metric on
spacetime since a nonzero energy defines a length scale

he
L=—.
E
In topological field theory one ignores most of this structure, and focuses on the depen-
dence of H(Y') on the topology of Y. For simplicity, we will initially assume Y is compact

without boundary.



Figure 1: A spacetime Xy =Y x R. Y is (d — 1)-dimensional space, possibly with nontrivial
topology.

So: In topological field theory we want to have an association:
(d — 1)-manifolds Y to vector spaces: ¥ — H(Y), such that “H(Y) is the same for
homeomorphic vector spaces.” What this means is that if there is a homeomorphism

o:Y =Y (2.1)
then there is a corresponding isomorphism of vector spaces:
or t HY) = HY) (2.2)

so that composition of homeomorphisms corresponds to composition of vector space iso-
morphisms. In particular, self-homeomorphisms of ¥ act as automorphisms of H(Y): It
therefore provides a (possibly trivial) representation of the diffeomorphism group.

Now, we also want to incorporate some form of locality, at the most primitive level.
Thus, if we take disjoint unions

H(Y1 T Ys) = H(Y1) @ H(Ya) (2.3)

Note that (2.3) implies that we should assign to H(0) the field of definition of our vector
space. For simplicity we will take H(0)) = C, although one could use other ground fields.

Remark: In algebraic topology it is quite common to assign an abelian group or vector
space to a topological space. This is what the cohomology groups do, for example. But here



we see a big difference from the standard algebraic topology examples. In those examples
the spaces add under disjoint union. In quantum mechanics the spaces multiply. This is
the fundamental reason why many topologists refer to the topological invariants arising
from topological field theories as “quantum invariants.”

Finally, there is an obvious homeomorphism

YHY' =2Y'IIY (2.4)
and hence there must be an isomorphism

Q:HY)@HY) = HY) @HY) (2.5)

Figure 2: Generalizing the product structure, a d-dimensional bordism X can include topology
change between the initial (d — 1)-dimensional spatial slices Yi, and the final spatial slice Yout. The
amplitude F(X) determined by a path integral on this bordism is a linear map H(Yin) = H(Yout)-

In addition, in physics we want to speak of transition amplitudes. If there is a spacetime
X, interpolating between two time-slices, then mathematically, we say there is a bordism
between Y and Y’. That is, a bordism from Y to Y’ is a d-manifold with boundary and a



disjoint partition of its boundary into two sets the “in-boundary” and the “out-boundary”
0Xq = (8Xd)in U (8Xd)0ut

so that there is a homeomorphism (0Xy)in @Y and (0Xg)ouwt = Y’'. We will say this a bit
more precisely, and discuss some variants, in Section **** below.

If Xy is a bordism from Y to Y’ then the Feynman path integral assigns a linear
transformation

F(Xg): H(Y) = HY).

Again, in the general case, the amplitudes depend on much more than just the topology
of X4, but in topological field theory they are supposed only to depend on the topology.
More precisely, if X4 = X/, are homeomorphic by a homeomorphism = 1 on the boundary
of the bordism, then

F(X,) = F(X})

One key aspect of the path integral - in quantum mechanics, or functional integral -
in quantum field theory, we want to capture - again a consequence of locality - is the idea
of summing over a complete set of intermediate states. In the path integral formalism we
can formulate the sum over all paths of field configurations from £y to to by composing the
amplitude for all paths from %y to ¢; and then from t; to ¢y, where tg < t; < to, and then
summing over all intermediate field configurations at ¢;. We refer to this property as the

”

“gluing property.” The gluing property is particularly obvious in the functional integral

formulation of field theories.
In topological field theory this is formalized as:
If X is a bordism from Y to Y’ with

(OX )i =Y (OX )ous = V"
and X’ is another oriented bordism from Y’ to Y”
OX N =Y’ (0X)ows =Y

then we can compose X' o X as in (??) to get a bordism from Y to Y.
Naturally enough we want the associated linear maps to compose:

F(X'oX)=F(X")oF(X): 1Y) = HY")

What we are describing, in mathematical terms, is a functor between categories. After
describing a few variations on the above theme, we will explain that sentence in detail.

2.1 More Structure

We can regard the above picture as a basic framework for building up more interesting
theories by enriching the topological and geometric data associated with the spaces X and
Y.

For example, we might be able to endow X and Y with



Figure 3: Gluing two bordisms to produce a third bordism.

1. Orientations, spin, pin structures, etc. (for certain X’s and Y’s).

2. Riemannian metrics.

3. Other fields - Principal G-bundles with connection, sections of associated bundles
ete.

One of the motivating examples was two-dimensional conformal field theory. In this
case, Segal’s axioms were based on two-dimensional bordisms endowed with conformal
structure.

Two important complications that will arise when considering nontopological theories

are:

1. The notion of scale and renormalization becomes important.

2. The Hilbert space is actually not defined for a (d—1)-dimensional manifold but rather
for a germ of d-manifolds around a (d — 1)-dimensional manifold.



3. Some Basic Notions In Category Theory

We will not describe categories in any great detail. See, for example, the book by

S. Maclane, Categories for the Working Mathematician, Springer GTM vol.5

This rather abstract mathematical idea has nevertheless found recent application in
string theory and conformal field theory. Many physicists object to the high level of
abstraction entailed in the category language. However, it seems to be of increasing utility
in the further formal development of string theory and supersymmetric gauge theory as
well as certain aspects of condensed matter theory and quantum information theory.

3.1 Basic Definitions

Definition A category C consists of

a.) A set Ob(C) of “objects”

b.) A collection Mor(C) of sets hom(X,Y’), defined for any two objects X,Y € Ob(C).
The elements of hom(X,Y) are called the “morphisms from X to Y.” They are often

denoted as arrows:
é

X =Y (3.1)

c.) A composition law:
hom(X,Y) x hom(Y, Z) — hom(X, Z) (3.2)
(Y1,%2) = a0ty (3.3)

Such that

1. A morphism ¢ uniquely determines its source X and target Y. That is, hom(X,Y")
are disjoint.

2. VX € Ob(C) 3 1x : X — X, uniquely determined by:

Ixop=¢ polx=19 (3.4)

for morphisms ¢, 1, when the composition is defined.
3. Composition of morphisms is associative:

(Y1 092) 0 1h3 = 11 0 (P 0 93) (3.5)

An alternative definition one sometimes finds is that a category is defined by two sets
Cp (the objects) and Cy (the morphisms) with two maps pg : C; — Cy and p; : C1 —
Cp. The map po(f) = x1 is the range map and pi(f) = xo is the domain map. In
this alternative definition a category is then defined by a composition law on the set of
composable morphisms

Co ={(f,9) € C1 x Ci|po(f) = p1(9)} (3.6)

which is sometimes denoted C1p, Xp, C1 and called the fiber product. The composition law
takes Cy — (1 and may be pictured as the composition of arrows. If f : ¢ — x; and
g : 1 — xo then the composed arrow will be denoted go f : x9 — x3. The composition
law satisfies the axioms



1

2

1

. The composition law is associative.

. For all x € Cj there is an identity morphism in C4, denoted 1,, or Id,, such that

1.f = f and g1, = g for all suitably composable morphisms f, g.

If f,g,h are 3-composable morphisms then

(hg)f = hgf)-

Remarks:

. When defining composition of arrows one needs to make an important notational

decision. If f : zg — 1 and g : x1 — xo then the composed arrow is an arrow
xg — x2. We will write go f when we want to think of f, g as functions and fg when
we think of them as arrows.

. It is possible to endow the data Cy, C7 and pg, p1 with additional structures, such as

topologies, and demand that pg, p; have continuity or other properties.

A morphism ¢ € hom(C, D) is said to be invertible if there is a morphism ¢ €
hom(D, C') such that 1) o ¢ = 1¢ and g o) = 1p. If C and D are objects with an
invertible morphism between then then they are called isomorphic objects. One key
reason to use the language of categories is that objects can have nontrivial automor-
phisms. That is, hom(C, C') can have more than just 1¢ in it. When this is true then
it is tricky to speak of “equality” of objects, and the language of categories becomes
very helpful. One should be very careful about saying that two mathematical things
are “the same.”

One use of categories is that they provide a language for describing precisely notions

of “similar structures” in different mathematical contexts. For example:

1

2.

3.

. SET: The category of sets and maps of sets

TOP: The category of topological spaces and continuous maps.

TOPH: The category of topological spaces and homotopy classes of continuous
maps.

MAN: The category of manifolds and maps of manifolds. (One should specify the
degree of smoothness here.)

GROUP: the category of groups and homomorphisms of groups.
AB: The (sub) category of abelian groups.

VECT,: The category of finite-dimensional vector spaces over a field .

When discussed in this way it is important to introduce the notion of functors and

natural transformations (morphisms between functors) to speak of interesting relationships

between categories.

~-10 -

&Explain this really
important point
better. Give an
example where
literal equality is far
too rigid. &

&Do we want to
impose finite
dimensionality? Or
introduce a category
of all vector spaces
and a subcategory
of finite-dimensional
vector spaces. &



In order to state a relation between categories one needs a “map of categories.” This

is what is known as a functor:

Definition A functor between two categories C; and Co consists of a pair of maps Fyy; :
0bj(C1) — Obj(Ca) and Fior : Mor(Cy) — Mor(Cq) so that if

z I~ y € hom(z,y) (3.7)
then
Fmor(f)
Fopj(w) — Fopj(y) € hom(Fopi(z), Fonj(y)) (3.8)

Moreover we require that if f7, fo are composable morphisms then

Fmor(fl Of2) :Fmor(fl) OFmor(fQ) (39)

and finally we require that for all objects 2z € Obj(C1) we have

Fmor(lzr) = 1Fobj(g3) (310)

We usually drop the subscript on F' since it is clear what is meant from context.

Remarks

1. Above we have described a covariant functor. A contravariant functor instead satisfies

¢2>¢17
F(g20¢1) = F(¢1) o F(¢)

for any pair of composable morphisms

2. Some authors use the term homomorphism of categories.

Exercise
Using the alternative definition of a category in terms of data pg; : X1 — Xo define
the notion of a functor writing out the relevant commutative diagrams.

Example 1: Every category has a canonical functor to itself, called the identity functor
Ide.

Example 2: There is an obvious functor, the “forgetful functor” that forgets mathematical
structure, so we have, for example, forgetful functors from TOP, MAN and GROUP to
SET.

Example 3: Since AB is a subcategory of GROUP there is an obvious functor F :
AB — GROUP.

— 11 —



Example 4: In an exercise below you are asked to show that the abelianization of a group
defines a functor G : GROUP — AB.

Example 5: Homology groups give a nice example of a functor from TOP to AB. For
example, fix a nonnegative integer k, then the functor Hy on objects is F/(X) := Hy(X;Z),
and for a continuous map of spaces f : X1 — Xy we have F(f) = f,. Similarly cohomology
groups give an example of a contravariant functor.

When there are functors both ways between two categories we might ask whether they
might be, in some sense, “the same.” But saying precisely what is meant by “the same”
requires some care.

Definition If C; and Cy are categories and Fy : C; — Cy and Fy : C; — Co are two
functors then a natural transformation (a.k.a. a morphism of functors) 7 : Fy; — Fy is a
rule which, for every X € Obj(C;) assigns an arrow 7x : F1(X) — F5(X) so that, for all
X,Y € Obj(Cy) and all f € hom(X,Y),

Ty o Fi(f) = Fa(f) o 7x (3.11)
Or, in terms of diagrams.
Fi(f)
F(X)—=F(Y) (3.12)
TX TY

B (x) 2L By(y)
Note that it makes sense to compose natural transformations: If 7 : F; — F, and
7’ Fy — F3 are morphisms of functors then (7/o7)x is the morphism from Fy(X) — F3(X)
given by composing the morphisms 7x : F1(X) — F»(X) and 7% : Fo(X) — F3(X). A
natural transformation 7 : Iy — F5 such that there exists another natural transformation
7'+ Fy — Iy such that

(T/OT)X = 1F1(X) (TOT/)X = ]‘FQ(X) (313)

is called an isomorphism of functors.

Example: A good example of various natural transformations are various cohomology
operations. For example the cup product gives a natural transformation from Hj to Hoy.
(This is related to, but not the same as the cohomology operation known as a “Steenrod

square.” ) SCHECK!! &

Definition Two categories are said to be equivalent if there are functors F' : C; — Co
and G : Co — C; together with isomorphisms (via natural transformations) FG = Idgc,
and GF = Ide,. (Note that F'G and Ide, are both objects in the category of functors
FUNCT(Cs,C3) so it makes sense to say that they are isomorphic.) &Explain in the

context of the
following examples
why a definition of
equivalence of
categories based on
GF = Idcl etc. is
_ 12 _ too restrictive. &



Many important theorems in mathematics can be given an elegant and concise formu-
lation by saying that two seemingly different categories are in fact equivalent. Here is a
(very selective) list: !

Example 1: Consider the category with one object for each nonnegative integer n and the
morphism space GL(n, k) of invertible n x n matrices over the field k. These categories
are equivalent. That is one way of saying that the only invariant of a finite-dimensional
vector space is its dimension.

Example 2: The basic relation between Lie groups and Lie algebras the statement that the
functor which takes a Lie group G to its tangent space at the identity, 771G is an equivalence
of the category of connected and simply-connected Lie groups with the category of finite-
dimensional Lie algebras.

Example 3: Covering space theory is about an equivalence of categories. On the one
hand we have the category of coverings of a pointed space (X, zp) and on the other hand
the category of topological spaces with an action of the group 71 (X, zg). Closely related
to this, Galois theory can be viewed as an equivalence of categories.

Example 4: As we will see below, the category of unital commutative C*-algebras is
equivalent to the category of compact Hausdorff topological spaces. This is known as
Gelfand’s theorem.

Example 5: Similar to the previous example, an important point in algebraic geometry
is that there is an equivalence of categories of commutative algebras over a field s (with
no nilpotent elements) and the category of affine algebraic varieties.

Example 6: Pontryagin duality is a nontrivial self-equivalence of the category of locally
compact abelian groups (and continuous homomorphisms) with itself.

Example 7: A generalization of Pontryagin duality is Tannaka-Krein duality between the
category of compact groups and a certain category of linear tensor categories. (The idea
is that, given an abstract tensor category satisfying certain conditions one can construct a
group, and if that tensor category is the category of representations of a compact group,
one recovers that group.)

Example 8: The Riemann-Hilbert correspondence can be viewed as an equivalence of
categories of flat connections (a.k.a. linear differential equations, a.k.a. D-modules) with
their monodromy representations.

In physics, the statement of “dualities” between different physical theories can some-
times be formulated precisely as an equivalence of categories. One important example of

T thank G. Segal for a nice discussion that helped prepare this list.

~ 13 -

& This needs a lot
more explanation.
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this is mirror symmetry, which asserts an equivalence of (Ay,)-) categories of the derived
category of holomorphic bundles on X and the Fukaya category of Lagrangians on XV.
But more generally, nontrivial duality symmetries in string theory and field theory have a
strong flavor of an equivalence of categories.

Exercise
Give an example to show that equation (3.10) does not follow from (3.10).

Exercise Playing with natural transformations

a.) Given two categories C1,Co show that the natural transformations allow one to
define a category FUNCT(Cy,C2) whose objects are functors from C; to Co and whose
morphisms are natural transformations. For this reason natural transformations are often
called “morphisms of functors.”

b.) Write out the meaning of a natural transformation of the identity functor Id¢ to
itself. Show that End(Idc), the set of all natural transformations of the identity functor
to itself is a monoid.

Exercise Freyd’s theorem

A “practical” way to tell if two categories are equivalent is the following:

By definition, a fully faithful functor is a functor F' : C; — Cy where Fi,, is a bijection
on all the hom-sets. That is, for all X, Y € Obj(C;) the map

Fmor : hOHl(X, Y) — hOHl(FObj (X)aFObj (Y)) (314)

is a bijection.
Show that C; is equivalent to Co iff there is a fully faithful functor F': C; — Cs so that
any object o € Obj(Ca) is isomorphic to an object of the form F(X) for some X € Obj(Cy).
c.) Show that the category of finite-dimensional vector spaces over C is equivalent to
the category

Exercise

As we noted above, there is a functor AB — GROUP just given by inclusion.

a.) Show that the abelianization map G — G/[G, G| defines a functor GROUP —
AB.

— 14 —



b.) Show that the existence of nontrivial perfect groups, such as As, implies that this
functor cannot be an equivalence of categories.

In addition to the very abstract view of categories we have just sketched, very concrete
objects, like groups, manifolds, and orbifolds can profitably be viewed as categories.

One may always picture a category with the objects constituting points and the mor-
phisms directed arrows between the points as shown in Figure 4.

A
f\ g./jg
v O

Figure 4: Pictorial illustration of a category. The objects are the black dots. The arrows are
shown, and one must give a rule for composing each arrow and identifying with one of the other
arrows. For example, given the arrows denoted f and ¢ it follows that there must be an arrow
of the type denoted f o g. Note that every object x has at least one arrow, the identity arrow in
Hom(x,x).

As an extreme example of this let us consider a category with only one object, but
we allow the possibility that there are several morphisms. For such a category let us look
carefully at the structure on morphisms f € Mor(C). We know that there is a binary
operation, with an identity 1 which is associative.

But this is just the definition of a monoid!

If we have in addition inverses then we get a group. Hence:

Definition A group is a category with one object, all of whose morphisms are invertible.

To see that this is equivalent to our previous notion of a group we associate to each
morphism a group element. Composition of morphisms is the group operation. The in-
vertibility of morphisms is the existence of inverses.

We will briefly describe an important and far-reaching generalization of a group af-
forded by this viewpoint. Then we will show that this viewpoint leads to a nice geometrical
construction making the formulae of group cohomology a little bit more intuitive.

~15 —



3.2 Groupoids

Definition A groupoid is a category all of whose morphisms are invertible.

Note that for any object x in a groupoid, hom(z, z) is a group. It is called the auto-
morphism group of the object x.

Example 1. Any equivalence relation on a set X defines a groupoid. The objects are the
elements of X. A morphism is an equivalence relation a ~ b. Composition of morphisms

a ~ b with b ~ ¢ is a ~ c. Clearly, every morphism is invertible.

Example 2. Consider time evolution in quantum mechanics with a time-dependent Hamil-
tonian. There is no sense to time evolution U(t). Rather one must speak of unitary evolu-
tion U (t1,tq) such that U(ty,t2)U(to,t3) = U(t1,t3). Given a solution of the Schrodinger
equation W(t) we may consider the state vectors W(t) as objects and U (t1, t2) as morphisms.
In this way a solution of the Schrodinger equation defines a groupoid.

Example 3. Let X be a topological space. The fundamental groupoid 7<;(X) is the
category whose objects are points € X, and whose morphisms are homotopy classes of
paths f : z — 2’/. These compose in a natural way. Note that the automorphism group of
a point z € X, namely, hom(z, x) is the fundamental group of X based at x, m1 (X, ).

Example 4. Gauge theory: Objects = connections on a principal bundle. Morphisms
= gauge transformations. This is the right point of view for thinking about some more
exotic (abelian) gauge theories of higher degree forms which arise in supergravity and string
theories.

Example 5. In the theory of string theory orbifolds and orientifolds spacetime must be
considered to be a groupoid.

Exercise

Let X be a set with an action of a group G. Show that there is a natural groupoid
(sometimes denoted X//G) such that the set of isomorphism classes of objects is naturally
identified with the quotient set X/G.

Exercise
For a group G let us define a groupoid denoted G//G whose objects are group elements
0bj(G//G) = G and whose morphisms are arrows defined by

91— g2 (3.15)
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iff go = h=1g1h. This is the groupoid of principal G-bundles on the circle.
Draw the groupoid corresponding to S3.

3.3 Tensor Categories

To define a TFT we need the further notion of a tensor category. Note that given a category
C, the Cartesian products C' x C', C x C' x C, ... are also categories in a natural way.

Definition A tensor category (also known as a monoidal category) is a category with
a functor ® : C x C — C such that there is an isomorphism A of the two functors
®o®12:CxCxC—=Cand ®o®oz:C xC xC — C satisfying the pentagon identity,
and such that there is an identity object 1o together with natural transformations of
functors C' — C:

i le®- —1d (3.16)

tR:-®1c —1Id (3.17)

These data are subject to a number of natural compatibility conditions:
To give an example of the compatibility conditions we consider the the first condition
on the natural transformation A: for all objects z,z’, 2" in Cy we have an isomorphism:

Aparzr (@2 )@2" = 2@ (' @ 2") (3.18)
which satisfies the pentagon identity:

(1 ®@22) ®23) ® g — (21 @ 22) ® (T3 ® T4)

/ \

& Do we require the
existence of a dual
object? &

SFIX xy matrix &

(21 ® (12 ® 23)) ® 24 11 ® (22 ® (23 ® 24))

—_ -

21 ® (22 ® x3) ® x4))
(3.19)
It is then a theorem (the “coherence theorem”) that xg ® x1--- ® x, is well-defined up
to isomorphism no matter how one brackets the products. The conditions on the natural

transformations ¢;, and vr are fairly obvious.

Example The category VECT, is a tensor category. What is the tensor unit lyvgcr, ?
Let 0 : C x C — C x C be the exchange functor that switches factors on objects and

morphisms.

Definition A symmetric monoidal category is a monoidal category with an isomorphism 2
of ® o o with ® which squares to one. Again, there are many rather obvious compatibility
conditions with A, ¢, and tg.
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Again, this means that for all objects z,y we have an isomorphism
D2y >y (3.20)
so that Q0 = logy.

Remark: An important generalization for conformal field theory and for quasiparticle
statistics in 2+1 dimensions is the notion of a braided tensor category where there is an
isomorphism €2, but it does not square to 1.

Finally, we need the notation of a (symmetric) tensor functor. This is a functor F :
C — D between symmetric tensor categories together with an isomorphism 1p — F(1¢)
and an isomorphism of the two functors C' x C' — D given by Fo® and ® o F' x F.

3.4 Other Tensor Categories

3.5 Zs-graded vector spaces

A Zs graded vector space is a vector space with a decomposition V = Vy @ Vi, where the
subscripts are understood as elements of Zo. In the category of Zs-graded vector spaces
we can introduce two different kinds of tensor categories. For Zy graded vector spaces we
can and will use the graded tensor product. Then there is an isomorphism

Q:VeWsWaeV (3.21)

but we must be careful to apply the Koszul sign rule: If v,w are homogeneous elements
then
Qv @w) = (-1l g o (3.22)

This rule has the important consequence that if we have any collection (V,,)aecs of super-
vector spaces (where the subscript o denotes different supervector spaces and should not
be confused with the Zs grading) then there is a single canonical tensor product

®aVa
without the need to specify any ordering.

3.6 Category Of Representations Of A Group

Let G be a group. Then then there is a category whose objects are representations and
morphisms are intertwiners of representations (i.e. maps between representations that
commute with the G action.

Now let G be a compact group and restrict to the subcategory of finite-dimensional
representations. Call this Rep(G). This is a tensor category. Moreover, there is a set of
“simple” objects, the irreducible representations V) such that all objects are isomorphic to
direct sums of simple objects. The tensor functor is determined by the “fusion rules”

WeV,=2D{, ®V, (3.23)

where Di u is a finite-dimensional real vector space of degeneracies.
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4. Bordism

4.1 Unoriented Bordism: Definition And Examples

Here we give the official definition of a bordism:

Definition Let Yj, Y7 be two closed (d — 1)-dimensional manifolds. A bordism from Yj to
Y is

1. A d-manifold X together with a disjoint partition of its boundary:

89X = (0X)o I (9X ) (4.1)

2. A pair of embeddings 6y : [0,1) x Yy — X and 6; : (—1,0] x Y7 — X, which are
diffeomorphisms onto their images such that the restrictions 6y : {0} x Yy — (90X )in
and 61 : {0} x Y1 — (0X)ous are homeomorphisms.

The reason for the extra level of complexity in this definition compared to what we said
earlier is that this extra data facilitates the gluing of bordisms to produce a new bordism.

It is easy to see that bordism is an equivalence relation and that disjoint union defines
an abelian group structure on the space of bordism equivalence classes €2, of n-manifolds.
The zero element of the abelian group is the equivalence class of the empty set ()" and any
closed n-manifold X is its own inverse since [0, 1] x X can be considered as a bordism of
X II X with (. So 2[X] =0 in Q,.

Examples

1. There is only one nontrivial zero-dimensional manifold, the point, and we have just
seen that the disjoint union of two points is null-bordant, hence ¢ = Z/27. Note
that if we dropped the manifold condition on X then the letter Y would define a
bordism of two points (equivalent to zero) with one point, and hence the bordism
group would be trivial. Thus, the manifold condition is important.

2. Q1 = 0, because the only closed connected one-manifold is the circle, and this clearly
bounds a disk.

3. One can show that Qg = Z/27Z with generator [RP?]. Here is the argument (taken
from D. Freed’s notes “Bordism Old And New,” on his homepage). The classification
of compact surfaces shows that they are characterized by two invariants: Orientability
and the Euler character. Oriented surfaces are clearly bordant to zero. Note well! The
Eulcer character is not a bordism invariant! Unorientable surfaces are all obtained by
connected sums with RP2. The connected sum of two copies of RP? is a circle bundle
over the circle. Take [0,1] x S! and quotient by {(0,2)} ~ {(1,2)} (where we view
S1 as the unit complex numbers). Note that we can replace the S by the disk D?
and use the same identification {(0,2)} ~ {(1,2)} to produce a bordism of the Klein
bottle to zero. Next we claim that RP? descends to a nontrivial bordism class. For, if
it had a bordism to zero X = RP? then triangulation of X gives a triangulation of
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the double X Ugpz X with Euler character 2y(X) — 1. On the other hand, the Euler
character of a closed 3-fold is zero. Now, the general connected unorientable surface
is a connected sum of n copies of RP2. Separate these in pairs and choose a bordism
of the pairs to zero to identify the bordism class with an element nmod?2 of Z/27Z.

To describe all bordism groups €2y it is useful to note that Cartesion product of
manifolds is compatible with the bordism equivalence relation and this makes 2, =
II>0€2q into a Z-graded ring, with the grading given by the dimension. Thom proved
that

O & R[xo, 14, 75, T6, T8, T9, T10, T11, 12, T13, T14, 165 17, -] (4.2)

where R = Z/27Z and there is precisely one generator zj of degree k so long as k is
not of the form 2/ — 1. The even degree generators are the bordism classes of RP*
and the odd ones are a quotient of (S™ x CP’)/Zy where the Zs acts as (antipodal
map, complex conjugation).

Moreover, to any manifold there is a series of cohomology classes w;(Y) € H'(Y; Z/27)
known as Stiefel-Whitney classes. They are associated with the twisting of the tan-
gent bundle. (For example, wi(Y) measures whether Y is orientable or not.) The
Stiefel numbers of a manifold is the sequence of elements of Z/27Z:

(wiy V) U -, (Y), [Y]) (4.3)

and two manifolds are bordant iff all their Stiefel numbers agree. For the last two

items see the excellent book by Milnor and Stasheff, Characteristic Classes. 2

4.2 The Bordism Category Bord 1 g

Now, we can define a bordism category Bord_1 4.

1.

2.

Objects: Closed (d — 1)-manifolds, usually denoted Y.

hom(Yp, Y1) is the set of homeomorphism classes of bordisms X : Yy — Y;. A
homeomorphism of bordisms X, X’ is a homeomorphism of manifolds with boundaries
which takes (90X )i, — (0X')in and commutes with the collars 6, ;.

The composition of morphisms in the bordism category is by gluing. Since we identify

bordisms by homeomorphism the bordism X = [0,1] x Y from Y — Y is the identity
morphism 1ly. The category Bord 41 4) is a symmetric tensor category: The tensor product

is disjoint union, and the empty manifold ¢¢~! is the tensor unit.

4.3 The Oriented Bordism Category Bordi?_lm

We are often interested in oriented bordism.

To define an oriented bordism we modify the definition of bordism slightly. Now,

Yy, Y1, X are all oriented. The embeddings 0y and 0, are required to be orientation pre-

serving and we identify bordisms X and X’ by oriented diffeomorphisms.

2If we cover the chapter on characteristic classes we will prove these two results.
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The condition that 6y and 6, are orientation preserving must be treated with care. Note
that if we are given a sum of oriented real vector spaces there is no natural orientation on
the direct sum. However, if we are given an exact sequence

0—-VI—=Vo—=>Vs3—0 (4.4)

Then there is a canonical isomorphism DETV; = DETV; — DETV; so if two of the three
spaces are oriented, we can determine an orientation on the third by requiring this canonical
isomorphism to be orientation preserving. In particular, an orientation on a submanifold
and the ambient manifold determines an orientation on the normal bundle. When defining
6o, 61 we orient [0,+1) and (—1,0] with the standard orientation on R, +% and then we
take the product orientation on [0,+1) x Y and (—1,0] x Y.

Definition To every oriented bordism X : Yy — Y; there is a dual oriented bordism
XV Y)Y = Yy. Let us write it out carefully, since it can cause confusion. YV denotes Y
with the opposite orientation. XV is the manifold with the same orientation. However, we

exchange ingoing and outgoing boundaries. Moreover,
0o (t,y1) = 01(—=t,41) vielo,+1) & oy eN (4.5)

0 (t,y0) = Bo(—t, yo) vt € (—1,0] &  weY (4.6)

Note that the relation between 6§ and 6; involves an orientation-reversing transformation
t — —t and hence we require orientation reversal on Y since X has the same orientation as
X. Forgetting about orientations we also obtain a notion of dual bordism for the unoriented
case.

Once again we can define oriented bordism groups Q5°, for n > 0, the oriented bordism
ring Q59 and the oriented bordism category Bord?c?_ 1,d)-

Figure 5: Five connected bordisms in the oriented bordism category. Ingoing boundaries are on
the left and outgoing boundaries are on the right.

Example 1 Let us consider the oriented bordism group ng. There are two kinds of points
pt4+ and pt_, and five basic connected oriented bordisms, shown in figure 5. Accordingly,
ng = 7. The isomorphism takes the difference of the number of + and — points.

— 21 —



Example 2 In dimensions 1 and 2 we again have zero bordism groups.

A summary of the main factors on the oriented bordism ring Q5° is the following.
(See Milnor and Stasheff. Several further references are provided in Freed’s notes, near
Theorem 2.24.) 3

Theorem

1. All torsion elements in Q5° have order two.
2. Q50 /torsion is a ring with one generator in degrees 4k, k > 1.

3. There is an isomorphism
Q§O®Qg(@[y47y8v"'] (47)

under which y4; corresponds to the oriented bordism class of CP?k.

4. There are characteristic classes of the tangent bundle of Y, the Stiefel-Whitney classes
w;(Y) € H{(Y; Zy) and the Pontryagin classes p;(Y) € H*(Y;Z) (the latter depend-
ing on the orientation of Y) such that Y7 and Y5 and bordant iff all the Stiefel-Whitney
and Pontryagin numbers are the same. We defined the Stiefel-Whitney classes above
and the Pontryagin numbers are similarly the collection

<pi1 (Y) U---Upi, (Y)v [Y]> € (4'8)

4.4 Other Bordism Categories

We can go on an consider other forms of bordism:

1. Framed bordism. (Closely related to the stable homotopy of spheres, by the
Pontryagin-Thom construction.)

2. Spin and Pin® bordism.

3. Riemannian bordism.

Accordingly, there are generalizations of the bordism cateogry. In general, if we take
into account a structure S we denote the bordism category by Bord‘fd_l, d)» where it is
understood that the bordisms are identified by homeomorphisms preserving the structure
S. Thus, the oriented bordism category is denoted by Bord?c?_ 1,d) (because the structure
group of the tangent bundle is SO(d—1) and SO(d), respectively). Similarly we can define

a Riemannian bordism category Bordglifnf dy> and so on.

5. The Definition Of Topological Field Theory

The definition of a topological field theory can now be given. Let S be a structure on the
tangent bundle and C any symmetric monoidal category. Then

Definition A d-dimensional topological field theory of S-manifolds is a symmetric tensor
functor from the tensor category Bordfd_l, d) to some symmetric tensor category C.

3If we cover the chapter on characteristic classes we will prove some of these results.
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The example we started out with is the case where S is empty and the target category
is VECT,; for some field £, so a topological field theory is a tensor functor from Bord 4_; 4
to VECT,.

For examples of this more general notion:

1. Use the identity functor! This gives what Michael Freedman calls the “lazy TFT”
and it leads to a pairing of manifolds with very interesting positivity properties. See
[18].

2. We can generalize this as follows: Let K be a closed manifold of dimension k. Then
Cartesian product with K defines a symmetric tensor functor ¢x

tg : BOI‘d<d,17d> — Bord<d+k,1’d+k> (5.1)

where tg(Y) =Y x K, etc. If F'is a (d + k)-dimensional TFT then we can compose
F o tg to obtain a d-dimensional TFT denoted FXX. This is the topological field
theory analog of “Kaluza-Klein compactification”. For example the state space on
(d — 1)-manifolds is

FEE(Y) .= F(Y x K) (5.2)

3. If there are sufficiently natural constructions of quantum field theories depending on
some geometric category then one can define a TFT whose values are moduli spaces
of vacua of the quantum field theory. This is done for the case of a target category
of holomorphic symplectic varieties in [37].

6. Some General Properties

Let us deduce some simple general facts following from the above simple remarks.

For the moment take the target category to be SVECT, the category of super-vector
spaces over the field . (If one prefers, just ignore the signs and work with the category of
vector spaces.)

First note that if X is closed then it can be regarded as a bordism from () to (). Therefore
F(X) must be a linear map from « to k. But any linear map 7' € Hom(k, k) must be of
the form

T(z) = tz (6.1)

for some scalar t € k. That is, any linear map x — & is canonically associated to an element
of the ground field. For the case of F/(X) : kK — x we call that number the partition function
of X, and denote it Z(X).

There is one bordism which is distinguished, namely [0, 1] x Y. This corresponds to a
linear map P : H(Y) — H(Y). In Euclidean field theory the amplitude one would associate
to a cylindrical spacetime [0, 1] x Y is just

exp[—TH]
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where H is the Hamiltonian, and 7" is the Euclidean time interval. Notice that this requires
a metric. A change of the length of the cylinder leads to a change in T
Evidently, by the axioms of topological field theory, P? = P and therefore we can
decompose
HY)=PHY ) (1—-P)H(Y) (6.2)

All possible transitions are zero on the second summand since, topologically, we can always
insert such a cylinder. It follows that it is natural to assume that

F(Y % [0,1]) = Idyy) (6.3)

One can think of this as the statement that the Hamiltonian is zero. Note that this renders
the amplitude independent of the length of the cylinder.

Y
Qy :H(Y)RH(YY) = kK

YV

Y\/
Ay : = H(YV)® H(Y)

Y

Figure 6: Bending the cylinder to define Ay and Qy.

Now, let us consider the oriented bordism category, so Y is oriented. Let YV denote
Y with the opposite orientation. The bordism (6.3) is closely related to the bordism
) = YVIIY thus defining a map

Ay ik —=HYY)@H(Y) (6.4)
and also to a bordism Y ITYY — () thus defining a quadratic form:

Qv - HY)HYY) =k (6.5)
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Figure 7: Composing A ® 1 and 1 ® @) in a way that gives P.

Let us now compose these bordisms we get the identity map as in 7. It then follows
from some linear algebra that () is a nondegenerate pairing, so we have an isomorphism to
the linear dual space:

HYY) =H(Y),
under which @ is just the dual pairing. (On the left YV is Y is the reversal of orientation,
and on the right #(Y") is the linear dual space.)

To prove this choose a basis {¢;} for H(Y") and a basis {¢,} for H(Y"). Then we must
have

Ay (1) =) A", @ ¢ (6.6)
1,a
The S-diagram shows that
¢ = > AYQ(h,1a)di (6.7)

7,a
must be the identity map, so, choosing ¢ = ¢; and defining Qy (¢;,%q) = Qjo We must
have

D ANQj, =0, (6.8)

In addition to this we can exchange the roles of Y and Y. Including signs for the Zs-graded
case (with a homogeneous basis) we get

S A1)l bl gy, — 57, (6.9)

)
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It follows that @ is invertible, hence the pairing is nondegenerate. This implies hence there
is an isomorphism H (YY) = H(Y)V as asserted above. Moreover, choosing an isomorphism
so that Q;, = 0;,4, now labeling the dual basis by an index 7 and changing notation to
; — 1" in this basis we have simply

Ay(1) =) v @o (6.10)

Now, the result (6.10) brings up an important point. It is not obvious that (6.10) will
converge if H(Y) is infinite dimensional. In fact, even if H(Y") is a normed vector space, or
a Hilbert space, so that convergence of infinite sums of vectors does make sense, since ¢;
and ¢’ are dual bases the sum will not converge if H(Y) is infinite dimensional. Therefore,
the space of states H(Y') must be finite-dimensional!

There are many examples of interesting “topological field theories” where H(Y) is
decidedly infinite-dimensional. We will comment on this below.

SlxyY

Figure 8: Composing Qyv with Ay gives the super dimension of H(Y') in the Zs-graded case,
and dimH(Y) = Z(Y x S!) in the ungraded case.

Now consider the diagram in 8. On the one hand this is just the partition function
Z(Y x S'). On the other hand, the linear map x — x must be the composition Qyv Ay, or,
equivalently, Qy oQoAy : k — k. From our formula for Ay (1) above we see that the value
Z(Y x S is just the dimension dimH(Y'), or, in the Zs-graded case, the superdimension

sdim#(Y) = dimH (V) — dimH(Y); (6.11)

Remarks
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1. Note that if we change the category to the category of manifolds with Riemannian
structure and we take the product Riemannian structure on Y x S' then

Z(Y x St = Tre P (6.12)
where [ is the radius of the circle and H is the Hamiltonian.

2. There are important examples of “topological field theories” of interest in the physics
literature where this condition is violated. One example is Chern-Simons theory with
noncompact gauge group. Another example is two-dimensional Yang-Mills theory
with zero area element. These are “partially defined” topological field theories. They
are only defined on a subset of objects in the bordism category. *Say more. &

3. The S-diagram argument above points the way to a definition of a dual object in a
symmetric monoidal category. A dual object x € Obj(C) is one such that there exists
an object ¥ € Obj(C) and morphisms 6§, : 1¢ - x® x¥ and ¢, : z¥ ® x — 1¢ such
that

1:®qx LR ((17)

1
rT—— 1o Q@xr ——
and (omitting the isomorphisms with multiplication by the tensor unit, for simplicity)

19:\/ R0z q:c®1m\/
YV — v erezY —zV (6.14)

are the identity morphisms.

Figure 9: A state created by a bordism of ( to Y.
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Y v

vx, € H(Y) wx, € H(YY)

Figure 10: If a closed manifold X is cut along a codimension one submanifold Y that divides X
into two pieces X; and X5 then there are two associated states ¢¥x, € H(Y) and ¢x, € H(YV),
and the value of the partition function Z(X) may be viewed as the natural contraction of these
states using the nondegenerate pairing Qy .

Exercise Mapping cylinders and characters of the diffeomorphism group
Let f € Diff(Y) and consider the mapping cylinder M;(Y) = ([0,1] x Y')/ ~ where we
identify (0,y) with (1, f(y)). Recall that H(Y") has a representation p(f) of the diffeomor-
phism group.
Show that
Z(Mf(Y)) = Tryyy ol ) (6.15)

is a character of the diffeomorphism group.

In fact, p(f) only depends on the image of f in the mapping class group I'y: This is
defined as follows: The diffeomorphisms isotopic to the identity form a normal subgroup
Diffy(Y") of the full diffecomorphism group and I'y := Diff (Y') /Diffo(Y).

Exercise Hartle-Hawking sates and partition functions as inner products
a.) Show that any bordism of X : ) — Y defines a state in the space H(Y). (See
Figure 9.) The functor of the topological field theory defines a map F(X) : k — H(Y),
and we can define,
Yx = F(X)(1) € H(Y) (6.16)
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This simple observation is very important in physics.

The state, of course, depends on the (topological) details of the bordism. For exam-
ple, any Riemann surface with a single hole defines a bordism of the circle to zero and
there are many such topologies. This is a primitive version of the notion of the “Hartle-
Hawking” state in quantum gravity. It is also related to the state/operator correspondence
in conformal field theory.

b.) Show that, in the oriented bordism category, by exchanging in and out boundaries
(but not the orientation of X) the same manifold defines a bordism XV : =Y — (), and
hence a linear functional on H(Y").

c.) Show that applying this linear functional to Ay (1) gives back the original vector
in H(Y') associated to X.

d.) Show that if a closed manifold X is cut along an oriented manifold Y to produce
X1 and Xy then Z(X) can be interpreted as a contraction of a state ¢¥x, € H(Y) and
Yy, € HYY):

Z(X) = (6, ) (6.17)

See Figure 10.

6.1 Unitarity

In unitary theories, and certainly in the axioms of quantum mechanics, one wants the
state space to be a complex Hilbert space, and F'(X) for a bordism X should be a unitary
operator.
Now, in general, a sesquilinear form on a complex vector space V is a linear map
V — VV. Therefore, in a unitary theory changing orientation of ¥ complex conjugates the
Hilbert space
HYY) = H(Y) (6.18)

Moreover, in physical unitary theories there is a positivity condition on Qy. If X :

Y1 — Y5 is a bordism then, if we change the orientation of X and take the dual we get a
bordism

XYYy =1 (6.19)

It is natural to add a condition that
F(XY)=F(X)! (6.20)
In particular, changing orientation of the manifold invariant Z(X) for a closed manifold

complex conjugates the invariant.

7. One Dimensional Topological Field Theory

Consider the oriented case. Then the objects in Bord%?u are disjoint unions of points pt
with 4+ and — orientation.

The topological field theory with symmetric monoidal category C' gives two objects
y+ = F(pty) with data ¢ and ¢ as described above. The general object is a disjoint union
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of n4 points of type pt. The diffeomorphism group of this manifold is just S,, x S,_
n_

and it acts in a natural way on the “state space” yf?m’ Ry

Specializing to VECT,;, we get a pair of finite-dimensional vector spaces Vi together
with the data mentioned above: A nondegenerate pairing @ : V. ®V_ — k and the “inverse”
A:k — Vi ® V.. As mentioned above, these constitute duality data for V_ = V..

A good example of a physical origin of such a topological field theory is to consider
quantization of a compact symplectic manifold (M,w).

A useful concrete example to keep in mind is M = S? with a symplectic form

1 .
W= 5z sin 0dbd¢ (7.1)

where here h is some dimensionless normalization of the form.
In the Hamiltonian formulation of the path integral we consider paths in phase space
M. We form a path integral of the form

[ [arlexelis) (7.2)
P

where P is a space of paths in M, [dy] is an induced measure on the space of paths from
the symplectic form, and S is an action. There are many issues to settle in making sense
of this expressions. We will just touch on a few of them here.
If the symplectic form w is globally exact then we can write w = d\ where, in terms
of local Darboux coordinates 1
A= ﬁpdq (7.3)

A good example of this is the case M = T*X for some manifold X. Note that the
Hamiltonian associated with the action principle:

Sbi = [ via (74)
Y

is zero.

But what if w is not exact? (As in our above example with M = S2.) Let us suppose
first that M is simply connected. Then, if v is a closed path we can attempt to define the
action by choosing a disk > C M such that 03 = + and then take

Syly] = /Z w (7.5)

If w is exact this reduces to the previous definition.
Now there is a problem because there can be more than one disk bounding . If 31, 39
both bound 7 then X5 := 31 Uy XY is a closed 2-cycle and the ambiguity in the action is

Ss,[] - Sl] = /Z w (7.6)

So the action is not well-defined. However, all we need for the quantum path integral is
that the weight

exp[iS] = exp[i/ w] (7.7)

by
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should be well-defined. The ambiguity in the exponentiated action is:
exp[iSh] /exp[iSs] = expli / o] (7.8)
12

The LHS will be one - and there will be an unambiguous weight in the path integral - if
the periods of w are integral multiples of 27. Notice that this quantizes “1/A” to be an
integer.

Now, suppose that v is not closed. Let us consider a path space

P={y:[0,1] 5 MH0) =29 & ~(1)=a1} (7.9)

(We assume xg, z1 are in the same path-connected component of M.) Choose a basepoint
path 79 in P. Then any other path homotopic to vy will be such that ~, 1 %+ bounds a
disk 3. We then use this data to define an action as

Sy, 7] ::/Ew. (7.10)

For a fixed basepath the exponentiated action will be independent of the choice of ¥ if the
periods of w are in 27Z. If we change the basepath 7y to another one in the same homotopy
class then the action only shifts by a constant, and in fact with w quantized as above, the
choice will again not matter in the exponentiated action.

If M is not simply connected further considerations are needed because there will
be paths in P not in the path-component of 7y even when zy,x; are in the same path
component of M. One way to deal with this is to work on the universal cover M. Tt is best
to couple the theory to a flat connection on M to keep track of the fundamental group.

An important special case of the quantization above is the case of coadjoint orbits of a
compact simple Lie group defined by integral weights A € g*. There is a natural integrally-
quantized symplectic form - the Kirillov-Kostant symplectic form, and quantization gives
a representation with dominant weight vector a suitable Weyl rotation of A. Pursuing this
line of thought leads to a path integral interpretation of the Borel-Weil-Bott theorem. In
the topological field theory the space V, is the representation with dominant weight A and
the space V_ is the conjugate representation with anti-dominant weight —A. The duality
data @) is the standard pairing of a representation and its conjugate to form the singlet
while A is the embedding of the singlet into R @ RV.

8. Two Dimensional TFT And Commutative Frobenius Algebras

Some beautiful extra structure shows up when we consider the case d = 2, due to the
relatively simple nature of the topology of 1-manifolds and 2-manifolds.

We restrict attention to the oriented case. The unoriented case presents new and
interesting features related to the theory of “orientifolds.”

To begin, we restrict attention to closed (d— 1)-manifolds, that is, we consider a theory
of closed strings.

In this case, the spatial (d — 1) manifolds are necessarily of the form S'uStuU-.-US?!,
i.e. disjoint unions of n S1’s.
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The circle with have two orientations S1. We choose one, say ccw on the boundary

of the unit disk and set C := H(S%). Then, as usual we have duality data for #(S1). We
henceforth focus on C.

H(S'TT S IT-- - 11 81) = ¢®

Thus, thanks to the simple topology of closed 1-manifolds, the entire theory is built from
a single vector space C.

Figure 11: Typical Riemann surface amplitude. If there are n;, ingoing circles and n,t outgoing
circles then the corresponding amplitude is a linear map F(X) : C™in — C"out,

Transition amplitudes can be pictured as in 11. We therefore get a linear map:
F(%):C®% — c®™
where Y is a Riemann surface. There are n ingoing circles and m outgoing circles.

Now, topology dictates that the vector space C in fact must carry some interesting
extra structure.
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m:CxC —>C A:CHCwC

Figure 12: The sphere with 3 holes defines m and A

In Figure 12 we see that the sphere with three holes defines a product
m:C®C—C
Exchanging in and out boundaries we get a coproduct:
A:C—-C®C
In 13 we see that there is a trace (a.k.a a counit):
0:C—k

In addition, in Figure 13 we see that there is a map x — C. This is completely determined
by its value on 1 € k. The image of 1 € k in C under this map is denoted 1¢, and this
element indeed functions as a unit for the multiplication m. From the diagram in Figure
14 we see that the image of 1 must be in fact a unit for the multiplication.

Moreover, from 15 we see the multiplication is associative.

We can now consider the compositions fom :C®C — k and AocUNIT : k - CRC.
Note well that these operations are different from the duality data @, Ay discussed before
because they involve the same space C, rather than C and its dual! However, the same
S-diagram argument shows that the quadratic form

Q(¢1,¢2) = 0(p162) (8.1)
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@:.C—=C CC

Figure 13: The trace map and the unit.

is nondegenerate.

Finally, we can make a diffeomorphism of the disk with 2 holes, holding the outer circle
fixed and rotating the inner two circles. This shows that the product must be (graded)
commutative.

The algebraic structure we have discovered is known as a Frobenius algebra.

Definition. A vector space V' is an associative algebra if there is a multiplication vivy € V

satisfying
1. Ul(vgvg) = (7)17)2)1}3
2. (7)1 + U2)U3 = V1V3 + U2U3 7)3(7)1 + UQ) = U3V1 + V3V9

3. a(vive) = (awy)ve = vi(aus)
for all vectors v1,ve,v3 € V and all scalars « in the ground field.

Definition A Frobenius algebra A is an associative algebra over a field k with a trace
0 : A — k such that the quadratic foom A ® A — k given by a ® b — 6(ab) defines a
nondegenerate bilinear form on A.

What we have shown at this point is that H(S?) is a (graded) commutative Frobenius
algebra.

The data of the Frobenius algebra is sufficient to compute arbitrary amplitudes: Any
oriented surface can be decomposed into the basic building blocks we have used above.
However, the same surface can be decomposed in many different ways. When we have
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Figure 14: Proof that 1¢ really is a unit.

different decompositions we get algebraic relations on the basic data m, A, 6. At this
point you might well ask: “Can we get more elaborate relations on the algebraic data by
cutting up complicated surfaces in different ways?” That is, are we required to consider
only special kinds of Frobenius algebras? The beautiful answer is: “No, the above relations
are the only independent relations, so, conversely, any (graded) commutative Frobenius
algebra defines an oriented d=2 TFT.” We call this statement the “sewing theorem.”

Exercise
a.) If A is an algebra, then it is a module over itself, via the left-regular representation
(LRR). a — L(a) where
L(a)-b:=ab
Show that if we choose a basis a; then the structure constants
kak

a5 = cij

define the matrix elements of the LRR:
(L(a;)); * = ¢

b.) If A is an algebra, the opposite algebra is the algebra with the new product

V1 0 Vg 1= U9l (8.2)
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o) ° 5] 0
()] e = 2 e
(2] e @3 0

(@1 -02) - O3 =1 (P2 -D3)

Figure 15: Associativity.

Show that A is a bimodule over A ® A° where A° is the opposite algebra.
c.) Show that if (A,60) is a Frobenius algebra then the dual algebra A* is a left A-
module which is isomorphic to A as a left A-module.

Exercise
a.) Show the equality of maps C®C - C®C

(Id@m)o(A®Id)=Aom=(m®Id)o(Id®A) (8.3)

b.) Show that
(Id®0)oA=1Id=(0®Id)oA (8.4)

8.1 The Sewing Theorem

The Sewing Theorem. To give a 2d topological field theory is equivalent to giving a
commutative associative finite dimensional Frobenius algebra.
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Figure 16: Commutativity. The outer boundary of the disk is held fixed and the two inner
boundaries are rotated in a basic braiding action. In order for the diffeomorphism of the coboundary
to be one on the ingoing circles we must compose with €2, so in the supercase we will have graded
commutativity: ¢1¢e = (—1)de8d1de8d24,4,

Proof. In one direction the theorem is obvious. Given a 2d topological field theory one
recovers a commutative Frobenius algebra as described above.

What is not immediately obvious is the converse. Given a commutative Frobenius
algebra (C,0) one defines the functor on the special surfaces as above, but in principle
further restrictions on the data could arise from consistency of gluing.

Consider an oriented surface with boundary ¥. Different sewings correspond to dif-
ferent choices of “time-slicings.” We can make this precise by associating the time-slicings
with level sets of a suitable smooth function f: % — R, as in 17. We can assume ¥ is an
orientable surface in R? with boundary circles unknotted and unlinked. We identify “time
evolution” corresponding to evolution to larger values of f = ¢t. The generic level set is a
1-manifold. The basic idea is to break up the time evolution into elementary steps given
by the basic data of the Frobenius algebra and then prove that the result is the same for
two such functions by studying how the sequence of elementary steps changes when we
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Figure 17: Two different Morse functions define different decompositions of the same surface.

connect the two functions by a path of functions.
In order to describe this “path of functions” with any precision we need a tiny digression
into singularity theory.

8.1.1 A Little Singularity Theory

We will be considering the space of C*° real-valued functions on a bordism X.

The space of functions C*>°(M;j, Ms) from a closed smooth manifold M; to another
manifold My will be endowed with the Whitney topology.

There is a basis for the Whitney topology of the form:

Uf, (U, ), (V. ¢), K, €) (8.5)

where f € C®(Mi, M), € > 0, (U,¢) is a smooth chart on M;, K C U is a compact
subset, and (V, 1) is a chart on Ms. Relative to the charts (U, ¢) and (V,%) any function
g € C*°(M;, Ms) can be represented as a smooth map

§:U c REmM _, Rpdimdz (8.6)
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Then the open set U(f, (U, ¢), (V, 1), K, ¢€) consists of all those functions g such that

supxek\Do‘gj(x) — Dfi(x)] < e Va,1 < j < dimMs (8.7)
Here o = (i1, ...,1s) is a multi-index with 1 < ¢ < dimM; and
0 0
D% = — .. . 8.8
ozu oxts (88)

Now, a function f : M — R is called a Morse function if it has finitely many critical
points p: That is, points where df (p) = 0 and, moreover, the Hessian at p

_f
 Qxidzd

is nondegenerate in any coordinate system near p. (Since p is a critical point the Hessian

H;j(p)

(8.9)

transforms by H — SHS' for a nondegenerate matrix S under coordinate transformation.)
In addition we require that the critical values c, = f(p) are all distinct.

We now consider Morse functions on a bordism X from Yj to Y;. A Morse function on
such a bordism is said to be excellent if f is constant on Y; and Y7 and the critical values
can be ordered so that

ag = f(YZ)) < <---<cy<ap = f(Yl) (8.10)

We will use excellent Morse functions to give our time-slicings. An excellent Morse function
is said to be elementary if it contains precisely one critical point. Thus, in two dimensions
it will contain a maximum, a minimum, or a saddle.

If we give X an elementary Morse function then the corresponding morphism F'(X) in
the topological field theory is:

1. Maximum: Trace

2. Minimum: Unit

3. Saddle: Multiplication or comultiplication.

One can prove 4 that if f is an excellent Morse function on a bordism X then X can
be decomposed into elementary bordisms: We can write X as a gluing of X7, ..., X such
that f restricted to each X, is an elementary Morse function. In this way an excellent
Morse function gives a definite series of algebraic operations in computing the amplitude
F(X).

Now we can ask our question more precisely: Given two excellent Morse functions f_;
and f1; will they produce the same amplitude?

Now, suppose we have a continuous (in the Whitney topology) path of f; of excellent
Morse functions. Then the sequence of algebraic operations is unchanged, and hence the
amplitude F(X) remains constant.

In the Whitney topology the space of excellent Morse functions in C*°(X,R) is open
and dense, but is disconnected. Thus, if we have a generic path f; of C* functions from f_;

4 Apparently, the proofs for the following statements can be found in J. Cerf, “La stratification naturelle
des espaces de fonctions differentiables reeles et la theorem de la pseudoisotopie,” Publ. Math. IHES
39(1970).
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to fi1 there will be some values of ¢ for which f; fails to be an excellent Morse function.
There will be generically codimension one walls where the functions are not excellent.

We define a function to be good (but not necessarily excellent) if it is either excellent
or excellent except at one or two critical points such that:

1. Type A: If there is one point then at this point f is not Morse and in local coordinates
is of the form +y? + 3.

2. Type B: If there are two critical points they are Morse but have the same critical
value.

Now the crucial point which follows from Cerf theory is that the space of excellent and
good functions is connected. In fact the space of good functions is an infinite-dimensional
manifolds and the space of functions which are good but not excellent is a real codimension
one submanifold. A generic path of good functions f; between two excellent functions will
cross these walls in a finite set of points, that is, f; will be excellent except at a finite set
of critical values ¢;.

8.1.2 Proof Of The Sewing Theorem

We now show that, given the axioms of a Frobenius algebra, if we evolve f; through
functions of Type A or Type B then the resulting map F'(X) is unchanged.

Note that reversing the time direction of the bordism changes an operator by its adjoint
with respect to the Frobenius inner product. This reduces the number of cases we must
check by a factor of two.

For Type A: We may assume that for small s the family of functions is (near the critical
point) fs = 32 + 2® + sx. Comparing evolutions for s = 0— and s = 0+ we obtain Figure
18. This encodes the axiom for the unit and trace.

For Type B, it helps to note first that if ® and ®’ are two linear maps then ® ® 1 and
1® @' commute. Geometrically this means that we need only consider the cases where the
level set containing the two critical points is connected. Thus they both have Morse index
1.

Since both critical points have index 1 they map 2 circles to 1 circle, or 1 circle to 2
circles. Thus the only evolutions we can have are

1—-2—-1
1—-+2—=3
321 (8.11)
2=21—=>2
2—=+3—=2
Moreover, the contour lines of the two degenerate critical points must be one of the
two cases in 19.

In the first case 1 — 2 — 1 there is only one possible cobordism, so there is nothing
to check.
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$?>?0

S=0o

S<o

Figure 18: The different time evolutions for y? + 23 4 sz as s moves through s = 0.

In the next case one circle maps to 3 circles. This is shown in Figure 17. A small
perturbation leads to one of the two cuttings shown in that figure. So this is covered by
the associativity axiom.

In the second case, we have two circles mapping to two circles. That is, we are cutting
the 4-holed sphere in different ways. The only algebraic maps which these bordisms can
lead to are

CRC—-C—-CRC

and
CRIC—-CR CRC—-C®C

These maps correspond to the decompositions shown in Figure 20. Algebraically they read:
dR¢ = dd = Y ¢ @ ¢y

and

$RP =Y ¢ Dh @ =Y ¢ D dud

— 41 —

&This picture
violates the
convention of
ingoing on left and
outgoing on right.
L)



Figure 19: Two ways to connnect simultaneously occuring saddle points.

respectively, where {¢,} and {¢"} are dual bases of C such that 0¢(¢*¢,) = 6. These two
maps are equal because of the identity

Y e => ¢ @', (8.12)

Equation (8.12) holds in any Frobenius algebra (commutative or not) because the inner
product of each side with ¢” ® ¢y is Oc(¢¥ ¢ dx) = Oc(drd”d').

Exercise
Show in a d dimensional TFT given by

F : Bord(y | , — VECT, (8.13)

the spaces H(S%"1) are commutative Frobenius algebras over k.
b.) Show that there is an action of this Frobenius algebra on H(X) where ¥ is any
oriented (d — 1)-manifold

8.2 Remarks On The Unoriented Case

In the case of an unoriented TFT

F :Bord( 1 4 — VECT, (8.14)
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Figure 20: One or three circles in the intermediate channel of a degenerate Morse function.

it is still true that C = F(S97!) is a commutative Frobenius algebra since an orientation
was not used in the derivation of the Frobenius structure. But in the unoriented case C
has extra structure. > There are two new ingredients:

1. Now orientation reversing diffeomorphisms act on C. By the stable homeomorphism
conjecture, the group of orientation preserving homeomorphisms of the sphere is
connected. 6

5We are following here a nice exposition in V. Turaev and P. Turner, “Unoriented topological quantum
field theory and link homology,” arXiv:math/0506229; Algebr. Geom. Topol. 6 (2006) 1069-1093. The
same axioms were worked out a few years earlier in unpublished work by Ilka Brunner and myself.

5This is by no means a trivial statement. A homeomorphism f : R® — R™ is said to be stable if
it is the identity on some open set of R™. The stable homeomorphism conjecture is the conjecture that
every orientation-preserving homeomorphism f : R™ — R" is a composition of a finite number of stable
homeomorphisms. It is known to be true for all n > 0, although the proof is not simple, especially for
n = 4. Now, an orientation-preserving homeomorphism f : S™ — S™ can be composed with a stable one so
that it has a fixed point, and then from stereographic projection from that point we get a homeomorphism
R™ — R"™. Now we claim that a stable homeomorphism can be isotoped to the identity. Clearly we can
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Therefore, up to isotopy there is only one orientation reversing diffeomorphism. This
induces a transformation € : C — C which squares to one.

2. For d even RP? is unorientable, so in addition to the identity element - coming from
S minus a d-dimensional ball we have a new element from X : }~1 — S9! given
by RP? minus a d-dimensional ball. This is the state ¢x := F(X)(1). We will call it
¢ (for “crosscap state”).

The main new constraints coming from elementary bordisms are:

1.  is an isomorphism of Frobenius algebras. In particular

Q(¢1) - Q(g2) = Qo1 - ¢2) (8.16)
while Qo =1 and 8o Q) =06.

2. If d is even then
Q(co) = cp Vo € C (8.17)

3. If d = 2 then
m(Q@1d)(A(1)) = (8.18)

To prove these we note for the first statement that the orientation reversing trans-
formation given by flipping the sign of one (any) coordinate in the unit ball preserves
the ball. This shows that 2 preserves the unit and counit. Similarly, if we consider the
multiplication to be given by a large unit ball centered on the origin with two small balls
symmetric under 2! — —z! cut out then (combining with commutativity) this shows that
Qomo (Q2®N) =m but now use the fact that €2 is an involution.

For the second, we regard RP? as the unit sphere in R4*! modulo # — —z. Now
remove two disjoint d-dimensional balls By, By with boundaries >; and ¥5. Choosing a

d+1 > () we arrive at the picture in Figure 21. As explained in the

fundamental domain x
figure caption if we regard this as a bordism X : 31 — Y9 then the image of a state ¢
on Y is c¢ at Xy. On the other hand, since RP? is unorientable the orientation reversing
transformation  — —z on S¢ descends to the identity, and is in the same component
as an isotopy that preserves B; but takes By to its image under x — —x. But this
homeomorphism acts as 1 on 3; and reverses orientation on 5. Therefore the diagram

also produces (c¢) and hence

Q(co) = cp (8.19)

assume that it takes the unit ball to the unit ball and it is the identity outside the (open) unit ball. Now
we use the Alexander trick (see Wikipedia article):

(8.15)
x t<|z|<1

Jet) = {tf(w/t) 0< |zl <t

As t goes from 1 to 0 we get an isotopy of f to the identity.
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c-pet(z)

Figure 21: The top figure describes a bordism from ¥; 22 S9! to ¥y =2 9~ obtained by cutting
out two balls from RP?. We represent RP? as the unit sphere in R4 modulo z — —z and take
a fundamental domain with 24*t! > 0. The boundary at xz%+! = 0 still has an identification and
is a copy of RP?~1. A neighborhood of this copy of RP4~! has a boundary indicated by the red
circle. That boundary is a copy of S?~!. (Thus, for example, in d = 2, the neighborhood of an
S1 C S? is a strip whose boundary consists of two circles, but for this copy of S = RP! in RP?
the neighborhood is a copy of the Mobius strip, and the boundary of that neighborhood is a single
circle.) The S%~! on the boundary of the neighborhood of RP4~! can be thought of as carrying the
crosscap state. Therefore if the input state at X; is ¢ then the output state at X is co.

For the third property recall that the Klein bottle is equivalent to two connected sums
of RP2. Therefore, we if cut out a disk we get ¢2. On the other hand, from the presentation
of the Klein bottle as a circle bundle over the circle we see that cutting out a disk must
produce the twisted handle operator (see the next subsection for the description of the
handle operator):

H=> Q¢")¢, = (8:20)
I

Note that, if we combine (8.19) with (8.20) we find that if H is the handle-adding state
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H =m(A(1)) then
He=¢? (8.21)

This reflects the famous fact that in the classification of Riemann surfaces, on an unori-
entable surface one can always turn a handle into two extra cross-caps.

Turaev and Turner prove an analog of the sewing theorem for the unoriented case with
d = 2: The general unoriented d = 2 TFT is given by a commutative Frobenius algebra
with the above extra structure.

9. Computing Amplitudes

One of the pleasant properties in 2d TFT is that one can immediately write down all the
“amplitudes” in the theory.

(==

41— ‘Z ¢H®+r —_ H‘= Z‘£r¢r

Figure 22: The characteristic element.

The key is to introduce the “characteristic element” H. This is defined by ??7 which
corresponds to the map

1= (D)%, @¢" > > e, (9.1)

and thus it is given by
H=> ¢" ¢, (9.2)
o

where ¢, is any basis for C and ¢* is a dual basis wrt the trace 6(¢,¢"”) = §,,. (with these
choices the formulae hold in the Zy-graded case).

Exercise
a.) Show that H is independent of the choice of basis.
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b.) Compute 6(H)
c.) Show that in the Zy-graded case §(H) = STr(1) = Sdim(C)

A

¢ — Hd

$ Q o (3#)

n “

- r;W@ R AOY

Figure 23: H is a handle-adding operator.

In the left (=right) regular representation, H is a “handle-adding operator” because
of Figure 23.
Note that we have

o(ott) = Tre(1(9)) 9.3

where the trace is in the regular representation.
One can now immediately write down all amplitudes in the theory. In particular, for
a genus g surface with have

Z(M,) = (H) = Tre(L(H))* ™! (9-4)

Exercise The general amplitude
Write similar formula for “matrix elements” with arbitrary ingoing and outgoing states,
that is, write the amplitude for ¢; ® - - - ¢,, to evolve into ¢} @ ---¢/,.

9.1 Summing over topologies

In quantum gravity one must face the issue of whether in the path integral over metrics
(“geometries”) one should also sum over topologies, and how to weight them.

"Answer: The image of ¢1 ® --- @ ¢n for n ingoing circles on a genus g surface is
i 01 o HIG - "™ )y @ -+ o, if there are m outgoing circles.
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In string theory, we have a theory of quantum gravity in two dimensions coupled to
a sigma model embedding the string into spacetime. In this case one is definitely obliged
to sum over topologies. This sum is the analog of the Feynman diagram expansion of field
theory in the spacetime.

With this motivation, let us ask what the sum over topologies might look like in our
baby theory. We want to understand

Zstring = Z(Mo) + Z(Ml) + - (95)

Evidently, from our general formula, we can write the sum formally as

1
Zstring =0 <m> (96)

Suppose we have a Frobenius algebra (A, #). Let us now define a new Frobenius algebra
by 6 := A\20. Then it is easy to check that

H=\H (9.7)
and hence the new genus g amplitude is
Z(My) = A2 29 7 (M) = \XMo) Z( M) (9.8)

Thus, we can interpret the scale of 6 as the string coupling constant. If we define a theory
by 6(1) = 1 then we have

Zstring = 972é < (99)

1—g2H )
where (1) = g~2 is the string coupling constant.

It is unusual that perturbation theory is convergent — usually perturbation series are
only asymptotic series. Since the series is convergent we can analytically continue to all
values of g2, thus defining the nonperturbative sum.

9.2 Semisimple algebras

In general this is all there is to it. However, one can say a little more when the algebra
(C,0) is semisimple.

The most useful characterization of semisimplicity is the following. The structure
constants 8

budy = N, da (9.10)

defines a set of matrices via the left-regular representation, L(¢,), with matrix elements
N uﬁ‘ Since C is commutative these are commuting matrices. Then:

Definition : C is semi-simple iff the matrices L(¢,) are simultaneously diagonalizable.

8The structure constants N u{\, need not be integral. But in many interesting examples there is a basis
for the algebra in which they are in fact integral.
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Thus in the semisimple case we can find a matrix S such that:

N, =08, FA (ST, (9.11)

where A% are the different eigenvalues of L(¢,,).

Now choose a basis such with the index g running over values p = 0,...,n, and
take ¢9 = l¢, the multiplicative identity. Putting x = 0 in equation (9.11) leads to a
trivial identity, but putting v = 0 and using N ;\V = Nlj\” so that NV ;\0 =9, A we see that

SO’”A;(,;“) = Slf since this is the matrix inverse of S~!. So:
Syt AW = S, " no sum on x (9.12)
Plugging back into (9.11) we get:

S g x(Sfl) A
A v T
N, = Z —MSO$ (9.13)

T

Note that 6(¢,dvdr) = N:‘Z/,QX)\ := Ny is totally symmetric on p, v, \. Suppose we
further restrict attention to a basis {¢,} so that 6(¢,) = 0,0. Then taking the trace of
(9.10) we learn that @, = Ngy and then (9.13) gives

—1y 0

Qu = S,,ISJ—(S x)x (9.14)
- 0
so that
(571

Nux = 8,58,78\F 2 (9.15)

- (S0™)

If we form the linear combinations
&= S (S, bu (9.16)
“w

then the €, serve as a set of basic idempotents, that is,

C =®,Ce
e (9.17)
€x€y = Oz y€y
Moreover, if we choose the natural normalization 6(¢,) = 6,0 then
0 = Oc(ez) = So" (S, (9.18)

Here 6; are some nonzero complex numbers. The unordered set {6,} is the only
invariant of a finite dimensional commutative semisimple Frobenius algebra.
Note that in this case the characteristic element is simply
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1
H=Y)" g (9.19)
T

and hence the vacuum amplitude on a genus g > 0 surface is

Zy=Y 6,77 (9.20)

Remarks:

1. If we consider the sum over all genera then the sum only converges when [0, > 1
(with conditional convergence on the unit circle), in which case it is:

0
Zstring = Z 1‘_—;;71 (921)

2. Note that nothing has fixed the overall normalization of the matrix S at this point.
In some cases S will be unitary so that (S71),° = (S,%)*. Moreover, if the matrix
elements S)” can be taken to be real then we have a nice simplification of (9.15):

S rS\*
Ny = Z w55 (9.22)
This is how the Verlinde formula is usually stated.
Exercise
Show that the eigenvalues A(xp ) satisfy the algebra
AMWAW) — ZN’\ AWM (9.23)

Exercise

A natural question in field theory is whether the vacuum amplitudes of a theory com-
pletely determine all the amplitudes in the theory.

Investigate this for the case of a semisimple 2d TFT.
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10. Some examples of commutative Frobenius algebras arising in physical
problems
10.1 Example 1: Finite Group Theory

Let G be a finite group. The space of complex-valued functions C[G] is a C* algebra (see
below) with the obvious product given by pointwise multiplication

f1- f2(g) = f1(g) f2(9) (10.1)

Let C be the subspace of class functions, that is, functions such that

f(hgh™")=f(g) Vg,heG (10.2)

This is the space of functions on the the (finite) set of conjugacy classes of G.

There are two natural bases of functions for C. One makes it clear that C is a Frobenius
algebra in a natural way, and the other makes it clear that this Frobenius algebra is
semisimple.

The first natural basis for the space of class functions is given by the characters of the
distinct irreps x,, p labels the distinct irreps of G.

Under the pointwise product

XuXv = Y N xa (10.3)
A

where N:‘V are the fusion coefficients, (they are also known as “Littlewood-Richardson
coefficients”). They are determined by the Clebsch-Gordon series

TH®T" = &\N,, T (10.4)

and are nonnegative integers. The natural trace is

0(Xp) = 6u0 (10.5)

where yg = 1 corresponds to the identity representation. Since for every rep p there
is a rep p* with x,xu* = xo+ -+, we conclude (f, g) = 0(fg) is nondegenerate, and hence
that C is indeed a Frobenius algebra.

Another natural basis of class functions are the delta functions on conjugacy classes:

do(g) =1 gel

_o gécC (10.6)

where C' is a conjugacy class. Note that in this basis the pointwise product is diagonal.
Thus it is clear that C is semi-simple.
We can of course expand one basis in terms of another:

Xu = Z Xu(Ci)dc, (10.7)
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Now recall a standard result from group representation theory: the orthogonality re-
lations on the characters of the irreducible representations:

1 _
1 X007 = B (10,8
g
Since G is finite we can, WLOG, assume the representation T is unitary. There fore the
matrix
S i\ (Ch) (10.9)
in = A T X i .
] |G| ]

where m; is the order of the class |C;], is a unitary matrix.
Now we have:

G
Xu = %Sw(sci (10.10)

and therefore since multiplication is diagonal in the basis d¢,, S;, is the matrix which
diagonalizes the fusion rules in the character basis.
Now, using (9.18) we compute

dimV,,)?
0 = |Soz|* = (dimVa)” (10.11)
G|
and hence the partition function on a compact Riemann surface of genus g is
1
Zy =G0y 10.12
g | | ; (dimV$)29_2 ( )

where the sum runs over irreducible representations of GG. The first factor is relatively
uninteresting (it can be absorbed in the scale of the string coupling) but the second is
interesting.

What geometrical object is the sum in (10.12) counting?

We will answer this question in a few lectures.

Exercise

a.) Show that the center of the group algebra C[G] with the convolution product is C,
the space of class functions.

b.) Show that the matrix S;, is a kind of Fourier transform between these two product
structures on C. Note that the basis of characters of irreps x, diagonalize the convolution

product:
O
Xp * Xv = n_XZ/ (10.13)
c.) Show that the invariants 6, of this Frobenius algebra are given by
di 2
B(c,) = % (10.14)
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10.2 Example 2: Loop Groups And The Fusion Ring Of A Rational Conformal
Field Theory

What happens if we replace the group G of the previous example with a general compact
Lie group?

If G is not finite, but is compact there will still be a complete set of finite-dimensional
unitary representations (Peter-Weyl theorem). But now there will be infinitely many rep-
resentations, hence the space of class functions is infinite-dimensional, and there will be
continuous families of conjugacy classes.

For example, for SU(2) = S3 the conjugacy classes are two-dimensional spheres inside
the group. If we parametrize group elements g € SU(2) as

g =cosxl +isinxn- & (10.15)

where 0 < y < m and 7 € S? is in the unit two-sphere then the distinct conjugacy classes
are labeled by the continuous parameter x. For 0 < x < 7 these conjugacy classes are
spheres.

Remarkably, then, if we consider instead the loop group: °

LG := Map(S*, G) (10.16)

then a certain class of representations of a central extension of LG behaves much more like
the finite-dimensional case, at least when G itself is a finite-dimensional compact group.
We now describe this central extension in a bit more detail.

10.2.1 Central Extension Of Loop Algebras
Suppose g is a finite dimensional Lie algebra. We can associate to it an infinite dimensional
Lie algebra whose elements are maps

f:8' =g (10.17)

The set of all such maps is itself a Lie algebra for we can define

[f1, fl(2) := [f1(2), fa(2)] (10.18)

This infinite dimensional Lie algebra is known as the loop algebra Lg.

Loop algebras admit a very interesting central extension. At this point it is useful to
take g to be a simple Lie algebra. In this case it is an easy result that, up to isomorphism,
there is the unique nontrivial central extension:

0—C— Lg— Lg—0 (10.19)

Elements of [/:E] are pairs (f,&) where f is a map, and { € C. The bracket of the central
extension is

[(f1:60), (f2, €2)] == ([f1, fol, w( 1 f2)) (10.20)

9We will be vague about the precise class of maps. It should be some completion of the group with
matrix elements taking values in Laurent polynomial in z = e*.
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where the two-cocycle w is defined by

Wi f) = 2% fTr (F1(2) fol2)) d= (10.21)

where in the integral we use an ad-invariant bilinear form (X,Y") := Tr(XY). Recall that
for g simple all such forms are the same up to scale, consistent with the uniqueness of the
central extension.

It is useful to write this out in terms of a basis. Using the bilinear form on g we define
Te(T°T?) = g% (10.22)

and we define K := (0,1) € Lg. Then define the loop T := 2"T®, with n € Z and
compute:

[TSv ng] = fngﬁer + ngab5n+m,OK

.79 — 0 (10.23)

This is the way the algebras are often written in the physics literature. (Note that in a
representation, if K is represented by a single number k£ then its value can be absorbed
into the normalization of the Killing form.)

Due to the central element K the natural Ad-invariant form of [TE;:

dz

(Fh2) = 57 § TR AENT (10.24)

is degenerate. It turns out to be very useful to extend the affine Lie algebra by adding one
more generator, Ly, so that K is still central but Ly has commutation relations

Lo, F(2)] = 7 1 (2) (10.25)

One can check that the Jacobi relations still hold. The resulting Lie algebra Z/LE; = ZALE;@CLO
is known as a Kac-Moody algebra.
The Cartan subalgebra of Lg is now

CLy®CK @ t (10.26)

where t is spanned by the constant maps into the Cartan subalgebra of g. If one defines
the bilinear form on the Lie algebra so that on the subalgebra spanned by Lg, K it is

01
& .

then there is a nondegenerate Ad-invariant form on the I//E; (The crucial constraint that
leads to this definition is obtained by taking the inner product of Ly with the equations
(10.23).)

Remark: In fact, we can extend the algebra to a semidirect product with the whole
Virasoro algebra.

Of course the loop algebra Lg is the Lie algebra of LG, so now we can ask when it
exponentiates to give a well defined infinite-dimensional group.
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10.2.2 Central Extensions Of Loop Groups

Under some circumstances, the central extension ZALE; of the loop algebra can be exponenti-
ated to a central extension LG of the loop group.

The precise theorem is: 19

Theorem If G is compact, simple, and simply connected then the Lie algebra extension
0—>R— Lg— Lg— 0, (10.28)

where g is the real Lie algebra of G, defined by the cocycle w corresponds to a group
extension

1 U(1) = LG — LG — 1 (10.29)

iff the differential form w/(27) represents an integral cohomology class on LG.

Writing the cocycle explicitly for the central extension of the group is not trivial. In
this section we will show a clever construction by which the Wess-Zumino term is used to
construct the central extension of LG.

10.2.3 The Wess-Zumino Term

Consider a sigma model of maps g : S§ — G where G is a Lie group and Sy is a d-
dimensional (pseudo-) Riemannian spacetime. The standard sigma model action for this
theory is

f—Q/ Tr(g~tdg) A x(g~1dg) (10.30)
4 Js,
where f is a coupling constant and * is the Hodge star operator.

Consideration of anomalies in gauge theories led Wess and Zumino to introduce a very
interesting term in the sigma model action [50] in the case of the four-dimensional sigma
model. Its proper conceptual formulation and physical consequences were subsequently
beautifully clarified in a series of papers by Witten [51, 52]. We will write it here for
arbitrary even spacetime dimension d = 2n.

Let © = g~ 'dg be the Maurer-Cartan form on G. Then TrO?"*! is closed. If the rank
of G is suitably larger than n (our main application is n = 1 and this will always be true)
then it represents a nonzero cohomology class and for suitable normalization ¢,

Tont1 = [c, TrO*"H] (10.31)

is a DeRham cohomology class that generates the integral lattice in H]%TEH(G).
Let g : Sa,, = G be a sigma-model field, and let us consider a closed spacetime so that
085, = 0. Physically this is relevant even for fields on R?" if we require that the fields

OFor the proof of this theorem see the classic text by A. Pressley and G. Segal, Loop Groups, Oxford
Mathematical Monographs. See Theorem 4.4.1.
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approach 1 at spatial and temporal infinity. In that case, we can consider the the field to
be defined on §27. 11

There are several slightly different approaches one can take to define the Wess-Zumino
term. One way to do it is to note that the image

9(San) C G (10.32)

is a (2n)-cycle inside G which varies continuously with G. Now, if Hs,(G;Z) = 0 (as is

often the case!? ) we can fill in the image of spacetime with an oriented chain Ba,11(9g):

aBQn-I—l(g) = 9(5271)- (10'33)

This chain also varies continuously with g. Note however that there can be different
choices of the chain Ba,11(g).

Example S = 52, G = SU(2) = S3, the map g takes S to the equator. Then we can
use the upper hemisphere D .

We define the Wess-Zumino term to be:

WZ(g) = 27Tk:/ Wan41 (10.34)
Ban+1(9)

where k is a real, coupling constant with dimensions of . The WZW (Wess-Zumino-
Witten) theory is the nonlinear sigma model with Minkowski-space action

f2

T Tr(g~'dg) A*(g~'dg) + WZ(g) (10.35)

Now, at first the definition (10.34) seems absurd. There are two immediate problems:

e [t appears to be an action for field configurations in 2n + 1 dimensions.

e It appears to depend on the choice of bounding chain Bg,11, and the constraint
(10.33) leaves infinitely many choices for Ba,41.

Let us first address point (1.) Although the definition of the WZ term uses a 2n + 1
dimensional field configuration, the variation of the action only depends on the fields on the
2n dimensional boundary 0Bs,11, and hence, the action is in fact local! See the exercise
below for some details on how to vary the action and derive the equations of motion.

Therefore, we find for the variation of the W Z term:

oW Z(g) = 2rke,(2n + 1) Tr(gLog) (g~ tdg)*" (10.36)
8271

Remarkably, even though the definition of the WZ action involves an extension into one
higher dimension, this is a local action in the sense that its variation under local changes in

HThe generalization to the case when spacetime has a boundary is very interesting. In that case exp[iW Z]
should be regarded as a section of a line bundle.

2For example H2(G;Z) = 0 always for a compact simple simply connected Lie group. 74(G) = 0 for all
compact simple simply connected groups except ma(USp(2n)) = Z2. LIST H4(G;7Z)
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the field g(x) is a local density on spacetime! It’s value might depend on subtle topological
questions, but the variation is local.
Therefore, the equations of motion of the WZW theory are local partial differential

equations:

2
—f?d(*gfldg) + 27ke, (2n +1)(g  dg)* =0 (10.37)

Figure 24: Two slightly different (2n+1)-chains B and B’ in G bounding the same 2n-cycle g(Say, ).

Now let us address the second point - the dependence on the choice of bounding chain
Ban+1(g). For a fixed g we can of course smoothly deform the chain to get a second chain
as in 24. The difference B’ — B is a small closed 2n + 1 cycle in G which is, moreover,
homologous to zero, so B’ — B = 9Z where Z is a (2n + 2)-chain. But now, by Stokes’

/ w2n+1—/w2n+1 :/ dwont+1 =10 (10.38)
B B z

theorem:

Figure 25: Two different (2n + 1)-chains in G bounding the same 2n-cycle g(Say).

Thus WZ(g) does not change under small deformations of B.
However, it can happen that B’ and B are not small deformations of each other as in
25. In general if B, B’ are two oriented chains with

OB = Sy, (10.39)

and
OB = ¥, (10.40)
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then
BU-B =Z5,11 (10.41)

is a closed oriented (2n + 1)-cycle. Therefore,

/ Won+1 :/ Wan+1 +/ Won+1 (10.42)
B(g) B'(g) Zon41

and hence, if the periods f52n+1 wan+1 are nonzero then the expression WZ(g) is not well-
defined as a real number!

This might seem disturbing, but, the cycle Z9,4+1 defines an integral homology class,
and hence the periods of wy,+1 are quantized. Therefore, the ambiguity in the definition
of WZ(g) is an additive quantized shift of the form 27kN where N is an integer. Put
differently,

W Z(g)mod2nkZ (10.43)

is well-defined. The quantized ambiguity cannot vary under small variations of g. Thus,
WZ(g) is still a local action, and the equations of motion are still local.

Note that the situation here is very similar to our discussion of the action for general
quantization of a symplectic manifold when the symplectic form has nontrivial periods.

The situation in quantum mechanics is a little more subtle, since in quantum mechanics
one works directly with the action, and not just the equations of motion. However, in
quantum mechanics the action only enters through exp[%S], and therefore all that must
really be well-defined is the expression

exp[%WZ(g)] (10.44)

What is the ambiguity in (10.44) 7 We see that it is just

k
exp[2mi— / Won+1] (10.45)

Z2n4-1

Therefore, if k = xh, where £ is an integer, then the

exp[%WZ(g)] (10.46)

in the path integral is a well-defined U (1)-valued function on the space of fields Map[Sap, G|.
Assuming we have a well-defined measure on the space of fields, there is no harm including
this expression in the measure.

Thus, the coupling constant k must be quantized for a mathematically well-defined mea-
sure in the quantum mechanical path integral. This is one of the most beautiful examples
of a topological quantization of a coupling constant.

We will usually set & = 1. Thus, large k corresponds to the semiclassical limit.

Remarks:
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1. Integral normalization. Here are some relevant facts. It can be shown 3 that for all
compact, simple, connected, and simply connected groups G:

1 _
T3 = [487T—2hTradj(g 1d9)3] (10.47)

generates the integral cohomology lattice in H % r(G), where h is the dual Coxeter
number. In particular, for SU(2) we can take

_ 1,713
x3 = [24772 Tro(g~ 'dg)”] (10.48)
It follows that for SU(N) we can take
[t 1713
x3 = [2%2%]\,(9 dg)°| (10.49)

to generate the integral cohomoloy lattice in H3 5(G).

2. Here is another way to define the Wess-Zumino term. For each connected component
Cq of the fieldspace Map(Say,, G) = 11,C, we choose a “basepoint” field configuration
g(()a) : 89, — G. If Sy, is contractible there is only one component and we can choose
go to be the constant map (say with image 1 € G). In general for field configurations
g € C, we choose a smooth homotopy g(z,s), 0 < s < 1 from g(()a) (x) at s =0 to g(x)
at s = 1. Now we view the interpolation as a field in 2n + 1 dimensions, that is, as a

map of the cylinder g : I X Sy, — G. We can then define

WZ(g; go) := 2mk / g (wan+1) (10.50)
IXSQn

3. The value of WZ(g;g9) depends on the choice of gy and on the interpolation, but
only “locally,” in the following sense: Suppose we have a continuous family of maps
g™ @ S2p, — G in the connected component C,. Then we find a continuous family
of extensions gl : Ban+1 — G such that gj(z) = go(z) for all 7. Then, letting
B =1 x 8,, we have:

O i1y ~\2m - 109 1, _\on
ETr(g Ydpg)*" ™ = dg|(2n + 1)Trg 16—5_(9 ldpg)? (10.51)

Proof: We know that the Maurer-Cartan form pulled back to I x Ba,1 is closed, so
(dp +0)Tr(g H(dp +6)§)*" ™ =0 (10.52)

where § = dTa%. Now forms on the product space can be decomposed into type (a, b)
with a-forms along I and b-forms along Bs,1. The component of (10.52) of type
(1,2n +1) is

OTr(§71dpg) ™™ + (2n + 1)dp | Tr(§764)(§ 1dBg)*" | =0 (10.53)

3Ref: Mimura and Toda, Topology of Lie Groups, Translations of Math. Monographs 91; R. Bott, Bull.
Soc. Math. France 84(1956) 251.
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pulling out the dr gives our identity. It is now an easy matter to show that the
variation of the WZ term defined as in (10.50) only depends on the variation g7 at
s=1.

Exercise
a.) Calculate Tr(g~'dg)? for SU(2) in terms of Euler angles for the group, using the

fundamental representation:

Tro(g tdg)? = —;dz/) A sin 0df A de (10.54)

b.) Write this differential form as a locally exact form.
c.) Show that

1
Try(g tdg)® = —1 10.55
/S 0 3 20 7'40) (10.55)

and thus conclude that the form is not globally exact. Compare with the general normal-
izations above.

d.) Now show that z3 in equation (10.49) defines a nontrivial cohomology class for all
SU(N).

Exercise The Polyakov- Wiegman formula
Consider the WZ term in two spacetime dimensions.
a.) Show that

_ 3 - 3 - 3 1y -
Tr((9192) " d(gr92))" = Tr (g7 dgn)” + T (95 ' dgo)” + 3d [rﬁ“(dgzgz (g Mdgr) | (10.56)
b.) Conclude that the WZ term satisfies:

W Z(g1g2) = WZ(g1) + W Z(g2) + 67key /Tr(d92921)(glldgl) (10.57)

Exercise Variation Of The WZ Term
Using the variational formula

§(970ug) = 0u(97"69) + [97 " Oug, 9~ d9] (10.58)
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We compute:

%T&«(gldg)%ﬂ = (2n+1)Trd <91%> (g tdg)*" (10.59)

The second term, involving the commutator drops out.
Now we compare with the RHS

d Trg_l%(g_ldg)%] = Trd (g_1%> (g tdg)*" —l—Trg_l% [d@@%_l —0dee*24...

(10.60)
and using the Maurer-Cartan equation we find that the second group of terms cancel in
pairs. @

10.2.4 Construction Of The Cocycle For LG

The trick is to consider the group of maps DG from the disk to the group G, i.e. we
introduce DG = Map(D,G) where D is the disk. Note that the subgroup D1G of maps
such that glpp = 1 is a normal subgroup and DG/D;G = LG, and explicit isomorphism
being given by the restriction map.

Now, in contrast to LG, it is easy to write a central extension DG of the group DG:

(91, A1) - (92, A2) = (9192, MA2f (91, 92)) gi € DG (10.61)

where

Fo1,82) = exp [2m'<6wc1k:> [ Ttdsngsar ) (10.62)

Note that we have written our Ad-invariant inner product (-,-)g in terms of a defi-
nite trace Tr in some representation. For SU(N) with the trace in the N dimensional
representation ¢; = 1/(24w?).

Exercise

a.) Check that (10.62) is indeed a group cocycle.

b.) Compute the corresponding central extension on the Lie algebra Dg and show that
it is trivial when one of the elements vanishes on the boundary. Indeed, show that it is

247T2i01k7{ Treides = il{:j{Treld(fg (10.63)
5’1

for ¢; = 1/(24n?).

Now, the beautiful observation is that, when g; and g9 are equal to 1 on the boundary
0D, we can consider them to define maps from S? — @, and therefore we can define the
WZ term. But, because of the identity we proved above:
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WZ(g192) = WZ(g1) + WZ(g2) + 6mkcy /Tr(dggggl)(gl_ldgl) (10.64)

the cocycle becomes a coboundary when restricted to the subgroup D1G. Therefore,
the extension
1—-U(l) - DG - DG — 1 (10.65)

splits over the normal subgroup DG, that is:
Vg — (g,e"409) g € D1G (10.66)
is a group homomorphism from DG to lf)\é, and hence we can take a quotient
1 U(1) — DG/¢(D1G) — DG/D1G = LG — 1 (10.67)

to construct the loop group LG := Zf)\é/l/)(DlG).
Finally, if we include Lg then note that

explifoLo|g(0)exp[—ifoLo] = g(6 + o) (10.68)
so Lg generates rigid rotations of loops.
Remarks

1. The above construction of the central extension is due to J. Mickelsson. For a gener-
alization to Map(X, @) for arbitrary manifolds X see [32] and references therein.

2. At the Lie group level one can construct a semidirect product with the Virasoro group
- the centrally extended diffeomorphism group of the circle.

3. The above presentation of the centrally extended loop group is very convenient for
quantizing three-dimensional Chern-Simons theory on D x R. The group of gauge
transformations is D1G. The flat gauge fields on the disk are parametrized by DG.

10.2.5 Integrable Highest Weight Representations

Let G be simple and compact. The centrally-extended loop group constructed above will
be denoted simply G}, for k € Z,. 14

What can we say about the representations of Gj7? Clearly there are many. For
example, G has a homomorphic image LG so, choosing any representation p : G — Aut(V')
of G (for example, a finite-dimensional irreducible representation of GG) and a point 2y on
the circle we can define the evaluation representation:

p:Gr— p(g(20)) (10.69)

141n general for a compact group it can be shown that the central charge should be regarded as an element
of H*(BG;Z). For G simple, compact, and connected this cohomology group is isomorphic to Z and we
can consider the central extension to be an integer.
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with carrier space V. Note that these representations do not interact well with Lg, since

Lo translates zg — zpe'?.

It turns out that G has a finite set of irreducible representations with Ly bounded

below. These representations are naturally constructed as highest weight representations
of the Lie algebra and are known as integrable representations because they extend from
representations of the Lie algebra to the Lie group.

The integrable representations are graded by Ly and the spectrum is bounded below.
The lowest weight space under Lg is itself an irreducible representation of GG, and has a
highest weight A corresponding to an element of

At/ W (10.70)

where W is the Weyl group and A,; is the weight lattice. After making a choice of simple
roots for g the highest weight of an irreducible representation of G can be labeled by a
dominant highest weight A\ € A,;. Recall this means that

A=Y niAl (10.71)

where n; > 0 and A is a basis of fundamental weights dual to the simple roots.
Now for the case of G}, the irreducible representations are labeled by the quotient

At/ W) (10.72)

where W®) is the level k affine Weyl group. It is a discrete crystallographic subgroup of
the group of affine transformations of tV. As a group it is isomorphic to the semidirect
product of the Weyl group W with the translation group by the coroot lattice A+ but we
denote it by W) because the translations act by

{ojv} : A= o(N) + kv oeW,ve At (10.73)

It is useful to know that this is a Coxeter group, generated by reflections. These include
the Weyl reflections and the reflection in the hyperplane (\,0) = k, where k € Z,, 6
is the highest root and we use a normalization of the Killing form so that (0,0) = 2. A
fundamental chamber for this action in A, is the finite set of dominant weights satisfying:

(A 0) <k (10.74)

This condition is usually derived in conformal field theory by using unitarity and a null-
vector.

Example 1 G = SU(2). Then § = o and A = ja where j € %Z+ is known in physics
as the spin. (Mathematicians normally would write A = mA® where A1) = %al is the
fundamental weight. Thus n; = 2j is twice the spin.) The irreducible representation has
of SU(2) with weight A = ja; has dimension 25 + 1. The lattice A,y is isomorphic to Z.
The hyperplane in t¥ = R is (za, ) = k or z = k/2. So reflection in the hyperplane takes

j— g — j. Therefore a fundamental domain for the affine Weyl group is:

k

0<j<3 (10.75)
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Figure 26: The root and weight lattice for SU(3). A standard set of simple roots ay, s is shown
along with fundamental weights A, A2. The fundamental Weyl chamber is the positive cone spanned
by these two weights. The highest root is § = a3 + 3. The heavy green line is the line (A, 0) = k
for some positive integer k. The affine Weyl chamber is the region (),0) < k and the integrable
weights at level k is the intersection of the weight lattice with the fundamental Weyl chamber.

Note that W* in this case is isomorphic to Z x Zs, the infinite dihedral group.

Example 2 G = SU(3). For SU(3) we can choose two simple roots. The standard choice
is

al—f0

o \/’ \/’ (10.76)

2
A= -1 + Oz2

A (10.77)
)\2 = gal + gOLQ

Now 6 = a1 + as. The integrable weights at level k are AL + ngoA? with n; € Zy and
ny+ng < k.

The integrable highest weight representations L(\) turn out to be objects in a tensor
category. The tensor product is not symmetric. Note that it is not obvious how to take
a tensor product of two representations L(A) and L(\') to get a representation of the KM
algebra with the same value of k. ® The way to do this is to use conformal field theory.

15For the same reason one does not want to multiply characters.
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The key observation is that if we consider the two-dimensional WZW model with
f? = 127ke; then the equation of motion in Minkowski space is:

d+(g7'0-g) =0 (10.78)
where 0 are derivatives wrt light-cone variables £+ = 2% +z!. Equivalently, we may write:
0_(04+997") =0 (10.79)

so the classical theory on M!*! has a symmetry of Map(R, G) x Map(R, G) with a left-action
on solutions by

(he,hgr): g hr(a)g(zt,27)(hr(z")) ! (10.80)

On a cylinder S' x R this becomes a product LG x LG. In the quantum theory this
symmetry survives when LG is replaced by Gg. The theory splits into a theory of left- and
right-movers. It is a conformal field theory. This was shown in detail in [19, 28, 51]. Two
textbooks that treat this material in detail are:

1. P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory

2. J. Fuchs, Affine Lie Algebras And Quantum Groups

Figure 27: Three CFT state spaces are associated with the circles Cy, C3, and C5 and are
associated with radial quantization around z = 0, 2q, 0, respectively.

The tensor product can be thought of as follows. (We follow the description from [35],
equation (2.5). Rigorous descriptions of the tensor product using vertex operator algebra
theory are given in [26, 27].)
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We can form a current:

JUz) = Tiz""dz (10.81)

where we now analytically continue z to the complex plane - regarded as the Euclidean
worldsheet of a 2d Euclidean QFT for the WZW model. Note that

T = %z"Ja(z) (10.82)

There is a state-operator correspondence: The insertion of a local operator ®(z) at a
point 2z on the plane produces a state in the Hilbert space of radial quantization centered
on that point.

To give a tensor product we need a comultiplication A : 4 - A ® A where A is the
algebra of local observables.

We imagine one Hilbert space of states on a small circle C'; centered at z = 0, a second
circle Cy centered at z = zp, and a third on a larger circle C5 centered at z = 0 but
encircling zy. See Figure 27.

If local operators creating states in representations Ly and L, are inserted at z = 0
and z = zgp then the resulting state on the circle C'5 will have an action of the current with
modes

Ao (T0) = 75 (2
Cs

= <7{c1 ZnJa(Z)> ®1+1® <7{C2 Z”J“(Z)>

In the first line we have written an operator acting on the space of states on the circle

(10.83)

Cs5. (Think of it as the outgoing state space in a pair of pants diagram.) The next line
is a contour deformation (since J%(z) is a holomorphic current) to give an action on the
space of states on the circles C; and Cs. Since there are two ingoing states on the pair
of pants we have a tensor product of state spaces. The interesting term is §CQ 2" J%(2)dz.
When acting on the Hilbert space obtained by radial quantization centered at zy we should
expand the current as

T z) =) (2 —20)"" 4 (20)d(z — 20) (10.84)
meZ
but
0 < -1
j{ (2 — 29) ™z = = (10.85)
C ()2~ m=>0
and hence

Ao (TH=Tl@1+1® (i <Z> zng,g(zo)> (10.86)

k=0

Now, the fusion rules for multiplication, with this tensor product, of the the simple
objects (that is, the irreducible representations of Gj) turn out to define a semisimple
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Frobenius algebra: 16

L(p) @02 L) = &N, L(N). (10.87)
Therefore, there is a matrix S that diagonalizes these rules.
The remarkable statement of E. Verlinde is that this matrix S can be taken to be the

same matrix as the modular S-matrix for the characters of the representations [49]. To
explain Verlinde’s statement we define the characters by

Xu(T) = TrL(u)CILO*C/24 (10.88)

2miT

where ¢ = ¢ is in the unit disk (so 7 is in the upper half-plane) and

kdimG
_ 10.
=S (10.89)

is the central charge of the Virasoro algebra. Then it turns out that x,(7) are vector-valued

modular functions. In particular

Xu(=1/7) = Spxu (1) (10.90)

Verlinde’s observation was that this modular S-matrix diagonalizes the WZW fusion rules.

It was proven in [14, 34, 35]. Kac-Peterson derived a formula for their transformation for
Sy

Example Introduce the level k£ theta function defined by

2 2
Opukl(zT) == qu(n+u/(2k)) y(pt2kn) Z NACONT (10.91)
neZ {=pmod2k
with y = e*™#. Now introduce the character:

X?(z, T) = Trv(j)qLO_C/MeQMZ(?Jg) (10.92)

This might look unnatural from the point of view of Lie algebra theory, but it is well-
motivated by physics: We are subtracting the groundstate energy. Then a special case of
the Weyl-Kac character formula is:

X?(Z, 7) = tr qLofc/24627riz(2Jg)

O2j4+1,k+2(2,7) — O_gj_1k42(2,7)
_ 7 ’ 10.93
©12(2,7) —O_12(2,7) ( )

(€+1)2/(4(k+2))—1/8xj(y) 4.

=49
where 0 < j < k/2 and j is half-integral.

Now the key transformation law of level k theta functions (easily derived using the
Poisson summation formula) is

2k—1
. ]_ - pv
Ok (—w/T, —1/7) = (—iT)/2e2mhe/ > w0, p(w, 7) (10.94)
— 2k

The conceptual reason for this is that one can gauge the G symmetry of the WZW model to produce
the G/G model. This is a 2d TFT.
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From this transformation law one can derive the S-matrix for SU(2). It is

3 m@i+ )R+ 1)
Ly = 10.
Si; F g on 2 (10.95)

In general, labeling the irreducible highest weight representations of Gy by the domi-

nant weight of the representation of G' at the lowest eigenvalue of Ly we have the eigenval-
ues:

S v
AW = &5 =ch, <2w +p> (10.96)

7 k+h

where i, v are dominant weights, p is the Weyl vector, 17 h is the dual coxeter number,
and we have used the Killing form, normalized so that (0,0) = 2 to identify tV = t and
thereby regard v + p as an element of t.

Using equation (10.96) it is possible to express the CFT fusion rules N !i\v in terms of
the Littlewood-Richardson coefficients N, ﬁ‘y of the finite-dimensional group:

chych, = Y N chy (10.97)
AEAL,
We know that, in general
AWAW) — ZN’\ AWM (10.98)

for semisimple Frobenius algebras. Evaluating (10.97) on the special conjugacy classes

18

27 (A + p)/(k + h) and using some simple manipulations *° one obtains:

N, = > sign(w)Ng (10.99)
weWk w-AeA],

(The sign of w is defined since W* is a Coxeter group. It is +1 according to whether the
group element is a product of an even/odd number of reflections.)
For example, for SU(2); the ordinary Clebsch-Gordon rules N ]J.j, give

Jlell=0i-ileli-il+1e e+ (10.100)

However, if j + j' > k/2 then there will be an affine Weyl reflection around j = k/2. Each
weight larger than k — j — 5/ will have a reflected image larger than k/2 and these will
cancel in pairs. In this way we get:

o (1 =< <min{j+ i k—j—iY&j+i +i" €T
j _{ lj =41 < 3" <min{j +j J=3"Y&egj+i + (10.101)

0 else

Remarks

"The Weyl vector is half the sum of positive roots. It is equal to the sum of fundamental weights.
18See Di Francesco et. al. Section 16.2.1 or Fuchs, Section 5.5
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1. In general, the characters are given by the Weyl-Kac character formula. Just as the
Weyl character formula can be written

S €007

ZwGW ew(P)*P

(10.102)

the Weyl-Kac character formula can be written in the identical form, where we replace
the sum over the Weyl group by the sum over the affine Weyl group and A, p are
replaced by suitable affine weights. We recognize the structure of the sum over the
affine Weyl group in equation (??): The theta functions come from the sum over Z
and the difference of the theta functions comes from the nontrivial reflection in the
Weyl group of SU(2).

2. It turns out that the representation theory of G} is closely related to that of the
corresponding quantum group when ¢ is a suitable root of unity:

21
k+h

q = exp( ) (10.103)
See the book by Fuchs for a detailed exposition.

3. There is a generalization of the above story to a much wider class of two-dimensional
conformal field theories known as “rational conformal field theories.”

Exercise
a.) Find the invariants 6, for the Frobenius algebra defined by N ]]J"/

b.) Note that since NN, j,j " are integers, Z(X,) is an integer, a surprising fact when
viewed as (9.20). This is a special case of the famous Verlinde formula.

Exercise

a.) Show that the product of theta functions of level k and £/, as functions of z can
be expanded in terms of theta functions of level k£ + k’. Thus, taking a direct sum of the
span of the level k theta function defines a graded ring.

b.) Show that the characters X?(z, 7) can be expanded in level k theta functions.

This is another way to see that the standard tensor products of representations of
SU(2), will not produce a representation of SU(2)y.
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10.3 Example 3: The Cohomology Of A Compact Oriented Manifold

The following example shows that
e Some natural Frobenius algebras are not semi-simple.

e The nondegeneracy of  can amount to a deep theorem.

Let M be a compact oriented manifold. Consider Hf,,(M) (or H*(M;Q)). We claim
that this defines a graded commutative Frobenius algebra.
The multiplication is the wedge product. The trace is given by the integral:

w— O(w) = /[M] w (10.104)

The (deep) theorem of Poincare duality can be formulated as the statement that the
quadratic form defined by 8, namely,

(w1, w2) —>/ w1 A we (10.105)
M

is nondegenerate. (It is crucial here that M be compact and that M is a manifold.) Thus,
Poincaré duality says that this algebra is a Frobenius algebra.
Let w, be a basis, and w” a dual basis so that

/w” ANw” =9, (10.106)

If w, is a k-form, then w* is an (n — k)-form.
Let us compute the characteristic element:

H=>) w'Aw, (10.107)
"

This is an n-form. Since it is a form of positive degree it is not invertible, so this algebra
is not semisimple.

Let vol (M) be the integral generator of H™ (M) corresponding to the orientation. Then
from (10.106) we get

wh A w, = (—1)deswndeewyol (M) (10.108)

H = y(M)vol (M) (10.109)

is given by the Euler character.

Another way to see the non-semisimplicity is to note that there is a “conserved charge,”
namely the degree of the form. Since the ring is finite, anything with positive charge must
be nilpotent. But nilpotent matrices cannot be diagonalized.

Remarks:
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1. A path integral that leads one to consider the above Frobenius algebra is N = 1
supersymmetric quantum mechanics with target a Riemannian manifold M. The
quantum mechanics of a particle moving on a Riemannian manifold M is described
by the action:

S = / dt%GW(x(t))aL““j:” (10.110)

The Hilbert space of the theory is L?(M), the space of L? functions defined by the
Riemannian metric. The Hamiltonian is classically

1
H = 5p,G"py (10.111)

and in the quantum theory this becomes the standard Laplacian
1
V9

acting on L?(M). When we make the theory supersymmetric The Hilbert space of

A= —0,\/5G", (10.112)

the full theory is naturally isomorphic to the DeRham complex Q*(M) and one of the
supersymmetry operators () acts as the exterior derivative under this identification.
The Hamiltonian is the Hodge Laplacian (d + d)?. Restricting to a “BPS sector”
or “supersymmetric sector” or “topological sector” of states annihilated by d + d' is
restricting to the Harmonic forms. By a standard theorem this space of harmonic
forms is isomorphic as a vector space with the DeRham cohomology. In general “BPS
sectors” or “supersymmetry preserving sectors” of a theory are related to topological
field theory. We will be more precise about that later.

2. Rational Homotopy Theory. The cohomology associates to a manifold a “differential
graded algebra,” (with d = 0). According to a famous theorem of Sullivan and
Quillen, such DGA’s characterize manifolds up to rational homotopy type, i.e. they
determine 7;(M) ® Q. ***** More detail here ****

10.4 Example 4: Landau-Ginzburg theory

An important example of Frobenius algebras in string theory are provided by 2-dimensional
N = 2 supersymmetric Landau-Ginzburg theories. They provide moreover a nice set of
examples for comparing the semisimple and non-semisimple cases.

Once again, one begins with a physical theory - a d = 2 (2, 2) supersymmetric quantum
field theory and restricts to a “topological sector” of the theory provided by a “topological
twist.” In the simplest case, the quantum field theory has as target space a linear space
of fields X1, ..., X, (which we will just regard as coordinates on C™) and a holomorphic
function W (X1,...,X,) known as the “superpotential.” '

Two-dimensional field theories with (2,2) supersymmetries actually admit two kinds

of topological twists called “A-twists” and “B-twists.” In the “B-twisted model” the chiral

¥The X; are actually “chiral superfields” and the theory also requires a nonholomorphic function
K (X, X;) known as the “Kahler potential.”
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superfields satisfy an algebra which turns out to be the polynomial algebra factored by the
Jacobian ideal:
C =C[X;]/(O;W) (10.113)

The Frobenius structure is defined by a residue integral in general. In the one-variable
case we define

$(X)

(o) := o T 10.114
(6) = Resx o s (10.114)
The vacua of the theory correspond to the critical points of W:
ow

The critical points are said to be of Morse type is the matrix of second derivatives:

0*wW

m| %o (10.116)
is nondegenerate. Physically Morse critical points correspond to massive theories, while
nonMorse critical points renormalize to nontrivial 2d CFT’s in the infrared. Note that W
is holomorphic, so these definitions are analogous to, but different from the definitions we
gave above for a real Morse function.

If the critical points of W are all Morse then the algebra (10.113) is semisimple. Indeed,
if all the critical points are Morse then the trace is easily written in terms of the critical
points p, as

Cb(pa)

0(¢) = Z det(aampa) (10.117)
dW (pa)=0

Example W = n%—lX ntl _ ¢X. The critical points are at w/g'/"™ where w is a primitive

n root of unity. Clearly, W” is nonzero there.

10.5 Example 5: Quantum cohomology

Let X be a Kahler manifold. One can formulate the two-dimensional supersymmetric
sigma model with X as target space. It is a theory of maps

$:% o X (10.118)

with action

S— /E(dqﬁ, vd@) + - -- (10.119)

For these models one can define an “A-twisted” topological field theory and the local
operators are in 1-1 correspondence with H},,(X). However, the correlation functions of
Q-invariant operators define a Frobenius algebra that is a deformation of the Frobenius
algebra structure we saw above.

This is known as quantum cohomology.
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Example Let X = CP". The cohomology ring has a generator z € H?(X) and is the
algebra C[z]/(z""1). When we consider the A-model with target space X there is a local
operator O, that generates the ring of @Q-invariant local operators and this ring can be
shown to be

Clz]/(z" ™ — q) (10.120)

where ¢ = e=4 and A is the Kahler class of X. For ¢ # 0 this Frobenius algebra is
semisimple.

It is thought that for general non-Calabi-Yau target spaces the quantum cohomology
ring is semisimple.

11. Emergent Spacetime

It is very unusual to have a space of quantum states be an algebra. (We will stress this
with a little review of quantum mechanics in the next section.)

What should we make of the fact that the space of states in a 2D TFT is an algebra?
At least in the semisimple case there is a very nice answer. A beautiful theorem of Gelfand
tells us that one can naturally associate a space to any commutative C*-algebra. In this
section we will describe that in somewhat heuristic terms. Then we will return to it in

more formal terms.

11.1 The algebra of functions on a topological space X

Consider a topological space X. Let us begin to transcribe topological /geometric concepts
into algebraic concepts.
Consider

C(X)={f:X—=>C:f 1is continuous} (11.1)

What are the algebraic structures of C(X)?
e C(X) is clearly a vector space over C.
e Moreover, C(X) is an algebra: you can multiply functions:

(f1- f2)(@) == fi() f2(2) (11.2)

Note that it is a commutative associative algebra.

It is interesting to study the representations of C(X). Because C(X) is commutative,
one should study its 1-dimensional representations. Indeed, there is an obvious source of
such representations given by the evaluation map. Given a point z¢g € X, we define evy,:

€V, (f) = f(xO) (11'3)

This is a one-dimensional representation of C(X).
Recall that characters of an algebra are the algebra homomorphisms to C, that is

x(fg) = x(f)x(g) (11.4)
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For a commutative algebra these coincide with the irreducible representations. The
evaluation map is a character, and, it turns out, it is the only kind of character we can
construct. This is reasonable: A linear functional on C(X) should depend linearly on
f(x) at every x and should therefore be some kind of sum ) f(z)ev, (making this
precise when the sum is infinite is the domain of functional analysis) but this will only be
a character if f(x) is only supported at a point. So we could think of X instead as the
space of characters of C(X). This is a way of “algebraicizing X.”

There is another way to think about X algebraically which is more obviously a formu-
lation involving just the “internal structure” of C(X). If x is a character then from (11.4)
it follows that the kernel of x is an ideal I(x) C C(X). For the character given by the
evaluation map, we have the associated ideal:

kerev,, :=my, = {f : f(xo) =0} (11.5)

In fact, m,, is a mazimal ideal. This means there is no nontrivial ideal which contains
m,, as a proper subset. In the present example the claim is easily verified. If m,, C I for
some strictly larger ideal I then I must contain a function h such that h(xg) # 0. But this
means that the function 1 is in I since we may write:

h— (h — h(zo)1) = h(zo)1 (11.6)

and since (h — h(z¢)1) € my, the LHS is in I. Since h(z¢) # 0, we can divide by it, and
we conclude 1 € I. Since [ is an ideal I = C(X).

Exercise Identifying characters and mazximal ideals
a.) Show that
0—m,, - C(X)—>C—=0 (11.7)

b.) When I C A is an ideal in an algebra A then we can define an algebra A/I. Explain
why, in this case C(X)/my, is in fact a field.

In a similar way we can algebraicize maps between topological spaces. If
p: X =Y (11.8)
is a continuous map then the “pullback map”
¢*:C(Y)— C(X) (11.9)
is defined by f — ¢*(f) whose values are, by definition
¢"(f)(@) == f(¢(x)) (11.10)

The key algebraic structure here is: ¢ is a homomorphism of algebras.
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Now the key idea of the algebraic approach is that, in some sense the maximal ideals are
in 1-1 correspondence with the points of X, and the algebra homomorphisms C(Y) — C(X)
are in 1-1 correspondence with the maps ¢ : X — Y. In order to make this work and to
have some control on notions of topology we need some algebraic notion corresponding to
the fact that we have continuous functions. (Nothing we said above relied on the fact that
we were talking about continuous functions.) The solution to this problem is to consider
commutative C* algebras.

To get an idea of what a commutative C* algebra is note that we can make C'(X) into
a normed vector space by defining

|/ ll:= supzex|f(x)] (11.11)

Moreover, there is a natural C-antilinear map f — f* such that

£ 0=10F 1P (11.12)

We develop these ideas more rigorously below. For the moment suffice it to say that
given a commutative C'x algebra one can turn the space of characters, or equivalently, the
space of ideals into a Hausdorff topological space. If the algebra has a unit it is compact.
Before going into the general theory first let us see how it works in the fairly trivial context
of 2D TFT.

11.2 Application To 2D TFT

Let us now apply these ideas to 2D TFT. We have seen that it is equivalent to a finite-
dimensional commutative Frobenius algebra.

If C is semisimple, then it is isomorphic to &,Ce,. This is a unital C* algebra, and as
we have just learned we can associate to it a compact topological space. In fact, in this
case the space is just a finite disjoint set of points corresponding to the idempotents.

Thus the “target space physics” in this example is the following: Spacetime consists
of a finite disjoint set of 0-dimensional disconnected “universes.” Each basic idempotent
€z corresponds to a point 2. The only physical information is in 6, = 0(e;) = Z(5?), for
that universe. We should interpret this as the string coupling, since the contribution of x
t0 Zstring 18

_ 1
Zstring = ng21 — 5 (1113)
x 9z

where 0, = g, 2.

We will further justify this interpretation when we consider open-closed theory and
boundary conditions.

Remarks:

1. When C is not semisimple, the spacetime interpretation is not so straightforward.
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2. Two-dimensional conformal field theory is a nice generalization of 2D TFT. In this
case there is a state-operator correspondence, so that the space of states H(S%)
assigned to a circle is also an algebra. It is related to the mathematical theory of
vertex operator algebras. In some cases, e.g. the level £ WZW theory for a compact
simple group G, a subsector of the operator product algebra approaches the algebra
of functions on G as k — oco. To be more precise, if A is in the afﬁ/rle/ Weyl chamber

then the vertex operators corresponding to the states in L(\) ® L(\) at the lowest
value of Ly + Lo correspond operators

) (20 (11.14)

where zj is the operator-instertion point. These can be described in the WZW path
integral as insertions of matrix elements of py(g(z0)) where p, is the representation
of the finite-dimensional group G. These operators have Ly = Lg eigenvalue

(A, A +2p)
=-—" 11.1
AT 2k + h) (11.15)
(So for SU(2)x, a primary field of spin j has A; = j(j +1)/(k + 2).) &CHECK! &

The operator product expansion of these operators takes the form:

2

Ut ()R 5 (22) ~ D |(zrmz) DT Clag @2 5 (20) (1+ Oz12, 212))

A3,143, 3 ( )
11.16

The OPE coefficients Cio3, depend on A;, w4, ji; as well as k. They have a good
k — oo limit and in fact approach the usual structure constants for the multiplication
of functions in L?(G). Since the weights Ay — 0 for k — oo at fixed \ if we take
k — oo and z; — 23 the OPE algebra becomes the commutative algebra of functions
on G.

This, and other examples, gives a hint that vertex operator algebras provide a kind
of generalization of geometry and topology. When we consider the chiral vertex
operators, or - closely related - vertex operators on boundaries of Riemann surfaces
then we find that the algebras are noncommutative.

There are many many papers exploring this idea. Two examples are [16, 45]

Exercise
What is the analog of (11.13) in the unoriented case?

12. Quantum Mechanics And C* Algebras

This section is somewhat outside the main line of development of this chapter. Nevertheless
we have included it for several reasons:
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1. The material is of intrinsic interest.

2. The material will be of use in the more algebraic description of bundle theory.

3. We give a complete and rigorous proof of the Gelfand theorem, and put it into some
context.

For the functional analysis I will follow:

1. N.P. Landsman, “Lecture Notes on C*-Algebras, Hilbert C*-modules, and Quantum
Mechanics,” arXiv:math-ph/9807030

2. Reed and Simon, Methods of Modern Mathematical Physics, especially, vol. 1.
Rudin
Murphy
Varilly
Wegge-Olsen

A

12.1 Banach Algebras

The proper notion of continuity is captured by the notion of a “C* algebra.” In order
to appreciate this concept we need to take a few steps back and review some standard
functional analysis.

Definition. A vector space V' is a normed vector space if there is a function v —|| v ||€ R4
such that:
L o +ve <] o0 [+ w2 ]
2. || av ||=|a| || v ||, where a is a scalar.
3. [[v|l>0ifv#0.
The key point about a normed vector space is that we can define a notion of open sets,
and therefore continuity, etc. Thus, for example:
1. A sequence {v,} C V converges to v € V if
lim ||v, —v[=0 (12.1)
n—oo
2. A Cauchy sequence {v,} C V is a sequence so that for all € > 0 there is an N so
that for all n,m > N we have || v, — vy, [|< €.
3. Every convergent sequence is a Cauchy sequence, but the converse is false.

Definition. A normed vector space is complete if every Cauchy sequence in V' converges
to some vector v € V. Such a normed vector space is called a Banach space.

Note that it follows from the triangle inequality that for all v1, v9 in any normed vector
space
[ For = To2 | [ <[l vr — w2 |l (12.2)

Therefore, if {v,} converges to v € V, then

Tim [ v [|= v | (123)

— 77 —



Do not confuse a Banach space with a Hilbert space. To define the latter we first recall
that an inner product space is a complex or real vector space V with a sesquilinear inner
product: A map V x V' — k (where the ground field is R or C) that is linear in the second
variable and antilinear in the first. The inner product is positive definite when (v,v) = 0
iff v = 0. Given a positive definite inner product we can define the structure of a normed

[ v ll:==+/(v,v). (12.4)

The slightly nontrivial point to check is the triangle inequality and this follows from the

vector space on V via

Cauchy-Schwarz inequality.

Definition A Hilbert space is a positive definite inner product space which is complete in
the norm (12.4).

Thus, a Hilbert space structure on V defines a Banach space structure on V. We will
soon see examples of Banach spaces that are not Hilbert spaces.
Suppose that V; and Vs are two normed vector spaces. A linear operator T : Vi — Vs

is said to be bounded if
| T [|2

ol (12.5)

H T H:: SUDPyey; w0

where the subscripts on the norms on the RHS remind us that we use the norms in V; and
Vs, respectively. We will usually drop them to keep the equations from getting too busy.
In particular, if T' is a bounded operator then for all v:

[T l[<f T - [lo - (12.6)

Note that if 71, T are bounded then so is aT1+5T5. Let £(V1, Vs) be the vector space of
all bounded operators. We claim that T —|| T || is itself a norm on £(Vy, V2). It is called the
operator norm. To check this we must show for example that || 71 + 1o ||<|| 11 || + || T2 ||-
This holds because

| (T1 + T2)(v) |2
| vl

| Thv |2
< SupUGVbU;éOHi + SUPyey; w0

vt

| T1 + T3 || := supyey, w0

| Tov [|2 (12.7)
[ vl
=T+ 1[I T2 |

Proposition: If V1,1, are normed linear spaces and Vs is a Banach space then £(Vy, V)
is itself a Banach space.

Proof: Suppose {T,,} is a Cauchy sequence in the operator norm. That is Ve > 0 3N such
that n,m > N implies || T,, — T\, ||< €. Then for all v € Vy {T,,(v)} C Vs is a Cauchy
sequence and therefore has a limit because Vs is a Banach space. We call the limit T'(v),
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and it is easy to prove that v — T'(v) is a linear operator. We claim that 7" is a bounded
operator. To prove this note that for all v # 0

T T,
I T@) ll2 _ y 16 12
[vle  n=oe ol (12.8)

< lim [T, |
n— o0

But we know that {|| 7}, ||} is a Cauchy sequence of real numbers, by (12.2). It therefore
converges, so T' is a bounded operator. Taking the supremum over all v # 0 in (12.8) we
see that the limit is || 7" ||.

Finally, we need to show that 7,, — T" in the operator norm. But

| (T =T ll= Tim || (T = ToJv <] 0 || Tim | T — T | (12.9)
m—r0o0 m—r0o0
SO
| T =T, < lim | T — T | (12.10)
m—0o0

which suffices to show that lim, o || T =1, ||=0. &
There are two useful things we can immediately conclude from this Proposition. First,
we can make the following important definition:

Definition: A functional on a Banach space B is a linear map ¢ : B — C that is a bounded
operator. The dual Banach space is the Banach space BY := £(B,C) in the operator norm.

Second, it follows that if B is a Banach space then B := £(B, ) is also an a Banach
space. On the other hand, it is also an algebra. The one thing we need to check is that the
product of operators is again bounded. But this follows because

| v <[ Tl - [ oo [<TTo - T T2 - ol (12.11)
Thus, 1775 is indeed bounded, and moreover:
I <[ Tull- || T2 | (12.12)
This motivates the

Definition: A Banach space 2 is called a Banach algebra if it has an algebra structure
such that for all a1, as € 2A:
| araz |<|[ a1 [ - ]| a2 || (12.13)

Remarks:
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1. Note that a bounded operator is always continuous in the norm topologies on Vi, Vs.
Indeed, for all e > 0if || v —wy [|[< 6 :=¢/ || T || then | T(v) — T(vg) ||[< e. In a
similar way, in a Banach algebra the multiplication B x B — ‘B is continuous in each
variable.

2. If v e B and ¢(v) =0 for all £ € B* then v = 0. This is not completely trivial and is
a consequence of the Hahn-Banach theorem. Recall that the HB theorem says that
if By C B is a linear subspace and ¢y : By — C is a bounded linear functional then
there is an extension to ¢ : B — C with || ¢y ||=]|| ¢ ||. (This theorem is nontrivial.
For a proof see any textbook on functional analysis.) For v # 0 we can take By to
be the line through v and define fo(Av) := A. Then the extension ¢ clearly has the
property that £(v) # 0.

3. If H is a Hilbert space then B(H) := L(H,H) is a good example of a Banach space
that is not a Hilbert space. One might try to define a sesquilinear form by (T1,T5) =
Trq.[TlJr T, but this will not converge in general.

12.2 C* Algebras

Definition: Let A be an algebra over C. Then it is a *-algebra if there is a C-antilinear
involution A — A denoted a — a* such that (ab)* = b*a™.

Example: B(H) is a good example of a x algebra, where * is the usual Hermitian adjoint.
Now we can note a nice way that * interacts with the norm in this case:

I Tv ||* = (T, Tv)

= (v, T*T)
= |(v, T"Tw))| (12.14)
<[ v |l T*Tv || Cauchy — Schwarz
<[[v P 7T ||
It follows that
T |P<[l 7T | (12.15)

but we also know from (12.12) that

| T [|<[[ T |I[| T || (12.16)
SO
| T <) 7T ||<[| T* ||| T | (12.17)
and hence
1T <[ T | (12.18)
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But now replacing T'— T™ and using the fact that (7%)* =T we get
1T [=) T | (12.19)

and from (12.17)
I ||=| T |* (12.20)

this is known as the C*-identity. This discussion motivates the:

Definition. A (C*-algebra 2l is a Banach algebra that is also a x-algebra and the two
structures are compatible in the sense that for all a € 2:

la*a =] a|? (12.21)

We have just shown above that for a Hilbert space H, the algebra of bounded operators
B(H) is a C*-algebra. Therefore, any norm closed subalgebra is a C*-algebra. This gives
lots of examples.

Definition: A morphism of C*-algebras 2; and 25 is a C-linear map ¢ : 2y — s such
that

L. p(aad’) = p(a)p(a’)

2. p(a”) = (p(a))”

Definition: A representation of a C*-algebra 21 is a morphism ¢ : 2 — B(H) for some
Hilbert space H. It is faithful if the morphism is injective.

A mnontrivial theorem of Gelfand and Naimark says that up to isomorphism, the only
examples are subalgebras of B(H), for some H: Every C* algebra is isomorphic to a norm-
closed self-adjoint subalgebra of the algebra B(H) of bounded operators on some Hilbert
space This theorem in turn relies on a famous construction of Gelfand-Neimark-Segal. We
will explain the GNS construction below.

Examples Let ©Y be a 2n x 2n constant, antisymmetric, nondegenerate matrix. One
algebra, the “algebra of functions on the noncommutative torus” is defined by taking 2n
unitary operators Uj:

UU =U;U; =1 (12.22)

with the added relation
UZ‘Uj = exp[i@ij]UjUi (12.23)

Another related algebra is the deformation of the algebra of functions on R?” called the
s-product or the Moyal product. 2° The latter is defined via the formula:

20 According to Wikipedia it was introduced earlier by Groenewald.
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0o 0

(f1*e f2) (z) :=exp %@ij——] (f1(z1)f2(22)) (12.24)

i 9.0
8$1 81;2

T1=T2=T

We will discuss the associated C*-algebras and the related physics in Sections ***** below.
We will also need the

Definition If 2 is a C*-algebra then an element a € 2 is self-adjoint if a* = a.

12.3 Units In Banach Algebras

Definition: A wunit in a Banach-algebra, denoted 1, is a multiplicative unit for the algebra
structure such that || 1 ||= 1.

If a Banach algebra B does not have a unit we can always embed it in another Banach
algebra B4 constructed as follows: As a vector space

B1:=BpC (12.25)

with the algebra structure
(@@ A1) (a ®N1) = (aad’ + aN +d'X\) ®AN1 (12.26)

The norm is, by definition:
Il a® AL ||:=] a || +|\| (12.27)

It is easy to see that 23, is a Banach space. Moreover, a simple application of the triangle
inequality and (12.13) for B shows that this satisfies (12.13):

| (a1 ® A11)(ag @ A2d) || =] (@1a2 + A1ag + Aaa1) ® A1l ||
<|l araz2 + Araz + Asan [| +[A1] - [Ag
<[l ax Il az | +[Axl | az [ +[A2l [ a1 [| +[As] - [Az]
=[a; &ML - az® N1 |

(12.28)

and hence B is a Banach algebra.

1. The Banach algebra 98 is called the unitization of B. B is isometrically embedded
in B7.

2. There are other ways of adding units.

3. The above definition of the norm does not satisfy the C* identity for C*-algebras.
We will have to work harder to define a unitization of a nonunital C*-algebra.
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12.4 The Spectrum Of An Element a € B

Let B be a unital Banach algebra. We define the spectrum of an element a € B to be the
subset of the complex plane:

o(a) :={z € Cla—21 not invertible} (12.29)

The resolvent is then defined to be the complement of the spectrum. We will denote it by
R(a).

Theorem The spectrum o(a) is a nonempty, compact subset of the disk of radius || a ||.

Proof
First, let us show that the spectrum o(a) is nonempty:
For a € B let R(a) = C — o(a) denote the resolvent. Define a function

g:R(a) =B (12.30)
by
() = — (12.31)
9\&) = z—a '
Then it is not hard to show that
Jim || g(2) [|=0 (12.32)

Therefore, for any ¢ € BY, the function g : p(a) — C defined by

9¢(2) = (g(2)) (12.33)
is holomorphic and
le ge(z) =0 (12.34)

Now, if the spectrum o(a) were the empty set then R(a) = C and g, would be entire, but
by Liouville’s theorem it would have to vanish. Since this argument works for all £ € BY
it follows from the remark 2 in section **** that g(z) = 0. Since this is clearly false, we
conclude that the spectrum must be nonempty.

Next, let us show that the resolvent R(a) is open, and hence o(a) is closed. If zg € R(a)
then for

1
e = 12.35
==l < T (12.35)
the sum
1 ad 20— 2 k
. _az —— (12.36)
0 k=0 0
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converges in the norm topology, and it must converge to 2!

JR— —2\* 1
3 (ZO Z) - (12.37)
Z0—a Z0—a zZ—a

k=0

Thus, R(a) is open.
Now we show that the spectrum is bounded:
If |z| >|| a || then we can say that

%i (g)k (12.38)

converges in the norm topology. Again it must equal 1/(z — a), and hence z € p(a).
Therefore o(a) is contained in the disk of radius || a ||. #

Definition The spectral radius of a € B is

r(a) :==sup{|z| : z € o(a)} (12.39)
Theorem|Gelfand’s Formula|
T n |1/n
r(a) = nlLIgo | a" || (12.40)

Proof: 22

If R > r(a) then we can use the Cauchy formula to say
1 2"

a" = — dz (12.41)

- 2ri Cp?2— 0

where Cp is a circle of radius R. Since z — ﬁ is continuous for z in the resolvent and

Cr is compact

M(R) = supy | ﬁ < oo (12.42)
SO
| a™ |< R"(RM(R)) (12.43)
and hence
lim || a" |""< R (12.44)
n—o0o
for all R > r(a) so
Tim o™ ||/ < r(a) (12.45)

*!This uses the basic fact - easily proved - that if || A ||< 1 then 332 A* converges in the norm topology
to (1 —A)~".

22T am skipping several details. See Rudin, Theorem 10.13 or Landsman, Proposition 2.2.7. I am also
being slightly sloppy by replacing lim sup and lim inf by lim
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On the other hand, note that
2" =(z—a)(Z" 4 a™h (12.46)
so if (z — a) is not invertible then 2™ — a™ is not invertible. Therefore z € o(a) implies

2" € o(a"). But recall that the spectrum of an operator is in the disk whose radius is the
norm of that operator. Therefore || <|| a™ ||. Therefore:

r(a) < lim || a™ ||}/ (12.47)

n—oo

Putting together (12.45) and (12.47) gives the result #
Remarks:

1. Note || ab||<||a || - || b || implies that r(a) <|| a |-

2. The spectrum of a nilpotent operator is {0}, because by (12.40) the spectral radius
is zero. Thus, an operator can be nonzero and have zero spectral radius. This also
shows that we really can have r(a) <|| a ||

3. If 9B is not unital we define the spectrum of a € B to be the spectrum of a ® 0 in the
unitization By.

Exercise

Show that if a is an element of the C*-algebra M,,(C) of n X n complex matrices, where
n is a positive integer, then o(a) coincides with the zeroes of the characteristic polynomial
of a.

Exercise Gelfand-Mazur Theorem

Show that if a unital B algebra is a division algebra, that is, if every element a # 0 is
invertible, then B = C. 23

23 Answer: For all a there exists a complex number z, so that a — z,1 is not invertible, since the spectrum
is never empty. But if ‘B is a division algebra and a — z,1 is not invertible then a = z,1. So the isomorphism
is @ — zq. Moreover, || a ||=|| za1 ||= |2a| so the isomorphism is an isometry.

— &85 —



12.5 Commutative Banach Algebras
12.5.1 Characters And Spec(2)

Definition. A character on a commutative Banach algebra 2{ is a nonzero linear map
x:2A—=C (12.48)

such that
x(aad’) = x(a)x(a’) (12.49)

That is, it is a homomorphism of algebras. We denote the set of all characters by Spec(2l).
It is sometimes called the structure space of 2.
Some simple consequences of this definition are, first, that if 2 is unital then:

x(1) =1 (12.50)

because if x # 0 then for some a, x(a) # 0 and therefore x(a) = x(1a) = x(1)x(a). Next,
for any z with |z| >|| a || we know that 21 — a is invertible, but then z — x(a) must be
invertible. Therefore |x(a)| # r for all  >|| a ||, and hence

x(@)] <[l a| (12.51)

and in particular || x ||= 1. Therefore Spec(2() consists of bounded operators, so Spec(2) C
2AY. In fact it is in the unit “sphere” of elements of norm 1.

Example 1: If 2 = C then there is exactly one character since x(1) = 1 and by linearity
x(2) = z.

Example 2: If A = C®--- @ C with n summands then there are exactly n characters: x;,
1 < i < n vanishes on all the summands except the i** summand, on which y(z) = z.

Remark: Now we can see why the definition is only interesting for commutative Banach
algebras: Consider the matrix algebra M, (C) for n > 1. For each 1 < i < n we can restrict
to the subalgebra 2(; = C of diagonal matrices with diagonal entry = 1 for j # i. Clearly
this takes x(a) = a;;. By multiplicativity it follows that on diagonal matrices x(a) = deta.
But if S is invertible then x(S~!) = x(S)~! and hence on the subset of diagonalizable
matrices x(a) = det(a). But now this is not linear! So there are no characters on M, (C)
for n > 1.

12.5.2 Ideals And Maximal Ideals

Next, let us note the relation of Spec(2l) to maximal ideals.

Definition In any Banach algebra 2|, commutative or not, an ideal J C 2l is a norm-closed
linear subspace that is a two-sided ideal in the sense of algebra. It is called a proper ideal
if 7 # 2. It is called a maximal ideal if it is not a proper subset of any proper ideal.
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If 7 is any ideal in any Banach algebra 2 then the quotient space 2/J is an algebra:
(a+3)(a' +7):=ad +7 (12.52)
and moreover 2(/J can be given a norm:
|la+73|:=infjcs || a+j| (12.53)

The triangle inequality follows immediately from the definition.

One can prove (for details see Landsman pp. 19-20):

1. /7 is a Banach space.

2. 2/7 is a Banach algebra.

Now let us consider the case that 2 is a unital commutative Banach algebra. Then
the kernel of a character ker(x) := {a|x(a) = 0} is a maximal ideal.

Conversely, if 7 C 2 is a maximal ideal in a commutative Banach space then it is the
kernel of some character. To prove this note that since J is maximal there must be some
b # 0 which is not in J. Then there must exist an a € 2 and a j € J so that

1=ba+j (12.54)

(Using commutativity of 2 one shows {ba + jla € A, j € J} is an ideal containing both b
and J. Since 2 is maximal it must be all of 2, and therefore contains 1. ) Let 7 : A — 2/J
be the projection. Then

1=n(b)n(a) (12.55)

Therefore /7 is a Banach algebra where all nonzero elements are invertible. Therefore
by the exercise above it is isomorphic to C. Using this isomorphism we can consider the
projection 7 : A — A/T = C is the desired character: J = ker(w). So all maximal ideals
are kernels of characters.

12.5.3 The Gelfand Transform

Let V be a topological vector space, and V'V the dual space. Then there is a natural map
V — (VV)V. Given v € V we define © € (V)" to be the map

bl L(v) (12.56)

Notice that the image of V in (VY)Y separates points: This means that if ¢; # f5 then
there is a © so that 0(¢1) # 0({2).

Definition: If B is a Banach space then the wx-topology on BY is the weakest topology
so that, for all b € B, the map b : BY — C sending ¢ — £(b) is continuous on BY. In this

topology a sequence {/,} converges to £ € BY iff lim,_,o £, (b) = £(b) for all b € B, and it
is the weakest topology with that property.

One key fact we need is
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Theorem: [Banach-Alaoglu] If B is a Banach space then in the w*-topology the unit ball
in BY is compact.

Proof: For every b € B the disk
Dp={AeC:|\N<|b]} (12.57)

is clearly compact, and hence

D:=]]Ds (12.58)

beB

is compact in the product topology. 24 An element of this product is the same thing as a
function f : B — C for some function. Of course |f(b)| <|| b ||, by definition. Therefore the
unit disk BY C D. It is the subset of functions that happen to be linear. Now suppose { f,, }
is a sequence of linear functions in D, that is a sequence in By. Then, for all b, we have a
sequence of complex numbers f,(b) in a compact disk. This sequence must converge to a
complex number of modulus less or equal to || b ||. Call the result f(b). But then

flaiby + azbe) = nll_{go fn(a1by + azbe)
= nh_{go ay fu(b1) + o f(bs) (12.59)
= a1 f(b1) +azf(b2)

Therefore the map b — f(b) is linear. Therefore BY is closed in the w*-topology and it is
obviously bounded. So it is compact. &

Now let us apply this to a commutative Banach algebra 2{. The wx*-topology is a
topology on 21V and induces a topology on Spec(2(). This topology has a basis of open sets
labeled by a € 2 and open sets O C C:

Ug,0 := {x € Spec() : x(a) € O} (12.60)

Theorem Let 2 be a unital commutative Banach algebra. Then Spec(2) in the ws-
topology is a compact Hausdorff topological space.

Proof: Spec(2l) is Hausdorff because continuous functions separate points. In more detail:
suppose x1 # x2. Then there must be an a € 2 so that xi(a) # x2(a). Choose disjoint
open sets 01 and O in the complex plane that contain xi(a) and x2(a), respectively. Then
the open sets U, 0, and U, o, separate x1 and xa.

Now we know that || x ||= 1. So Spec(2l) C 2. Since 2} is compact in the w*-topology
we need only show that Spec(2) is closed. So we need to show that every sequence {xy}

24The product topology on any product of topological spaces [1, Xo is generated by the sets p;l(Ua)
where po : X — X, is the projection and U, C X, is open in X,. The fact that an arbitrary product
of compact sets is compact is not at all trivial! It is known as Tychonoff’s theorem. See any textbook on
general topology for a discussion.
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in Spec(2A) that converges, in the w*-topology, to some y € Y, in fact converges to an
element of Spec(2A). That is we need to show that Spec(2l) is a closed subset of 2.

Suppose {xn} is a sequence of characters that converges, in 21V, in the wx*-topology.
That means that for all a € 2 we have y,(a) — x(a). What we must show is that a — x(a)
is in fact a character. To show this note that, for all n:

[x(ad’) = x(a)x(a')| = |x(aa’) = xn(aa’) + xn(a)xn(a’) — x(a)x(a)]
< Ix(aa’) = xn(aa')| + [xn(a)xn(a’) — x(a)x(a)]
= |x(aa") = xn(aad")| +|(xn(a) = x(a))xn(a) + x(a)(xn(a’) = x(a')|
< Ix(aa’) = xn(aad")| +[(xn(a) = x(@)] | a" | +|(xn(a’) = x(a")| | a ||

(12.61)

Now we take the n — oo limit to see that x(aa’) = x(a)x(a’). Thus, Spec(2) is wk-closed.
)

Definition The Gelfand transform of a commutative Banach algebra (not necessarily uni-
tal) is the map

G : A — C(Spec()) (12.62)

given simply by G(a) = a € Y. Note that in the wx-topology on Spec(2l), (inherited from
the wx topology on V) the function a is continuous.

Now for any compact Hausdorff topological space X the set of continuous C-valued
functions C'(X) can be given the structure of a unital commutative Banach algebra: The
norm is defined by:

| l:= supgex |f ()] (12.63)

The norm clearly satisfies the requisite properties, and completeness is a standard property
of continuous functions. (We use here that X is compact.) Moreover, C(X) is in fact a C*
algebra with the norm-preserving involution f — f* being just complex conjugation. The
unit is, of course, the constant function x — 1. (Note that nothing in the above discussion
uses the property that X is Hausdorff.)

The spectrum of any continuous function f € C(X) is its set of values (because a
nowhere zero function on C(X) can be inverted). For the continuous function G(a) on
Spec(2) the set of values is {x(a)|x € Spec(2)}. Rather nicely this coincides with the
spectrum of a itself:

o(a) = {x(a)|x € Spec(A)} (12.64)
To prove (12.64) note that the resolvent of a is the set of complex numbers so that z —a €
G (1) where G(2l) is the group of invertible elements of 2. Now, if b € G(21) then for all

X
x(O)x(™ ) =x(1) =1 (12.65)
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On the other hand, if b ¢ G(2) then it is in the proper ideal {abla € A} (it is proper,
because it does not contain 1) and hence in some maximal ideal. But every maximal ideal
is the kernel of some x € Spec(2(). So there is a y with x(b) = 0. Therefore

beGR) < x(b)#0 Vx € Spec() (12.66)
and in particular,
z€R(@) <& z—aeG®) < x(a)#z Vxe Spec() (12.67)
Since the spectrum is the complement of the resolvent we get (12.64).

Theorem Let 2 be a unital commutative Banach algebra
1. G : A — C(Spec(2)) is a homomorphism of C*-algebras.
2. G is a contraction:
1 G(a) 1]l a |l (12.68)

Proof: The fact that G is a homomorphism is easy. For all x € Spec(2l):

G(araz)(x) = x(araz) = x(a1)x(az) = G(a1)(x)G(az)(x) = (G(a1) - G(az))(x)  (12.69)
For the second note that
| G(a) || == sup{|G(a)(x)| : x € Spec(A)}
= sup{|x(a)| : x € Spec(2)}
=sup{|z| : z € o(a)}
=r(a) <[la].

(12.70)

Remark Note that the above proves the nice result that || G(a) ||= r(a). For Banach
algebras, as opposed to C* algebras, G can really be a contraction and not an isometry.
We will see an example below.

Exercise
Let f € C(X). Show that the spectrum of f is the same as the set of values of f in
the complex plane.

12.5.4 Commutative C* Algebras

We are now finally ready to state and prove Gelfand’s theorem, in the unital case:

Theorem Let 2l be a unital commutative C* algebra. Then the Gelfand transform defines

an isometric isomorphism

G : A — C(Spec()) (12.71)
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and moreover, if 2( is isomorphic to C'(X) for any topological space then X is homeomorphic
to Spec(2).

Proof: We need to show four things:

1. G(a*) = G(a)*

2. G is an isometry.

3. G is surjective.

4. The uniqueness statement.

For 1, since G is C-linear it suffices to show that G(a) is real-valued if a is self-adjoint.
To show this, suppose that a* = a and let x be any character and set

x(a) =a+ip (12.72)
Then, for any ¢t € R we have
x(a— (a+1it)1) =i(B —t) (12.73)
and hence

B? =28t +t* = |x(a — (a +it)1)[?

<|la— (a+it)1 | since || x||=1
= (a — (a+it)1))(a" — (o —it)1) | C™* — identity (12.74)
=|| (a —al)*+¢1 ||
<|la—al]?+t? triangle inequality
So
B? —2pt <[l a—oal |? vt eR (12.75)
and this implies = 0. This proves 1.
Now for 2, note that if a is self-adjoint then || a? ||=|| @ ||* by the C*-identity and
therefore || a®" ||=]| a ||*" so by Gelfand’s formula for the spectral radius
r(a) =/ a || (12.76)
However, we have already seen that r(a) =|| G(a) ||, and hence G is an isometry on self-

adjoint elements. But now the result for general elements is easy:

lal?=|la*a|  C* — identity
=[l G(a*a) || 12.77)
=1 (G(a)*G(a) || '

=] G(a) |I? C™* — identity

Finally, for 3, we need the

Stone-Weierstrass theorem: If X is a compact Hausdorff space then any C*-subalgebra
of C'(X) which separates points and contains 1 must be equal to all of C'(X). For a proof
see J. Conway, Theorem 8.1, p.145 or Reed-Simon, Theorems IV.8-9.
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Now just note that the image of G inside C(Spec(2l)) separates points, (because a
separates points), and is a C*-subalgebra, being the image of a morphism of C*-algebras.
Thus we have established that

2A = C(Spec()) (12.78)

as an isometric isomorphism of C*-algebras. The fourth and last thing we need to show is
that for any compact Hausdorff space X

X = Spec(C(X)) (12.79)

as a homeomorphism of topological spaces.
To prove (12.79) we consider the evaluation map

ev: X — Spec(C(X)) (12.80)

A. Because X is Hausdorff we can use Urysohn’s lemma from topology to conclude
that there is a continuous function separating points. This means that ev is injective.

B. To prove that ev is surjective we use the identification of Spec(C(X)) with the
space of maximal ideals in C'(X). Suppose J C C(X) is a maximal ideal that is not of
the form ker(ev,) for some z. That means that for all x there must exist some continuous
function f®) € J with f®)(z) # 0. Since f(#) is continuous the set @) ¢ X where
f@0)(z) # 0 is an open set, and clearly the @) form an open cover of X. Since X is
compact there is a finite cover {O@) ... 0@} 50

g=>>_If=P (12.81)
=1

is everywhere positive, and hence invertible. On the other hand, all the f*)) € J and hence
g € J. But since g is invertible 3 = C'(X). This is a contradiction since maximal ideals are
proper, by definition. Therefore ev is surjective.

C. It is a tautology that G(f) o ev = f. Using the fact that the Gelfand topology is
the weakest topology so that G(f) is continuous we find that the topology on Spec(C(X))
is the same as the original topology on X. (More details in Landsman, Theorem 2.4.1.) &

In informal terms, we can go back and forth between a compact topological space and
a unital C* algebra:

Spec(C(X)) = X

(12.82)
C(Spec(2)) = A

where = means homeomorphism of topological spaces in the first line, and isomorphism
of C* algebras in the second line. Moreover, morphisms in one category map nicely to
morphisms in the other. This is a nice example of a deep theorem which can be stated
succinctly as an equivalence of categories.

Remark: As noted above, even when X is not Hausdorff (but still compact) C(X) makes
sense as a C*-algebra. What happens in this case is that ev : X — Spec(C(X)) fails to be
injective.
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12.5.5 Application of Gelfand’s Theorem: The Spectrum Of A Self-Adjoint
Element Of 21

A corollary of Gelfand’s theorem, proven below, is that if a is self-adjoint then o(a) is a
subset of R.

Quite generally, given an element a in a C*-algebra 2, we can form C*(a,1), the
smallest algebra containing a and 1. We form monomials using a and a*, take finite linear
combinations of these, and take the norm closure.

If a and a* commute, then this algebra is a commutative C*-algebra, and we can use
Gelfand’s theorem. Such operators are said to be normal: aa* = a*a. In particular, if a is
self-adjoint a* = a, then C*(a,1) is the closure of the space of polynomials in a.

Theorem 2.5.1 of Landsman explains that for a self-adjoint element a € 2 the spectrum
of a as an element of 2 is the same as the spectrum of a as an element of the commutative
C*-algebra C*(1,a). In particular the spectrum of the element a € 2 is homeomorphic to
the spectrum of the algebra C*(a,1). Let us write the homeomorphism as

¥ : o(a) = Spec(C*(a, 1)) (12.83)

One can show that the homeomorphism is such that the Gelfand transform continuous map
pulled back to o(a):
Y*(G(a)) : 0(a) = C (12.84)

is nothing but the natural inclusion of o(a) C C.

We proved above that the Gelfand transform G(a) of a self-adjoint operator takes real
values on the spectrum of a commutative C*-algebra. So o(a) C R.

All of the above statements are proved carefully in Landsman’s notes.

If follows that if a is self-adjoint and f : o(a) — C is any continuous function then
f(a) € A makes sense since it certainly makes sense in C'(Spec(C*(a,1))) and

IS (@) [I=I1 f llo (12.85)

In particular, for f the identity, i.e. the embedding o(a) — C, we conclude that for
self-adjoint a:
| al|=r(a) (12.86)

Therefore, for all a, not necessarily self-adjoint, using the C*-identity we get
| al|=+/r(a*a) (12.87)

Since the spectral radius is defined purely algebraically, without using the norm, this shows
that the norm on a C* algebra is unique.

12.5.6 Compactness and noncompactness

Motivating Example: The following example (Landsman, p.23) illustrates that the Gelfand

transform can be a contraction for Banach algebras that are not C* algebras, and also shows
that if the Banach algebra is non-unital then Spec(8) is not compact.
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The commutative Banach algebra is 8 = L!(R), the space of complex-valued functions
on R such that

| £ = /R |F(@)ldz < o0 (12.85)

This can be shown to be a Banach algebra with respect to the convolution product:

(1% fo)(x) = /R file — y) faly)dy (12.89)

There is no unit in B since a unit would have to be a Dirac delta function, which is
not in B. Standard functional analysis (see Reed-Simon) shows that BY = L>°(R), (the
Banach space of measurable functions, bounded a.e. and identified if they agree a.e.). The

~

isomorphism maps a linear functional ¢ to the bounded function ¢(x) where:

o) = / F(@)i(@)da (12.90)
R
Now if we want ¢ to be a character:

E(f1* fa) = L(f1)l(f2) (12.91)

then an easy computation shows this is true iff

~ ~

Uy + 29) = U(m1)0(2) (12.92)

for almost all 21, x5. This is enough to show that Z(:z:) = €% for some p € R. Let us call the
character x,. Then the definition of the Gelfand transform yields the Fourier transform:

G(F)xp) = xolf) = /R f(@)erda (12.93)

and indeed the Fourier transform of a convolution product of functions is the pointwise
product of Fourier transforms.
Now, it is a consequence of Fourier analysis that

L. | G(f) II<|| f lli- So the Gelfand transform is strictly a contraction, as promised.

2. For all f, lim, oo G(f)(Xxp) = 0. This is the Riemann-Lebesgue lemma and suggests
the way to generalize Gelfand’s theorem to nonunital algebras.

Remark: This example generalizes nicely to L'(G) for any locally compact (see below)
abelian group. See Section VII.9, especially Theorem 9.6 of Conway: Using the convolution
product L'(G) is a Banach algebra. Its spectrum is isomorphic to the set of continuous
homomorphisms y : G — C. This set of characters, usually denoted G is itself a locally
compact abelian group known as the dual group. We can therefore repeat the construction,
and Pontryagin duality says that the dual of G is isomorphic to G. See Kirillov, Elements
of representation tiﬂy for a deta/ilﬂ discussion. In addition to the example R~R just
discussed we have U(1) 2 Z and Z/nZ = 7 /n’Z.
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Recall that one can define a notion of a locally compact topological space. If X is
Hausdorff this can be defined as a space in which every point has a compact neighborhood,
or, equivalently, as a space such that for every point x € X and every neighborhood U of
x there is a compact neighborhood K of x with K C U.

Definition If X is locally compact and Hausdorff we say that f vanishes at infinity if, for
all € > 0 there is a compact set K C X so that |f| <eon X — K.

One can check that for X locally compact the algebra Cp(X) is still a C*-algebra with
the sup-norm:

|/ ll:= supzex|f(x)] (12.94)

However, note that if X is noncompact then we have lost the unit element. The function
x + 1 certainly doesn’t vanish at infinity! Thus Cy(X) is nonunital.

If we replace “compact” with “locally compact but noncompact” on the topological side,
and “nonunital” on the algebraic side the Gelfand theorem still holds:

Theorem Let 20 be a non-unital commutative C* algebra. Then Spec(2l) is a locally
compact but noncompact Hausdorff topological space. The Gelfand transform defines an
isometric isomorphism

G - A — Co(Spec()) (12.95)

and moreover, if 2 is isomorphic to Cy(X) for any noncompact but locally compact Haus-
dorff topological space then X is homeomorphic to Spec(2l).
Proof: See the references: Conway, Landsman, Murphy, Rudin,...

It is often of interest to take a noncompact space and “compactify” it - that is, to find
another topological space X together with an embedding of X in X as an open dense sub-
space. Compactifications are often very important in physics. Sometimes, for topological
arguments we would like to compactify a spacetime. Often we need to compactify moduli
spaces of various kinds: instantons, holomorphic bundles or sheaves, spaces of holomorphic
maps, Riemann surfaces, super-Riemann surfaces, etc.

A noncompact topological space X can have many different compactifications. We can
add one point, or we can add many points. We can add one point and define the 1-point
compactification X as follows:

As a set, XT = X U oo, where oo is called the “point at infinity.” The open sets of
X are then

a.) The open sets of X

b.) Sets of the form X+ — K where K C X is compact.

Example: (R")" = 5"
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Among the many compactifications of X there is a “maximal” one - the Stone-Cech
compactification, denoted SX. It is the largest in the sense that every continuous f :
X — Z, where Z is compact and Hausdorff factors through an extension from gX — Z.
Moreover, for every Hausdorff compactification X of X there is a surjective continuous
map BX — X that restricts to the identity on X. See textbooks on topology for the
construction of X, e.g. Munkres Section 5-3. The space X can be “large” and “wild.”
It is generally not used in physics.

In the world of C'*-algebras, if 2 is any C*-algebra we can embed it into a unital C*-
algebra 2 as follows. 2> Embed 2 into the Banach algebra of bounded operators £(2(,2l)
by the left-regular representation: ¢ : 2 — L£(2(,2() where

t(a):a' — ad (12.96)
This is an isometric embedding || ¢(a) ||=| a ||. 2° Now we define
A:=4(A)+C-1 (12.97)

where 1 € L(2(,2) is the unit operator. Note well that we used a + sign and not a @ sign!
This might or might not be a direct sum. If 2( is unital then +(1) = 1 and hence the sum
is not direct and 2 = 2. If 2 is not unital then we have a direct sum, and 9 Ay, at
least as algebras, where 2; was defined for Banach algebras above. Indeed in 2 we have
the multiplication:

(t(a) + A1) (e(b) + pl) := t(ab+ Ab + pa) + Aul (12.98)

The *-involution is just (¢(a) + A1)* := «(a*) + A\*1. However, the norm inherited from
L(2A,A) differs from the norm on 2(; used above for Banach algebras. The new norm does
not obviously satisfy the C* identity since £(2(,2() has no *-involution and is just a Banach
algebra. Nevertheless, we can show that the norm on 2l indeed is a C* norm as follows:

Let x := t(a) + A1. Then, by the definition of the operator norm, for every ¢ > 0 we
can find a b € A with || b [|[< 1 so that

Il * =l e(a) + AL |*
<l (e(a) + A1)(b) |* +e

=|| (ab+ Ab)*(ab + \b) ||? +€ C* — identity (12.99)
<[ - [ (s(a) + A1) (e(a) + AL)(b) ||* +e
<[l ="z || +e

So, as in our proof of the C*-identity for B(#), we obtain || z ||*<|| z*z ||<|| * |||| z ||, and
as we saw, this is enough to prove the C*-identity.
The definition of 2 is justified by the nice property:

25The following discussion is taken from Wegge-Olsen, ch. 2
200 w(a)(a") |I<]] a |||| @ || so || «(a) ||<]| @ ||. On the other hand by the definition of the operator norm
| «(a)(a®/ || a ) I<]| «(a) ||, and by the C* identity we get || a [|<[| «(a) |-
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C(XT) = Co(X) (12.100)

Indeed, note that Spec(2l) is embedded in Spec(2() by x — x where we can define
R(e(a) + A1) := x(a) + A (12.101)
But now there is one more “point”
Xoo(t(@) + A1) := A (12.102)

One can show that this has the expected properties of a compactification: See Wegge-Olsen,
ch. 2.

Remark: There are other ways of unitizing Co(X) and similarly other ways of com-
pactifying X. In fact, they are in 1-1 correspondence. See Chapter 2 of Wegge-Olsen. For X
locally compact but noncompact Cy(X), the C*-algebra of bounded functions corresponds
to the Stone-Cech compactification 3X. Note that there are a lot of ways a sequence of
bounded functions can “go to infinity.” Algebraically, this corresponds to taking the “mul-
tiplier algebra” of 2. One embeds 2 C B(H), as guaranteed by Gelfand-Naimark and then
M (2) is the algebra of elements b € B(H) such that b2 C 2 and Ab C A. See Wegge-Olsen
ch. 2 for more details.

Exercise
An essential ideal is J C A is an ideal which intersects every other ideal in A.

Show that X is a compactification of X iff C(X) is a unital C* algebra containing
Cp(X) as an essential ideal.

12.6 Noncommutative Topology: The C*-Algebra Dictionary

Continuing along the above lines one can set up a dictionary between topological proper-

ties of a locally compact Hausdorff space X and algebraic properties of its C* algebra of

functions: 27

2TThis table is taken from Wegge-Olsen and Varilly et. al.
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Locally compact Hausdorff topological space C* -algebra
point maximal ideal
open subset ideal

open dense subset

essential ideal

closed subset

quotient

connected no nontrivial idempotents
compact unital
compactification unitization
one-point compactification 2
Stone-Cech compactification M)
continuous proper map homomorphism
homeomorphism automorphism
measure positive functional

This suggests a generalization of topology to “noncommutative topology” where one
interprets theorems in the theory of general, noncommutative C* algebras as statements
about topology. When one adds extra structure one gets a notion of noncommutative
geometry.

Remarks

1. A natural question at this point is whether one can similarly encode, algebraically,
smooth structures, metric structures and so forth. For smooth structures we have
Proposition 1, p.207 of [12]: Let M be a smooth compact manifold and A = C*°(M)
the algebra of infinitely differentiable functions. Then there is an isomorphism of the
Hochschild cohomology H¥(A, A*) with the space of k-dimensional DeRham “cur-
rents” (currents in the sense of smooth functionals dual to the DeRham complex):

<D<p7f0dfl ARERRA dfk> = % Z G(U)So(fa(l)u . '7f0'(k))(f0) (12103)

’ oES

2. Similarly, according to Connes (see [12], chapter VI) the metric structure, at least on
a spin manifold, can be encoded into a “Fredholm module” using a Dirac operator.
The geodesic distance between two points x1, x2 is, roughly speaking the supremum
of | f(z1) — f(z2)| over all functions for which || [D, f] || makes sense, where D is the
Dirac operator.

For details see:
1. A. Connes, Noncommutative Geometry. [12] 1. J.M. Gracia-Bondia, J.C. Varilly,
and H. Figueroa, Elements of Noncommutative Geometry, Birkhauser, 2001
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2. N.E. Wegge-Olsen, “K-Theory and C*-Algebras: A Friendly Approach,” Oxford

3. A. Connes, Noncommutative Geometry

12.6.1 Hopf Algebras And Quantum Groups

One place where the general philosophy of replacing a space by its algebra of functions
has been extremely influential is in the subject of Hopf algebras and quantum groups. We
comment briefly on this, following the beautiful introduction to V. Drinfeld’s 1986 ICM
address. Indeed Drinfeld, similarly to Connes, proposes that in some sense the category
of “quantum spaces” should be dual to the category of “noncommutative algebras.” The
Devil is in the details.

To begin let us consider some structures which the “algebra of functions on a topolog-
ical group G” will possess. (In this section I will not be careful about questions of analysis,
hence the quotation marks.)

Let G be a topological group and A = Fun(G) be some suitable algebra of k-valued
functions, where k is a field. First of all, let us note that A is an algebra by pointwise
multiplication, just as for C'(X) in our discussion above. We will denote it by p1: AQA — A
and of course it is associative:

AR A (12.104)
PN
ARARA A
W /
AR A

But now there will be extra structure on A arising from the fact that the group G has
extra structure. In particular there is a multiplication

m:GxG— G (12.105)
on the group G. This induces a comultiplication on A:
A:A—> AR A (12.106)

defined by identifying A ® A with the algebra of functions on G x G and declaring
A(f)(g1,92) = f(g192). Now group multiplication is associative:

N
e

(12.107)

GxGxdE

W



The induced diagram on A reverses all arrows and is the property of coassociativity of A:

A®A (12.108)

ARId

ARARA

IdRA

® A

AN

This makes A a coassociative coalgebra.

Now, the next group axiom postulates a unit 1g. The dual of this is the counit
e : A — k (where k is the ground field). For A = Fun(G) we would define (f) := f(1g).
We have two diagrams expressing the properties of the unit:

c—11.¢ c—14.q (12.109)
(Id,lc)l / (1G,1d>l %
GxG GxG

The dual diagrams give the property of the counit:

A1 g A% oA (12.110)
X TId@s X Ts@[d
A A A® A

The final group axiom states that every group element has an inverse. If we say that
Z:G — G is the map g — g~ ! then we can define a dual operation S : A — A by
S(f) = foZ. The linear operator S is known as the antipode. Now the group axiom is the
pair of diagrams:

cDavar . g ¢ avam . (12.111)

NSNS

{1lc} {la}
Dually we get
A—B A0Al™ ggat oA (12.112)

\

and a second diagram with S ® Id.

K

This motivates the general definition:

Definition A unital algebra A over x equipped with multiplication u, comultiplication A,
counit €, and antipode S satisfying equations (12.104),(12.108), (12.110),(12.112), is called
a Hopf algebra.
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We stress that this is a general concept. The algebra of functions on a group can
be given a Hopf algebra structure, but, as we shall soon see, this is not the general Hopf
algebra.

Remark: Now let us note that, quite generally, if A is a Hopf algebra then the vector
space dual A := Homy (A, k) is also a Hopf algebra. First, let us define the product

p’ A ® A — AY (12.113)

If 41,05 are two linear functionals then we define their product " (¢1 ®£3) by declaring that
the value on a is obtained from forming ¢; ® ¢3(A(a)) and then using the multiplication
K ® Kk — K. In more detail, suppose a; is a linear basis for A, and suppose

Alay) =Y Ala; @ a (12.114)
7.k

where A7" € k Then pV (¢ ® £y) € AY is defined by

' (0 @ L) (a;) ==y AlMen(a5)0a(ay). (12.115)
7.k

Similarly, the dual comultiplication on AV is defined by
AY(0) (a1 ® az) := L(p(a; ® a2)) (12.116)

The dual counit is
eav(l) :=1£(1y) (12.117)

and the dual antipode is simply
Sav(€)(a) :=£(S(a)) (12.118)

We leave it to the reader to check that (u“,AY,e4v,S4v) in fact define a Hopf algebra
structure on AV.

Applying the above remark to our example of A = Fun(G) we obtain the group algebra
AY = K[G]. At least formally, this can be viewed as the linear span of ev, : A — £ given
by evy(f) = f(g). Now the multiplication on x[G] is:

p(evy, ®evy,) =evy,, (12.119)
while the comultiplication is:
AY(evy)(fi @ f2) = fi(9)f2(9) (12.120)
and hence
AV(evy) =ev, @ ev, (12.121)
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The counit is
el(evy))=1 Vge@q (12.122)

and the antipode is

S(evy) =evy (12.123)

Now, rather confusingly, AV as a vector space can also be identified with an algebra
of k-valued functions on the group G since we can write the general element as

> feevg (12.124)

geqG

and g — f, is a function on the group. 28 However, viewed this way, the product p" is the
convolution product:

B e f)e) = [ fi0) fatah™ )i (12.125)

where dh is a Haar measure of volume one, while AY takes g — f, to a function on G x G
given by

Av(f)(gth) = fg1591,gz (12126)

In general a Hopf algebra B is said to be “cocommutative” if ¢ o A = A where

0:B®B — B® B is the permutation operator.

The above two examples A = Fun(G) with the pointwise product and AV = k[G] with
the convolution product have one property that does not hold for general Hopf algebras:
A is commutative and AV is cocommutative.

Of course, while A = Fun(G) is commutative, it is not co-commutative when G is
noncommutative. Dually, x[G] is not commutative, when G is noncommutative, but it is
always cocommutative.

There are other examples of natural Hopf algebras associated to Lie algebras and
groups:

1. If G is a compact simple Lie group then its DeRham cohomology HF,,(G) is a Hopf
algebra. The comultiplication is define by the pullback m* dual to group multiplica-
tion. This works because

Tr ((9192)_1d(glgg))2n+1 =Tr (gfldgl)

where B is a trace of a differential form that is a polynomial in d, gfcl and géﬁl. Passing

2n+1 ) 2n+1

+ Tr (g5 'dgo +dB  (12.127)

to cohomology we see that m* indeed defines a co-associative co-multiplication and in
fact the traces of powers of Maurer-Cartan forms (which generate H7, ) are “primitive
elements”:

Alz)=z1+1® (12.128)

Multiplication is the usual cup product of cohomology classes, so this example is
(graded) commutative as well as co-commutative.

28We will not be careful here about the precise class of functions. For example, if we consider finite sums
and G is a continuous group then the relevant functions would be discontinuous, and would only be nonzero
at a finite set of points.
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2. If g is a Lie algebra then the universal enveloping algebra U(g) is noncommutative,
if g is noncommutative. It is a Hopf algebra with comultiplication

Alz) =z1+1®x (12.129)
and is therefore cocommutative.

What about examples that are neither commutative nor co-commutative? In his very
influential ICM address Drinfeld argued that the most natural source of examples of Hopf
algebras that are neither commutative nor cocommutative is to be found in the theory of
quantum inverse scattering and factorizable S-matrices. This was one of the major impulses
to the modern theory of quantum groups.

Example The simplest nontrivial example is Ugy(s[(2)). It is the unital algebra generated
by e, f and K where K is invertible so there is a K~! with KK~! = 1. A very standard
set of generators of sl(2) are e, f, h with

[h,e] = 2e
[h, ] = —2f (12.130)
[€7f] =h

The match to the standard basis in physics with [J?, J7] = 7% J* is
h— 2iJ°
,<J1+4J2>
e — 2i —

Jt—iJ?
2

(12.131)
f—>2i<

and the standard physics representation J* — —%aa becomes
1
h — 0
0-1
01
e — (12.132)
00

00
ol

In any case, the algebra U, (sl(2)) is generated by e, f, K, K1 with relations:

KK '=K 'Kk =1

KeK™! = g%
KfKt=q?f (12.133)
K—-K!
e,fl=——=F
e, /] q—q!
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If we consider ¢ = ef and K = e* then we can recognize the formal ¢ — 0 limit of
these equations as the a deformation of the sl(2) Lie algebra. The algebra U, (s[(2)) arises
rather naturally in the 141-dimensional sine-Gordon model. Similar deformations of all
the simple Lie algebras can be given. One uses a basis of Serre generators {e;, fi, hi}i=1,...r,
exponentiates K; = e® and deforms the standard defining relations by:

[his e5] = Aije;

[hi, ] = —Aij f 1 (12.134)
K — K;
lei, fi] = 5ijﬁ

together with a fairly complicated deformation of the Chevalley-Serre relations on e;, f;:

Ad(e;)' ™ (e;)
Ad(fi)' =4 (1)

As the simplest example of how this can arise in an integrable quantum field theory

’ (12.135)
. .

we consider the 1+1 dimensional sine-Gordon model, following [5, 33]. This is a theory of
a single real scalar field ® with action proportional to

S = /d%; (0,20:P + A cos fP) (12.136)

where couplings A and 8 determine the mass and interactions and play an important role
in the theory. One defines non-locally-related fields 29

oz, t) = (x,t) + /j 0P (y, t)dy

x (12.137)
¢($,t) = (I)(.I‘,t) — / @t@(y’t)dy
—0o0
Then form operators related to the creation of solitons:
Jy = etieo Jo = ¢Fiod
Hy = A& (Fi0o+ed) i, = 25 eFibdeo) (12.138)
b b

where a,9, ¢ are all simple real rational functions of /3, given in [5, 33]. We then form five
nonlocal, but conserved, charges:

+o0
Iy = / (Jo + Hy)dx

IL = / (Ji + Hi)dl‘ (12.139)
+oo
T = ﬁ O, dx
27 J_

2This is a type of duality transformation. Note that 0,¢ is a self-dual combination of d® etc.
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The last of these is known as the “topological charge” and is only nonzero in soliton sectors
of the theory. Then it turns out that if we define hy = —hg =T, and

eo = e’ I fo=3e"?L,

- 12.140
e1 =3¢ 7L, fr=seTPL ( )

then indeed, the operators in the QFT satisfy the quantum group relations for Uq(g[(2)),

Ay = <_22 _22> (12.141)

provided the normalization 3 is a suitable function of the couplings and

whose Cartan matrix is

q = e 2m/5 (12.142)

12.7 The Irrational (And Rational) Rotation Algebras
The irrational rotation algebra, also known as the algebra of functions on the noncommu-
tative torus, is a C* algebra that arises in many contexts in physics.
12.7.1 Definition
The algebra is the unital C* algebra generated by U,V with the relations
vur=u0'U =1
VvV =v*'v=1 (12.143)
UV =e*mvu
We denote this C*-algebra by Ay.
Note that, for all integers n,m € Z,
ynym = ¢~ Zrinmégmymn (12.144)

so that all monomials can be “normal-ordered.” For example, if we decide to put powers
of U on the left and V' on the right then we would write

Uml an Um2 Vn2 . Umk V”k — e_QWiLGUMVN (12145)

where M = > m;, N =) n; and L = Zl§i<j§k n;m;. (Note that if m; = 0 then the
monomial begins with a power of V| and if ny = 0 it ends with a power of U, so the above
is the general monomial.)

Another very useful point of view is that we consider the C* algebra generated by uni-
tary elements W (i7) associated to vectors in a symplectic lattice A = Z @ Z with symplectic
form w(eq, e2) = 6 and multiplication rule

W (i)W (i) = ™ TR2W (7 4 i) (12.146)

so that U = W(e1) and V = W(ez). Of course, this definition easily generalizes to higher
dimensional symplectic lattices to define the algebras of noncommutative tori.
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However we look at the multiplciation , the general element in the algebra can be

written as
> UV (12.147)
m,ne”

with a,,, € C falling off sufficiently rapidly with m,n — oco. (It certainly includes the
Schwarz space S(Z?) of functions decreasing more rapidly than any polynomial in m,n.)

The norm is defined by considering all representations 7 in Hilbert space of the subal-
gebra of Ay consisting of polynomials in U,V and taking

I'a [l=sup,{|| p(a) [} (12.148)

where p runs over all representations. Of course, the C* equation implies that
U=V =1, (12.149)

and indeed the norm of any monomial must be one.
These algebras have been much studied by mathematicians and physicists. Here are
some notable structural results:

1. A trace on a C* algebra is a map 7 : 2 — C such that 7(1) = 1, 7(a*a) > 0 and
7(ab) = 7(ba). When @ is irrational the algebra Ay has a unique trace:

T D ama UV | =agp (12.150)

m,ne”

Here is the basic idea: Note that by cyclicity 7(UV') = 7(VU), but by the defining
relation and linearity of 7, 7(VU) = e 2™97(UV). Therefore 7(UV) must vanish
when €29 = 1. Similar arguments apply to other monomials, provided @ is irrational.
The following is a streamlined version of this argument: Consider the group U(1) x
U(1) acting as automorphisms on 4y via

a2177~'2 (U) = ZlU

(12.151)
sy 2y (V) = 22V

Note that if (z1,29) = (e2™™0 e2™720) where (ny,m2) € Z? then the automorphism

0, 2, 1s an inner automorphism. Now, for any cyclic trace we have
7(aba™t) = 7(b) (12.152)

and hence 7(a, .,(a)) = 7(a) for (21, 20) = (2™ 2mn20) " Byt now for a fixed
a € Ay consider the set

{(z1,22) € U(1) x U(D)|7(tz, 2,(a)) = T(a)} (12.153)

One can show that the map « : U(1) x U(1) — Aut(Ay) is continuous so this is a
closed subset of U(1) x U(1). On the other hand, it contains the set of elements
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(21,29) = (e2™m0 2min20) " For ¢ irrational this set is dense, and hence, for theta

irrational we have that 7(a;, »,(a)) = 7(a) for all (21, z2). But now we can say that

dz1 dz
— § fran @)
le dZQ
=T (7{7{057;1,& 2 2o > (12154)

= T(ao,ol)

= ao,0
When 6 € Q there can be many traces.

. We can now prove that, so long as 6 is irrational the algebra Ay is simple, that is, it
has no proper nonzero two-sided ideals. Suppose that J C Ay is a nonzero ideal and
let a € J. In the expansion a = Zmn am U™V we can WLOG assume that ago 7# 0.
The reason is that at least one coefficent a,,, # 0 so by multiplying by a suitable
monomial we get a nonzero element in J with agg # 0. Now, J must be preserved
by inner automorphisms so for any nonzero a € J we must have a;, .,(a) € J if

(21, 29) = (e2mm0 2min20) Byt again

{(21,22) € U) x U(1)|as, o (a) € T} (12.155)

must be a closed subset of U(1) x U(1) and hence must be all of U(1) x U(1). But

then d p
}[}[azm =L ZZ; €7 (12.156)

and hence ag ol € J. As we said, we can assume ag,o 7 0 and hence 1 € J and hence
= Ay. When 6 € Q the algebra Ay is not simple (in the technical sense).

. It is natural to ask when the algebras Ay are isomorphic. The main result is described
in, for examples, [10, 43]:

Theorem

a.) Assume 61,65 are irrational and 61,65 € (0, %) Then, if Ay, is isomorphic to Ay,
it follows that 61 = 05.

b.) If # is irrational with fractional part {6} then let § = {6} or = 1 — {6},
depending on which is in (0,1/2). Then Ay is isomorphic to Aj.

Put differently, the moduli space of isomorphism classes of Ay for 6 irrational is the
space of orbits of the dihedral group generated by 6 — 6 + 1 and § — —60, acting on
R —-Q.

There is a very useful notion of “equivalence” of C* algebras known as Morita equiva-
lence. Roughly speaking, two algebras are “Morita equivalent” if their representation
theories are “the same.” (More technically: A; and Ay are Morita equivalent if their
is an equivalence of their categories of left-modules.) Then Rieffel’s paper shows that
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Ay, and Ay, are (strongly) Morita equivalent iff 6, is in the GL(2,Z) orbit of 6

under the action
al +b

T oxd

(12.157)

Remarks

1. The irrational rotation algebra was one of the main examples that led to A. Connes’
formulation of noncommutative geometry as opposed to noncommutative topology.
See [10, 11] and the book by Connes.

2. There is a very nice physical understanding of the above statement about Morita
equivalence using T-duality in string theory, but it requires a little bit of background
on the Moyal star product. See Section §12.8 below.

Exercise SL(2,7Z) action on Ay
Show that the group SL(2,Z) acts as a group of automorphisms of 4y. Let

C

(“ 2) € SL(2,Z) (12.158)

Show that

g U eimacyaye
Cinbdr b rd (12.159)
ay Vi e MUV

is an automorphism of Ay

Exercise Noncommutative Binomial Theorem

Suppose that we consider the noncommutative ring with generators u,v,q so that
uv = quu, while qu = ug and qu = vq.

Show that 3°

n
(u+v)" = <n> un ko (12.161)
k=0 q

<n> _ _nfg (12.162)

n n—1 rfn—1
(-, ()

and imitate the usual inductive proof. Note that this shows that (:)q is in fact a polynomial in q.

where

30 Hint: Prove that
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and for a nonzero integer m
[m]y == (1 —¢™1=¢")---(1-q) (12.163)

while [0], := 1.

12.7.2 Realization In B(H)

The Gelfand-Naimark construction assures us that there is a faithful representation of 4y
on Hilbert space. We now describe a few such realizations, with comments on how they
arise in physics.

One realization is in the quantum mechanics of a particle on the real line: H = L?(R).
Recall that in QM we introduce the Heisenberg algebra:

G, 5] = ik (12.164)
If » € L2(R) we can represent the Heisenberg algebra:

(G-v)(a) = q¥(q)

. d (12.165)
(b -¥)(a) = —ih—-(q)
q
Now, let us consider the unitary operators
U(a) := expliap
(a) plicp] (12.166)

V(a) := expliag]

where a € R. Of course U(a1)U(az) = U(ag + a2) and similarly for V(a) so, separately,
the group of operators U(«) is isomorphic to R as is the group of operators V («). However,
one can show in a number of ways that:

Ua)V(B) = PV (B)U (a) (12.167)

Physicists get an amazing amount of mileage out of this one equation.
One consequence of (12.167) is that the group generated by the operators U(«) and
V(a) for a € R, which we’ll denote Heis(R x R) fits in a central extension:

1—-U(l) > Heis(RxR) > RxR —1 (12.168)

By choosing any fixed ag, 8y so that hagBy = 2m0 we can restrict this extension to the
subgroup generated by Up, V. Then the group algebra of this subgroup is a morphism of
C* algebras to a subalgebra of B(H), with H = L*(R).

In fact we can be more concrete and take the action on the Schwarz space S(R) of
functions of rapid decrease to be:

(Uf)g) = flg+1)

(V)(q) = 2™ f(q) (12.169)
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Then we extend to operators on L?(R) and take the norm-closure of the algebra generated
by these.
Note, incidentally, that there is a pair of operators U, V acting by

. 1
(l{f)(Q) =fla+3) (12.170)

(V£)q) = e*™f(q)

and these satisfy:
Uv =20y T (12.171)

It is easy to check that both of U,V commute with both of U, V. In fact, for 6 irrational,
the commutant of the C* algebra Ay in B(L*(R)) is the algebra Aj; /5 generated by U,v.

For a slightly different realization consider instead the Hilbert space H = L?(S'), and
let us regard S! as R/Z with parameter ¢t ~ t + 1. Then the algebra generated by 1%
above generates the commutative algebra of multiplication by suitably smooth functions,
while the algebra generated by U above generates irrational rotations of the circle, if 6 is
irrational. This is why Ay is called the irrational rotation algebra.

12.7.3 Electrons Confined To Two-Dimensions In A Magnetic Field

The irrational rotation algebra comes up in many different physical contexts. One signif-
icant example is in the system of an electron confined to a two-dimensional plane x1, 2.
This can in fact be done in the laboratory with devices similar to transistors - so called
heterostructures. Some electrons are confined to a slab of thickness ~ 100A [22, 40].

We are going to stress the “magnetic translation group” below, so it is worthwhile
recalling how translations are implemented in quantum mechanics. Usually in quantum

mechanics translations in x1,x2 by a1, as are represented by
Tl(al) = eialpl/h Tg(ag) = eia2p2/h (12.172)

with Tl(al)Tg(ag) = TQ(CLQ)Tl((Il), because [pl,pg] =0.

Let us begin by reviewing the quantum mechanics of a charged particle of mass m that
is charged with charge ¢ under a U(1) gauge field.

In general the path integral for a charged particle moving in Minkowski space in the
presence of a u(1) gauge potential A is:

/[da:“(s)]exp [% /D {mc —CZ:—:% + qA“(x(s))C?—:} ds] (12.173)

where the integral is over all maps from some one-dimensional domain D to Minkowski
space Mb4~1 of dimension d. The second term in the action is the parallel transport due
to the connection. In the adiabatic limit of slow motion around a loop v the second term
leads to the Aharonov-Bohm phase

AB(y) := exp[27miq®/h], (12.174)
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where & = ﬁf A is the enclosed flux. (For a charged particle moving in Minkowski space
in the absence of magnetic monopoles ® is well-defined. In the presence of singularities, or
monopoles, or on spacetimes that are not simply connected only the phase is well-defined
once the charge ¢ is suitably quantized.) For an electron this can be written as

AB(7y) = exp[27mi® /D], (12.175)

where @ = h/e is known as the magnetic flur quantum. 3!

More invariantly: The electron wavefunction is an L? section of a complex line bundle
L over spacetime. The line bundle has a connnection V. Here we have taken the case of
a trivialized line bundle, so sections are just complex-valued functions on spacetime. The
connection on the associated principal U(1) bundle over spacetime is V = d + A where, in
our case, A is a globally defined one-form valued in the Lie algebra of the structure group,
U(1). We identify this Lie algebra with the imaginary complex numbers u(1) = iR. Acting
on sections of the associated line bundle A is in the representation of U(1) of “charge one.”
That is, the defining representation. Hence we identify the “math” connection A with the
“physics” gauge field A appearing in the above Hamiltonian by A = —%A. Note that our
normalization of A absorbs the speed of light, compared to standard physics textbooks
which use the gauge invariant momenta p — eA/c. Finally, here we have ignored electron
spin for simplicity.

Now suppose that there is a magnetic field B perpendicular to a plane R? with coor-
dinates x1, 2, as in the quantum Hall effect. The Hamiltonian for a free electron in the
presence of the magnetic field can be easily derived from (12.173) and is:

H= o (0~ eA) + (2 — eAa)’) (12.176)

where e is the charge of the electron and m is the (effective) mass of the electron.
In two dimensions we have:

Fig = 01 Ay — 8,A, = B (12.177)

Now assume that B is constant. Then A;, As are affine-linear in the coordinates x1,xs.
We can choose a gauge so that this can be put in the form:

H = _ = 12.1
o ((pl +—5 )+ (e 5 ) ) 5, (P1 +12) (12.178)

where the gauge invariant momenta are p; := p; — eA; are

N eB
p1r=p1+ 7332

B (12.179)
D2 = p2 — < %1

310ne should be careful about a factor of two here since in superconductivity the condensing field has
charge 2e and hence the official definition of the term “flux quantum” used, for example, by NIST is
®o = h/2e, half the value we use.
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Note that p1,p2 do not commute with H. This is hardly surprising since H is no longer
translation invariant. Moreover, p; do not commute with the Hamiltonian. Rather:

[p1, o] = iheB (12.180)

These are, up to a constant, just the usual Heisenberg relations - but now for two “mo-
menta’! Nevertheless, by the Stone-von Neumann theorem there is a unique representation
up to unitary equivalence.

Equation (12.180) immediately leads us to a diagonalization of the Hamiltonian (12.178).
One effective way to diagonalize the Hamiltonian is to introduce complex coordinates
z = x1 +izrg. Then define

P1 — ifn = —2ik(D, — BZ) 1= —2ihA,
p1 +ip2 = —2ik(0z + Bz) := —2ihAz

1
0, = 5(81 — i)

. (12.181)
82 — 5(81 + 182)
A,:=0,— Bz
As =05+ Bz
where we defined
8= b (12.182)
= .
Note that A; = —(A.)" and
[A,, As] =20 (12.183)
Moreover, the Hamiltonian can be written in three equivalent ways:
T, o LN e s
2mH = B [(D1 + ip2) (P1 — ip2) + (P1 — ip2) (D1 + ip2)]
s aa o
= (p1 +ip2)(P1 — ip2) + 5[(291 — ip2), (1 + ip2)] (12.184)
LN s ea o
= (P1 = 192)(P1 +1P2) + 5[(1 + 1p2), (P1 — 1p2)]
The solution for the spectrum depends on the sign of 5:
If 8 > 0 we use:
omH = 4h%(A:)' A + heB (12.185)

so the Hamiltonian is a sum of two positive semidefinite terms. The groundstates satisfy
Az = 0. The general solution to this equation is

Y = f(z)exp(—pz2) (12.186)

where f(z) is an entire function such that v is square-normalizable. This would seem to
imply an infinite ground-state degeneracy, and that would be unphysical. We will address
this in a moment.
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If B < 0 we should write instead:
omH = 4h*(A,)TA, — heB (12.187)

and again the Hamiltonian is a sum of two positive semidefinite terms. The groundstates
must solve the differential equation A,1 = 0 and this has the general solution

Y = f(2)exp(BzZ2) (12.188)

The two cases are related by a parity transformation. Since [Az, (Az)7] = 28 and [A., (A.)T] =
—2 we immediately obtain that the spectrum of H is
|heB|

o(H)={@N +1)7 = :N=012...} (12.189)

The eigenvalues of H can be, and often are, written as

1
(N + §)hwc (12.190)
where w, = eB/m is the classical frequency of an electron in a circular orbit in a magnetic
field. The degenerate levels of energy eigenvalues are known as Landau levels after Lev

Landau who first derived them in 1930. 32 The energy scale here is tiny: 33

|heB|
2m

B
= 5.80223 x 10~%eV - <Tcesla> (12.191)

where we used the standard mass of the electron m = m,. Actually, it is important to
note that in real materials the parameter m that one should use here is the effective mass,
and this can be as small as m = 0.07m, [40], thus increasing the energy by an order of

magnltude. &Compare Zeeman
. s . . . . energy with LL
Of course, in nature the ground state won’t be infinitely degenerate. In a finite-size cnerey in 1 Testa
.. . . . field. Idealized.
system boundary conditions will lead to a finite number of states. We now estimate the Then real world
with effective mass

number of possible states in the LLL in a finite size system. It is useful to introduce the and efective

magnetic length g-factor. &
i 257A
b=\ —F=—F—r— 12.192
eB  \/cB/Tesla ( )
so that )
=5 12.1
B=1p (12.193)

32Landau in 1930, of course, did not know about transistors, much less GaAs — AlAs hererostructures.
He solved the problem of an electron in a constant 3-dimensional magnetic field. But the eigenstates just
have a planewave for motion in the direction parallel to B.

33Recall that in our units ¢B has units of Tesla. The strength of the earth’s magnetic field is about 30
microTesla, a refrigerator magnet is about 5 milliTesla, an NMR medical device uses a few Tesla, and the
magnets at the LHC are 8 Tesla. The record on earth is 33.8 T and some stars produce magnetic fields on
the order of 10*T.
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Suppose we have a droplet of 2d electrons of radius R. We should ask how many inde-
pendent states we can fit into this droplet. Let us assume 8 > 0, for definiteness. Then a
complete basis of L? wavefunctions on the plane of the form (12.186) is

| 2

P = 2"e PI? n=0,1,2,... (12.194)

Recall that the probability distribution is proportional to |t,|?. It is just a function of

r = |z|, and as a function of r it has a maximum at r = r(n) where

r(n)? = % =202 (12.195)

Therefore, we can get a rough estimate of the number of independent states in the
LLL in a droplet of size R by setting

7(NMmax) = R (12.196)
This gives
R @
max = 28R? = — = — 12.1
n BR 2% ~ By (12.197)

Here ® = mR?B is the flux through the droplet. Meanwhile
®y=h/e (12.198)

is the magnetic flux quantum for a single electron. (See footnote above.)

Note that we obtain the higher Landau levels by acting with (Az)" or (A.)" depending
on the sign of 5. For polynomial or exponential f(z) these just add one power of z or z
to the prefactor. Therefore, for any fixed Landau level, in the large area limit, the same
argument applies, and we find an equal number of possible states in each level.

Figure 28: The sample used to discover the fractional quantum Hall effect. Courtesy of Ady Stern.

Remarks:
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1. The numerical value for ®; is about 4 x 10~ Weber and a Weber is one Tesla times
one square meter. So for a magnetic field of strength one Tesla we have

P Area
— =25x 10" [ — 12.199
o) (meter2 > ( )
In an area one square millimeter (a rather large scale for small devices) this works
out to about 2.5 x 108, a large number. A picture of the sample used to discover the
FQHE is shown in Figure 28.

2. One can usefully rederive this same formula in a different gauge. See the exercise
below.

3. In a physical sample there is not one, but many electrons. The Hilbert space of the N
electrons is the N** antisymmetric product of #, the Hilbert space of one electron.
The groundstate is obtained by “filling” the lowest energy eigenstates compatible
with the Pauli exclusion principle. For the highly degenerate LL case there are many
ways to do this. In the case that we neglect interactions, for N electrons in the LLL
the resulting wavefunction of the positions of NV particles is

U = const.ypg A1 A=+ Ay (12.200)

where const. is a normalization constant. This can be thought of as a totally anti-
symmetric function of N positions, and by the Vandermonde formula it is:

U(#1,...,ZN) = const. H (zi — zj)e” > |22 /4 (12.201)
1<i<j<N

4. In the multiparticle case we can define a notion of “filling fraction,” always denoted

v:
b Den'sity of electrons (12.202)
Density of fluxquanta
In our simple-minded setup this is just:
N
=— =1 12.203
-y ( )

In the famous “fractional quantum Hall effect” the filling fraction v, which can be
measured from the Hall conductivity o,y = V%, turns out to be fractional. In this
case the electron-electron interactions become important. Laughlin guessed a good
approximation for the interacting groundstate. (At least for some cases.) Laughlin’s
guess is to take the many-body wavefunction to be of the form

U = const. H (2zi — zj)Fe s [ail/a02 (12.204)
1<i<j<N

where k is a positive odd integer. In general, if we consider a many body state of the
form:
U = const.P(z,...,zx)e =i |zl /462 (12.205)
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where P is a translationally invariant odd polynomial of zq,...,zxy then we can
compute the filling fraction as follows. Suppose the order of the polynomial (as a
function, say, of z1) is M. Then, reasoning as above, the state fills a circle of radius

R* = 2M/? (12.206)

But then - N - N
T TRB/®, M

So, for example, for the above Laughlin wavefunction

(12.207)

N 1
= — 12.2
v N 1 — : ( 08)

The first observed FQHE state had v = 1/3. Subsequently, many other rational
values of v have been observed. See [22, 40].

Exercise Landau Levels In Landau Gauge
a.) Show that by a gauge transformation we can take the electron Hamiltonian to be

H= %(pi + (p, — eBz)?) (12.209)

b.) Show that if 9 (x,y) = e*¥/My(z) then the eigenvalue equation is that of a
harmonic oscillator with the center of the potential at zg = —k¢?.

c.) Suppose the electrons are on a cylinder of radius R and length L where both R
and L are very large compared to £. Show that the number of groundstates is ®/®.

d.) Note that the eigenfunctions of the form 1 (z,y) = e*¥/");(z) are well-localized
in z, but not in y. We could of course choose a different Landau gauge in which the
eigenfunctions are well-localized in y but not in . Why are these choices compatible?

Exercise Coherent States
Assume 8 > 0. Consider the “coherent state wavefunctions”:

Y5 = exp[—BzZ + vz] (12.210)

where v is any complex number.
a.) Show that these are L?-normalizable groundstate wavefunctions.
Show that they are an overcomplete basis.

)
b.)
c.) Express the wavefunctions v,, above in terms of the 3.
d.) Show that these are “minimum uncertainty” wavefunctions.
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12.7.4 Magnetic Translation Group

As we stressed above, ordinary translations do not commute with the Hamiltonian. Nev-
ertheless we can define the magnetic translation operators:

eBxs 4 eBxq
Ty 1=
B 2 b2 B

Compare this carefully with the definitions of p;. Note the relative signs! These operators

T =Py — (12.211)

satisfy [m;, pj] = 0. In particular they are translation-like operators that commute with the
Hamiltonian: [m;, H] = 0. Hence the name.
While they are called “translation operators” note that they do not commute:

[r1,me] = —iheB (12.212)
The “magnetic translation group” is generated by the operators

U(a1) = expliaimi /A

(12.213)
V(az) = expliagama/h]
The operators U(ay), V (az2) satisfy the relations:
U(a1)V(a2) = explieBajaz/h|V (a2)U(ay) (12.214)
Imagine now that we have some rectangular lattice in the plane R?:
A = {n1a1Z + ngagy|ni, ny € Z} (12.215)

and - for some reason - we only consider translations by lattice vectors then the algebra
generated by U(ay),V (az2) is again Ay for = eBajaz/h = ®/Py where & = ajasB is the
flux through the unit cell.

Although we could also obtain an irrational rotation algebra by exponentiating p;,
i = 1,2, this is less relevant to the physics because such operators do not commute with
the Hamiltonian.

In the above realization there is a major conceptual change in the physical interpre-
tation of the algebra Ay. In our first realization U,V were translation operators on phase
space with coordinates (q,p). For the case of the electron in the uniform magnetic field
U(a1),V (az) are “translation operators” in the physical space in which the electron moves.

Put another way, let IT be the projection operator from the Hilbert space L?(R?) to
the LLL. For definiteness assume that 5 > 0. Note that

ITA:IT = 0 (12.216)

But this means that in the LLL we can replace z by —%82. But that in turn means
that in the LLL 1
[II=I1, I1211) = 3 (12.217)

In other words 5
[y I, Tl 1] = —2i— = —2i¢? (12.218)
(&

and in this sense “space is noncommutative.” We will come back to that in section ****
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12.7.5 The Algebra Ay For § Rational

Notice that when # = p/q is a rational number (with p, ¢ positive and relatively prime)
then from (12.144) it follows that the subalgebra generated by U? and V7 is central in Ay.
Therefore, in an irreducible representation they will be represented by phases. Therefore, if
there is a cyclic vector it will generate a g-dimensional vector space, so the representations
are g-dimensional. As an example of such a representation we can consider the vector space
of complex-valued functions on the cyclic group Z/qZ:

UNG) = 1G+1)
(V1)) =™ £()

where j € Z/qZ. We can choose a basis by using a fundamental domain j € {0,1,...,¢—1}

(12.219)

and delta-functions ;. Then, relative to this basis, U and V are represented by ¢ X ¢
matrices known as the famous “clock and shift operators”

0100---0
0010---0
000L1---0

u= | ... (12.220)
00001
1000---0
1000--- 0
Ow0O0-- 0

v=|[00w?0--- 0 (12.221)

0000 wi™?
where w = ™. One should check directly that indeed
uv = wvu (12.222)

Moreover
u? = vl =1,4,. (12.223)

Using the standard Hermitian structure on C? this is a unitary representation.
Now, given a representation p of any algebra A and an automorphism « of A we can
always get another (possibly the same) representation by considering

p—poa:i=p, (12.224)

Now recall that 4p has a canonical group of automorphisms ., .,, isomorphic to
U(1) x U(1). If we twist by this automorphism then the representation u = p(U) and
v = p(V') becomes:

Pz1,22 (U) = Z1u

12.225
/021,z2(v) = 22V ( )
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Theorem: If § = p/q is rational then the most general irreducible representation of Ay
is of the form p,, ., for (21,22) € U(1) x U(1). Moreover two such representations are
isomorphic iff there are integers ni, ns such that

2y =wMz 2h = w2 (12.226)

In other words, the irreducible representations can be identified with a torus, and this torus
can be viewed as the quotient of the torus of automorphisms U(1) x U(1) by Z/qZ x Z/qZ.
Proof

1. As remarked above, U? and VY generate an abelian subalgebra and should be
represented by phases in an irrep. Choosing a ¢ root of these phases gives a representation
of the form p., .,.

2. Now, since a, ., form a group of automorphisms is suffices to consider the represen-
tations equivalent to the original representation p. Note that conjugation by S = U1V
transforms

u— e—27ri9€1 u

. 12.227
vV — 6727r19€2V ( )
so in (12.226) we can always find a suitable /1, ¢5 to render the two representations equiv-
alent.

3. These are the only isomorphisms between representations, because if z; = €1
and 29 = €2™%2 with 0 < 1,09 < % then p,, ,,(U) and/or p,, .,(V) has an inequivalent

spectrum from u and v. &

Remarks

1. The set of matrices {w*u™v™} forms a group. It is isomorphic to a finite Heisenberg
group. The finite Heisenberg groups can be defined as an extension of Z/qZ x Z/qZ
by Z/q using the cocycle

7 ((@hwh), @ wf)) = wi (12.228)

Where wq,wo,ws are all just w but the subscript distinguishes the different conceptual
roles they play. The resulting group Heis(Z/qZ x 7./q7Z) sits in an exact sequence:

1 —Z/qZ — Heis(Z/qZ x Z]qZ) — Z/qZ X L]qZ — 1 (12.229)

This is a finite group of order ¢3. The irreducible representations are all of dimension
q and hence there should be ¢ distinct irreps. These are obtained by replacing w — w*
in the above clock and shift operators.
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2. Let W be the complex vector space of functions f : Z/qZ — C. It is isomorphic to
C1. The finite Fourier transform is the unitary transformation F : W — W defined

by
- 1 Gk
FHG) = —= D™ (k) (12.230)
Vi
Note that F is unitary and F* = 1. Then, for p = 1 we have &check sign &

Fufr !l =v! (12.231)

3. Now consider the algebra generated by the matrices u,v. It is a subalgebra of the
full matrix algebra M,(C), and we claim it is the full algebra M,(C). One way to

S

show this is to note that the matrices u‘v® with 1 < ¢, s < ¢ are linearly independent.

Suppose that there are coefficients a, s such that

q q
0=> agu'v'=> u'D(z) (12.232)
sf=1 /=1
where D(z/) is a diagonal matrix with diagonal entries zéo), zél), ceey zéq_l) with zék) =

Y os ag,swks . Now, if this sum is zero then it is zero acting on the elementary basis e;,

0 <i < qg—1. Observe that this means zéi) = 0 and hence ass = 0. Actually, this

argument shows more: Call the “/** shifted diagonal the nonzero entries of u‘. Then

the ¢t shifted diagonal of T, amuzvs is up to a factor of ,/q the finite Fourier
transform of the functions ay s, as a function of s. &Say this more

precisely so that it
is useful. &

Figure 29: Left: A fundamental domain for R?/A. Right: The identification gives a torus.

12.7.6 Two-Dimensional Electrons On A Torus In A Magnetic Field

SALL
EQUATIONS
BELOW NEED TO
BE RECHECKED
&

Another, and mathematically very interesting, way of putting the electron in a finite system
is to attempt to impose periodic boundary conditions. That is, we imagine an electron
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confined to a torus with a uniform magnetic field B perpendicular to the torus. For
simplicity we will consider the torus to be obtained by identifying z; ~ x1 + a1 and
T9 ~ T9 + ag. That is, it is obtained from the quotient RQ/ZZ.

A fundamental domain for the action of Z? on R? can be pictured as a rectangle as in
Figure 29. The torus is obtained by identifying opposite sides as in the figure.

We immediately encounter a problem: The Hamiltonian (12.178) appears to be non-
sense when x1,x9 are to have these periodic identifications. The same will be true of
(12.176) no matter what gauge we choose, since the components of A must be linear in the
x;. But it is not nonsense. We must change the geometrical interpretation of the quantities
a little bit.

Now note that the Aharonov-Bohm phase for transporting an electron around a loop
going around the edge of the rectangle is

exp[2mi®/Py| = exp[27miaias B/(h/e)] (12.233)

On the other hand, the phase around this loop must be one: This loops is of the form
ABA~1B~! and the holonomy associated the parallel transport along A, B is abelian (i.e.
just a phase) so that holonomy along A cancels the holonomy along A~! and similarly for
B.

Since the phase (12.233) must be one we obtain a quantization condition:

)
0
Equivalently we can write
k
Baias = % (12.235)
Note that if we write
A = B(zdz — zdz) (12.236)

then F' = dA = 28dz N dZ makes sense on the torus and we find:

Fo(28)(=2i)(a1a2) _
Tt o 172) — g (12.237)

Now, let us note that with this quantization the magnetic translation operators U(a;)
and V(az) commute. They also commute with the Hamiltonian, so that they can be
simultaneously diagonalized. Call x := x; and y := 2. Then

U(a1) = exp [a105 — 2ia; By] (12.238)
SO
Ulm)y =9 = (@ + niar,y) = AMUBYY (2 ) Yng € Z (12.239)

Similarly:
V(a2) = exp [a20y + 2iasfx] (12.240)
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and hence
Vias)p =9 = d(z,y+nsa) =e 22 (zy)  VYnpgeZ  (12.241)
Altogether we have, for all integers ni,ns:

(2 + nyar,y + ngag) = kN2 i28(mary—n2aaz)y, o 4

— eiﬂ-knaneiZﬁw()\’f)w(m’ y) (12242)

where in the second line A = n1a1Z + neasy € A and w is the symplectic form on R? with
w(Z,y) = 1. That is:
w(Z,Y) = z1y2 — T21 (12.243)

Note that (12.242) is consistent because U(a;) and V(az) commute.

We can view (12.242) as the statement that we must make a gauge transformation
when translating by lattice vectors. If we suitably transform the gauge field A in (12.176)
and (12.178) then the Hamiltonian H makes perfectly good sense for an electron on the
torus.

In more geometrical terms we can say the following: The meaning of equation (12.242)
is that v is not a function but a section of a complex line bundle L over the torus. Roughly
speaking, the prefactor on the right defines a set of transition functions g(z,y). The gauge
field transforms by

(d4+A) =g d+ Ay (12.244)

and d+ A defines a connection on the line bundle: It is a prescription for defining a notion
of parallel transport along paths in the torus. Once A and 1) are interpreted this way, the
Hamiltonian makes perfect sense. Viewed this way, the generalization to electrons on an
arbitrary compact Riemannian two-manifold is straightforward.

This is a key conceptual step: The geometrical nature of the “wavefunction” has
changed: It is more properly regarded as a section of a complex line bundle.

To be a little more precise, and to give a preview of some things to be discussed
later we will give a nice description of the complex line bundle L and its connection as an
equivariant bundle with connection over the homogeneous space T' = X/G with X = R?
and G = Z? as follows.

Consider, quite generally a right G-space and a representation W of G. The equivariant
vector bundle over X /G is the quotient

E:=(XxW)/G (12.245)
and we take the quotient using the right G-action on X x W:

(,9) ~ (x - g,p(g™")¥) (12.246)

In our example X = R?, G = Z? and where W is a one-dimensional complex represen-
tation of G (so W = C, as a complex vector space). If we let 01,09 be generators of the
first and second summands of Z @ Z then the identifications are generated by the actions

o1 (Z,0) — (T + a2, e2P1vy) (12.247)
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o9 1 (T,9) = (& + ag, e P20 y) (12.248)

or, in general the Z? action is:
i:(7,0) = (T+ B, BBy (12.249)

where w is the standard symplectic form on R2.
Returning to the general situation, the quotient space FE is the total space of a complex
vector bundle over B = X/G. Note that there is a projection map

m E— X/G (12.250)

given by 7m([(x,)]) := [x]. The fiber of the map 7, i.e. the inverse image 7= 1([z]) has a
natural vector space structure and, as a vector space is isomorphic to W. A right-inverse
s to m,

s: X/G—-W (12.251)

that is, such that m(s([z])) = [z] is called a section of the bundle. Sections always exist, by
the axiom of choice. But the existence of sections with special properties is not guaranteed.
We say a section is nonzero at [z] if it is of the form [(z,%)] with ¢ a nonzero vector in W.
When W is a one-dimensional vector space the bundle E is called a line bundle. In this
case a continuous nowhere-vanishing section allows us to define a “bundle isomorphism” of
E with the trivial bundle X/G x W. There can be topological obstructions to the existence
of such continuous nowhere-vanishing sections.

In general to give a section of F is to give an equivariant function

VX W (12.252)

That is, one which satisfies
b(xg) = plg~ (@) (12.253)
To see this just note that a section must be of the form s([z]) = [(z,¢(z))] for some

association z — 1 (x). However, on the one hand,

s([z]) = [(z, ¥())]

12.254
= [(zg, plg~")(2))] ( )
but on the other hand,
s((e]) = s((a) -
= [(zg,¥(z9))]

so we must have (12.253). In our example, this reproduces the condition (12.242).

Now consider the connection. In general, a connection is a rule for “lifting paths” from
the base 7 : [0,1] = B = X/G to paths in the total space 7 : [0,1] — L.

Quite generally, if 7 : E — B is a fiber bundle then a connection is a path-lifting rule
so that:
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1. Given 7 : [0,1] — B and a choice of lift 7(0) € 7~1(v(0)), that is, a choice of point
in the fiber above «v(0) there is a unique path 4 : [0,1] — E such that it is a “lift,”
meaning:

ToF =n (12.256)

2. The map 7 1(7(0)) — 7~ 1(y(1)) is compatible with the structure group. (For vector
bundles this means that the map is a linear transformation and that the action of
GL(n,R) on the fibers 77 !(y(1)) and 7= (7(0)) are related by conjugation.)

3. Moreover, the path satisfies a nice composition property: If 1,72 are composable
paths in X/G then let v2 %+ denote the path [0,1] — B by running first v; and then
v2. Then if we take the initial lift of 42 to be 41(1) the unique lifted path of o * 1
starting at 41 (0) is just J2 * 1.

We have phrased things this way so that we have in fact given the definition of a
connection on an arbitrary fiber bundle 7 : £ — B.

In our special example we have a line bundle over a torus. Given « : [0,1] — R?/Z? we
can first lift it to a path 4 : [0,1] — R? (there is a unique connection on 7 : R? — R?/Z?
since this is a covering by a discrete group). Then, if 4(0) = Zp and we choose (0) =
[Z0,v0]. Then the lifted path is

3(t) = [(3(t), € Ay0)] (12.257)

Remarks

1. It can be shown that the data of a smooth connection is equivalent to giving a
collection of one-forms, valued in endomorphisms of the fiber, defined on open sets
in B where the bundle can be trivialized. In physics these are the “gauge fields.”

2. In general, given a complex vector bundle 7 : E — B, one can associate a set of
integral cohomology classes c;(E) € H?(B;Z) which measure - to some extent - the
degree to which E is “twisted.” For example if they are nonzero then certain fields
of linearly independent sections do not exist. In our case the only possible Chern
class is ¢i(L) € H*(T;Z). The image of this class in DeRham cohomology has a
representative given by F'/(27i), where F' is the curvature of any connection on L.

Now let us actually construct explicit wavefunctions (12.242) that are in the ground-
state of the Hamiltonian. These will be the analog of LLL wavefunctions on the torus. To
do this we step back and consider a more general problem:

Suppose a group G has a right-action on a space X. Suppose that we have what is

known as a cocycle, >* namely, a function ¢ : X x G — C* so that

§(591)8(x - 915 92) = &(259192) (12.258)

34This is the defining equation for a cocycle in H&(X;C*).
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Then we can construct a left-action of G on the function space Map(X, C):

(9 Nz) =E&(=z:9)f(z9) (12.259)
We typically like to find “automorphic functions” which are fixed points of this action:
g-f=r (12.260)

In some cases we can construct such functions by an averaging procedure. Indeed, suppose
G is discrete and h is an arbitrary function. Then form the average:

fla):=) &z 9)h(z - g) (12.261)
geG
A short computation shows that - formally - the function is indeed invariant: ¢ - f =
f. Of course if G is infinite one must check that the sum converges (and this can be
quite nontrivial). If G is continuous and has a left-invariant Haar measure then the same
construction can be used.
Now let us apply this to our situation, where X = R?, G = Z2? and equation (12.242)

tells us to take
§(f7 ’ﬁ:) — efiﬂ'knlnz6721,8(711(11:!/7712(12:6) (12262)

We can apply the averaging procedure to the coherent state wavefunctions in the LLL:
h(Z) = exp[—pzZ + vz] (12.263)

where ¥ is a complex number. Here we are assuming that 5 > 0 and hence k > 0, so the
series is convergent. If 5 < 0 and hence & < 0 then we change the “seed coherent state”
to

h(Z) = exp[fzZ + vZ] (12.264)

In either case, the series is absolutely convergent.
After a little bit of algebra the series can be written (taking the case § > 0 from now
on):
1/;17 _ efﬁ\z\QJrf)z Z efﬁ|w|2+w672&3z67iﬂkn1n2 (12265)
weA
where the sum is over vectors w € A where A C C is a lattice and

w = niay + ingas (12.266)

with nq,ne € Z. Note that the factor (Z;7) has made the averaged wavefunction a
holmorphic function of z up to the overall factor of exp[—pFzz].

Just as on the plane, by varying v we obtain an overcomplete set of groundstates,
and the linear span of these will be the full space of groundstates on the torus. It is not
immediately obvious from (12.265) what the dimension of the space is. In order to find
that we should perform a Poisson resummation on the sum over ns. After a little algebra
the sum can be written very elegantly in the form

k
by = ce PEEN Wl ()0 (0) (12.267)
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where c is a constant, \I/Z(z) are k linearly independent holomorphic functions of z (and
@Z(Tj) are likewise k linearly independent holomorphic functions of v). It follows that the
space of groundstates is k-dimensional.

It is useful and interesting to derive explicit formulae for ¥, and ¥,,. The sum (12.265)
fits in a very general story explained in Appendix A. The resulting wavefunctions can be
expressed in terms of level k = k/2 theta functions. We met them above when discussing
the characters in the SU(2), WZW model.

Let us collect a few facts about theta functions: Recall that

Opn(z,T) = an(n+ﬂ/(2n))2y(u+2f€n) _ Z q€2/(4n)y€ (12.268)
ne”Z {=pmod2k
with ¢ = e*™7 and y = €?™*. Here p is an integer and & is a positive half-integer (i.e. in

%Z+). Note that if we shift y — p + 2xs, where s is any integer, then ©,, , is unchanged.
Often people take p to be in the fundamental domain —x < p < kK, but one should
generally regard p as an element of Z/2kZ. As functions of z these functions are doubly-
quasiperiodic:

Our(z +v,7) =042, 7)
—27ikv2T—Arikvz (12269)
ARG

Our(z+vr,7)=¢€ 2,7)

Here v is any integer. Note that the theta functions transform the same way for all
w € Z/2k7Z. We will explain more about the geometrical meaning of these theta functions
below.

We now can rewrite (12.267) as

k

_ D) -

P =/ L Im > W, (2,2) 00 (0) (12.270)
pn=1
_mh |22 457
V(2,2)=e 2 @192 ©,1/9(6,7) (12.271)
U, (0) = e 270, 10(5,7) (12.272)
with
§=izj/ay b =—ivas)(nk) T=i2 F=-7 (12.273)
a2

Now, we know that U(ay) and V' (az) act as the identity transformation on the ground-
state wavefunctions. However, it turns out that the translations by the “k-torsion points”
act nicely on the wavefunctions. 3° A short computation shows that

ai
U(?)‘I’u - \Iju-I—l

s . (12.274)
V(T)¥, = e*E

350f course R?/Zs is itself an abelian group. k-torsion points are elements of this group whose k'" is the
identity element.
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Note that we consider p € Z/kZ in these formulae. Thus, the magnetic translations by
the k-torsion points of the torus acts on the space of groundstates to give the irreducible
representation of the finite Heisenberg group.

Remarks

1. Let us conclude with some remarks on the geometrical interpretation of the level
% theta functions ©, ,(z,7). The torus R?/A inherits a natural complex structure.
Indeed

E,=C/(Z&TZ) (12.275)

is naturally a complex manifold. We can therefore consider holomorphic bundles over
E;. The transformation equations (12.269) can be viewed as defining a holomorphic
line bundle £ over E;. The basic case is k = 1/2. There is then only one theta
function:

O(z,7) = Y _ elnrmit2minz (12.276)
nez

As before, one construction of the holomorphic line bundle is as a quotient
L=(CxV)/ZxZ (12.277)

where, again V = C is a one-dimensional vector space and now the generators of

7. x 7, act by
o1:(2,9) = (2 4+1,¢)
oy : (2,9) = (2 4+ 7,9(z 7)) (12.278)
g(z; 7_) — efim‘fZﬂiz

where 1 € V is any vector. As before we have a map
m:L— FE; (12.279)

defined by m([z,]) := [z], but now the big difference from before is that this is a
holomorphic map.

2. We can take tensor products of line bundles. In terms of our quotient construction we
choose different one-dimensional representations V,, = C and £®" is the holomorphic
line bundle defined by

o1: (z,%) = (2 4+ 1,9)

(12.280)
o9 (z,0) = (z+T7,9(2;,7)"Y)

There will be holomorphic sections for n > 0 and not for n < 0. The holomorphic
sections for n > 0 form a vector space, and one basis for this vector space are the
level k theta functions with kK = n/2.

- 127 -



3. Note that we can put an Hermitian metric on £%". When we used the unitary

transition functions, as with (12.242) the norm square |1 (z,y)|? was doubly-periodic
and descended to a well-defined function on the torus. However, if we consider the
relation of the ground-state wavefunctions to the theta functions in equation (12.271)
the prefactor is not a periodic function. If we are considering sections of a holomorphic
line bundle and we want to assign a length-square to them which descends to a well-

defined function on the torus we must multiply by some kind of quadatric exponent.

If s([z]) is any section of £®™ then we can express it in the form [(z,1(z))] with
(z) € C. Then we can define

(Imz

I s(2]) 2= e 2 ()2 (12.281)

The reader should check that different representatives give the same quantity on the
RHS.

4. Given an Hermitian holomorphic line bundle there is a natural connection on it, and
the corresponding curvature has an elegant formula:

1 -
R = %c‘mog | s (12.282)
where we can choose any holomorphic section s. In our case we get
dr ANd
R =n"2%Y (12.283)
Im7

5. As a final remark on theta functions, for a fixed & consider the map form C to C2¢
given by

Z = (@MO'FLH(Z? T), @MO‘FZH(Z? 7'), ey @M0+21€,:‘€(27 7')) (12284)

The zeroes of theta functions are well-understood, and it can be shown that for suf-
ficiently large x (x > 2 will suffice) the vector on the RHS never vanishes. Therefore
the map descends to a well-defined map into projective space CP2+~!:

2 [Oporin(2:7)  Oppran(5:7) 1+t Opgramnlz,7)] (12.285)

Moreover, note from the quasiperiodic behavior of ©,, (2, 7) that the transformation
law under z — 2z + 1 and z — z + 7 is independent of u. Therefore the map further
descends to a holomoprhic map

E, — CPp?—1 (12.286)

For £ > 2 this map can be shown to be an embedding. Thus £ is an example of &cCheck that this
an ample line bundle meaning that sections of some positive power of it defines an LZ“Zf;ZO‘;.“d -
embedding in projective space. Furthermore, the theta functions satisfy a host of

quartic polynomial relations known as Riemann identities. Specializing these identi-

ties appropriately gives explicit polynomial equations defining the embedded E,. For

example, the torus E;, can be realized as an intersection of two quadrics in CP3. For

details on the above claims see [38], p.11 et. seq. &Should give more
details here. &
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12.7.7 Band Theory

Now we consider a different case of “electrons” in a zero electromagnetic field, but in the
presence of a periodic potential V' (Z). We put the quotation marks because we will ignore
spin and electron-electron interactions.

The typical situation here is that in a crystalline structure in E”, where E” is n-
dimensional affine Euclidean space the atoms are arranged in a crystal C C E™. This
simply means that there is a lattice A C R™ and there is a subset C' C E" invariant under
translation by A.

We first explain the conventional viewpoint on band structure:

Choose an origin and identify E™ =2 VV =2 R". Consider a single spinless electron prop-
agating in R™ and interacting in some way with a crystal C. The Schrodinger Hamiltonian
is the operator on H = L?(R") given by

h2

I v 2
H=——V*+U(z) (12.287)

and the potential energy U(Z¥) is invariant under translations by the lattice A. Now, the
abelian group A acts unitarily on #H via p(\) = exp[i(p, A)] where p is the usual momentum
operator, A € A and we denote the pairing V¥V xV — R by (-,-). This group commutes with
H and hence we expect to decompose the Hilbert space H as a direct sum over “isotypical
components”:

Recall that quite generally, if H is a completely reducible representation of a group G
and G has a list of distinct irreps { R, } then the decomposition

H > ®oDy @ R (12.288)

is called the “isotypical decomposition.” The group acts as ©,1 ® p,(g) on the RHS. The
sum P, might well be a direct integral. The summands D, ® R, are called the “isotypical
components” and can be characterized invariantly as the image of the canonical evaluation
map:

Homg(Va, H) © Vo — H. (12.289)

The Hamiltonian is block diagonalized in this decomposition, that is, it acts separately on
each isotypical component. In fact, it is of the form ®&,H, ® 1.

So, let us consider the set of unitary irreducible representations of A. Since A is Abelian
they are all one-dimensional, and in fact, they form a group - the Pontryagin dual group.
The set of characters is in fact a manifold that can be identified with a torus as follows.
Given any vector k € V" := Homg(V,R) we can form an irrep:

Xi: A 2T e (1) (12.290)

and all irreps can be so represented. Of course, if we shift & by an element K of AY :=
Homgz(A,Z) then k and k + K define the same irrep. In this way we can identify the space
of unitary irreps of A with the torus

TV :=VY/AY (12.291)

- 129 —



Figure 30: Constructing a Wigner-Seitz (or Voronoi) cell for the triangular lattice. The cells are

regular hexagons. Figure from Wikipedia.

)i

Figure 31: A Wigner-Seitz (or Voronoi) cell for the cubic lattice in R?. Figure from Wikipedia.

The torus TV is known in solid state physics as the Brillouin torus . Elements k € V'V
are called reciprocal vectors and lattice vectors K € Hom(A,Z) are called reciprocal lattice
vectors.

In general, given an embedded lattice A C R™ we can use the metric to produce a
canonical (i.e. basis-independent) set of fundamental domains, for the A-action on R™ by
translation. These are known as Voronoi cells in mathematics and as Wigner-Seitz cells in
physics. Choose any lattice point v € A and take F to be the set of all points in R™ which
are closer to v than to any other point. (If the points are equidistant to another lattice point
we include them in the closure F. The Wigner-Seitz cell in V'V for the reciprocal lattice
is known in solid state physics as the Brillouin zone. Note that there is a clear algorithm
for constructing F: Starting with v we look at all other points v’ € A. We consider the
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hyperplane perpendicular to the line between v and v" and take the intersection of all the
half-planes containing v. It is also worth remarking that the concept of Voronoi cell does
not require a lattice and applies to any collection of points, indeed, any collection of subsets
of R"™. The case of a triangular lattice is shown in Figure 30 and for a cubic lattice in R3
it is shown in Figure 31. In solid state physics the Brillouin zone is centered on K = 0 and
the origin is always denoted as I'.

Given the above group-theoretic facts the isotypical decomposition of the Hilbert space
should be something like:

H= [ dkHz (12.292)
TV

we will be somewhat more precise about this formula below.

Wavefunctions which transform under translation by A with a definite character xj
are known as “Bloch waves” and can always be written in the form

Y(x) = e2mR) () (12.293)
where k is some (any) lift of k to V¥ and p(x) is a periodic function:
plx+ ) = p(x) YA e A (12.294)

Let us call this a “Bloch decomposition of .” Of course, there is some ambiguity in this
decomposition. If we shift the lift k¥ — k + K, with K € AV and simultaneously change

o(z) = e 2™ o (1) (12.295)

then the result is a different Bloch decomposition of the same wavefunction.
If we substitute a Bloch wavefunction into the eigenvalue equation for the Schrodinger
Hamiltonian we obtain
Hpp=FEp (12.296)

where

Hy, = 5= (=iV + ork)? 4+ U(x) (12.297)

Note that Hy is acting on periodic functions @(z). These can equally well be considered
as functions on the quotient torus

T :=V/A (12.298)

Viewed that way, we can take p € L?(T) and Hy, is an elliptic self-adjoint operator with a
discrete spectrum bounded below and not above (provided U is bounded below).

Thus, we can find Bloch wavefunctions which are (formally) eigenfunctions of the
Hamiltonian. We can only say this formally because of course the Bloch waves can never
be in L?(R"). Nevertheless, they are very useful. Indeed, while this might seem like a
mathematical drawback it is physically important: In quantum mechanics the electron
wave can scatter coherently off the crystal without degrading. This would not make sense
with a particle picture of electrons.

Now the spectrum o (H},) of Hy, acting on L?(T') actually only depends on the projection
k of k to the Brillouin torus TV, since we can conjugate Hj, with the unitary operator
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?mK) for any K € AY. We will therefore denote the spectrum as Si. Since it is discrete

and bounded below we can write
Si = {En(k)}no (12.299)

and, for a fixed k, we can choose to label the eigenvalues so that we have an ordering:

Eo(k) < Br(F) < - - (12.300)

Now, it can be shown that the E,(k) are piecewise smooth functions of k. They are
called energy bands. These bands can intersect, and then E,, (k) can be smoothly continued
through the intersections (but then of course the ordering changes). If there is an n so that

there is no intersection of E, (k) and E, (k) for any k € TV and moreover

maxjcpv En (k) < mingcpv Epp1 (k) (12.301)

we say there is a band gap. (If the maximum and minimum are attained at the same k it
is called a direct gap otherwise it is an indirect gap.)

Figure 32: Band structure for silicon.

Remarks: A little solid state physics

1. In order to visualize the dependence of the energy eigenvalues on k and study the
so-called band structure physicists typically choose a line in the Brillouin zone and
plot S along that line. See for example Figure 32. (For the two-dimensional case
one can attempt to draw the energy surfaces.)

2. Crystal structures with band gaps can support materials that are insulators. The
heuristic picture explaining this is the following: In the many-body Hilbert space
AN the groundstate is obtained by filling up the lowest energy eigenvalues. If all
the bands up to E,(k) are filled and none of the bands are filled for m > n then
applying a small electric field will not generate a current because not enough energy

is available for electrons to make the transition from the n'* to the (n 4 1) band.
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We would now like to rephrase the above a bit more geometrically. Aside from being
elegant, it will address two problems:

1. There is no global parametrization of Bloch wavefunctions on 7.

2. The Bloch wavefunctions are not in H = L?(IE"), the physical Hilbert space.

It is useful to introduce the Poincaré line bundle, a complex line bundle

Lp TV xT (12.302)

where

T =V/A TV =VV/AY (12.303)

Again, we will present it as a homogeneous vector bundle, similarly to what we did for the
electrons on a torus.
The total space is
Lp:=(VxVYxW)/(AxAY) (12.304)

where W 22 C is a one-dimensional irrep of A x AV and the group action is
K : (2, ks 0) = (2 + A k4 K; 20Ny (12.305)

Note that if we choose a particular character k € TV then we have a map

Lp (12.306)
T—>TxT"

The pullback by ¢z of Lp defines a line bundle over T
Ly == 3 (Lp) (12.307)
Explicitly, Lz = (V x W)/A with the identification:
(x;9) ~ (z+ X\ x5z (M) VYAeA (12.308)

Thought of as equivariant functions 9 : V' — W, the sections of Lz are just Bloch waves
with character xjz:

Pz +A) = xz(N(z) (12.309)

Now we claim that the physical Hilbert space H = L?(V; W) = L?(R") can be identi-
fied with L?(T x TV; Lp). The L? condition on the latter means that, for an equivariant
function ¥(k,z) we have the norm-square:

1= [ dhdal¥(ia)f (12:310
X

(note that thanks to the equivariance |W(k,z)|? descends to a well-defined function on

TV xT.
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If we have an L? function 1 (z) then we can form a family, parametrized by k € TV,
of equivariant functions by averaging:

=) gV (@ + N (12.311)
AEA

(and this sum will certainly converge for ¢ (x) in the Schwarz space of functions of rapid
decrease on V, and these are dense in € L?) while conversely given a family of equivariant
functions W(k,z), defining L? sections of Ly — T we can form

W) = /T Wk 2)dh (12.312)

Note that
Yz +A) = / Xe(A) ¥ (k, z)dk (12.313)
T\/

so for A — oo this goes to zero. In fact the averaged function will be in L2(V;W). To see
this write

/ dz|y(z) / dx § / (ky, x4 A U(ky,z + N)
V/A VTV
= da:/ U(ky,2)*U(ky, x Xz, (A) X
/V/A TV xTV ( ! ? Z kl k2

:/ dl‘/ W(El,x)*W(EQ,x)é(El —1232)
V/A TV XTV

:/ dxdk|V(k, z)|?
TxTV

(12.314)

Finally, we observe a very general result about bundles over product spaces:

Proposition Suppose we have a vector bundle over a product of two spaces E — X x Y.
Then, for each x let
&= LA(Y;5(E)) (12.315)

For each z € X, &, is a Hilbert space. With suitable operator topologies these form a

continuous family of Hilbert spaces and in this way we get a bundle of Hilbert spaces over
X:
m:&—>X (12.316)

whose fiber at x is just £;,. Then

L (X xY;E) = L*(X;€) (12.317)

For a proof see Appendix D of [17]. There is an issue here about what topology to use on
the group U(H) of unitary transformations on Hilbert space when requiring that transition
functions be “continuous.” See Appendix D of and Appendix A of [1].
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Applied to our present example, we have
& = L*(T; Ly) (12.318)

As k varies over TV the Hilbert spaces fit into a Hilbert bundle & — TV, and we can

identify
H:=L*(V) 2 LT x TV; Lp) (12.319)
=~ [2(TV;€) |

Remarks:

1. Tt can be shown that the unitary group on Hilbert space U(H) is contractible in both
the compact-open and in the norm topologies. Consequently, all bundles of Hilbert
spaces are trivializable. However, they might not come with a natural trivialization,
so it would be a mistake to assume every Hilbert bundle is of the form X x H. The
present case is an example of such a situation.

2. The bundle & — TV carries a canonical family of flat connections labeled by zg € T
In order to see this it suffices to describe the parallel transport along straight-line
paths in TV. The most general such path is the projection of a straight line path in
VV. That is, consider the path in V'V:

() = k(t) = ki + tAk, 0<t<1 (12.320)

where Ak = ky — k;. Then the projected path

ts y(t) == [k(t)] :== k(t) € VV/AY (12.321)
is a straightline path from k; to Ef. Of course, if we change ky — ky+ K with K € AY
we get another straightline path from k; to l_ﬂf: It might wrap around a nontrivial
loop in T several times (specified by K) before coming to an end on ky. The paths
with fixed endpoints are a torsor for AV. In particular, if we consider closed paths
with k; = Ef we see that

(T, ko) = AY (12.322)

for any basepoint ky. Now let us describe the parallel transport. For any vy € &
we have to say how it is parallel transported along k(t). We interpret the fibers
of £ as spaces of quasiperiodic functions satisfying (12.309) and define a family of

quasiperiodic functions

(Uxo (t) ¢]_€l)($) — e27ritAk~($—:vo)¢]_€_(x) (12'323)

K3

where xg is a lift of Zo € T. Note that for each ¢ the resulting function has the

quasiperiodicity (12.309) determined by k(¢):
(Uao (1) - g, ) + A) s= TARERAZ0) g (4 )
_ (eZﬂitAk-)\eZﬂiki-)\> e%imk'(%x(’)%}i(w) (12.324)

= Xy (M) Uag (2) - ¥, ) (2)
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Computation of the parallel transport around contractible loops shows that the con-
nection is a “flat connection”: The parallel transport around homotopically trivial
loops in T is always one. (Equivalently, the curvature is zero.) However, the holon-
omy around the closed loop « in homotopy class K € AV (using (12.322)) is clearly
multiplication by the periodic function (put ¢t = 1 and Ak = K in equation (12.323)

By () = 27K (@=20)) (12.325)

and is nontrivial. Note that it only depends on the projection Zy of zo to T', and so
the isomorphism class of the connection only depends on Zj.

3. As we remarked above, for insulators, the groundstate electron wavefunction dis-
tinguishes a finite-dimensional sub-bundle of 7 : £ — X spannned by the electron
wavefunctions in the filled bands: If bands 1 to n are “filled” then we define a pro-

jection operator P(k) to be the projector

P(k) =0(En11(k) — H) (12.326)
acting on &;. Here
1 >0
0(x) = . 12.327
@)=9, . <0 ( )

and we recall that it makes sense to apply a measurable function to an operator.
(“Borel functional calculus.”) This defines a finite-dimensional vector bundle F —
TV. 36 Moreover, given a connection on &£, F contains a canonical connection:
Whenever we have a bundle £ — X with a family of projection operators P(z) on FE
if F has a connection then the sub-bundle whose fibers are F,, = P(x)E, also inherits
a connection, known as a projected connection: If we have a path v(¢) in X and we
lift (0) so that 4(0) € Fy, then we use the lifted path 4 (¢) in E and then project
it to F"

Tr(t) = P(y(1)ye(t) (12.328)

36Tn fact, as we will see below, a fundamental result is that every vector bundle is the image of a continuous

family of projection operators acting on a trivial bundle. This important theorem is known as the Serre-
Swan theorem. To prove it let us, WLOG assume that F has an Hermitian metric and a reduction of
structure group to U(n). The theorem applies when the base manifold has a finite cover with a partition of
unity so that the bundle is trivializable on each open set in the cover. (If X is a smooth compact manifold
such a cover always exists.) Choose such a finite cover {Uy,} for the base X with a partition of unity {Aq}.
Then, for each U, choose a unitary basis sz(-a) of sections of E on U,. Then, while sz(-a) are only locally
defined, the sections /\asl(-a) are globally defined. Moreover, at any = € X the span of these vectors is the
fiber E,. Now let V be the span of this set of section {)\asga)}i,a as a vector subspace of I'(E). Then
we consider the trivial bundle X x V and let the projector be P(z) = > /\a(a:)sga)(x)(sl(-a))T(x). It is

not difficult to show that P(z)?> = P(z). The operator s\ (z)(s\®)?(2) operates on a section of E by
(e)

evaluating at = and contracting with s;"’(z) using the Hermitian metric. The image is the fiber of E at z.
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Since, in our case £ has a canonical family of flat connections, it follows that F has

a canonical family of projected (in general not flat) connections. 37

A beautiful development in condensed matter physics in the past 8 years has been the
discovery that the topology of the vector bundle F has direct physical implications.
Moreover, the projection of the canonical connection mentioned above is known as
the Berry connection. Some physically observable quantities involve various integrals
of quantities associated with the Berry connection. Furthermore, it turns out that
there are also more subtle torsion invariants associated with the K-theory class of the

bundle that also have physically observable consequences.

4. Similarly, Lp carries a nontrivial flat connection. In fact, TV is the moduli space of
flat line bundles over T, so Lp is an example of a universal bundle: At a value of the
modulus k it is the bundle parametrized by k.

5. COMMENT ON FOURIER-MUKAI TRANSFORM

12.7.8 Crystallographic Symmetry And Point Group Equivariance

When discussing band structure physicists often make use of more symmetry than the
group of lattice translations of a crystal. As any visit to a museum will make plane,
many crystals have much more symmetry. How are these symmetries realized in the above
geometrical context?
Let us put this question into a broader context. Suppose that we have a group action
G on X as well as a fiber bundle
m:E—X (12.329)

We say that the symmetry lifts if there is a group action G on E which commutes with
the projection .

(fi(g,€)) = p(g,m(e)) (12.330)

where p : G x X — X is the group action on the base, and i : G X E — FE is the lifted
group action on the total space.
In commutative diagrams we write:

ol (12.331)
x £ x

Definition A bundle 7 : F — X together with a group action by G compatible with the
projection (i.e. such that the group action lifts a G-action on X) is called an equivariant
vector bundle.

37T A difference in our discussion from the standard discussion in the condensed matter literature is that
in the latter it is assumed that there is a natural trivialization of the Hilbert bundle and that the projected
connection is the projection of the trivial connection. Consequently condensed matter physicists speak
of “the” Berry connection. In fact, the projected connection is the projection of a nontrivial, but flat
connection, and moreover there is actually a family of such connections labeled by T'.
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Example: Consider a vector bundle over a single point: £ — X, where X = {z¢} is a
point. The fiber is a vector space E,. Then the only possible group action on z is the
trivial one. A lift of this group action is a representation of G on the fiber E,.

It can very well happen that a group might not lift, but a central extension of the
group will lift. For example, consider the magnetic monopole bundle, the subbundle of
52 x C? given by the continuous family of projection operators:

1
P(#) =51+ -5) (12.332)
That is, the fiber is:
L; = P(#)(& x C?) (12.333)

The group SO(3) acts by rotations on S? in the standard way: R : 2 — 2’. But this
group does not lift to £. Rather, the central extension SU(2) lifts. Indeed given u € SU(2)
we can say that

u i du=(Ru)i)-d=i & (12.334)
So
u ' P(&)u = P(z)) (12.335)
and hence the lifted action is
w: s € Ly u s (12.336)

Now, let us consider a crystal C C E%. To describe its symmetries we start with the
affine Euclidean group of isometries of EZ. It fits in an exact sequence:

1 - R? = Buc(d) — O(d) — 1 (12.337)

This sequence splits, i.e. Euc(d) is isomorphic to a semidirect product R% x O(d). But there
is no natural isomorphism of splitting. The rotation-reflections O(d) do not act naturally
on affine space. In order to define such an action one needs to choose an origin of the affine
space and thus identify it with R¢.

If we do choose an origin then we can identify E? =2 R¢ and then to a pair R € O(d)
and v € R? we can associate the isometry: 3%

{R|v} :z+— Rx +v (12.338)
In this notation -known as the Seitz notation - the group multiplication law is
{Ri|vi H{Ralv2} = {R1Ra|v1 + Riva} (12.339)

which makes clear that

#1ogically, since we operate with R first and then translate by v the notation should have been {v|R},
but unfortunately the notation used here is the standard one.
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1. There is a nontrivial automorphism used to construct the semidirect product: O(d):
{R|v}{1|w}{R|v}~ ! = {1|Rw} (12.340)

and 7 : {R|v} — R is a surjective homomorphism Euc(d) — O(d).
2. Thus, although R? is abelian, the extension is not a central extension.
3. On the other hand, having chosen an origin, the sequence is split. We can choose a
splitting s : O(d) — Euc(d) by
s: R~ {R|0} (12.341)
By definition, a crystallographic group is a group that is isomorphic to the subgroup
of Euc(d) preserving a crystal C C E¢. Therefore, there is an exact sequence:

1-A—-GC)— PIC)—1 (12.342)

where A is the lattice of translations preserving C' and P(C) C O(n) is known as the point
group. In general this sequence does not split:

Example: In d = 2 consider
1
C=7U <22 + (8, 5)) (12.343)
with 0 < § < % then G(C) is not split. Indeed the group is generated by

1
g1 : (@t 2 = (=2t 46,22 + 5) (12.344)

and
g2 : (z!,2%) = (¢!, —a?) (12.345)

Then A = Z2, and P(C) = Zy x Zs is generated by the projections of g1, g2. However, no
lift of 7(g1) will square to one because g? is a translation by (0, 1).

In general, when there is no splitting, given a rotation-reflection R € P(C') any lift
{R|v} € G(C) must be accompanied by a translation by a vector v that is not in the lattice
A. In solid state physics this is known as a non-symmorphic lattice.

Now, of course, there is a right action of Euc(d) on L?(V):

(¥ -{R|v}) (z) := Y(Rzx +v) (12.346)

So restricting to G(C) C Euc(d), we learn that L?(V) is a G(C)-representation. Now we
can ask: Is the isomorphism
LY(V) = LTV €) (12.347)

an isomorphism of G(C) representations? This turns out to be subtle.
Let us first note a very general fact about group theory. Suppose we have an extension:

l1>N—=-G—-Q—1 (12.348)

Let X be the space of irreps of N. Then @ acts on X as follows:

- 139 —



Suppose pw : N — Aut(W) is an irrep of N with carrier space W. Then we can twist
it by an element g € @ by choosing a section s(q) € G and defining

i (n) := pw (s(a)ns(q) ") (12.349)

Note that since N is normal in G this makes sense: s(¢q)ns(q)~! € N, and py;! is a new
representation of N on the vector space W. It clearly depends on the choice of section s,
but the isomorphism class of of pf/{/q does not depend on the choice of section s. In general,

the isomorphism class of pf/{/q is distinct from that of py. Denoting the isomorphism class
by [W] for brevity, we have a well-defined map on X for each ¢ € Q:

W] — [W]-q. (12.350)
It is not difficult to show (exercise!!) that this is in fact a well-defined right-action:
((W]-a1) - g2 = W] q1¢2 (12.351)

Let us apply the above general remarks to our case. By the general remarks, P(C') must
act on TV. We compute the action as follows. Given a rotation-reflection R € P(C) C O(d)
our section has the form

s:Re P(C) — {Rlvg} € G(C) (12.352)

We stress that this is just a section. There is absolutely no claim that it is a group homo-
morphism, and in general no such homomorphism exists. Nevertheless, we can compute
the change of character:

Xi ({RlorH1AHRlor} )
ik ({1[RA}) (12.353)

X
Xi (N

XF(A)

where &’ is defined as follows: Given k, choose a lift k € VV. Then Rk = k’ and we then
project k' to k’. The action k — &’ does not depend on the choice of lift since R’ takes
AV — AV,

Note that if we identify VV = V using a Euclidean metric then the pairing (k,x)
becomes the Euclidean metric so (Rk, Rz) = (k,z) and R = R~!. We will in fact do this
henceforth so that we can write R instead of R

So, P(C) indeed acts on TV. Now let us try to lift this action to the Hilbert bundle
& — TV. We think of sections as equivariant functions ¥ : TV x V — C. Then

(V- R) (k, ) := V(Rk, Rx + vg) (12.354)
Recall that restricting W(k, z) to a fixed k gives an equivariant function V — C defining

a section of Lj — T'. Such an equivariant function is a vector in the fiber & of the Hilbert
bundle £ over k € TV. Therefore for the above formula to make sense R € P(C) should
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take a vector in the fiber & to a vector in the fiber £p-13. Let us check this indeed the
case:

(U-R) (R Yk, 2+ )\) = U(k,R(x + \) + vR)
= U(k,R(x + \) + vR)
= 2B BN (k) Ra + vR) (12.355)
— eQﬂi(R_lk,)\> (\If . R) (Rillzi, l‘)
= xg-1x(\) (¥ - R) (R™'k, )
So, indeed, for each element R € P(C') we can define a bundle map on &£ that correctly
covers the P(C) action on the base TV. However, it is by no means clear that it defines
a group action. It is not obvious that it satisfies the group law! Why not? There can be

trouble if s : P(C') — G(C) is not a splitting, that is, if the crystal is non-symmorphic.
Note that the group law in Euc(d), and hence in G(C) can be written:

{Riloi H{Ro|va} = {Ri Ro| Ryva + 1} (12.356)
Now apply that to the elements s(R) = {R|vgr}. Trivially, we have:
{Ri|vr, H{R2|vR, } = {R1R2|R1vR, + VR, } (12.357)
However, in general we cannot choose vr, g, to be equal to Rjvg, + vg,. However:

{RlRQ‘UR1R2}_1{R1|UR1}{R2‘UR2} = {1‘(R1R2)_1 (Rlsz + VR, — UR1R2)} (12'358)

must preserve the crystal. Since it is a pure translation it must be a translation in A.
Since R € P(C) preserves A we must have a lattice vector A(Ry, Ry) € A for every pair
R1, Ry € P(C) so that

RivR, + VR, = VR Ry + )\(Rl, Rg) (12.359)

It is now a small computation to show that, for any equivariant function W¥(k,z)
(writing it as a right-action):

V- Ry - Ry = 2Bk ABLR)) g . R R, (12.360)

2mi(R1Rek A(R1,R2)) {g nontrivial and there is no choice of the v that

If the phase factor e
makes it trivial then we do not have a G(C) equivariant bundle!

In order to explore further what is happening let us note that there will be special
points k of TV, known as “orbifold points” or “high-symmetry points” where a nontrivial
subgroup of P(k,C) c P(C) will stabilize k. Then (12.360), evaluated at such a point k,
and for Ry, Ry € P(k,C) shows that actually it is a projective representation P(k,C') that

acts on the fiber. The cocycle extending P(k,C) is
¢(Ry, Re) = Xj((R1R2) " A(R1, Ry)) (12.361)

Of course, the cocycle is ambiguous up to a group commutator. If P(E, () is abelian then
we can form the gauge invariant quantity:

s(R1, R2) = x5 ((R1R2) ™t (\(Ry, R2) — MRz, Ry)) (12.362)
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So, is there a projective representation @(C) acting on & — TV? No! At the central
point T, i.e. the projection to TV of k = 0 the entire point group is unextended. However,
it can very well happen that at other points there is a nontrivial central extension.

Example: Consider the example (12.343) above. Then P(C) is Zs X Zo C O(2) generated

by
—-10 10
Ry = Ry = 12.363
so at
_ 1 _ 11
_ - =(=.Z 12.364
F=(0,3) & F= (55 (12.364)

the fixed point group is the entire group P(C'). Now we should clearly choose vg, + (4, %)
and vg, = 0. If we lift R1Ry to gigo = {—1/(J, 3)} then we would take vg, g, = (6,3). If
we lift RiRy = RoRy to gagi = {—1|(6,—3)} then we would take vg, g, = (6, —3). We
need to make a definite choice and we will take vg, g, = (4, %) Then we compute:

A(R1,Rs) =0 & A(Ra, Ry) = (0, —1) (12.365)

Therefore,
s(R1, R2) = x5((0,1)) = —1 (12.366)

The central extension is Dy.
The mathematical structure we have discovered is a generalization of an equivariant
vector bundle, known as a twisted equivariant bundle, where the adjective “twisted” is used

)

in sense of “twisted K-theory,” and not “topologically twisted.” We will return to “twisted”

bundles and “twisted K-theory” later. For more details see [17].
12.7.9 Electron In A Periodic Potential And A Magnetic Field

Now we combine both a magnetic field and periodic potential. For simplicity we consider
a two-dimensional square lattice.

There are now two competing length scales: The length scale of the lattice a, and the

h
0=y/— 12.
= (12.367)

equivalently there are two competing time scales of the problem: The inverse of the cy-

magnetic length scale,

clotron energy m/eB and the time-scale for motion in a periodic lattice. For an electron
with momentum p = 27h/a, where a is the lattice spacing, and energy p?/2m this would
be a time scale 2ma?/h. The ratio of these timescales is just

(2ma?/h) eBa? o

=2 =2—. 12.368
m/eB h g ( )

It turns out that the spectrum of the Hamiltonian is an exquisitely sensitive function of
this ratio of scales.
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Suppose therefore there is a periodic potential U(x) invariant under translation by A.
The Hamiltonian is:

1.,
H = %(p% + 52+ U(z) (12.369)

Finding the spectrum of such a Hamiltonian is a very difficult and subtle problem.

An important approximation to this physics problem is known as a tight-binding ap-
prozimation. We imagine that the electron is confined to the lattice sites by a strong
binding potential, but can hop from one site to another. When it hops it picks up a phase
from the parallel transport with the Maxwell gauge field.

The resulting model is based on an infinite product of complex Clifford algebras C¢;
where the factors are thought of as a Clifford algebra attached to each vertex of the lat-
tice A. Denote the generators by a()),a(\)!. They are standard fermionic creation and
annihilation operators:

{a(N), G(A/)T} = O\
{a(\),a(X)} =0 (12.370)
{a(W)f,a(\)} =0

The form of the tight-binding Hamiltonian is

Hy, =Y t(e)a(Ap)'U(e)a(N;) (12.371)

e

where the sum is over all the edges of the lattice connecting two neighboring lattice points.
The edges are oriented and can carry either orientation. The oriented edge goes from \;
to As. The amplitude t(e) represents a tunneling, or hopping amplitude for an electron to
move from site A; to site A\y. WLOG we can take it to be real and positive. Meanwhile
Ul(e) = e¥(¢) is a phase, representing the parallel transport by the connection.

The adjective “hopping” refers to the following picture: Up to isomorphism there is
one Clifford module for C¢;. It has a canonical ordered basis {|0),|1)} and with respect to

this basis
a— (1 ot = (Y (12.372)
00 10

The state |0) represents no electron and |1) represents one electron. Therefore, if there is
an electron at site );, the operator a(Af)Ta();) annihilates an electron at \; and creates
one at A\r. Therefore, the electron has “hopped,” with amplitude t(e)e?(©) | from A; to A £
The phase U(e) = ¢'?(¢) models the phase from parallel transport along a path from
Ai to Ay in an electromagnetic field in the continuum model. The Hamiltonian H must be
Hermitian and this requires that if —e is the edge with opposite orientation to e then

(io(—€) _ o—ie(e) (12.373)

Of course, one can make a phase redefinition. These are gauge transformations, defined at
the vertices of the lattice:
a(\) = ¢?Ma(N) (12.374)
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and this will change
elP(@) _y o—10(Af) pi(e) (i0(Ai) (12.375)

Note that the holonomy around closed loops is unchanged. All closed loops can be de-
composed into closed loops around unit cells of the lattice, so the only gauge invariant
information is the holonomy around the unit cells. If we consider similar small loops for a
connection on a manifold then we are measuring the curvature in the neighborhood of the
loop.

Let us now assume that all the hopping amplitudes are the same in the horizontal
direction. Denote them by ¢;. Similarly, assume that all the hopping amplitudes are the
same in the vertical direction and denote them by t5. Furthermore let A = mZ + ng,
and denote the corresponding fermionic oscillators by amm,a;rn,n. In this notation the
Hamiltonian is:

Hy = Z (tleiwl(m’")ahnam_lm + h.c.) + (tgei‘p2(m’")al%namm_1 + h.c.) (12.376)
m,ne”
We next make a further simplifying assumption: We take the holonomy around each
unit cell to be the same. This is the discrete approximation to a uniform magnetic field.
Then we can choose a gauge (the discrete analog of Landau gauge) so that

Hy, = Z 5] (ajn’nam_lm + h.c.) + 1t (€2wi¢>mal%nam,n_1 + h.c.) (12.377)
A

where ¢ is a constant. Note that the holonomy around a unit cell in the counterclockwise

direction is
o2mid(m+1) ,—2migm _ 27ig (12.378)

Comparing with the continuum expressions we see that

)
0= (12.379)

where @ is the magnetic flux through a unit cell.
Now consider

U= "¢(m,n)al, ,[0) (12.380)

This represents a single electron propagating through the lattice. ¥(m,n) is the amplitude

for the electron to be at the site A = mz +ny. ¥ will be an eigenstate of the Hamiltonian
if:

t1 (Y(m —1,n) +(m + 1,1))+t2 (62“i¢m¢(m, n—1)+e 2 (m,n + 1)) = By(m,n).

(12.381)

Since the Schrédinger operator is translation invariant in n we can introduce the dis-

crete analog of Bloch waves:
Y(m,n) = R o (m) (12.382)

where ky, ~ ky + 1. Then the eigenvalue equation becomes

t (p(m+1) + p(m — 1)) + t (e%i(‘f’W’%) + e*Qﬁ(d)m*’fy)) o(m) = Ep(m)  (12.383)
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Now we introduce translation and multiplication operators U and V on functions on
(Z):

Up)(m) = p(m +1)

. 12.384
(Vp)(m) = T o(m) ( )

If t; # 0 we can measure energy in units of ¢1. Setting p = to/t; our Hamiltonian has been
reduced to
H=U+U"+pu (zV+z*VT) (12.385)

—27iky - For p # 0 this is the simplest nontrivial self-adjoint element of Ag. It

with z = e
is known as an almost Mathieu operator and the special case of p = 1 is known as the
Harper or Hofstadter or Azbel Hamiltonian (or some linear combination of these names).
Finding the spectrum of this Hamiltonian is extremely nontrivial - it has been the subject
of a great deal of work by mathematical physicists and condensed matter physicists going
back at least to Onsager and, presumably, Mathieu.

Let us make some simple immediate observations:

1. It is a self-adjoint element of a C'*-algebra. So its spectrum is a compact subset of
R.

2. Moreover the spectral radius r(H) =|| H || and by the triangle inequality it is clear
that

I H||<2+ 2|y (12.386)

3. For p =1 and z = 1 H is invariant under Fourier transform. Implying certain
symmetries of the spectrum.

A major conjecture in this subject is the so-called “ten-martini problem,” so named
by Mark Kac and Barry Simon. It was proven to be true in [2]:

Theorem: If y # 0 and ¢ is irrational then the spectrum (which is then independent of
k, and only depends on ¢modl) is a Cantor set.

Recall that a Cantor set is a topological space homeomorphic to the subset of [0, 1]
obtained by successively removing the open middle thirds of intervals. It is an uncountable
subset of [0,1] of Lebesgue measure zero and is a compact space. This shows that the
spectrum can be highly nontrivial!

One can get a lot of insight by considering the problem for the case when ¢ = p/q
is rational. In this case the one-dimensional Schrédinger equation (12.383) is periodic in
m — m + q. Therefore, we can again introduce Bloch waves:

p(m) = ™" 5(m) (12.387)

where ¢g(m + q) = ¢(m). Therefore, the Brillouin torus is k, ~ k, + %. Equation (12.383)
now becomes

tH (eZﬂikI@(m + 1) + 6727rik1@(m o 1)) + 1y (627ri(¢m7ky) + 6727ri(¢>mfky)> @(m) _ E@(m)
(12.388)
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so, at fixed (k;, ky) the eigenvalue problem is reduced to finding the eigenvalues of the ¢ x ¢

matrix:
t (zlu + zfuT) + 19 (zgv + szT) (12.389)

with z; = €%+ and 2o = e 2™ where u and v are the shift and clock operators.

Figure 33: The simple band structure for the case t = 0, 2t = 1 and ¢ = 3. The bands are
shown in Brillouin zone —% <k, < %.

Before describing the spectrum in general let us look at three easy special cases:
1. If ;1 = 0 then since v is already diagonal we clearly have ¢ bands as a function of
ky:
E, = 2ty cos(2m(¢pn — ky)) n=0,1,...,q—1 (12.390)
Of course, if to = 0 then, since u is the Fourier transform of v there is an analogous story
with ¢ bands
E, =2ty cos(2m(on + k) n=0,1,...,q—1 (12.391)

If we take the union of the spectrum over the Brillouin torus we simply get an interval
[—2t1,2t1] or [—2tg, 2t9], respectively. See, for example, Figure 33.
2. Now suppose that ¢ is an integer, so ¢ ~ 0. Then v =1 and we have, again rather

trivially,

B, = 2ty cos(2m(= + kg)) + 2ta cos(2nk,)  n=0,1,...,q—1 (12.392)
q
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so the union of the spectrum over the Brillouin torus is the full interval [—2(¢1 + t2), 2(¢1 +

t2)].

Now suppose that the fractional part of ¢ is nonzero and t1ts # 0. WLOG we can

measure energies in units of ¢; so we can consider the spectrum of

hOHF = ziu+ ziul + p <22v + z’ﬁvf) (12.393)

21,22

where p = to/t;.
To find a criterion for finding the eigenvalues of (12.393) write the eigenvalue problem

Pm+1)\ _ 4o [ 90m)
( 50m) )_A( )<@(m_1)) (12.394)

where we consider ¢(m) as a function on Z/qZ and

as

-1 _ m -1 —m)y _,—2
A(im) = (Zl (& ’“‘(@“‘1 2 w™™) 'Zl > (12.395)
with w = €2™?. Then, iterating the recursion relation (12.394) once around the circle we
must have
5(q+1 - (o
A D) agya -1y aq) (90 (12.396)
©(@) ©(0)
But ¢(g+1) = 6(1) and () = ©(0). It follows that A(q)A(g—1)--- A(1) must have eigen-

2q

value 1. However, its determinant is clearly z; ©. Therefore, the quantization condition

on the energies is

Tr (A(QA(G—1)--- A1) = 14 2, (12.397)

This is a little more elegant if we multiply by z{ and observe that z; A(m) is conjugate to
_ m =1 ,-my _

B(m) = <E (zow 1+ zy w™) 01) ' (12.398)

Therefore the eigenvalue equation is
Tr (B(@)B(@—1)---B(1)) = 27 + 2,1 (12.399)

Note that the LHS is a monic polynomial in F of degree ¢ that is independent of z;.
Of course, this polynomial equation must be the same as the characteristic equation

det(Elyxg — hoH ) =0 (12.400)

21,22

On the other hand, we know that
_ 1
Fheh Fl= uhfz,l{ - (12.401)

Therefore it must also be true that the characteristic equation is of the form

P(E) = p4(zd + 25, 9) (12.402)
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where P(F) is monic polynomial in E of degree ¢ and independent of z3. Therefore, the
characteristic equation for the energy eigenvalues must be of the form:

det(z1gxq — hZHM,) = Py u(x) — (z‘f +2 T+ pd(2d + z;q)>
i= Py u(x) — f(0)

where Py ,(x) is a polynomial independent of both zi,z3. Some examples are given in

(12.403)

[30, 29] but it remains somewhat mysterious. We also write (z1,20) = €1, ¢1%) and 0 =
(01,65).

For a fixed 6 there will be ¢ roots of the equation Py ,(x) = f(8), {E1(0),...,Eq(0)}
and as 6 varies over the torus they will define bands. The " band will be E,(§) €
[Er.  E] .| where ET.  ET

T ins Prmax T ins Prax are critical values of the function E,.(#) on the torus. The

band functions are real-analytic functions of 6 so that we can differentiate P, ,(E,(0)) =
f(0) to get:
P, (E:(0))EL(0) = f'(0) (12.404)

If two bands do not touch Py ,(E(¢)) # 0 and hence critical points of E7.(6) are critical
points of f(6). For each critical point 6, of f(#) we can then find the bands by looking at
the inverse images Fcit

Py p(Eerit) = f(0a) (12.405)

In this way one can plot the bands.

Let Sp(¢) be the union of the roots as (z1, 22) varies over the Brillouin torus. Recall
that all the roots are real. So Sp(¢) is just the inverse image under P, () of the interval
[—4,4]. There are g disjoint bands separated by (¢ — 1) open intervals - called “gaps,” with
one exception: When ¢ is even the central gap closes. In [25] Hofstadter had the bright
idea of plotting (for the case p = 1) these energy bands as a function of ¢. The resulting
figure is the famous “Hofstadter butterfly,” reproduced in Figure 34.

Remarks

1. There is an interesting fractal structure in the bandstructure. It was first suggested
by Azbel [3]. Roughly speaking if we write the continued fraction expansion for ¢:

1

=[Ny, No, N3, ... | =
¢ [ 17 27 3? ] N1+[N27N3,]

(12.406)

Then N; bands split into Ny subbands split into N3 subsubbands etc.

2. The labeling of the gaps is related to some interesting mathematics and physics. On
the mathematical side one should consider the K-theory of the C*-algebra Ko(Ay).
We will discuss what this means below, but for now suffice it to say that we define
equivalence classes on projection operators in (roughly speaking) Ay,. 3 Then we

39More precisely, in matrix algebras over Ay, Mn(Ay) where N can be arbitrarily large. We can define
equivalences of projectors P; € My, (A) by declaring them to be equivalent if there exists k; and v € My (.A)
so that vv* = Diag{P1, 1y, } and v"v = Diag{ P>, 1k, }. The abelian group structure is then [Pi] + [P:] :=
[Diag{Pl, PQ}]
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Figure 34: Figure 1 from Hoftstadter’s paper. Energy bands are plotted horizontally and sit inside
[—4,4]. The vertical axis is ¢, ranging from 0 to 1. Hofstadter plotted the bands for rational values
of ¢ with ¢ < 50.

define an Abelian group structure on these equivalence classes. The result is the
K-theory of the operator algebra. The K-theory for A, has been computed and for
¢ irrational it turns out to be isomorphic to Z & Z:

Ko(Ag) = Z[1] + Z[Py] (12.407)

where 1 is the unit in Ay (certainly a projector!) and Py is a very non-obvious
projector known as the Powers-Rieffel projector. It satisfies 7(FPy) = ¢. Now suppose
that ¢ is in a spectral gap, and let P(e) the the spectral projection of the self-adjoint
operator H associated with the Borel set (—oo,¢]. (See the discussion of the spectral
theorem below.) Then one can label the gap by the integer n such that

[P(e)] = m[1] + n[Py] (12.408)
Applying 7 to this formula we obtain #Need to explain
e K. theory clacs
n¢ = 7(P(g))mod1 (12.409) *

This determines n uniquely, if ¢ is irrational. Now, 7(P) for a projector P is a kind of
regularized dimension, so in the case of rational ¢, 7(P(g)) = r should be the number
of the gap in a successive labeling of the gaps in the direction of positive energy with
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Figure 35: Gaps in the Hofstadter spectrum are colored in this figure, taken from [39]. Note
the figure has been rotated by 90 degrees relative to the previous figure: Now ¢ is plotted on the
horizontal axis. Different colors label gaps with fixed value of so that 7(P(e)) = n¢modl.

the gap including —oo labeled by » = 0 and the gap including +oco labeled by r = gq.
Therefore, when ¢ = p/q is rational the equation becomes

n? = rmod1 (12.410)
q

that is we have a Diophantine equation
np—qs=r (12.411)

It was shown in the extremely important paper by TKNN [48] that n has the inter-
pretation of the quantized Hall conductance. Gaps of fixed values of n are plotted in
Figure 35.

For more about this see [4, 39].

3. Is the above phenomena experimentally observable? Hoftstadter’s original paper
noted that ¢ = ®/®q of order one would require unreasonably large magnetic fields
in traditional solid state setups. For example, the lattice constant for diamond at
T = 300K is about 4A = 4 x 1071%n. Recalling that ®; ~ 4 x 10~ Tesla - meter?
we see that ¢ = 1 requires a magnetic field of about 25,000 Tesla. However, in
two different ways this obstacle has been overcome in the past two years. Some
groups have used tricks with graphene and claimed to find experimental confirmation.
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Another set of experiments makes use of one of the very interesting experimental
developments of the past 20 years - the realization of BEC and optical lattices. The
Hamiltonian (12.377) is used to describe fermionic atoms in an optical lattice. Typical
lattice lengths are that of optical wavelengths, hence thousands of Angstroms. Hence,
in optical lattices one can obtain values of ¢ that would normally require 10* — 10°
Tesla in conventional solid state setups. (In the optical lattices one does not literally
use a magnetic field. Rather one uses a “synthetic magnetic field.”)

Exercise Symmetries of the butterfly
Observe that the Hofstadter butterfly has a four-fold symmetry.
Why is that?

12.7.10 The Effective Topological Field Theory

Describe o, and QHE.
Laughlin argument
Abelian CS.

12.8 Deforming The Algebra Of Functions On R?"
12.8.1 The Moyal (or *) Product

As a second example of interesting algebras realized as operator algebras we consider a
deformation of the algebra of functions on R?". To begin with we will work quite formally,
and then state the precise class of functions at the end (as well as a precise definition of
the meaning of “deformation of the algebra”).

Let ©Y be a 2n x 2n constant, antisymmetric, nondegenerate matrix. One can then
define the “s-product” for multiplying two functions on R?” via the formula: 40

(f1 %0 f2) (x) 1= exp [ﬁ}}] (i (1) fol2)) (12.412)
10T3 T1=z2=2
For examples, let us compute:

[z, 27] := 2" %o 7 — 27 %o 2 = iOY (12.413)

It is also very useful to introduce the plane-wave function:
ep(z) = e*® (12.414)

Then one easily computes:

ep, %6 e, = ¢ 2F1i®k2i0 (12.415)

40This is often referred to as the “Moyal product” although according to Wikipedia it was introduced
earlier by Groenewald.
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This defines an algebra structure on a suitable space of functions on R?". We will call

it A(R%"), once we specify a suitable class of functions below. (This class will certainly

include the Schwarz functions S(R?") of exponentially rapid decrease.)

Here are some properties of this algebra. They are most easily proven after we have

related it to Weyl quantization:

1

2.

3.

. The algebra is noncommutative as is clear from (12.413).

The algebra is associative.

If we formally expand in ©% then the algebra is a deformation of the usual commu-
tative algebra structure of functions on R?":
L 0N 0 1giom N 9°fs

1
fixefo=fi-fat 5075555 — ¢ Oz 9k Oz Oz

TR (12.416)

If we include the unit function 1(z) =1 in the algebra then it acts as a unit
1 f=fxl=Ff (12.417)

The algebra has a trace:

(f)=N[ [flx)dz (12.418)

R2n

(where A/ can be any normalization constant) such that

T(f1*e f2) = 7(f2 %6 f1) (12.419)

(Note that if we include 1 in the algebra its trace is not finite.)

Note that we can define a derivation of A(RZ):

Oif == =105 (a7 « f — [ al) = =[O/, f] (12.420)

Note that these “derivatives” do not actually commute:

[0:,05] =10 (12.421)
Note that the planewave e, is an eigenstate of 0;:

8Z‘€k = ik:iek (12.422)

Using this one can check that

« frep)(x) = (e FO79% T
(e f e ) (2) = ( ) f() 1242
f

(' — ©Yk;)
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12.8.2 The Dipole Model

We would like to interpret the formula (12.423) in heuristic physical terms. Set n = 1.
Then equation (12.421) should remind us of a charged particle in two dimensions with a
transverse magnetic field. Consider two 2D charged particles of mass m but of opposite
electric charges moving in a constant magnetic field B with a harmonic potential between
them. The action is

S = / [%m (@1 117+ [ @2 1) = V(21 — 2)

dt—i—y{ eA—?! eA (12.424)
" 72

Let us choose symmetric gauge A = %Bewx“daz”, and - very importantly - consider

the large B limit. Formally we take the mass m — 0. Then the action becomes 4!

-

Now, we assume that the interaction potential V' is such that it binds the two particles into

B
o v (# o] — dhay) — V(e — 1‘2)] dt (12.425)

a composite system. Let us change variables to the center-of-mass and relative degrees of

freedom: ] ]
XH .= 5(1‘? + b)) AF = 5(3:’1‘ — b)) (12.426)
so that the action becomes:
Y v B d v
S = [ |2Ben, XHAY —V(A) + E@(ijxlfo) dt (12.427)

Ignoring the total derivative term we see that the center-of-mass momentum is

P, = 2Be,, A? (12.428)

Thus, the spatial extent of the dipole depends on the center-of-mass momentum. There-
fore, the dipole as a single system will appear to have nonlocal interactions. If particle 1
interacts with an external potential U(z1) then, in terms of the center of mass and relative
coordinates we have

1
U))=UX"+A") =U(X" - ﬁeﬂ”Pﬂ) (12.429)
We usually describe particles in momentum eigenstates by plane waves e** and compute
transition amplitudes (in the Born approximation) by taking Fourier transforms of the
potential. The similarity of (12.429) to (12.423) suggests that we can think of the non-

commutative plane waves as representing such low mass dipoles in a magnetic field.

Remark: Equation (12.428) is an absolutely crazy equation from the point of view of
a physicist: Usually we think of momentum and length as inversely related - as in the

41 This is really a specialization of an Abelian Chern-Simons action, if we drop the harmonic potential.
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uncertainty principle. This leads to the usual picture of “UV” (for “ultraviolet”) being
related to short distances and high energies - the two limits are thought of as equivalent.
Similarly, “IR” (for “infrared”) is related to long distances and low energies. Again, the two
limits are thought of as equivalent. However (12.428) relates a momentum P, linearly to a
length A#. This, ultimately, leads to strange effects of “UV-IR mixing” in noncommutative
field theory.

12.8.3 The Weyl Transform

We now relate the algebra A(RZ") to standard formulae in quantum mechanics.
Since ©¥ is nondegenerate we can make a linear change of variables so that it has the

form
i 0 lpxn
QY =h 12.430
<_1n><n O ) ( )
Let us call the coordinates in this basis
($17 e 71,271) = (qa7pa) = (qlu R 7qn7p17 cee 7pn) (12431)
Then we have
q" *pp — o * q* = [q", pp] = 1hd%, (12.432)

Now we can appeal to the Stone-von Neumann theorem. Up to unitary isomorphism the
unique unitary irreducible representation of this algebra on a Hilbert space is H := L?(R")
with

Q“U)(@) = ¢ a=1,...n (12.433)
(Pat)(q) = —iha‘za a=1,...n (12.434)

This gives a nice perspective on the algebra A(RZ?).
For a function f(g,p) on R*" we define the Weyl transform to be the linear operator
on H defined by

< d"ud™v

Weyl(f) := o f(u,v)S(u,v)W (12.435)

y I L
fv)e= [ flapetern T (12.436)
S(u, v) = e~iQ+0P) (12.437)

where @ = p(q) and pP= p(p) are operators on H.

Note that if f is real then f(u,v)* = f(—u, —v) and hence,

Weyl(f)T = Weyl(f) (12.438)

so when f is real Weyl(f) is, a symmetric operator, and, least formally, it is self-adjoint.
(If f is such that Weyl(f) is a bounded operator then it is certainly self-adjoint.)
Note that for a plane-wave:

f(g,p) = lleatip) (12.439)
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we have

f(u,v) = 2m)"0(u + a)d(v + ) (12.440)
and hence o
Weyl(f) = S(—a,—f) = !@@+8P) (12.441)
that is: _
Weyl(el(@0T0)) = (i(@@+5P) (12.442)

Comparing with (12.415) we now deduce the key fact that (for the above skew-
diagonalized ©)
Weyl(f1 xo f2) = Weyl(f1) Weyl(f2) (12.443)

Thus, the Moyal product on R?", interpreted as a symplectic manifold, is nothing but
standard quantum mechanics in disguise.

The Weyl transform of real analytic functions: By expanding the exponentials on both

sides of (12.442), using linearity, and matching powers of o”3™ we deduce that the Weyl
transform of a polynomial in g, p is the total symmetrization of that polynomial. Thus, for

example:
Weyl(q) = Q
Weyl(p) = P
Weyl(gp) = %(PQ +QP) (12.444)
Weyl(¢’p) = (O + QPQ + PQ?)

and so forth.
The same result can be obtained, somewhat more tediously, as follows: To compute
Weyl(p) we compute the distribution

fu,v) = —27id(u)d (v) (12.445)

Weyl(p) = i / (6(u)d(v)8yS(u,v)) dudv = P (12.446)

and similarly Weyl(q) = Q. Alternatively, one can simply take derivatives of (12.442)
with respect to «, 8 and then set them to zero. Now consider f(q,p) = ¢p. So: let us
check:

flu,v) = =276 (u)d' (v) (12.447)

So

Weyl(f) == — o 3(u)0(v)0y 0y (S (u, v))dudv (12.448)

We have to be careful about computing the derivatives of S(u,v) before evaluating the
delta functions. One way to do this is to write

S(u,v) = esWhe=uQq—ivP (12.449)
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Now, thanks to the delta-functions, the two derivatives act on the c-number prefactor or
on the operator to give

. 1

Weyl(f) = —%h +QP = 3(QP + PQ) (12.450)

as expected. For a general real-analytic function we need the result for f(q,p) = ¢"p™.
Now

f = @2m) (=)™ 6™ (u)6™ (v) (12.451)

Weyl(f) = (i)”+m/(5(u)5(v) (05,0 S (u,v)) dudv (12.452)

Now, to compute the derivatives we have to be a bit more careful. Recall that for any
family of operators O(t) we have

d ow /1 (1-5)0(t) 4 o
a _ 2o eCBg 12.453
i ; e o (t)e s ( )
Remarks
1. It is useful to note that
TryS(u',v")S(u,v) "t = h*"ei?h(“,v,*“v)é(u —u)6(v =) (12.454)
This is easily proved by inserting complete sets of states and recalling (12.462). There-
fore
Try ( Weyl(£)S(u,v)™1) = (27h) ™" f(u, v) (12.455)
Therefore
* d"qd"p t
(f1(g;p))" f2(a,p) A2y Tr Weyl(f1)" Weyl(f2) (12.456)

Note that from (12.456) it follows that f € L?(R?*") maps to the space of Hilbert-
Schmidt operators. The space of Hilbert-Schmidt operators is a Hilbert space, and
hence complete in the Hilbert-Schmidt norm. Thus one rigorous way of defining
A(R%") would be to take the completion of the Schwarz space in the Hilbert-Schmidt
norm. The resulting algebra is the space of Hilbert-Schmidt operators.

2. Note too that evaluation of (12.455) at uw = v = 0 gives the trace

Try, ( Weyl(f)) = o f(a.p) i:fi;’; =7(f) (12.457)

Exercise
Compute the Moyal product of two Gaussian wavepackets.
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Exercise
Show that in the position space representation

( Weyl(f)y)(q) = | K(q,q)¢(d)d"q

+ 32 (g—d
K(q,q/)z/f(q 2q ,p)eth@=)

y —q\ _ivigray AV
_ / flo, S Dye e 0

d"™p

(12.458)

(12.459)

12.8.4 The Wigner Function

The inverse of a Weyl transform defines the Wigner function associated to a linear operator

T € L(B).
Wigner( Weyl(f)) = f

~

The explicit formula is that Wigner(T') is the function on phase space:

~

1 ~ 1 .
Wigner(T)(a.p) = (4 yolla+ o)

(12.460)

(12.461)

To prove (12.464) note that it suffices to prove it for 7' = el(@Q+8P) Now, recall that

1 )
- = Jaw/h
{q|p) )

Then compute:

/<q B %U‘ei(aQJrB]s)‘q + %U>6i%vdnv _ /eiaﬁh/2<q _ %U|€iaQ€i’8P‘q + %U>6i%vdnv

. 1. - o 1.
:/elaﬁh/2<q—§U|elaQ‘p,><p/‘€16P|q—|-§U>61%Udn’vdnp/

(12.462)

— (2ﬂ_h)—n/6iaﬂh/2eia(q—%v)-{—ipv/heip/(ﬁ—v/h)dnvdnp/

— ¢ileg+5p)

So the equation is true for plane-waves. But this is enough by linearity and Fourier trans-

form. Of course, an analogous argument also gives

~

1 = 1 .
Wigner(T)(qyp) = /(p + 5U‘T|p - §u>el%udnu

Wigner introduced his transform to attempt to associate a classical probability dis-
tribution on phase space with a quantum state. In order to do this we should apply the
Wigner transform to a density matrix (i.e. a quantum state). In this case the operator
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~

T = p is a positive self-adjoint operator of trace one. Thus the Wigner function will be
real. For example, for a pure state, a line through ¢ € H we have a rank one projector

p =Py =[P} (12.465)

(we assume (|¢)) = 1). Then the corresponding Wigner function is

1 1 .
@o(ap) = [ 7~ 3ol + 5oy (12.466)
Note that
/mmwwﬁ:wmwm> (12.467)
and one can show that similarly
/ dgwy(a,p) = 0 ()0 (p) (12.468)

Indeed, if we have any two states then the overlap is

[(Wath2)? = Teg Py, Py, = / Py, (¢,p) Py (¢, p)dadp (12.469)

But this means that if 1 and vy are orthogonal then

/ Py, (4,) Py, (q,p)dgdp = 0 (12.470)

Hence we conclude that wy(g,p) cannot always be positive and do not represent true
probability distributions.

It is amusing to work out the Wigner functions in some simple cases. For the harmonic
oscillator groundstate P = |0)(0|

@y (g, p) ~ exp[—p? — 27| (12.471)

Moreover, if ¢ is any state and we evolve it as a function of time using the harmonic
oscillator Hamiltonian H = %(p2 + 22) then, remarkably, we have

@y (1) (4 P) = @y (q(t), p(t)) (12.472)

where (q(t), p(t)) is the classical trajectory in phase space. For some nice pictures of Wigner

&Should also do
first excited state &

functions of various standard quantum states see http://www.igst.ca/quantech /wiggalery.php.

Remark: The Wigner functions satisfy some peculiar properties [8]. Apply the defi-
nition (12.466) for a normalized function 1. Now apply the Cauchy-Schwarz inequality to
obtain

|y (q,p)] < 2 (12.473)

This is another feature we would not expect from a general probability distribution on
phase space. Moreover, if we consider the value at the origin then

@(0,0) = £2 (12.474)
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if ¥(q) is an even or odd function of ¢, respectively. Note that this is true even if ¢

represents far separated wavepackets whose value at ¢ = 0 is nearly zero.
ok KRk K

SHOULD DO THE EXAMPLES OF COHERENT STATES AND SQUEEZED STATES.

FIGURE OF H.O. TIME EVOLUTION OF COHERENT STATE. (COHERENT STATE
OPERATOR AS TRANSLATION OPERATOR IN PHASE SPACE.

kokokkokkokkokkokk

12.8.5 Field Theory On A Noncommutative Space

Since fields are functions on a spacetime, it is natural to try to generalize field theory on
spacetime to field theory on a spacetime like RZ'. One can take one’s favorite Lagrangian
field theory and every time a product of fields

D (z)Po(x) (12.475)
appears in the action density, one simply replaces it by the Moyal product
Oy (z) * Po(x) (12.476)

Then one “integrates” using a trace 7 on the algebra. For the Moyal algebra this is just
an ordinary integral over R?". The resulting theories share many of the characteristics of
ordinary field theory. This is extremely surprising! In general if one introduces derivative
interactions with arbitrarily high numbers of derivatives then the resulting field theory is
very badly behaved: The Cauchy problem does not make sense and the quantum perturba-
tion theory is badly behaved. Remarkably, if one introduces nonlocality in the controlled
way given by the Moycal product, the resulting theories are relatively well-behaved. There
is a curious “mixing between IR and UV.”
See the review [15] for more details.

12.9 Relation To Open String Theory

We now give a perspective on Moyal quantization following from string theory. This per-
spective also gives significant insight into the fact that there is an isomorphism of C*
algebras Ay, and Ay, when 6; and 6 are related by integer fractional linear transforma-
tions.

The physical interpretation uses the theory of open strings moving in a target space
with constant metric and B-field. In a certain limit where the string length goes to zero.
The open string vertex operator algebra of a brane wrapped on a torus approaches the
algebra Ay, in a way analogous to the degeneration of the VOA of the WZW model for
k — oo. See, for example, [9, 46, 47] and the review [15] and references therein. We mostly
follow the definitive version from Seiberg and Witten.

12.9.1 String Theory In A p-nutshell

We consider a bosonic perturbative string theory. It is based on maps

TN X (12.477)
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where the worldsheet Y. is a two-dimensional surface equipped with a metric, and the target
space X, is equipped with a metric g, and other geometrical structures. For our purposes we
can consider it to be equipped with a globally defined two-form b. (More generally, b is part
of a “gerbe connection.”) There is an important issue of the signature of the worldsheet
and target space metrics. If we think about strings propagating in spacetime then both the
worldsheet and target space metrics should have Lorentzian signature metrics. However, it
is technically much more convenient to take the target space to have Euclidean signature,
and we will do so. We begin with Lorentzian signature worldsheet metric and then Wick
rotate to Euclidean signature worldsheet metric.

Remark: In string theory one integrates over the space of Riemann surfaces and over
maps. The integration over Riemann surfaces includes a sum over topologies. When the
worldsheet has Lorentzian signature this leads to singularities, so in string perturbation
theory a Euclidean signature is always assumed. When the target space is Lorentzian and
has nontrivial time-dependence in the geometry many new subtleties arise that the subject
is not completely understood.

We will focus on oriented string theory. Thus X will be assumed to have an orientation.
The string action, entering the path integral as e5L/" is:

1

Splh,z;9,b) = ——/ (dz,*dzx) — x*(b) (12.478)
47T€g by

where the Hodge star uses the metric on ¥ and (-,-) is contraction in the metric on X.

Upon analytic continuation to Euclidean signature worldsheet metric the Euclidean action,

entering the path integral as e %2/ is:

1

Sglh,z;9,b] = 2 )y
S

[(daz, sdz) — ix*(b)] (12.479)

where the worldsheet metric is positive definite and oriented (so that we can integrate
x*(b)). With positive definite target space metric the path integral is at least formally
convergent. Written in terms of local coordinates the action is:

1

Sglh,z;9,b] = 2
S

/ [\/Ehabgij(x(f))aaxiabﬂ - ibij(x(f))eabﬁaa:i@bxj} d*¢  (12.480)
b

Remarks:

1. The parameter {5 determines a fundamental length-scale, called the string length. In
much of the string theory literature one finds instead

2= (12.481)
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There is much evidence that, in string theory, the nature of space and time changes
dramatically at length scales on the order of £5. Note that 1/¢2 has units of [Length] 2.
Since we have set i = ¢ = 1 this is the same as [Energy]/[Length]. Indeed, T ~ 1/¢2
has the interpretation of the string tension.

2. Classically, the action only depends on the conformal structure, and this is also true
quantum mechanically, if dimX = 26 and the metric and b-field are flat. We will
not need to worry about the quantum Weyl anomaly for the following discussion, so
we leave the dimension D of the target unspecified. This is fine for tree level string
theory on flat worldsheets.

We now specialize considerably to the case of a target space
X =R¥ x RP=2m (12.482)

We assume a constant metric and b-field, and moreover we assume that they respect the
product structure. We write the metric as:

g= Z gijda:i ® da? + Z gijda:i ® da? (12.483)
1<i,j<2n 2n<i,j
and the constant b-field as
b= Y byda’ Nda, (12.484)
1<i,j<2n

Remark: The theory we are studying is a special case of the WZW model where the Lie
group target space is just the abelian group R”. In this case the WZ term is just the b-field
action, and we have the freedom to add a flat gerbe connection. The string tension ;>
plays the role of the level k.

First consider the Lorentz-signature worldsheet h = —dr? + do? where ¥ is the strip
R x [0, 7]. The action is:

1 ™ . . , . , .
S, = —— / dT/ do [gij(aT:L‘Z@T:L‘J — OOy’ ) + Qbij&xzaamj] (12.485)
47T€§ R 0
The equation of motion is simply the free wave equation
(=02 +02)z" =0 (12.486)

The quantization of the free quantum field theory defined by the action (12.485) is
relatively straightfoward and well-known textbook material. We review it briefly. First we
compute the momentum density of the string:

sS 1
pi(0) :

= = (g;:0.27 + b;;: 0,27 12.4
5Xi(0) ol (gjafzr + ]8:1:) ( 87)
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The phase space thus consists of maps (z,P) : [0,7] — T*X. The naive symplectic
structure is, formally:

w= /7r szt (o) A Opi(o)do (12.488)
0

but the presence of the b-field can alter this naive formula.

Now we come to the important consideration of boundary conditions. For closed strings
we would take z%(c) and p;(c) to be maps from a spatial circle S'. For the open string, by
conformal invariance we can, and will take the spatial domain to be the interval [0, 7].

In general perturbation theory, for open strings we take 3 to be a Riemann surface
with boundary. The boundary values of the fields must lie in a Lagrangian subspace of
phase space defined (for Euclidean signature worldsheet) by

0a’ (gijOna? + b3 02’ ) 5z = 0 (12.489)

Here 0, and 9 are normal and tangential derivatives on the boundary and there is a sum
over it =1,...,D.

Without trying to find the most general boundary condition, the most obvious choice
is to set 6x'|y = 0 or (gijanxj + ibijanxj ) |9 = 0. We can make different choices for different
values of ¢ and different choices for different connected components of the boundary. There
are clearly many choices one can make here. They correspond to very different physical
situations.

We will make the choice that

(90527 + b;;0;27) | =0, = 0 i< 2n (12.490)
and
6 | g=0x = 0 2n < (12.491)
The physical interpretation is that there is a 2n-dimensional hyperplane, defined by
2 = x§, on which the open string endpoints are confined. This hyperplane should be

thought of as dynamical: It can wiggle and have waves moving on it: It is a “brane” with
2n spacetime dimensions. 42

One very nice viewpoint on phase space is that it is the space of (gauge invariant)
solutions to the equations of motion [13]. In this free field theory it is straightforward to
give the general solution to the equations of motion and find linear coordinates on it.

We will now say a little about the quantization. Focussing on the fields 2° with i < 2n.
We will parametrize phase space by finding the general solution of the equation of motion:
{2

We can separate the solution into the zero- and nonzero-Fourier modes: z' = ], + g

where
zhy = xh + LiT+ Lo (12.492)
and
Thee = Y ¥l (o) (12.493)
n#0

42The physics terminology originated from the joke that branes with p spatial dimensions should be called
p-branes. Thus, a 0-brane is a particle, a 1-brane is a string, a 2-brane is a (dynamical) surface, and so on.
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where z¢ (o) is a linear combination of cos(no) and sin(no). Recall that the Schrédinger
equation is ih%—‘f = HVU. Thus, n > 0 corresponds to negative energies and n < 0 corre-
sponds to positive energies.

To obtain the linear piece we need two equations for L1 and Ls. The boundary condi-
tions determine

gij L3+ bij L] =0 (12.494)
To get the second equation, define
™ 1 . .
pi = /0 pi(o)do = ﬁ(gijL{ + b L) (12.495)
S

we now have two linear equations for L and Lo and we find:
T = wh + 205(Gpym — (970G ) pj0) (12.496)
Where it is convenient to define a matrix G;; by
G:=g—bg'b (12.497)

or, with indices:
Gij = gij — bik;gklblj (12.498)
Then G% are the matrix elements of the inverse G~!. Note that
iy 1 \¥
GY = (—) (12.499)
9 +0 symmetric

Similarly, the oscillator piece is determined by the boundary conditions to have the

form: ,
J
) N —17\i - (6%7)
iy (0) = Ls (i6°; cos(no) + (g ) ;sin(no)) o (12.500)
The on-shell momentum density now turns out to be
1 j inT
pi(o,7) =p; — TR %éo Gijal, cos(no)e (12.501)

These equations give a complete set of linear coordinates on the subspace of phase
space determined by the boundary conditions.
With a suitable symplectic form the quantization is given by:

[z, p;] = i6"; [al,ad ] = GYnépymo (12.502)

The quantization of the harmonic oscillators is then standard. One chooses the representa-
tion based on the vacuum line with af,|0) = 0 for n > 0. Thus, the free one-string Hilbert
space is just

Hi—spring = L*(R*™) @ F (12.503)

where F is the Fock space for an infinite set of harmonic oscillators a4, of frequency n.

Remarks
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1. The normalization of the amplitude using od, turns out to be very convenient in the
quantization. The fluctuations are order one. So the oscillator modes are fluctuating
on the order of a string length. Meanwhile, for small string length, the momentum
of the oscillator modes is large: These oscillations cost a lot of energy.

2. Note that there is a very nice intuitive interpretation of (12.504). Let us write the
equation as

. i0 , . J
Gy (0, 7) = 52 ((g + 0y 4 (g — el ) 2
y n (12.504)
= ey 4y (5,07 1 () O
Written this way it is apparent that the left- and right-moving waves e™(7+%9) are
reflected with a matrix
R=(g+b) " (g—b) (12.505)

One can check that, with respect to the metric g, this is an orthogonal matrix. That
is:
R"gR =g (12.506)

/2.

One could diagonalize ¢'/?Rg~ In that basis left and right-moving waves are

reflected with a phase.

The formulation in terms of oscillators is conceptually important but can become
computationally very messy. It is better to use Green’s functions on Euclidean worldsheets.
We Wick rotate the strip worldsheet to Fuclidean signature with coordinate w = o + ir.
Next we make a conformal transformation to the upper half-plane:

z = o+ (12.507)

Thus, strings in the far past are near z = 0 and time-ordering becomes radial ordering.
The equal 7 spatial slices become semicircles as in Figure 36.
The Euclidean action is

1

=5z s (n™ gij0ua' Dy’ — by’ A da ) (12.508)

Here hy, is a Riemannian metric on X.
The boundary conditions are, once again:

(gijanl‘j + ibijatl‘j) ‘52 =0 (12'509)

When ¢ = 0,7, 7 is a real coordinate along the boundary of the strip. Correspondingly

7 = texp|—7] is a real coordinate along the positive and negative real axis. For simplicity
of notation we henceforth denote

T =T (12.510)
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Figure 36: Left: An open string worldsheet represented as a strip: The spatial coordinate o runs
from 0 to w. The time direction 7 is upward. The Euclidean worldsheet has the same picture
but now we view the strip as a domain in the complex plane with w = ¢ + ir. A conformal
transformation of this domain z = expliw] maps it to the upper half-plane. The dot represents
z = 0. This is the infinite past on the string worldsheet. The red semicircles are equal time slices.

We want to consider the OPE of the open string vertex operators Vj(1) =: elf*(7) -,
Here the normal-ordering symbols refer to that relevant to the oscillators af.,, acting on
H1_string. In this free field theory all we need is the Green’s function for the z-field restricted
to the boundary since

Vi (72) Vi (1) = & H1k20 @2 () il @) k1) (12511)

where the colons denote normal-ordering symbols, and we are working in radial quantization
around z = 0.

Now, to compute the Green’s function (x%(ri)z?(72)) we will compute the Green’s
function (2%(z1)27(22)) and then take the boundary values z; = 71 and 29 = 75. The latter
Green’s function is the solution of the equations of motion:

0101 (2" (21)a (22)) = 0202 (2" (21)a (22)) = 0 (12.512)

with logarithmic singularity at z; = 22, at most log growth at infinity and satisfying the
boundary conditions (12.509), which in our special case become

(9:(0 = 0)a? +bi(9 + D)2’ ) |95 = 0 (12.513)
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We therefore have

(x'(21)27 (22)) = AVlog(z1 — z0) + A log(z1 — 7o) + A log (21 — 22) + AJlog(z) — 73) + AY
(12.514)
where Ag are matrix functions of g;; and b;;, constant as functions of z1, 2. These matrices
are determined by the boundary conditions. Solving and taking the boundary value of the
propagator we get:
led

(! (T)a () = == —log(r — 7')? + 5OUsign(r — ') + AY (12:515)

- 52
g+b symm

- 9 1 v
@ZJ N /gs < >
g+ b anti—symm

The matrix Agj will not play an important role and can be dropped.
Then, applying (12.511) we find that for 71 > 7o:

and

(12.516)

Viey (1) Vi (72) ~ (11 — 70) 3G k2 /me=30 kikas o (00) 4 O(r — 7)) (12.517)
and for 71 < 79:
Vi (1) Vo (12) ~ (11 — 79) GO Rik2 M@ kikas iy o (r) 4+ O(1y — ) (12.518)

The prefactor depending on G% determines “anomalous dimensions.” It is part of the
fairly complicated story of vertex operator algebras. However, one can take a limit in which
that story reduces to the Moyal product of functions. In order to have ordinary functions
Vi should have dimension zero and therefore we want a limit so that

G =0 (12.519)
while ©¥ remains order one.

Definition [Seiberg- Witten limit]. Let B;; be 2n x 2n antisymmetric and invertible. In-
troduce fo, go,;; and set:

2 =22 (12.520)
9ij = €90,ij (12.521)
bij == (2B;; (12.522)

The Seiberg- Witten limit is defined by the limit ¢ — 0 holding goﬂ-j,ﬁg and B;; fixed.
In the SW limit we can expand the expressions for G% and ©% as series in g/B:

(g+b)t=b"t—bplgh™t ... (12.523)
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we find that in the SW limit:
G — —(B lgyB™1)¥ 0¥ = (B~ 14 (12.524)

(Note that G% is positive definite, and the minus sign is required so that the expression is
positive definite.)

In this limit V4 (7) has zero conformal dimension, and there is no singularity in the
OPE. This means:

1. We can now safely take 7 — 7o, suppressing the contribution to the OPE of all the
oscillator modes. The resulting algebra is independent of 7 and is isomorphic to the
Moyal algebra.

2. The can represent ordinary functions on the target space manifold X. More precisely,
In string field theory the operators Vi (7) multiply the momentum modes of a field
on spacetime:

= / dkT (k)Vi(7) (12.525)

where W is the string field. By deducing the couplings of this field theory from the
string S-matrix we will discover it is a noncommutative field theory. Actually, when
this is done more properly, what one finds is noncommutative gauge theory on space
time. (It is the gauge theory modes have have zero mass and survive the SW limit.)

There is a very nice connection to the dipole picture of Section §12.8.2 above. In the
SW limit the string action becomes
S=-—- [ 2*(B)= - szd:c A da? (12.526)
am 4w
This is a topological field theory. The action is (locally) a total derivative. Therefore, for
the case of a strip worldsheet R x [0, 7] we have

d d
/B”a:2 dwy ) E/B”xl dxldT (12.527)

where 24(7) = 2'(0c = 7,7) and 2%(7) = 2'(c = 0,7). This is the essential part of the
action used in the dipole picture. Note that in the SW limit the string tension T ~ £;2
has gone to infinity. This suppresses all the oscillator modes, since exciting them requires
an infinite amount of energy, so we should think of the endpoints of the string as being
connected by a rigid rod.

Remark: It is just a happy coincidence that the traditional notation B;; for the string
theory B-field coincides with the traditional notation B for the magnetic component of the
electromagnetic fieldstrength. The two geometric quantities are, a priori quite distinct. In
general B;; is really a local connection for a gerbe. In electromagnetism B is a particular
component of a fieldstrength.
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12.9.2 Toroidal Compactification

Now we consider the target space of the string theory to be
X =T x RP=2m (12.528)
For simplicity we will form the torus by identifying coordinates
2t ~ ' + 27R, i=1,...,2n (12.529)

Not surprisingly, the vertex operator algebra Vj(7), for k in the cotangent space of 172"
becomes the noncommutative torus algebra in the limit (12.520), (12.521).

To see this we use the dipole picture described above. The action (12.527) is first
order in time derivatives, and hence should be considered an action on phase space with
symplectic form )
4m
Now, both xﬁ and 7% are periodic coordinates on T?". But this does not mean that the

w =

. . 1 . .

phase space is T?" x T?" with the above symplectic form, because we must remember that
there is a string that connects the two points!

In fact, the phase space is the space of morphisms of the fundamental groupoid of
T?". This is the category whose objects are points of 72" and whose morphisms are
homotopy classes of paths between two points. In our example, given two points there is
a string connecting them. Physically, since the tension of the string goes to infinity, the
string should be the minimal length path in its homotopy class, i.e., a straight line on the
universal cover.

Alternatively, if one simply starts from the action (12.527) then there is a gauge invari-
ance z'(0,7) — x%(0,7) + d2'(0, 7) with 62°(0,7)|y=0r = 0. The reason is that the action
is the pullback of a closed 2-form on X. So the variation vanishes by Stokes’ theorem. In
the case where the worldsheet has a boundary 9% # () we must require that the variation
of 2% on the boundary vanishes. Again, the conclusion is the same: Since the two points
x1,T9 € T?" are connected by a string the phase space is the space of morphisms of the
fundamental groupoid.

Viewing x1,7o € R?" as elements of the universal cover we can make a change of

variables
o1
=y + §AZ
1 (12.531)
1 — i _Az
To =Y 5
Note that under the Deck transformations:
i — 2t + 27n'R,
Lo (12.532)

zh — xb + 27mn'R,

(where we use the same integer n’ when transforming both 2} and z%) the center of mass
transforms as
Yt — '+ 2mn'R (12.533)
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so it descends to a point on the torus, while the difference A?, which measures the homotopy
class of the geodesic on T?" defined by the straight-line path between x; and x5 on R?", is
invariant under the Deck transformation.

In these coordinates the symplectic form is

Bii ..
w = —LdA"dy’ (12.534)
2T

This is a symplectic form on T*T?". The Poisson brackets are

{A" 7} =20(B~ 1Y = @Y (12.535)
and upon quantization we have
i .aij 0
A' = —27i0 J(?—yj (12.536)

Now, classically, the operators associated with one endpoint of the string are
U; = expliz} /R] (12.537)
and they generate the algebra of functions on 72". Upon quantization we have

o0
UiU; = exp[%@”]UjUi (12.538)

and we get the noncommutative torus algebra. Note that the other end of the string

describes functions
U; = explizh/R] (12.539)

and upon quantization these satisfy
-~ 2mi i~ -
UZ'UJ' = exp[—ﬁ@ ]]UjUZ' (12.540)

(Do not confuse this with the fact that the commutant of the noncommutative torus algebra
in L?(R) with parameter 6 is the algebra with parameter 1/6.)

12.9.3 Closed Strings And T-Duality

It is good to begin by recalling a few aspects of electric-magnetic duality in 141 dimensions:
Recall that given an orientation on a finite-dimensional vector space V' of dimension n
with metric the Hodge dual satisfies

w*w=| wl? vol (12.541)
where w is a p-form in APV,

1
H w HQZ ngﬂlvl .. .g#pvammupwylmyp (12'542)

is the induced norm on APV and vol is the volume form

vol =ej A...ep (12.543)
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for an oriented orthonormal basis of V. We have
* 1 APV — A"TPV (12.544)
and
«% = (signdetg) - (—1)P("~P) (12.545)

For the Minkowski metric on the worldsheet, —d7r? + do? with orientation do A dr the
action of Hodge * on one-forms is determined by

*dT = do

(12.546)
xdo = dt

Now suppose that we have a one-form abelian fieldstrength F' € Q!(X). In the absence
of sources it satisfies the Bianchi identity and equation of motion

dFF =0

(12.547)
dxF =0

For a worldsheet ¥ = R x D, where D is a spatial domain (a circle for closed strings, an
interval for open strings) we can solve, at least locally:

F=dzx (12.548)
and then x satisfies the wave equation. Note that the self dual equations imply

F=xF = r=x(T+o0
£(r+o) (12.549)
F=—x%xF = x=xzr(T—0)

Every fieldstrength can be decomposed into self-dual and anti-self-dual parts, and corre-
spondingly the general solution of the wave equation is

x=xp(t+0)+zr(t—0) (12.550)

That is, it is a sum of left- and right-moving waves. Now the electromagnetic dual field-
strength is defined to be
Fp:=x%F (12.551)

At the level of the 0-form potential we can define the dual coordinate zp by:

dxp := *dz (12.552)
SO

T b= 33',

( D),L L (12.553)

(zp)r = —7p

We can choose the constant of integration so that

(xp)rL =z,

(iD)R (12.554)
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Thus, electric-magnetic duality maps left-movers to left-movers, and right-movers to
right-movers, but with an important sign flip on the right-movers. Note that if D has a
boundary, say at ¢ = 0 then:

1. Dirichlet boundary conditions reflect left-movers into right-movers with a minus

sign:
Or (xp(1+0) +2r(T — 0)) |o=0 = 27(7) = —2r(7) (12.555)

2. Neumann boundary conditions reflect left-movers into right-movers with a plus

sign:
O (xp(T 4+ 0) + 2R(T — 7)) |g=0 = 27 (T) = +2/R(7) (12.556)

Therefore, electric-magnetic duality exchanges Dirichlet and Neumann boundary con-
ditions

Now let us consider the case of closed strings with a target space X = S'. We have
r:Rx St x (12.557)

Do not confuse the worldsheet spatial circle with the target space circle X. We take the
metric dr ® dr on the target but impose boundary conditions

xr~x+21R (12.558)
Put differently (this will be useful in the discussion of the general case) we consider
X =R/(2rRZ) (12.559)

the metric is induced from dx ® dz on R and is equivalent to the metric on a circle of radius
R.
The general solution of the equation of motion looks like

1 1
r=x0+ 5(6?1) +wR)(T+0) + §(£§p —wR)(T — 0) + Tosc- (12.560)

We briefly review the quantization of ., in a more general context, below. The “zero-
mode part” requires a bit more discussion.
The momentum density is

5 L o) (12.561)

p(T,U):%—mx

The zeromode of p(7,0) as a function of o is, by definition, denoted p. Quantization gives
[p, o] = —1i, so exp[i(2mrR)p] = 1 and the eigenvalues of p are quantized to be of the form

n/R where n € Z. Similarly the integral around the worldsheet must be of the form

j{ dx = Oyxdo = 2w Rw (12.562)
St St
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where w € Z. Of course, the expansion (12.560) is written on the universal cover R of the
target space, and w is interpreted as the winding number of the map z : S — X at fixed
T.

It is useful to rewrite (12.560) as

1 1
=0+ Slpr(7 +0) + SLPR(T = 0) + Tose (12.563)

Ly R

bspr, = n— —
PL nR + wgs

lspr = nE—S — wE
sPR = R ‘

Note that under electric-magnetic duality we have

(12.564)

np =w
wp =n (12.565)
RRp = (*

Moreover, the Hamiltonian of the theory is

_ Flﬁ 7{ [(2%@]}(0))2 + (a,x)ﬂ do

— [ per + Con?) + o (12.566)

IRYAYEYZA%
—5[71 <E> —+ w <Z> +Hosc

From these equations we see that the theory is completely invariant under

R
= 12.
Rl (12.567)

This quantum equivalence of two different quantum field theories in 1 + 1 dimensions is
the first example of a duality known as T'-duality. It is electro-magnetic duality in 1 + 1
dimensions and exchanges momentum and winding modes, or equivalently, electrically and
magnetically charged states. It is a simple demonstration of the general claim that the
nature of spacetime changes dramatically at the string scale. In ordinary QFT on the
target space circle X' the theories at small and large values of R are completely different.
For example, the spectrum of the Hamiltonian is completely different.

Remark: At the fixed point of the duality transformation, R = ¢5, we should expect
something special to happen. Indeed this i is the the case, the theory generically has symmetry
under the centrally-extended loop groups LU ( ) x LU ( ). These are associated with the
holomorphic currents —idx(z) and —idz(z). However, at R = £, the vertex operator algebra
has a larger symmetry group LgUT) X LgU\() (with £ = 1). In general in the Gaussian
model we have the symmetry vir & vir, with the expressions

1/n 2
Ly = Z (; + m?“) + 2)05_”06“ (12568)
n
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~ 1/n 2 .
LO = Z (; — mr) + Za—nan (12569)

n>0

where r := R/ls. There are primary operators associated with the exponentials:
Vp =: ePLTL(2) @ elPRTR(Z) : (12.570)

Note that when 72 = p/q it is possible to choose integers n, m so that the operator is purely
holomorphic or anti-holomorphic. In particular, at » = 1, if we choose n = m = +1 we get
the purely holomorphic dimension one current

eti2en/ls (3) (12.571)

and similarly n = —m = *£1 gives purely anti-holomorphic dimension one currents. The
operators —idz(z), e*2*L/% () have an OPE corresponding to the currents of a level one
su(2) affine Lie algebra. This is known in mathematics as the Frenkel-Kac-Segal construc-
tion. More generally, when 72 = p/q there are holomorphic vertex operators

exp(i2y/pqrr(2)/4s] (12.572)

of A = pq. These are holomorphic higher spin currents and lead to extra symmetries. One
consequence of these higher spin symmetries is that there are nice holomorphic factoriza-
tions of the partition functions and correlation functions of the theory. These are examples
of rational conformal field theories (and the name actually originates from these examples).

Let us now generalize these equations to the case that X = R?/(2rA) where A is an
embedded lattice and R? is equipped with constant metric gij and B-field b;;. We can
write, once again:

. 1 1. . ,
=z + 56?1)2(7’ +o0)+ 56?1)33(7' —0) + Ty i=1,...,d (12.573)
but now 55 .
L . .
pilT.0) = 55 = 2702 (9:0-27 + b;j0527 ) (12.574)

From the viewpoint of electric-magnetic duality we have a gauge group U(1)? with magnetic
charges

m':= ]{1 dz' = 703 (py, — P)

‘ S - (12.575)

e = ]{ xde’ = 702 (p}, + p)
5’1

Once again, there will be quantization of the electric and magnetic charges. The
magnetic quantization is easiest since m’ must be a vector in 2wA.
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We can choose a basis of the form f,e,, a = 1,...,d, for A so that e, are dimensionless.
The components of the vectors will be e,’. Therefore we have the magnetic quantization
conditions: )

5ls(P = PR) = w'e/ (12.576)
where w®, a =1,...,d, is a vector of winding integers.

Similarly, the momenta conjugate to the zeromode z is

1 ) )
pi = FE% f (gijaTl‘J + bijaadij) do

1 . .
= 2 (gijej + bijm]) (12.577)
s

1 . .
=3 (9ij(pr + pR)’ + bij(PL — PR))

Again upon quantization we have that
expli2nlse, p;] = 1 (12.578)

on the free one-string Hilbert space. This quantizes p; to be vectors in the dual lattice AV.
More precisely, we assume the lattice has full rank so det(e,’) # 0, so e,’ has an inverse
matrix e;*

e.%J —§9 (12.579)

a -1 a T Ca )

Then p; must have a spectrum of the form
0 nge;” (12.580)

where the n, are integers for a =1,...,d.
Putting together (12.576) and (12.580) we get the quantization of (£5p% , £sp):

1 7 7
§(€spL - EspR) = waea

1 . .
9 (gij (lspr + £spr)’ + bij (bspr — EspR)]) = nge;*

where n,, w® are integers. We are going to put (12.581) in a more beautiful mathematical

(12.581)

form, but first we would like to make a side remark about the relation to an analogous
effect in 3 + 1-dimensional Yang-Mills theory.

Remark: Analog in magnetic monopole theory: The equations (12.577) and (12.580) are

closely related to a phenomenon in magnetic monopole theory known as the Witten effect.
We consider Yang-Mills-Higgs theory where the YM action has a 6-term:

_%/(F,*F)—l—%/(F,F)_%/(D(I)>D(I))+”' (12.582)

Then if the Higgs field spontaneously breaks the gauge group to a maximal torus at infinity

there can be magnetic charges. These are measured by
1

— [ F= 12.
3 o F=m (12.583)
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where S2 is a spatial sphere at infinity, and m € A, is quantized to be in the “coweight
lattice” inside the Cartan subalgebra t. Similarly, the electric charge is defined to be

2

S| xF=e (12.584)
9% Jsz.

Because of the # term, the momentum conjugate to A4;(z) is not the electric field but rather

. 1 . 0 ..
Ii(x) = = E* ik, 12.585
() p (w) + 12¢ Lk ( )

where E' := Fp;. Upon quantization we have operators
[T (2), A;(y)] = =18"8%) (2 — ) (12.586)

The momentum translates the gauge fields, as usual, and in particular gauge transforma-
tions by € : R® — g are implemented by

Qe) =i /R (e D;IT) (12.587)

Gauge transformations are implemented by € such that lim,_, . e(x) = 0, and for these
transformations @Q(€) acts as zero on the physical Hilbert space. But there are also global
gauge transformations with lim, ,, e(z) = H € t. In general these do not act trivially
on the Hilbert space. However, this must generate a representation of the unbroken gauge
group T' C G. Therefore, if H is in the co-character lattice, so that exp[2rH] = 1 then the
quantum operator exp[27Q(H )] must act as the identity on the Hilbert space. This means
that the operator

lim [ AT (x)r?sin0dfde (12.588)

r—oo [g2
should exist in the quantum theory, and moreover it will have quantized eigenvalues. Specif-
ically, it must be in the integral dual of the cocharacter lattice Ag C t with respect to the
quadratic form given by the Killing metric used to define the action. (It is isomorphic to
the character lattice of G.) Call this quantized momentum .. From equation (12.585) we

learn that 0
e =9+ —m (12.589)

27
That is, in the presence of a magnetic monopole, the physical electric charge has a fractional
part proportional to %. Monopoles with electric charge are known as dyons. We learn

that in the presence of a generic theta angle all monopoles are in fact dyons. This is quite
analogous to the fact that, in the presence of a generic B-field strings with nonzero winding
number must carry momentum.

Let us now return to our closed string theory with target space X = T¢ and interpret
the facts about the quantization (12.581) of (¢sp},¢sp%). Rearranging those equations
slightly we find:

lsph = ge " ng + whe, + w'e b g"
SpiL gi' Ja ’ a ai a a' ’ gki (12590)
lspr = g” e ng — whe, +webjrg
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This equation can be more usefully written in matrix form

1 lspL _ n
% (EspR> =& (w) (12.591)

Here € is a 2d x 2d matrix. It can be written in block form
&1 €12
&= 12.592
(521 522) ( )

where the d x d blocks have matrix elements

(511)m _ (521)211 _ ﬁgzgeja
(512)Za = ﬁ (eaz + eajbjkgkz) (12593)

(E2)'o = ot (eai _ eajbjkgki)

Now, define the two quadratic forms of signature (d, d):

Qo= (983‘ _;) Q= <2 3) (12.594)
4]

then a small, but important, computation shows that:

ETQuE = Q (12.595)

One way to read equation (12.595) is that it states that the columns of £ define a
collection of vectors in R??. This space is equipped with signature (d, d) metric Qg, and
we denote that space by R%¢. Thus, the columns of £ generate a rank 2d embedded lattice
I' ¢ R%4 with Gram matrix Q.

In the classification of integral lattices, (equivalently, in the classification of integral
symmetric quadratic forms), those with Gram matrix equivalent to @) are unique. These
are the even unimodular lattices of signature (d,d) and their equivalence class is denoted
I1% Tt is a direct sum of the basic case IT%!. A standard model for IT%! is Ze @ Zf
where the two generators have inner products:

Qle,e) =Q(f, f) =0 Qle, [) = Q(f,e) = (12.596)

Thus, the set of quantized zeromodes

1 Lspr,
P 12.597
P \/§ (gspR> ( )

given by the integral span of the columns of £ is an embedding of a standard copy of II%¢
into the space R%9,
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Note that the inner product Qy on R%? expressed in terms of p is
2 1 i j i J
P = 5 (gspLgijgspL - gspRgijgspR> (12'598)

Now let us briefly review the (straightforward) treatment of the oscillators. The general
solution of the equation of motion is

~i
Tl = Z( n 17‘L (t40) + %eln(7—0)> (12599)

Reality imposes (af)* = o', and similarly for &,. Thus, the (a!,a!) for n > 0 are

(complex) coordinates on phase space. We can therefore determine p;(7, o) from the above
equations as another function on phase space.
Now, the natural symplectic form on phase space is

w= 7{ dodpi(r,0) A Sz (7, 0) (12.600)
5’1

Substituting the expressions in terms of the oscillators, doing the o-integral, and taking
into account numerous cancellations one finally arrives at:

(50&%%5@% N 5d%gij55é1n>

n n

w:5pi/\(5$6—iz

n>0

(12.601)

Now recall that for the harmonic oscillator with frequence w we have the standard complex
coordinates on phase space

_p—iq
V2w
12.602
e (12.602)
V2w
so that 5 5o
A
Sp A og = —in %0 (12.603)
It follows that in the quantum theory the oscillators satisfy:
ol ol ] = g"né
[f? m) = 671040 (12.604)

[a:w dfn] = gijnéner,O

with all other commutators vanishing. Note that we use here the closed string metric g;;.
The representation is the standard Fock space

FQF (12.605)

with the vacuum line annihilated by the negative energy oscillators (that is, annihilated by
al, &t for n > 0).
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Putting together the zeromodes and the oscillators the Hilbert space of the CFT can

be viewed as
Hlfclosedstring = C[F] QRFRQF = @pEF.F ®RF ® Vp (12606)

where V, is the vacuum line for the Heisenberg representation of the oscillator modes
determined by a vector in p € I'. In the language of 2d CFT it is the state created from
the SL(2,R) x SL(2,R)-invariant vacuum by the vertex operator explipr, iz} + ipria%].
Now let us discuss the moduli space of conformal field theories with target space
X = T? The matrix £ is the essential piece of data that determines the entire CFT. For
example, as we have just explained, using £ we can determine the lattice I' of zero-modes.
So, to begin, we have a family of conformal field theories over the space & given by the
space of real matrices of the form (12.592) and (12.593). (Note one can easily recover g;;
and b;; separately from this matrix.) However, there is some redundancy in this matrix.
For example, the Hamiltonian of the theory is

2
H = %(pigijpi + PRijPR) + Hosc (12.607)
Hose = Z (alngija% + &anij&%) (12.608)
n>0
This can be written as
H = Lo+ Ly (12.609)
V2 . , .
Lo =~ pLgijpr, + > al,gijol, (12.610)
n>0
.2 . . )
Ly = Zspﬁqgijpﬁ +) al,gi;d) (12.611)
n>0

The spectrum of Hege is just N + N, where N, N € Z, with degeneracy pgy(N)pa(N).
That is a2
rgeglee = 407 (12.612)
dnd
nn
The spectrum of the Hamiltonian for zeromodes only depends on

9ij 0 gspL o a gab _(gilg)ab "
(EspL EspR) (0 +gij> <€sp3> B (n“ v ) ((Egl)ab Gab — (bG'b)ap ) \ 0

(12.613)

Trrezq

where we define
gab = €ai€bjgij bab = eaieb]bij. (12.614)

Therefore the spectrum of the Hamiltonian only depends on the projection of £ under

m:€— (Or(g) x Or(g)) \€ =B (12.615)

where

Or(9) := {a € GL(d,R)|a" ga = g} (12.616)

- 178 —



We can identify the coset space 28 with the space of d x d real matrices with positive definite
real part. An explicit map to this space is

5 — (511)_1512 = eaj(gjk — bjk)ebk = gab — [N)ab = Eab (12.617)

Not only the spectrum of the Hamiltonian but the entire CFT actually descends from

a family over € to a family over B. This is especially obvious if we recall that we are
identifying

x ~x+21A (12.618)

and hence we can change coordinates to

zt = (%) (12.619)

a

so that the fields £%(7, o) are dimensionless have all have periodicity
€~ €9 4 2 (12.620)
In terms of these fields we can write the action as

Sp = = / drdo (0; — 05)E" Eap(07 + 05)" = i/ drdo(O; + 05)€" Eqy(0r — 95)&"
4 » 4 b
(12.621)

There is another source of redundancy in £. We can construct the lattice of zeromodes

Id’d

from an embedding of I into R%?, However, what matters in the construction of the

theory is not the choice of basis vectors e, € I', but just the lattice I' itself. We do not
change the lattice of zeromodes by changing basis! An integral change of basis on e,
is obtained by right-multiplication of £ by an invertible integral matrix 0 € GL(2d,Z).
However this change of basis must preserve (12.595) and hence we must have 0 € Oz(Q),
that is, ® must be in the group of integral matrices such that 0%Qd = . We can write ?
in block form as

2= (a ﬁ) € 02(Q) (12.622)
)

where 0 € Oz(Q) iff a, B,7,0 € My(Z) satisfy:

Oétr(s 4 ’Ytrﬁ =1
"y +4%a =0 (12.623)
5tr,3 4 /Btrd =0
(It is often useful to note that (12.623) holds iff
(5atr 4 ’Yﬁtr -1
af™ + Ba™ =0 (12.624)
5,)/tr 4 ,ydtr — 0')
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The space of embedded lattices is
£:=¢/07z(Q) (12.625)

Thus, there are two sources of redundancy and the space of CFT’s descends from a

%/6\2

where B is the moduli space of classical sigma models: They are determined by F,p. £ is

family over € in two ways:
(12.626)

the moduli space of embeddings of the unique even unimodular lattice of signature (d, d)
into R%4,

These two sources of redundancy in £ are independent of each other so that in fact
the family of CF'T’s descends to

¢ (12.627)
%/// \\\2
NS
Nd,d

where

Naa = (Or(g) x Or(9)) \€/0z(Q) (12.628)

This is the moduli space of 2d CFT’s with target space X = T¢ with flat metric and
B-field. In the string theory literature it is known as Narain moduli space.

If we look at two points of 9B related by the right action of 0 € Oz(Q) then we get
very different background data & and &:

E=¢. (a ﬁ) (12.629)

Under this transformation E transforms by the fractional linear transformation:

E =&
S+ 512’7)71(511,3 + 512(5) (12.630)

= (
= (a+ Ev)"'(8 + E5)
This is the famous formula for T-duality transformations.

Finally, we claim that the space € is essentially a real orthogonal group for a form of
signature (d,d). To facilitate the proof we first make a small simplification: Actually it is
redundant to introduce both a family of metrics g;; on R? and a family of embedded lattices
2rA C R? if we want to discuss the family of metrics on the torus T%. So we simplify our

- 180 —



formulae, without loss of generality, by choosing linear coordinates on the universal cover
R? so that 9ij = 0ij. 43 Then
Jap = e, e, (12.631)

is the (dimensionless) Gram matrix for the embedded lattice A C R?. Now

10
Qo = (0 _1) (12.632)

S = % (1 _11) (12.633)

S"QoS =Q (12.634)

(After all (03 + o103 (03 + o) = 30!, 0%]03 = o))

A second way to read equation (12.595) is that it says that, up to a left- or right-

and if we let

then S = S~ ! = S* and

multiplication by an invertible matrix, £ is in a real orthogonal group of signature (d, d).
Indeed, for any £ € & we have
ES € Or(Qo) (12.635)

SE € Or(Q) (12.636)

Conversely, given one embedding of 7% into R%? any rotation by Ogr(Qq) gives another
embedding, so we can in fact identify € with the entire orthogonal group, not just a subset.
Thus, we finally obtain the standard form for the Narain moduli space as a double-coset:

Naa = (0(d) x O(d)) \€/0z(Q) = (O(d) x O(d)) \Or(Q)/0z(Q) (12.637)

Example 1: For d = 1, we have a 1 x 1 matrix e,/ = r := R/l so that e, = 1/r.
Therefore

1
el ) (12.638)

1 r
> f= % (—7“) (12.639)

Using the Lorentz metric on RY! we compute

==

ece=f-f=0 e-f=f-e=1 (12.640)

43We did not do this for the case of open strings on R?"™ above because we wanted to consider a family
of backgrounds determined by the SW limit, and it is more convenient to think of a family of metrics gi;
rather than a family of coordinate transformations. Now, however, our family will be given by the family
of lattices A so also keeping g;; is an unnecessary complication.
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thus confirming that £ describes an embedding of ITH! into RY1. Moreover, Oz(Q) =
Zo X Zo. After all, if we drop the integrality condition, we are talking about the Lorentz
group in 1 4+ 1 dimensions, and it has four connected components.

0z(Q) = {#1,+0'} (12.641)
The element —1 does not act effectively on 9B, but o' takes
1
V2
and by an Ogr(1) x Ogr(1) transformation we can map this to:
1 r o 1 r 1
il o3 — -
va\-r va\-ri) =

so the net result is equivalent to » — 1/r and we simply recover the T-duality transforma-

(12.642)

3= =
[

3 =3
N——
Q
—

I
Sl

[\]
/I\
3 =3
S
N——

3= =
b=
N——
1
Sl
[\]
N

S ==
3= =

1
T ) (12.643)
.

tion of the simple introductory discussion above.

5
X}
X
B3
[ )

Figure 37: A picture of the Narain moduli space N o for two-dimensional toroidal compactifica-
tions of the closed string.

Example 2: Already for d = 2 the story is much richer. To begin, recall that the vector
space of Ms(R) of 2 x 2 real matrices is isomorphic to R* and has a natural quadratic form
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of signature (2,2) given by the determinant. Therefore, left-action by SL(2,R) x SL(2,R)

preserves this quadratic form. In this way we derive the exact sequence:

1 — Zy — SL(2,R) x SL(2,R)502(Q) — 1

(12.644)

where the superscript indicates the connected component of 1 and the kernel is the group

generated by (—1,—1). To be more explicit suppose

X1
T = 2 cR*
3
T4
then define
*(z) = (xl x2>
—T4 T3
so that

2detX = 2(x123 + xoxy) = 2" Qu

Then we define the projection
Y SL(2,R) x SL(2,R) — 0%(Q)

by
AX(x)B" = X(4)(A, B) - x)

Explicitly, if

then
a 00 —b

0 abdb O
0 ¢cd O
—c00 d

ab 0 0
cd 0 0
00 d —c
00—=b a

Now for £ =g — b define
p = —bia +1iy/detg

922

(12.645)

(12.646)

(12.647)

(12.648)

(12.649)

(12.650)

(12.651)

(12.652)

(12.653)

(12.654)

These have the interpretation of the “complexified Kéhler class” and complex structure of

the target space torus 72. Note that, importantly, both 7 and p have positive imaginary
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part. A set of generators for Oz(Q) is given in Appendix B. Using these one can show
that the group action on (7, p) € H x H is generated by

(r.p) — <C‘T 0 ) (“ 2) € SL(2,7) (12.655)

CT-i-d’p

(1,p) — <7‘, Z[’:fz) (a 2) € SL(2,2Z) (12.656)

(r,p) = (p,7) (12.657)
(r,p) = (=7, —p) (12.658)

Thus, N3 is isomorphic to (F x F)/(Zg X Zg) where F is a fundamental domain for the
PSL(2,7Z) action on H. The transformation (12.657) is the mirror symmetry transforma-
tion for T2, considered as a one-dimensional Calabi-Yau manifold.

Remarks

1. Relation to another common convention. The fractional linear transformation of T-
duality is often written as E — (aF + 8)(yE + §)~!. On can obtain this particular
form by using simple redefinitions. In particular, let

E' = E" (12.659)

(i.e. we exchange b — —b) and let

tr Qtr /a1l
V=0l = (jt f;) = <:, ?) (12.660)

then E — (o + Ev)~Y(8 + EJ) is equivalent to
E' = (B +B)YE +6)! (12.661)

2. Open strings and the SW limit. Let us now return to the open string. Recall that in

the SW limit the open string field theory becomes noncommutative field theory on a
Moyal space, and in the case of toroidal compactification we argued that it becomes
noncommutative field theory for the noncommutative torus. What happens to E in
the Seiberg-Witten limit? At this point we set d = 2n and reinstate g;;, since we
once again want to speak of a family of spacetime metrics on R??. Recall the SW
limit is defined by

2 = €e'243
9ij = €90,ij (12.662)
bij = (;Bi
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with € — 0 holding ¢y, go, B;; fixed. To define the limit in toroidal compactification
we also have to say that dimensionless vectors e/’ are of the form

ls
= —€ é;

zzﬁi

7 ) a

a (12.663)

and we will define the Seiberg-Witten limit by holding R and e, ;% fixed. Recall
that in this limit the open string metric behaves like:

Gl — —(B~lgoB~1)

| (12.664)
Gij = —(Bgy B)ij

Now, we want to check that the limit is compatible with T-duality. First of all
Euw = ¢ (gjr — bjr)e,” — —R%ej &, B; (12.665)

becomes antisymmetric. Now recall that T-duality acts as fractional linear transfor-
mations on Fg,. It is not immediately obvious that the T-dual transform is antisym-
metric. Nevertheless, using the conditions (12.624) one can readily show that if Ey
is antisymmetric then

E = (a+ Ey)" Y8 + EJ) (12.666)

is also antisymmetric. This suggests that it is consistent to send the closed string
metric to zero, in spite of the naive expectation that a transformation taking r — 1/r
would be inconsistent with the SW limit. Indeed, recall that the inverse of the open

1
G = <—) (12.667)
E symmetric

so this goes to zero since E becomes antisymmetric. That is compatible with

string metric is

G = e, GY (12.668)

and the fact that G has an order one SW limit. Thus the inverse open string
metric goes to zero in lattice units. This means that G, — oo. Again, let us check
compatibility with T-duality: Under (12.666) we have

~ 1/1 1
Gab:_ - =
2<E+Etr>

= %(ﬁ +ES)THE+ ET)(8 + Bo)TH

1
5(/3 —I—E(s)ilE(E*l +E71,tr)Etr(I3 _i_Ed)fl,tr (12'669)
1
—_ 5((5 + E—l/@)—l(E—l + E—l,tr)((s + E—l/@)—l,tr
— ((5 4 E*l/@)flel(d_i_ E*lﬁ)fl,‘cr
Therefore, G — 0 in any duality frame so long as § + E~!3 is invertible. (However,
d-+E~13is not always invertible. In fact, if E is a rational antisymmetric matrix then
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Eo6+ will fail to be invertible for some duality transformations. See the next remark.)
Note that line two of the above equation also shows that G '=(B+ES'§(6+
E§)~ 1%, Sice gu = eaieigij = (—:1/2§07ab — 0 there is no contradiction. Therefore, in
any duality frame we will get a noncommutative algebra of functions as the limit of
the vertex operator algebra. %% Recalling that B;; controls the noncommutativity
parameter of the noncommutative torus algebra we have arrived at a very elegant
physical explanation of Rieffel’s theorem on the isomorphism of C*-algebras!

3. Ergodic Action Of T-Duality On The Boundary Of Narain Moduli Space. Using the
property that g, is positive definite one can show that the action of the T-duality

group on ‘B is properly discontinuous. 4 However, the SW limit takes E to the
“boundary” of 9. Typically, arithmetic groups Gz have an ergodic action on the
boundary of noncompact domains of the form K\G. For example, SL(2,7Z) acts
properly discontinuously on SO(2)\SL(2,R) = H, but on the boundary of H, namely
the real line: R = 9H, the action

ar +b
%
cr +d

(12.670)

is not properly discontinuous. For example the rational numbers form one dense
orbit. Now consider the SW limit in the case of d = 2. Of course 7 is conformally
invariant and doesn’t vary with e, but

p — Bo12 (12.671)

so p reduces to a real number. The duality group action is therefore ergodic. More
generally, if we define a “boundary” of B by allowing g, to become degenerate (in
particular to become zero) then the action of Oz(Q) on this boundary will be ergodic.
The SW limit takes g, — 0 so E becomes an element of the boundary. This is also
why the action on the open string metric is not always well-defined: To get a well-
defined action on the boundary we must add points at infinity, just as in the SL(2,7Z)
action on the boundary of the upper half-plane: To get a well-defined action one must
add the point at infinity and consider the boundary to be RP!.

Note that in the SW limit the bundle of CFT’s becomes a bundle over a noncommu-
tative manifold.

The above facts are also related to the fact that toroidal compactification on Lorentzian asay how &
signature target space tori also has an ergodic action of the T-duality group [36]. In-
deed, for a two-dimensional torus the conformal classes of Lorentzian signature is
defined by the foliation by left- and right-moving lightrays. These describe a pair of

440One should also check that the string coupling does not blow up. See [47], p.68 for this.

45Recall that the action of a discrete topological group G on a topological space X is properly discontinuous
if the map G x X — X x X defined by (g,z) — (g-z, ) is proper. If X is locally compact then an equivalent
statement is that for every compact K C X the set of g with g- K N K # ( is finite. If a discrete group has
a properly discontinuous action on a Hausdorff manifold then the quotient is a Hausdorff orbifold.
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points 74+ on the boundary of the upper half-plane and, as we remarked, the action
of SL(2,Z) on such pairs of points is ergodic. (In fact, the idea that there would be a
role for noncommutative geometry in toroidal compactification was predicted in [36]
based on the fact that the boundary of Narain moduli space is a noncommutative
manifold. This should not be confused with Seiberg-Witten’s statement that the
target space torus, for a fixed point path in Narain moduli space (defined by the SW
limit) becomes a noncommutative manifold.)

. Full proof of T-duality. The main claim above about the Narain moduli space being

Niaq was only partially justified by the arguments above. We only checked that
the spectrum of the Hamiltonian on the circle descends to this space. For the full
conformal field theory one really needs to show that there is an isomorphism between
the vertex operator algebras. This is actually not difficult since it is implemented by
interpreting O(d, d;R) as a group of Bogoliubov transformations mixing left-movers
with right-movers. The result is that there is actually an equivariant bundle of
conformal field theories over B descending to a bundle over Ny 4. In fact, this bundle
of CFT’s comes equipped with a natural equivariant connection. For details see
[36, 41].

. Rational Conformal Field Theories. Let

7 REd 5 RO 7R : REd - RO (12.672)

be the projections to the positive definite and negative definite subspaces of R%¢. In
general the projection of the zeromode lattice I' is a dense set of points. For example,

in the d = 1 case
r T‘_l

Tr(e) = 7 T (f) = 7

Unless 72 € Q the projection of these two vectors will generate a dense subgroup of

(12.673)

the real line. However, when F,; is a matrix of rational numbers the left and right
projections are, separately, crystals in R%. To see this we define:

Pra = Gabe; lsDy PR = Jabe;"lsPR (12.674)

so that
GPr.abre = (€sp})gij (Lsp) (12.675)

% (zii) - % (1 j;u) <ZZ> =¢ <Z‘;> (12.676)

where £E¥Qy€ = Q but now with

~ab
Qo — (go _?ab) (12.677)
g

and
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Now, we claim that if E,, is a matrix of rational numbers then there is a rank d lattice
of “purely left-moving vectors” in I, that is, vectors that project to zero under mg.
The equation wr(p) = 0 is equivalent to the system of Diophantine equations:

PRa = 1o — (EM)apw’ =0 (12.678)
for integers n4, w®. For such solutions of (12.678) we have

PLa = 2Gapw” (12.679)

The set of solutions (ng,w?®) € Z*>* of (12.678) forms a subgroup. It is a finitely
generated torsion free abelian group and the rank is at most d since the n, are
determined from the w®. In fact the rank is exactly d since, if we write the matrix
elements as fractions in lowest terms E,, = pap/qap then, taking all the w® to be
divisible by the LCM, N of the g, we can solve the equations for integers n,. That
is, if we take all w® = Nw® with arbitrary integers w® we get a sub-lattice of the
solution lattice. Let us denote by I'y, € R4 the lattice of purely left-moving vectors
p. The lattice I';, is even, but in general is not unimodular. 46 To see that it is even
we use (12.598) to write

p’ = ;L,agabm,b = 20 G 0" € 2NZ. (12.680)
In an entirely analogous way, there is also a rank d lattice T'p C R%¢ of purely
rightmoving momenta. Therefore I'p g := I'f, @ I'g is a finite index sublattice of I'.
The index grows with N and is a highly discontinuous function on Ny 4. We can write
I' =1I4(T'LRr + p,) for a finite set of glue vectors p,. The significance of these points
for CFT is that there are integer spin purely (anti-)holomorphic vertex operators:

explipr.aéll(z) @1 18 explipn.atd(2) (12.681)

that “enhance” the u(l)%d & u(l)%d current algebra that is present for all the CFT’s
parametrized by Nygq. These “enhancing” vertex operators correspond to states in

the CFT with 1
Lo= ZﬁL,agabﬁL,b = W Gapw® Lo=0 (12.682)

- 1 B o B
Lo =0 Lo = ZpR,agabpm = wGuuw’ (12.683)

respectively. Even though g, is a rational number these conformal dimensions will
be integral.

6. Remarks on the genus one partition function and RCFT. The torus partition func-

tion is o _
Z = (nip)~? Z qi(fspLVq—i(fspR)Q — r(7,7) (12.684)

dnd
pel’ nn

46Tt can happen that T has crystallographic symmetries but the projections 7z, mr are not crystals, but
rather quasicrystals. For a nice example see [24].
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The numerator is known as a Siegel-Narain theta function.

In general if A C RP+®~ is an embedded lattice in a pseudo-Euclidean space with
signature (4-1%+, —1°-) then we can define the general Siegel-Narain theta function

OA(T, Ty, B &) := exp[%({i—fg)] Z eXp{iWT()\+ﬁ)%r+i7TT(/\+,3)2+27Ti(/\+,67 f)_2m'(/\+%ﬁ, a)}
e (12.685)

where Im7 = y, and A is the projection of a vector into the positive (resp. negative)-
definite subspaces. The main transformation law is:

_ 1
Or(=1/7,—1/T;a, B; S 57) = \/ﬁ(—ﬁ)b*ﬂ(ﬁ)b*ﬂ@m (1,78, —; §)
T T
(12.686)
where A* is the dual lattice, and D = A*/A is a finite abelian group known as the
discriminant group. Equation (12.686) can be proven straightforwardly by using the
Poisson summation formula.

In the case of toroidal bosonic string compactification I' is even and unimodular. It
then follows from (12.686) that the partition function (12.684) is modular invariant.

In the case when FEy;, is a matrix of rational numbers, that is, for rational conformal
field theories, Z can be written as a finite sum of holomorphic times anti-holomorphic

“conformal blocks”:
N

Z =Y Z1)Zs(7) (12.687)

s=1

for some integer N. the Siegel-Narain theta function factorizes as

Or = Z Or,+p,  (T)Org+p, 5 (T) (12.688)
S
and
Or T
Zs(r) = L++L() (12.689)
n
transform in a finite-dimensional unitary representation of SL(2,Z). The Zs(i-) &Say this in more

. . N\ . . . detail. &
transform in a dual representation so that Z(7,7) is modular invariant.

The Z4(7) are examples of conformal blocks of an RCFT. In general, the correlation
functions of all operators on all Riemann surfaces factorize into finite sums of holo-
morphic times anti-holomorphic objects. The vector space of these objects provides
a finite-dimensional projective representation of the mapping class group of a punc-
tured Riemann surface. These finite-dimensional spaces can also be identified with
the space of states of a 2+ 1 dimensional TQFT.

. Crystallographic symmetries and orbifold points. At the rational points, where 7y (T")

and (") are crystals these crystals can have nontrivial crystallographic symmetries.
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That is, there can be elements of Ogr(g) x Or(g) that are equivalent to change of ba-
sis:

RE = &0 (12.690)

where R € Or(g) x Or(g) and ? € Oz(Q). The set of R’s for which this holds will
be a finite group P because they also form the point group for the lattice I', & I'r
with positive definite signature. At points where there is nontrivial crystallographic

symmetry Ny 4 has orbifold singularities. We have different crystallographic groups
P at different points. Nyq is a good example of a moduli stack. For example for
d=1, J\fl,l = R /Zy and there is a single Zy orbifold point at » = 1. For d = 2
the story is much richer. The quotient H/SL(2,7Z) already has Zg and Zs orbifold
points at 7 = i,e™/3. 47 Using these points for 7 or p we construct 4 components
of complex codimension one orbifold loci in Ng,g. In addition there is a locus of Zs

singularities along 7 = p due to the mirror symmetry transformation.

8. A Special Example With Special Crystallographic Symmetry. At any point with purely

left- and/or right-acting crystallographic symmetries we have orbifold points. As a
dramatic example, consider the case of d = 24. One very interesting point is

I'= (ALeecha 0) & (Oa ALeech) (12691)

where Ajeecn is the famous Leech lattice. It is the unique even unimodular integral
lattice of rank 24 with no vectors of length-squared = 2. Now, crystallographic
symmetries in Or(g) X Or(g) are equivalent to a product of Conway groups.

9. Points with enhanced level one affine Lie algebra symmetry. An important set of spe-

cial points in Ny 4 can be constructed as follows. Let g be a semi-simple Lie algebra of
rank d where the summands are simply-laced: A,, D, or E,. Embed the weight lat-
tice Ayt(g) C RY so that the root lattice is generated by root vectors of square-length
two. Consider the rank 2d embedded lattice

I'(g) C (Awi(9); 0) @ (0; A (g)) € RE (12.692)

where T'(g) is defined by the condition that it contains the vectors p such that pr, —
pr € Ani(g). We claim that T'(g) ¢ R%? is an even unimodular lattice and hence
defines a point in Ny 4. We will call these g-points. To see that I'(g) is an even lattice
note that a general vector is of the form (pr;pr) = (qr + A\; qr + \) where qr,, qr are
in the root lattice and A is one of the fundamental weights. Then I' is even because:
48

P’ =qi —ai +2(qr —qr) A € 22 (12.693)

I'(g) is also unimodular. Perhaps the best way to see that is to make a modular
transformation on the Siegel-Narain theta function. According to our formula above

47Tt is in fact the moduli stack of elliptic curves.
481t is convenient to take £5 = v/2 and the standard Euclidean metric for g;.
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(with £ = a =0):

(_”)d/z Z eimZ\LQm(S\,,\)

XeAwt

(—iT)d/2 Z Z el7r7'(q+>\2 27i(g+A,\)

[ EAwt /A'rt quTt

(12.694)

- 5-

|Z

where Z = Ay¢/A,¢ is isomorphic to the center of the simply connected Lie group
G with Lie algebra g. We choose a set of fundamental weights A; representing the
elements of this group and define:

o
Z(r) = 7";’;“5 (12.695)

Then the modular group representation is generated by

—2miQsA) 7, (7) (12.696)

Z(-1/7) = ﬁ 2c
Zolr +1) = 2RGOAI0/20 7 (1) (12.607)

It is worthwhile checking that we really do get a representation of the modular group.
The generator S is represented by a finite Fourier transform, so in indeed S? = —1
is satisfied. The harder relation to check is

(ST)? = 52 (12.698)
This should be written as
SYirs =r-1s7 7! (12.699)

Then the relation is easily checked using the Gauss-Milgram formula: If ¢(z) is a
quadratic refinement on the discriminant group of an integral lattice with ¢(0) = 0
then

Z 2mig(x) _ 627ria/8 (12700)

\Z |D z€D

Applying this to the present case we have

Zelﬂ' )\ )\ \/@ 27‘(‘1d/8 (12701)

from which it is easy to check the nontrivial relation of the modular group. We
conclude that ) Z,(7)Zs(7) is modular invariant and hence I'(g) is unimodular.

The g-points define orbifold points of Ny g since they are fixed points under the
left-action on £ of (wq;ws) € Or(g) X Or(g) where w; € W(g). For example,

(w1;1) : (gL + Xsqr + A) = (wiqr +wiA;qr + A)

/ (12.702)
= (wiqr +q + Aiqr + A)
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10.

11.

since, for any element of the weight lattice and for any element of the Weyl group
A—w- A€ Ay This follows since for Weyl reflections:

(@),
()

At these points the conformal field theory has enhanced Lie algebra symmetry, gen-

O A— A= =2

€ Ay (12.703)

eralizing the discussion we gave above for d = 1, R = ;. Among the holomorphic
vertex operators are

explia- €r](z) ® 1 1 ® expliae - ER](Z) (12.704)

where a € A,y(g). These operators have conformal dimensions (1,0) and (0, 1),

respectively and combine with the u(1) currents to form a symmetry
1 1
o @l (12.705)

That is, at these points the conformal field theory becomes the level kK = 1 WZW
model for G.

A Tale Of Two Field Theories. In order to appreciate better the significance of the g-

points we have just identified we need to recall briefly some basic ideas about string
theory. This is a theory that simultaneously describes two field theories. One is
quantum gravity in two-dimensions. One couples a CFT to 2-dimensional quantum
gravity and integrates over all topologies and metrics. On the other hand, when the
CF'T is a nonlinear sigma model with target space X, the amplitudes of string theory
can also be interpreted as S-matrix amplitudes for scattering of particles on X'. One
can then attempt to associate a quantum field theory on the target space X which
likewise describes the same S-matrix amplitudes. Such a target space QFT is known
as a string field theory. We will denote it as QFT(X). Skipping over an enormous
number of subtleties the basic ideas for writing down a string field theory are the
following:

On-shell particles are described, at tree level by the Lie algebra cohomology for the
Virasoro algebra with values in the Virasoro module provided by the CFT. In order
for the differential to be well-defined the total central charge of the CFT must be
¢ = 26. Knowing the particles we can write a quadratic action ~ [ WQW where ¥, the
string field is a general element of the closed string Hilbert space. The interactions are
then obtained by computing correlation functions of ¥ and integrating over suitable
portions of the moduli space of Riemann surfaces.

Spacetime Yang-Mills Theory. Suppose the target space is X = R” x T¢, and we

have a constant metric and B-field on T¢.

At generic points on Ny 4 the target space theory contains a Yang-Mills theory with
abelian gauge group U(1)??. The vertex operators:

/ dke*2) @ (021 (2) @ €,09%(2)) Ai e (k) € Helosed string (12.706)
R
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and
/ Ak @ (€07 (2) @ D' (2)) Ai e (k) € Helosed string (12.707)
RD

where 7(z, Z) are the coordinates of the string describing the mapping of ¥ — RP,
while € € T*RP is a cotangent vector on R” and the coefficients in the expansion
A; (k), A; (k) define Fourier modes of spacetime fields A; ,,(y), A; ,.(y) on the space
y € RP with polarization e:

A u(y) = /RD dkel* A; (k) i=1,....d (12.708)

A u(y) = /RD dke* A; (k) i=1,....d (12.709)

By computing string theory scattering amplitudes with such vertex operators we
learn that the QFT of these fields on R” is just a generalized Maxwell theory with
gauge group U(1)¢ x U(1)? and variable coupling constants:

/RD Z . FI*FJ C Sorrx) (12.710)
I,J=1 1(n

where the coupling constants €2 ;(n) are functions on the Narain moduli space: n €

Na .

The notation S C Sgpr(x) means that we can write the action Sgpr(x) as a sum of
terms, linearly independent under field redefinition, such that S is one of the terms.

However, at the points on Ny 4 defined by I'(g) we can also form the vertex operators:
- / ke @ (explia - £1)(2) @ OiR(2))) Eae (k) (12.711)
RD

where « is a root vector, so a? = 2, and the coefficients E, (k) define Fourier com-
ponents of spacetime fields on the space R? that we can call Aﬂ(y). By computing

string theory scattering amplitudes with such vertex operators we learn that the QFT
of these fields on R” is a nonabelian Yang-Mills theory with the A%(y) playing the
role of Fourier modes of “W-bosons.” The gauge group of the theory at these points
will be enhanced to G x G where G is an exponentiated form of g. Historically, this
mechanism for producing nonabelian Yang-Mills gauge fields on X was extremely
important in the development of techniques for constructing string theories intended
to describe nature. A modification of this mechanism was used in the construction
of the heterotic string, for example.

Another important conceptual lesson we learn from this is that the duality transfor-
mations are generalizations of gauge transformations in string theory, since the Weyl
transformations are part of the gauge group of the target space Yang-Mills theory.
For more details about these special points in Ny 4 see [21].
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12. Low Energy Effective Couplings As Automorphic Forms For Oz(Q). In addition to

the spacetime gauge fields mentioned above there are also d? massless scalar fields
associated with the vertex operators

v /R dke™ 5 (k)ars (=) ® Dar(2) (12.712)
where as usual the spacetime field is
¥ (y) = / dk@ (k)el™ (12.713)
R

These are fields in a nonlinear sigma model with R” as the domain and N4 as the
target:
¢ :RP = Nyq (12.714)

The field p® is a spacetime variation of the data E,,. The Lagrangian for these fields
is a nonlinear sigma model with action

/]R R AYGap,ca(n)9up™ "¢ C Sqrr(x) (12.715)

The couplings gap.cq4(n) are derived from a metric on Ny 4 known as the Zamolodchikov

metric. It is essentially just the homogeneous space matric on the double coset
O(d) x O(d)\O(d,d;R)/O(d,d; Z). In general, the effective coupling constants of #say more? &
the spacetime theory will be interesting automorphic forms for O(d, d;Z).

13. Special (generating) elements of the T-duality group. Some special elements of the

T-duality group Oz(Q) have simple physical interpretations. Let us return to the
version of the action given in (12.621): We can of course make a change of coordinates

£ — &% = ot eb (12.716)

where, because of the periodicities £* ~ % + 2m we must have o € GL(d,Z). This
transformation clearly takes:

E — o Ea (12.717)

and corresponds to duality transformations in Oz(Q) of the form:

tr,—1
2= (O‘ O> (12.718)
0 «

Similarly, an “obvious” T-duality transformation corresponds to £ — E+ 3, where 3

is an antisymmetric matrix of integers. Under this transformation the action changes

by
S S+ 2i / Bapd€® A dE (12.719)
Y
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but the periods of B,,dé* AdEP on X are in (27)%Z, and hence there is no effect on the
theory. These transformations are often called “B-field shifts.” These correspond to

elements of Oz(Q) of the form
15
0=

Thus the couplings (or spacetime fields in QFT (X)) by, are periodic variables.

(12.720)

Finally, a less-obvious set of transformations are given by

1—ei e
% = i ¢ (12.721)
eii 1 — e
fori=1,...,d. In the case of a square torus with zero B-field we have
E = Diag{ri,...,r3} (12.722)

and 9; takes r; — 1/r; holding the other radii fixed.

In Appendix B we show how to construct a set of generators for Oz(Q). A corollary
of this discussion shows that (12.718), (12.720), and (12.721) generate all of Oz(Q).
So if one wants to prove duality symmetry directly from a path integral it suffices
to show the theory is invariant under these transformations. The invariance under
(12.718) and (12.720) follows immediately from the action. The duality transforma-
tions (12.721) are much less obvious, and we will give a path integral argument for
them in Section 12.9.4. In fact they are special cases of a more general transformation
known as Buscher duality.

14. SYZ Picture Of Mirror Symmetry.

12.9.4 Relation to electric-magnetic duality

One nice way to see that the partition functions of T-dual CFT’s with target 7% are the
same is to view T-duality as electromagnetic duality and implement the transformation in
the path integral. In fact there is a significant generalization, known as Buscher duality
[6] to a larger class of sigma models. The idea to relate it to electro-magnetic duality is
in [44]. We will follow that discussion with a very slight improvement in the treatment of
some global issues.

The proper context for the duality is that of general sigma models of the form:

1

S8 = 4702

/ [gijdl‘i A xda? — ibyida’ A da? + 20(x)e|. (12.723)
b

Here g;j,b;; can be functions of z*, and we have added another term. The last term has
the Euler density of the worldsheet metric ¢ := vAR®)(h) so that Js e = 2mx(2) is the
Euler character of 3. The conjugate field ®(x) on spacetime X" is known as the “dilaton.”
Note that if ®(z) = ®q is constant then the partition function with Euclidean signature
worldsheet is weighted by exp[—(®o/¢2)x(X)] so that the closed string coupling constant

is exp[®q/?].
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In order to implement Buscher duality we must assume there is a U(1) action on X,
acting without fixed points, and acting as a symmetry of the background fields (g, b, ®).
What this means in practice is that we can choose (locally) target space coordinates (2, z%)
on X with s = 2,...,d so that g;;, b;j, and ® are independent of zo. Therefore we can
write the Euclidean action as:

1

e = 472

(12.724)
where all background fields are functions of z*, but not functions of z°.
Now, there can be winding modes for the field 2° and we can normalize it so that

o = e/ (12.725)

is single-valued on ..

A good way to discuss electromagnetic duality (for all generalized abelian gauge the-
ories in all dimensions) is to introduce differential cohomology. In our extremely simple
case the relevant differential cohomology group is just

HY(X) := Map(2,U(1)) (12.726)

(We will assume the maps are differentiable.) Note that this is indeed an abelian group.
To an element p € H'(X) we can associate

1. The fieldstrength

1
F(p) = 5= Ydp € QL(%) (12.727)

Here Q1(Y) is the abelian group of 1-forms on ¥ that have integral periods. Note
that a differential form with integral periods is necessarily closed.

2. The characteristic class
ale) == ¢*(w) € HY(X;7) (12.728)

where w € H'(U(1);Z) is a generator. The characteristic class measures the winding
numbers of ¢ around the various cycles in 3.

This differential cohomology group, like all differential cohomology groups, fits in two
(compatible) exact sequences:

0— H'(S;R/Z) — HY(Z)50L(S) = 0 (12.729)

0— Q' %)/Q% (%) - H'(Z)SHY(Z;Z) =0 (12.730)

Here HY(X;R/Z), the flat fields with zero fieldstrength are just the constant maps. This
group is just a copy of U(1). Meanwhile Q9(X) are the functions with integral “periods.”
These are just the constant functions given by an integer.

One can noncanonically write the abelian group H'(X) as a product of three groups:

HY(2)=U®1) x z1®) x v (12.731)
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where V' is an infinite-dimensional vector space. For example, if we choose a metric on X
then we can decompose F' into a harmonic piece and an exact form:

F=w+dp (12.732)

where w € H!(X) is in the real vector space (of dimension b(X) ) of harmonic forms and
¢ is a globally well-defined map ¢ : ¥ — R. Then we can take U(1) = ker(d)/Z, to circle
of gauge inequivalent constant modes, and V is (kerd)*. Then, since the periods of F' are
integral w actually lies in the full rank lattice H1 () C H!(X), and if we choose a basis for
H{(3;Z) the we can use the periods to define an isomorphism H} (%) =z (),

Now we can write the action in terms of the fieldstrength F' = F () as:

Sg =Sk + S%
= FAxF + goo ' AN xd(x° /) — ibgs F' N d(x® /4
/277900 go (z°/Ls) — ibo (z°/¢s) (12.733)

1

+ e / [gstdxs x dat — ibgdx® A dxt + 2De
s JX

We have split the action into a piece S}E that depends on z° and an action .S% that
does not depend on z°. We are going to focus on the path integral over 2z, holding the
remaining coordinates x® fixed. Therefore, in doing this path integral we can treat the
couplings as constant. The path integral measure is a rather formal object that we will
denote u(p). Formally it is the Riemannian volume element on function space induced
from the metric:

| 52° HZOO:: /290051‘0 A #0520 (12.734)

We will just denote it as u(p). One important aspect of this measure is that it is a
translationally invariant measure on the group H'(%).

The next step is to gauge the U(1) symmetry. Thus we replace F'(¢) by

0

F = F(p) —A:d(ﬁ%) —A (12.735)

where A4 € Q1(X) is a one-form. Conceptually, it is a one-form on a principal U(1) bundle
over X. However, this bundle is trivial so we can consider it to be a globally well-defined
form. (See Remark 3 below for more about this.) We follow the physics convention and
take A to be real. and we will integrate over A.

Next, we consider the following path integral:

_ —1
I=N /H (Z)u(w) /gl(g) M(@D)/ﬂl(z) 1(A)

(12.736)
exp [— / [TgooF A *F + gosF A *d§° — ibos F A dE°] + 27Ti/ ANFp
b )

Here
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1. pp € H'(X) will be the dual field with fieldstrength Fp = F(pp). The measure
1(pp) is defined as before, but with goo — ggp -

2. We defined £* = 2% /¢, to simplify the notation.
3. The measure on x(A) is defined formally using the metric || 64 [|*= [, 0A A *JA.
4. The normalization factor is, formally, given by
N = vol g0 (HL) 905" (12.737)

where ’H% is the lattice of harmonic one-forms on ¥ with integral periods, and again
the volume form formally follows from the metric with ggg included, as above. The
reason for this strange factor will become apparent from the derivation below. The
volume of the lattice can be more rigorously treated by introducing a Gaussian sup-
pression factor and using the volume of the divergence e 1()/2 as ¢ — 0.

Now the idea is to do the path integral Z in two different ways and thereby obtain a
duality transformation.

The first evaluation does the integral over ¢p and then the integral over A. The result
is the original path integral over z° with action S}. The second path integral does the
Gaussian integral over A. Then does the integral over . The result is the dual path
integral over x%. We now explain this in great detail:

First we do the integral over ¢ p. We have

/HI(E) plpp)e’m AN = g&l/Zé(Anh) Z p2mi [ Al Aw

1
weHz (12.738)

= 900 6(A™) 3 §(A" —w)

waH%

Here we used the worldsheet metric to give our noncanonical decomposition of H'(X) as
well as the orthogonal decomposition A = A" + A" into its harmonic and non-harmonic
part. The factor g&)l/ ? is the volume of the flat fields.

Next we can easily do the path integral over A by evaluating the J-functions. The
result is a sum over H% with F = F(¢) —w. But, precisely because w has integral periods,
and because p(yp) is translation invariant we can shift away w in each term of the sum.
The result is

T = N Lgge"*vol o, (’H%)/ e 55 = / e Sp (12.739)
HY(%) H(%)

That is, thanks to our choice of normalization in (12.737), Z is just the 2 path integral.
Now we turn to the second evaluation of Z. Now we first do the integral over A. This
is just a Gaussian integral. For a fixed ¢ we can shift A so that F is just —A. To do the
Gaussian integral most efficiently proceed as follows:
Pick complex coordinates on ¥ so that *dz = —idz and *dz = +idz. (This coincides
with the standard orientation on the plane for z = 2! +iz2.) Then decompose:

A= adz +adz (12.740)
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Fp = fpdz + fpdz (12.741)
de® = 0€%dz + 0£%dz (12.742)

Next, write out the action separating out idz A dz. Next find the stationary point with
respect to a and a:

s = —goo (fp — (gos + bos)O(E° /2))

o - (12.743)
% = oo (fD - (905 - bOs)a(f /27r))
Now, substitute back into the action. After some algebra one should find:
al b s 9gos
SE_ FD/\*FD——FD/\*df +1 F A dE°®
goo goo
(12.744)
1 bob b b
_ 2/ 910905 + 010%s ;1 ) L aos 4 12090 910005 5ty g
Amls Js 900 900
Putting this together with S% we obtain the “Buscher rules”:
N 1
goo = —
goo
~ bOs
gos = ——
goo
7 0
bos = — 2= (12.745)
goo
_— gt090s + brobos
st =Ggst ——
goo
B btogos + grobos
st =Qst ———
goo

The integral over A also produces a “one-loop determinant” which is, formally:

1 dimQ (%)
( goo> (12.746)

Now, the result of the Gaussian integral on A is independent of ¢ so we can now do the

integral over ¢ to get an overall normalization constant:

» 1 dimQ!' () - 1/2 1 dile(E) goo(Hl)
N vol goo (H ) 900

1/ 900 1/ 900 goo( )

(

1

imQ?!
_ 1/2< 1 )d VE) Ga2v0L oo (HE)VOL 3o (1)
- JOO

1/ 900 VOl goo (/Hé:)
1\ dim2i(®) o
= goo <\/TR> ( /—goo)dlm nh
fldlm’HI
= 900900
Ix(2)

= Y900
(12.747)
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Thus, the string coupling constant also changes:

~—x(Z (D) 2x(=
Gk = 9058 g™ (12.748)

A more conceptual version of this equation is:

Tstning V900 = Gagring /900 (12.749)

(See remark **** below for an explanation of why it is more conceptual.) Thus, the dilaton

field shifts: )
~ !/
b= — Esloggoo (12.750)

Remarks:

1. Applying this to the special case where X = T and 9ij,b;j are constant, we have
d independent U(1) isometries, and we have given a path integral derivation of the
dualities 9; mentioned above, as promised.

2. Buscher’s original argument was based on a symmetry of the beta functions for the
sigma model. To leading order, the beta functions are [7]:

B® = =26 £ A(VP)? —4V2D — R + L) | Ot /LY
4872 1672 12 5
1 12.751
BY =R, — 1 M Hyzp + 2V, Vo (9/02) + O(£2/L?) (12.751)

ﬁH = v)\H)\,uV - Q(VA((I)/gg))H)\,uV + O(EE/LZ)

These are the first terms in an expansion in ¢5/L where L is a typical length scale of
the target space. When the sigma model also has supersymmetry many of the higher
corrections vanish. For (2,2) worldsheet supersymmetry this is how one derives the
Calabi-Yau condition (at H = 0, and subject to some important subtleties). Buscher
observed that for targets with U(1) isometries his eponymous transformation rules
are a symmetry of the fixed point equations.

3. We have interpreted ¢ = expliz’//;] to be a U(1)-valued function on ¥.. However, in
the presence of vertex operators this geometric interpretation can change. In order
to illustrate it suffices to take X = R/277Z with  ~ z + 27 R. If we insert a vertex
operator

exp|ipz(P)] (12.752)

at a point P on X then the Euclidean signature path integral becomes

/ (dz]e” 2w J= 00 Fipe(P) (12.753)
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In this free field theory we can shift by the stationary point (solution of the equations
of motion). The stationary point is given by

80z = —mlzpd(P) (12.754)
where §(P) is a (1,1) Dirac delta form with support at P € 3. So we can shift

where G(Q, P) is Green’s function for 90.

In the special case ¥ = C with Euclidean metric the following formulae are helpful:

(0% + 92)logr? = 4m6™® (0)

d.,0:log|z|> = 76 (0
azi = a; = 71630

z z

) (12.756)
)

Now F = dx = (0 4 0)z so xF = i(—0 + 0)x so the classical equations of motion
become

dFF =0

) 12.757
d* F = 2i00x = —2102pS(P) = je | )

where j. is the electric current, supported at P.

One the other hand, in the dual picture the insertion of the vertex operator (12.752)
is handled quite differently. Now the classical equations of motion for the dual field
are:

dxFp=20

) (12.758)
dFp = je

In this interpretation, if jo # 0 then we cannot have Fp = dxp for a smooth field
xp. Nevertheless, there are two (related) geometrical interpretations of zp:

For the first interpretation let us recall that in general if (P, V) is a principal U(1)
bundle with connection over any manifold M and if s : «/f — P is any local section
defined over & C M then Vs is a 1-form valued in P. Therefore s~ Vs is a locally
defined 1-form. It is only defined in the region ¢/ where the section s is defined. This
is just the one-form of the connection relative to the trivialization of P defined by
s. Then d(s~1Vs) is the curvature of the connection. As opposed to the connection
one-form, the curvature one-form can be globally defined: If we choose another patch
U’ and section s’ we will produce the same curvature form on the overlap U NU'.
Therefore in the presence of j. we should view exp[izp]| as a locally trivializing section
of a principal U(1) bundle with curvature. Thus, as we have seen several times in
this course the geometrical nature of the field has changed.
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Now, since Fp must be globally well-defined the Gauss law implies that

/ je=0 (12.759)
b

in order for there to be nonzero correlators. Therefore, if we interpret xp as local
trivializing sections of a U(1) bundle P — ¥ that bundle must be trivializable.
However, there is no natural trivialization.

Back in the original frame it is natural to allow for both magnetic and electric cur-
rents:
dF = jm

(12.760)
dx F = j,

Indeed, we have already done so! These correspond to the states with general mo-
mentum and winding number. To convert states into vertex operators we should use
the exponential map to convert a cylinder to a punctured complex plane:

z = elletin) (12.761)

Recall that on the cylinder we had the on-shell expansion (12.573), and for a Eu-
clidean signature worldsheet the Wick rotated version is:

, 1, . 1., . .
z' = zf) + §€§pg(if +0) + 55?})3%(17' —o) +aly i=1,....,d (12.762)
so that
i02 _
T =0~ (prlogz + prlogz) + Tosc (12.763)
so that
1 d dz
F = de = —5if} <pL?Z +pR§> + dTose (12.764)

Now recall that

d <%) =0, G) dzdz = 6@ (0)dzdz (12.765)
d (d—;> = —0; G) dzdz = —16®) (0)dzdz (12.766)
Therefore
dF = %62 (pr — pr) 6®)(0)dzdz
d+ F = %@ (pz + pr) 8 (0)dzdz (12.767)

For our second interpretation we see from (12.763) that when p;, —pr # 0 the field =
is not single-valued in the neighborhood of the vertex operator. This is just what we
expect from a vertex operator for a winding mode: It is an example of a “disorder
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operator” Nevertheless, the physically relevant quantity is the “fieldstrength” (in the
sense of differential cohomology) F' = dx. This is single-valued, but it is singular. In

o«

general, disorder operators, or “defect” such as “’t Hooft operators,” “monopole oper-
ators,” and so on can be incorporated into a path integral by specifying a singularity

of the fields in the path integral.

4. The exchange of gos with bgs in the Buscher rules has dramatic consequences. Suppose
the target space X is a nontrivial circle bundle 7 : X — X, so the fibers of 7 are
copies of U(1) and there is a fixed-point free right action on X with 7(p-e'?) = n(p).
We assume moreover that this right U(1) action is an isometry of the metric and
B-field on X. Therefore the metric has the form:

ds® = ggpda®da’ + w(z®)©? (12.768)

where O is a connection on the circle bundle and can be locally written as © = dz?+A.
The function w(z*) is a function known as a warp factor. Expanding this out we see
that

goo = w
gos = WA, (12.769)
st = gst + w($s)AsAt

Although the local one-forms Agdz® are not globally defined in general (and cannot
be globally defined on topologically nontrivial circle bundles) the field-strength F' =
d(Asdz®) is a globally well-defined 2-form. Now (for simplicity) assume b;; = 0 and
consider the dual model. According to the Buscher rules the dual picture now has

gOszo

i (12.770)
bOs = As

This is remarkable: T-duality has “untwisted” the circle bundle. The dual geometry

is now globally X x S'. Moreover, the B-field is only locally defined: We have a

topologically nontrivial gerbe connection, and H =db=F Adi°. &Write out the
example of level k

SU(2) WZW model

5. COMMENT ON WHAT HAPPENS WHEN U(1) HAS FIXED POINTS. using Hopf

fibration. &

6. EXPLAIN THAT (12.749) means that the Planck length and Einstein frame metric
are T-duality invariant.

7. COMMENT A BIT on the generalization of differential cohomology to ¢-forms for
0> 1.
12.10 Deformations Of Algebras And Hochschild Cohomology

Above we noted that the Moyal product is a formal deformation of the commutative algebra
of functions on R?".
We can formalize this notion as follows:
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Definition: Let A be an associative algebra over a field k. Then a formal deformation
of the algebra is an associative algebra structure on the algebra A[[t]] over the ring formal
series £[[t]] such that:

H(aa b) = ,U,(](CL, b) + Hl(a7 b)t + HQ(aa b)t2 +oe (12771)

where pg is the original algebra structure on A.
Note that this definition implies
1. w is bilinear over «[[t]].
2. p is associative so

(pu(a,b). ) — pla, (b, ) = 0 (12.772)

Expanding out in ¢ this gives a lot of complicated equations on the p,,. Of course the zeroth
order equation is satisfied since, by assumption, pg is associative. If we write pg(a,b) = ab
for simplicity then the first order equation is

ap(b,c) — py(ab, c) + pi(a, be) — pi(a,b)e =0 (12.773)

and similarly, the higher order equations are

n—1

i (0,) = . ) na50) =00 = 3 L a0 = s (o), ) | (1277
j=1

where in the sum j 4+ k = n.

For a nontrivial first order deformation we must solve equation (12.773), but we must
also be sure that the deformation can’t be undone by a simple redefinition. This leads to
the

Definition Two formal deformations p and ji of an associative algebra A are equivalent if
there is a k[[t]]-linear map
F : A[lt]] — A[[t]] (12.775)

such that for a € A,

o
F(a)=a+ Y t"fu(a) (12.776)
n=1
(so the f, : A — A are themselves linear) and such that

F(p(a,b)) = p(F(a), F(b)) (12.777)

In particular, a first order deformation ji; will be equivalent to u; if there exists a
linear map f; : A — A such that

fir(a,b) = pi(a,b) + (afi(b) — fi(ab) + fi(a)b) (12.778)
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Thus, we can phrase the problem of finding first-order deformations as a cohomology
problem: Define
C"(A, A) := Hom, (A%", A) (12.779)

The reason for the two arguments of C™ will be explained below. Note that our deforma-
tions are y, € C%(A, A). Define a map

d:C*A,A) — C3(A,A) (12.780)
by saying that if m € C?(A, A) then
dm(a,b, c) = am(b,c) — m(ab,c) + m(a,bc) — m(a,b)c (12.781)
So our first order deformation must satisfy dy; = 0. Similarly, define a map
d:CYA,A) — C*(A,A) (12.782)
by saying that if f € C1(A, A) then
df (a,b) := af(b) — f(ab) + f(a)b (12.783)
One easily checks that d(df) = 0:

d(df)(a,b,c) = adf (b, c) — df (ab, c) + df (a, bc) — df (a,b)c
= a(bf(c) = f(be) + f(b)c)
— (abf(c) = f(abe) + f(ab)e)

(12.784)
+af(bc) — f(abe) + f(a)be)
— (af(b) — f(ab) + f(a)b)c
=0
So ji; ~ p if there is an f; with
fi1 = p1 + dfy (12.785)

and we conclude:
Equivalence classes of first order deformations of an associative algebra are given by

cohomology classes in
H?*(A, A) :=ker[d: C* = C®]/im[d : C* — C?]. (12.786)

Moreover, if we define A := Y ">° | "y, so that u = po+Ap, then the full deformation
equation can be written as a kind of Maurer-Cartan equation:

1
d(Ap) — §[A,u, Apl=0 (12.787)
where, for 01,82 € C? we define [§1, 2] € C3 by the formula:

[01,61](a, b, c) := 61(2(a,b),c) — d1(a, da(b,c))

(12.788)
+ 52 (51 (a, b), C) — (52 (a, 51 (b, C))
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There is a larger algebraic structure here:

Definition The Hochschild chain complex of an associative algebra A with values in the
bimodule A 1is the graded vector space

C*(A, A) == @2 C"(A, A) (12.789)

C"(A, A) := Hom, (A%", A) (12.790)
(where C°(A, A) is naturally isomorphic to A via f(1) = a € A) with differential

d:C"(A,A) — C"TH(A, A) n >0 (12.791)
df(al, e ,an+1) =aj- f(ag, ce ,an+1)
n
+) (=1 f(ar, -Gty G, ) (12.792)
i=1

+ (_1)n+1f(a1> ey Gp) Qg
The Hochschild cohomology of A is the cohomology of this differential. The first few

cohomology groups have simple interpretations:

1. A zero-cochain f maps k — A so that if we write f(1) = b then df : A — A is the

linear map:

df (a) = ab — ba (12.793)
Thus HY(A, A) = Z(A) is the center of A.
2. If f € CY(A, A), then df = 0 means f is a derivation:
f(ab) = af(b) +bf(a) (12.794)

Of course, the commutator with b is always a derivation, therefore H!(A, A) is the
quotient of the space of derivations of A by the space of inner derivations.
Note: A covariant derivative is a derivation, and under gauge transformation it trans-

forms by the addition of an inner derivation.

3. As we have seen H?(A, A) is isomorphism classes of first order deformations of the
algebra structure.

There is another very interesting algebraic structure on C*(A, A): It is a graded Lie

algebra.
If fe C"(A,A) and g € C™(A, A) then define
fogecmtmi (12.795)
by
fog(P):=> (- f(Pr,g(Py), P5) (12.796)
Pas
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Here P is an ordered (n 4+ m — 1)-tuple of elements of A:
P={a1, - ,anym-1} (12.797)

and the sum is over ordered disjoint decompositions P = P; II P, IT P53, meaning that each
of P, Py, P3 is ordered, and the ordering is inherited from P. Each of P, P5, P3 can be
disjoint. Finally |P;| is the number of elements of P;. Now, the Gerstenhaber bracket is
defined as

[f,g]:==fog— (-1 N Dgof (12.798)

Theorem: Give C*(A, A) a grading so that C"(A, A) has grading (n — 1). Then the
G-bracket satisfies the graded Jacobi identity:

(=) f fo, fa]] + ()RR £y [ £, A1)+ (DVEIRI 3 £, fol] = 0. (12.799)

where | f]| is the degree of f.
In fact, restoring the notation ug for the multiplication operator on A, and considering
it as a 2-cochain, the Hochschild differential is just

df = [f, po] (12.800)

Remarks

1. The above description of Hochschild cohomology is just the beginning of a much
larger algebraic story. For one thing, if M is any bimodule for A then we can define
Hochschild cohomology with coefficients in a bimodule HH®(A; M). Now n-cochains
are maps ¢ : A®™ — M and the formula for the differential (12.792) still makes sense
and still squares to zero. There is also a dual theory of Hochschild homology, that
plays an important role in noncommutative geometry.

2. INTERPRETATION OF H' IN TERMS OF COVARIANT DERIVATIVES

3. SHIFTING THE ZERO

4. Tt is natural to ask about the Hochschild cohomology of the Weyl algebra. See [20].
5. GENERALIZATION TO LINEAR CATEGORIES.

6. PUT INTO CONTEXT OF L., ALGEBRAS

Exercise
Show that the operator d defined in (12.792) really is a differential, that is, that d? = 0.
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12.10.1 Poisson Manifolds

Definition: A Poisson algebra is an associative algebra associated with a bracket: {-,-} :
A® A — A that is:

1. A Lie bracket, so {a,b} = —{b,a} and the Jacobi identity is satisfied.

2. A derivation:
{a,bc} ={a,b}c+ b{a,c} (12.801)
&Should do graded
If A is a commutative algebra, then a Hochschild cocycle of degree two defines a Poisson “*" *
algebra.
DEFINE POISSON MANIFOLDS
TWO EXAMPLES.
STATEMENT OF DEFORMATION QUANTIZATION PROBLEM
KONTSEVICH THEOREM

Observe SW limit of (?7?) is
S = —2ri / Bjjda" A dx? (12.802)
%

Generalization: Hochschild cohomology of A-modules. (A infty?) categories.
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12.11 C*-Algebra Approach To Quantum Mechanics

Now return to our discussion of C*-algebras. For technicalities on C* algebras and func-
tional analysis we mostly follow [31, 42].

12.11.1 Positive Elements And Maps For C* Algebras

Definition: An element a € 2 in a C* algebra 21 is positive if a = a* and its spectrum is
positive: o(a) C Ry. We write a > 0 and denote the set of positive elements by 2.

Examples:

1. A = B(H). Then a is positive iff (1), arp) > 0 for all 1.

2. A= Cy(X). Then f is positive iff f(z) > 0 for all z € X.
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Theorem: a € 2 is positive iff a = b? for a self-adjoint element b € 2. Likewise a is
positive iff a = b*b for some element b € 2.

Proof: The proof is immediate using the continuous functional calculus. If o(a) C R then
apply f(z) = x to a to get b= f(a). &

Every self-adjoint element a € 2 can be written as a = ay — a—. This follows again from
the continuous functional calculus. Note that:

x x>0
f(x) = - 12.803
() 0 2<0 ( )
is a positive continuous function. So we define ay = f(a) and a_ = f(—a). With this

choice of ay we also see that in the decomposition we can take ay such that || ax [|<]| a ||.
Therefore every element can be written as

a=ay —a_ +i(by —b_) (12.804)

where ay, by are all positive, and || ax ||<|| a || and || b+ [|<][| a ||
We can also speak of positive linear maps between C* algebras:

Definition: A linear map ¢ : 2 — 9B between two C* algebras is positive if p(a) > 0
whenever a > 0.

It is not difficult to show tht positive maps are bounded, and therefore continuous.
(Landsman 2.8.5). We stress that ¢ need only be a linear map and in applications it is
usually not a morphism of C* algebras. In fact, if ¢ is a morphism of C* algebras then it
is automatically positive since

p(a*a) = b*b (12.805)

where b = p(a).

There is a generalization of the notion of a positive map known as a completely positive
map. We first observe that if 2 is any C* algebra then M, (), the *-algebra of n x n
matrices over 2 (where * includes hermitian conjugation of the matrix). If H is a faithful
representation of 2 then H ® C™ is a faithful representation of M, (2() and we define the
C*-norm on M, () by the operator norm on H ® C". This makes M, () a C*-algebra.
(Recall the C* norm is unique.)

Now, if ¢ : % — 9B is a linear map we say it is completely positive if for all n > 1
induced map ¢ : M,(2A) — M,(B) (defined by applying ¢ to the matrix elements) is
positive.

12.11.2 States On A C*-Algebra

Definition A state on a C* algebra is a positive norm 1 linear map

w:A— C. (12.806)
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In the case that 2 is a unital C* algebra we could alternatively define a state w as a
positive map so that w(1) = 1.

Note that since w(a) > 0 for a € AT, and since every self-adjoint element can be
written as @ = a4 — a_ with ay positive, it follows that w(a) € R when a is self-adjoint.
Therefore

w(a") =w(a)*. (12.807)

Example 1: A key example is obtained by taking a C*-subalgebra 2 C B(H) and a rank
one projection operator P € 2. Then

wp(a) = Try(Pa) = <1</}1/‘)C|L1|;>}> (12.808)

If ¢ is any nonzero vector in H then there is a corresponding rank one projector to the line

¢y, spanned by :

) {¥]
P = 12.809
) (12509
Therefore for 1) e a nonzero vector in ‘H we can define
(¢laly)
= 12.810
Wl = ) (12810

So these states are consequently sometimes called vector states. The corresponding state
only depends on the line in H through v, that is

Wy = Wzep (12.811)

3

for every z € C*. In physics one hears the statement that the physical state is a “ray” in

Hilbert space.

Example 2: More generally, if p is a positive traceclass operator of trace one, i.e. a density
matrix, then
w(a) = Trypa (12.812)

is a state. For the ideal of compact operators IC(H) C B(H) one can show that these are
the only states. (Landsman 2.13.10.1). Warning! This is far from true for the C*-algebra
of all bounded operators B(#). See the very useful remarks at the beginning of section
2.13 of [31].

Example 3: Another key example arises for commutative C* algebras 20 = Cy(X) where
X is a locally compact Hausdorff topological space. By the Riesz-Markov theorem there is
a (complex regular Borel) measure p on X so that any linear functional £ : Cy(X) — C is
given by

(f) = /X fdu (12.813)

Moreover, || ¢ ||= |u(X)|. Therefore, the states on Cp(X) are positive measures of total
measure p(X) = 1.
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Theorem: The space of states S(2l) is a compact convex set.

Proof: Use the w* topology and apply the Banach-Alaoglu theorem.

Because it is convex we can define the extremal points. These are the states w € S()
which cannot be written in the form

w=tw; + (1 —t)ws (12.814)

where 0 < t < 1 and wy,ws are states. An extremal state is known as a pure state. A state
that is not a pure state is a mized state.

Example 1: Vector states are always pure states.

Example 2: For the compact operators K(H) C B(H) the pure states are precisely the
set of vector states (Landsman 2.13.10.1). However, one can show that for any C* algebra
2, given any self-adjoint element a € 2, and E € o(a), there is a pure state wg on 2
such that wg(a) = E. If we choose a to have continuous spectrum and E to be in the
continuous spectrum, then there is no normalizable eigenvector with eigenvalue F, so wg
is not a vector state.

Example 3: If 2 = Cy(X) where X is a locally compact Hausdorff topological space then
the pure states of 2 (where we must unitize if X is noncompact) are the Dirac measures
supported at a point. §,. Therefore, the space of pure states is in fact homeomorphic to
X, the one-point compactification. &More remarks on

the case where X is
noncompact. o

12.11.3 GNS Construction

Given a state w on a C*-algebra 2l we construct a Hilbert space H, and a C*-morphism
p:A— B(Hy).

A representation of 2l on a Hilbert space H is non-degenerate if the only vector anni-
hilated by 7(a) for all a € 2 is the zero vector. A representation is called cyclic if there is
a vector ¥ so that the closed subspace w()¥y of H coincides with H.

Now suppose that 2 is unital, and w € S(2) is a state on A. We now construct a
representation 7 : A — H,, as follows:

We begin by using w to define a sesquilinear form on 2:

(a1,a2) == w(ajaz) (12.815)
Note that the form is positive semi-definite:

(a,a) =w(a*a) >0 (12.816)
but it might well have a nontrivial radical:

Ny, = {a € A|(a,b) =0 Vb e A}

(12.817)
= {a € A|(b,a) =0 Vb € A}

The equality of the two sets follows because w(a*) = w(a)* = 0 for every a € 2.
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Note that 9, is clearly a left-ideal, for if a € 91, and ¢ € 2 then ca € I, because
(ca,b) = w((ca)*b) = w(a*(c*b)) =0 (12.818)

There is another characterization of A, which can be useful. Note that, putting b = a
in the first line of (12.817) we see that if a € 9, then w(a*a) = 0. In fact, this is a sufficient
condition, that is:

N, = {a € Aw(a*a) = 0} (12.819)

To prove this we first note that, quite generally, for any state w on a C* algebra we have
the Cauchy-Schwarz inequality: *°

|lw(a*b) > < w(a*a)w(b*D) (12.820)

Now, if w(a*a) = 0 then for any b we have |w(a*b)|? < w(a*a)w(b*b) = 0. This proves
(12.819).

As we see from the examples of vector states on B(#), the radical might well be be
nonzero! For wy, the radical consists of all operators containing ¢ in the kernel. If we
choose 1 to be the first basis vector in an orthogonal basis then the matrix representation
of a € N, has first column equal to zero. (Note this is obviously a left ideal.) Given this
characterization it is clear that B(H)/N,, = H

The GNS representation is now defined by constructing a positive definite inner product
on 2A/N,,:

([a], [b]) := w(a™b) (12.821)
The expression (12.821) is well-defined because N, is an ideal: If ny,ny € N, then
w((a+n1)*(b+ng)) = w(a™b) +w(nid) + w(a*ng) + w(ning) (12.822)
= w(a"b)

Now the nondegeneracy is immediate: If (a,b) = 0 for all b then a € N, by definition
so [a] = 0. Actually, 2A/N,, with this inner product needs to be completed, and that defines
the Hilbert space:

He = 2A/MN, (12.823)
Now we define 7 : 2 — B(H,,) by
Tw(a)[b] := [ab] (12.824)
Next one needs to show that this is a C*-algebra morphism. Note that:

([], mo(a)*[b]) = (7o (a)[e], [b])

(12.825)

= ([¢]; 7w (a™)[b])

“OProof: w((a— 2b)*(a — 2b)) > 0 as a function of z € C. Thus we have a positive semidefinite quadratic

form in the real and imaginary parts of z, and the Cauchy-Schwarz inequality is the corresponding condition
on the discriminant.
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Note that the Hilbert space H,, has a canonical vector
U, = [1] (12.826)
provided by the projection of the unit of 2. By definition
()W, = A/N, (12.827)
s0, by definition, ¥, is a cyclic vector since H,, is the completion of 2/N,,.

Example 1 If 2 = C(X) then, as we have seen, a state is a positive measure y on X. The
corresponding Hilbert space is H, = L*(X, du).

There is also a kind of converse to the GNS construction: If 2 is represented on a
Hilbert space ‘H and Vg is a cyclic vector then we can construct the vector state associated
with Wy and the corresponding GNS representation of 2l is unitarily isomorphic to the
original one. Moreover, H,, is irreducible iff w is a pure state.

Now we are ready to state and prove the famous Gelfand-Neumark theorem:

Theorem If 2 is a C* algebra then there is a Hilbert space H;; and an injective morphism
of C* algebras my : A — Hyr.

Proof: Recall that the space of states S(2) is a compact space, and for each state w we
can construct a cyclic representation H,,. We simply take

HU = @weS(Q[)/Hw (12.828)

The proof is now trivial. If m7(a) = 0 then w(a*a) = 0 for all states w and this implies
|| a*a ||=0so || a |= 0 by the C*-identity and hence a = 0 by the definition of a norm. &

Actually, this definition of Hy is overdoing things a bit. It suffices to take a direct
sum just over the pure states. That is:

Buep@)He (12.829)

will also provide a faithful representation. In fact, we can do better: We can define to
pure states to be equivalent iff their GNS representations are unitarily equivalent. Then

= Dy T (A) (12.830)

where we sum over equivalence classes of pure states. In particular, the irreducible repre-
sentations of a finite-dimensional C* algebra are finite-dimensional and hence any finite-
dimensional C* algebra is a direct sum of a finite number of matrix algebras.

12.11.4 Operator Topologies

When we speak of operators on a Hilbert space H there are other topologies of operator
algebras that can be defined. There are three topologies which one typically encounters,
known as the strong, weak, and norm topologies. They are included in each other according
to

Kweak C rzstrong C guorm (12831)
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1. gweak: llmelgo ap = a lff for all Q/)17 wQ S H:

lim (¢1, (a — ap)p2) =0 (12.832)

n—oo

2. gstrong. jProns o — ¢ iff for all ¥ € H:

n—oo
lim || (a—an)y ||=0 (12.833)
n—oo
3. Frorm: imp*U% a, = a iff
le | (@ —ap)||=0 (12.834)

Note that equation (12.834) implies (12.833) by the definition of the operator norm,
while (12.833) implies (12.832) by the Cauchy-Schwarz inequality. Therefore if a set C' C
B(H) is closed in the norm topology it is closed in the strong topology, and if it is closed
in the strong topology it is also closed in the weak topology. Of course, a closed set is the
complement in B(H) of an open set, and hence if Y C B(H) is open in the weak topology
then it is open in the strong topology, and if it is open in the strong topology then it is
also open in the strong topology. This establishes the inclusions (12.831).

GIVE BASIS OF OPEN SETS.

The inclusions (12.831) are proper inclusions. A standard set of examples (Reed and
Simon p.184) is the following: Assume H is separable and choose an orthonormal basis
{en}52; (thus choosing an isomorphism H £ ¢2).

1. Consider N, (§) = 1¢. Clearly N,, — 0 in the norm topology.

n

2. Now let S, the the projector onto the orthogonal complement to the space spanned
by the first n vectors {e;}_;, that is:

Sn(g) = (07"'0>§n+1>§n+27"') (12835)

Then || Sp€ [|?= D051 1€51* — 0 for every vector &, so S, — 0 in the strong topology,
but it is also true that || S,(e;) ||=1 for j > n so S,, does not converge to zero in the
norm topology.

3. Now let W, be the n'" iteration of the Hilbert hotel map:

Wn(§) =(0,...,0,&,&,...) (12.836)

That is, W, : ¢; = €;1,. Then for any two vectors ¢, € we have (&, an) = (Sp&, an)
SO

(&, W)l = (S, W)l <11 Su(€) Il Wi =11 Su(©) NIl € |0 (12.837)

So, W, — 0 in the weak operator topology. However, || W,,(§) ||=]| £ || so W,, does
not go to zero in the strong operator topology.
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12.11.5 Von Neumann Algebras And Measure Spaces

A measurable space is a set X together with a collection 90T of subsets of X such that
X € M, and M is closed under complements and countable unions. (It follows that () € 9
and 9 is closed under countable intersections.) Such a collection of subsets of X has several
names in the literature, among them o-algebra. Elements of 9 are called measurable sets.

A morphism of measure spaces f : (X, Mx) — (Y,My) is a function f : X — Y so
that if S € My then f1(S) € Mx. An isomorphism of measures spaces is a bijection
f:X =Y sothat f and f~! are morphisms.

Remark It is interesting to compare a topological space with a measure space. Both are
defined by collections of sets on a set X. If X is simultaneously endowed with a topology
and a measure, that is, a topological space with a measure then measurable functions can
be highly discontinous. For this reason there is no such thing as a “dimension” of a measure
space. For example, R" with the Euclidean measure are all equivalent as measure spaces!

By definition, a von Neumann algebra is a *-subalgebra of B(H) that is closed in the
weak topology.

To give a good example of a von Neumann algebra, let (X, 9, 1) be a measure space.
We can then form a Hilbert space H = L?(X,u). The space of bounded measurable
functions on X, L>°(X, i) is an algebra and acts on ‘H as multiplication operators:

(My)(x) = f(x)(z) (12.838)

It can be shown that this is an abelian von Neumann algebra.
In fact, there is a nice analog of Gelfand’s theorem for von Neumann algebras:

Theorem: Commutative von Neumann algebras are in 1-1 correspondence with measure
spaces. That is, if ¥ is a commutative von Neumann algebra then there is a measure space
(X, p) and an isomorphism of U = L>°(X, p).

PROOF OR REFERENCE??

Remark: Since the weak topology is weaker than the norm topology a von Neumann
algebra is automatically a C'* algebra. One might therefore wonder what Gelfand’s theorem
implies about commutative von Neumann algebras.

[Explain Graeme Segal’s emails: Oct 5,6, 2015]

An absolutely central result is the following (Landsman 2.14.13):

Theorem If H is a Hilbert space and 9 is a #-subalgebra of B(H) then M is weakly-
closed iff it is strongly-closed. Moreover, it is weakly-closed iff the double commutant is
the original algebra:

m’ = (12.839)

Proof: First of all M C M” trivially, since elements of M define linear functionals on 9.
Now, by definition of weak-closure it follows that for any subalgebra 9t C B(#) the linear
dual 9 is always weakly-closed: For suppose that {a,} is a sequence (or more generally a
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net) of operators in M’ that is a Cauchy sequence in B(H) in the weak topology. Then for
all b € I,

0= Tim (i1, an, ) ap € N
= lim (1, anbtp2) = (¥1, bant)))
= lim_ ((¢1, anbtpo) = (0°¢1, anyh)) (12.840)
= ((¢1,abg) — (b1, arhs)) def. of weak closure
= (¢1, [a, ble2)

Therefore, M’ = (M)’ is automatically weakly closed, so if I = " then M is weakly
closed.

Since the weak topology is weaker than the strong topology, if 91 is weakly closed then
its complement is weakly open. But TVeak C Tstrong o the complement of 90 is strongly
open. Therefore 9 is strongly closed.

Therefore we can close the loop of implications if we show that 9 strongly closed

implies 9t = 9M”. This is more nontrivial....
.... FINISH &

12.11.6 The Spectral Theorem

Recall continuous functional calculus: If a is a self-adjoint element of 2 then it generates an
abelian C* subalgebra C*(1,a) C 2 and the spectrum of a, namely o(a), is the same con-
sidered as an element of either C* algebra. Moreover, the topological space Spec(C*(1,a))
defined by Gelfand’s theorem is isomorphic to the compact set o(a) C R. Therefore

C(o(a)) = C*(1,a). (12.841)

Moreover, under this isomorphism the Gelfand transform of a is just the inclusion of o(a) —
R. Applying the Stone-Weierstrass theorem to o(a) we learn that every continuous function
on o(a) is uniformly approximated by polynomial functions. It follows that if f : 0(a) — C
is a continuous function then f(a) € 2 makes sense and o(f(a)) = f(o(a)). (The last
statement is the “spectral mapping theorem”)

The above “continuous functional calculus” can be extended to the “Borel functional
calculus” as follows: Suppose now that we are given a self-adjoint element a C B(#H) and
a vector ¢ € H. Then the map

f= @, fla)y) (12.842)

is a positive linear functional on the algebra of continuous functions C(o(a)). By the
Riesz-Markov theorem it follows that there is a positive measure p, y such that

(6, Fla)p) = / @@ (12.843)

Now, if g is a measurable function on R then, for every 1) € ‘H we define:

(6, glayw) == / @) (12.844)
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Now, by the polarization identity we can recover (¢1,g(a)is) for any two vectors 1, s,
and hence we have defined the operator g(a). If g is bounded then g(a) € B(H), since one
can show

I 9(a) 1B <Il 9 lloo (12.845)

Moreover, one can show that if f,, — f pointwise, and || f, ||cc is bounded, then
fn(a) = f(a) in the strong topology. Thus we have a *-homomorphism

o : B(R) = B(H) (12.846)

where B(R) is the * algebra of bounded Borel measurable functions on R, given by ®(f) =
f(a). The image of B(R) is the smallest C* algebra containing a that is strongly closed.
(It is therefore larger than C*(1,a), which is norm closed.)

The main point of the extension to the Borel functional calculus is that we can now
consider the characteristic function associated to any measurable set F C R:

1 zeFk
xE(x)z{O v ¢ E (12.847)

and it makes sense to speak of yg(a) for a bounded self-adjoint operator a € B(H).

Example 1: For a finite dimensional Hilbert space H a self-adjoint operator a has a finite
set of distinct eigenvalues {\;}}* ; and there is a finite set of orthogonal projection operators
P; onto the eigenspace of eigenvalue A;. These projectors can be written as polynomials in

Hj;éi(a — A1)
[T (A = X))

a:

P, = (12.848)

Then for a Borel subset £ C R we have

xe(a) =Y P (12.849)

In fact, this applies to infinite dimensions provided a has a discrete spectrum. If there is
an infinite set of eigenvalues in £ then the infinite sum converges in the strong topology.

Example 2: Suppose a € C(X). Then, as we have seen o(a) = {a(x)|z € X}. However,
XE(a) cannot be in the C*-algebra C'(X) because its Gelfand transform would correspond
to the function xg(x) on R, restricted to o(a). But this, in general is not a continuous
function on o(a).

Definition: A projection-valued measure is a map
P:B[R)— L(H) (12.850)

such that
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1. P(E) is an orthogonal projection operator for all E € B(R).
2. P()) =0 and P(R) = 1.

3. If B =1I%°, is a countable disjoint union of sets E; € B(R) then
n
P(E) =s —lim, 00 »_ P(E;) (12.851)
i=1

where the convergence is in the strong topology.

The Borel functional calculus tells us that to a self-adjoint operator a € B(H) we have
a corresponding projection-valued measure P,. Then, given any vector ¢ € H we have an
ordinary measure on R given by

E ' (1, Po(E)) (12.852)

Let us call this fig .
Recall that, via the Riesz-Markov theorem given ¢ and a Borel measurable function ¢
we had

(6, gla)y) = / 9(2)dpta (<) (12.853)

o(a)

Now, using the projection valued measure P, we obtain an alternative expression:

(4, glay) = /R 9(2)dfap (@) (12.854)

This equation is the content of the spectral theorem: There is a one-one correspondence

between projection valued measures in B(#H) and bounded self-adjoint operators on .
SKookoskoskok >k skokoskok koskoskokok ks

EXPLAIN UNITARY EQUIVALENCE TO A SUM OF HILBERT SPACES ON WHICH
a IS A MULTIPLICATION OPERATOR

Kok sk ok kook skookokook sk skok kokokok

12.11.7 States And Operators In Classical Mechanics

Classical mechanics is, by definition the study of symplectic manifolds (M, w).

From the viewpoint of C* algebra theory we naturally associate to it the algebra
A = C(M) for M compact and Cy(M) for M noncompact.

Physical observables should be real-valued functions on M. These are clearly the
self-adjoint elements of .

What are states in classical mechanics? The standard viewpoint is that they are points
in phase space.

For example, if we have a system of N interacting particles in R” the corresponding
symplectic manifold is

M:=TRP=vaevY (12.855)
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where V' 2 RP and there is a canonical symplectic form w based on the antisymmetric
form:

(1 ®p1, 2D p2) =p1-@2—p2 @1 (12.856)

In this context we would typically think of a state of a classical mechanical system as
a specification of the coordinates and momenta, that is, a point in M.

However, to make the formulation of classical mechanics as parallel as possible with
quantum mechanics we should broaden our notion of “physical states” to include states on
the C* algebra 2 = Cy(M). As we saw above these correspond to probability measures
on M. The pure states, corresponding to Dirac measures supported at points p € M are
what are typically thought of as states in classical mechanics. The general states, in the
sense of C*-algebra theory might be considered “classical probability distributions.”

Now note that we have a natural pairing of states and observables to the set B of Borel
measures on the real line:

Sx0O—B (12.857)

The value of the measure (f, ) on a measurable set E C R is defined by:
(FaE) = [ fau (12.858)
f~HE)

A key point here is that the expectation value of f is [  fdp and if dp is a Dirac
measure at some point € M then there is no variance, (f?)4, = (f >?lu‘

Finally, since M is symplectic there is a canonical Liouville measure duriouville = ‘%,l
where w is the symplectic form and given a state du we can define du(z) = p(z)dpLiouville-

Then the classical analog of the Schrodinger equation is the Liouville equation
dp(x;t)

dt
12.11.8 States And Operators In Quantum Mechanics

= —{H,p} (12.859)

The essential part of quantum mechanics is the Born rule, a pairing of physical observables
O and states w to produce a probability distribution on the real line: (w,O) € B. The
value of (w, Q) evaluated on the Borel set E' C R is interpreted as the probability that the
observable O measured in the state w will take values in the set E.

Now, in the C'*-algebra approach to quantum mechanics the central object is not a
phase space, but a C*-algebra 2. So, to a physical system that we wish to describe,
first and foremost we assign a C* algebra. Then the self-adjoint elements g are meant
to correspond to the (bounded) physical observables. The physical states are meant to
correspond to the the states S() in the sense of C*-algebra theory.

In order to formulate the Born rule we need a Hilbert space, because there is no
spectral theorem for abstract C*-algebras. Rather we have a spectral theorem for bounded
operators on a Hilbert space. Given a representation 7 : 2 — B(H) and given a self-adjoint
element a € 2 there is a corresponding projection-valued-measure Py, of operators on
Hilbert space. The state on the C* algebra maps to a trace-class positive operator p of
trace one. Now we can state the Born rule: The pairing of state and observable is the &Does 2 have to be

in the compact
operators? &
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probability measure on R given by
(a,w)(B) = Tey Pria(E)p (12.860)

on Borel-measurable subsets F C R.

An important special case arises when the physical system also has a version described
in terms of classical mechanics, hence using a symplectic manifold (M, w). Then we some-
how want to assign quantum operators to functions on M, but they might no longer

commute. Thus, at the minumum we want a map
Q:Co(M)— B(H) (12.861)

However, @ is in general not a representation. In order to make good sense of probabilities,
it should be a positive map of C* algebras.

kokoskokkkosk

1. Example: M =T x X.

2. Example: M is Kéahler with positive holomorphic line bundle.

3. Special case: Induced representations and the orbit method.

4. Semiclassical limits and coherent states.
kokokosk skoskok

13. Boundary conditions

Now let us enrich our theory by allowing the time-slices Y to be manifolds with boundary.
There will be a set of boundary conditions By, and we will attach an element of By to each
boundary component of 9Y'.

A bordism X from Yy to Y7 will thus have two kinds of boundaries:

X =Yy U Y] U et X (13.1)

where Ot X is the time-evolution of the spatial boundaries. We will call this the “con-
strained boundary.”

Figure 38: A general open-closed bordism.

In d = 2, in this enlarged geometric category the initial and final state-spaces are
associated with circles, as before, and now also with intervals. The boundary of each
interval carries a label a, b, ¢, ... from the set By.

- 220 —



a
+ = Oy
b

Figure 39: Morphism space for open strings: Ogp.

Definition: We denote the space O for the space associated to the interval [0, 1]
with label b at 0 and a at 1.

In the theory of D-branes, the intervals are open strings ending on submanifolds of
spacetime. That is why we call the time-evolution of these boundaries the “constrained
boundaries” — because the ends are constrained to live in the D-brane worldvolume.

‘ooa
} =  F(£): 00 Ok — Ou
<

Figure 40: Basic bordism of open strings.

As in the closed case, the bordism [0, 1] x [0, 1] defines P, : Oy — O, and we can
assume WLOG that it is Py, = 1.
Now consider the bordism in ?7. This clearly gives us a bilinear map

Oab X Obc — Oac (13.2)

As in the closed case we see that these maps satisfy an associativity law. Moreover, as in the
closed case, there is an element 1,, defined by 77 which is an identity for the multiplication.

Comparing with the definition of a category we see that we should interpret By as the
space of objects in a category B, whose morphism spaces Hom(b,a) = Oyp. Note that the
morphism spaces are vector-spaces. This is the defining property of a C-linear category. In
fact, this category has a very special property. We also have the trace map 7?7, and as we
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RS K
. }s — F((X):C— Oun
L

Figure 41: A disk defining an element 1, € Oy,

a.{-..." — 0p:0p —C
o

Figure 42: The trace element: 0, : Oy, — C.

learn from considering the S-shaped bordism (the open string analog of 7. We learn that
04 : Oyq — C defines a nondegenerate inner product:

Qa(V1,%2) = 0a(1902) (13.3)

Thus, the O,, are Frobenius algebras.
Moreover, using the S-shaped bordism analogous to 7 we learn that Qg is dual to Op,.
In fact we have

O @ Opa = Oga 2 C
, (13.4)
Opa ® Oupy — O 2 C
are perfect pairings with
Oa(V12) = Op(12¢01) (13.5)

for ¢ € Ogp, P2 € Opg.
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Definition A Frobenius category is a C-linear category in which there is a perfect
pairing of Hom(a,b) with Hom(b,a) for all a,b € Ob(C) by a pairing which factorizes
through the composition in either order.

Remark: It is important to note that the argument for commutativity fails in the
open case: The algebras O, are in general noncommutative. This is an elementary but
important point to emphasize: There is no natural ordering of small disks in a larger disk,

but there is an ordering of points, or intervals, on a one-dimensional line.

ta:C — Ogq

1%: 040 = C

Figure 43: The open-closed transition maps

So, to give an open and closed TFT involves giving a Frobenius cateogry. But the
open and closed strings must also be related to each other. The essential new information
is a pair of linear maps

tg : C — Oy,

(13.6)
12 Ogg — C

corresponding to the open-closed string transitions of 77?.

By drawing pictures we can readily discover the following necessary algebraic condi-
tions:

1. ¢4 is an algebra homomorphism

La($162) = ta(d1)ta(d2) (13.7)

2. The identity is preserved

ta(le) = 14 (13.8)

3. Moreover, ¢, is central in the sense that

ta(®)Y = Yup(9) (13.9)
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Figure 44: Factorization of the open string loop on closed string exchange. Also known as the
“Cardy condition.”

for all p € C and ¥ € Oy
4. 14 and * are adjoints:

Oc(t"()9) = Oa(tbia(9)) (13.10)

for all ¥ € Og,.

5. The “Cardy conditions.”®® Define T, @1 Oua — Oy as follows. Since Oy, and Oy,
are in duality (using 0, or 6y), if we let 1), be a basis for Oy, then there is a dual basis ¥*
for Oup. Then we define

™ () = ) by, (13.11)
o
and we have the “Cardy condition”:

m, = 1p 0% (13.12)

This is illustrated in 77.

Exercise
Draw pictures associated to the other algebraic conditions given above.

Theorem Open-Closed Sewing Theorem. The above conditions are the complete set
of sewing constraints on the algebraic data.

50These are actually generalization of the conditions stated by Cardy. One recovers his conditions by
taking the trace. Of course, the factorization of the double twist diagram in the closed string channel is an
observation going back to the earliest days of string theory.
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This is proved in the paper of Moore-Segal cited below.

Example: Let G be a finite group. There is a natural category B associated to G,
namely the category of all finite-dimensional complex representations of G. We take the
morphisms to be

hom(V, V') = Homg(V, V') (13.13)

that is, morphisms are C-linear transformations V' — V'’ commuting with the G-actions,
also known as intertwiners.
The algebra Oyy = Endg(V) and the natural trace is

Oy () = —Try (1) (13.14)

G|
Let {V,} be a complete set of distinct irreps of G. Then, for G compact, all repre-
sentations are completely decomposable into sums of irreps. More precisely, we have the
1sotypical decomposition
Veo,M,oV, (13.15)

Here M,, are degeneracy spaces. They can be identified with
M, :=hom(V,,V) (13.16)
Schur’s lemma then tells us that
Endg(V) = @,End(M,) (13.17)

is a sum of matrix algebras.

What shall we take for the closed string algebra? The closed to open map ¢y must
map to the center. If all the spaces M), are nonzero then the center of Endg (V) is just
a direct sum of C, one for each irrep, or equivalently, one for each conjugacy class. We
can identify this space with the group algebra discussed above in the examples of closed
theories. In particular, we can take C to be the algebra of class functions on G. Given such
a function f = > agg we define vy (f) to be > agp(g), and if f is a class function then
vy (f) will be central in Endg (V). Conversely (V' (¥) is

> Try(Pu¥)xy (13.18)

where P, is the projector to the isotypical subspace for V.

Exercise

Write out the full set of open-closed string data for the example of a finite group and
check the sewing conditions.

Once again - we can ask what geometrical problem we are solving here. We will see
the answer below.
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14. Open and closed 2D TFT in the semisimple case: D-branes and vector
bundles

As we saw in the closed case, if C is semisimple one can go further. In this case we can
derive a spacetime X = Spec(C), and the data of a Frobenius algebra is given by the closed
string coupling 0, = g, 2 on each connected component of spacetime.

In this section we address the question: What is the “spacetime interpretation” of the
open string sector?

We first need two theorems from abstract algebra, which we just state:

Definition: A Frobenius algebra is simple if there are no nontrivial ideals. It is semisimple
if it is a direct sum of simple algebras.

Wedderburn Theorem A semisimple (noncommutative) Frobenius algebra O is iso-
morphic to a direct sum of matrix algebras:

O = ol Mat,, (C) (14.1)

with 8 = @,0,;Tr;.

Theorem. A Frobenius algebra is semisimple iff the characteristic element H =
> Yt is invertible.

In one direction this is obvious. One simply computes that if (14.1) is true then
H = &;31,, is clearly invertible. For the other direction we use a standard criterion for
semisimplicity: An algebra is semisimple if the trace in the left-regular representation de-
fines a nondegenerate quadratic form: (¢, 1') — Try)’. [See Lang’s Algebra, for example.]
Now one need only note that (Hvy) = Tri) &

Now we have:

Theorem: If C is semisimple, then for any boundary condition a, O = Q4 is semisim-
ple and O = End¢ (W) for some finite-dimensional representation W of C.

Proof: If C is semisimple it is a direct sum of C for each spacetime point z. Fix a single
point z and a boundary condition a. Then ¢,(e;) = P, , are central projection operators
and O, = P,OP, is an algebra over the Frobenius algebra C, = ¢,C. So we can work over
a single spacetime point. Therefore, we must have :*(1p,) = alc,. In fact, a« = 0,(10,) /0.
from the adjoint relation. From the Cardy condition

alo, = > " (14.2)

where 1, is a basis for O,. Applying 6, we find af,(1p,) = dimO,. Let us assume L that
O, is nonzero. Then « is nonzero. This says the characteristic element of O, is invertible,
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and hence O, is semisimple. By the Wedderburn theorem we conclude that O, is a direct

sum of matrix algebras:

O, = ®:_,Mat,, (C) (14.3)

However, we can go further. By cyclicity, the trace 6, must have the form

Ou(p) =D OLTx(y') ¢ =i ¢ (14.4)
=1

Now, going back to the Cardy condition one finds that in fact we must have s = 1;
there can be only one summand in (14.4); that is, Oy, must be a full matrix algebra. #
Thus, the most general O, is obtained by choosing a vector space W, , for each
spacetime point x and
Qo = BEnd(W, ) (14.5)

What we have discovered is that to a boundary condition a we can associated a wector
bundle over spacetime. These are the D-branes in this 2D TFT. 2!

Exercise Show that if ¢ = @1, then

Oa(¥) =Y /0. Tr(1))

xT

V() = @ITI(¢I)5—;: (14.6)
Ty a(l/}aa) = 69ac\/%TrWz,a (¢x,aa)P$,b
O = @J:Hom(Wa:,a? Wx,b) (14'7)

So, we have a complete answer to the category of boundary conditions in this simplest
of all cases:

Theorem

e If C is semisimple, corresponding to a space-time X, then the category B of boundary
conditions is equivalent to the category Vect(X) of vector bundles on X, by the inverse
functors

{Wx} = OW, ® ag, (14.8)

a = {Oq,a}- (14.9)

5INotice that the bundle is not unique, since we can always tensor with a line bundle W, — W, ® L,
where L, is one-dimensional. This, ultimately, is the source of the B-field degree of freedom in string
theory.
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where O, 4, = C is suppored at z.

e The equivalence of B with Vect(X) is unique up to transformations Vect(X) —
Vect(X) given by tensoring with a line bundle L = {L,} on X. e The Frobenius structure
on B is determined by choosing a square-root {\/Ex} of the dilaton field. It is therefore
unique up to multiplication by an element ¢ € C such that o2 = 1.

Exercise Boundary states

Let B, :=1%(1¢,,). This is known as the “boundary state” for boundary condition a.

a.) Show that the partition function for a genus g amplitude with h holes all with
constrained boundaries with boundary condition «a is given by

Z = 6c(HIBM (14.10)

b.) Show that under a change of scale §c — A726c the boundary states scale as
B, — AB,.
c.) Show that the closed string coupling is always the square of the open string coupling.

Exercise Open Problem
Generalize the above theorem to the unoriented case, and relate the classification of
boundary conditions to KR theory of spacetime.

15. Closed strings from open strings

In string theory one usually thinks of specifying a spacetime manifold, then a metric on that
manifold, then other closed-string data, and finally one starts “wrapping branes” around
various cycles. This way of thinking puts the closed string on a more fundamental basis -
one asks - for a given closed string background, what are the D-branes in that background?
How do we classify them?

The above 2D TFT suggests a radically different point of view, which makes the open
strings more fundamental, and the spacetime, and its closed strings a derived concept.
There is evidence that this is indeed a more fundamental view from the Matrix theory
approach to defining M-theory and from the AdS/CFT correspondence.

If one begins with a Frobenius category, one can try to derive the closed string algebra.
In the semisimple case we might proceed by considering a “generic” boundary condition a
and then taking the center of the algebra O,,. Generic means - a postiori - that W, ; is
the nonzero vector space on every spacetime point x.

How does one generalize this idea? The essential point, as described in ref. 2 below
is to take the “cyclic cohomology” of the Frobenius category. This will define for us a
commutative Frobenius algebra, from which we can derive the spacetime. See reference 2
and references therein for further details.
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15.1 The Grothendieck group

In the category of boundary conditions we can always define direct sums of objects a @ b
as follows. For any two objects a and b we define a new object a & b by

Ougb,c = Oac © Ope (15.1)
Oc,aeab = Ocq ® O, (152)
and hence
Oua O
Oa adb ‘= o -a > 15.3
®b,a®b ( O 0bb> ( )

with the composition laws using the above data and matrix multiplication. (This
construction is known in operator algebra theory as the linking algebra.) Finally, the trace
is

eaeab : Oa@b,a@b —C (154)
given by
Buct | 27 V) = B (1ha) + (). (15.5)
Vba Vb

The new object is the direct sum of a and b in the enlarged category of boundary
conditions.

Now, let us recall that a semigroup .S is a set with an associative binary product. We
asume it is commutative so we denote the product a @ b, because of the application below.
There is no notion of a unit or an inverse, so S is not a group.

Nevertheless, - one can form a corresponding group K (S) by manufacturing inverses
as follows. K(S) is defined to be the set of equivalence classes of pairs (a,b) where the
equivalence relation is

(a,b) ~ (a', V) & dc adb dec=d dbdc (15.6)
(Note that in general a @ ¢ = b @ ¢ does not imply a = b.)
Then the group law is

[(a,0)] + [(e,d)] :=[(a ® ¢,b D d)] (15.7)

We can think of [(a,b)] informally as a — b and the equivalence relation comes from
rearranging a — b =a’ —b'.

This simple construction is known as the Grothendieck construction.

Example 1: Let S = Ny be the natural numbers 1,2,3,.... Then K(S) = Z, the
integers.
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Example 2: Let S be isomorphism classes of finite dimensional vector spaces. Then
K(S) is the group of virtual vector spaces. These are in 1-1 correspondence with the
integers.

The Grothendieck construction can be applied to the set of isomorphism classes of
objects in our category B to define K (B). Then applied to the category of vector bundles
on a topological space X it defines K%(X).

In the semisimple case one can show that the recovery of the closed string sector from
the open string sector amounts to

K(B)®C~C. (15.8)

Exercise

a.) Show that the group law (15.7) is well-defined.

b.) If there is an infinite element in S, i.e. an element oo € S such that a ® oo = oo
then K(S) = 0.

Exercise
Using K (pt) = Z prove equation (15.8).

16. Three Dimensions And Modular Tensor Categories

&Put unitarity
here, since this is

17. Other Generalizations where the concept is

used in an
important way. &

1. Homotopy Field Theory. Turaev’s book. Equivariant theory: Coupling to a gauge
bundle.

2. Invertible TFT’s

3. Anomaly Field Theories

4. Field theories valued in other field theories, and “relative field theory”

18. Higher Categories, Locality, and extended objects

Finally, we would like to indicate one direction in which the above ideas continue to be
developed in current research. See the papers by J. Lurie and A. Kapustin cited below for
details.

One way to motivate this subject is to impose a greater degree of locality than we have
thus far imposed.
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Figure 45: Cutting a closed 2-fold into two pieces

Figure 46: Cutting a circle into two intervals.

We have shown how the notion of a functor allows us to compute partition functions
Z(My) of a compact two-manifold by splitting it up into pieces and associating algebraic
data with the pieces.

For example, in 45 we cut a Riemann surface, and associate algebraic objects with the
pieces. But now, we can ask if we can similarly learn about the value of Z(Y), where YV
is the cutting circle, by splitting Y = S! into intervals: Can we define a Z(I*) and glue
these to get a vectorspace Z(Y') as in 46 ?

This becomes important if we want to evaluate Z(M) in d-dimensional TFT for d > 3.
Now there is no simple decomposition analogous to that for Riemann surfaces, in general.
In general we would need to chop up M into manifolds with corners. A manifold with
corners is a space which is locally like R™ x R'!".

Figure 47: Hierarchies of structure in 2d and 3d TFT

So, let us look at the hierarchy we had in 2d TFT. See 47.
In the d=3 case there is a nice way to say what the category associated to S! would
be: Letting Z denote the functor, we can define

Z(M) = Z(S* x M) (18.1)
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and then Z is a two-dimensional TFT. As we have just seen, for such things we associate
a C-linear category to a point. This will then be the category we associate with Z(S'):
This is a baby version of the Kaluza-Klein idea.

Figure 48: Pictorial version of morphisms between morphisms

But what should we then assign to a point in the 3d TFT? The answer is some kind
of 2-category. In a two category we have objects, morphisms, and morphisms between
morphisms, which can be pictured as in 48. There are now lots of axioms and, in fact,
mathematicians are not quite in agreement as to what is the best definition of an n-category.

Figure 49: A physical realization of higher morphisms using point and line defects in a boundary.

One nice way, advocated by Kapustin, of understanding the physical role of these
higher categories is to introduce extended objects into the field theory. Let us define
a domain wall to be some extended object which separates space into two components.
Thus it is real codimension one in spacetime. Let us imagine that there are many kinds of
domain walls, labeled by A, B,.... A domain wall in which there is no space on one side is
a boundary condition.

Now, within the domain wall there could be “sub”-domain walls. These might or might
not be “bound” to the domain wall. If they are not, they would constitute real codimension
two objects in spacetime. Now they will have labels «, 3, .... If they can be fused then they
can be viewed as “morphisms” between the “objects” A, B, ... which are the domain walls.

Now, within the sub-domain walls we could have sub-sub-domain walls, labeled by
1,7, k... and separating type a from 3, etc. These would correspond to codimension three
objects. Mathematically they could be interpreted as 2-morphisms.

The simplest example of a 2-category is the 2-category of algebras:

1. Objects = Algebras.

2. Morphisms = Bimodules. So, if A, B are algebras then a morphism is a left-A and
right- B bimodule. These can be tensored to give composition of morphisms.

3. 2-Morphisms: Maps of bimodules.
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A. Sums Over Symplectic Lattices And Theta Functions

A.1 Symplectic structures, complex structures, and metrics

A frequently recurring problem is how to express a sum of a gaussian function over a
symplectic lattice in terms of theta functions.
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Suppose Vz C VR is a lattice, of rank 2/V, and suppose we have a symplectic form €2,
integral valued on V7.
A complex structure J on Vg is compatible with € if

Q(Jv, Jw) = Q(v,w) (A1)

In this situation we can define a symmetric quadratic form:

g(v,w) = Q(Jv,w). (A.2)

We now assume there is a symplectic basis °2 o, 5 for Vz, I =1,..., N, such that

Q! a’) =Q(B1,85) =0

ol ) = o, (A.3)

Now we choose a basis of vectors ¢! of type (0,1). We extend J C-linearly to V¢ so
that, by definition

J-ch =it (A.4)

We can express the complex structure J in terms of the components of the period
matrix. The latter is defined by choosing a basis ¢! of vectors of type (1,0) of the form:

=al +7173; (A.5)

From ¢(¢!,¢7) = g(¢7,¢!) we learn that 777 is symmetric, and moreover g is of type
(1,1). Note that

g9(¢!,¢7) = 2Im7!/ (A.6)

We can express the complex structure in terms of the period matrix as follows. The
complex structure acts as:

J . aI = AI/ICEI/ + CI/IﬁI/ (A 7)
J - Br = Bpa! + DIgp '

We define components of vectors by

I
v=vla! +0lp = (v} ’Ué) (;j) (A.8)

so that J acts on the components as the matrix

52We would like to relax this assumption and discuss what happens when the skew eigenvalues of Q are
other integers.
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A B
- (20) "

Compatibility of the complex structure implies that this defines a symplectic matrix.
Equating real and imaginary parts of (A.4), using the definition (A.7) we find the
matrix expression of J in the basis o, 8;:

—-Y-lx y-!
/= (—Y ~XY-lx XY—l) (A.10)
One can check both J2 = —1 and J"QJ = Q.
The metric g in the «, 8 basis is:

XY ' X+Y - Xy 1\ [w!
g(v,w) = <v1 UJ) B B I (A.11)
I Y2 Y 1X Y 1 wéf

It is useful to have formulae for the transformation from the integral symplectic basis

I «
90
« N B Y 1 C‘]
(525 7) () w29

Thus the complex projections of (A.8) are:

to the complex basis.

has inverse:

7 _ _
N
; (A.14)
o0 = Luf — by
Note that
v = o0 40D (A.15)

A.2 Statement Of The Problem

We will now assume that ¢ is positive definite, i.e. Im7 is positive definite. The first
problem is to express

SO = Z e—%q’rkg(y,z/)—}—ﬂ(l/,é) (A16)
VGVZ

in terms of theta functions for the complex torus Vg /Vz. We write
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=2 +1p (A.17)

so that Q(v,1) = nrll +m!i2.
An important variation on (A.16) is the following. Suppose that ¢ is a quadratic
refinement of €, i.e.

o(v1 +12) = (1) (vp)e ™V 12) (A.18)
Then we can define a twisted sum:

Sy = Z Sa(lj)ef%ﬂkg(z/,V)JrQ(z/,g) (A19)
veVy

and again we would like to express this in terms of theta functions for Vg /Vz. Note
that for k£ even, there is no distinction between a twisted and untwisted sum.

A.3 Level x Theta Functions
We define our level x theta functions to be

Op k(& 1) = Z o2mik(s1+5:B)T! (s1+ 95 Br) p2mig! (2ks1+B1) (A.20)
SIEZ

MORE ABOUT THETA FUNCTIONS
Having chosen a symplectic basis the general quadratic refinement can be written as

p(v) = e2mil0vitorms) ginkivs (A.21)
Claim 1:
[, 2 _
Sl = detEYGQ Z @57k/2((51, TIJ)C‘)_ﬂ’k/Q(él, —fIJ) (A22)
BE(Z/KZ)N

where & and 0 are, essentially, the (0,1) and (1,0) components of ¢, respectively. More

precisely:
0+ 7115 + 2mi) (0" + 77 6y) = 2miks”
I+ 702 4 2mi) (07 + 717 ¢ ) = 2mikd! \
Ny 23
U715 = —2iy Y (A.2)
4+ 71712 = 2y IO
and
Q=0 5 (0~ ) (A.21)
Claim 2:
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P2y K2 1 I _IJ\Q_ L - 1
So ,/detkyezwk KZ R R L P e R ) (A.25)

where 9! are defined in the proof below. We sum over a set of 4k characteristics (8,8)
described below. They satisfy 2(8 + 3) = 0 and k(8 — 3) = 0.

Kok sk ok okook sk okokook sk kokosk ok kokoskok ok

Stress that the original sums did NOT make use of a Lagrangian splitting and that
there are many Lagrangian splittings related by Sp(2N,Z). Derive the transformation laws
on 7 and theta functions from this.

sokskkoR kR kR ok ok
A.4 Splitting instanton sums

Proof: The lattice splits as A = A; @ Ao. We write v = nral + m!B;, with A; spanned by
a!. We do a PSF on m!. By shifting the vector [ it suffices to consider the case 8! = ¢r = 0.
The main formula is then

[, .2
Se = detEY€ﬁ62JYJKZ§( Z

PL,PR (A.26)
exp{iwk(pL)ﬂ”(pL)J — imk(pr) 17" (pr)s + (L)1 + (pR)ﬂ/_)I}

with
1 1 ke
(pL)r = znr + —(mr+ —ny)
( — 1 _ l i~ + ﬁ '
PR)T = 571 k(ml 5 nr)
and
I _ I 1J72
=17+ 77
vo=h J (A.28)

f =1 +715

Now, we need to split the sum. We need to discuss the twisted and untisted cases
separately.

For e = 1 we can write m; = 5r — ks, where s; € Z are unconstrained integers and
Br €4{0,1,...,k —1}. Then the splitting is immediate, and we have

L oo o
,/detkye > @Bk/g(—w 6 g (g’ —71) (A.29)

Be(Z/KZ)N
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h =1 + 715

=1 +713

4 12 = oy T [OD (A.30)
U+ 71702 = 20y 1Y
and
Q= ﬁlﬁY"K@( (A.31)

To recover the general case we shift i{ — If + 270!, 12 — 12 + 2mi¢;. this leads to
(A.22) above.

For ¢ = 0 we must work harder. We need to split pr, = n/2 + m/k,pr =n/2 — m/k.
We first write

n=2s+7 seZ,ve{0,1}

’ (A.32)
m =kt +p te€Zype{0,1,....k—1}
Then we decompose
s+t =254
., ¢ (A.33)
s —t =2t+¢, s,t€Z,( €{0,1}
Now we have
Br = 2kCr + kyr + 2pr1 (A34)

Br = 2k(r + kyr — 2p1

Note that these are, unfortunately, not defined modulo 4k, but only modulo 2k. Since
we have chosen explicit fundamental domains above these equations still make sense, and
define 2 x 2 x k = 4k distinct pairs (5,3). #

Remarks:

e Finally, note that when k is even, the twisted sum is in fact equivalent to the
untwisted sum. The way this comes about is as follows. One can express theta functions
of one level in terms of those of another level. Decompose the sum over integers into a sum
over integers relative to some modulus. For example, in

Opur(w, ) = 3 ghmhn/ (2R 2hn) (A.35)
neL

we could write n =fA + 6, 0 <6 <A — 1. In this way we show that
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A—-1

@,u,k(wv T) = Z @A(p+2k5),kA2 (W/A, T) (A36)
6=0

Thus, we can write a theta function of index & as a linear combination of theta functions

of index kA%, When k is even we can arrange the sum on 3,3 in (A.25) to rewrite it as
(A.22).

A.5 Geometrical Interpretation

Vr/Vz is a principally polarized variety. ©3,.(§,7) is a section of a line bundle. If x is a
vector of integers:

@B,n(g + u, T) = 6,6’,&(57 T)

, , (A.37)
O nl€ +p ) = ¢~ 2T s dningluig (¢ )
Therefore,

o~ Amr(Ime)Y ! e, (&, 7)Op n(E,7) (A.38)

is invariant. Now we compute the representative of ¢;(L):

L o5 2 I
w = —00log || s ||*= 2rdz" dy; (A.39)
2me

where ¢! = 2! + 717y,

B. Generators For O7(Q)

The idea is to use induction on the rank d in I7%%. We also use some tricks mentioned in
Appendix F of [23] (and I thank Steve Miller for pointing out this reference as having the
relevant tricks.)

Let U be our standard copy of II%!. Then we first establish the result for the duality
group for d = 2, that is, for Aut(U®U). Recall we defined a homomorphism 1) : SL(2,7Z) x
SL(2,Z) — Oz(Q) such that if

C

A= <“ Z) € SL(2,7) (B.1)

then
a 00 —b

0 abdb O
0 ¢cd O
—c00 d

0

ab 0

cd 0 0
00 d —c
00-b a

P(A 1) = (B.2)

Q/)(L A) =
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Recall also that SL(2,7Z) is generated by S and T with

0 1 11
S = (_1 0) T = (0 1) (B.4)

We begin by giving a minimal set of generators for Oz(Q) for the case d = 2:

Proposition: For d = 2, Oz(Q) is generated by ¢(S,1),¢(T,1),¢(1,5),¥(1,T) together
with
0010
0100
1000
0001

(B.5)

and
1000

0-10 0
0010
00 0-1

(B.6)

and no proper subset of these six generators will generate the entire group.

Proof: We consider a generic element 0 and try to reduce it to a diagonal form, using a
reduction procedure that will also be useful for the case of general d.

A fundamental observation, valid for all d, is that every row and column of 0 consists
of a set of integers with ged = 1. This follows since det(d) = £1.

A second very useful observation, again valid for all d is that the bottom row 4 and
dq; of 0 are orthogonal vectors. To show this note that from (12.624) we know that

D o | (B.7)

Taking the dd matrix element says that we have orthogonal vectors:

d
> a4 =0 (B.8)
7j=1

Now let us turn to d = 2. Our first goal is to bring the bottom row of ? to (0,0,0,£1).

The first step in setting the bottom row to (0,0,0,+1) is to set 721 = 0. Using right-
multiplication by (1, A) for a suitable A we can set 721 = 0. The detailed argument
for this is the following: Suppose 721 is nonzero. Then, if 92 = 0 we right-multiply by
¥(1,8). If 22 is also nonzero then 71 = gz and vz 2 = gy where g is ged(y2,1,72,2) and
x,y are relatively prime nonzero integers. Therefore we right-multiply by (1, A) with
a =y and ¢ = —z, we can always find a corresponding b,d to get A € SL(2,7Z) because
x,y are relatively prime. Thus we can set 21 = 0.

But now by (B.8) we know that y22022 = 0, so at least one of 729,829 is zero. We
now consider cases:

— 240 -



1. If 499 = d2.2 = 0 then we must have d2; = 1. Then right-multiplication by (1, S)
puts 0 into the desired form.

2. If v99 = 0 but 22 # 0 then we can multiply by (1, A) for a suitable A preserving
72,1 = ¥2,2 = 0 and setting d2 1 = 0. Then 32 = +1. Now 0 is in the desired form.

3. If 790 # 0 and d22 = 0 then we use

01\ (B«
e (0)- () oo

to exchange § and v and use the previous argument. Note that

W(1, S)(S, 1) = (2 3) (B.10)

(where we define S with b=1,¢ = —1).

Now we consider the consequences of the group conditions (12.623) and (12.624). The
following is valid for all d: Suppose that the bottom row of 9 is of the form (0,...,0,+1.
That is 4 = 0 for all j and 64; = 0 for j = 1,...,d — 1. Consider the j,d matrix element
of (B.7). Using (B.26) we learn that also

Yjda =0 (B.11)
Similarly, from
sa + 8" =1 (B.12)
taking the d, j matrix elements gives
Qjd = 5dd1j,d (B.13)

Altogether we learned that if 0 has a bottom row of the form (0,...,0,%+1) then it must

4

be an element of the “parabolic subgroup” defined by

®jd = 0daljd
Yd,j = Vjd =0 (B.14)
0d,i = 6ddlai
Now return to the case d = 2. We have reduced 0 to the form:
* 0 x %
x 099 x *

(B.15)

* 0 x *

0 0 062

with (522 = =+1.

- 241 -



The next step is to try to set the last column of d to the form (0,0,0,+1). In order to
do this we first put 812 = 0. If it is not already zero we can left-multiply by P(THP12 1),
%3 This does not disturb the condition that the bottom row is (0,0, 0, da2)

Next we again apply the group conditions: In particular, the dd matrix element of

SR+ BT5=0 (B.16)

Taking the dd matrix element shows that
d
> 8jaBja=0 (B.17)
j=1

are orthogonal vectors. In the case of d = 2, if 512 = 0 then B22d22 = 0 but since dg9 = 1
we have 2 = 0. Next we left-multiply by (1, A) (with b = 0) to set d;2 = 0. Now we
have achieved a column of the form (0,0,0,+1). Now again using the group conditions we
find that B2; = 0 and agj = 15 ;022. We have therefore arrived at the form

an 0 B 0
0 62 0 O
22 (B.18)
71 0 1 O
0 0 0 oo
Again we apply the group conditions and find there are two possibilities:
0 0 Bu1 O
0 d22 0 O
22 (B.19)
fii 0 0 0
0 0 0 09
with ,311 = #+1 and (522 = #+1 and
011 0 0 O
0 622 0 O
B.20
0 0 611 0 ( )
0 0 0 b2

By multiplying by —1 we reduce each of these possibilities from four to two cases. Thus
we need to add two new generators

0010
0100
1000
0001

(B.21)

and

(B.22)

53 At this point we have used all the generators (S, 1), (T, 1),%(1,8),9(1,T).
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This completes the proof of our proposition &

Now that we have understood the case d = 2 completely we can solve the general case
by induction. The inductive step follows essentially the procedure we used for reducing the
d = 2 case.

We claim that the automorphism group for U®? is generated by the subgroups acting
as Aut(U; @ U;) while holding the other Uy, k # i, j fixed generate the entire group. One
proves this by induction as follows.

Consider a 2d x 2d matrix 9 € Oz(Q). The bottom row of integers has gcd=1, since the
determinant of ? is +1. Therefore, using embedded SL(2,7Z) subgroups of the O(2,2;7)
groups Aut(U; @ U;) one can use right-multiplication to bring the bottom row of 9 to the
form (0,0,...,0,d4q9) where d5g = +1. We describe in detail how to do this:

Recall the homomorphism v : SL(2,7Z) x SL(2,Z) — Oz(U @ U) defined in (12.649)
above. Let 1;; denote the homomorphism into Aut(U;@®U;). Now, using right-multiplication
successively by

Y12(1, Av), tha3(1, A2), ... Ya-1,a(1, Aa—1) (B.23)

with suitable SL(2,7Z) matrices Aj, Ag, ..., Ag_1 we can set
Va1 =Vd2 =" = Ydd—1 =0 (B.24)

Once again using right-multiplication by matrices of the form (B.23) up to ¢4_24-1 we
can, without disturbing the condition (B.24) also set

dd1 =042 ="-=0442=0 (B.25)

Now, as in the d = 2 case we know that v4404¢ = 0. So, at least one of 44 and d4q
is zero and at least one of 744,04,4-1,044 is nonzero. As in the d = 2 example we have
three cases to deal with. The same manipulations that we used there allow us to bring the
bottom row to the form

i=0
. (B.26)
0d,i = Odala
Moreover, d4q = £1.
Now for the next step in the reduction we multiply on the left by
Y12(1, A1), ¥93(1, A2), ... pa—2,a-1(1, Ag—2) (B.27)
with suitable SL(2,7Z) matrices Aj, Ao, ..., Ag_2 to set
Big=0 i=1,...,d—2 (B.28)
§ig=0 i=1,...,d—2 (B.29)

without disturbing the conditions (B.14). Now, finally, we can multiply on the left by
Ya—1.4(A, 1) to set fg_1 4 = 0 without disturbing the previous conditions. Then again we
act on the left with ¢4_; 4(A4’, 1) without disturbing previous conditions to set d4_1 4 = 0.
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Now we apply the group conditions

STB 4+ 5 =0 (B.30)

Taking the dd matrix element shows that 845 = 0. Now taking the j,d matrix elements
shows that B4 = 0. Next we use

a5 +4"3 =1 (B.31)

Taking the j, d matrix elements and using the previous conditions shows that ag; = 04414, ;-

We have now set to zero all matrix elements of «;, 3,0 with row or column index equal
to d, except for agq = 649 = £1. The remaining matrix elements define an automorphism
of U®(@=1) and therefore by induction we have established our claim.
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