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1. Introduction

Topological field theory is an excellent pedagogical tool for introducing both some basic

ideas of physics along with some beautiful mathematical ideas.

The idea of TFT arose from both the study of two-dimensional conformal field theories

and from Witten’s work on the relation of Donaldson theory to N=2 supersymmetric field

theory and Witten’s work on the Jones polynomial and three-dimensional quantum field

theories. In conformal field theory, Graeme Segal stated a number of axioms for the

definition of a CFT. These were adapted to define a notion of a TFT by Atiyah.

TFT might be viewed as a basic framework for physics. It assigns Hilbert spaces,

states, and transition amplitudes to topological spaces in a way that captures the most

primitive notions of locality. By stripping away the many complications of “real physics”

one is left with a very simple structure. Nevertheless, the resulting structure is elegant, it

is related to beautiful algebraic structures which, at least in two dimensions, which have

surprisingly useful consequences. This is one case where one can truly “solve the theory.”

Of course, we are interested in more complicated theories. But the basic framework

here can be adapted to any field theory. What changes is the geometric category under

consideration. Thus, it offers one approach to the general question of “What is a quantum

field theory?”

2. Basic Ideas

It is possible to speak of physics in 0-dimensional spacetime. From the functional integral

viewpoint this is quite natural: Path integrals become ordinary integrals. It is also very

fruitful to consider string theories whose target spaces are 0-dimensional spacetimes. Nev-

ertheless, in the vast majority of physical problems we work with systems in d spacetime

dimensions with d > 0. We will henceforth assume d > 0.

What are the most primitive things we want from a physical theory in d spacetime

dimensions? In a physical theory one often decomposes spacetime into space and time as in

(1). If space is a (d−1)-dimensional manifold Y then, in quantum mechanics, we associate

to it a vector space of states H(Yd−1).

Of course, in quantum mechanics H(Yd−1) usually has more structure - it is a Hilbert

space. But in the spirit of developing just the most primitive aspects we will not incorporate

that for the moment. (The notion of a unitary TFT captures the Hilbert space, as described

below.) Moreover, in a generic physical theory there are natural operators acting on this

Hilbert space such as the Hamiltonian. The spectrum of the Hamiltonian and other physical

observables depends on a great deal of data. Certainly they depend on the metric on

spacetime since a nonzero energy defines a length scale

L =
~c

E
.

In topological field theory one ignores most of this structure, and focuses on the depen-

dence of H(Y ) on the topology of Y . For simplicity, we will initially assume Y is compact

without boundary.
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Figure 1: A spacetime Xd = Y × R. Y is (d − 1)-dimensional space, possibly with nontrivial

topology.

So: In topological field theory we want to have an association:

(d − 1)-manifolds Y to vector spaces: Y → H(Y ), such that “H(Y ) is the same for

homeomorphic vector spaces.” What this means is that if there is a homeomorphism

ϕ : Y → Y ′ (2.1)

then there is a corresponding isomorphism of vector spaces:

ϕ∗ : H(Y ) → H(Y ′) (2.2)

so that composition of homeomorphisms corresponds to composition of vector space iso-

morphisms. In particular, self-homeomorphisms of Y act as automorphisms of H(Y ): It

therefore provides a (possibly trivial) representation of the diffeomorphism group.

Now, we also want to incorporate some form of locality, at the most primitive level.

Thus, if we take disjoint unions

H(Y1 ∐ Y2) = H(Y1)⊗H(Y2) (2.3)

Note that (2.3) implies that we should assign to H(∅) the field of definition of our vector

space. For simplicity we will take H(∅) = C, although one could use other ground fields.

Remark: In algebraic topology it is quite common to assign an abelian group or vector

space to a topological space. This is what the cohomology groups do, for example. But here
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we see a big difference from the standard algebraic topology examples. In those examples

the spaces add under disjoint union. In quantum mechanics the spaces multiply. This is

the fundamental reason why many topologists refer to the topological invariants arising

from topological field theories as “quantum invariants.”

Finally, there is an obvious homeomorphism

Y ∐ Y ′ ∼= Y ′ ∐ Y (2.4)

and hence there must be an isomorphism

Ω : H(Y )⊗H(Y ′) → H(Y ′)⊗H(Y ) (2.5)

Figure 2: Generalizing the product structure, a d-dimensional bordism X can include topology

change between the initial (d− 1)-dimensional spatial slices Yin and the final spatial slice Yout. The

amplitude F (X) determined by a path integral on this bordism is a linear map H(Yin) → H(Yout).

In addition, in physics we want to speak of transition amplitudes. If there is a spacetime

Xd interpolating between two time-slices, then mathematically, we say there is a bordism

between Y and Y ′. That is, a bordism from Y to Y ′ is a d-manifold with boundary and a
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disjoint partition of its boundary into two sets the “in-boundary” and the “out-boundary”

∂Xd = (∂Xd)in ∪ (∂Xd)out

so that there is a homeomorphism (∂Xd)in ∼= Y and (∂Xd)out ∼= Y ′. We will say this a bit

more precisely, and discuss some variants, in Section **** below.

If Xd is a bordism from Y to Y ′ then the Feynman path integral assigns a linear

transformation

F (Xd) : H(Y ) → H(Y ′).

Again, in the general case, the amplitudes depend on much more than just the topology

of Xd, but in topological field theory they are supposed only to depend on the topology.

More precisely, if Xd
∼= X ′

d are homeomorphic by a homeomorphism = 1 on the boundary

of the bordism, then

F (Xd) = F (X ′
d)

One key aspect of the path integral - in quantum mechanics, or functional integral -

in quantum field theory, we want to capture - again a consequence of locality - is the idea

of summing over a complete set of intermediate states. In the path integral formalism we

can formulate the sum over all paths of field configurations from t0 to t2 by composing the

amplitude for all paths from t0 to t1 and then from t1 to t2, where t0 < t1 < t2, and then

summing over all intermediate field configurations at t1. We refer to this property as the

“gluing property.” The gluing property is particularly obvious in the functional integral

formulation of field theories.

In topological field theory this is formalized as:

If X is a bordism from Y to Y ′ with

(∂X)in = Y (∂X)out = Y ′

and X ′ is another oriented bordism from Y ′ to Y ′′

(∂X ′)in = Y ′ (∂X)out = Y ′′

then we can compose X ′ ◦X as in (??) to get a bordism from Y to Y ′′.

Naturally enough we want the associated linear maps to compose:

F (X ′ ◦X) = F (X ′) ◦ F (X) : H(Y ) → H(Y ′′)

What we are describing, in mathematical terms, is a functor between categories. After

describing a few variations on the above theme, we will explain that sentence in detail.

2.1 More Structure

We can regard the above picture as a basic framework for building up more interesting

theories by enriching the topological and geometric data associated with the spaces X and

Y .

For example, we might be able to endow X and Y with
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Figure 3: Gluing two bordisms to produce a third bordism.

1. Orientations, spin, pin structures, etc. (for certain X’s and Y ’s).

2. Riemannian metrics.

3. Other fields - Principal G-bundles with connection, sections of associated bundles

etc.

One of the motivating examples was two-dimensional conformal field theory. In this

case, Segal’s axioms were based on two-dimensional bordisms endowed with conformal

structure.

Two important complications that will arise when considering nontopological theories

are:

1. The notion of scale and renormalization becomes important.

2. The Hilbert space is actually not defined for a (d−1)-dimensional manifold but rather

for a germ of d-manifolds around a (d− 1)-dimensional manifold.
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3. Some Basic Notions In Category Theory

We will not describe categories in any great detail. See, for example, the book by

S. Maclane, Categories for the Working Mathematician, Springer GTM vol.5

This rather abstract mathematical idea has nevertheless found recent application in

string theory and conformal field theory. Many physicists object to the high level of

abstraction entailed in the category language. However, it seems to be of increasing utility

in the further formal development of string theory and supersymmetric gauge theory as

well as certain aspects of condensed matter theory and quantum information theory.

3.1 Basic Definitions

Definition A category C consists of

a.) A set Ob(C) of “objects”
b.) A collection Mor(C) of sets hom(X,Y ), defined for any two objects X,Y ∈ Ob(C).

The elements of hom(X,Y ) are called the “morphisms from X to Y .” They are often

denoted as arrows:

X
φ→ Y (3.1)

c.) A composition law:

hom(X,Y )× hom(Y,Z) → hom(X,Z) (3.2)

(ψ1, ψ2) 7→ ψ2 ◦ ψ1 (3.3)

Such that

1. A morphism φ uniquely determines its source X and target Y . That is, hom(X,Y )

are disjoint.

2. ∀X ∈ Ob(C) ∃ 1X : X → X, uniquely determined by:

1X ◦ φ = φ ψ ◦ 1X = ψ (3.4)

for morphisms φ,ψ, when the composition is defined.

3. Composition of morphisms is associative:

(ψ1 ◦ ψ2) ◦ ψ3 = ψ1 ◦ (ψ2 ◦ ψ3) (3.5)

An alternative definition one sometimes finds is that a category is defined by two sets

C0 (the objects) and C1 (the morphisms) with two maps p0 : C1 → C0 and p1 : C1 →
C0. The map p0(f) = x1 is the range map and p1(f) = x0 is the domain map. In

this alternative definition a category is then defined by a composition law on the set of

composable morphisms

C2 = {(f, g) ∈ C1 × C1|p0(f) = p1(g)} (3.6)

which is sometimes denoted C1p1 ×p0 C1 and called the fiber product. The composition law

takes C2 → C1 and may be pictured as the composition of arrows. If f : x0 → x1 and

g : x1 → x2 then the composed arrow will be denoted g ◦ f : x0 → x2. The composition

law satisfies the axioms
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1. For all x ∈ C0 there is an identity morphism in C1, denoted 1x, or Idx, such that

1xf = f and g1x = g for all suitably composable morphisms f, g.

2. The composition law is associative. If f, g, h are 3-composable morphisms then

(hg)f = h(gf).

Remarks:

1. When defining composition of arrows one needs to make an important notational

decision. If f : x0 → x1 and g : x1 → x2 then the composed arrow is an arrow

x0 → x2. We will write g ◦ f when we want to think of f, g as functions and fg when

we think of them as arrows.

2. It is possible to endow the data C0, C1 and p0, p1 with additional structures, such as

topologies, and demand that p0, p1 have continuity or other properties.

3. A morphism φ ∈ hom(C,D) is said to be invertible if there is a morphism ψ ∈
hom(D,C) such that ψ ◦ φ = 1C and φ ◦ ψ = 1D. If C and D are objects with an

invertible morphism between then then they are called isomorphic objects. One key

reason to use the language of categories is that objects can have nontrivial automor-

phisms. That is, hom(C,C) can have more than just 1C in it. When this is true then

it is tricky to speak of “equality” of objects, and the language of categories becomes

very helpful. One should be very careful about saying that two mathematical things

are “the same.” ♣Explain this really

important point

better. Give an

example where

literal equality is far

too rigid. ♣

One use of categories is that they provide a language for describing precisely notions

of “similar structures” in different mathematical contexts. For example:

1. SET: The category of sets and maps of sets

2. TOP: The category of topological spaces and continuous maps.

3. TOPH: The category of topological spaces and homotopy classes of continuous

maps.

4. MAN: The category of manifolds and maps of manifolds. (One should specify the

degree of smoothness here.)

5. GROUP: the category of groups and homomorphisms of groups.

6. AB: The (sub) category of abelian groups.

7. VECTκ: The category of finite-dimensional vector spaces over a field κ. ♣Do we want to

impose finite

dimensionality? Or

introduce a category

of all vector spaces

and a subcategory

of finite-dimensional

vector spaces. ♣

When discussed in this way it is important to introduce the notion of functors and

natural transformations (morphisms between functors) to speak of interesting relationships

between categories.
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In order to state a relation between categories one needs a “map of categories.” This

is what is known as a functor:

Definition A functor between two categories C1 and C2 consists of a pair of maps Fobj :

Obj(C1) → Obj(C2) and Fmor :Mor(C1) →Mor(C2) so that if

x
f // y ∈ hom(x, y) (3.7)

then

Fobj(x)
Fmor(f)// Fobj(y) ∈ hom(Fobj(x), Fobj(y)) (3.8)

Moreover we require that if f1, f2 are composable morphisms then

Fmor(f1 ◦ f2) = Fmor(f1) ◦ Fmor(f2) (3.9)

and finally we require that for all objects x ∈ Obj(C1) we have

Fmor(1x) = 1Fobj(x) (3.10)

We usually drop the subscript on F since it is clear what is meant from context.

Remarks

1. Above we have described a covariant functor. A contravariant functor instead satisfies

φ2, φ1,

F (φ2 ◦ φ1) = F (φ1) ◦ F (φ2)

for any pair of composable morphisms

2. Some authors use the term homomorphism of categories.

Exercise

Using the alternative definition of a category in terms of data p0,1 : X1 → X0 define

the notion of a functor writing out the relevant commutative diagrams.

Example 1: Every category has a canonical functor to itself, called the identity functor

IdC .

Example 2: There is an obvious functor, the “forgetful functor” that forgets mathematical

structure, so we have, for example, forgetful functors from TOP, MAN and GROUP to

SET.

Example 3: Since AB is a subcategory of GROUP there is an obvious functor F :

AB → GROUP.
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Example 4: In an exercise below you are asked to show that the abelianization of a group

defines a functor G : GROUP → AB.

Example 5: Homology groups give a nice example of a functor from TOP to AB. For

example, fix a nonnegative integer k, then the functor Hk on objects is F (X) := Hk(X;Z),

and for a continuous map of spaces f : X1 → X2 we have F (f) = f∗. Similarly cohomology

groups give an example of a contravariant functor.

When there are functors both ways between two categories we might ask whether they

might be, in some sense, “the same.” But saying precisely what is meant by “the same”

requires some care.

Definition If C1 and C2 are categories and F1 : C1 → C2 and F2 : C1 → C2 are two

functors then a natural transformation (a.k.a. a morphism of functors) τ : F1 → F2 is a

rule which, for every X ∈ Obj(C1) assigns an arrow τX : F1(X) → F2(X) so that, for all

X,Y ∈ Obj(C1) and all f ∈ hom(X,Y ),

τY ◦ F1(f) = F2(f) ◦ τX (3.11)

Or, in terms of diagrams.

F1(X)
F1(f) //

τX
��

F1(Y )

τY
��

F2(X)
F2(f) // F2(Y )

(3.12)

Note that it makes sense to compose natural transformations: If τ : F1 → F2 and

τ ′ : F2 → F3 are morphisms of functors then (τ ′◦τ)X is the morphism from F1(X) → F3(X)

given by composing the morphisms τX : F1(X) → F2(X) and τ ′X : F2(X) → F3(X). A

natural transformation τ : F1 → F2 such that there exists another natural transformation

τ ′ : F2 → F1 such that

(τ ′ ◦ τ)X = 1F1(X) (τ ◦ τ ′)X = 1F2(X) (3.13)

is called an isomorphism of functors.

Example: A good example of various natural transformations are various cohomology

operations. For example the cup product gives a natural transformation from Hk to H2k.

(This is related to, but not the same as the cohomology operation known as a “Steenrod

square.” ) ♣CHECK!! ♣

Definition Two categories are said to be equivalent if there are functors F : C1 → C2
and G : C2 → C1 together with isomorphisms (via natural transformations) FG ∼= IdC2
and GF ∼= IdC1 . (Note that FG and IdC2 are both objects in the category of functors

FUNCT(C2, C2) so it makes sense to say that they are isomorphic.) ♣Explain in the

context of the

following examples

why a definition of

equivalence of

categories based on

GF = IdC1
etc. is

too restrictive. ♣– 12 –



Many important theorems in mathematics can be given an elegant and concise formu-

lation by saying that two seemingly different categories are in fact equivalent. Here is a

(very selective) list: 1

Example 1: Consider the category with one object for each nonnegative integer n and the

morphism space GL(n, κ) of invertible n × n matrices over the field κ. These categories

are equivalent. That is one way of saying that the only invariant of a finite-dimensional

vector space is its dimension.

Example 2: The basic relation between Lie groups and Lie algebras the statement that the

functor which takes a Lie group G to its tangent space at the identity, T1G is an equivalence

of the category of connected and simply-connected Lie groups with the category of finite-

dimensional Lie algebras.

Example 3: Covering space theory is about an equivalence of categories. On the one

hand we have the category of coverings of a pointed space (X,x0) and on the other hand

the category of topological spaces with an action of the group π1(X,x0). Closely related

to this, Galois theory can be viewed as an equivalence of categories.

Example 4: As we will see below, the category of unital commutative C∗-algebras is

equivalent to the category of compact Hausdorff topological spaces. This is known as

Gelfand’s theorem.

Example 5: Similar to the previous example, an important point in algebraic geometry

is that there is an equivalence of categories of commutative algebras over a field κ (with

no nilpotent elements) and the category of affine algebraic varieties.

Example 6: Pontryagin duality is a nontrivial self-equivalence of the category of locally

compact abelian groups (and continuous homomorphisms) with itself.

Example 7: A generalization of Pontryagin duality is Tannaka-Krein duality between the

category of compact groups and a certain category of linear tensor categories. (The idea

is that, given an abstract tensor category satisfying certain conditions one can construct a

group, and if that tensor category is the category of representations of a compact group,

one recovers that group.)

Example 8: The Riemann-Hilbert correspondence can be viewed as an equivalence of

categories of flat connections (a.k.a. linear differential equations, a.k.a. D-modules) with

their monodromy representations. ♣This needs a lot

more explanation.

♣

In physics, the statement of “dualities” between different physical theories can some-

times be formulated precisely as an equivalence of categories. One important example of

1I thank G. Segal for a nice discussion that helped prepare this list.
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this is mirror symmetry, which asserts an equivalence of (A∞)-) categories of the derived

category of holomorphic bundles on X and the Fukaya category of Lagrangians on X∨.

But more generally, nontrivial duality symmetries in string theory and field theory have a

strong flavor of an equivalence of categories.

Exercise

Give an example to show that equation (3.10) does not follow from (3.10).

Exercise Playing with natural transformations

a.) Given two categories C1, C2 show that the natural transformations allow one to

define a category FUNCT(C1, C2) whose objects are functors from C1 to C2 and whose

morphisms are natural transformations. For this reason natural transformations are often

called “morphisms of functors.”

b.) Write out the meaning of a natural transformation of the identity functor IdC to

itself. Show that End(IdC), the set of all natural transformations of the identity functor

to itself is a monoid.

Exercise Freyd’s theorem

A “practical” way to tell if two categories are equivalent is the following:

By definition, a fully faithful functor is a functor F : C1 → C2 where Fmor is a bijection

on all the hom-sets. That is, for all X,Y ∈ Obj(C1) the map

Fmor : hom(X,Y ) → hom(Fobj(X), Fobj(Y )) (3.14)

is a bijection.

Show that C1 is equivalent to C2 iff there is a fully faithful functor F : C1 → C2 so that

any object α ∈ Obj(C2) is isomorphic to an object of the form F (X) for some X ∈ Obj(C1).
c.) Show that the category of finite-dimensional vector spaces over C is equivalent to

the category

Exercise

As we noted above, there is a functor AB → GROUP just given by inclusion.

a.) Show that the abelianization map G → G/[G,G] defines a functor GROUP →
AB.
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b.) Show that the existence of nontrivial perfect groups, such as A5, implies that this

functor cannot be an equivalence of categories.

In addition to the very abstract view of categories we have just sketched, very concrete

objects, like groups, manifolds, and orbifolds can profitably be viewed as categories.

One may always picture a category with the objects constituting points and the mor-

phisms directed arrows between the points as shown in Figure 4.

Figure 4: Pictorial illustration of a category. The objects are the black dots. The arrows are

shown, and one must give a rule for composing each arrow and identifying with one of the other

arrows. For example, given the arrows denoted f and g it follows that there must be an arrow

of the type denoted f ◦ g. Note that every object x has at least one arrow, the identity arrow in

Hom(x, x).

As an extreme example of this let us consider a category with only one object, but

we allow the possibility that there are several morphisms. For such a category let us look

carefully at the structure on morphisms f ∈ Mor(C). We know that there is a binary

operation, with an identity 1 which is associative.

But this is just the definition of a monoid!

If we have in addition inverses then we get a group. Hence:

Definition A group is a category with one object, all of whose morphisms are invertible.

To see that this is equivalent to our previous notion of a group we associate to each

morphism a group element. Composition of morphisms is the group operation. The in-

vertibility of morphisms is the existence of inverses.

We will briefly describe an important and far-reaching generalization of a group af-

forded by this viewpoint. Then we will show that this viewpoint leads to a nice geometrical

construction making the formulae of group cohomology a little bit more intuitive.
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3.2 Groupoids

Definition A groupoid is a category all of whose morphisms are invertible.

Note that for any object x in a groupoid, hom(x, x) is a group. It is called the auto-

morphism group of the object x.

Example 1. Any equivalence relation on a set X defines a groupoid. The objects are the

elements of X. A morphism is an equivalence relation a ∼ b. Composition of morphisms

a ∼ b with b ∼ c is a ∼ c. Clearly, every morphism is invertible.

Example 2. Consider time evolution in quantum mechanics with a time-dependent Hamil-

tonian. There is no sense to time evolution U(t). Rather one must speak of unitary evolu-

tion U(t1, t2) such that U(t1, t2)U(t2, t3) = U(t1, t3). Given a solution of the Schrodinger

equation Ψ(t) we may consider the state vectors Ψ(t) as objects and U(t1, t2) as morphisms.

In this way a solution of the Schrodinger equation defines a groupoid.

Example 3. Let X be a topological space. The fundamental groupoid π≤1(X) is the

category whose objects are points x ∈ X, and whose morphisms are homotopy classes of

paths f : x→ x′. These compose in a natural way. Note that the automorphism group of

a point x ∈ X, namely, hom(x, x) is the fundamental group of X based at x, π1(X,x).

Example 4. Gauge theory: Objects = connections on a principal bundle. Morphisms

= gauge transformations. This is the right point of view for thinking about some more

exotic (abelian) gauge theories of higher degree forms which arise in supergravity and string

theories.

Example 5. In the theory of string theory orbifolds and orientifolds spacetime must be

considered to be a groupoid.

Exercise

Let X be a set with an action of a group G. Show that there is a natural groupoid

(sometimes denoted X//G) such that the set of isomorphism classes of objects is naturally

identified with the quotient set X/G.

Exercise

For a group G let us define a groupoid denoted G//G whose objects are group elements

Obj(G//G) = G and whose morphisms are arrows defined by

g1
h // g2 (3.15)
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iff g2 = h−1g1h. This is the groupoid of principal G-bundles on the circle.

Draw the groupoid corresponding to S3.

3.3 Tensor Categories

To define a TFT we need the further notion of a tensor category. Note that given a category

C, the Cartesian products C × C, C × C × C, ... are also categories in a natural way.

Definition A tensor category (also known as a monoidal category) is a category with

a functor ⊗ : C × C → C such that there is an isomorphism A of the two functors

⊗ ◦ ⊗12 : C × C × C → C and ⊗ ◦ ⊗23 : C × C ×C → C satisfying the pentagon identity,

and such that there is an identity object 1C together with natural transformations of

functors C → C:

ιL : 1C ⊗ · → Id (3.16)

ιR : · ⊗ 1C → Id (3.17)

These data are subject to a number of natural compatibility conditions: ♣Do we require the

existence of a dual

object? ♣To give an example of the compatibility conditions we consider the the first condition

on the natural transformation A: for all objects x, x′, x′′ in C0 we have an isomorphism:

Ax,x′,x′′ : (x⊗ x′)⊗ x′′ → x⊗ (x′ ⊗ x′′) (3.18)

which satisfies the pentagon identity: ♣FIX xy matrix ♣

((x1 ⊗ x2)⊗ x3)⊗ x4

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐

// (x1 ⊗ x2)⊗ (x3 ⊗ x4)

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯

(x1 ⊗ (x2 ⊗ x3))⊗ x4

--❩❩❩❩❩❩
❩❩❩❩❩

❩❩❩❩❩
❩❩❩❩❩

❩❩❩❩❩
❩❩❩❩❩

❩
x1 ⊗ (x2 ⊗ (x3 ⊗ x4))

x1 ⊗ ((x2 ⊗ x3)⊗ x4))

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

(3.19)

It is then a theorem (the “coherence theorem”) that x0 ⊗ x1 · · · ⊗ xn is well-defined up

to isomorphism no matter how one brackets the products. The conditions on the natural

transformations ιL and ιR are fairly obvious.

Example The category VECTκ is a tensor category. What is the tensor unit 1VECTκ ?

Let σ : C × C → C × C be the exchange functor that switches factors on objects and

morphisms.

Definition A symmetric monoidal category is a monoidal category with an isomorphism Ω

of ⊗◦ σ with ⊗ which squares to one. Again, there are many rather obvious compatibility

conditions with A, ιL and ιR.
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Again, this means that for all objects x, y we have an isomorphism

Ωx,y : x⊗ y → y ⊗ x (3.20)

so that Ωy,x ◦Ωx,y = 1x⊗y.

Remark: An important generalization for conformal field theory and for quasiparticle

statistics in 2+1 dimensions is the notion of a braided tensor category where there is an

isomorphism Ω, but it does not square to 1.

Finally, we need the notation of a (symmetric) tensor functor. This is a functor F :

C → D between symmetric tensor categories together with an isomorphism 1D → F (1C)

and an isomorphism of the two functors C × C → D given by F ◦ ⊗ and ⊗ ◦ F × F .

3.4 Other Tensor Categories

3.5 Z2-graded vector spaces

A Z2 graded vector space is a vector space with a decomposition V = V0 ⊕ V1, where the

subscripts are understood as elements of Z2. In the category of Z2-graded vector spaces

we can introduce two different kinds of tensor categories. For Z2 graded vector spaces we

can and will use the graded tensor product. Then there is an isomorphism

Ω : V ⊗W →W ⊗ V (3.21)

but we must be careful to apply the Koszul sign rule: If v,w are homogeneous elements

then

Ω(v ⊗ w) = (−1)|v|·|w|w ⊗ v (3.22)

This rule has the important consequence that if we have any collection (Vα)α∈I of super-

vector spaces (where the subscript α denotes different supervector spaces and should not

be confused with the Z2 grading) then there is a single canonical tensor product

⊗αVα

without the need to specify any ordering.

3.6 Category Of Representations Of A Group

Let G be a group. Then then there is a category whose objects are representations and

morphisms are intertwiners of representations (i.e. maps between representations that

commute with the G action.

Now let G be a compact group and restrict to the subcategory of finite-dimensional

representations. Call this Rep(G). This is a tensor category. Moreover, there is a set of

“simple” objects, the irreducible representations Vλ such that all objects are isomorphic to

direct sums of simple objects. The tensor functor is determined by the “fusion rules”

Vλ ⊗ Vµ ∼= Dρ
λµ ⊗ Vρ (3.23)

where Dρ
λµ is a finite-dimensional real vector space of degeneracies.
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4. Bordism

4.1 Unoriented Bordism: Definition And Examples

Here we give the official definition of a bordism:

Definition Let Y0, Y1 be two closed (d− 1)-dimensional manifolds. A bordism from Y0 to

Y1 is

1. A d-manifold X together with a disjoint partition of its boundary:

∂X = (∂X)0 ∐ (∂X)1 (4.1)

2. A pair of embeddings θ0 : [0, 1) × Y0 → X and θ1 : (−1, 0] × Y1 → X, which are

diffeomorphisms onto their images such that the restrictions θ0 : {0} × Y0 → (∂X)in
and θ1 : {0} × Y1 → (∂X)out are homeomorphisms.

The reason for the extra level of complexity in this definition compared to what we said

earlier is that this extra data facilitates the gluing of bordisms to produce a new bordism.

It is easy to see that bordism is an equivalence relation and that disjoint union defines

an abelian group structure on the space of bordism equivalence classes Ωn of n-manifolds.

The zero element of the abelian group is the equivalence class of the empty set ∅n and any

closed n-manifold X is its own inverse since [0, 1] ×X can be considered as a bordism of

X ∐X with ∅. So 2[X] = 0 in Ωn.

Examples

1. There is only one nontrivial zero-dimensional manifold, the point, and we have just

seen that the disjoint union of two points is null-bordant, hence Ω0
∼= Z/2Z. Note

that if we dropped the manifold condition on X then the letter Y would define a

bordism of two points (equivalent to zero) with one point, and hence the bordism

group would be trivial. Thus, the manifold condition is important.

2. Ω1 = 0, because the only closed connected one-manifold is the circle, and this clearly

bounds a disk.

3. One can show that Ω2
∼= Z/2Z with generator [RP2]. Here is the argument (taken

from D. Freed’s notes “Bordism Old And New,” on his homepage). The classification

of compact surfaces shows that they are characterized by two invariants: Orientability

and the Euler character. Oriented surfaces are clearly bordant to zero. Note well! The

Eulcer character is not a bordism invariant! Unorientable surfaces are all obtained by

connected sums with RP2. The connected sum of two copies of RP2 is a circle bundle

over the circle. Take [0, 1] × S1 and quotient by {(0, z)} ∼ {(1, z̄)} (where we view

S1 as the unit complex numbers). Note that we can replace the S1 by the disk D2

and use the same identification {(0, z)} ∼ {(1, z̄)} to produce a bordism of the Klein

bottle to zero. Next we claim that RP2 descends to a nontrivial bordism class. For, if

it had a bordism to zero ∂X = RP2 then triangulation of X gives a triangulation of
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the double X ∪RP2 X with Euler character 2χ(X)− 1. On the other hand, the Euler

character of a closed 3-fold is zero. Now, the general connected unorientable surface

is a connected sum of n copies of RP2. Separate these in pairs and choose a bordism

of the pairs to zero to identify the bordism class with an element nmod2 of Z/2Z.

4. To describe all bordism groups Ωd it is useful to note that Cartesion product of

manifolds is compatible with the bordism equivalence relation and this makes Ω∗
∼=

∐d≥0Ωd into a Z-graded ring, with the grading given by the dimension. Thom proved

that

Ω∗
∼= R[x2, x4, x5, x6, x8, x9, x10, x11, x12, x13, x14, x16, x17, ...] (4.2)

where R = Z/2Z and there is precisely one generator xk of degree k so long as k is

not of the form 2j − 1. The even degree generators are the bordism classes of RPk

and the odd ones are a quotient of (Sm × CPℓ)/Z2 where the Z2 acts as (antipodal

map, complex conjugation).

5. Moreover, to any manifold there is a series of cohomology classes wi(Y ) ∈ H i(Y ;Z/2Z)

known as Stiefel-Whitney classes. They are associated with the twisting of the tan-

gent bundle. (For example, w1(Y ) measures whether Y is orientable or not.) The

Stiefel numbers of a manifold is the sequence of elements of Z/2Z:

〈wi1(Y ) ∪ · · ·wik(Y ), [Y ]〉 (4.3)

and two manifolds are bordant iff all their Stiefel numbers agree. For the last two

items see the excellent book by Milnor and Stasheff, Characteristic Classes. 2

4.2 The Bordism Category Bord〈d−1,d〉

Now, we can define a bordism category Bord〈d−1,d〉.

1. Objects: Closed (d− 1)-manifolds, usually denoted Y .

2. hom(Y0, Y1) is the set of homeomorphism classes of bordisms X : Y0 → Y1. A

homeomorphism of bordismsX,X ′ is a homeomorphism of manifolds with boundaries

which takes (∂X)in → (∂X ′)in and commutes with the collars θ0, θ1.

The composition of morphisms in the bordism category is by gluing. Since we identify

bordisms by homeomorphism the bordism X = [0, 1] × Y from Y → Y is the identity

morphism 1Y . The category Bord〈d−1,d〉 is a symmetric tensor category: The tensor product

is disjoint union, and the empty manifold ∅d−1 is the tensor unit.

4.3 The Oriented Bordism Category BordSO〈d−1,d〉

We are often interested in oriented bordism.

To define an oriented bordism we modify the definition of bordism slightly. Now,

Y0, Y1,X are all oriented. The embeddings θ0 and θ1 are required to be orientation pre-

serving and we identify bordisms X and X ′ by oriented diffeomorphisms.

2If we cover the chapter on characteristic classes we will prove these two results.
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The condition that θ0 and θ1 are orientation preserving must be treated with care. Note

that if we are given a sum of oriented real vector spaces there is no natural orientation on

the direct sum. However, if we are given an exact sequence

0 → V1 → V2 → V3 → 0 (4.4)

Then there is a canonical isomorphism DETV3 ∼= DETV1 → DETV2 so if two of the three

spaces are oriented, we can determine an orientation on the third by requiring this canonical

isomorphism to be orientation preserving. In particular, an orientation on a submanifold

and the ambient manifold determines an orientation on the normal bundle. When defining

θ0, θ1 we orient [0,+1) and (−1, 0] with the standard orientation on R, + ∂
∂x and then we

take the product orientation on [0,+1) × Y and (−1, 0]× Y .

Definition To every oriented bordism X : Y0 → Y1 there is a dual oriented bordism

X∨ : Y ∨
1 → Y ∨

0 . Let us write it out carefully, since it can cause confusion. Y ∨ denotes Y

with the opposite orientation. X∨ is the manifold with the same orientation. However, we

exchange ingoing and outgoing boundaries. Moreover,

θ∨0 (t, y1) = θ1(−t, y1) ∀t ∈ [0,+1) & y1 ∈ Y1 (4.5)

θ∨1 (t, y0) = θ0(−t, y0) ∀t ∈ (−1, 0] & y0 ∈ Y0 (4.6)

Note that the relation between θ∨0 and θ1 involves an orientation-reversing transformation

t → −t and hence we require orientation reversal on Y since X∨ has the same orientation as

X. Forgetting about orientations we also obtain a notion of dual bordism for the unoriented

case.

Once again we can define oriented bordism groups ΩSO
n , for n ≥ 0, the oriented bordism

ring ΩSO
∗ and the oriented bordism category BordSO〈d−1,d〉.

Figure 5: Five connected bordisms in the oriented bordism category. Ingoing boundaries are on

the left and outgoing boundaries are on the right.

Example 1 Let us consider the oriented bordism group ΩSO
0 . There are two kinds of points

pt+ and pt−, and five basic connected oriented bordisms, shown in figure 5. Accordingly,

ΩSO
0

∼= Z. The isomorphism takes the difference of the number of + and − points.
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Example 2 In dimensions 1 and 2 we again have zero bordism groups.

A summary of the main factors on the oriented bordism ring ΩSO
∗ is the following.

(See Milnor and Stasheff. Several further references are provided in Freed’s notes, near

Theorem 2.24.) 3

Theorem

1. All torsion elements in ΩSO
∗ have order two.

2. ΩSO
∗ /torsion is a ring with one generator in degrees 4k, k ≥ 1.

3. There is an isomorphism

ΩSO
∗ ⊗Q ∼= Q[y4, y8, · · · ] (4.7)

under which y4k corresponds to the oriented bordism class of CP2k.

4. There are characteristic classes of the tangent bundle of Y , the Stiefel-Whitney classes

wi(Y ) ∈ H i(Y ;Z2) and the Pontryagin classes pi(Y ) ∈ H4i(Y ;Z) (the latter depend-

ing on the orientation of Y ) such that Y1 and Y2 and bordant iff all the Stiefel-Whitney

and Pontryagin numbers are the same. We defined the Stiefel-Whitney classes above

and the Pontryagin numbers are similarly the collection

〈pi1(Y ) ∪ · · · ∪ pik(Y ), [Y ]〉 ∈ Z (4.8)

4.4 Other Bordism Categories

We can go on an consider other forms of bordism:

1. Framed bordism. (Closely related to the stable homotopy of spheres, by the

Pontryagin-Thom construction.)

2. Spin and Pin± bordism.

3. Riemannian bordism.

Accordingly, there are generalizations of the bordism cateogry. In general, if we take

into account a structure S we denote the bordism category by BordS〈d−1,d〉, where it is

understood that the bordisms are identified by homeomorphisms preserving the structure

S. Thus, the oriented bordism category is denoted by BordSO〈d−1,d〉 (because the structure

group of the tangent bundle is SO(d−1) and SO(d), respectively). Similarly we can define

a Riemannian bordism category BordRiem
〈d−1,d〉, and so on.

5. The Definition Of Topological Field Theory

The definition of a topological field theory can now be given. Let S be a structure on the

tangent bundle and C any symmetric monoidal category. Then

Definition A d-dimensional topological field theory of S-manifolds is a symmetric tensor

functor from the tensor category BordS〈d−1,d〉 to some symmetric tensor category C.

3If we cover the chapter on characteristic classes we will prove some of these results.
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The example we started out with is the case where S is empty and the target category

is VECTκ for some field κ, so a topological field theory is a tensor functor from Bord〈d−1,d〉

to VECTκ.

For examples of this more general notion:

1. Use the identity functor! This gives what Michael Freedman calls the “lazy TFT”

and it leads to a pairing of manifolds with very interesting positivity properties. See

[18].

2. We can generalize this as follows: Let K be a closed manifold of dimension k. Then

Cartesian product with K defines a symmetric tensor functor tK

tK : Bord〈d−1,d〉 → Bord〈d+k−1,d+k〉 (5.1)

where tK(Y ) = Y ×K, etc. If F is a (d+ k)-dimensional TFT then we can compose

F ◦ tK to obtain a d-dimensional TFT denoted FKK . This is the topological field

theory analog of “Kaluza-Klein compactification”. For example the state space on

(d− 1)-manifolds is

FKK(Y ) := F (Y ×K) (5.2)

3. If there are sufficiently natural constructions of quantum field theories depending on

some geometric category then one can define a TFT whose values are moduli spaces

of vacua of the quantum field theory. This is done for the case of a target category

of holomorphic symplectic varieties in [37].

6. Some General Properties

Let us deduce some simple general facts following from the above simple remarks.

For the moment take the target category to be SVECTκ, the category of super-vector

spaces over the field κ. (If one prefers, just ignore the signs and work with the category of

vector spaces.)

First note that ifX is closed then it can be regarded as a bordism from ∅ to ∅. Therefore
F (X) must be a linear map from κ to κ. But any linear map T ∈ Hom(κ, κ) must be of

the form

T (z) = tz (6.1)

for some scalar t ∈ κ. That is, any linear map κ→ κ is canonically associated to an element

of the ground field. For the case of F (X) : κ→ κ we call that number the partition function

of X, and denote it Z(X).

There is one bordism which is distinguished, namely [0, 1]× Y . This corresponds to a

linear map P : H(Y ) → H(Y ). In Euclidean field theory the amplitude one would associate

to a cylindrical spacetime [0, 1] × Y is just

exp[−TH]
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where H is the Hamiltonian, and T is the Euclidean time interval. Notice that this requires

a metric. A change of the length of the cylinder leads to a change in T .

Evidently, by the axioms of topological field theory, P 2 = P and therefore we can

decompose

H(Y ) = PH(Y )⊕ (1− P )H(Y ) (6.2)

All possible transitions are zero on the second summand since, topologically, we can always

insert such a cylinder. It follows that it is natural to assume that

F (Y × [0, 1]) = IdH(Y ) (6.3)

One can think of this as the statement that the Hamiltonian is zero. Note that this renders

the amplitude independent of the length of the cylinder.

Figure 6: Bending the cylinder to define ∆Y and QY .

Now, let us consider the oriented bordism category, so Y is oriented. Let Y ∨ denote

Y with the opposite orientation. The bordism (6.3) is closely related to the bordism

∅ → Y ∨ ∐ Y thus defining a map

∆Y : κ→ H(Y ∨)⊗H(Y ) (6.4)

and also to a bordism Y ∐ Y ∨ → ∅ thus defining a quadratic form:

QY : H(Y )⊗H(Y ∨) → κ (6.5)
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Figure 7: Composing ∆⊗ 1 and 1⊗Q in a way that gives P .

Let us now compose these bordisms we get the identity map as in 7. It then follows

from some linear algebra that Q is a nondegenerate pairing, so we have an isomorphism to

the linear dual space:

H(Y ∨) ∼= H(Y )∨,

under which Q is just the dual pairing. (On the left Y ∨ is Y is the reversal of orientation,

and on the right H(Y )∨ is the linear dual space.)

To prove this choose a basis {φi} for H(Y ) and a basis {ψa} for H(Y ∨). Then we must

have

∆Y (1) =
∑

i,a

∆aiψa ⊗ φi (6.6)

The S-diagram shows that

φ→
∑

i,a

∆aiQ(φ,ψa)φi (6.7)

must be the identity map, so, choosing φ = φj and defining QY (φj , ψa) := Qja we must

have ∑

a

∆aiQja = δij (6.8)

In addition to this we can exchange the roles of Y and Y ∨. Including signs for the Z2-graded

case (with a homogeneous basis) we get
∑

i

∆ai(−1)(|a|+|b|)|i|Qib = δab (6.9)
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It follows that Q is invertible, hence the pairing is nondegenerate. This implies hence there

is an isomorphism H(Y ∨) ∼= H(Y )∨ as asserted above. Moreover, choosing an isomorphism

so that Qi,a = δi,a, now labeling the dual basis by an index i and changing notation to

ψi → ψi in this basis we have simply

∆Y (1) =
∑

i

ψi ⊗ φi (6.10)

Now, the result (6.10) brings up an important point. It is not obvious that (6.10) will

converge if H(Y ) is infinite dimensional. In fact, even if H(Y ) is a normed vector space, or

a Hilbert space, so that convergence of infinite sums of vectors does make sense, since φi
and φi are dual bases the sum will not converge if H(Y ) is infinite dimensional. Therefore,

the space of states H(Y ) must be finite-dimensional!

There are many examples of interesting “topological field theories” where H(Y ) is

decidedly infinite-dimensional. We will comment on this below.

Figure 8: Composing QY ∨ with ∆Y gives the super dimension of H(Y ) in the Z2-graded case,

and dimH(Y ) = Z(Y × S1) in the ungraded case.

Now consider the diagram in 8. On the one hand this is just the partition function

Z(Y ×S1). On the other hand, the linear map κ→ κ must be the composition QY ∨∆Y , or,

equivalently, QY ◦Ω◦∆Y : κ→ κ. From our formula for ∆Y (1) above we see that the value

Z(Y × S1) is just the dimension dimH(Y ), or, in the Z2-graded case, the superdimension

sdimH(Y ) = dimH(Y )0 − dimH(Y )1 (6.11)

Remarks
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1. Note that if we change the category to the category of manifolds with Riemannian

structure and we take the product Riemannian structure on Y × S1 then

Z(Y × S1) = Tre−βH (6.12)

where β is the radius of the circle and H is the Hamiltonian.

2. There are important examples of “topological field theories” of interest in the physics

literature where this condition is violated. One example is Chern-Simons theory with

noncompact gauge group. Another example is two-dimensional Yang-Mills theory

with zero area element. These are “partially defined” topological field theories. They

are only defined on a subset of objects in the bordism category. ♣Say more. ♣

3. The S-diagram argument above points the way to a definition of a dual object in a

symmetric monoidal category. A dual object x ∈ Obj(C) is one such that there exists

an object x∨ ∈ Obj(C) and morphisms δx : 1C → x⊗ x∨ and qx : x∨ ⊗ x→ 1C such

that

x
ιL(x)

−1

// 1C ⊗ x
δx⊗1x// x⊗ x∨ ⊗ x

1x⊗qx // x⊗ 1C
ιR(x) // x (6.13)

and (omitting the isomorphisms with multiplication by the tensor unit, for simplicity)

x∨
1x∨⊗δx// x∨ ⊗ x⊗ x∨

qx⊗1x∨ // x∨ (6.14)

are the identity morphisms.

Figure 9: A state created by a bordism of ∅ to Y .
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Figure 10: If a closed manifold X is cut along a codimension one submanifold Y that divides X

into two pieces X1 and X2 then there are two associated states ψX1
∈ H(Y ) and ψX2

∈ H(Y ∨),

and the value of the partition function Z(X) may be viewed as the natural contraction of these

states using the nondegenerate pairing QY .

Exercise Mapping cylinders and characters of the diffeomorphism group

Let f ∈ Diff(Y ) and consider the mapping cylinder Mf (Y ) = ([0, 1]×Y )/ ∼ where we

identify (0, y) with (1, f(y)). Recall that H(Y ) has a representation ρ(f) of the diffeomor-

phism group.

Show that

Z(Mf (Y )) = TrH(Y )ρ(f) (6.15)

is a character of the diffeomorphism group.

In fact, ρ(f) only depends on the image of f in the mapping class group ΓY : This is ♣Explain in detail

how the

independence of

ρ(f) under isotopy

of f follows from

the axioms. ♣

defined as follows: The diffeomorphisms isotopic to the identity form a normal subgroup

Diff0(Y ) of the full diffeomorphism group and ΓY := Diff(Y )/Diff0(Y ).

Exercise Hartle-Hawking sates and partition functions as inner products

a.) Show that any bordism of X : ∅ → Y defines a state in the space H(Y ). (See

Figure 9.) The functor of the topological field theory defines a map F (X) : κ → H(Y ),

and we can define,

ψX := F (X)(1) ∈ H(Y ) (6.16)
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This simple observation is very important in physics.

The state, of course, depends on the (topological) details of the bordism. For exam-

ple, any Riemann surface with a single hole defines a bordism of the circle to zero and

there are many such topologies. This is a primitive version of the notion of the “Hartle-

Hawking” state in quantum gravity. It is also related to the state/operator correspondence

in conformal field theory.

b.) Show that, in the oriented bordism category, by exchanging in and out boundaries

(but not the orientation of X) the same manifold defines a bordism X∨ : −Y → ∅, and
hence a linear functional on H(Y ∨).

c.) Show that applying this linear functional to ∆Y (1) gives back the original vector

in H(Y ) associated to X.

d.) Show that if a closed manifold X is cut along an oriented manifold Y to produce

X1 and X2 then Z(X) can be interpreted as a contraction of a state ψX1 ∈ H(Y ) and

ψ∨
X2

∈ H(Y ∨):

Z(X) = 〈ψ∨
X2
, ψX1〉 (6.17)

See Figure 10.

6.1 Unitarity

In unitary theories, and certainly in the axioms of quantum mechanics, one wants the

state space to be a complex Hilbert space, and F (X) for a bordism X should be a unitary

operator.

Now, in general, a sesquilinear form on a complex vector space V is a linear map

V → V̄ ∨. Therefore, in a unitary theory changing orientation of Y complex conjugates the

Hilbert space

H(Y ∨) ∼= H̄(Y ) (6.18)

Moreover, in physical unitary theories there is a positivity condition on QY . If X :

Y1 → Y2 is a bordism then, if we change the orientation of X and take the dual we get a

bordism

X̄∨ : Y2 → Y1 (6.19)

It is natural to add a condition that

F (X̄∨) = F (X)† (6.20)

In particular, changing orientation of the manifold invariant Z(X) for a closed manifold

complex conjugates the invariant.

7. One Dimensional Topological Field Theory

Consider the oriented case. Then the objects in BordSO〈0,1〉 are disjoint unions of points pt±
with + and − orientation.

The topological field theory with symmetric monoidal category C gives two objects

y± = F (pt±) with data δ and q as described above. The general object is a disjoint union
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of n± points of type pt±. The diffeomorphism group of this manifold is just Sn+ × Sn−

and it acts in a natural way on the “state space” y
⊗n+
+ ⊗ y

⊗n−
− .

Specializing to VECTκ, we get a pair of finite-dimensional vector spaces V± together

with the data mentioned above: A nondegenerate pairingQ : V+⊗V− → κ and the “inverse”

∆ : κ→ V+ ⊗ V−. As mentioned above, these constitute duality data for V− = V ∨
+ .

A good example of a physical origin of such a topological field theory is to consider

quantization of a compact symplectic manifold (M,ω).

A useful concrete example to keep in mind is M = S2 with a symplectic form

ω =
1

2~
sin θdθdφ (7.1)

where here ~ is some dimensionless normalization of the form.

In the Hamiltonian formulation of the path integral we consider paths in phase space

M . We form a path integral of the form
∫

P
[dγ]exp[iS] (7.2)

where P is a space of paths in M , [dγ] is an induced measure on the space of paths from

the symplectic form, and S is an action. There are many issues to settle in making sense

of this expressions. We will just touch on a few of them here.

If the symplectic form ω is globally exact then we can write ω = dλ where, in terms

of local Darboux coordinates

λ =
1

~
pdq (7.3)

A good example of this is the case M = T ∗X for some manifold X. Note that the

Hamiltonian associated with the action principle:

S[γ] =
1

~

∫

γ
pdq (7.4)

is zero.

But what if ω is not exact? (As in our above example with M = S2.) Let us suppose

first that M is simply connected. Then, if γ is a closed path we can attempt to define the

action by choosing a disk Σ ⊂M such that ∂Σ = γ and then take

SΣ[γ] :=

∫

Σ
ω (7.5)

If ω is exact this reduces to the previous definition.

Now there is a problem because there can be more than one disk bounding γ. If Σ1,Σ2

both bound γ then Σ12 := Σ1 ∪γ Σ∨
2 is a closed 2-cycle and the ambiguity in the action is

SΣ1 [γ]− SΣ2 [γ] =

∫

Σ12

ω (7.6)

So the action is not well-defined. However, all we need for the quantum path integral is

that the weight

exp[iS] = exp[i

∫

Σ
ω] (7.7)
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should be well-defined. The ambiguity in the exponentiated action is:

exp[iS1]/exp[iS2] = exp[i

∫

Σ12

ω] (7.8)

The LHS will be one - and there will be an unambiguous weight in the path integral - if

the periods of ω are integral multiples of 2π. Notice that this quantizes “1/~” to be an

integer.

Now, suppose that γ is not closed. Let us consider a path space

P = {γ : [0, 1] →M |γ(0) = x0 & γ(1) = x1} (7.9)

(We assume x0, x1 are in the same path-connected component of M .) Choose a basepoint

path γ0 in P. Then any other path homotopic to γ0 will be such that γ−1
0 ∗ γ bounds a

disk Σ. We then use this data to define an action as

Sγ0,Σ[γ] :=

∫

Σ
ω. (7.10)

For a fixed basepath the exponentiated action will be independent of the choice of Σ if the

periods of ω are in 2πZ. If we change the basepath γ0 to another one in the same homotopy

class then the action only shifts by a constant, and in fact with ω quantized as above, the

choice will again not matter in the exponentiated action.

If M is not simply connected further considerations are needed because there will

be paths in P not in the path-component of γ0 even when x0, x1 are in the same path

component of M . One way to deal with this is to work on the universal cover M̃ . It is best

to couple the theory to a flat connection on M to keep track of the fundamental group. ♣EXPLAIN

MORE! ♣
An important special case of the quantization above is the case of coadjoint orbits of a

compact simple Lie group defined by integral weights λ ∈ g∗. There is a natural integrally-

quantized symplectic form - the Kirillov-Kostant symplectic form, and quantization gives

a representation with dominant weight vector a suitable Weyl rotation of λ. Pursuing this

line of thought leads to a path integral interpretation of the Borel-Weil-Bott theorem. In ♣Do it later? ♣

the topological field theory the space V+ is the representation with dominant weight λ and

the space V− is the conjugate representation with anti-dominant weight −λ. The duality

data Q is the standard pairing of a representation and its conjugate to form the singlet

while ∆ is the embedding of the singlet into R⊗R∨.

8. Two Dimensional TFT And Commutative Frobenius Algebras

Some beautiful extra structure shows up when we consider the case d = 2, due to the

relatively simple nature of the topology of 1-manifolds and 2-manifolds.

We restrict attention to the oriented case. The unoriented case presents new and

interesting features related to the theory of “orientifolds.”

To begin, we restrict attention to closed (d−1)-manifolds, that is, we consider a theory

of closed strings.

In this case, the spatial (d− 1) manifolds are necessarily of the form S1∪S1∪ · · · ∪S1,

i.e. disjoint unions of n S1’s.
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The circle with have two orientations S1
±. We choose one, say ccw on the boundary

of the unit disk and set C := H(S1
+). Then, as usual we have duality data for H(S1

−). We

henceforth focus on C.

H(S1 ∐ S1 ∐ · · · ∐ S1) = C⊗n

Thus, thanks to the simple topology of closed 1-manifolds, the entire theory is built from

a single vector space C.

Figure 11: Typical Riemann surface amplitude. If there are nin ingoing circles and nout outgoing

circles then the corresponding amplitude is a linear map F (X) : Cnin → Cnout .

Transition amplitudes can be pictured as in 11. We therefore get a linear map:

F (Σ) : C⊗n → C⊗m

where Σ is a Riemann surface. There are n ingoing circles and m outgoing circles.

Now, topology dictates that the vector space C in fact must carry some interesting

extra structure.
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Figure 12: The sphere with 3 holes defines m and ∆

In Figure 12 we see that the sphere with three holes defines a product

m : C ⊗ C → C

Exchanging in and out boundaries we get a coproduct:

∆ : C → C ⊗ C

In 13 we see that there is a trace (a.k.a a counit):

θ : C → κ

In addition, in Figure 13 we see that there is a map κ→ C. This is completely determined

by its value on 1 ∈ κ. The image of 1 ∈ κ in C under this map is denoted 1C , and this

element indeed functions as a unit for the multiplication m. From the diagram in Figure

14 we see that the image of 1 must be in fact a unit for the multiplication.

Moreover, from 15 we see the multiplication is associative.

We can now consider the compositions θ ◦m : C ⊗ C → κ and ∆ ◦ UNIT : κ→ C ⊗ C.
Note well that these operations are different from the duality data Q,∆Y discussed before

because they involve the same space C, rather than C and its dual! However, the same

S-diagram argument shows that the quadratic form

Q(φ1, φ2) := θ(φ1φ2) (8.1)
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Figure 13: The trace map and the unit.

is nondegenerate.

Finally, we can make a diffeomorphism of the disk with 2 holes, holding the outer circle

fixed and rotating the inner two circles. This shows that the product must be (graded)

commutative.

The algebraic structure we have discovered is known as a Frobenius algebra.

Definition. A vector space V is an associative algebra if there is a multiplication v1v2 ∈ V

satisfying

1. v1(v2v3) = (v1v2)v3
2. (v1 + v2)v3 = v1v3 + v2v3 v3(v1 + v2) = v3v1 + v3v2
3. α(v1v2) = (αv1)v2 = v1(αv2)

for all vectors v1, v2, v3 ∈ V and all scalars α in the ground field.

Definition A Frobenius algebra A is an associative algebra over a field k with a trace

θ : A → k such that the quadratic form A ⊗ A → k given by a ⊗ b → θ(ab) defines a

nondegenerate bilinear form on A.

What we have shown at this point is that H(S1) is a (graded) commutative Frobenius

algebra.

The data of the Frobenius algebra is sufficient to compute arbitrary amplitudes: Any

oriented surface can be decomposed into the basic building blocks we have used above.

However, the same surface can be decomposed in many different ways. When we have
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Figure 14: Proof that 1C really is a unit.

different decompositions we get algebraic relations on the basic data m,∆, θC . At this

point you might well ask: “Can we get more elaborate relations on the algebraic data by

cutting up complicated surfaces in different ways?” That is, are we required to consider

only special kinds of Frobenius algebras? The beautiful answer is: “No, the above relations

are the only independent relations, so, conversely, any (graded) commutative Frobenius

algebra defines an oriented d=2 TFT.” We call this statement the “sewing theorem.”

Exercise

a.) If A is an algebra, then it is a module over itself, via the left-regular representation

(LRR). a→ L(a) where

L(a) · b := ab

Show that if we choose a basis ai then the structure constants

aiaj = c k
ij ak

define the matrix elements of the LRR:

(L(ai))
k

j = ckij

b.) If A is an algebra, the opposite algebra is the algebra with the new product

v1 ◦ v2 := v2v1 (8.2)
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Figure 15: Associativity.

Show that A is a bimodule over A⊗Ao where Ao is the opposite algebra.

c.) Show that if (A, θ) is a Frobenius algebra then the dual algebra A∗ is a left A-

module which is isomorphic to A as a left A-module.

Exercise

a.) Show the equality of maps C ⊗ C → C ⊗ C

(Id⊗m) ◦ (∆ ⊗ Id) = ∆ ◦m = (m⊗ Id) ◦ (Id⊗∆) (8.3)

b.) Show that

(Id⊗ θ) ◦∆ = Id = (θ ⊗ Id) ◦∆ (8.4)

8.1 The Sewing Theorem

The Sewing Theorem. To give a 2d topological field theory is equivalent to giving a

commutative associative finite dimensional Frobenius algebra.
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Figure 16: Commutativity. The outer boundary of the disk is held fixed and the two inner

boundaries are rotated in a basic braiding action. In order for the diffeomorphism of the coboundary

to be one on the ingoing circles we must compose with Ω, so in the supercase we will have graded

commutativity: φ1φ2 = (−1)degφ1 degφ2φ2φ1.

Proof: In one direction the theorem is obvious. Given a 2d topological field theory one

recovers a commutative Frobenius algebra as described above.

What is not immediately obvious is the converse. Given a commutative Frobenius

algebra (C, θ) one defines the functor on the special surfaces as above, but in principle

further restrictions on the data could arise from consistency of gluing.

Consider an oriented surface with boundary Σ. Different sewings correspond to dif-

ferent choices of “time-slicings.” We can make this precise by associating the time-slicings

with level sets of a suitable smooth function f : Σ → R, as in 17. We can assume Σ is an

orientable surface in R3 with boundary circles unknotted and unlinked. We identify “time

evolution” corresponding to evolution to larger values of f = t. The generic level set is a

1-manifold. The basic idea is to break up the time evolution into elementary steps given

by the basic data of the Frobenius algebra and then prove that the result is the same for

two such functions by studying how the sequence of elementary steps changes when we
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Figure 17: Two different Morse functions define different decompositions of the same surface.

connect the two functions by a path of functions.

In order to describe this “path of functions” with any precision we need a tiny digression

into singularity theory.

8.1.1 A Little Singularity Theory

We will be considering the space of C∞ real-valued functions on a bordism X.

The space of functions C∞(M1,M2) from a closed smooth manifold M1 to another

manifold M2 will be endowed with the Whitney topology.

There is a basis for the Whitney topology of the form:

U(f, (U, φ), (V, ψ),K, ǫ) (8.5)

where f ∈ C∞(M1,M2), ǫ > 0, (U, φ) is a smooth chart on M1, K ⊂ U is a compact

subset, and (V, ψ) is a chart on M2. Relative to the charts (U, φ) and (V, ψ) any function

g ∈ C∞(M1,M2) can be represented as a smooth map

g̃ : Ũ ⊂ RdimM1 → RdimM2 (8.6)
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Then the open set U(f, (U, φ), (V, ψ),K, ǫ) consists of all those functions g such that

supx∈K̃ |Dαgj(x)−Dαf j(x)| < ǫ ∀α, 1 ≤ j ≤ dimM2 (8.7)

Here α = (i1, . . . , is) is a multi-index with 1 ≤ i ≤ dimM1 and

Dα =
∂

∂xi1
· · · ∂

∂xis
(8.8)

Now, a function f : M → R is called a Morse function if it has finitely many critical

points p: That is, points where df(p) = 0 and, moreover, the Hessian at p

Hij(p) =
∂2f

∂xi∂xj
(8.9)

is nondegenerate in any coordinate system near p. (Since p is a critical point the Hessian

transforms byH → SHStr for a nondegenerate matrix S under coordinate transformation.)

In addition we require that the critical values cp = f(p) are all distinct.

We now consider Morse functions on a bordism X from Y0 to Y1. A Morse function on

such a bordism is said to be excellent if f is constant on Y0 and Y1 and the critical values

can be ordered so that

a0 = f(Y0) < c1 < · · · < cN < a1 = f(Y1) (8.10)

We will use excellent Morse functions to give our time-slicings. An excellent Morse function

is said to be elementary if it contains precisely one critical point. Thus, in two dimensions

it will contain a maximum, a minimum, or a saddle.

If we give X an elementary Morse function then the corresponding morphism F (X) in

the topological field theory is:

1. Maximum: Trace

2. Minimum: Unit

3. Saddle: Multiplication or comultiplication.

One can prove 4 that if f is an excellent Morse function on a bordism X then X can

be decomposed into elementary bordisms: We can write X as a gluing of X1, . . . ,XM such

that f restricted to each Xα is an elementary Morse function. In this way an excellent ♣Need to say this is

essentially unique.

♣Morse function gives a definite series of algebraic operations in computing the amplitude

F (X).

Now we can ask our question more precisely: Given two excellent Morse functions f−1

and f+1 will they produce the same amplitude?

Now, suppose we have a continuous (in the Whitney topology) path of ft of excellent

Morse functions. Then the sequence of algebraic operations is unchanged, and hence the

amplitude F (X) remains constant.

In the Whitney topology the space of excellent Morse functions in C∞(X,R) is open

and dense, but is disconnected. Thus, if we have a generic path ft of C∞ functions from f−1

4Apparently, the proofs for the following statements can be found in J. Cerf, “La stratification naturelle

des espaces de fonctions differentiables reeles et la theorem de la pseudoisotopie,” Publ. Math. IHES

39(1970).
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to f+1 there will be some values of t for which ft fails to be an excellent Morse function.

There will be generically codimension one walls where the functions are not excellent.

We define a function to be good (but not necessarily excellent) if it is either excellent

or excellent except at one or two critical points such that:

1. Type A: If there is one point then at this point f is not Morse and in local coordinates

is of the form ±y2 + x3.

2. Type B: If there are two critical points they are Morse but have the same critical

value.

Now the crucial point which follows from Cerf theory is that the space of excellent and

good functions is connected. In fact the space of good functions is an infinite-dimensional

manifolds and the space of functions which are good but not excellent is a real codimension

one submanifold. A generic path of good functions ft between two excellent functions will

cross these walls in a finite set of points, that is, ft will be excellent except at a finite set

of critical values ti.

8.1.2 Proof Of The Sewing Theorem

We now show that, given the axioms of a Frobenius algebra, if we evolve fs through

functions of Type A or Type B then the resulting map F (Σ) is unchanged.

Note that reversing the time direction of the bordism changes an operator by its adjoint

with respect to the Frobenius inner product. This reduces the number of cases we must

check by a factor of two. ♣This picture

violates the

convention of

ingoing on left and

outgoing on right.

♣

For Type A: We may assume that for small s the family of functions is (near the critical

point) fs = y2 + x3 + sx. Comparing evolutions for s = 0− and s = 0+ we obtain Figure

18. This encodes the axiom for the unit and trace.

For Type B, it helps to note first that if Φ and Φ′ are two linear maps then Φ⊗ 1 and

1⊗Φ′ commute. Geometrically this means that we need only consider the cases where the

level set containing the two critical points is connected. Thus they both have Morse index

1.

Since both critical points have index 1 they map 2 circles to 1 circle, or 1 circle to 2

circles. Thus the only evolutions we can have are

1 → 2 → 1

1 → 2 → 3

3 → 2 → 1

2 → 1 → 2

2 → 3 → 2

(8.11)

Moreover, the contour lines of the two degenerate critical points must be one of the

two cases in 19.

In the first case 1 → 2 → 1 there is only one possible cobordism, so there is nothing

to check.
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Figure 18: The different time evolutions for y2 + x3 + sx as s moves through s = 0.

In the next case one circle maps to 3 circles. This is shown in Figure 17. A small

perturbation leads to one of the two cuttings shown in that figure. So this is covered by

the associativity axiom. ♣This picture

violates the

convention of

ingoing on left and

outgoing on right.

♣

In the second case, we have two circles mapping to two circles. That is, we are cutting

the 4-holed sphere in different ways. The only algebraic maps which these bordisms can

lead to are

C ⊗ C → C → C ⊗ C

and

C ⊗ C → C ⊗ C ⊗ C → C ⊗ C

These maps correspond to the decompositions shown in Figure 20. Algebraically they read:

φ⊗ φ′ 7→ φφ′ 7→
∑

φφ′φµ ⊗ φµ

and

φ⊗ φ′ 7→
∑

φφµ ⊗ φµ ⊗ φ′ 7→
∑

φφµ ⊗ φµφ
′
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Figure 19: Two ways to connnect simultaneously occuring saddle points.

respectively, where {φµ} and {φµ} are dual bases of C such that θC(φ
µφν) = δµν . These two

maps are equal because of the identity

∑
φ′φµ ⊗ φµ =

∑
φµ ⊗ φµφ′, (8.12)

Equation (8.12) holds in any Frobenius algebra (commutative or not) because the inner

product of each side with φν ⊗ φλ is θC(φ
νφ′φλ) = θC(φλφ

νφ′). ♠

Exercise

Show in a d dimensional TFT given by

F : BordSO〈d−1,d〉 → VECTκ (8.13)

the spaces H(Sd−1) are commutative Frobenius algebras over κ.

b.) Show that there is an action of this Frobenius algebra on H(Σ) where Σ is any

oriented (d− 1)-manifold

8.2 Remarks On The Unoriented Case

In the case of an unoriented TFT

F : Bord〈d−1,d〉 → VECTκ (8.14)
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Figure 20: One or three circles in the intermediate channel of a degenerate Morse function.

it is still true that C = F (Sd−1) is a commutative Frobenius algebra since an orientation

was not used in the derivation of the Frobenius structure. But in the unoriented case C
has extra structure. 5 There are two new ingredients:

1. Now orientation reversing diffeomorphisms act on C. By the stable homeomorphism

conjecture, the group of orientation preserving homeomorphisms of the sphere is

connected. 6

5We are following here a nice exposition in V. Turaev and P. Turner, “Unoriented topological quantum

field theory and link homology,” arXiv:math/0506229; Algebr. Geom. Topol. 6 (2006) 1069-1093. The

same axioms were worked out a few years earlier in unpublished work by Ilka Brunner and myself.
6This is by no means a trivial statement. A homeomorphism f : Rn → Rn is said to be stable if

it is the identity on some open set of Rn. The stable homeomorphism conjecture is the conjecture that

every orientation-preserving homeomorphism f : Rn → Rn is a composition of a finite number of stable

homeomorphisms. It is known to be true for all n > 0, although the proof is not simple, especially for

n = 4. Now, an orientation-preserving homeomorphism f : Sn → Sn can be composed with a stable one so

that it has a fixed point, and then from stereographic projection from that point we get a homeomorphism

Rn → Rn. Now we claim that a stable homeomorphism can be isotoped to the identity. Clearly we can
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Therefore, up to isotopy there is only one orientation reversing diffeomorphism. This

induces a transformation Ω : C → C which squares to one.

2. For d even RPd is unorientable, so in addition to the identity element - coming from

Sd minus a d-dimensional ball we have a new element from X : ∅d−1 → Sd−1 given

by RPd minus a d-dimensional ball. This is the state ψX := F (X)(1). We will call it

c (for “crosscap state”).

The main new constraints coming from elementary bordisms are:

1. Ω is an isomorphism of Frobenius algebras. In particular

Ω(φ1) · Ω(φ2) = Ω(φ1 · φ2) (8.16)

while Ω ◦ ι = ι and θ ◦Ω = θ.

2. If d is even then

Ω(cφ) = cφ ∀φ ∈ C (8.17)

3. If d = 2 then

m(Ω⊗ Id)(∆(1)) = c2 (8.18)

To prove these we note for the first statement that the orientation reversing trans-

formation given by flipping the sign of one (any) coordinate in the unit ball preserves

the ball. This shows that Ω preserves the unit and counit. Similarly, if we consider the

multiplication to be given by a large unit ball centered on the origin with two small balls

symmetric under x1 → −x1 cut out then (combining with commutativity) this shows that

Ω ◦m ◦ (Ω⊗ Ω) = m but now use the fact that Ω is an involution.

For the second, we regard RPd as the unit sphere in Rd+1 modulo x → −x. Now

remove two disjoint d-dimensional balls B1, B2 with boundaries Σ1 and Σ2. Choosing a

fundamental domain xd+1 ≥ 0 we arrive at the picture in Figure 21. As explained in the

figure caption if we regard this as a bordism X : Σ1 → Σ2 then the image of a state φ

on Σ1 is cφ at Σ2. On the other hand, since RPd is unorientable the orientation reversing

transformation x → −x on Sd descends to the identity, and is in the same component

as an isotopy that preserves B1 but takes B2 to its image under x → −x. But this

homeomorphism acts as 1 on Σ1 and reverses orientation on Σ2. Therefore the diagram

also produces Ω(cφ) and hence

Ω(cφ) = cφ (8.19)

assume that it takes the unit ball to the unit ball and it is the identity outside the (open) unit ball. Now

we use the Alexander trick (see Wikipedia article):

J(x, t) =

{

tf(x/t) 0 ≤ |x| < t

x t ≤ |x| ≤ 1
(8.15)

As t goes from 1 to 0 we get an isotopy of f to the identity.
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Figure 21: The top figure describes a bordism from Σ1
∼= Sd−1 to Σ2

∼= Sd−1 obtained by cutting

out two balls from RPd. We represent RPd as the unit sphere in Rd+1 modulo x → −x and take

a fundamental domain with xd+1 ≥ 0. The boundary at xd+1 = 0 still has an identification and

is a copy of RPd−1. A neighborhood of this copy of RPd−1 has a boundary indicated by the red

circle. That boundary is a copy of Sd−1. (Thus, for example, in d = 2, the neighborhood of an

S1 ⊂ S2 is a strip whose boundary consists of two circles, but for this copy of S1 = RP1 in RP2

the neighborhood is a copy of the Mobius strip, and the boundary of that neighborhood is a single

circle.) The Sd−1 on the boundary of the neighborhood of RPd−1 can be thought of as carrying the

crosscap state. Therefore if the input state at Σ1 is φ then the output state at Σ2 is cφ.

For the third property recall that the Klein bottle is equivalent to two connected sums

of RP2. Therefore, we if cut out a disk we get c2. On the other hand, from the presentation

of the Klein bottle as a circle bundle over the circle we see that cutting out a disk must

produce the twisted handle operator (see the next subsection for the description of the

handle operator):

H̃ =
∑

µ

Ω(φµ)φµ = c2 (8.20)

Note that, if we combine (8.19) with (8.20) we find that if H is the handle-adding state
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H = m(∆(1)) then

Hc = c3 (8.21)

This reflects the famous fact that in the classification of Riemann surfaces, on an unori-

entable surface one can always turn a handle into two extra cross-caps.

Turaev and Turner prove an analog of the sewing theorem for the unoriented case with

d = 2: The general unoriented d = 2 TFT is given by a commutative Frobenius algebra

with the above extra structure.

9. Computing Amplitudes

One of the pleasant properties in 2d TFT is that one can immediately write down all the

“amplitudes” in the theory.

Figure 22: The characteristic element.

The key is to introduce the “characteristic element” H. This is defined by ?? which

corresponds to the map

1 →
∑

(−1)φµφµ ⊗ φµ →
∑

φµφµ (9.1)

and thus it is given by

H =
∑

µ

φµ · φµ (9.2)

where φµ is any basis for C and φµ is a dual basis wrt the trace θ(φµφ
ν) = δνµ. (with these

choices the formulae hold in the Z2-graded case).

Exercise

a.) Show that H is independent of the choice of basis.
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b.) Compute θ(H)

c.) Show that in the Z2-graded case θ(H) = STr(1) = Sdim(C)

Figure 23: H is a handle-adding operator.

In the left (=right) regular representation, H is a “handle-adding operator” because

of Figure 23.

Note that we have

θ(φH) = TrC

(
L(φ)

)
(9.3)

where the trace is in the regular representation.

One can now immediately write down all amplitudes in the theory. In particular, for

a genus g surface with have

Z(Mg) = θ(Hg) = TrC(L(H))g−1 (9.4)

Exercise The general amplitude

Write similar formula for “matrix elements” with arbitrary ingoing and outgoing states,

that is, write the amplitude for φ1 ⊗ · · · φn to evolve into φ′1 ⊗ · · ·φ′m. 7

9.1 Summing over topologies

In quantum gravity one must face the issue of whether in the path integral over metrics

(“geometries”) one should also sum over topologies, and how to weight them.

7Answer : The image of φ1 ⊗ · · · ⊗ φn for n ingoing circles on a genus g surface is
∑

ν1,...,νm
θ(φ1 · · ·φnHgφν1 · · ·φνm)φν1 ⊗ · · · φνm if there are m outgoing circles.
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In string theory, we have a theory of quantum gravity in two dimensions coupled to

a sigma model embedding the string into spacetime. In this case one is definitely obliged

to sum over topologies. This sum is the analog of the Feynman diagram expansion of field

theory in the spacetime.

With this motivation, let us ask what the sum over topologies might look like in our

baby theory. We want to understand

Zstring = Z(M0) + Z(M1) + · · · (9.5)

Evidently, from our general formula, we can write the sum formally as

Zstring = θ

(
1

1−H

)
(9.6)

Suppose we have a Frobenius algebra (A, θ). Let us now define a new Frobenius algebra

by θ̃ := λ−2θ. Then it is easy to check that

H̃ = λ2H (9.7)

and hence the new genus g amplitude is

Z̃(Mg) = λ−2+2gZ(Mg) = λ−χ(Mg)Z(Mg) (9.8)

Thus, we can interpret the scale of θ as the string coupling constant. If we define a theory

by θ̂(1) = 1 then we have

Zstring = g−2θ̂

(
1

1− g2Ĥ

)
(9.9)

where θ(1) = g−2 is the string coupling constant.

It is unusual that perturbation theory is convergent – usually perturbation series are

only asymptotic series. Since the series is convergent we can analytically continue to all

values of g2, thus defining the nonperturbative sum.

9.2 Semisimple algebras

In general this is all there is to it. However, one can say a little more when the algebra

(C, θ) is semisimple.

The most useful characterization of semisimplicity is the following. The structure

constants 8

φµφν = N λ
µνφλ (9.10)

defines a set of matrices via the left-regular representation, L(φµ), with matrix elements

N λ
µν . Since C is commutative these are commuting matrices. Then:

Definition : C is semi-simple iff the matrices L(φµ) are simultaneously diagonalizable.

8The structure constants N λ
µν need not be integral. But in many interesting examples there is a basis

for the algebra in which they are in fact integral.
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Thus in the semisimple case we can find a matrix S such that:

N λ
µν =

∑

x

S x
ν Λ(µ)

x (S−1) λx (9.11)

where Λ
(µ)
x are the different eigenvalues of L(φµ).

Now choose a basis such with the index µ running over values µ = 0, . . . , n, and

take φ0 = 1C , the multiplicative identity. Putting µ = 0 in equation (9.11) leads to a

trivial identity, but putting ν = 0 and using Nλ
µν = Nλ

νµ so that Nλ
µ0 = δ λ

µ we see that

S x
0 Λ

(µ)
x = S x

µ since this is the matrix inverse of S−1. So:

S x
0 Λ(µ)

x = S x
µ no sum on x (9.12)

Plugging back into (9.11) we get:

N λ
µν =

∑

x

S x
ν S

x
µ (S−1) λx
S x
0

(9.13)

Note that θ(φµφνφλ) = Nλ′
µνQλ′λ := Nµνλ is totally symmetric on µ, ν, λ. Suppose we

further restrict attention to a basis {φµ} so that θ(φµ) = δµ,0. Then taking the trace of

(9.10) we learn that Qµν = N0
µν and then (9.13) gives

Qµν =
∑

x

S x
ν S

x
µ

(S−1) 0
x

S x
0

(9.14)

so that

Nµνλ =
∑

x

S x
µ S

x
ν S

x
λ

(S−1) 0
x

(S x
0 )2

(9.15)

If we form the linear combinations

ǫx =
∑

µ

S x
0 (S−1) µx φµ (9.16)

then the ǫx serve as a set of basic idempotents, that is,

C = ⊕xCǫx

ǫxǫy = δx,yǫy
(9.17)

Moreover, if we choose the natural normalization θ(φµ) = δµ,0 then

θx := θC(ǫx) = S x
0 (S−1) 0

x (9.18)

Here θi are some nonzero complex numbers. The unordered set {θx} is the only

invariant of a finite dimensional commutative semisimple Frobenius algebra.

Note that in this case the characteristic element is simply
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H =
∑

x

1

θx
ǫx (9.19)

and hence the vacuum amplitude on a genus g ≥ 0 surface is

Zg =
∑

x

θ1−gx (9.20)

Remarks:

1. If we consider the sum over all genera then the sum only converges when |θx| > 1

(with conditional convergence on the unit circle), in which case it is:

Zstring =
∑

x

θx

1− θ−1
x

(9.21)

2. Note that nothing has fixed the overall normalization of the matrix S at this point.

In some cases S will be unitary so that (S−1) 0
x = (S x

0 )∗. Moreover, if the matrix

elements S x
0 can be taken to be real then we have a nice simplification of (9.15):

Nµνλ =
∑

x

S x
µ S

x
ν S

x
λ

S x
0

(9.22)

This is how the Verlinde formula is usually stated.

Exercise

Show that the eigenvalues Λ
(ρ)
x satisfy the algebra

Λ(µ)
x Λ(ν)

x =
∑

λ

Nλ
µνΛ

(λ)
x (9.23)

Exercise

A natural question in field theory is whether the vacuum amplitudes of a theory com-

pletely determine all the amplitudes in the theory.

Investigate this for the case of a semisimple 2d TFT.
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10. Some examples of commutative Frobenius algebras arising in physical

problems

10.1 Example 1: Finite Group Theory

Let G be a finite group. The space of complex-valued functions C[G] is a C∗ algebra (see

below) with the obvious product given by pointwise multiplication

f1 · f2(g) := f1(g)f2(g) (10.1)

Let C be the subspace of class functions, that is, functions such that

f(hgh−1) = f(g) ∀g, h ∈ G (10.2)

This is the space of functions on the the (finite) set of conjugacy classes of G.

There are two natural bases of functions for C. One makes it clear that C is a Frobenius

algebra in a natural way, and the other makes it clear that this Frobenius algebra is

semisimple.

The first natural basis for the space of class functions is given by the characters of the

distinct irreps χµ, µ labels the distinct irreps of G.

Under the pointwise product

χµχν =
∑

λ

Nλ
µνχλ (10.3)

where Nλ
µν are the fusion coefficients, (they are also known as “Littlewood-Richardson

coefficients”). They are determined by the Clebsch-Gordon series

T µ ⊗ T ν = ⊕λN
λ
µνT

λ (10.4)

and are nonnegative integers. The natural trace is

θ(χµ) = δµ,0 (10.5)

where χ0 = 1 corresponds to the identity representation. Since for every rep µ there

is a rep µ∗ with χµχµ∗ = χ0 + · · · , we conclude 〈f, g〉 = θ(fg) is nondegenerate, and hence

that C is indeed a Frobenius algebra.

Another natural basis of class functions are the delta functions on conjugacy classes:

δC(g) = 1 g ∈ C

= 0 g /∈ C
(10.6)

where C is a conjugacy class. Note that in this basis the pointwise product is diagonal.

Thus it is clear that C is semi-simple.

We can of course expand one basis in terms of another:

χµ =
∑

i

χµ(Ci)δCi (10.7)
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Now recall a standard result from group representation theory: the orthogonality re-

lations on the characters of the irreducible representations:

1

|G|
∑

g

χµ(g)χν(g
−1) = δµ,ν (10.8)

Since G is finite we can, WLOG, assume the representation T µ is unitary. There fore the

matrix

Siµ =

√
mi

|G|χµ(Ci) (10.9)

where mi is the order of the class |Ci|, is a unitary matrix.

Now we have:

χµ =
∑

i

√
|G|
mi

SiµδCi (10.10)

and therefore since multiplication is diagonal in the basis δCi , Siµ is the matrix which

diagonalizes the fusion rules in the character basis.

Now, using (9.18) we compute

θx = |S0x|2 =
(dimVx)

2

|G| (10.11)

and hence the partition function on a compact Riemann surface of genus g is

Zg = |G|1−g
∑

x

1

(dimVx)2g−2
(10.12)

where the sum runs over irreducible representations of G. The first factor is relatively

uninteresting (it can be absorbed in the scale of the string coupling) but the second is

interesting.

What geometrical object is the sum in (10.12) counting?

We will answer this question in a few lectures.

Exercise

a.) Show that the center of the group algebra C[G] with the convolution product is C,
the space of class functions.

b.) Show that the matrix Siµ is a kind of Fourier transform between these two product

structures on C. Note that the basis of characters of irreps χµ diagonalize the convolution

product:

χµ ∗ χν =
δµν
nν

χν (10.13)

c.) Show that the invariants θx of this Frobenius algebra are given by

θ(ǫµ) =
(dimVµ)

2

|G| (10.14)
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10.2 Example 2: Loop Groups And The Fusion Ring Of A Rational Conformal

Field Theory

What happens if we replace the group G of the previous example with a general compact

Lie group?

If G is not finite, but is compact there will still be a complete set of finite-dimensional

unitary representations (Peter-Weyl theorem). But now there will be infinitely many rep-

resentations, hence the space of class functions is infinite-dimensional, and there will be

continuous families of conjugacy classes.

For example, for SU(2) ∼= S3 the conjugacy classes are two-dimensional spheres inside

the group. If we parametrize group elements g ∈ SU(2) as

g = cosχ1 + i sinχn̂ · ~σ (10.15)

where 0 ≤ χ ≤ π and n̂ ∈ S2 is in the unit two-sphere then the distinct conjugacy classes

are labeled by the continuous parameter χ. For 0 < χ < π these conjugacy classes are

spheres.

Remarkably, then, if we consider instead the loop group: 9

LG := Map(S1, G) (10.16)

then a certain class of representations of a central extension of LG behaves much more like

the finite-dimensional case, at least when G itself is a finite-dimensional compact group.

We now describe this central extension in a bit more detail.

10.2.1 Central Extension Of Loop Algebras

Suppose g is a finite dimensional Lie algebra. We can associate to it an infinite dimensional

Lie algebra whose elements are maps

f : S1 → g (10.17)

The set of all such maps is itself a Lie algebra for we can define

[f1, f2](z) := [f1(z), f2(z)] (10.18)

This infinite dimensional Lie algebra is known as the loop algebra Lg.

Loop algebras admit a very interesting central extension. At this point it is useful to

take g to be a simple Lie algebra. In this case it is an easy result that, up to isomorphism,

there is the unique nontrivial central extension:

0 → C → L̃g → Lg → 0 (10.19)

Elements of L̃g are pairs (f, ξ) where f is a map, and ξ ∈ C. The bracket of the central

extension is

[(f1, ξ1), (f2, ξ2)] := ([f1, f2], ω(f1, f2)) (10.20)

9We will be vague about the precise class of maps. It should be some completion of the group with

matrix elements taking values in Laurent polynomial in z = eiθ.
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where the two-cocycle ω is defined by

ω(f1, f2) :=
1

2πi

∮
Tr
(
f ′1(z)f2(z)

)
dz (10.21)

where in the integral we use an ad-invariant bilinear form (X,Y ) := Tr(XY ). Recall that

for g simple all such forms are the same up to scale, consistent with the uniqueness of the

central extension.

It is useful to write this out in terms of a basis. Using the bilinear form on g we define

Tr(T aT b) = gab (10.22)

and we define K := (0, 1) ∈ L̃g. Then define the loop T an := znT a, with n ∈ Z and

compute:

[T an , T
b
m] = fabc T

c
n+m + ngabδn+m,0K

[K,T an ] = 0
(10.23)

This is the way the algebras are often written in the physics literature. (Note that in a

representation, if K is represented by a single number k then its value can be absorbed

into the normalization of the Killing form.)

Due to the central element K the natural Ad-invariant form of L̃g:

(f1, f2) =
1

2πi

∮
Tr(f1(z)f2(z))

dz

z
(10.24)

is degenerate. It turns out to be very useful to extend the affine Lie algebra by adding one

more generator, L0, so that K is still central but L0 has commutation relations

[L0, f(z)] = z
d

dz
f(z) (10.25)

One can check that the Jacobi relations still hold. The resulting Lie algebra L̂g := L̃g⊕CL0

is known as a Kac-Moody algebra.

The Cartan subalgebra of L̂g is now

CL0 ⊕ CK ⊕ t (10.26)

where t is spanned by the constant maps into the Cartan subalgebra of g. If one defines

the bilinear form on the Lie algebra so that on the subalgebra spanned by L0,K it is
(
0 1

1 0

)
(10.27)

then there is a nondegenerate Ad-invariant form on the L̂g. (The crucial constraint that

leads to this definition is obtained by taking the inner product of L0 with the equations

(10.23).)

Remark: In fact, we can extend the algebra to a semidirect product with the whole

Virasoro algebra.

Of course the loop algebra Lg is the Lie algebra of LG, so now we can ask when it

exponentiates to give a well defined infinite-dimensional group.
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10.2.2 Central Extensions Of Loop Groups

Under some circumstances, the central extension L̃g of the loop algebra can be exponenti-

ated to a central extension L̃G of the loop group.

The precise theorem is: 10

Theorem IfG is compact, simple, and simply connected then the Lie algebra extension

0 → R → L̃g → Lg → 0, (10.28)

where g is the real Lie algebra of G, defined by the cocycle ω corresponds to a group

extension

1 → U(1) → L̃G→ LG→ 1 (10.29)

iff the differential form ω/(2π) represents an integral cohomology class on LG.

Writing the cocycle explicitly for the central extension of the group is not trivial. In

this section we will show a clever construction by which the Wess-Zumino term is used to

construct the central extension of LG.

10.2.3 The Wess-Zumino Term

Consider a sigma model of maps g : Sd → G where G is a Lie group and Sd is a d-

dimensional (pseudo-) Riemannian spacetime. The standard sigma model action for this

theory is
f2

4

∫

Sd

Tr(g−1dg) ∧ ∗(g−1dg) (10.30)

where f is a coupling constant and ∗ is the Hodge star operator.

Consideration of anomalies in gauge theories led Wess and Zumino to introduce a very

interesting term in the sigma model action [50] in the case of the four-dimensional sigma

model. Its proper conceptual formulation and physical consequences were subsequently

beautifully clarified in a series of papers by Witten [51, 52]. We will write it here for

arbitrary even spacetime dimension d = 2n.

Let Θ = g−1dg be the Maurer-Cartan form on G. Then TrΘ2n+1 is closed. If the rank

of G is suitably larger than n (our main application is n = 1 and this will always be true)

then it represents a nonzero cohomology class and for suitable normalization cn

x2n+1 = [cnTrΘ
2n+1] (10.31)

is a DeRham cohomology class that generates the integral lattice in H2n+1
DR (G).

Let g : S2n → G be a sigma-model field, and let us consider a closed spacetime so that

∂S2n = 0. Physically this is relevant even for fields on R2n if we require that the fields

10For the proof of this theorem see the classic text by A. Pressley and G. Segal, Loop Groups, Oxford

Mathematical Monographs. See Theorem 4.4.1.

– 55 –



approach 1 at spatial and temporal infinity. In that case, we can consider the the field to

be defined on S2n. 11

There are several slightly different approaches one can take to define the Wess-Zumino

term. One way to do it is to note that the image

g(S2n) ⊂ G (10.32)

is a (2n)-cycle inside G which varies continuously with G. Now, if H2n(G;Z) = 0 (as is

often the case12 ) we can fill in the image of spacetime with an oriented chain B2n+1(g):

∂B2n+1(g) = g(S2n). (10.33)

This chain also varies continuously with g. Note however that there can be different

choices of the chain B2n+1(g).

Example S = S2, G = SU(2) ∼= S3, the map g takes S to the equator. Then we can

use the upper hemisphere D+.

We define the Wess-Zumino term to be:

WZ(g) := 2πk

∫

B2n+1(g)
ω2n+1 (10.34)

where k is a real, coupling constant with dimensions of ~. The WZW (Wess-Zumino-

Witten) theory is the nonlinear sigma model with Minkowski-space action

f2

4

∫

Sd

Tr(g−1dg) ∧ ∗(g−1dg) +WZ(g) (10.35)

Now, at first the definition (10.34) seems absurd. There are two immediate problems:

• It appears to be an action for field configurations in 2n + 1 dimensions.

• It appears to depend on the choice of bounding chain B2n+1, and the constraint

(10.33) leaves infinitely many choices for B2n+1.

Let us first address point (1.) Although the definition of the WZ term uses a 2n + 1

dimensional field configuration, the variation of the action only depends on the fields on the

2n dimensional boundary ∂B2n+1, and hence, the action is in fact local! See the exercise

below for some details on how to vary the action and derive the equations of motion.

Therefore, we find for the variation of the WZ term:

δWZ(g) = 2πkcn(2n+ 1)

∫

S2n

Tr(g−1δg)(g−1dg)2n (10.36)

Remarkably, even though the definition of the WZ action involves an extension into one

higher dimension, this is a local action in the sense that its variation under local changes in

11The generalization to the case when spacetime has a boundary is very interesting. In that case exp[iWZ]

should be regarded as a section of a line bundle.
12For example H2(G;Z) = 0 always for a compact simple simply connected Lie group. π4(G) = 0 for all

compact simple simply connected groups except π4(USp(2n)) = Z2. LIST H4(G;Z)
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the field g(x) is a local density on spacetime! It’s value might depend on subtle topological

questions, but the variation is local.

Therefore, the equations of motion of the WZW theory are local partial differential

equations:

−f
2

2
d
(
∗g−1dg

)
+ 2πkcn(2n + 1)(g−1dg)2n = 0 (10.37)

Figure 24: Two slightly different (2n+1)-chains B and B′ in G bounding the same 2n-cycle g(S2n).

Now let us address the second point - the dependence on the choice of bounding chain

B2n+1(g). For a fixed g we can of course smoothly deform the chain to get a second chain

as in 24. The difference B′ − B is a small closed 2n + 1 cycle in G which is, moreover,

homologous to zero, so B′ − B = ∂Z where Z is a (2n + 2)-chain. But now, by Stokes’

theorem:

∫

B′

ω2n+1 −
∫

B
ω2n+1 =

∫

Z
dω2n+1 = 0 (10.38)

Figure 25: Two different (2n+ 1)-chains in G bounding the same 2n-cycle g(S2n).

Thus WZ(g) does not change under small deformations of B.
However, it can happen that B′ and B are not small deformations of each other as in

25. In general if B,B′ are two oriented chains with

∂B = Σ2n (10.39)

and

∂B′ = Σ2n (10.40)
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then

B ∪ −B′ = Ξ2n+1 (10.41)

is a closed oriented (2n + 1)-cycle. Therefore,

∫

B(g)
ω2n+1 =

∫

B′(g)
ω2n+1 +

∫

Ξ2n+1

ω2n+1 (10.42)

and hence, if the periods
∫
Ξ2n+1

ω2n+1 are nonzero then the expression WZ(g) is not well-

defined as a real number!

This might seem disturbing, but, the cycle Ξ2n+1 defines an integral homology class,

and hence the periods of ω2n+1 are quantized. Therefore, the ambiguity in the definition

of WZ(g) is an additive quantized shift of the form 2πkN where N is an integer. Put

differently,

WZ(g)mod2πkZ (10.43)

is well-defined. The quantized ambiguity cannot vary under small variations of g. Thus,

WZ(g) is still a local action, and the equations of motion are still local.

Note that the situation here is very similar to our discussion of the action for general

quantization of a symplectic manifold when the symplectic form has nontrivial periods.

The situation in quantum mechanics is a little more subtle, since in quantum mechanics

one works directly with the action, and not just the equations of motion. However, in

quantum mechanics the action only enters through exp[ i~S], and therefore all that must

really be well-defined is the expression

exp[
i

~
WZ(g)] (10.44)

What is the ambiguity in (10.44) ? We see that it is just

exp[2πi
k

~

∫

Ξ2n+1

ω2n+1] (10.45)

Therefore, if k = κ~, where κ is an integer, then the

exp[
i

~
WZ(g)] (10.46)

in the path integral is a well-defined U(1)-valued function on the space of fieldsMap[S2n, G].

Assuming we have a well-defined measure on the space of fields, there is no harm including

this expression in the measure.

Thus, the coupling constant k must be quantized for a mathematically well-defined mea-

sure in the quantum mechanical path integral. This is one of the most beautiful examples

of a topological quantization of a coupling constant.

We will usually set ~ = 1. Thus, large k corresponds to the semiclassical limit.

Remarks:
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1. Integral normalization. Here are some relevant facts. It can be shown 13 that for all

compact, simple, connected, and simply connected groups G:

x3 =
[ 1

48π2h
Tradj(g

−1dg)3
]

(10.47)

generates the integral cohomology lattice in H3
DR(G), where h is the dual Coxeter

number. In particular, for SU(2) we can take

x3 =
[ 1

24π2
Tr2(g

−1dg)3
]

(10.48)

It follows that for SU(N) we can take

x3 =
[ 1

24π2
TrN (g

−1dg)3
]

(10.49)

to generate the integral cohomoloy lattice in H3
DR(G).

2. Here is another way to define the Wess-Zumino term. For each connected component

Cα of the fieldspaceMap(S2n, G) = ∐αCα we choose a “basepoint” field configuration

g
(α)
0 : S2n → G. If S2n is contractible there is only one component and we can choose

g0 to be the constant map (say with image 1 ∈ G). In general for field configurations

g ∈ Cα we choose a smooth homotopy g(x, s), 0 ≤ s ≤ 1 from g
(α)
0 (x) at s = 0 to g(x)

at s = 1. Now we view the interpolation as a field in 2n+1 dimensions, that is, as a

map of the cylinder ĝ : I × S2n → G. We can then define

WZ(g; g0) := 2πk

∫

I×S2n

ĝ∗(ω2n+1) (10.50)

3. The value of WZ(g; g0) depends on the choice of g0 and on the interpolation, but

only “locally,” in the following sense: Suppose we have a continuous family of maps

g̃τ : S2n → G in the connected component Cα. Then we find a continuous family

of extensions g̃τs : B2n+1 → G such that gτ0 (x) = g0(x) for all τ . Then, letting

B = I × S2n we have:

∂

∂τ
Tr(g̃−1dB g̃)

2n+1 = dB

[
(2n+ 1)Trg̃−1 ∂g̃

∂τ
(g̃−1dB g̃)

2n

]
(10.51)

Proof: We know that the Maurer-Cartan form pulled back to I ×B2n+1 is closed, so

(dB + δ)Tr(g̃−1(dB + δ)g̃)2n+1 = 0 (10.52)

where δ = dτ ∂
∂τ . Now forms on the product space can be decomposed into type (a, b)

with a-forms along I and b-forms along B2n+1. The component of (10.52) of type

(1, 2n + 1) is

δTr(g̃−1dB g̃)
2n+1 + (2n+ 1)dB

[
Tr(g̃−1δg̃)(g̃−1dB g̃)

2n

]
= 0 (10.53)

13Ref: Mimura and Toda, Topology of Lie Groups, Translations of Math. Monographs 91; R. Bott, Bull.

Soc. Math. France 84(1956) 251.
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pulling out the dτ gives our identity. It is now an easy matter to show that the

variation of the WZ term defined as in (10.50) only depends on the variation gτs at

s = 1.

Exercise

a.) Calculate Tr(g−1dg)3 for SU(2) in terms of Euler angles for the group, using the

fundamental representation:

Tr2(g
−1dg)3 = −3

2
dψ ∧ sin θdθ ∧ dφ (10.54)

b.) Write this differential form as a locally exact form.

c.) Show that ∫

SU(2)

1

24π2
Tr2(g

−1dg)3 = −1 (10.55)

and thus conclude that the form is not globally exact. Compare with the general normal-

izations above.

d.) Now show that x3 in equation (10.49) defines a nontrivial cohomology class for all

SU(N).

Exercise The Polyakov-Wiegman formula

Consider the WZ term in two spacetime dimensions.

a.) Show that

Tr
(
(g1g2)

−1d(g1g2)
)3

= Tr
(
g−1
1 dg1

)3
+Tr

(
g−1
2 dg2

)3
+ 3d

[
Tr(dg2g

−1
2 )(g−1

1 dg1)

]
(10.56)

b.) Conclude that the WZ term satisfies:

WZ(g1g2) =WZ(g1) +WZ(g2) + 6πkc1

∫
Tr(dg2g

−1
2 )(g−1

1 dg1) (10.57)

Exercise Variation Of The WZ Term

Using the variational formula

δ
(
g−1∂µg

)
= ∂µ(g

−1δg) +
[
g−1∂µg, g

−1δg
]

(10.58)
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We compute:

∂

∂s
Tr(g−1dg)2n+1 = (2n + 1)Trd

(
g−1∂g

∂s

)
(g−1dg)2n (10.59)

The second term, involving the commutator drops out.

Now we compare with the RHS

d

[
Trg−1 ∂g

∂s
(g−1dg)2n

]
= Trd

(
g−1 ∂g

∂s

)
(g−1dg)2n+Trg−1 ∂g

∂s

[
dΘΘ2n−1−ΘdΘΘ2n−2±· · ·

]

(10.60)

and using the Maurer-Cartan equation we find that the second group of terms cancel in

pairs. ♠

10.2.4 Construction Of The Cocycle For LG

The trick is to consider the group of maps DG from the disk to the group G, i.e. we

introduce DG = Map(D,G) where D is the disk. Note that the subgroup D1G of maps

such that g|∂D = 1 is a normal subgroup and DG/D1G ∼= LG, and explicit isomorphism

being given by the restriction map.

Now, in contrast to LG, it is easy to write a central extension D̃G of the group DG:

(g1, λ1) · (g2, λ2) = (g1g2, λ1λ2f(g1, g2)) gi ∈ DG (10.61)

where

f(g1, g2) = exp

[
2πi(6πc1k)

∫

D
Tr(dg2g

−1
2 )(g−1

1 dg1)

]
(10.62)

Note that we have written our Ad-invariant inner product (·, ·)g in terms of a defi-

nite trace Tr in some representation. For SU(N) with the trace in the N dimensional

representation c1 = 1/(24π2).

Exercise

a.) Check that (10.62) is indeed a group cocycle.

b.) Compute the corresponding central extension on the Lie algebra Dg and show that

it is trivial when one of the elements vanishes on the boundary. Indeed, show that it is

24π2ic1k

∮

S1

Trǫ1dǫ2 = ik

∮
Trǫ1dǫ2 (10.63)

for c1 = 1/(24π2).

Now, the beautiful observation is that, when g1 and g2 are equal to 1 on the boundary

∂D, we can consider them to define maps from S2 → G, and therefore we can define the

WZ term. But, because of the identity we proved above:
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WZ(g1g2) =WZ(g1) +WZ(g2) + 6πkc1

∫
Tr(dg2g

−1
2 )(g−1

1 dg1) (10.64)

the cocycle becomes a coboundary when restricted to the subgroup D1G. Therefore,

the extension

1 → U(1) → D̃G→ DG→ 1 (10.65)

splits over the normal subgroup D1G, that is:

ψ : g → (g, eiWZ(g)) g ∈ D1G (10.66)

is a group homomorphism from D1G to D̃G, and hence we can take a quotient

1 → U(1) → D̃G/ψ(D1G) → DG/D1G = LG→ 1 (10.67)

to construct the loop group L̃G := D̃G/ψ(D1G).

Finally, if we include L0 then note that

exp[iθ0L0]g(θ)exp[−iθ0L0] = g(θ + θ0) (10.68)

so L0 generates rigid rotations of loops.

Remarks

1. The above construction of the central extension is due to J. Mickelsson. For a gener-

alization to Map(X,G) for arbitrary manifolds X see [32] and references therein.

2. At the Lie group level one can construct a semidirect product with the Virasoro group

- the centrally extended diffeomorphism group of the circle.

3. The above presentation of the centrally extended loop group is very convenient for

quantizing three-dimensional Chern-Simons theory on D × R. The group of gauge

transformations is D1G. The flat gauge fields on the disk are parametrized by DG.

10.2.5 Integrable Highest Weight Representations

Let G be simple and compact. The centrally-extended loop group constructed above will

be denoted simply Gk for k ∈ Z+.
14

What can we say about the representations of Gk? Clearly there are many. For

example, Gk has a homomorphic image LG so, choosing any representation ρ : G→ Aut(V )

of G (for example, a finite-dimensional irreducible representation of G) and a point z0 on

the circle we can define the evaluation representation:

ρ̂ : Gk → ρ(g(z0)) (10.69)

14In general for a compact group it can be shown that the central charge should be regarded as an element

of H4(BG;Z). For G simple, compact, and connected this cohomology group is isomorphic to Z and we

can consider the central extension to be an integer.
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with carrier space V . Note that these representations do not interact well with L0, since

L0 translates z0 → z0e
iθ.

It turns out that Gk has a finite set of irreducible representations with L0 bounded

below. These representations are naturally constructed as highest weight representations

of the Lie algebra and are known as integrable representations because they extend from

representations of the Lie algebra to the Lie group.

The integrable representations are graded by L0 and the spectrum is bounded below.

The lowest weight space under L0 is itself an irreducible representation of G, and has a

highest weight λ corresponding to an element of

Λwt/W (10.70)

where W is the Weyl group and Λwt is the weight lattice. After making a choice of simple

roots for g the highest weight of an irreducible representation of G can be labeled by a

dominant highest weight λ ∈ Λwt. Recall this means that

λ =
∑

niλ
(i) (10.71)

where ni ≥ 0 and λ(i) is a basis of fundamental weights dual to the simple roots.

Now for the case of Gk the irreducible representations are labeled by the quotient

Λwt/Ŵ
(k) (10.72)

where Ŵ (k) is the level k affine Weyl group. It is a discrete crystallographic subgroup of

the group of affine transformations of t∨. As a group it is isomorphic to the semidirect

product of the Weyl group W with the translation group by the coroot lattice Λcrt but we

denote it by Ŵ (k) because the translations act by

{σ|v} : λ 7→ σ(λ) + kv σ ∈W,v ∈ Λcrt (10.73)

It is useful to know that this is a Coxeter group, generated by reflections. These include

the Weyl reflections and the reflection in the hyperplane (λ, θ) = k, where k ∈ Z+, θ

is the highest root and we use a normalization of the Killing form so that (θ, θ) = 2. A

fundamental chamber for this action in Λwt is the finite set of dominant weights satisfying:

(λ, θ) ≤ k (10.74)

This condition is usually derived in conformal field theory by using unitarity and a null-

vector.

Example 1 G = SU(2). Then θ = α and λ = jα where j ∈ 1
2Z+ is known in physics

as the spin. (Mathematicians normally would write λ = n1λ
(1) where λ(1) = 1

2α1 is the

fundamental weight. Thus n1 = 2j is twice the spin.) The irreducible representation has

of SU(2) with weight λ = jα1 has dimension 2j + 1. The lattice Λwt is isomorphic to Z.

The hyperplane in t∨ ∼= R is (xα, α) = k or x = k/2. So reflection in the hyperplane takes

j → k
2 − j. Therefore a fundamental domain for the affine Weyl group is:

0 ≤ j ≤ k

2
(10.75)
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Figure 26: The root and weight lattice for SU(3). A standard set of simple roots α1, α2 is shown

along with fundamental weights λ1, λ2. The fundamental Weyl chamber is the positive cone spanned

by these two weights. The highest root is θ = α1 + α2. The heavy green line is the line (λ, θ) = k

for some positive integer k. The affine Weyl chamber is the region (λ, θ) ≤ k and the integrable

weights at level k is the intersection of the weight lattice with the fundamental Weyl chamber.

Note that Ŵ k in this case is isomorphic to Z ⋊ Z2, the infinite dihedral group.

Example 2 G = SU(3). For SU(3) we can choose two simple roots. The standard choice

is

α1 = (
√
2, 0)

α2 = (−
√

1

2
,

√
3

2
)

(10.76)

λ1 =
2

3
α1 +

1

3
α2

λ2 =
1

3
α1 +

2

3
α2

(10.77)

Now θ = α1 + α2. The integrable weights at level k are n1λ
1 + n2λ

2 with ni ∈ Z+ and

n1 + n2 ≤ k.

The integrable highest weight representations L(λ) turn out to be objects in a tensor

category. The tensor product is not symmetric. Note that it is not obvious how to take

a tensor product of two representations L(λ) and L(λ′) to get a representation of the KM

algebra with the same value of k. 15 The way to do this is to use conformal field theory.

15For the same reason one does not want to multiply characters.
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The key observation is that if we consider the two-dimensional WZW model with

f2 = 12πkc1 then the equation of motion in Minkowski space is:

∂+
(
g−1∂−g

)
= 0 (10.78)

where ∂± are derivatives wrt light-cone variables x± = x0±x1. Equivalently, we may write:

∂−
(
∂+gg

−1
)
= 0 (10.79)

so the classical theory on M1,1 has a symmetry of Map(R, G)×Map(R, G) with a left-action

on solutions by

(hL, hR) : g 7→ hL(x
+)g(x+, x−)(hR(x

−))−1 (10.80)

On a cylinder S1 × R this becomes a product LG × LG. In the quantum theory this

symmetry survives when LG is replaced by Gk. The theory splits into a theory of left- and

right-movers. It is a conformal field theory. This was shown in detail in [19, 28, 51]. Two

textbooks that treat this material in detail are:

1. P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory

2. J. Fuchs, Affine Lie Algebras And Quantum Groups

Figure 27: Three CFT state spaces are associated with the circles C1, C2, and C3 and are

associated with radial quantization around z = 0, z0, 0, respectively.

The tensor product can be thought of as follows. (We follow the description from [35],

equation (2.5). Rigorous descriptions of the tensor product using vertex operator algebra

theory are given in [26, 27].)
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We can form a current:

Ja(z) =
∑

T anz
−n−1dz (10.81)

where we now analytically continue z to the complex plane - regarded as the Euclidean

worldsheet of a 2d Euclidean QFT for the WZW model. Note that

T an =

∮
znJa(z) (10.82)

There is a state-operator correspondence: The insertion of a local operator Φ(z) at a

point z on the plane produces a state in the Hilbert space of radial quantization centered

on that point.

To give a tensor product we need a comultiplication ∆ : A → A ⊗A where A is the

algebra of local observables.

We imagine one Hilbert space of states on a small circle C1 centered at z = 0, a second

circle C2 centered at z = z0, and a third on a larger circle C3 centered at z = 0 but

encircling z0. See Figure 27.

If local operators creating states in representations Lλ and Lµ are inserted at z = 0

and z = z0 then the resulting state on the circle C3 will have an action of the current with

modes

∆0,z0(T
a
n ) =

∮

C3

znJa(z)

=

(∮

C1

znJa(z)

)
⊗ 1 + 1⊗

(∮

C2

znJa(z)

) (10.83)

In the first line we have written an operator acting on the space of states on the circle

C3. (Think of it as the outgoing state space in a pair of pants diagram.) The next line

is a contour deformation (since Ja(z) is a holomorphic current) to give an action on the

space of states on the circles C1 and C2. Since there are two ingoing states on the pair

of pants we have a tensor product of state spaces. The interesting term is
∮
C2
znJa(z)dz.

When acting on the Hilbert space obtained by radial quantization centered at z0 we should

expand the current as

Ja(z) =
∑

m∈Z

(z − z0)
−m−1Jam(z0)d(z − z0) (10.84)

but ∮

C2

zn(z − z0)
−m−1dz =

{
0 m ≤ −1
(n
m

)
zn−m0 m ≥ 0

(10.85)

and hence

∆0,z0(T
a
n ) = T an ⊗ 1 + 1⊗

(
∞∑

k=0

(
n

k

)
zn−k0 T ak (z0)

)
(10.86)

Now, the fusion rules for multiplication, with this tensor product, of the the simple

objects (that is, the irreducible representations of Gk) turn out to define a semisimple
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Frobenius algebra: 16

L(µ)⊗0,z0 L(ν)
∼= ⊕λN

λ
µνL(λ). (10.87)

Therefore, there is a matrix S that diagonalizes these rules.

The remarkable statement of E. Verlinde is that this matrix S can be taken to be the

same matrix as the modular S-matrix for the characters of the representations [49]. To

explain Verlinde’s statement we define the characters by

χµ(τ) = TrL(µ)q
L0−c/24 (10.88)

where q = e2πiτ is in the unit disk (so τ is in the upper half-plane) and

c =
kdimG

k + h
(10.89)

is the central charge of the Virasoro algebra. Then it turns out that χµ(τ) are vector-valued

modular functions. In particular

χµ(−1/τ) = Sµνχν(τ) (10.90)

Verlinde’s observation was that this modular S-matrix diagonalizes the WZW fusion rules.

It was proven in [14, 34, 35]. Kac-Peterson derived a formula for their transformation for

Sµν .

Example Introduce the level k theta function defined by

Θµ,k(z, τ) :=
∑

n∈Z

qk(n+µ/(2k))
2
y(µ+2kn) =

∑

ℓ=µmod2k

qℓ
2/(4k)yℓ (10.91)

with y = e2πiz. Now introduce the character:

χkj (z, τ) := TrV (j)q
L0−c/24e2πiz(2J

3
0 ) (10.92)

This might look unnatural from the point of view of Lie algebra theory, but it is well-

motivated by physics: We are subtracting the groundstate energy. Then a special case of

the Weyl-Kac character formula is:

χkj (z, τ) := tr qL0−c/24e2πiz(2J
3
0 )

=
Θ2j+1,k+2(z, τ) −Θ−2j−1,k+2(z, τ)

Θ1,2(z, τ) −Θ−1,2(z, τ)

= q(ℓ+1)2/(4(k+2))−1/8χj(y) + · · ·

(10.93)

where 0 ≤ j ≤ k/2 and j is half-integral.

Now the key transformation law of level k theta functions (easily derived using the

Poisson summation formula) is

Θµ,k(−ω/τ,−1/τ) = (−iτ)1/2e2πikω2/τ
2k−1∑

ν=0

1√
2k
e2πi

µν
2kΘν,k(ω, τ) (10.94)

16The conceptual reason for this is that one can gauge the G symmetry of the WZW model to produce

the G/G model. This is a 2d TFT.
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From this transformation law one can derive the S-matrix for SU(2)k. It is

Sjj′ =

√
2

k + 2
sin

π(2j + 1)(2j′ + 1)

k + 2
(10.95)

In general, labeling the irreducible highest weight representations of Gk by the domi-

nant weight of the representation of G at the lowest eigenvalue of L0 we have the eigenval-

ues:

Λ(µ)
ν =

S ν
µ

S ν
0

= chµ

(
2π
ν + ρ

k + h

)
(10.96)

where µ, ν are dominant weights, ρ is the Weyl vector, 17 h is the dual coxeter number,

and we have used the Killing form, normalized so that (θ, θ) = 2 to identify t∨ ∼= t and

thereby regard ν + ρ as an element of t. ♣Give the

specialization of

this formula to

SU(2)k. ♣

Using equation (10.96) it is possible to express the CFT fusion rules Nλ
µν in terms of

the Littlewood-Richardson coefficients N̄λ
µν of the finite-dimensional group:

chµchν =
∑

λ∈Λ+
wt

N̄λ
µνchλ (10.97)

We know that, in general

Λ(µ)
x Λ(ν)

x =
∑

λ

Nλ
µνΛ

(λ)
x (10.98)

for semisimple Frobenius algebras. Evaluating (10.97) on the special conjugacy classes

2π(λ + ρ)/(k + h) and using some simple manipulations 18 one obtains:

Nλ
µν =

∑

w∈Ŵ k,w·λ∈Λ+
wt

sign(w)N̄w·λ
µν (10.99)

(The sign of w is defined since Ŵ k is a Coxeter group. It is ±1 according to whether the

group element is a product of an even/odd number of reflections.)

For example, for SU(2)k the ordinary Clebsch-Gordon rules N̄ j′′

jj′ give

[j]⊗ [j′] = [|j − j′|]⊕ [|j − j′|+ 1]⊕ · · · ⊕ [j + j′] (10.100)

However, if j + j′ > k/2 then there will be an affine Weyl reflection around j = k/2. Each

weight larger than k − j − j′ will have a reflected image larger than k/2 and these will

cancel in pairs. In this way we get:

N j′′

jj′ =

{
1 |j − j′| ≤ j′′ ≤ min{j + j′, k − j − j′}&j + j′ + j′′ ∈ Z

0 else
(10.101)

♣Say something

about tetrahedra ♣

Remarks

17The Weyl vector is half the sum of positive roots. It is equal to the sum of fundamental weights.
18See Di Francesco et. al. Section 16.2.1 or Fuchs, Section 5.5
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1. In general, the characters are given by the Weyl-Kac character formula. Just as the

Weyl character formula can be written

∑
w∈W ew(λ+ρ)−ρ∑
w∈W ew(ρ)−ρ

(10.102)

the Weyl-Kac character formula can be written in the identical form, where we replace

the sum over the Weyl group by the sum over the affine Weyl group and λ, ρ are

replaced by suitable affine weights. We recognize the structure of the sum over the

affine Weyl group in equation (??): The theta functions come from the sum over Z

and the difference of the theta functions comes from the nontrivial reflection in the

Weyl group of SU(2).

2. It turns out that the representation theory of Gk is closely related to that of the

corresponding quantum group when q is a suitable root of unity:

q = exp(
2πi

k + h
) (10.103)

See the book by Fuchs for a detailed exposition.

3. There is a generalization of the above story to a much wider class of two-dimensional

conformal field theories known as “rational conformal field theories.”

Exercise

a.) Find the invariants θx for the Frobenius algebra defined by N j′′

jj′ .

b.) Note that since N j′′

jj′ are integers, Z(Σg) is an integer, a surprising fact when

viewed as (9.20). This is a special case of the famous Verlinde formula.

Exercise

a.) Show that the product of theta functions of level k and k′, as functions of z can

be expanded in terms of theta functions of level k + k′. Thus, taking a direct sum of the

span of the level k theta function defines a graded ring.

b.) Show that the characters χkj (z, τ) can be expanded in level k theta functions.

This is another way to see that the standard tensor products of representations of

SU(2)k will not produce a representation of SU(2)k.
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10.3 Example 3: The Cohomology Of A Compact Oriented Manifold

The following example shows that

• Some natural Frobenius algebras are not semi-simple.

• The nondegeneracy of θ can amount to a deep theorem.

Let M be a compact oriented manifold. Consider H∗
DR(M) (or H∗(M ;Q)). We claim

that this defines a graded commutative Frobenius algebra.

The multiplication is the wedge product. The trace is given by the integral:

ω → θ(ω) =

∫

[M ]
ω (10.104)

The (deep) theorem of Poincare duality can be formulated as the statement that the

quadratic form defined by θ, namely,

(ω1, ω2) →
∫

M
ω1 ∧ ω2 (10.105)

is nondegenerate. (It is crucial here that M be compact and that M is a manifold.) Thus,

Poincaré duality says that this algebra is a Frobenius algebra.

Let ωµ be a basis, and ωµ a dual basis so that

∫
ωµ ∧ ων = δ ν

µ (10.106)

If ωµ is a k-form, then ωµ is an (n− k)-form.

Let us compute the characteristic element:

H =
∑

µ

ωµ ∧ ωµ (10.107)

This is an n-form. Since it is a form of positive degree it is not invertible, so this algebra

is not semisimple.

Let vol (M) be the integral generator ofHn(M) corresponding to the orientation. Then

from (10.106) we get

ωµ ∧ ωµ = (−1)deg ωµ deg ωµvol (M) (10.108)

so

H = χ(M)vol (M) (10.109)

is given by the Euler character.

Another way to see the non-semisimplicity is to note that there is a “conserved charge,”

namely the degree of the form. Since the ring is finite, anything with positive charge must

be nilpotent. But nilpotent matrices cannot be diagonalized.

Remarks:
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1. A path integral that leads one to consider the above Frobenius algebra is N = 1

supersymmetric quantum mechanics with target a Riemannian manifold M . The

quantum mechanics of a particle moving on a Riemannian manifold M is described

by the action:

S =

∫
dt
1

2
Gµν(x(t))ẋ

µẋν (10.110)

The Hilbert space of the theory is L2(M), the space of L2 functions defined by the

Riemannian metric. The Hamiltonian is classically

H =
1

2
pµG

µνpν (10.111)

and in the quantum theory this becomes the standard Laplacian

∆ =
1√
g
∂µ

√
gGµν∂ν (10.112)

acting on L2(M). When we make the theory supersymmetric The Hilbert space of

the full theory is naturally isomorphic to the DeRham complex Ω∗(M) and one of the

supersymmetry operators Q acts as the exterior derivative under this identification.

The Hamiltonian is the Hodge Laplacian (d + d†)2. Restricting to a “BPS sector”

or “supersymmetric sector” or “topological sector” of states annihilated by d+ d† is

restricting to the Harmonic forms. By a standard theorem this space of harmonic

forms is isomorphic as a vector space with the DeRham cohomology. In general “BPS

sectors” or “supersymmetry preserving sectors” of a theory are related to topological

field theory. We will be more precise about that later.

2. Rational Homotopy Theory. The cohomology associates to a manifold a “differential

graded algebra,” (with d = 0). According to a famous theorem of Sullivan and

Quillen, such DGA’s characterize manifolds up to rational homotopy type, i.e. they

determine πi(M)⊗Q. ***** More detail here ****

10.4 Example 4: Landau-Ginzburg theory

An important example of Frobenius algebras in string theory are provided by 2-dimensional

N = 2 supersymmetric Landau-Ginzburg theories. They provide moreover a nice set of

examples for comparing the semisimple and non-semisimple cases.

Once again, one begins with a physical theory - a d = 2 (2, 2) supersymmetric quantum

field theory and restricts to a “topological sector” of the theory provided by a “topological

twist.” In the simplest case, the quantum field theory has as target space a linear space

of fields X1, . . . ,Xn (which we will just regard as coordinates on Cn) and a holomorphic

function W (X1, . . . ,Xn) known as the “superpotential.” 19

Two-dimensional field theories with (2, 2) supersymmetries actually admit two kinds

of topological twists called “A-twists” and “B-twists.” In the “B-twisted model” the chiral

19The Xi are actually “chiral superfields” and the theory also requires a nonholomorphic function

K(Xi, X̄i) known as the “Kahler potential.”
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superfields satisfy an algebra which turns out to be the polynomial algebra factored by the

Jacobian ideal:

C = C[Xi]/(∂iW ) (10.113)

The Frobenius structure is defined by a residue integral in general. In the one-variable ♣Give the general

formula. ♣
case we define

θ(φ) := ResX=∞
φ(X)

W ′(X)
(10.114)

The vacua of the theory correspond to the critical points of W :

∂W

∂Xi
| ~X0

= 0 (10.115)

The critical points are said to be of Morse type is the matrix of second derivatives:

∂2W

∂Xi∂Xj
| ~X0

(10.116)

is nondegenerate. Physically Morse critical points correspond to massive theories, while

nonMorse critical points renormalize to nontrivial 2d CFT’s in the infrared. Note that W

is holomorphic, so these definitions are analogous to, but different from the definitions we

gave above for a real Morse function.

If the critical points ofW are all Morse then the algebra (10.113) is semisimple. Indeed,

if all the critical points are Morse then the trace is easily written in terms of the critical

points pa as

θ(φ) =
∑

dW (pa)=0

φ(pa)

det(∂i∂jW |pa)
(10.117)

Example W = 1
n+1X

n+1 − qX. The critical points are at ωjq1/n where ω is a primitive

nth root of unity. Clearly, W ′′ is nonzero there.

10.5 Example 5: Quantum cohomology

Let X be a Kähler manifold. One can formulate the two-dimensional supersymmetric

sigma model with X as target space. It is a theory of maps

φ : Σ → X (10.118)

with action

S =

∫

Σ
(dφ, ∗dφ) + · · · (10.119)

For these models one can define an “A-twisted” topological field theory and the local

operators are in 1-1 correspondence with H∗
DR(X). However, the correlation functions of

Q-invariant operators define a Frobenius algebra that is a deformation of the Frobenius

algebra structure we saw above.

This is known as quantum cohomology.

– 72 –



Example Let X = CPn. The cohomology ring has a generator x ∈ H2(X) and is the

algebra C[x]/(xn+1). When we consider the A-model with target space X there is a local

operator Ox that generates the ring of Q-invariant local operators and this ring can be

shown to be

C[x]/(xn+1 − q) (10.120)

where q = e−A and A is the Kähler class of X. For q 6= 0 this Frobenius algebra is

semisimple.

It is thought that for general non-Calabi-Yau target spaces the quantum cohomology

ring is semisimple.

11. Emergent Spacetime

It is very unusual to have a space of quantum states be an algebra. (We will stress this

with a little review of quantum mechanics in the next section.) ♣Comment some

more on how there

is a state-operator

correspondence in

conformal field

theory. ♣

What should we make of the fact that the space of states in a 2D TFT is an algebra?

At least in the semisimple case there is a very nice answer. A beautiful theorem of Gelfand

tells us that one can naturally associate a space to any commutative C∗-algebra. In this

section we will describe that in somewhat heuristic terms. Then we will return to it in

more formal terms.

11.1 The algebra of functions on a topological space X

Consider a topological space X. Let us begin to transcribe topological/geometric concepts

into algebraic concepts.

Consider

C(X) := {f : X → C : f is continuous} (11.1)

What are the algebraic structures of C(X)?

• C(X) is clearly a vector space over C.

• Moreover, C(X) is an algebra: you can multiply functions:

(f1 · f2)(x) := f1(x)f2(x) (11.2)

Note that it is a commutative associative algebra.

It is interesting to study the representations of C(X). Because C(X) is commutative,

one should study its 1-dimensional representations. Indeed, there is an obvious source of

such representations given by the evaluation map. Given a point x0 ∈ X, we define evx0 :

evx0(f) := f(x0) (11.3)

This is a one-dimensional representation of C(X).

Recall that characters of an algebra are the algebra homomorphisms to C, that is

χ(fg) = χ(f)χ(g) (11.4)
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For a commutative algebra these coincide with the irreducible representations. The

evaluation map is a character, and, it turns out, it is the only kind of character we can

construct. This is reasonable: A linear functional on C(X) should depend linearly on

f(x) at every x and should therefore be some kind of sum
∑

x∈X f(x)evx (making this

precise when the sum is infinite is the domain of functional analysis) but this will only be

a character if f(x) is only supported at a point. So we could think of X instead as the

space of characters of C(X). This is a way of “algebraicizing X.”

There is another way to think about X algebraically which is more obviously a formu-

lation involving just the “internal structure” of C(X). If χ is a character then from (11.4)

it follows that the kernel of χ is an ideal I(χ) ⊂ C(X). For the character given by the

evaluation map, we have the associated ideal:

kerevx0 := mx0 := {f : f(x0) = 0} (11.5)

In fact, mx0 is a maximal ideal. This means there is no nontrivial ideal which contains

mx0 as a proper subset. In the present example the claim is easily verified. If mx0 ⊂ I for

some strictly larger ideal I then I must contain a function h such that h(x0) 6= 0. But this

means that the function 1 is in I since we may write:

h− (h− h(x0)1) = h(x0)1 (11.6)

and since (h − h(x0)1) ∈ mx0 the LHS is in I. Since h(x0) 6= 0, we can divide by it, and

we conclude 1 ∈ I. Since I is an ideal I = C(X).

Exercise Identifying characters and maximal ideals

a.) Show that

0 → mx0 → C(X) → C → 0 (11.7)

b.) When I ⊂ A is an ideal in an algebra A then we can define an algebra A/I. Explain

why, in this case C(X)/mx0 is in fact a field.

In a similar way we can algebraicize maps between topological spaces. If

φ : X → Y (11.8)

is a continuous map then the “pullback map”

φ∗ : C(Y ) → C(X) (11.9)

is defined by f → φ∗(f) whose values are, by definition

φ∗(f)(x) := f(φ(x)) (11.10)

The key algebraic structure here is: φ is a homomorphism of algebras.
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Now the key idea of the algebraic approach is that, in some sense the maximal ideals are

in 1-1 correspondence with the points of X, and the algebra homomorphisms C(Y ) → C(X)

are in 1-1 correspondence with the maps φ : X → Y . In order to make this work and to

have some control on notions of topology we need some algebraic notion corresponding to

the fact that we have continuous functions. (Nothing we said above relied on the fact that

we were talking about continuous functions.) The solution to this problem is to consider

commutative C∗ algebras.

To get an idea of what a commutative C∗ algebra is note that we can make C(X) into

a normed vector space by defining

‖ f ‖:= supx∈X |f(x)| (11.11)

Moreover, there is a natural C-antilinear map f → f∗ such that

‖ ff∗ ‖=‖ f ‖2 (11.12)

We develop these ideas more rigorously below. For the moment suffice it to say that

given a commutative C∗ algebra one can turn the space of characters, or equivalently, the

space of ideals into a Hausdorff topological space. If the algebra has a unit it is compact.

Before going into the general theory first let us see how it works in the fairly trivial context

of 2D TFT.

11.2 Application To 2D TFT

Let us now apply these ideas to 2D TFT. We have seen that it is equivalent to a finite-

dimensional commutative Frobenius algebra.

If C is semisimple, then it is isomorphic to ⊕xCǫx. This is a unital C∗ algebra, and as

we have just learned we can associate to it a compact topological space. In fact, in this

case the space is just a finite disjoint set of points corresponding to the idempotents.

Thus the “target space physics” in this example is the following: Spacetime consists

of a finite disjoint set of 0-dimensional disconnected “universes.” Each basic idempotent

ǫx corresponds to a point x. The only physical information is in θx = θ(ǫx) = Z(S2), for

that universe. We should interpret this as the string coupling, since the contribution of x

to Zstring is

Zstring =
∑

x

g−2
x

1

1− g2x
(11.13)

where θx = g−2
x .

We will further justify this interpretation when we consider open-closed theory and

boundary conditions.

Remarks:

1. When C is not semisimple, the spacetime interpretation is not so straightforward.
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2. Two-dimensional conformal field theory is a nice generalization of 2D TFT. In this

case there is a state-operator correspondence, so that the space of states H(S1)

assigned to a circle is also an algebra. It is related to the mathematical theory of

vertex operator algebras. In some cases, e.g. the level k WZW theory for a compact

simple group G, a subsector of the operator product algebra approaches the algebra

of functions on G as k → ∞. To be more precise, if λ is in the affine Weyl chamber

then the vertex operators corresponding to the states in L(λ) ⊗ L̃(λ) at the lowest

value of L0 + L̃0 correspond operators

Φλµ,µ̃(z0) (11.14)

where z0 is the operator-instertion point. These can be described in the WZW path

integral as insertions of matrix elements of ρλ(g(z0)) where ρλ is the representation

of the finite-dimensional group G. These operators have L0 = L̃0 eigenvalue

∆λ =
(λ, λ+ 2ρ)

2(k + h)
(11.15)

(So for SU(2)k a primary field of spin j has ∆j = j(j + 1)/(k + 2).) ♣CHECK! ♣

The operator product expansion of these operators takes the form:

Φλ1µ1,µ̃1(z1)Φ
λ2
µ2,µ̃2

(z2) ∼
∑

λ3,µ3,µ̃3

∣∣∣∣∣(z1−z2)
∆λ3−∆λ1−∆λ2

∣∣∣∣∣

2

C123 Φ
λ3
µ3,µ̃3

(z2) (1 +O(z12, z̄12))

(11.16)

The OPE coefficients C123, depend on λi, µi, µ̃i as well as k. They have a good

k → ∞ limit and in fact approach the usual structure constants for the multiplication

of functions in L2(G). Since the weights ∆λ → 0 for k → ∞ at fixed λ if we take

k → ∞ and z1 → z2 the OPE algebra becomes the commutative algebra of functions

on G.

This, and other examples, gives a hint that vertex operator algebras provide a kind

of generalization of geometry and topology. When we consider the chiral vertex

operators, or - closely related - vertex operators on boundaries of Riemann surfaces

then we find that the algebras are noncommutative.

There are many many papers exploring this idea. Two examples are [16, 45]

Exercise

What is the analog of (11.13) in the unoriented case?

12. Quantum Mechanics And C∗ Algebras

This section is somewhat outside the main line of development of this chapter. Nevertheless

we have included it for several reasons:
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1. The material is of intrinsic interest.

2. The material will be of use in the more algebraic description of bundle theory.

3. We give a complete and rigorous proof of the Gelfand theorem, and put it into some

context.

For the functional analysis I will follow:

1. N.P. Landsman, “Lecture Notes on C*-Algebras, Hilbert C*-modules, and Quantum

Mechanics,” arXiv:math-ph/9807030

2. Reed and Simon, Methods of Modern Mathematical Physics, especially, vol. I.

3. Rudin

4. Murphy

5. Varilly

6. Wegge-Olsen

12.1 Banach Algebras

The proper notion of continuity is captured by the notion of a “C∗ algebra.” In order

to appreciate this concept we need to take a few steps back and review some standard

functional analysis.

Definition. A vector space V is a normed vector space if there is a function v →‖ v ‖∈ R+

such that:

1. ‖ v1 + v2 ‖≤‖ v1 ‖ + ‖ v2 ‖.
2. ‖ αv ‖= |α| ‖ v ‖, where α is a scalar.

3. ‖ v ‖> 0 if v 6= 0.

The key point about a normed vector space is that we can define a notion of open sets,

and therefore continuity, etc. Thus, for example:

1. A sequence {vn} ⊂ V converges to v ∈ V if

lim
n→∞

‖ vn − v ‖= 0 (12.1)

2. A Cauchy sequence {vn} ⊂ V is a sequence so that for all ǫ > 0 there is an N so

that for all n,m > N we have ‖ vn − vm ‖< ǫ.

3. Every convergent sequence is a Cauchy sequence, but the converse is false.

Definition. A normed vector space is complete if every Cauchy sequence in V converges

to some vector v ∈ V . Such a normed vector space is called a Banach space.

Note that it follows from the triangle inequality that for all v1, v2 in any normed vector

space

| ‖ v1 ‖ − ‖ v2 ‖ | ≤‖ v1 − v2 ‖ (12.2)

Therefore, if {vn} converges to v ∈ V , then

lim
n→∞

‖ vn ‖=‖ v ‖ (12.3)

– 77 –



Do not confuse a Banach space with a Hilbert space. To define the latter we first recall

that an inner product space is a complex or real vector space V with a sesquilinear inner

product: A map V × V → κ (where the ground field is R or C) that is linear in the second

variable and antilinear in the first. The inner product is positive definite when (v, v) = 0

iff v = 0. Given a positive definite inner product we can define the structure of a normed

vector space on V via

‖ v ‖:=
√

(v, v). (12.4)

The slightly nontrivial point to check is the triangle inequality and this follows from the

Cauchy-Schwarz inequality.

Definition A Hilbert space is a positive definite inner product space which is complete in

the norm (12.4).

Thus, a Hilbert space structure on V defines a Banach space structure on V . We will

soon see examples of Banach spaces that are not Hilbert spaces.

Suppose that V1 and V2 are two normed vector spaces. A linear operator T : V1 → V2

is said to be bounded if

‖ T ‖:= supv∈V1,v 6=0
‖ Tv ‖2
‖ v ‖1

<∞ (12.5)

where the subscripts on the norms on the RHS remind us that we use the norms in V1 and

V2, respectively. We will usually drop them to keep the equations from getting too busy.

In particular, if T is a bounded operator then for all v:

‖ Tv ‖≤‖ T ‖ · ‖ v ‖ . (12.6)

Note that if T1, T2 are bounded then so is αT1+βT2. Let L(V1,V2) be the vector space of

all bounded operators. We claim that T →‖ T ‖ is itself a norm on L(V1,V2). It is called the

operator norm. To check this we must show for example that ‖ T1 + T2 ‖≤‖ T1 ‖ + ‖ T2 ‖.
This holds because

‖ T1 + T2 ‖ := supv∈V1,v 6=0

‖ (T1 + T2)(v) ‖2
‖ v ‖1

≤ supv∈V1,v 6=0

‖ T1v ‖2
‖ v ‖1

+ supv∈V1,v 6=0

‖ T2v ‖2
‖ v ‖1

=‖ T1 ‖ + ‖ T2 ‖

(12.7)

Proposition: If V1,V2 are normed linear spaces and V2 is a Banach space then L(V1,V2)

is itself a Banach space.

Proof : Suppose {Tn} is a Cauchy sequence in the operator norm. That is ∀ǫ > 0 ∃N such

that n,m > N implies ‖ Tn − Tm ‖< ǫ. Then for all v ∈ V1 {Tn(v)} ⊂ V2 is a Cauchy

sequence and therefore has a limit because V2 is a Banach space. We call the limit T (v),

– 78 –



and it is easy to prove that v 7→ T (v) is a linear operator. We claim that T is a bounded

operator. To prove this note that for all v 6= 0

‖ T (v) ‖2
‖ v ‖1

= lim
n→∞

‖ Tn(v) ‖2
‖ v ‖1

≤ lim
n→∞

‖ Tn ‖
(12.8)

But we know that {‖ Tn ‖} is a Cauchy sequence of real numbers, by (12.2). It therefore

converges, so T is a bounded operator. Taking the supremum over all v 6= 0 in (12.8) we

see that the limit is ‖ T ‖.
Finally, we need to show that Tn → T in the operator norm. But

‖ (T − Tn)v ‖= lim
m→∞

‖ (Tm − Tn)v ‖≤‖ v ‖ lim
m→∞

‖ Tm − Tn ‖ (12.9)

so

‖ T − Tn ‖≤ lim
m→∞

‖ Tm − Tn ‖ (12.10)

which suffices to show that limn→∞ ‖ T − Tn ‖= 0. ♠
There are two useful things we can immediately conclude from this Proposition. First,

we can make the following important definition:

Definition: A functional on a Banach space B is a linear map ℓ : B → C that is a bounded

operator. The dual Banach space is the Banach space B∨ := L(B,C) in the operator norm.

Second, it follows that if B is a Banach space then B := L(B,B) is also an a Banach

space. On the other hand, it is also an algebra. The one thing we need to check is that the

product of operators is again bounded. But this follows because

‖ T1T2v ‖≤‖ T1 ‖ · ‖ T2v ‖≤‖ T1 ‖ · ‖ T2 ‖ · ‖ v ‖ (12.11)

Thus, T1T2 is indeed bounded, and moreover:

‖ T1T2 ‖≤‖ T1 ‖ · ‖ T2 ‖ (12.12)

This motivates the

Definition: A Banach space A is called a Banach algebra if it has an algebra structure

such that for all a1, a2 ∈ A:

‖ a1a2 ‖≤‖ a1 ‖ · ‖ a2 ‖ (12.13)

Remarks:
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1. Note that a bounded operator is always continuous in the norm topologies on V1,V2.

Indeed, for all ǫ > 0 if ‖ v − v0 ‖≤ δ := ǫ/ ‖ T ‖ then ‖ T (v) − T (v0) ‖≤ ǫ. In a

similar way, in a Banach algebra the multiplication B×B → B is continuous in each

variable.

2. If v ∈ B and ℓ(v) = 0 for all ℓ ∈ B∗ then v = 0. This is not completely trivial and is

a consequence of the Hahn-Banach theorem. Recall that the HB theorem says that

if B0 ⊂ B is a linear subspace and ℓ0 : B0 → C is a bounded linear functional then

there is an extension to ℓ : B → C with ‖ ℓ0 ‖=‖ ℓ ‖. (This theorem is nontrivial.

For a proof see any textbook on functional analysis.) For v 6= 0 we can take B0 to

be the line through v and define ℓ0(λv) := λ. Then the extension ℓ clearly has the

property that ℓ(v) 6= 0.

3. If H is a Hilbert space then B(H) := L(H,H) is a good example of a Banach space

that is not a Hilbert space. One might try to define a sesquilinear form by (T1, T2) =

TrHT
†
1T2 but this will not converge in general.

12.2 C∗ Algebras

Definition: Let A be an algebra over C. Then it is a ∗-algebra if there is a C-antilinear

involution A → A denoted a→ a∗ such that (ab)∗ = b∗a∗.

Example: B(H) is a good example of a ∗ algebra, where ∗ is the usual Hermitian adjoint.

Now we can note a nice way that ∗ interacts with the norm in this case:

‖ Tv ‖2 = (Tv, Tv)

= (v, T ∗Tv)

= |(v, T ∗Tv)|
≤‖ v ‖‖ T ∗Tv ‖ Cauchy− Schwarz

≤‖ v ‖2‖ T ∗T ‖

(12.14)

It follows that

‖ T ‖2≤‖ T ∗T ‖ (12.15)

but we also know from (12.12) that

‖ T ∗T ‖≤‖ T ∗ ‖‖ T ‖ (12.16)

so

‖ T ‖2≤‖ T ∗T ‖≤‖ T ∗ ‖‖ T ‖ (12.17)

and hence

‖ T ‖≤‖ T ∗ ‖ (12.18)
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But now replacing T → T ∗ and using the fact that (T ∗)∗ = T we get

‖ T ∗ ‖=‖ T ‖ (12.19)

and from (12.17)

‖ T ∗T ‖=‖ T ‖2 (12.20)

this is known as the C∗-identity. This discussion motivates the:

Definition. A C∗-algebra A is a Banach algebra that is also a ∗-algebra and the two

structures are compatible in the sense that for all a ∈ A:

‖ a∗a ‖=‖ a ‖2 (12.21)

We have just shown above that for a Hilbert space H, the algebra of bounded operators

B(H) is a C∗-algebra. Therefore, any norm closed subalgebra is a C∗-algebra. This gives

lots of examples.

Definition: A morphism of C∗-algebras A1 and A2 is a C-linear map ϕ : A1 → A2 such

that

1. ϕ(aa′) = ϕ(a)ϕ(a′)

2. ϕ(a∗) = (ϕ(a))∗

♣For isomorphism

do we need to

demand ϕ−1 is

continuous, or is

this automatic? ♣Definition: A representation of a C∗-algebra A is a morphism ϕ : A → B(H) for some

Hilbert space H. It is faithful if the morphism is injective.

A nontrivial theorem of Gelfand and Naimark says that up to isomorphism, the only

examples are subalgebras of B(H), for some H: Every C∗ algebra is isomorphic to a norm-

closed self-adjoint subalgebra of the algebra B(H) of bounded operators on some Hilbert

space This theorem in turn relies on a famous construction of Gelfand-Neimark-Segal. We

will explain the GNS construction below. ♣EXPLAIN THIS

THEOREM? ♣

Examples Let Θij be a 2n × 2n constant, antisymmetric, nondegenerate matrix. One

algebra, the “algebra of functions on the noncommutative torus” is defined by taking 2n

unitary operators Ui:

UiU
∗
i = U∗

i Ui = 1 (12.22)

with the added relation

UiUj = exp[iΘij ]UjUi (12.23)

Another related algebra is the deformation of the algebra of functions on R2n called the

∗-product or the Moyal product. 20 The latter is defined via the formula:

20According to Wikipedia it was introduced earlier by Groenewald.
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(f1 ∗Θ f2) (x) := exp

[
i

2
Θij ∂

∂xi1

∂

∂xj2

]
(f1(x1)f2(x2))

∣∣∣∣∣
x1=x2=x

(12.24)

We will discuss the associated C∗-algebras and the related physics in Sections ***** below.

We will also need the

Definition If A is a C∗-algebra then an element a ∈ A is self-adjoint if a∗ = a.

12.3 Units In Banach Algebras

Definition: A unit in a Banach-algebra, denoted 1, is a multiplicative unit for the algebra

structure such that ‖ 1 ‖= 1.

If a Banach algebra B does not have a unit we can always embed it in another Banach

algebra B1 constructed as follows: As a vector space

B1 := B⊕ C (12.25)

with the algebra structure

(a⊕ λ1) · (a′ ⊕ λ′1) := (aa′ + aλ′ + a′λ)⊕ λλ′1 (12.26)

The norm is, by definition:

‖ a⊕ λ1 ‖:=‖ a ‖ +|λ| (12.27)

It is easy to see that B1 is a Banach space. Moreover, a simple application of the triangle

inequality and (12.13) for B shows that this satisfies (12.13):

‖ (a1 ⊕ λ11)(a2 ⊕ λ21) ‖ =‖ (a1a2 + λ1a2 + λ2a1)⊕ λ1λ21 ‖
≤‖ a1a2 + λ1a2 + λ2a1 ‖ +|λ1| · |λ2|
≤‖ a1 ‖‖ a2 ‖ +|λ1| ‖ a2 ‖ +|λ2| ‖ a1 ‖ +|λ1| · |λ2|
=‖ a1 ⊕ λ11 ‖ · ‖ a2 ⊕ λ21 ‖

(12.28)

and hence B1 is a Banach algebra.

1. The Banach algebra B1 is called the unitization of B. B is isometrically embedded

in B1.

2. There are other ways of adding units.

3. The above definition of the norm does not satisfy the C∗ identity for C∗-algebras.

We will have to work harder to define a unitization of a nonunital C∗-algebra.
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12.4 The Spectrum Of An Element a ∈ B

Let B be a unital Banach algebra. We define the spectrum of an element a ∈ B to be the

subset of the complex plane:

σ(a) := {z ∈ C|a− z1 not invertible} (12.29)

The resolvent is then defined to be the complement of the spectrum. We will denote it by

R(a).

Theorem The spectrum σ(a) is a nonempty, compact subset of the disk of radius ‖ a ‖.

Proof :

First, let us show that the spectrum σ(a) is nonempty:

For a ∈ B let R(a) = C− σ(a) denote the resolvent. Define a function

g : R(a) → B (12.30)

by

g(z) =
1

z − a
(12.31)

Then it is not hard to show that

lim
z→∞

‖ g(z) ‖= 0 (12.32)

Therefore, for any ℓ ∈ B∨, the function gℓ : ρ(a) → C defined by

gℓ(z) := ℓ(g(z)) (12.33)

is holomorphic and

lim
z→∞

gℓ(z) = 0 (12.34)

Now, if the spectrum σ(a) were the empty set then R(a) = C and gℓ would be entire, but

by Liouville’s theorem it would have to vanish. Since this argument works for all ℓ ∈ B∨

it follows from the remark 2 in section **** that g(z) = 0. Since this is clearly false, we

conclude that the spectrum must be nonempty.

Next, let us show that the resolvent R(a) is open, and hence σ(a) is closed. If z0 ∈ R(a)

then for

|z − z0| <
1

‖ (a− z0)−1 ‖ (12.35)

the sum
1

z0 − a

∞∑

k=0

(
z0 − z

z0 − a

)k
(12.36)
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converges in the norm topology, and it must converge to 21

1

z0 − a

∞∑

k=0

(
z0 − z

z0 − a

)k
=

1

z − a
(12.37)

Thus, R(a) is open.

Now we show that the spectrum is bounded:

If |z| >‖ a ‖ then we can say that

1

z

∞∑

k=0

(a
z

)k
(12.38)

converges in the norm topology. Again it must equal 1/(z − a), and hence z ∈ ρ(a).

Therefore σ(a) is contained in the disk of radius ‖ a ‖. ♠

Definition The spectral radius of a ∈ B is

r(a) := sup{|z| : z ∈ σ(a)} (12.39)

Theorem[Gelfand’s Formula]

r(a) = lim
n→∞

‖ an ‖1/n (12.40)

Proof : 22

If R > r(a) then we can use the Cauchy formula to say

an =
1

2πi

∮

CR

zn

z − a
dz (12.41)

where CR is a circle of radius R. Since z → 1
z−a is continuous for z in the resolvent and

CR is compact

M(R) = supθ ‖
1

Reiθ − a
‖< ∞ (12.42)

so

‖ an ‖≤ Rn(RM(R)) (12.43)

and hence

lim
n→∞

‖ an ‖1/n≤ R (12.44)

for all R > r(a) so

lim
n→∞

‖ an ‖1/n≤ r(a) (12.45)

21This uses the basic fact - easily proved - that if ‖ A ‖< 1 then
∑∞
k=0A

k converges in the norm topology

to (1−A)−1.
22I am skipping several details. See Rudin, Theorem 10.13 or Landsman, Proposition 2.2.7. I am also

being slightly sloppy by replacing lim sup and lim inf by lim
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On the other hand, note that

zn − an = (z − a)(zn−1 + · · ·+ an−1) (12.46)

so if (z − a) is not invertible then zn − an is not invertible. Therefore z ∈ σ(a) implies

zn ∈ σ(an). But recall that the spectrum of an operator is in the disk whose radius is the

norm of that operator. Therefore |zn| ≤‖ an ‖. Therefore:

r(a) ≤ lim
n→∞

‖ an ‖1/n (12.47)

Putting together (12.45) and (12.47) gives the result ♠

Remarks:

1. Note ‖ ab ‖≤‖ a ‖ · ‖ b ‖ implies that r(a) ≤‖ a ‖.

2. The spectrum of a nilpotent operator is {0}, because by (12.40) the spectral radius

is zero. Thus, an operator can be nonzero and have zero spectral radius. This also

shows that we really can have r(a) <‖ a ‖.

3. If B is not unital we define the spectrum of a ∈ B to be the spectrum of a⊕ 0 in the

unitization B1.

Exercise

Show that if a is an element of the C∗-algebra Mn(C) of n×n complex matrices, where

n is a positive integer, then σ(a) coincides with the zeroes of the characteristic polynomial

of a.

Exercise Gelfand-Mazur Theorem

Show that if a unital B algebra is a division algebra, that is, if every element a 6= 0 is

invertible, then B ∼= C. 23

23Answer : For all a there exists a complex number za so that a−za1 is not invertible, since the spectrum

is never empty. But if B is a division algebra and a−za1 is not invertible then a = za1. So the isomorphism

is a→ za. Moreover, ‖ a ‖=‖ za1 ‖= |za| so the isomorphism is an isometry.
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12.5 Commutative Banach Algebras

12.5.1 Characters And Spec(A)

Definition. A character on a commutative Banach algebra A is a nonzero linear map

χ : A → C (12.48)

such that

χ(aa′) = χ(a)χ(a′) (12.49)

That is, it is a homomorphism of algebras. We denote the set of all characters by Spec(A).

It is sometimes called the structure space of A.

Some simple consequences of this definition are, first, that if A is unital then:

χ(1) = 1 (12.50)

because if χ 6= 0 then for some a, χ(a) 6= 0 and therefore χ(a) = χ(1a) = χ(1)χ(a). Next,

for any z with |z| >‖ a ‖ we know that z1 − a is invertible, but then z − χ(a) must be

invertible. Therefore |χ(a)| 6= r for all r >‖ a ‖, and hence

|χ(a)| ≤‖ a ‖ (12.51)

and in particular ‖ χ ‖= 1. Therefore Spec(A) consists of bounded operators, so Spec(A) ⊂
A∨. In fact it is in the unit “sphere” of elements of norm 1.

Example 1: If A = C then there is exactly one character since χ(1) = 1 and by linearity

χ(z) = z.

Example 2: If A = C⊕ · · ·⊕C with n summands then there are exactly n characters: χi,

1 ≤ i ≤ n vanishes on all the summands except the ith summand, on which χ(z) = z.

Remark: Now we can see why the definition is only interesting for commutative Banach

algebras: Consider the matrix algebra Mn(C) for n > 1. For each 1 ≤ i ≤ n we can restrict

to the subalgebra Ai ∼= C of diagonal matrices with diagonal entry = 1 for j 6= i. Clearly

this takes χ(a) = aii. By multiplicativity it follows that on diagonal matrices χ(a) = deta.

But if S is invertible then χ(S−1) = χ(S)−1 and hence on the subset of diagonalizable

matrices χ(a) = det(a). But now this is not linear! So there are no characters on Mn(C)

for n > 1.

12.5.2 Ideals And Maximal Ideals

Next, let us note the relation of Spec(A) to maximal ideals.

Definition In any Banach algebra A, commutative or not, an ideal I ⊂ A is a norm-closed

linear subspace that is a two-sided ideal in the sense of algebra. It is called a proper ideal

if I 6= A. It is called a maximal ideal if it is not a proper subset of any proper ideal.
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If I is any ideal in any Banach algebra A then the quotient space A/I is an algebra:

(a+ I)(a′ + I) := aa′ + I (12.52)

and moreover A/I can be given a norm:

‖ a+ I ‖:= infj∈I ‖ a+ j ‖ (12.53)

The triangle inequality follows immediately from the definition.

One can prove (for details see Landsman pp. 19-20):

1. A/I is a Banach space.

2. A/I is a Banach algebra.

Now let us consider the case that A is a unital commutative Banach algebra. Then

the kernel of a character ker(χ) := {a|χ(a) = 0} is a maximal ideal.

Conversely, if I ⊂ A is a maximal ideal in a commutative Banach space then it is the

kernel of some character. To prove this note that since I is maximal there must be some

b 6= 0 which is not in I. Then there must exist an a ∈ A and a j ∈ I so that

1 = ba+ j (12.54)

(Using commutativity of A one shows {ba + j|a ∈ A, j ∈ I} is an ideal containing both b

and I. Since A is maximal it must be all of A, and therefore contains 1. ) Let π : A → A/I

be the projection. Then

1 = π(b)π(a) (12.55)

Therefore A/I is a Banach algebra where all nonzero elements are invertible. Therefore

by the exercise above it is isomorphic to C. Using this isomorphism we can consider the

projection π : A → A/I ∼= C is the desired character: I = ker(π). So all maximal ideals

are kernels of characters.

12.5.3 The Gelfand Transform

Let V be a topological vector space, and V ∨ the dual space. Then there is a natural map

V → (V ∨)∨. Given v ∈ V we define v̂ ∈ (V ∨)∨ to be the map

v̂ : ℓ 7→ ℓ(v) (12.56)

Notice that the image of V in (V ∨)∨ separates points: This means that if ℓ1 6= ℓ2 then

there is a v̂ so that v̂(ℓ1) 6= v̂(ℓ2).

Definition: If B is a Banach space then the w∗-topology on B∨ is the weakest topology

so that, for all b ∈ B, the map b̂ : B∨ → C sending ℓ → ℓ(b) is continuous on B∨. In this

topology a sequence {ℓn} converges to ℓ ∈ B∨ iff limn→∞ ℓn(b) = ℓ(b) for all b ∈ B, and it

is the weakest topology with that property.

One key fact we need is
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Theorem: [Banach-Alaoglu] If B is a Banach space then in the w∗-topology the unit ball

in B∨ is compact.

Proof : For every b ∈ B the disk

Db = {λ ∈ C : |λ| ≤‖ b ‖} (12.57)

is clearly compact, and hence

D :=
∏

b∈B

Db (12.58)

is compact in the product topology. 24 An element of this product is the same thing as a

function f : B → C for some function. Of course |f(b)| ≤‖ b ‖, by definition. Therefore the

unit disk B∨
1 ⊂ D. It is the subset of functions that happen to be linear. Now suppose {fn}

is a sequence of linear functions in D, that is a sequence in B∨
1 . Then, for all b, we have a

sequence of complex numbers fn(b) in a compact disk. This sequence must converge to a

complex number of modulus less or equal to ‖ b ‖. Call the result f(b). But then

f(α1b1 + α2b2) = lim
n→∞

fn(α1b1 + α2b2)

= lim
n→∞

α1fn(b1) + α2f(b2)

= α1f(b1) + α2f(b2)

(12.59)

Therefore the map b 7→ f(b) is linear. Therefore B∨
1 is closed in the w∗-topology and it is

obviously bounded. So it is compact. ♠
Now let us apply this to a commutative Banach algebra A. The w∗-topology is a

topology on A∨ and induces a topology on Spec(A). This topology has a basis of open sets

labeled by a ∈ A and open sets O ⊂ C:

Ua,O := {χ ∈ Spec(A) : χ(a) ∈ O} (12.60)

Theorem Let A be a unital commutative Banach algebra. Then Spec(A) in the w∗-
topology is a compact Hausdorff topological space.

Proof : Spec(A) is Hausdorff because continuous functions separate points. In more detail:

suppose χ1 6= χ2. Then there must be an a ∈ A so that χ1(a) 6= χ2(a). Choose disjoint

open sets O1 and O2 in the complex plane that contain χ1(a) and χ2(a), respectively. Then

the open sets Ua,O1 and Ua,O2 separate χ1 and χ2.

Now we know that ‖ χ ‖= 1. So Spec(A) ⊂ A∨
1 . Since A

∨
1 is compact in the w∗-topology

we need only show that Spec(A) is closed. So we need to show that every sequence {χn}
24The product topology on any product of topological spaces

∏

αXα is generated by the sets p−1
α (Uα)

where pα : X → Xα is the projection and Uα ⊂ Xα is open in Xα. The fact that an arbitrary product

of compact sets is compact is not at all trivial! It is known as Tychonoff’s theorem. See any textbook on

general topology for a discussion.

– 88 –



in Spec(A) that converges, in the w∗-topology, to some χ ∈ A∨, in fact converges to an

element of Spec(A). That is we need to show that Spec(A) is a closed subset of A∨
1 .

Suppose {χn} is a sequence of characters that converges, in A∨, in the w∗-topology.
That means that for all a ∈ A we have χn(a) → χ(a). What we must show is that a 7→ χ(a)

is in fact a character. To show this note that, for all n:

|χ(aa′)− χ(a)χ(a′)| = |χ(aa′)− χn(aa
′) + χn(a)χn(a

′)− χ(a)χ(a′)|
≤ |χ(aa′)− χn(aa

′)|+ |χn(a)χn(a′)− χ(a)χ(a′)|
= |χ(aa′)− χn(aa

′)|+ |(χn(a)− χ(a))χn(a
′) + χ(a)(χn(a

′)− χ(a′)|
≤ |χ(aa′)− χn(aa

′)|+ |(χn(a)− χ(a))| ‖ a′ ‖ +|(χn(a′)− χ(a′)| ‖ a ‖
(12.61)

Now we take the n→ ∞ limit to see that χ(aa′) = χ(a)χ(a′). Thus, Spec(A) is w∗-closed.
♠

Definition The Gelfand transform of a commutative Banach algebra (not necessarily uni-

tal) is the map

G : A → C(Spec(A)) (12.62)

given simply by G(a) = â ∈ A∨. Note that in the w∗-topology on Spec(A), (inherited from

the w∗ topology on A∨) the function â is continuous.

Now for any compact Hausdorff topological space X the set of continuous C-valued

functions C(X) can be given the structure of a unital commutative Banach algebra: The

norm is defined by:

‖ f ‖:= supx∈X |f(x)| (12.63)

The norm clearly satisfies the requisite properties, and completeness is a standard property

of continuous functions. (We use here that X is compact.) Moreover, C(X) is in fact a C∗

algebra with the norm-preserving involution f → f∗ being just complex conjugation. The

unit is, of course, the constant function x→ 1. (Note that nothing in the above discussion

uses the property that X is Hausdorff.)

The spectrum of any continuous function f ∈ C(X) is its set of values (because a

nowhere zero function on C(X) can be inverted). For the continuous function G(a) on

Spec(A) the set of values is {χ(a)|χ ∈ Spec(A)}. Rather nicely this coincides with the

spectrum of a itself:

σ(a) = {χ(a)|χ ∈ Spec(A)} (12.64)

To prove (12.64) note that the resolvent of a is the set of complex numbers so that z− a ∈
G(A) where G(A) is the group of invertible elements of A. Now, if b ∈ G(A) then for all

χ,

χ(b)χ(b−1) = χ(1) = 1 (12.65)
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On the other hand, if b /∈ G(A) then it is in the proper ideal {ab|a ∈ A} (it is proper,

because it does not contain 1) and hence in some maximal ideal. But every maximal ideal

is the kernel of some χ ∈ Spec(A). So there is a χ with χ(b) = 0. Therefore

b ∈ G(A) ⇔ χ(b) 6= 0 ∀χ ∈ Spec(A) (12.66)

and in particular,

z ∈ R(a) ⇔ z − a ∈ G(A) ⇔ χ(a) 6= z ∀χ ∈ Spec(A) (12.67)

Since the spectrum is the complement of the resolvent we get (12.64).

Theorem Let A be a unital commutative Banach algebra

1. G : A → C(Spec(A)) is a homomorphism of C∗-algebras.

2. G is a contraction:

‖ G(a) ‖≤‖ a ‖ (12.68)

Proof : The fact that G is a homomorphism is easy. For all χ ∈ Spec(A):

G(a1a2)(χ) = χ(a1a2) = χ(a1)χ(a2) = G(a1)(χ)G(a2)(χ) = (G(a1) · G(a2))(χ) (12.69)

For the second note that

‖ G(a) ‖ := sup{|G(a)(χ)| : χ ∈ Spec(A)}
= sup{|χ(a)| : χ ∈ Spec(A)}
= sup{|z| : z ∈ σ(a)}
:= r(a) ≤‖ a ‖ .

(12.70)

Remark Note that the above proves the nice result that ‖ G(a) ‖= r(a). For Banach

algebras, as opposed to C∗ algebras, G can really be a contraction and not an isometry.

We will see an example below.

Exercise

Let f ∈ C(X). Show that the spectrum of f is the same as the set of values of f in

the complex plane.

12.5.4 Commutative C∗ Algebras

We are now finally ready to state and prove Gelfand’s theorem, in the unital case:

Theorem Let A be a unital commutative C∗ algebra. Then the Gelfand transform defines

an isometric isomorphism

G : A → C(Spec(A)) (12.71)
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and moreover, if A is isomorphic to C(X) for any topological space thenX is homeomorphic

to Spec(A).

Proof : We need to show four things:

1. G(a∗) = G(a)∗
2. G is an isometry.

3. G is surjective.

4. The uniqueness statement.

For 1, since G is C-linear it suffices to show that G(a) is real-valued if a is self-adjoint.

To show this, suppose that a∗ = a and let χ be any character and set

χ(a) = α+ iβ (12.72)

Then, for any t ∈ R we have

χ(a− (α+ it)1) = i(β − t) (12.73)

and hence

β2 − 2βt+ t2 = |χ(a− (α+ it)1)|2

≤‖ a− (α+ it)1 ‖2 since ‖ χ ‖= 1

=‖ (a− (α+ it)1))(a∗ − (α− it)1) ‖ C∗ − identity

=‖ (a− α1)2 + t21 ‖
≤‖ a− α1 ‖2 +t2 triangle inequality

(12.74)

So

β2 − 2βt ≤‖ a− α1 ‖2 ∀t ∈ R (12.75)

and this implies β = 0. This proves 1.

Now for 2, note that if a is self-adjoint then ‖ a2 ‖=‖ a ‖2 by the C∗-identity and

therefore ‖ a2n ‖=‖ a ‖2n so by Gelfand’s formula for the spectral radius

r(a) =‖ a ‖ (12.76)

However, we have already seen that r(a) =‖ G(a) ‖, and hence G is an isometry on self-

adjoint elements. But now the result for general elements is easy:

‖ a ‖2 =‖ a∗a ‖ C∗ − identity

=‖ G(a∗a) ‖
=‖ (G(a)∗G(a) ‖
=‖ G(a) ‖2 C∗ − identity

(12.77)

Finally, for 3, we need the

Stone-Weierstrass theorem: If X is a compact Hausdorff space then any C∗-subalgebra

of C(X) which separates points and contains 1 must be equal to all of C(X). For a proof

see J. Conway, Theorem 8.1, p.145 or Reed-Simon, Theorems IV.8-9.
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Now just note that the image of G inside C(Spec(A)) separates points, (because â

separates points), and is a C∗-subalgebra, being the image of a morphism of C∗-algebras.

Thus we have established that

A ∼= C(Spec(A)) (12.78)

as an isometric isomorphism of C∗-algebras. The fourth and last thing we need to show is

that for any compact Hausdorff space X

X ∼= Spec(C(X)) (12.79)

as a homeomorphism of topological spaces.

To prove (12.79) we consider the evaluation map

ev : X → Spec(C(X)) (12.80)

A. Because X is Hausdorff we can use Urysohn’s lemma from topology to conclude

that there is a continuous function separating points. This means that ev is injective.

B. To prove that ev is surjective we use the identification of Spec(C(X)) with the

space of maximal ideals in C(X). Suppose I ⊂ C(X) is a maximal ideal that is not of

the form ker(evx) for some x. That means that for all x there must exist some continuous

function f (x) ∈ I with f (x)(x) 6= 0. Since f (x0) is continuous the set O(x0) ⊂ X where

f (x0)(x) 6= 0 is an open set, and clearly the O(x0) form an open cover of X. Since X is

compact there is a finite cover {O(x1), . . . ,O(xn)} so

g =

n∑

i=1

|f (xi)|2 (12.81)

is everywhere positive, and hence invertible. On the other hand, all the f (xi) ∈ I and hence

g ∈ I. But since g is invertible I = C(X). This is a contradiction since maximal ideals are

proper, by definition. Therefore ev is surjective.

C. It is a tautology that G(f) ◦ ev = f . Using the fact that the Gelfand topology is

the weakest topology so that G(f) is continuous we find that the topology on Spec(C(X))

is the same as the original topology on X. (More details in Landsman, Theorem 2.4.1.) ♠
In informal terms, we can go back and forth between a compact topological space and

a unital C∗ algebra:

Spec(C(X)) ∼= X

C(Spec(A)) ∼= A
(12.82)

where ∼= means homeomorphism of topological spaces in the first line, and isomorphism

of C∗ algebras in the second line. Moreover, morphisms in one category map nicely to

morphisms in the other. This is a nice example of a deep theorem which can be stated

succinctly as an equivalence of categories.

Remark: As noted above, even when X is not Hausdorff (but still compact) C(X) makes

sense as a C∗-algebra. What happens in this case is that ev : X → Spec(C(X)) fails to be

injective.
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12.5.5 Application of Gelfand’s Theorem: The Spectrum Of A Self-Adjoint

Element Of A

A corollary of Gelfand’s theorem, proven below, is that if a is self-adjoint then σ(a) is a

subset of R.

Quite generally, given an element a in a C∗-algebra A, we can form C∗(a,1), the

smallest algebra containing a and 1. We form monomials using a and a∗, take finite linear

combinations of these, and take the norm closure.

If a and a∗ commute, then this algebra is a commutative C∗-algebra, and we can use

Gelfand’s theorem. Such operators are said to be normal : aa∗ = a∗a. In particular, if a is

self-adjoint a∗ = a, then C∗(a,1) is the closure of the space of polynomials in a.

Theorem 2.5.1 of Landsman explains that for a self-adjoint element a ∈ A the spectrum

of a as an element of A is the same as the spectrum of a as an element of the commutative

C∗-algebra C∗(1, a). In particular the spectrum of the element a ∈ A is homeomorphic to

the spectrum of the algebra C∗(a,1). Let us write the homeomorphism as

ψ : σ(a) → Spec(C∗(a,1)) (12.83)

One can show that the homeomorphism is such that the Gelfand transform continuous map

pulled back to σ(a):

ψ∗(G(a)) : σ(a) → C (12.84)

is nothing but the natural inclusion of σ(a) ⊂ C.

We proved above that the Gelfand transform G(a) of a self-adjoint operator takes real

values on the spectrum of a commutative C∗-algebra. So σ(a) ⊂ R.

All of the above statements are proved carefully in Landsman’s notes.

If follows that if a is self-adjoint and f : σ(a) → C is any continuous function then

f(a) ∈ A makes sense since it certainly makes sense in C(Spec(C∗(a,1))) and

‖ f(a) ‖=‖ f ‖∞ (12.85)

In particular, for f the identity, i.e. the embedding σ(a) →֒ C, we conclude that for

self-adjoint a:

‖ a ‖= r(a) (12.86)

Therefore, for all a, not necessarily self-adjoint, using the C∗-identity we get

‖ a ‖=
√
r(a∗a) (12.87)

Since the spectral radius is defined purely algebraically, without using the norm, this shows

that the norm on a C∗ algebra is unique.

12.5.6 Compactness and noncompactness

Motivating Example: The following example (Landsman, p.23) illustrates that the Gelfand

transform can be a contraction for Banach algebras that are not C∗ algebras, and also shows

that if the Banach algebra is non-unital then Spec(B) is not compact.
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The commutative Banach algebra is B = L1(R), the space of complex-valued functions

on R such that

‖ f ‖1:=
∫

R
|f(x)|dx <∞ (12.88)

This can be shown to be a Banach algebra with respect to the convolution product:

(f1 ∗ f2)(x) :=
∫

R
f1(x− y)f2(y)dy (12.89)

There is no unit in B since a unit would have to be a Dirac delta function, which is

not in B. Standard functional analysis (see Reed-Simon) shows that B∨ ∼= L∞(R), (the

Banach space of measurable functions, bounded a.e. and identified if they agree a.e.). The

isomorphism maps a linear functional ℓ to the bounded function ℓ̂(x) where:

ℓ(f) =

∫

R
f(x)ℓ̂(x)dx (12.90)

Now if we want ℓ to be a character:

ℓ(f1 ∗ f2) = ℓ(f1)ℓ(f2) (12.91)

then an easy computation shows this is true iff

ℓ̂(x1 + x2) = ℓ̂(x1)ℓ̂(x2) (12.92)

for almost all x1, x2. This is enough to show that ℓ̂(x) = eipx for some p ∈ R. Let us call the

character χp. Then the definition of the Gelfand transform yields the Fourier transform:

G(f)(χp) = χp(f) =

∫

R
f(x)eipxdx (12.93)

and indeed the Fourier transform of a convolution product of functions is the pointwise

product of Fourier transforms.

Now, it is a consequence of Fourier analysis that

1. ‖ G(f) ‖<‖ f ‖1. So the Gelfand transform is strictly a contraction, as promised.

2. For all f , limp→∞ G(f)(χp) = 0. This is the Riemann-Lebesgue lemma and suggests

the way to generalize Gelfand’s theorem to nonunital algebras.

Remark: This example generalizes nicely to L1(G) for any locally compact (see below)

abelian group. See Section VII.9, especially Theorem 9.6 of Conway: Using the convolution

product L1(G) is a Banach algebra. Its spectrum is isomorphic to the set of continuous

homomorphisms χ : G → C. This set of characters, usually denoted Ĝ is itself a locally

compact abelian group known as the dual group. We can therefore repeat the construction,

and Pontryagin duality says that the dual of Ĝ is isomorphic to G. See Kirillov, Elements

of representation theory for a detailed discussion. In addition to the example R̂ ∼= R just

discussed we have Û(1) ∼= Z and Ẑ/nZ ∼= Z/nZ.
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Recall that one can define a notion of a locally compact topological space. If X is

Hausdorff this can be defined as a space in which every point has a compact neighborhood,

or, equivalently, as a space such that for every point x ∈ X and every neighborhood U of

x there is a compact neighborhood K of x with K ⊂ U .

Definition If X is locally compact and Hausdorff we say that f vanishes at infinity if, for

all ǫ > 0 there is a compact set K ⊂ X so that |f | < ǫ on X −K.

One can check that for X locally compact the algebra C0(X) is still a C∗-algebra with

the sup-norm:

‖ f ‖:= supx∈X |f(x)| (12.94)

However, note that if X is noncompact then we have lost the unit element. The function

x 7→ 1 certainly doesn’t vanish at infinity! Thus C0(X) is nonunital. ♣Is it true that

C0(X) = C(X) for

X compact?

Landsman says so

but I think this is

wrong. ♣

If we replace “compact” with “locally compact but noncompact” on the topological side,

and “nonunital” on the algebraic side the Gelfand theorem still holds:

Theorem Let A be a non-unital commutative C∗ algebra. Then Spec(A) is a locally

compact but noncompact Hausdorff topological space. The Gelfand transform defines an

isometric isomorphism

G : A → C0(Spec(A)) (12.95)

and moreover, if A is isomorphic to C0(X) for any noncompact but locally compact Haus-

dorff topological space then X is homeomorphic to Spec(A).

Proof : See the references: Conway, Landsman, Murphy, Rudin,...

It is often of interest to take a noncompact space and “compactify” it - that is, to find

another topological space X̄ together with an embedding of X in X̄ as an open dense sub-

space. Compactifications are often very important in physics. Sometimes, for topological

arguments we would like to compactify a spacetime. Often we need to compactify moduli

spaces of various kinds: instantons, holomorphic bundles or sheaves, spaces of holomorphic

maps, Riemann surfaces, super-Riemann surfaces, etc.

A noncompact topological space X can have many different compactifications. We can

add one point, or we can add many points. We can add one point and define the 1-point

compactification X+ as follows:

As a set, X+ = X ∪ ∞, where ∞ is called the “point at infinity.” The open sets of

X+ are then

a.) The open sets of X

b.) Sets of the form X+ −K where K ⊂ X is compact.

Example: (Rn)+ = Sn.
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Among the many compactifications of X there is a “maximal” one - the Stone-Čech

compactification, denoted βX. It is the largest in the sense that every continuous f :

X → Z, where Z is compact and Hausdorff factors through an extension from βX → Z.

Moreover, for every Hausdorff compactification X̄ of X there is a surjective continuous

map βX → X̄ that restricts to the identity on X. See textbooks on topology for the

construction of βX, e.g. Munkres Section 5-3. The space βX can be “large” and “wild.”

It is generally not used in physics.

In the world of C∗-algebras, if A is any C∗-algebra we can embed it into a unital C∗-

algebra Ã as follows. 25 Embed A into the Banach algebra of bounded operators L(A,A)
by the left-regular representation: ι : A → L(A,A) where

ι(a) : a′ 7→ aa′ (12.96)

This is an isometric embedding ‖ ι(a) ‖=‖ a ‖. 26 Now we define

Ã := ι(A) + C · 1 (12.97)

where 1 ∈ L(A,A) is the unit operator. Note well that we used a + sign and not a ⊕ sign!

This might or might not be a direct sum. If A is unital then ι(1) = 1 and hence the sum

is not direct and A ∼= Ã. If A is not unital then we have a direct sum, and Ã ∼= A1, at

least as algebras, where A1 was defined for Banach algebras above. Indeed in Ã we have

the multiplication:

(ι(a) + λ1)(ι(b) + µ1) := ι(ab+ λb+ µa) + λµ1 (12.98)

The ∗-involution is just (ι(a) + λ1)∗ := ι(a∗) + λ∗1. However, the norm inherited from

L(A,A) differs from the norm on A1 used above for Banach algebras. The new norm does

not obviously satisfy the C∗ identity since L(A,A) has no ∗-involution and is just a Banach

algebra. Nevertheless, we can show that the norm on Ã indeed is a C∗ norm as follows:

Let x := ι(a) + λ1. Then, by the definition of the operator norm, for every ǫ > 0 we

can find a b ∈ A with ‖ b ‖≤ 1 so that

‖ x ‖2 =‖ ι(a) + λ1 ‖2

≤‖ (ι(a) + λ1)(b) ‖2 +ǫ
=‖ (ab+ λb)∗(ab+ λb) ‖2 +ǫ C∗ − identity

≤‖ b∗ ‖ · ‖ (ι(a) + λ1)∗(ι(a) + λ1)(b) ‖2 +ǫ
≤‖ x∗x ‖ +ǫ

(12.99)

So, as in our proof of the C∗-identity for B(H), we obtain ‖ x ‖2≤‖ x∗x ‖≤‖ x∗ ‖‖ x ‖, and
as we saw, this is enough to prove the C∗-identity.

The definition of Ã is justified by the nice property:

25The following discussion is taken from Wegge-Olsen, ch. 2
26‖ ι(a)(a′) ‖≤‖ a ‖‖ a′ ‖ so ‖ ι(a) ‖≤‖ a ‖. On the other hand by the definition of the operator norm

‖ ι(a)(a∗/ ‖ a ‖) ‖≤‖ ι(a) ‖, and by the C∗ identity we get ‖ a ‖≤‖ ι(a) ‖.
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C(X+) = C̃0(X) (12.100)

Indeed, note that Spec(A) is embedded in Spec(Ã) by χ 7→ χ̃ where we can define

χ̃(ι(a) + λ1) := χ(a) + λ (12.101)

But now there is one more “point”

χ∞(ι(a) + λ1) := λ (12.102)

One can show that this has the expected properties of a compactification: See Wegge-Olsen,

ch. 2.

Remark: There are other ways of unitizing C0(X) and similarly other ways of com-

pactifyingX. In fact, they are in 1-1 correspondence. See Chapter 2 of Wegge-Olsen. ForX

locally compact but noncompact Cb(X), the C∗-algebra of bounded functions corresponds

to the Stone-Čech compactification βX. Note that there are a lot of ways a sequence of

bounded functions can “go to infinity.” Algebraically, this corresponds to taking the “mul-

tiplier algebra” of A. One embeds A ⊂ B(H), as guaranteed by Gelfand-Naimark and then

M(A) is the algebra of elements b ∈ B(H) such that bA ⊂ A and Ab ⊂ A. See Wegge-Olsen

ch. 2 for more details.

Exercise

An essential ideal is J ⊂ A is an ideal which intersects every other ideal in A.

Show that X̄ is a compactification of X iff C(X̄) is a unital C∗ algebra containing

C0(X) as an essential ideal.

12.6 Noncommutative Topology: The C∗-Algebra Dictionary

Continuing along the above lines one can set up a dictionary between topological proper-

ties of a locally compact Hausdorff space X and algebraic properties of its C∗ algebra of

functions: 27

27This table is taken from Wegge-Olsen and Varilly et. al.
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Locally compact Hausdorff topological space C∗ -algebra

point maximal ideal

open subset ideal

open dense subset essential ideal

closed subset quotient

connected no nontrivial idempotents

compact unital

compactification unitization

one-point compactification Ã

Stone-Čech compactification M(A)

continuous proper map homomorphism

homeomorphism automorphism

measure positive functional

This suggests a generalization of topology to “noncommutative topology” where one

interprets theorems in the theory of general, noncommutative C∗ algebras as statements

about topology. When one adds extra structure one gets a notion of noncommutative

geometry.

Remarks

1. A natural question at this point is whether one can similarly encode, algebraically,

smooth structures, metric structures and so forth. For smooth structures we have

Proposition 1, p.207 of [12]: Let M be a smooth compact manifold and A = C∞(M)

the algebra of infinitely differentiable functions. Then there is an isomorphism of the

Hochschild cohomology Hk(A,A∗) with the space of k-dimensional DeRham “cur-

rents” (currents in the sense of smooth functionals dual to the DeRham complex):

〈Dϕ, f0df1 ∧ · · · ∧ dfk〉 =
1

k!

∑

σ∈Sk

ǫ(σ)ϕ(fσ(1), . . . , fσ(k))(f0) (12.103)

2. Similarly, according to Connes (see [12], chapter VI) the metric structure, at least on

a spin manifold, can be encoded into a “Fredholm module” using a Dirac operator.

The geodesic distance between two points x1, x2 is, roughly speaking the supremum

of |f(x1)− f(x2)| over all functions for which ‖ [D, f ] ‖ makes sense, where D is the

Dirac operator. ♣Compare: You

can’t hear the shape

of a drum. Also

why not use Dirac

coupled to the the

canonical bundle of

Clifford algebras

and drop the spin

condition? ♣

For details see:

1. A. Connes, Noncommutative Geometry. [12] 1. J.M. Gracia-Bondia, J.C. Varilly,

and H. Figueroa, Elements of Noncommutative Geometry, Birkhauser, 2001
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2. N.E. Wegge-Olsen, “K-Theory and C*-Algebras: A Friendly Approach,” Oxford

3. A. Connes, Noncommutative Geometry

12.6.1 Hopf Algebras And Quantum Groups

One place where the general philosophy of replacing a space by its algebra of functions

has been extremely influential is in the subject of Hopf algebras and quantum groups. We

comment briefly on this, following the beautiful introduction to V. Drinfeld’s 1986 ICM

address. Indeed Drinfeld, similarly to Connes, proposes that in some sense the category

of “quantum spaces” should be dual to the category of “noncommutative algebras.” The

Devil is in the details.

To begin let us consider some structures which the “algebra of functions on a topolog-

ical group G” will possess. (In this section I will not be careful about questions of analysis,

hence the quotation marks.)

Let G be a topological group and A = Fun(G) be some suitable algebra of κ-valued

functions, where κ is a field. First of all, let us note that A is an algebra by pointwise

multiplication, just as for C(X) in our discussion above. We will denote it by µ : A⊗A→ A

and of course it is associative:

A⊗A
µ

""❋
❋❋

❋❋
❋❋

❋❋

A⊗A⊗A

µ⊗Id
88♣♣♣♣♣♣♣♣♣♣

Id⊗µ

&&◆◆
◆◆

◆◆
◆◆

◆◆
A

A⊗A

µ
<<①①①①①①①①①

(12.104)

But now there will be extra structure on A arising from the fact that the group G has

extra structure. In particular there is a multiplication

m : G×G→ G (12.105)

on the group G. This induces a comultiplication on A:

∆ : A→ A⊗A (12.106)

defined by identifying A ⊗ A with the algebra of functions on G × G and declaring

∆(f)(g1, g2) := f(g1g2). Now group multiplication is associative:

G×G
m

##❋
❋❋

❋❋
❋❋

❋❋

G×G×G

m×Id
88♣♣♣♣♣♣♣♣♣♣♣

Id×m

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆

G

G×G

m

;;①①①①①①①①①

(12.107)
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The induced diagram on A reverses all arrows and is the property of coassociativity of ∆:

A⊗A
∆⊗Id

&&◆◆
◆◆

◆◆
◆◆

◆◆

A

∆
<<①①①①①①①①①

∆

""❋
❋❋

❋❋
❋❋

❋❋
A⊗A⊗A

A⊗A

Id⊗∆
88♣♣♣♣♣♣♣♣♣♣

(12.108)

This makes A a coassociative coalgebra.

Now, the next group axiom postulates a unit 1G. The dual of this is the counit

ε : A → κ (where κ is the ground field). For A = Fun(G) we would define ε(f) := f(1G).

We have two diagrams expressing the properties of the unit:

G
Id //

(Id,1G)
��

G

G×G

m

;;✇✇✇✇✇✇✇✇✇

G
Id //

(1G,Id)
��

G

G×G

m

;;✇✇✇✇✇✇✇✇✇

(12.109)

The dual diagrams give the property of the counit:

A
Id⊗1κ//

∆ ""❋
❋❋

❋❋
❋❋

❋❋
A⊗ κ

A⊗A

Id⊗ε

OO A
1κ⊗Id//

∆ ""❋
❋❋

❋❋
❋❋

❋❋
κ⊗A

A⊗A

ε⊗Id

OO (12.110)

The final group axiom states that every group element has an inverse. If we say that

I : G → G is the map g 7→ g−1 then we can define a dual operation S : A → A by

S(f) = f ◦ I. The linear operator S is known as the antipode. Now the group axiom is the

pair of diagrams:

G
(Id,I) //

""❊
❊❊

❊❊
❊❊

❊❊
G×G

m // G

{1G}

<<②②②②②②②②②

G
(I,Id) //

""❊
❊❊

❊❊
❊❊

❊❊
G×G

m // G

{1G}

<<②②②②②②②②②

(12.111)

Dually we get

A
∆ //

ε
**❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚ A⊗A

Id⊗S // A⊗A
µ // A

κ

;;✇✇✇✇✇✇✇✇✇

(12.112)

and a second diagram with S ⊗ Id.

This motivates the general definition:

Definition A unital algebra A over κ equipped with multiplication µ, comultiplication ∆,

counit ε, and antipode S satisfying equations (12.104),(12.108), (12.110),(12.112), is called

a Hopf algebra.
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We stress that this is a general concept. The algebra of functions on a group can

be given a Hopf algebra structure, but, as we shall soon see, this is not the general Hopf

algebra.

Remark: Now let us note that, quite generally, if A is a Hopf algebra then the vector

space dual A∨ := Homκ(A,κ) is also a Hopf algebra. First, let us define the product

µ∨ : A∨ ⊗A∨ → A∨ (12.113)

If ℓ1, ℓ2 are two linear functionals then we define their product µ∨(ℓ1⊗ℓ2) by declaring that

the value on a is obtained from forming ℓ1 ⊗ ℓ2(∆(a)) and then using the multiplication

κ⊗ κ→ κ. In more detail, suppose ai is a linear basis for A, and suppose

∆(ai) =
∑

j,k

∆jk
i aj ⊗ ak (12.114)

where ∆jk
i ∈ κ Then µ∨(ℓ1 ⊗ ℓ2) ∈ A∨ is defined by

µ∨(ℓ1 ⊗ ℓ2)(ai) :=
∑

j,k

∆jk
i ℓ1(aj)ℓ2(ak). (12.115)

Similarly, the dual comultiplication on A∨ is defined by

∆∨(ℓ)(a1 ⊗ a2) := ℓ(µ(a1 ⊗ a2)) (12.116)

The dual counit is

εA∨(ℓ) := ℓ(1A) (12.117)

and the dual antipode is simply

SA∨(ℓ)(a) := ℓ(S(a)) (12.118)

We leave it to the reader to check that (µ∨,∆∨, εA∨ , SA∨) in fact define a Hopf algebra

structure on A∨.

Applying the above remark to our example of A = Fun(G) we obtain the group algebra

A∨ = κ[G]. At least formally, this can be viewed as the linear span of evg : A → κ given

by evg(f) = f(g). Now the multiplication on κ[G] is:

µ∨(evg1 ⊗ evg2) = evg1g2 (12.119)

while the comultiplication is:

∆∨(evg)(f1 ⊗ f2) = f1(g)f2(g) (12.120)

and hence

∆∨(evg) = evg ⊗ evg (12.121)
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The counit is

ε∨(evg) = 1 ∀g ∈ G (12.122)

and the antipode is

S(evg) = evg−1 (12.123)

Now, rather confusingly, A∨ as a vector space can also be identified with an algebra

of κ-valued functions on the group G since we can write the general element as
∑

g∈G

fgevg (12.124)

and g 7→ fg is a function on the group. 28 However, viewed this way, the product µ∨ is the

convolution product:

µ∨(f1 ⊗ f2)(g) =

∫

G
f1(h)f2(gh

−1)dh (12.125)

where dh is a Haar measure of volume one, while ∆∨ takes g 7→ fg to a function on G×G

given by

∆∨(f)(g1, g2) = fg1δg1,g2 (12.126)

In general a Hopf algebra B is said to be “cocommutative” if σ ◦ ∆ = ∆ where

σ : B ⊗B → B ⊗B is the permutation operator. ♣Write

commutative

diagram ♣The above two examples A = Fun(G) with the pointwise product and A∨ = κ[G] with

the convolution product have one property that does not hold for general Hopf algebras:

A is commutative and A∨ is cocommutative.

Of course, while A = Fun(G) is commutative, it is not co-commutative when G is

noncommutative. Dually, κ[G] is not commutative, when G is noncommutative, but it is

always cocommutative.

There are other examples of natural Hopf algebras associated to Lie algebras and

groups:

1. If G is a compact simple Lie group then its DeRham cohomology H∗
DR(G) is a Hopf

algebra. The comultiplication is define by the pullback m∗ dual to group multiplica-

tion. This works because

Tr
(
(g1g2)

−1d(g1g2)
)2n+1

= Tr
(
g−1
1 dg1

)2n+1
+Tr

(
g−1
2 dg2

)2n+1
+ dB (12.127)

whereB is a trace of a differential form that is a polynomial in d, g±1
1 and g±1

2 . Passing

to cohomology we see that m∗ indeed defines a co-associative co-multiplication and in

fact the traces of powers of Maurer-Cartan forms (which generateH∗
DR) are “primitive

elements”:

∆(x) = x⊗ 1 + 1⊗ x (12.128)

Multiplication is the usual cup product of cohomology classes, so this example is

(graded) commutative as well as co-commutative.

28We will not be careful here about the precise class of functions. For example, if we consider finite sums

and G is a continuous group then the relevant functions would be discontinuous, and would only be nonzero

at a finite set of points.
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2. If g is a Lie algebra then the universal enveloping algebra U(g) is noncommutative,

if g is noncommutative. It is a Hopf algebra with comultiplication

∆(x) := x⊗ 1 + 1⊗ x (12.129)

and is therefore cocommutative.

What about examples that are neither commutative nor co-commutative? In his very

influential ICM address Drinfeld argued that the most natural source of examples of Hopf

algebras that are neither commutative nor cocommutative is to be found in the theory of

quantum inverse scattering and factorizable S-matrices. This was one of the major impulses

to the modern theory of quantum groups.

Example The simplest nontrivial example is Uq(sl(2)). It is the unital algebra generated

by e, f and K where K is invertible so there is a K−1 with KK−1 = 1. A very standard

set of generators of sl(2) are e, f, h with

[h, e] = 2e

[h, f ] = −2f

[e, f ] = h

(12.130)

The match to the standard basis in physics with [J i, J j ] = ǫijkJk is

h→ 2iJ3

e→ 2i

(
J1 + iJ2

2

)

f → 2i

(
J1 − iJ2

2

)
(12.131)

and the standard physics representation Ja → − i
2σ

a becomes

h→
(
1 0

0 −1

)

e→
(
0 1

0 0

)

f →
(
0 0

1 0

)
(12.132)

In any case, the algebra Uq(sl(2)) is generated by e, f,K,K−1 with relations:

KK−1 = K−1K = 1

KeK−1 = q2e

KfK−1 = q−2f

[e, f ] =
K −K−1

q − q−1

(12.133)
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If we consider q = eǫ and K = eǫh then we can recognize the formal ǫ → 0 limit of

these equations as the a deformation of the sl(2) Lie algebra. The algebra Uq(sl(2)) arises

rather naturally in the 1+1-dimensional sine-Gordon model. Similar deformations of all

the simple Lie algebras can be given. One uses a basis of Serre generators {ei, fi, hi}i=1,...,r,

exponentiates Ki = eǫhi and deforms the standard defining relations by:

[hi, ej ] = Aijej

[hi, fj] = −Aijfj

[ei, fj] = δij
Ki −K−1

i

q − q−1

(12.134)

together with a fairly complicated deformation of the Chevalley-Serre relations on ei, fj:

Ad(ei)
1−Aij (ej) = 0

Ad(fi)
1−Aij (fj) = 0

(12.135)

As the simplest example of how this can arise in an integrable quantum field theory

we consider the 1+1 dimensional sine-Gordon model, following [5, 33]. This is a theory of

a single real scalar field Φ with action proportional to

S =

∫
d2x (∂zΦ∂z̄Φ+ λ cos βΦ) (12.136)

where couplings λ and β determine the mass and interactions and play an important role

in the theory. One defines non-locally-related fields 29

φ(x, t) = Φ(x, t) +

∫ x

−∞
∂tΦ(y, t)dy

φ̃(x, t) = Φ(x, t)−
∫ x

−∞
∂tΦ(y, t)dy

(12.137)

Then form operators related to the creation of solitons:

J± = e±iaφ J̃± = e∓iaφ̃

H± = λ
c

b
e±i(bφ+cφ̃) H̃± = λ

c

b
e∓i(bφ̃+cφ)

(12.138)

where a, d, c are all simple real rational functions of β, given in [5, 33]. We then form five

nonlocal, but conserved, charges:

I± =

∫ +∞

−∞
(J± +H±)dx

Ĩ± =

∫ +∞

−∞
(J̃± + H̃±)dx

T =
β

2π

∫ +∞

−∞
∂xΦdx

(12.139)

29This is a type of duality transformation. Note that ∂xφ is a self-dual combination of dΦ etc.
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The last of these is known as the “topological charge” and is only nonzero in soliton sectors

of the theory. Then it turns out that if we define h1 = −h0 = T , and

e0 = zeT/2I− f0 = zeT/2Ĩ+

e1 = ze−T/2I+ f1 = ze−T/2Ĩ−
(12.140)

then indeed, the operators in the QFT satisfy the quantum group relations for Uq(ŝl(2)),

whose Cartan matrix is

Aij =

(
2 −2

−2 2

)
(12.141)

provided the normalization z is a suitable function of the couplings and

q = e−2πi/β2
(12.142)

12.7 The Irrational (And Rational) Rotation Algebras

The irrational rotation algebra, also known as the algebra of functions on the noncommu-

tative torus, is a C∗ algebra that arises in many contexts in physics.

12.7.1 Definition

The algebra is the unital C∗ algebra generated by U, V with the relations

UU∗ = U∗U = 1

V V ∗ = V ∗V = 1

UV = e2πiθV U

(12.143)

We denote this C∗-algebra by Aθ.

Note that, for all integers n,m ∈ Z,

V nUm = e−2πinmθUmV n (12.144)

so that all monomials can be “normal-ordered.” For example, if we decide to put powers

of U on the left and V on the right then we would write

Um1V n1Um2V n2 · · ·UmkV nk = e−2πiLθUMV N (12.145)

where M =
∑
mi, N =

∑
ni and L =

∑
1≤i<j≤k nimj . (Note that if m1 = 0 then the

monomial begins with a power of V , and if nk = 0 it ends with a power of U , so the above

is the general monomial.)

Another very useful point of view is that we consider the C∗ algebra generated by uni-

tary elements W (~n) associated to vectors in a symplectic lattice Λ ∼= Z⊕Z with symplectic

form ω(e1, e2) = θ and multiplication rule

W (~n1)W (~n2) = eiπω(~n1,~n2)W (~n1 + ~n2) (12.146)

so that U = W (e1) and V = W (e2). Of course, this definition easily generalizes to higher

dimensional symplectic lattices to define the algebras of noncommutative tori.
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However we look at the multiplciation , the general element in the algebra can be

written as ∑

m,n∈Z

am,nU
mV n (12.147)

with am,n ∈ C falling off sufficiently rapidly with m,n → ∞. (It certainly includes the

Schwarz space S(Z2) of functions decreasing more rapidly than any polynomial in m,n.)

The norm is defined by considering all representations π in Hilbert space of the subal-

gebra of Aθ consisting of polynomials in U, V and taking

‖ a ‖= supρ{‖ ρ(a) ‖} (12.148)

where ρ runs over all representations. Of course, the C∗ equation implies that

‖ U ‖=‖ V ‖= 1, (12.149)

and indeed the norm of any monomial must be one.

These algebras have been much studied by mathematicians and physicists. Here are

some notable structural results:

1. A trace on a C∗ algebra is a map τ : A → C such that τ(1) = 1, τ(a∗a) ≥ 0 and

τ(ab) = τ(ba). When θ is irrational the algebra Aθ has a unique trace:

τ


 ∑

m,n∈Z

am,nU
mV n


 = a0,0 (12.150)

Here is the basic idea: Note that by cyclicity τ(UV ) = τ(V U), but by the defining

relation and linearity of τ , τ(V U) = e−2πiθτ(UV ). Therefore τ(UV ) must vanish

when e2πiθ 6= 1. Similar arguments apply to other monomials, provided θ is irrational.

The following is a streamlined version of this argument: Consider the group U(1)×
U(1) acting as automorphisms on Aθ via

αz1,z2(U) = z1U

αz2,z2(V ) = z2V
(12.151)

Note that if (z1, z2) = (e2πin1θ, e2πin2θ) where (n1, n2) ∈ Z2 then the automorphism

αz1,z2 is an inner automorphism. Now, for any cyclic trace we have

τ(aba−1) = τ(b) (12.152)

and hence τ(αz1,z2(a)) = τ(a) for (z1, z2) = (e2πin1θ, e2πin2θ). But now for a fixed

a ∈ Aθ consider the set

{(z1, z2) ∈ U(1) × U(1)|τ(αz1,z2(a)) = τ(a)} (12.153)

One can show that the map α : U(1) × U(1) → Aut(Aθ) is continuous so this is a

closed subset of U(1) × U(1). On the other hand, it contains the set of elements
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(z1, z2) = (e2πin1θ, e2πin2θ). For θ irrational this set is dense, and hence, for theta

irrational we have that τ(αz1,z2(a)) = τ(a) for all (z1, z2). But now we can say that

τ(a) =

∮ ∮
τ(αz1,z2(a))

dz1
z1

dz2
z2

= τ

(∮ ∮
αz1,z2(a)

dz1
z1

dz2
z2

)

= τ(a0,01)

= a0,0

(12.154)

When θ ∈ Q there can be many traces.

2. We can now prove that, so long as θ is irrational the algebra Aθ is simple, that is, it

has no proper nonzero two-sided ideals. Suppose that I ⊂ Aθ is a nonzero ideal and

let a ∈ I. In the expansion a =
∑

m,n am,nU
mV n we can WLOG assume that a0,0 6= 0.

The reason is that at least one coefficent am,n 6= 0 so by multiplying by a suitable

monomial we get a nonzero element in I with a0,0 6= 0. Now, I must be preserved

by inner automorphisms so for any nonzero a ∈ I we must have αz1,z2(a) ∈ I if

(z1, z2) = (e2πin1θ, e2πin2θ). But again

{(z1, z2) ∈ U(1)× U(1)|αz1,z2(a) ∈ I} (12.155)

must be a closed subset of U(1) × U(1) and hence must be all of U(1) × U(1). But

then ∮ ∮
αz1,z2(a)

dz1
z1

dz2
z2

∈ I (12.156)

and hence a0,01 ∈ I. As we said, we can assume a0,0 6= 0 and hence 1 ∈ I and hence

I = Aθ. When θ ∈ Q the algebra Aθ is not simple (in the technical sense).

3. It is natural to ask when the algebras Aθ are isomorphic. The main result is described

in, for examples, [10, 43]:

Theorem

a.) Assume θ1, θ2 are irrational and θ1, θ2 ∈ (0, 12 ). Then, if Aθ1 is isomorphic to Aθ2

it follows that θ1 = θ2.

b.) If θ is irrational with fractional part {θ} then let θ̄ = {θ} or θ̄ = 1 − {θ},
depending on which is in (0, 1/2). Then Aθ is isomorphic to Aθ̄.

Put differently, the moduli space of isomorphism classes of Aθ for θ irrational is the

space of orbits of the dihedral group generated by θ → θ + 1 and θ → −θ, acting on

R−Q.

There is a very useful notion of “equivalence” of C∗ algebras known as Morita equiva-

lence. Roughly speaking, two algebras are “Morita equivalent” if their representation

theories are “the same.” (More technically: A1 and A2 are Morita equivalent if their

is an equivalence of their categories of left-modules.) Then Rieffel’s paper shows that
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Aθ1 and Aθ2 are (strongly) Morita equivalent iff θ1 is in the GL(2,Z) orbit of θ2
under the action

θ → aθ + b

cθ + d
. (12.157)

Remarks

1. The irrational rotation algebra was one of the main examples that led to A. Connes’

formulation of noncommutative geometry as opposed to noncommutative topology.

See [10, 11] and the book by Connes.

2. There is a very nice physical understanding of the above statement about Morita

equivalence using T-duality in string theory, but it requires a little bit of background

on the Moyal star product. See Section §12.8 below.

Exercise SL(2,Z) action on Aθ

Show that the group SL(2,Z) acts as a group of automorphisms of Aθ. Let
(
a b

c d

)
∈ SL(2,Z) (12.158)

Show that

αA : U 7→ e−iπacUaV c

αA : V 7→ e−iπbdU bV d
(12.159)

is an automorphism of Aθ ♣Check it is a

homomorphism into

the group of

automorphisms. ♣

Exercise Noncommutative Binomial Theorem

Suppose that we consider the noncommutative ring with generators u, v, q so that

uv = qvu, while qu = uq and qv = vq.

Show that 30

(u+ v)n =
n∑

k=0

(
n

k

)

q

un−kvk (12.161)

where (
n

k

)

q

:=
[n]q

[k]q[n− k]q
(12.162)

30Hint : Prove that
(

n

k

)

q

=

(

n− 1

k − 1

)

q

+ qk
(

n− 1

k

)

q

(12.160)

and imitate the usual inductive proof. Note that this shows that
(

n

k

)

q
is in fact a polynomial in q.
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and for a nonzero integer m

[m]q := (1− qm)(1− qm−1) · · · (1− q) (12.163)

while [0]q := 1.

12.7.2 Realization In B(H)

The Gelfand-Naimark construction assures us that there is a faithful representation of Aθ

on Hilbert space. We now describe a few such realizations, with comments on how they

arise in physics.

One realization is in the quantum mechanics of a particle on the real line: H = L2(R).

Recall that in QM we introduce the Heisenberg algebra:

[q̂, p̂] = i~ (12.164)

If ψ ∈ L2(R) we can represent the Heisenberg algebra:

(q̂ · ψ)(q) = qψ(q)

(p̂ · ψ)(q) = −i~ d
dq
ψ(q)

(12.165)

Now, let us consider the unitary operators

U(α) := exp[iαp̂]

V (α) := exp[iαq̂]
(12.166)

where α ∈ R. Of course U(α1)U(α2) = U(α1 + α2) and similarly for V (α) so, separately,

the group of operators U(α) is isomorphic to R as is the group of operators V (α). However,

one can show in a number of ways that:

U(α)V (β) = ei~αβV (β)U(α) (12.167)

Physicists get an amazing amount of mileage out of this one equation.

One consequence of (12.167) is that the group generated by the operators U(α) and

V (α) for α ∈ R, which we’ll denote Heis(R × R) fits in a central extension:

1 → U(1) → Heis(R × R) → R× R → 1 (12.168)

By choosing any fixed α0, β0 so that ~α0β0 = 2πθ we can restrict this extension to the

subgroup generated by U0, V0. Then the group algebra of this subgroup is a morphism of

C∗ algebras to a subalgebra of B(H), with H = L2(R).

In fact we can be more concrete and take the action on the Schwarz space S(R) of

functions of rapid decrease to be:

(Uf)(q) = f(q + 1)

(V f)(q) = e2πiθqf(q)
(12.169)
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Then we extend to operators on L2(R) and take the norm-closure of the algebra generated

by these.

Note, incidentally, that there is a pair of operators Ũ , Ṽ acting by

(Ũf)(q) = f(q +
1

θ
)

(Ṽ f)(q) = e2πiqf(q)
(12.170)

and these satisfy:

Ũ Ṽ = e2πi/θṼ Ũ (12.171)

It is easy to check that both of Ũ , Ṽ commute with both of U, V . In fact, for θ irrational,

the commutant of the C∗ algebra Aθ in B(L2(R)) is the algebra A1/θ generated by Ũ , Ṽ .

For a slightly different realization consider instead the Hilbert space H = L2(S1), and

let us regard S1 as R/Z with parameter t ∼ t + 1. Then the algebra generated by Ṽ

above generates the commutative algebra of multiplication by suitably smooth functions,

while the algebra generated by Ũ above generates irrational rotations of the circle, if θ is

irrational. This is why Aθ is called the irrational rotation algebra.

12.7.3 Electrons Confined To Two-Dimensions In A Magnetic Field

The irrational rotation algebra comes up in many different physical contexts. One signif-

icant example is in the system of an electron confined to a two-dimensional plane x1, x2.

This can in fact be done in the laboratory with devices similar to transistors - so called

heterostructures. Some electrons are confined to a slab of thickness ∼ 100Å [22, 40].

We are going to stress the “magnetic translation group” below, so it is worthwhile

recalling how translations are implemented in quantum mechanics. Usually in quantum

mechanics translations in x1, x2 by a1, a2 are represented by

T1(a1) = eia1p1/~ T2(a2) = eia2p2/~ (12.172)

with T1(a1)T2(a2) = T2(a2)T1(a1), because [p1, p2] = 0.

Let us begin by reviewing the quantum mechanics of a charged particle of mass m that

is charged with charge q under a U(1) gauge field.

In general the path integral for a charged particle moving in Minkowski space in the

presence of a u(1) gauge potential A is:

∫
[dxµ(s)]exp

[
i

~

∫

D

{
mc

√
−dx

µ

ds

dxµ
ds

+ qAµ(x(s))
dxµ

ds

}
ds

]
(12.173)

where the integral is over all maps from some one-dimensional domain D to Minkowski

space M1,d−1 of dimension d. The second term in the action is the parallel transport due

to the connection. In the adiabatic limit of slow motion around a loop γ the second term

leads to the Aharonov-Bohm phase

AB(γ) := exp[2πiqΦ/h], (12.174)
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where Φ =
∮
γ A is the enclosed flux. (For a charged particle moving in Minkowski space

in the absence of magnetic monopoles Φ is well-defined. In the presence of singularities, or

monopoles, or on spacetimes that are not simply connected only the phase is well-defined

once the charge q is suitably quantized.) For an electron this can be written as

AB(γ) = exp[2πiΦ/Φ0], (12.175)

where Φ0 = h/e is known as the magnetic flux quantum. 31

More invariantly: The electron wavefunction is an L2 section of a complex line bundle

L over spacetime. The line bundle has a connnection ∇. Here we have taken the case of

a trivialized line bundle, so sections are just complex-valued functions on spacetime. The

connection on the associated principal U(1) bundle over spacetime is ∇ = d+A where, in

our case, A is a globally defined one-form valued in the Lie algebra of the structure group,

U(1). We identify this Lie algebra with the imaginary complex numbers u(1) ∼= iR. Acting

on sections of the associated line bundle A is in the representation of U(1) of “charge one.”

That is, the defining representation. Hence we identify the “math” connection A with the

“physics” gauge field A appearing in the above Hamiltonian by A = − ie
~A. Note that our

normalization of A absorbs the speed of light, compared to standard physics textbooks

which use the gauge invariant momenta p − eA/c. Finally, here we have ignored electron

spin for simplicity.

Now suppose that there is a magnetic field B perpendicular to a plane R2 with coor-

dinates x1, x2, as in the quantum Hall effect. The Hamiltonian for a free electron in the

presence of the magnetic field can be easily derived from (12.173) and is:

H =
1

2m

(
(p1 − eA1)

2 + (p2 − eA2)
2
)

(12.176)

where e is the charge of the electron and m is the (effective) mass of the electron.

In two dimensions we have:

F12 = ∂1A2 − ∂2A1 = B (12.177)

Now assume that B is constant. Then A1, A2 are affine-linear in the coordinates x1, x2.

We can choose a gauge so that this can be put in the form:

H =
1

2m

(
(p1 +

eBx2
2

)2 + (p2 −
eBx1
2

)2
)

=
1

2m
(p̃21 + p̃22) (12.178)

where the gauge invariant momenta are p̃i := pi − eAi are

p̃1 = p1 +
eB

2
x2

p̃2 = p2 −
eB

2
x1

(12.179)

31One should be careful about a factor of two here since in superconductivity the condensing field has

charge 2e and hence the official definition of the term “flux quantum” used, for example, by NIST is

Φ0 = h/2e, half the value we use.
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Note that p1, p2 do not commute with H. This is hardly surprising since H is no longer

translation invariant. Moreover, p̃i do not commute with the Hamiltonian. Rather:

[p̃1, p̃2] = i~eB (12.180)

These are, up to a constant, just the usual Heisenberg relations - but now for two “mo-

menta”! Nevertheless, by the Stone-von Neumann theorem there is a unique representation

up to unitary equivalence.

Equation (12.180) immediately leads us to a diagonalization of the Hamiltonian (12.178).

One effective way to diagonalize the Hamiltonian is to introduce complex coordinates

z = x1 + ix2. Then define

p̃1 − ip̃2 = −2i~(∂z − βz̄) := −2i~Az

p̃1 + ip̃2 = −2i~(∂z̄ + βz) := −2i~Az̄

∂z =
1

2
(∂1 − i∂2)

∂z̄ =
1

2
(∂1 + i∂2)

Az := ∂z − βz̄

Az̄ := ∂z̄ + βz

(12.181)

where we defined

β :=
eB

4~
. (12.182)

Note that Az̄ = −(Az)
† and

[Az , Az̄] = 2β (12.183)

Moreover, the Hamiltonian can be written in three equivalent ways:

2mH =
1

2
[(p̃1 + ip̃2)(p̃1 − ip̃2) + (p̃1 − ip̃2)(p̃1 + ip̃2)]

= (p̃1 + ip̃2)(p̃1 − ip̃2) +
1

2
[(p̃1 − ip̃2), (p̃1 + ip̃2)]

= (p̃1 − ip̃2)(p̃1 + ip̃2) +
1

2
[(p̃1 + ip̃2), (p̃1 − ip̃2)]

(12.184)

The solution for the spectrum depends on the sign of β:

If β > 0 we use:

2mH = 4~2(Az̄)
†Az̄ + ~eB (12.185)

so the Hamiltonian is a sum of two positive semidefinite terms. The groundstates satisfy

Az̄ψ = 0. The general solution to this equation is

ψ = f(z)exp(−βzz̄) (12.186)

where f(z) is an entire function such that ψ is square-normalizable. This would seem to

imply an infinite ground-state degeneracy, and that would be unphysical. We will address

this in a moment.
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If β < 0 we should write instead :

2mH = 4~2(Az)
†Az − ~eB (12.187)

and again the Hamiltonian is a sum of two positive semidefinite terms. The groundstates

must solve the differential equation Azψ = 0 and this has the general solution

ψ = f(z̄)exp(βzz̄) (12.188)

The two cases are related by a parity transformation. Since [Az̄, (Az̄)
†] = 2β and [Az , (Az)

†] =

−2β we immediately obtain that the spectrum of H is

σ(H) = {(2N + 1)
|~eB|
2m

: N = 0, 1, 2, . . . } (12.189)

The eigenvalues of H can be, and often are, written as

(N +
1

2
)~ωc (12.190)

where ωc = eB/m is the classical frequency of an electron in a circular orbit in a magnetic

field. The degenerate levels of energy eigenvalues are known as Landau levels after Lev

Landau who first derived them in 1930. 32 The energy scale here is tiny: 33

|~eB|
2m

= 5.80223 × 10−5eV ·
(

cB

Tesla

)
(12.191)

where we used the standard mass of the electron m = me. Actually, it is important to

note that in real materials the parameter m that one should use here is the effective mass,

and this can be as small as m = 0.07me [40], thus increasing the energy by an order of

magnitude. ♣Compare Zeeman

energy with LL

energy in 1 Tesla

field. Idealized.

Then real world

with effective mass

and effective

g-factor. ♣

Of course, in nature the ground state won’t be infinitely degenerate. In a finite-size

system boundary conditions will lead to a finite number of states. We now estimate the

number of possible states in the LLL in a finite size system. It is useful to introduce the

magnetic length

ℓ :=

√
~

eB
=

257Å√
cB/Tesla

(12.192)

so that

β =
1

4ℓ2
(12.193)

32Landau in 1930, of course, did not know about transistors, much less GaAs − AlAs hererostructures.

He solved the problem of an electron in a constant 3-dimensional magnetic field. But the eigenstates just

have a planewave for motion in the direction parallel to B.
33Recall that in our units cB has units of Tesla. The strength of the earth’s magnetic field is about 30

microTesla, a refrigerator magnet is about 5 milliTesla, an NMR medical device uses a few Tesla, and the

magnets at the LHC are 8 Tesla. The record on earth is 33.8 T and some stars produce magnetic fields on

the order of 1011T.
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Suppose we have a droplet of 2d electrons of radius R. We should ask how many inde-

pendent states we can fit into this droplet. Let us assume β > 0, for definiteness. Then a

complete basis of L2 wavefunctions on the plane of the form (12.186) is

ψn = zne−β|z|
2

n = 0, 1, 2, . . . (12.194)

Recall that the probability distribution is proportional to |ψn|2. It is just a function of

r = |z|, and as a function of r it has a maximum at r = r(n) where

r(n)2 =
n

2β
= 2ℓ2n (12.195)

Therefore, we can get a rough estimate of the number of independent states in the

LLL in a droplet of size R by setting

r(nmax) = R (12.196)

This gives

nmax = 2βR2 =
R2

2ℓ2
=

Φ

Φ0
(12.197)

Here Φ = πR2B is the flux through the droplet. Meanwhile

Φ0 = h/e (12.198)

is the magnetic flux quantum for a single electron. (See footnote above.)

Note that we obtain the higher Landau levels by acting with (Az̄)
† or (Az)

† depending

on the sign of β. For polynomial or exponential f(z) these just add one power of z or z̄

to the prefactor. Therefore, for any fixed Landau level, in the large area limit, the same

argument applies, and we find an equal number of possible states in each level.

Figure 28: The sample used to discover the fractional quantum Hall effect. Courtesy of Ady Stern.

Remarks:

– 114 –



1. The numerical value for Φ0 is about 4× 10−15Weber and a Weber is one Tesla times

one square meter. So for a magnetic field of strength one Tesla we have

Φ

Φ0
= 2.5 × 1014 ·

(
Area

meter2

)
(12.199)

In an area one square millimeter (a rather large scale for small devices) this works

out to about 2.5× 108, a large number. A picture of the sample used to discover the

FQHE is shown in Figure 28.

2. One can usefully rederive this same formula in a different gauge. See the exercise

below.

3. In a physical sample there is not one, but many electrons. The Hilbert space of the N

electrons is the N th antisymmetric product of H, the Hilbert space of one electron.

The groundstate is obtained by “filling” the lowest energy eigenstates compatible

with the Pauli exclusion principle. For the highly degenerate LL case there are many

ways to do this. In the case that we neglect interactions, for N electrons in the LLL

the resulting wavefunction of the positions of N particles is

Ψ = const.ψ0 ∧ ψ1 ∧ · · · ∧ ψN (12.200)

where const. is a normalization constant. This can be thought of as a totally anti-

symmetric function of N positions, and by the Vandermonde formula it is:

Ψ(~x1, . . . , ~xN ) = const.
∏

1≤i<j≤N

(zi − zj)e
−

∑
i |zi|

2/4ℓ2 (12.201)

4. In the multiparticle case we can define a notion of “filling fraction,” always denoted

ν:

ν :=
Density of electrons

Density of fluxquanta
(12.202)

In our simple-minded setup this is just:

ν =
N

Φ/Φ0
= 1 (12.203)

In the famous “fractional quantum Hall effect” the filling fraction ν, which can be

measured from the Hall conductivity σxy = ν e
2

h , turns out to be fractional. In this

case the electron-electron interactions become important. Laughlin guessed a good

approximation for the interacting groundstate. (At least for some cases.) Laughlin’s

guess is to take the many-body wavefunction to be of the form

Ψ = const.
∏

1≤i<j≤N

(zi − zj)
ke−

∑
i |zi|

2/4ℓ2 (12.204)

where k is a positive odd integer. In general, if we consider a many body state of the

form:

Ψ = const.P (z1, . . . , zN )e
−

∑
i |zi|

2/4ℓ2 (12.205)
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where P is a translationally invariant odd polynomial of z1, . . . , zN then we can

compute the filling fraction as follows. Suppose the order of the polynomial (as a

function, say, of z1) is M . Then, reasoning as above, the state fills a circle of radius

R2 = 2Mℓ2 (12.206)

But then

ν =
N

πR2B/Φ0
=
N

M
(12.207)

So, for example, for the above Laughlin wavefunction

ν =
N

kN − 1
→ 1

k
(12.208)

The first observed FQHE state had ν = 1/3. Subsequently, many other rational

values of ν have been observed. See [22, 40]. ♣Explain more.

Give more

references. ♣

Exercise Landau Levels In Landau Gauge

a.) Show that by a gauge transformation we can take the electron Hamiltonian to be

H =
1

2m
(p2x + (py − eBx)2) (12.209)

b.) Show that if ψ(x, y) = eiky/~ψk(x) then the eigenvalue equation is that of a

harmonic oscillator with the center of the potential at x0 = −kℓ2.
c.) Suppose the electrons are on a cylinder of radius R and length L where both R

and L are very large compared to ℓ. Show that the number of groundstates is Φ/Φ0.

d.) Note that the eigenfunctions of the form ψ(x, y) = eiky/~ψk(x) are well-localized

in x, but not in y. We could of course choose a different Landau gauge in which the

eigenfunctions are well-localized in y but not in x. Why are these choices compatible?

Exercise Coherent States

Assume β > 0. Consider the “coherent state wavefunctions”:

ψv̄ = exp[−βzz̄ + v̄z] (12.210)

where v̄ is any complex number.

a.) Show that these are L2-normalizable groundstate wavefunctions.

b.) Show that they are an overcomplete basis.

c.) Express the wavefunctions ψn above in terms of the ψv̄.

d.) Show that these are “minimum uncertainty” wavefunctions. ♣Should go after we

mention “space is

noncommutative” ♣
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12.7.4 Magnetic Translation Group

As we stressed above, ordinary translations do not commute with the Hamiltonian. Nev-

ertheless we can define the magnetic translation operators:

π1 := p1 −
eBx2
2

π2 := p2 +
eBx1
2

(12.211)

Compare this carefully with the definitions of p̃i. Note the relative signs! These operators

satisfy [πi, p̃j ] = 0. In particular they are translation-like operators that commute with the

Hamiltonian: [πi,H] = 0. Hence the name.

While they are called “translation operators” note that they do not commute:

[π1, π2] = −i~eB (12.212)

The “magnetic translation group” is generated by the operators

U(a1) = exp[ia1π1/~]

V (a2) = exp[ia2π2/~]
(12.213)

The operators U(a1), V (a2) satisfy the relations:

U(a1)V (a2) = exp[ieBa1a2/~]V (a2)U(a1) (12.214)

Imagine now that we have some rectangular lattice in the plane R2:

Λ = {n1a1x̂+ n2a2ŷ|n1, n2 ∈ Z} (12.215)

and - for some reason - we only consider translations by lattice vectors then the algebra

generated by U(a1), V (a2) is again Aθ for θ = eBa1a2/h = Φ/Φ0 where Φ = a1a2B is the

flux through the unit cell.

Although we could also obtain an irrational rotation algebra by exponentiating p̃i,

i = 1, 2, this is less relevant to the physics because such operators do not commute with

the Hamiltonian.

In the above realization there is a major conceptual change in the physical interpre-

tation of the algebra Aθ. In our first realization U, V were translation operators on phase

space with coordinates (q, p). For the case of the electron in the uniform magnetic field

U(a1), V (a2) are “translation operators” in the physical space in which the electron moves.

Put another way, let Π be the projection operator from the Hilbert space L2(R2) to

the LLL. For definiteness assume that β > 0. Note that

ΠAz̄Π = 0 (12.216)

But this means that in the LLL we can replace z by − 1
β∂z̄. But that in turn means

that in the LLL

[ΠzΠ,Πz̄Π] = − 1

β
(12.217)

In other words

[Πx1Π,Πx2Π] = −2i
~

eB
= −2iℓ2 (12.218)

and in this sense “space is noncommutative.” We will come back to that in section **** ♣Uncertainty

principle applied to

this gives nice

explanation of the

filling factor.

Explain this. ♣
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12.7.5 The Algebra Aθ For θ Rational

Notice that when θ = p/q is a rational number (with p, q positive and relatively prime)

then from (12.144) it follows that the subalgebra generated by U q and V q is central in Aθ.

Therefore, in an irreducible representation they will be represented by phases. Therefore, if

there is a cyclic vector it will generate a q-dimensional vector space, so the representations

are q-dimensional. As an example of such a representation we can consider the vector space

of complex-valued functions on the cyclic group Z/qZ:

(Uf)(j̄) = f(j̄ + 1)

(V f)(j̄) = e2πiθj̄f(j̄)
(12.219)

where j̄ ∈ Z/qZ. We can choose a basis by using a fundamental domain j̄ ∈ {0, 1, . . . , q−1}
and delta-functions δj̄ . Then, relative to this basis, U and V are represented by q × q

matrices known as the famous “clock and shift operators”

u =




0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0 1 · · · 0
...
...
...
...

...
...

0 0 0 0 · · · 1

1 0 0 0 · · · 0




(12.220)

v =




1 0 0 0 · · · 0

0 ω 0 0 · · · 0

0 0 ω2 0 · · · 0
...
...

...
...

...
...

0 0 0 0 · · · ωq−1




(12.221)

where ω = e2πi
p
q . One should check directly that indeed

uv = ωvu (12.222)

Moreover

uq = vq = 1q×q. (12.223)

Using the standard Hermitian structure on Cq this is a unitary representation.

Now, given a representation ρ of any algebra A and an automorphism α of A we can

always get another (possibly the same) representation by considering

ρ→ ρ ◦ α := ρα (12.224)

Now recall that Aθ has a canonical group of automorphisms αz1,z2 , isomorphic to

U(1) × U(1). If we twist by this automorphism then the representation u = ρ(U) and

v = ρ(V ) becomes:

ρz1,z2(U) = z1u

ρz1,z2(V ) = z2v
(12.225)
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Theorem: If θ = p/q is rational then the most general irreducible representation of Aθ

is of the form ρz1,z2 for (z1, z2) ∈ U(1) × U(1). Moreover two such representations are

isomorphic iff there are integers n1, n2 such that

z′1 = ωn1z1 z′2 = ωn2z2 (12.226)

In other words, the irreducible representations can be identified with a torus, and this torus

can be viewed as the quotient of the torus of automorphisms U(1)×U(1) by Z/qZ×Z/qZ.

Proof :

1. As remarked above, U q and V q generate an abelian subalgebra and should be

represented by phases in an irrep. Choosing a qth root of these phases gives a representation

of the form ρz1,z2 .

2. Now, since αz1,z2 form a group of automorphisms is suffices to consider the represen-

tations equivalent to the original representation ρ. Note that conjugation by S = U ℓ1V ℓ2

transforms

u → e−2πiθℓ1u

v → e−2πiθℓ2v
(12.227)

so in (12.226) we can always find a suitable ℓ1, ℓ2 to render the two representations equiv-

alent.

3. These are the only isomorphisms between representations, because if z1 = e2πiϕ1

and z2 = e2πiϕ2 with 0 ≤ ϕ1, ϕ2 <
1
q then ρz1,z2(U) and/or ρz1,z2(V ) has an inequivalent

spectrum from u and v. ♠

Remarks

1. The set of matrices {ωkunvm} forms a group. It is isomorphic to a finite Heisenberg

group. The finite Heisenberg groups can be defined as an extension of Z/qZ× Z/qZ

by Z/q using the cocycle

f
(
(ωs1, ω

t
2), (ω

s′
1 , ω

t′
2 )
)
:= ωst

′

3 (12.228)

Where ω1, ω2, ω3 are all just ω but the subscript distinguishes the different conceptual

roles they play. The resulting group Heis(Z/qZ× Z/qZ) sits in an exact sequence:

1 → Z/qZ → Heis(Z/qZ× Z/qZ) → Z/qZ× Z/qZ → 1 (12.229)

This is a finite group of order q3. The irreducible representations are all of dimension

q and hence there should be q distinct irreps. These are obtained by replacing ω → ωk

in the above clock and shift operators.
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2. Let W be the complex vector space of functions f : Z/qZ → C. It is isomorphic to

Cq. The finite Fourier transform is the unitary transformation F :W →W , defined

by

F(f)(j̄) :=
1√
q

∑

k̄

e2πi
j̄k̄
q f(k̄) (12.230)

Note that F is unitary and F4 = 1. Then, for p = 1 we have ♣check sign ♣

FuF−1 = v−1 (12.231)

3. Now consider the algebra generated by the matrices u,v. It is a subalgebra of the

full matrix algebra Mq(C), and we claim it is the full algebra Mq(C). One way to

show this is to note that the matrices uℓvs with 1 ≤ ℓ, s ≤ q are linearly independent.

Suppose that there are coefficients aℓ,s such that

0 =

q∑

s,ℓ=1

aℓ,su
ℓvs =

q∑

ℓ=1

uℓD(zℓ) (12.232)

whereD(zℓ) is a diagonal matrix with diagonal entries z
(0)
ℓ , z

(1)
ℓ , . . . , z

(q−1)
ℓ with z

(k)
ℓ =∑

s aℓ,sω
ks. Now, if this sum is zero then it is zero acting on the elementary basis ei,

0 ≤ i ≤ q − 1. Observe that this means z
(i)
ℓ = 0 and hence aℓ,s = 0. Actually, this

argument shows more: Call the “ℓth shifted diagonal the nonzero entries of uℓ. Then

the ℓth shifted diagonal of
∑q

s,ℓ=1 aℓ,su
ℓvs is up to a factor of

√
q the finite Fourier

transform of the functions aℓ,s, as a function of s. ♣Say this more

precisely so that it

is useful. ♣

Figure 29: Left: A fundamental domain for R2/Λ. Right: The identification gives a torus.

12.7.6 Two-Dimensional Electrons On A Torus In A Magnetic Field
♣ALL

EQUATIONS

BELOW NEED TO

BE RECHECKED

♣

Another, and mathematically very interesting, way of putting the electron in a finite system

is to attempt to impose periodic boundary conditions. That is, we imagine an electron
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confined to a torus with a uniform magnetic field B perpendicular to the torus. For

simplicity we will consider the torus to be obtained by identifying x1 ∼ x1 + a1 and

x2 ∼ x2 + a2. That is, it is obtained from the quotient R2/Z2.

A fundamental domain for the action of Z2 on R2 can be pictured as a rectangle as in

Figure 29. The torus is obtained by identifying opposite sides as in the figure.

We immediately encounter a problem: The Hamiltonian (12.178) appears to be non-

sense when x1, x2 are to have these periodic identifications. The same will be true of

(12.176) no matter what gauge we choose, since the components of A must be linear in the

xi. But it is not nonsense. We must change the geometrical interpretation of the quantities

a little bit.

Now note that the Aharonov-Bohm phase for transporting an electron around a loop

going around the edge of the rectangle is

exp[2πiΦ/Φ0] = exp[2πia1a2B/(h/e)] (12.233)

On the other hand, the phase around this loop must be one: This loops is of the form

ABA−1B−1, and the holonomy associated the parallel transport along A,B is abelian (i.e.

just a phase) so that holonomy along A cancels the holonomy along A−1 and similarly for

B. ♣Very poor

notation. Change

A,B for the cycles.

♣

Since the phase (12.233) must be one we obtain a quantization condition:

Φ

Φ0
= k k ∈ Z. (12.234)

Equivalently we can write

βa1a2 =
πk

2
(12.235)

Note that if we write

A = β(zdz̄ − z̄dz) (12.236)

then F = dA = 2βdz ∧ dz̄ makes sense on the torus and we find:

∫

T

F

2πi
=

(2β)(−2i)(a1a2)

2πi
= −k (12.237)

Now, let us note that with this quantization the magnetic translation operators U(a1)

and V (a2) commute. They also commute with the Hamiltonian, so that they can be

simultaneously diagonalized. Call x := x1 and y := x2. Then

U(a1) = exp [a1∂x − 2ia1βy] (12.238)

so

U(a1)ψ = ψ ⇒ ψ(x+ n1a1, y) = e2in1a1βyψ(x, y) ∀n1 ∈ Z (12.239)

Similarly:

V (a2) = exp [a2∂y + 2ia2βx] (12.240)
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and hence

V (a2)ψ = ψ ⇒ ψ(x, y + n2a2) = e−2in2a2βxψ(x, y) ∀n2 ∈ Z (12.241)

Altogether we have, for all integers n1, n2:

ψ(x+ n1a1, y + n2a2) = eiπkn1n2ei2β(n1a1y−n2a2x)ψ(x, y)

= eiπkn1n2ei2βω(λ,~x)ψ(x, y)
(12.242)

where in the second line λ = n1a1x̂+ n2a2ŷ ∈ Λ and ω is the symplectic form on R2 with

ω(x̂, ŷ) = 1. That is:

ω(~x, ~y) = x1y2 − x2y1 (12.243)

Note that (12.242) is consistent because U(a1) and V (a2) commute.

We can view (12.242) as the statement that we must make a gauge transformation

when translating by lattice vectors. If we suitably transform the gauge field A in (12.176)

and (12.178) then the Hamiltonian H makes perfectly good sense for an electron on the

torus.

In more geometrical terms we can say the following: The meaning of equation (12.242)

is that ψ is not a function but a section of a complex line bundle L over the torus. Roughly

speaking, the prefactor on the right defines a set of transition functions g(x, y). The gauge

field transforms by

(d+A′) = g−1(d+A)g (12.244)

and d+A defines a connection on the line bundle: It is a prescription for defining a notion

of parallel transport along paths in the torus. Once A and ψ are interpreted this way, the

Hamiltonian makes perfect sense. Viewed this way, the generalization to electrons on an

arbitrary compact Riemannian two-manifold is straightforward.

This is a key conceptual step: The geometrical nature of the “wavefunction” has

changed: It is more properly regarded as a section of a complex line bundle.

To be a little more precise, and to give a preview of some things to be discussed

later we will give a nice description of the complex line bundle L and its connection as an

equivariant bundle with connection over the homogeneous space T = X/G with X = R2

and G = Z2 as follows.

Consider, quite generally a right G-space and a representationW of G. The equivariant

vector bundle over X/G is the quotient

E := (X ×W ) /G (12.245)

and we take the quotient using the right G-action on X ×W :

(x, ψ) ∼ (x · g, ρ(g−1)ψ) (12.246)

In our example X = R2, G = Z2 and where W is a one-dimensional complex represen-

tation of G (so W ∼= C, as a complex vector space). If we let σ1, σ2 be generators of the

first and second summands of Z⊕ Z then the identifications are generated by the actions

σ1 : (~x, ψ) 7→ (~x+ a1x̂, e
i2βa1yψ) (12.247)
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σ2 : (~x, ψ) 7→ (~x+ a2ŷ, e
−i2βa2xψ) (12.248)

or, in general the Z2 action is:

~n : (~x, ψ) → (~x+ ~R, e2iβω(
~R,~x)ψ) (12.249)

where ω is the standard symplectic form on R2.

Returning to the general situation, the quotient space E is the total space of a complex

vector bundle over B = X/G. Note that there is a projection map

π : E → X/G (12.250)

given by π([(x, ψ)]) := [x]. The fiber of the map π, i.e. the inverse image π−1([x]) has a

natural vector space structure and, as a vector space is isomorphic to W . A right-inverse

s to π,

s : X/G→W (12.251)

that is, such that π(s([x])) = [x] is called a section of the bundle. Sections always exist, by

the axiom of choice. But the existence of sections with special properties is not guaranteed.

We say a section is nonzero at [x] if it is of the form [(x, ψ)] with ψ a nonzero vector in W .

When W is a one-dimensional vector space the bundle E is called a line bundle. In this

case a continuous nowhere-vanishing section allows us to define a “bundle isomorphism” of

E with the trivial bundle X/G×W . There can be topological obstructions to the existence

of such continuous nowhere-vanishing sections.

In general to give a section of E is to give an equivariant function

ψ : X →W (12.252)

That is, one which satisfies

ψ(xg) = ρ(g−1)ψ(x) (12.253)

To see this just note that a section must be of the form s([x]) = [(x, ψ(x))] for some

association x→ ψ(x). However, on the one hand,

s([x]) = [(x, ψ(x))]

= [(xg, ρ(g−1)ψ(x))]
(12.254)

but on the other hand,

s([x]) = s([xg])

= [(xg, ψ(xg))]
(12.255)

so we must have (12.253). In our example, this reproduces the condition (12.242).

Now consider the connection. In general, a connection is a rule for “lifting paths” from

the base γ : [0, 1] → B = X/G to paths in the total space γ̃ : [0, 1] → L.

Quite generally, if π : E → B is a fiber bundle then a connection is a path-lifting rule

so that:
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1. Given γ : [0, 1] → B and a choice of lift γ̃(0) ∈ π−1(γ(0)), that is, a choice of point

in the fiber above γ(0) there is a unique path γ̃ : [0, 1] → E such that it is a “lift,”

meaning:

π ◦ γ̃ = γ (12.256)

2. The map π−1(γ(0)) → π−1(γ(1)) is compatible with the structure group. (For vector

bundles this means that the map is a linear transformation and that the action of

GL(n,R) on the fibers π−1(γ(1)) and π−1(γ(0)) are related by conjugation.)

3. Moreover, the path satisfies a nice composition property: If γ1, γ2 are composable

paths in X/G then let γ2 ∗γ1 denote the path [0, 1] → B by running first γ1 and then

γ2. Then if we take the initial lift of γ̃2 to be γ̃1(1) the unique lifted path of γ2 ∗ γ1
starting at γ̃1(0) is just γ̃2 ∗ γ̃1.

We have phrased things this way so that we have in fact given the definition of a

connection on an arbitrary fiber bundle π : E → B.

In our special example we have a line bundle over a torus. Given γ : [0, 1] → R2/Z2 we

can first lift it to a path γ̂ : [0, 1] → R2 (there is a unique connection on π : R2 → R2/Z2

since this is a covering by a discrete group). Then, if γ̂(0) = ~x0 and we choose γ̃(0) =

[~x0, ψ0]. Then the lifted path is

γ̃(t) = [(γ̂(t), e
i
∫
γ̂t
A
ψ0)] (12.257)

♣Check sign ♣

Remarks

1. It can be shown that the data of a smooth connection is equivalent to giving a

collection of one-forms, valued in endomorphisms of the fiber, defined on open sets

in B where the bundle can be trivialized. In physics these are the “gauge fields.”

2. In general, given a complex vector bundle π : E → B, one can associate a set of

integral cohomology classes ci(E) ∈ H2i(B;Z) which measure - to some extent - the

degree to which E is “twisted.” For example if they are nonzero then certain fields

of linearly independent sections do not exist. In our case the only possible Chern

class is c1(L) ∈ H2(T ;Z). The image of this class in DeRham cohomology has a

representative given by F/(2πi), where F is the curvature of any connection on L.

Now let us actually construct explicit wavefunctions (12.242) that are in the ground-

state of the Hamiltonian. These will be the analog of LLL wavefunctions on the torus. To

do this we step back and consider a more general problem:

Suppose a group G has a right-action on a space X. Suppose that we have what is

known as a cocycle, 34 namely, a function ξ : X ×G→ C∗ so that

ξ(x; g1)ξ(x · g1; g2) = ξ(x; g1g2) (12.258)

34This is the defining equation for a cocycle in H1
G(X;C∗).
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Then we can construct a left-action of G on the function space Map(X,C):

(g · f)(x) := ξ(x; g)f(x · g) (12.259)

We typically like to find “automorphic functions” which are fixed points of this action:

g · f = f (12.260)

In some cases we can construct such functions by an averaging procedure. Indeed, suppose

G is discrete and h is an arbitrary function. Then form the average:

f(x) :=
∑

g∈G

ξ(x; g)h(x · g) (12.261)

A short computation shows that - formally - the function is indeed invariant: g · f =

f . Of course if G is infinite one must check that the sum converges (and this can be

quite nontrivial). If G is continuous and has a left-invariant Haar measure then the same

construction can be used.

Now let us apply this to our situation, where X = R2, G = Z2 and equation (12.242)

tells us to take

ξ(~x;~n) := e−iπkn1n2e−2iβ(n1a1y−n2a2x) (12.262)

We can apply the averaging procedure to the coherent state wavefunctions in the LLL:

h(~x) = exp[−βzz̄ + v̄z] (12.263)

where v̄ is a complex number. Here we are assuming that β > 0 and hence k > 0, so the

series is convergent. If β < 0 and hence k < 0 then we change the “seed coherent state”

to

h(~x) = exp[βzz̄ + vz̄] (12.264)

In either case, the series is absolutely convergent.

After a little bit of algebra the series can be written (taking the case β > 0 from now

on):

ψ̄v̄ = e−β|z|
2+v̄z

∑

ω∈Λ

e−β|ω|
2+ωv̄−2βω̄ze−iπkn1n2 (12.265)

where the sum is over vectors ω ∈ Λ where Λ ⊂ C is a lattice and

ω = n1a1 + in2a2 (12.266)

with n1, n2 ∈ Z. Note that the factor ξ(~x;~n) has made the averaged wavefunction a

holmorphic function of z up to the overall factor of exp[−βzz̄].
Just as on the plane, by varying v̄ we obtain an overcomplete set of groundstates,

and the linear span of these will be the full space of groundstates on the torus. It is not

immediately obvious from (12.265) what the dimension of the space is. In order to find

that we should perform a Poisson resummation on the sum over n2. After a little algebra

the sum can be written very elegantly in the form

ψ̄v̄ = ce−β|z|
2

k∑

µ=1

Ψh
µ(z)Ψ̃

h
µ(v̄) (12.267)
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where c is a constant, Ψh
µ(z) are k linearly independent holomorphic functions of z (and

Ψ̃h
µ(v̄) are likewise k linearly independent holomorphic functions of v̄). It follows that the

space of groundstates is k-dimensional.

It is useful and interesting to derive explicit formulae for Ψµ and Ψ̃µ. The sum (12.265)

fits in a very general story explained in Appendix A. The resulting wavefunctions can be

expressed in terms of level κ = k/2 theta functions. We met them above when discussing

the characters in the SU(2)κ WZW model.

Let us collect a few facts about theta functions: Recall that

Θµ,κ(z, τ) :=
∑

n∈Z

qκ(n+µ/(2κ))
2
y(µ+2κn) =

∑

ℓ=µmod2κ

qℓ
2/(4κ)yℓ (12.268)

with q = e2πiτ and y = e2πiz. Here µ is an integer and κ is a positive half-integer (i.e. in
1
2Z+). Note that if we shift µ → µ + 2κs, where s is any integer, then Θµ,κ is unchanged.

Often people take µ to be in the fundamental domain −κ < µ ≤ κ, but one should

generally regard µ as an element of Z/2κZ. As functions of z these functions are doubly-

quasiperiodic:

Θµ,κ(z + ν, τ) = Θµ,κ(z, τ)

Θµ,κ(z + ντ, τ) = e−2πiκν2τ−4πiκνzΘµ,κ(z, τ)
(12.269)

Here ν is any integer. Note that the theta functions transform the same way for all

µ ∈ Z/2κZ. We will explain more about the geometrical meaning of these theta functions

below.

We now can rewrite (12.267) as

ψ̄v =

√
2

k
Imτ

k∑

µ=1

Ψµ(z, z̄)Ψ̃
h
µ(v̄) (12.270)

Ψµ(z, z̄) = e
−πk

2
|z|2+z2

a1a2 Θµ,k/2(δ, τ) (12.271)

Ψ̃µ(v̄) = e−
a1a2
2πk

v̄2Θ−µ,k/2(δ̃, τ̃ ) (12.272)

with

δ = iz/a2 δ̃ = −iv̄a2/(πk) τ = i
a1
a2

τ̃ = −τ̄ (12.273)

Now, we know that U(a1) and V (a2) act as the identity transformation on the ground-

state wavefunctions. However, it turns out that the translations by the “k-torsion points”

act nicely on the wavefunctions. 35 A short computation shows that

U(
a1
k
)Ψµ = Ψµ+1

V (
a2
k
)Ψµ = e2πi

µ
kΨµ

(12.274)

35Of course R2/Z2 is itself an abelian group. k-torsion points are elements of this group whose kth is the

identity element.
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Note that we consider µ ∈ Z/kZ in these formulae. Thus, the magnetic translations by

the k-torsion points of the torus acts on the space of groundstates to give the irreducible

representation of the finite Heisenberg group.

Remarks

1. Let us conclude with some remarks on the geometrical interpretation of the level

κ theta functions Θµ,κ(z, τ). The torus R2/Λ inherits a natural complex structure.

Indeed

Eτ = C/(Z⊕ τZ) (12.275)

is naturally a complex manifold. We can therefore consider holomorphic bundles over

Eτ . The transformation equations (12.269) can be viewed as defining a holomorphic

line bundle L over Eτ . The basic case is κ = 1/2. There is then only one theta

function:

Θ(z, τ) =
∑

n∈Z

eiπτn
2+2πinz (12.276)

As before, one construction of the holomorphic line bundle is as a quotient

L = (C× V )/Z × Z (12.277)

where, again V ∼= C is a one-dimensional vector space and now the generators of

Z× Z act by

σ1 : (z, ψ) 7→ (z + 1, ψ)

σ2 : (z, ψ) 7→ (z + τ, g(z; τ)ψ)

g(z; τ) := e−iπτ−2πiz

(12.278)

where ψ ∈ V is any vector. As before we have a map

π : L → Eτ (12.279)

defined by π([z, ψ]) := [z], but now the big difference from before is that this is a

holomorphic map.

2. We can take tensor products of line bundles. In terms of our quotient construction we

choose different one-dimensional representations Vn ∼= C and L⊗n is the holomorphic

line bundle defined by

σ1 : (z, ψ) 7→ (z + 1, ψ)

σ2 : (z, ψ) 7→ (z + τ, g(z; τ)nψ)
(12.280)

There will be holomorphic sections for n ≥ 0 and not for n < 0. The holomorphic

sections for n > 0 form a vector space, and one basis for this vector space are the

level κ theta functions with κ = n/2.
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3. Note that we can put an Hermitian metric on L⊗n. When we used the unitary

transition functions, as with (12.242) the norm square |ψ(x, y)|2 was doubly-periodic

and descended to a well-defined function on the torus. However, if we consider the

relation of the ground-state wavefunctions to the theta functions in equation (12.271)

the prefactor is not a periodic function. If we are considering sections of a holomorphic

line bundle and we want to assign a length-square to them which descends to a well-

defined function on the torus we must multiply by some kind of quadatric exponent.

If s([z]) is any section of L⊗n then we can express it in the form [(z, ψ(z))] with

ψ(z) ∈ C. Then we can define

‖ s([z]) ‖2:= e−2πn (Imz)2

Imτ |ψ(z)|2 (12.281)

The reader should check that different representatives give the same quantity on the

RHS.

4. Given an Hermitian holomorphic line bundle there is a natural connection on it, and

the corresponding curvature has an elegant formula:

R =
1

2π
∂∂̄log ‖ s ‖2 (12.282)

where we can choose any holomorphic section s. In our case we get

R = n
dx ∧ dy
Imτ

(12.283)

5. As a final remark on theta functions, for a fixed κ consider the map form C to C2κ

given by

z 7→ (Θµ0+1,κ(z, τ),Θµ0+2,κ(z, τ), . . . ,Θµ0+2κ,κ(z, τ)) (12.284)

The zeroes of theta functions are well-understood, and it can be shown that for suf-

ficiently large κ (κ ≥ 2 will suffice) the vector on the RHS never vanishes. Therefore

the map descends to a well-defined map into projective space CP2κ−1:

z 7→ [Θµ0+1,κ(z, τ) : Θµ0+2,κ(z, τ) : · · · : Θµ0+2κ,κ(z, τ)] (12.285)

Moreover, note from the quasiperiodic behavior of Θµ,κ(z, τ) that the transformation

law under z → z + 1 and z → z + τ is independent of µ. Therefore the map further

descends to a holomoprhic map

Eτ → CP2κ−1 (12.286)

For κ ≥ 2 this map can be shown to be an embedding. Thus L is an example of ♣Check that this

lower bound is

correct! ♣an ample line bundle meaning that sections of some positive power of it defines an

embedding in projective space. Furthermore, the theta functions satisfy a host of

quartic polynomial relations known as Riemann identities. Specializing these identi-

ties appropriately gives explicit polynomial equations defining the embedded Eτ . For

example, the torus Eτ can be realized as an intersection of two quadrics in CP3. For

details on the above claims see [38], p.11 et. seq. ♣Should give more

details here. ♣
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12.7.7 Band Theory

Now we consider a different case of “electrons” in a zero electromagnetic field, but in the

presence of a periodic potential V (~x). We put the quotation marks because we will ignore

spin and electron-electron interactions.

The typical situation here is that in a crystalline structure in En, where En is n-

dimensional affine Euclidean space the atoms are arranged in a crystal C ⊂ En. This

simply means that there is a lattice Λ ⊂ Rn and there is a subset C ⊂ En invariant under

translation by Λ.

We first explain the conventional viewpoint on band structure:

Choose an origin and identify En ∼= V ∼= Rn. Consider a single spinless electron prop-

agating in Rn and interacting in some way with a crystal C. The Schrödinger Hamiltonian

is the operator on H = L2(Rn) given by

H = − ~2

2m
∇2 + U(x) (12.287)

and the potential energy U(~x) is invariant under translations by the lattice Λ. Now, the

abelian group Λ acts unitarily on H via ρ(λ) = exp[i〈p̂, λ〉] where p̂ is the usual momentum

operator, λ ∈ Λ and we denote the pairing V ∨×V → R by 〈·, ·〉. This group commutes with

H and hence we expect to decompose the Hilbert space H as a direct sum over “isotypical

components”:

Recall that quite generally, if H is a completely reducible representation of a group G

and G has a list of distinct irreps {Rα} then the decomposition

H ∼= ⊕αDα ⊗Rα (12.288)

is called the “isotypical decomposition.” The group acts as ⊕α1⊗ ρα(g) on the RHS. The

sum ⊕α might well be a direct integral. The summands Dα⊗Rα are called the “isotypical

components” and can be characterized invariantly as the image of the canonical evaluation

map:

HomG(Vα,H)⊗ Vα → H. (12.289)

The Hamiltonian is block diagonalized in this decomposition, that is, it acts separately on

each isotypical component. In fact, it is of the form ⊕αHα ⊗ 1.

So, let us consider the set of unitary irreducible representations of Λ. Since Λ is Abelian

they are all one-dimensional, and in fact, they form a group - the Pontryagin dual group.

The set of characters is in fact a manifold that can be identified with a torus as follows.

Given any vector k ∈ V ∨ := HomR(V,R) we can form an irrep:

χk̄ : λ 7→ e2πi〈k,λ〉 ∈ U(1) (12.290)

and all irreps can be so represented. Of course, if we shift k by an element K of Λ∨ :=

HomZ(Λ,Z) then k and k+K define the same irrep. In this way we can identify the space

of unitary irreps of Λ with the torus

T∨ := V ∨/Λ∨ (12.291)
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Figure 30: Constructing a Wigner-Seitz (or Voronoi) cell for the triangular lattice. The cells are

regular hexagons. Figure from Wikipedia.

Figure 31: A Wigner-Seitz (or Voronoi) cell for the cubic lattice in R3. Figure from Wikipedia.

The torus T∨ is known in solid state physics as the Brillouin torus . Elements k ∈ V ∨

are called reciprocal vectors and lattice vectors K ∈ Hom(Λ,Z) are called reciprocal lattice

vectors.

In general, given an embedded lattice Λ ⊂ Rn we can use the metric to produce a

canonical (i.e. basis-independent) set of fundamental domains, for the Λ-action on Rn by

translation. These are known as Voronoi cells in mathematics and as Wigner-Seitz cells in

physics. Choose any lattice point v ∈ Λ and take F̄ to be the set of all points in Rn which

are closer to v than to any other point. (If the points are equidistant to another lattice point

we include them in the closure F̄ . The Wigner-Seitz cell in V ∨ for the reciprocal lattice

is known in solid state physics as the Brillouin zone. Note that there is a clear algorithm

for constructing F̄ : Starting with v we look at all other points v′ ∈ Λ. We consider the
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hyperplane perpendicular to the line between v and v′ and take the intersection of all the

half-planes containing v. It is also worth remarking that the concept of Voronoi cell does

not require a lattice and applies to any collection of points, indeed, any collection of subsets

of Rn. The case of a triangular lattice is shown in Figure 30 and for a cubic lattice in R3

it is shown in Figure 31. In solid state physics the Brillouin zone is centered on K = 0 and

the origin is always denoted as Γ.

Given the above group-theoretic facts the isotypical decomposition of the Hilbert space

should be something like:

H =

∫

T∨

dk̄Hk̄ (12.292)

we will be somewhat more precise about this formula below.

Wavefunctions which transform under translation by Λ with a definite character χk̄
are known as “Bloch waves” and can always be written in the form

ψ(x) = e2πi〈k,x〉℘(x) (12.293)

where k is some (any) lift of k̄ to V ∨ and ℘(x) is a periodic function:

℘(x+ λ) = ℘(x) ∀λ ∈ Λ (12.294)

Let us call this a “Bloch decomposition of ψ.” Of course, there is some ambiguity in this

decomposition. If we shift the lift k → k +K, with K ∈ Λ∨ and simultaneously change

℘(x) → e−2πi〈K,x〉℘(x) (12.295)

then the result is a different Bloch decomposition of the same wavefunction.

If we substitute a Bloch wavefunction into the eigenvalue equation for the Schrödinger

Hamiltonian we obtain

Hk℘ = E℘ (12.296)

where

Hk =
~2

2m
(−i∇+ 2πk)2 + U(x) (12.297)

Note that Hk is acting on periodic functions ℘(x). These can equally well be considered

as functions on the quotient torus

T := V/Λ (12.298)

Viewed that way, we can take ℘ ∈ L2(T ) and Hk is an elliptic self-adjoint operator with a

discrete spectrum bounded below and not above (provided U is bounded below).

Thus, we can find Bloch wavefunctions which are (formally) eigenfunctions of the

Hamiltonian. We can only say this formally because of course the Bloch waves can never

be in L2(Rn). Nevertheless, they are very useful. Indeed, while this might seem like a

mathematical drawback it is physically important: In quantum mechanics the electron

wave can scatter coherently off the crystal without degrading. This would not make sense

with a particle picture of electrons.

Now the spectrum σ(Hk) ofHk acting on L
2(T ) actually only depends on the projection

k̄ of k to the Brillouin torus T∨, since we can conjugate Hk with the unitary operator
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e2πi〈K,x〉 for any K ∈ Λ∨. We will therefore denote the spectrum as Sk̄. Since it is discrete

and bounded below we can write

Sk̄ = {En(k̄)}∞n=0 (12.299)

and, for a fixed k̄, we can choose to label the eigenvalues so that we have an ordering:

E0(k̄) ≤ E1(k̄) ≤ · · · (12.300)

Now, it can be shown that the En(k̄) are piecewise smooth functions of k̄. They are

called energy bands. These bands can intersect, and then En(k̄) can be smoothly continued

through the intersections (but then of course the ordering changes). If there is an n so that

there is no intersection of En(k̄) and En+1(k̄) for any k̄ ∈ T∨ and moreover

maxk̄∈T∨En(k̄) < mink̄∈T∨En+1(k̄) (12.301)

we say there is a band gap. (If the maximum and minimum are attained at the same k̄ it

is called a direct gap otherwise it is an indirect gap.)

Figure 32: Band structure for silicon.

Remarks: A little solid state physics

1. In order to visualize the dependence of the energy eigenvalues on k̄ and study the

so-called band structure physicists typically choose a line in the Brillouin zone and

plot Sk̄ along that line. See for example Figure 32. (For the two-dimensional case

one can attempt to draw the energy surfaces.)

2. Crystal structures with band gaps can support materials that are insulators. The

heuristic picture explaining this is the following: In the many-body Hilbert space

ΛNH the groundstate is obtained by filling up the lowest energy eigenvalues. If all

the bands up to En(k̄) are filled and none of the bands are filled for m > n then

applying a small electric field will not generate a current because not enough energy

is available for electrons to make the transition from the nth to the (n+ 1)th band.
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We would now like to rephrase the above a bit more geometrically. Aside from being

elegant, it will address two problems:

1. There is no global parametrization of Bloch wavefunctions on T∨.

2. The Bloch wavefunctions are not in H = L2(En), the physical Hilbert space.

It is useful to introduce the Poincaré line bundle, a complex line bundle

LP → T∨ × T (12.302)

where

T = V/Λ T∨ = V ∨/Λ∨ (12.303)

Again, we will present it as a homogeneous vector bundle, similarly to what we did for the

electrons on a torus.

The total space is

LP :=
(
V × V ∨ ×W

)
/
(
Λ× Λ∨

)
(12.304)

where W ∼= C is a one-dimensional irrep of Λ× Λ∨ and the group action is

(λ,K) : (x, k;ψ) 7→ (x+ λ, k +K; e2πi〈k,λ〉ψ) (12.305)

Note that if we choose a particular character k̄ ∈ T∨ then we have a map

LP

��
T ιk̄

// T × T∨

(12.306)

The pullback by ιk̄ of LP defines a line bundle over T :

Lk̄ := ι∗k̄(LP ) (12.307)

Explicitly, Lk̄ = (V ×W )/Λ with the identification:

(x;ψ) ∼ (x+ λ;χk̄(λ)ψ) ∀λ ∈ Λ (12.308)

Thought of as equivariant functions ψ : V → W , the sections of Lk̄ are just Bloch waves

with character χk̄:

ψ(x+ λ) = χk̄(λ)ψ(x) (12.309)

Now we claim that the physical Hilbert space H = L2(V ;W ) ∼= L2(Rn) can be identi-

fied with L2(T × T∨;LP ). The L2 condition on the latter means that, for an equivariant

function Ψ(k, x) we have the norm-square:

‖ Ψ ‖2=
∫

T∨×T
dk̄dx|Ψ(k, x)|2 (12.310)

(note that thanks to the equivariance |Ψ(k, x)|2 descends to a well-defined function on

T∨ × T .
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If we have an L2 function ψ(x) then we can form a family, parametrized by k̄ ∈ T∨,

of equivariant functions by averaging:

Ψ(k̄, x) :=
∑

λ∈Λ

χk̄(λ)
−1ψ(x+ λ) (12.311)

(and this sum will certainly converge for ψ(x) in the Schwarz space of functions of rapid

decrease on V , and these are dense in ∈ L2) while conversely given a family of equivariant

functions Ψ(k̄, x), defining L2 sections of Lk̄ → T we can form

ψ(x) =

∫

T∨

Ψ(k̄, x)dk̄ (12.312)

Note that

ψ(x+ λ) =

∫

T∨

χk̄(λ)Ψ(k̄, x)dk̄ (12.313)

so for λ→ ∞ this goes to zero. In fact the averaged function will be in L2(V ;W ). To see

this write
∫

V
dx|ψ(x)|2 =

∫

V/Λ
dx
∑

λ

∫

T∨×T∨

Ψ(k̄1, x+ λ)∗Ψ(k̄2, x+ λ)

=

∫

V/Λ
dx

∫

T∨×T∨

Ψ(k̄1, x)
∗Ψ(k̄2, x)

∑

λ

χk̄1(λ)
∗χk̄2(λ)

=

∫

V/Λ
dx

∫

T∨×T∨

Ψ(k̄1, x)
∗Ψ(k̄2, x)δ(k̄1 − k̄2)

=

∫

T×T∨

dxdk̄|Ψ(k̄, x)|2

(12.314)

Finally, we observe a very general result about bundles over product spaces:

Proposition Suppose we have a vector bundle over a product of two spaces E → X × Y .

Then, for each x let

Ex := L2(Y ; ι∗x(E)) (12.315)

For each x ∈ X, Ex is a Hilbert space. With suitable operator topologies these form a

continuous family of Hilbert spaces and in this way we get a bundle of Hilbert spaces over

X:

π : E → X (12.316)

whose fiber at x is just Ex. Then

L2(X × Y ;E) ∼= L2(X; E) (12.317)

For a proof see Appendix D of [17]. There is an issue here about what topology to use on

the group U(H) of unitary transformations on Hilbert space when requiring that transition

functions be “continuous.” See Appendix D of and Appendix A of [1].
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Applied to our present example, we have

Ek̄ = L2(T ;Lk̄) (12.318)

As k̄ varies over T∨ the Hilbert spaces fit into a Hilbert bundle E → T∨, and we can

identify

H := L2(V ) ∼= L2(T × T∨;LP)

∼= L2(T∨; E)
(12.319)

Remarks:

1. It can be shown that the unitary group on Hilbert space U(H) is contractible in both

the compact-open and in the norm topologies. Consequently, all bundles of Hilbert

spaces are trivializable. However, they might not come with a natural trivialization,

so it would be a mistake to assume every Hilbert bundle is of the form X ×H. The

present case is an example of such a situation.

2. The bundle E → T∨ carries a canonical family of flat connections labeled by x̄0 ∈ T .

In order to see this it suffices to describe the parallel transport along straight-line

paths in T∨. The most general such path is the projection of a straight line path in

V ∨. That is, consider the path in V ∨:

γ̂(t) = k(t) = ki + t∆k, 0 ≤ t ≤ 1 (12.320)

where ∆k = kf − ki. Then the projected path

t 7→ γ(t) := [k(t)] := k(t) ∈ V ∨/Λ∨ (12.321)

is a straightline path from k̄i to k̄f . Of course, if we change kf → kf+K with K ∈ Λ∨

we get another straightline path from k̄i to k̄f : It might wrap around a nontrivial

loop in T∨ several times (specified by K) before coming to an end on k̄f . The paths

with fixed endpoints are a torsor for Λ∨. In particular, if we consider closed paths

with k̄i = k̄f we see that

π1(T
∨, k̄0) ∼= Λ∨ (12.322)

for any basepoint k̄0. Now let us describe the parallel transport. For any ψk̄ ∈ Ek̄
we have to say how it is parallel transported along k(t). We interpret the fibers

of E as spaces of quasiperiodic functions satisfying (12.309) and define a family of

quasiperiodic functions

(Ux0(t) · ψk̄i)(x) := e2πit∆k·(x−x0)ψk̄i(x) (12.323)

where x0 is a lift of x̄0 ∈ T . Note that for each t the resulting function has the

quasiperiodicity (12.309) determined by k(t):

(Ux0(t) · ψk̄i)(x+ λ) := e2πit∆k·(x+λ−x0)ψk̄i(x+ λ)

=
(
e2πit∆k·λe2πiki·λ

)
e2πit∆k·(x−x0)ψk̄i(x)

= χk(t)(λ)(Ux0(t) · ψk̄i)(x)
(12.324)
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Computation of the parallel transport around contractible loops shows that the con-

nection is a “flat connection”: The parallel transport around homotopically trivial

loops in T is always one. (Equivalently, the curvature is zero.) However, the holon-

omy around the closed loop γ in homotopy class K ∈ Λ∨ (using (12.322)) is clearly

multiplication by the periodic function (put t = 1 and ∆k = K in equation (12.323)

hx0(γ) = e2πi〈K,(x−x0)〉 (12.325)

and is nontrivial. Note that it only depends on the projection x̄0 of x0 to T , and so

the isomorphism class of the connection only depends on x̄0.

3. As we remarked above, for insulators, the groundstate electron wavefunction dis-

tinguishes a finite-dimensional sub-bundle of π : E → X spannned by the electron

wavefunctions in the filled bands: If bands 1 to n are “filled” then we define a pro-

jection operator P (k̄) to be the projector

P (k̄) = θ(En+1(k̄)−H) (12.326)

acting on Ek̄. Here

θ(x) :=

{
1 x > 0

0 x ≤ 0
. (12.327)

and we recall that it makes sense to apply a measurable function to an operator.

(“Borel functional calculus.”) This defines a finite-dimensional vector bundle F →
T∨. 36 Moreover, given a connection on E , F contains a canonical connection:

Whenever we have a bundle E → X with a family of projection operators P (x) on E

if E has a connection then the sub-bundle whose fibers are Fx = P (x)Ex also inherits

a connection, known as a projected connection: If we have a path γ(t) in X and we

lift γ(0) so that γ̃(0) ∈ Fx0 then we use the lifted path γ̃E(t) in E and then project

it to F :

γ̃F (t) := P (γ(t))γ̃E(t) (12.328)

36In fact, as we will see below, a fundamental result is that every vector bundle is the image of a continuous

family of projection operators acting on a trivial bundle. This important theorem is known as the Serre-

Swan theorem. To prove it let us, WLOG assume that E has an Hermitian metric and a reduction of

structure group to U(n). The theorem applies when the base manifold has a finite cover with a partition of

unity so that the bundle is trivializable on each open set in the cover. (If X is a smooth compact manifold

such a cover always exists.) Choose such a finite cover {Uα} for the base X with a partition of unity {λα}.
Then, for each Uα choose a unitary basis s

(α)
i of sections of E on Uα. Then, while s

(α)
i are only locally

defined, the sections λαs
(α)
i are globally defined. Moreover, at any x ∈ X the span of these vectors is the

fiber Ex. Now let V be the span of this set of section {λαs(α)i }i,α as a vector subspace of Γ(E). Then

we consider the trivial bundle X × V and let the projector be P (x) =
∑

α λα(x)s
(α)
i (x)(s

(α)
i )†(x). It is

not difficult to show that P (x)2 = P (x). The operator s
(α)
i (x)(s

(α)
i )†(x) operates on a section of E by

evaluating at x and contracting with s
(α)
i (x) using the Hermitian metric. The image is the fiber of E at x.
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Since, in our case E has a canonical family of flat connections, it follows that F has

a canonical family of projected (in general not flat) connections. 37

A beautiful development in condensed matter physics in the past 8 years has been the

discovery that the topology of the vector bundle F has direct physical implications.

Moreover, the projection of the canonical connection mentioned above is known as

the Berry connection. Some physically observable quantities involve various integrals

of quantities associated with the Berry connection. Furthermore, it turns out that

there are also more subtle torsion invariants associated with the K-theory class of the

bundle that also have physically observable consequences.

4. Similarly, LP carries a nontrivial flat connection. In fact, T∨ is the moduli space of

flat line bundles over T , so LP is an example of a universal bundle: At a value of the

modulus k̄ it is the bundle parametrized by k̄. ♣Need to clarify

this remark ♣

5. COMMENT ON FOURIER-MUKAI TRANSFORM

12.7.8 Crystallographic Symmetry And Point Group Equivariance

When discussing band structure physicists often make use of more symmetry than the

group of lattice translations of a crystal. As any visit to a museum will make plane,

many crystals have much more symmetry. How are these symmetries realized in the above

geometrical context?

Let us put this question into a broader context. Suppose that we have a group action

G on X as well as a fiber bundle

π : E → X (12.329)

We say that the symmetry lifts if there is a group action G on E which commutes with

the projection π.

π(µ̃(g, e)) = µ(g, π(e)) (12.330)

where µ : G ×X → X is the group action on the base, and µ̃ : G × E → E is the lifted

group action on the total space.

In commutative diagrams we write:

E
µ̃(g,·) //

π
��

E

π
��

X
µ(g,·) // X

(12.331)

Definition A bundle π : E → X together with a group action by G compatible with the

projection (i.e. such that the group action lifts a G-action on X) is called an equivariant

vector bundle.
37A difference in our discussion from the standard discussion in the condensed matter literature is that

in the latter it is assumed that there is a natural trivialization of the Hilbert bundle and that the projected

connection is the projection of the trivial connection. Consequently condensed matter physicists speak

of “the” Berry connection. In fact, the projected connection is the projection of a nontrivial, but flat

connection, and moreover there is actually a family of such connections labeled by T .
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Example: Consider a vector bundle over a single point: E → X, where X = {x0} is a

point. The fiber is a vector space Ex0 . Then the only possible group action on x0 is the

trivial one. A lift of this group action is a representation of G on the fiber Ex0 .

It can very well happen that a group might not lift, but a central extension of the

group will lift. For example, consider the magnetic monopole bundle, the subbundle of

S2 × C2 given by the continuous family of projection operators:

P (x̂) =
1

2
(1 + x̂ · ~σ) (12.332)

That is, the fiber is:

Lx̂ = P (x̂)(x̂× C2) (12.333)

The group SO(3) acts by rotations on S2 in the standard way: R : x̂ → x̂′. But this

group does not lift to L. Rather, the central extension SU(2) lifts. Indeed given u ∈ SU(2)

we can say that

u−1x̂ · ~σu = (R(u)x̂) · ~σ = x̂′ · ~σ (12.334)

So

u−1P (x̂)u = P (x̂′) (12.335)

and hence the lifted action is

u : ψx̂ ∈ Lx̂ 7→ u−1ψx̂ (12.336)

Now, let us consider a crystal C ⊂ Ed. To describe its symmetries we start with the

affine Euclidean group of isometries of Ed. It fits in an exact sequence:

1 → Rd → Euc(d) → O(d) → 1 (12.337)

This sequence splits, i.e. Euc(d) is isomorphic to a semidirect product Rd⋊O(d). But there

is no natural isomorphism of splitting. The rotation-reflections O(d) do not act naturally

on affine space. In order to define such an action one needs to choose an origin of the affine

space and thus identify it with Rd.

If we do choose an origin then we can identify Ed ∼= Rd and then to a pair R ∈ O(d)

and v ∈ Rd we can associate the isometry: 38

{R|v} : x 7→ Rx+ v (12.338)

In this notation -known as the Seitz notation - the group multiplication law is

{R1|v1}{R2|v2} = {R1R2|v1 +R1v2} (12.339)

which makes clear that

38Logically, since we operate with R first and then translate by v the notation should have been {v|R},
but unfortunately the notation used here is the standard one.
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1. There is a nontrivial automorphism used to construct the semidirect product: O(d):

{R|v}{1|w}{R|v}−1 = {1|Rw} (12.340)

and π : {R|v} → R is a surjective homomorphism Euc(d) → O(d).

2. Thus, although Rd is abelian, the extension is not a central extension.

3. On the other hand, having chosen an origin, the sequence is split. We can choose a

splitting s : O(d) → Euc(d) by

s : R 7→ {R|0} (12.341)

By definition, a crystallographic group is a group that is isomorphic to the subgroup

of Euc(d) preserving a crystal C ⊂ Ed. Therefore, there is an exact sequence:

1 → Λ → G(C) → P (C) → 1 (12.342)

where Λ is the lattice of translations preserving C and P (C) ⊂ O(n) is known as the point

group. In general this sequence does not split:

Example: In d = 2 consider

C = Z2 ∪
(
Z2 + (δ,

1

2
)

)
(12.343)

with 0 < δ < 1
2 then G(C) is not split. Indeed the group is generated by

g1 : (x
1, x2) → (−x1 + δ, x2 +

1

2
) (12.344)

and

g2 : (x
1, x2) → (x1,−x2) (12.345)

Then Λ = Z2, and P (C) ∼= Z2 × Z2 is generated by the projections of g1, g2. However, no

lift of π(g1) will square to one because g21 is a translation by (0, 1).

In general, when there is no splitting, given a rotation-reflection R ∈ P (C) any lift

{R|v} ∈ G(C) must be accompanied by a translation by a vector v that is not in the lattice

Λ. In solid state physics this is known as a non-symmorphic lattice.

Now, of course, there is a right action of Euc(d) on L2(V ):

(ψ · {R|v}) (x) := ψ(Rx+ v) (12.346)

So restricting to G(C) ⊂ Euc(d), we learn that L2(V ) is a G(C)-representation. Now we

can ask: Is the isomorphism

L2(V ) ∼= L2(T∨; E) (12.347)

an isomorphism of G(C) representations? This turns out to be subtle.

Let us first note a very general fact about group theory. Suppose we have an extension:

1 → N → G→ Q→ 1 (12.348)

Let X be the space of irreps of N . Then Q acts on X as follows:
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Suppose ρW : N → Aut(W ) is an irrep of N with carrier space W . Then we can twist

it by an element q ∈ Q by choosing a section s(q) ∈ G and defining

ρs,qW (n) := ρW (s(q)ns(q)−1) (12.349)

Note that since N is normal in G this makes sense: s(q)ns(q)−1 ∈ N , and ρs,qW is a new

representation of N on the vector space W . It clearly depends on the choice of section s,

but the isomorphism class of of ρs,qW does not depend on the choice of section s. In general,

the isomorphism class of ρs,qW is distinct from that of ρW . Denoting the isomorphism class

by [W ] for brevity, we have a well-defined map on X for each q ∈ Q:

[W ] → [W ] · q. (12.350)

It is not difficult to show (exercise!!) that this is in fact a well-defined right-action:

([W ] · q1) · q2 = [W ] · q1q2 (12.351)

Let us apply the above general remarks to our case. By the general remarks, P (C) must

act on T∨. We compute the action as follows. Given a rotation-reflection R ∈ P (C) ⊂ O(d)

our section has the form

s : R ∈ P (C) 7→ {R|vR} ∈ G(C) (12.352)

We stress that this is just a section. There is absolutely no claim that it is a group homo-

morphism, and in general no such homomorphism exists. Nevertheless, we can compute

the change of character:

χRk̄ (λ) = χk̄
(
{R|vR}{1|λ}{R|vR}−1

)

= χk̄ ({1|Rλ})
= χk̄′(λ)

(12.353)

where k̄′ is defined as follows: Given k̄, choose a lift k ∈ V ∨. Then Rtrk = k′ and we then

project k′ to k̄′. The action k̄ → k̄′ does not depend on the choice of lift since Rt takes

Λ∨ → Λ∨.

Note that if we identify V ∨ ∼= V using a Euclidean metric then the pairing 〈k, x〉
becomes the Euclidean metric so 〈Rk,Rx〉 = 〈k, x〉 and Rtr = R−1. We will in fact do this

henceforth so that we can write R instead of Rtr,−1.

So, P (C) indeed acts on T∨. Now let us try to lift this action to the Hilbert bundle

E → T∨. We think of sections as equivariant functions Ψ : T∨ × V → C. Then

(Ψ ·R) (k̄, x) := Ψ(Rk̄,Rx+ vR) (12.354)

Recall that restricting Ψ(k̄, x) to a fixed k̄ gives an equivariant function V → C defining

a section of Lk̄ → T . Such an equivariant function is a vector in the fiber Ek̄ of the Hilbert

bundle E over k̄ ∈ T∨. Therefore for the above formula to make sense R ∈ P (C) should
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take a vector in the fiber Ek̄ to a vector in the fiber ER−1k̄. Let us check this indeed the

case:

(Ψ ·R) (R−1k̄, x+ λ) = Ψ(k̄, R(x+ λ) + vR)

= Ψ(k̄, R(x+ λ) + vR)

= e2πi〈k,Rλ〉Ψ(k̄, Rx+ vR)

= e2πi〈R
−1k,λ〉 (Ψ · R) (R−1k̄, x)

= χR−1k̄(λ) (Ψ ·R) (R−1k̄, x)

(12.355)

So, indeed, for each element R ∈ P (C) we can define a bundle map on E that correctly

covers the P (C) action on the base T∨. However, it is by no means clear that it defines

a group action. It is not obvious that it satisfies the group law! Why not? There can be

trouble if s : P (C) → G(C) is not a splitting, that is, if the crystal is non-symmorphic.

Note that the group law in Euc(d), and hence in G(C) can be written:

{R1|v1}{R2|v2} = {R1R2|R1v2 + v1} (12.356)

Now apply that to the elements s(R) = {R|vR}. Trivially, we have:

{R1|vR1}{R2|vR2} = {R1R2|R1vR2 + vR1} (12.357)

However, in general we cannot choose vR1R2 to be equal to R1vR2 + vR1 . However:

{R1R2|vR1R2}−1{R1|vR1}{R2|vR2} = {1|(R1R2)
−1 (R1vR2 + vR1 − vR1R2)} (12.358)

must preserve the crystal. Since it is a pure translation it must be a translation in Λ.

Since R ∈ P (C) preserves Λ we must have a lattice vector λ(R1, R2) ∈ Λ for every pair

R1, R2 ∈ P (C) so that

R1vR2 + vR1 = vR1R2 + λ(R1, R2) (12.359)

It is now a small computation to show that, for any equivariant function Ψ(k̄, x)

(writing it as a right-action):

Ψ ·R1 ·R2 = e2πi〈R1R2k,λ(R1,R2)〉Ψ ·R1R2 (12.360)

If the phase factor e2πi〈R1R2k,λ(R1,R2)〉 is nontrivial and there is no choice of the vR that

makes it trivial then we do not have a G(C) equivariant bundle!

In order to explore further what is happening let us note that there will be special

points k̄ of T∨, known as “orbifold points” or “high-symmetry points” where a nontrivial

subgroup of P (k̄, C) ⊂ P (C) will stabilize k̄. Then (12.360), evaluated at such a point k̄,

and for R1, R2 ∈ P (k̄, C) shows that actually it is a projective representation P̃ (k̄, C) that

acts on the fiber. The cocycle extending P̃ (k̄, C) is

c(R1, R2) = χk̄((R1R2)
−1λ(R1, R2)) (12.361)

Of course, the cocycle is ambiguous up to a group commutator. If P̃ (k̄, C) is abelian then

we can form the gauge invariant quantity:

s(R1, R2) = χk̄((R1R2)
−1 (λ(R1, R2)− λ(R2, R1)) (12.362)
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So, is there a projective representation G̃(C) acting on E → T∨? No! At the central

point Γ, i.e. the projection to T∨ of k = 0 the entire point group is unextended. However,

it can very well happen that at other points there is a nontrivial central extension.

Example: Consider the example (12.343) above. Then P (C) is Z2×Z2 ⊂ O(2) generated

by

R1 =

(
−1 0

0 1

)
R2 =

(
1 0

0 −1

)
(12.363)

so at

k̄ = (0,
1

2
) & k̄ = (

1

2
,
1

2
) (12.364)

the fixed point group is the entire group P (C). Now we should clearly choose vR1 + (δ, 12)

and vR2 = 0. If we lift R1R2 to g1g2 = {−1|(δ, 12)} then we would take vR1R2 = (δ, 12). If

we lift R1R2 = R2R1 to g2g1 = {−1|(δ,−1
2 )} then we would take vR1R2 = (δ,−1

2 ). We

need to make a definite choice and we will take vR1R2 = (δ, 12). Then we compute:

λ(R1, R2) = 0 & λ(R2, R1) = (0,−1) (12.365)

Therefore,

s(R1, R2) = χk̄((0, 1)) = −1 (12.366)

The central extension is D4.

The mathematical structure we have discovered is a generalization of an equivariant

vector bundle, known as a twisted equivariant bundle, where the adjective “twisted” is used

in sense of “twisted K-theory,” and not “topologically twisted.” We will return to “twisted”

bundles and “twisted K-theory” later. For more details see [17].

12.7.9 Electron In A Periodic Potential And A Magnetic Field
♣Also introduce

magnetic

translation group

here and explain

some uses of it. ♣

Now we combine both a magnetic field and periodic potential. For simplicity we consider

a two-dimensional square lattice.

There are now two competing length scales: The length scale of the lattice a, and the

magnetic length scale,

ℓ =

√
~

eB
(12.367)

equivalently there are two competing time scales of the problem: The inverse of the cy-

clotron energy m/eB and the time-scale for motion in a periodic lattice. For an electron

with momentum p = 2π~/a, where a is the lattice spacing, and energy p2/2m this would

be a time scale 2ma2/h. The ratio of these timescales is just

(2ma2/h)

m/eB
= 2

eBa2

h
= 2

Φ

Φ0
. (12.368)

It turns out that the spectrum of the Hamiltonian is an exquisitely sensitive function of

this ratio of scales.

– 142 –



Suppose therefore there is a periodic potential U(x) invariant under translation by Λ.

The Hamiltonian is:

H =
1

2m
(p̃21 + p̃22) + U(x) (12.369)

Finding the spectrum of such a Hamiltonian is a very difficult and subtle problem.

An important approximation to this physics problem is known as a tight-binding ap-

proximation. We imagine that the electron is confined to the lattice sites by a strong

binding potential, but can hop from one site to another. When it hops it picks up a phase

from the parallel transport with the Maxwell gauge field.

The resulting model is based on an infinite product of complex Clifford algebras Cℓ1
where the factors are thought of as a Clifford algebra attached to each vertex of the lat-

tice Λ. Denote the generators by a(λ), a(λ)†. They are standard fermionic creation and

annihilation operators:

{a(λ), a(λ′)†} = δλ,λ′

{a(λ), a(λ′)} = 0

{a(λ)†, a(λ′)†} = 0

(12.370)

The form of the tight-binding Hamiltonian is

Htb =
∑

e

t(e)a(λf )
†U(e)a(λi) (12.371)

where the sum is over all the edges of the lattice connecting two neighboring lattice points.

The edges are oriented and can carry either orientation. The oriented edge goes from λi
to λf . The amplitude t(e) represents a tunneling, or hopping amplitude for an electron to

move from site λi to site λf . WLOG we can take it to be real and positive. Meanwhile

U(e) = eiϕ(e) is a phase, representing the parallel transport by the connection.

The adjective “hopping” refers to the following picture: Up to isomorphism there is

one Clifford module for Cℓ1. It has a canonical ordered basis {|0〉, |1〉} and with respect to

this basis

a =

(
0 1

0 0

)
a† =

(
0 0

1 0

)
(12.372)

The state |0〉 represents no electron and |1〉 represents one electron. Therefore, if there is

an electron at site λi, the operator a(λf )
†a(λi) annihilates an electron at λi and creates

one at λf . Therefore, the electron has “hopped,” with amplitude t(e)eiϕ(e), from λi to λf .

The phase U(e) = eiϕ(e) models the phase from parallel transport along a path from

λi to λf in an electromagnetic field in the continuum model. The Hamiltonian H must be

Hermitian and this requires that if −e is the edge with opposite orientation to e then

eiϕ(−e) = e−iϕ(e) (12.373)

Of course, one can make a phase redefinition. These are gauge transformations, defined at

the vertices of the lattice:

a(λ) → eiθ(λ)a(λ) (12.374)
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and this will change

eiϕ(e) → e−iθ(λf )eiϕ(e)eiθ(λi) (12.375)

Note that the holonomy around closed loops is unchanged. All closed loops can be de-

composed into closed loops around unit cells of the lattice, so the only gauge invariant

information is the holonomy around the unit cells. If we consider similar small loops for a

connection on a manifold then we are measuring the curvature in the neighborhood of the

loop.

Let us now assume that all the hopping amplitudes are the same in the horizontal

direction. Denote them by t1. Similarly, assume that all the hopping amplitudes are the

same in the vertical direction and denote them by t2. Furthermore let λ = mx̂ + nŷ,

and denote the corresponding fermionic oscillators by am,n, a
†
m,n. In this notation the

Hamiltonian is:

Htb =
∑

m,n∈Z

(
t1e

iϕ1(m,n)a†m,nam−1,n + h.c.
)
+
(
t2e

iϕ2(m,n)a†m,nam,n−1 + h.c.
)

(12.376)

We next make a further simplifying assumption: We take the holonomy around each

unit cell to be the same. This is the discrete approximation to a uniform magnetic field.

Then we can choose a gauge (the discrete analog of Landau gauge) so that

Htb =
∑

λ

t1

(
a†m,nam−1,n + h.c.

)
+ t2

(
e2πiφma†m,nam,n−1 + h.c.

)
(12.377)

where φ is a constant. Note that the holonomy around a unit cell in the counterclockwise

direction is

e2πiφ(m+1)e−2πiφm = e2πiφ (12.378)

Comparing with the continuum expressions we see that

φ =
Φ

Φ0
(12.379)

where Φ is the magnetic flux through a unit cell.

Now consider

Ψ =
∑

ψ(m,n)a†m,n|0〉 (12.380)

This represents a single electron propagating through the lattice. ψ(m,n) is the amplitude

for the electron to be at the site λ = mx̂+ nŷ. Ψ will be an eigenstate of the Hamiltonian

if:

t1 (ψ(m− 1, n) + ψ(m+ 1, n))+t2

(
e2πiφmψ(m,n − 1) + e−2πiφmψ(m,n + 1)

)
= Eψ(m,n).

(12.381)

Since the Schrödinger operator is translation invariant in n we can introduce the dis-

crete analog of Bloch waves:

ψ(m,n) = e2πikyn℘(m) (12.382)

where ky ∼ ky + 1. Then the eigenvalue equation becomes

t1 (℘(m+ 1) + ℘(m− 1)) + t2

(
e2πi(φm−ky) + e−2πi(φm−ky)

)
℘(m) = E℘(m) (12.383)
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Now we introduce translation and multiplication operators U and V on functions on

ℓ2(Z):

(U℘)(m) = ℘(m+ 1)

(V ℘)(m) = e2πiφm℘(m)
(12.384)

If t1 6= 0 we can measure energy in units of t1. Setting µ = t2/t1 our Hamiltonian has been

reduced to

H = U + U † + µ
(
zV + z∗V †

)
(12.385)

with z = e−2πiky . For µ 6= 0 this is the simplest nontrivial self-adjoint element of Aθ. It

is known as an almost Mathieu operator and the special case of µ = 1 is known as the

Harper or Hofstadter or Azbel Hamiltonian (or some linear combination of these names).

Finding the spectrum of this Hamiltonian is extremely nontrivial - it has been the subject

of a great deal of work by mathematical physicists and condensed matter physicists going

back at least to Onsager and, presumably, Mathieu.

Let us make some simple immediate observations:

1. It is a self-adjoint element of a C∗-algebra. So its spectrum is a compact subset of

R.

2. Moreover the spectral radius r(H) =‖ H ‖ and by the triangle inequality it is clear

that

‖ H ‖≤ 2 + 2|µ| (12.386)

3. For µ = 1 and z = 1 H is invariant under Fourier transform. Implying certain

symmetries of the spectrum.

A major conjecture in this subject is the so-called “ten-martini problem,” so named

by Mark Kac and Barry Simon. It was proven to be true in [2]:

Theorem: If µ 6= 0 and φ is irrational then the spectrum (which is then independent of

ky and only depends on φmod1) is a Cantor set.

Recall that a Cantor set is a topological space homeomorphic to the subset of [0, 1]

obtained by successively removing the open middle thirds of intervals. It is an uncountable

subset of [0, 1] of Lebesgue measure zero and is a compact space. This shows that the

spectrum can be highly nontrivial!

One can get a lot of insight by considering the problem for the case when φ = p/q

is rational. In this case the one-dimensional Schrödinger equation (12.383) is periodic in

m → m+ q. Therefore, we can again introduce Bloch waves:

℘(m) = e2πikxm℘̃(m) (12.387)

where ℘̃(m+ q) = ℘̃(m). Therefore, the Brillouin torus is kx ∼ kx +
1
q . Equation (12.383)

now becomes

t1

(
e2πikx℘̃(m+ 1) + e−2πikx℘̃(m− 1)

)
+ t2

(
e2πi(φm−ky) + e−2πi(φm−ky)

)
℘̃(m) = E℘̃(m)

(12.388)
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so, at fixed (kx, ky) the eigenvalue problem is reduced to finding the eigenvalues of the q×q
matrix:

t1

(
z1u+ z∗1u

†
)
+ t2

(
z2v+ z∗2v

†
)

(12.389)

with z1 = e2πikx and z2 = e−2πiky , where u and v are the shift and clock operators.
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Figure 33: The simple band structure for the case t2 = 0, 2t1 = 1 and q = 3. The bands are

shown in Brillouin zone − 1
6
≤ kx ≤ 1

6
.

Before describing the spectrum in general let us look at three easy special cases:

1. If t1 = 0 then since v is already diagonal we clearly have q bands as a function of

ky:

En = 2t2 cos(2π(φn − ky)) n = 0, 1, . . . , q − 1 (12.390)

Of course, if t2 = 0 then, since u is the Fourier transform of v there is an analogous story

with q bands

En = 2t1 cos(2π(φn + kx)) n = 0, 1, . . . , q − 1 (12.391)

If we take the union of the spectrum over the Brillouin torus we simply get an interval

[−2t1, 2t1] or [−2t2, 2t2], respectively. See, for example, Figure 33.

2. Now suppose that φ is an integer, so φ ∼ 0. Then v = 1 and we have, again rather

trivially,

En = 2t1 cos(2π(
n

q
+ kx)) + 2t2 cos(2πky) n = 0, 1, . . . , q − 1 (12.392)
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so the union of the spectrum over the Brillouin torus is the full interval [−2(t1+ t2), 2(t1 +

t2)].

Now suppose that the fractional part of φ is nonzero and t1t2 6= 0. WLOG we can

measure energies in units of t1 so we can consider the spectrum of

hφ,µz1,z2 := z1u+ z∗1u
† + µ

(
z2v+ z∗2v

†
)

(12.393)

where µ = t2/t1.

To find a criterion for finding the eigenvalues of (12.393) write the eigenvalue problem

as (
℘̃(m̄+ 1̄)

℘̃(m̄)

)
= A(m̄)

(
℘̃(m̄)

℘̃(m̄− 1̄)

)
(12.394)

where we consider ℘̃(m̄) as a function on Z/qZ and

A(m̄) =

(
z−1
1 (E − µ(z2ω

m + z−1
2 ω−m)) −z−2

1

1 0

)
(12.395)

with ω = e2πiφ. Then, iterating the recursion relation (12.394) once around the circle we

must have (
℘̃(q̄ + 1̄)

℘̃(q̄)

)
= A(q̄)A(q̄ − 1̄) · · ·A(1̄)

(
℘̃(1̄)

℘̃(0̄)

)
(12.396)

But ℘̃(q̄+1̄) = ℘̃(1̄) and ℘̃(q̄) = ℘̃(0̄). It follows that A(q̄)A(q̄− 1̄) · · ·A(1̄) must have eigen-

value 1. However, its determinant is clearly z−2q
1 . Therefore, the quantization condition

on the energies is

Tr (A(q̄)A(q̄ − 1̄) · · ·A(1̄)) = 1 + z−2q
1 (12.397)

This is a little more elegant if we multiply by zq1 and observe that z1A(m̄) is conjugate to

B(m̄) =

(
E − µ(z2ω

m + z−1
2 ω−m) −1

1 0

)
. (12.398)

Therefore the eigenvalue equation is

Tr (B(q̄)B(q̄ − 1) · · ·B(1̄)) = zq1 + z−q1 (12.399)

Note that the LHS is a monic polynomial in E of degree q that is independent of z1.

Of course, this polynomial equation must be the same as the characteristic equation

det(E1q×q − hφ,µz1,z2) = 0 (12.400)

On the other hand, we know that

Fhφ,µz1,z2F−1 = µh
φ,1/µ

z−1
2 ,z−1

1

(12.401)

Therefore it must also be true that the characteristic equation is of the form

P (E) = µq(zq2 + z−q2 ) (12.402)
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where P (E) is monic polynomial in E of degree q and independent of z2. Therefore, the

characteristic equation for the energy eigenvalues must be of the form:

det(x1q×q − hφ,µz1,z2) = Pφ,µ(x)−
(
zq1 + z−q1 + µq(zq2 + z−q2 )

)

:= Pφ,µ(x)− f(θ)
(12.403)

where Pφ,µ(x) is a polynomial independent of both z1, z2. Some examples are given in

[30, 29] but it remains somewhat mysterious. We also write (z1, z2) = eiθ1 , eiθ2) and θ =

(θ1, θ2).

For a fixed θ there will be q roots of the equation Pφ,µ(x) = f(θ), {E1(θ), . . . , Eq(θ)}
and as θ varies over the torus they will define bands. The rth band will be Er(θ) ∈
[Ermin, E

r
max] where E

r
min, E

r
max are critical values of the function Er(θ) on the torus. The

band functions are real-analytic functions of θ so that we can differentiate Pφ,µ(Er(θ)) =

f(θ) to get:

P ′
φ,µ(Er(θ))E

′
r(θ) = f ′(θ) (12.404)

If two bands do not touch P ′
φ,µ(Er(θ)) 6= 0 and hence critical points of E′

r(θ) are critical

points of f(θ). For each critical point θa of f(θ) we can then find the bands by looking at

the inverse images Ecrit

Pφ,µ(Ecrit) = f(θa) (12.405)

In this way one can plot the bands.

Let Sp(φ) be the union of the roots as (z1, z2) varies over the Brillouin torus. Recall

that all the roots are real. So Sp(φ) is just the inverse image under Pφ,µ(x) of the interval

[−4, 4]. There are q disjoint bands separated by (q−1) open intervals - called “gaps,” with

one exception: When q is even the central gap closes. In [25] Hofstadter had the bright

idea of plotting (for the case µ = 1) these energy bands as a function of φ. The resulting

figure is the famous “Hofstadter butterfly,” reproduced in Figure 34.

Remarks

1. There is an interesting fractal structure in the bandstructure. It was first suggested

by Azbel [3]. Roughly speaking if we write the continued fraction expansion for φ:

φ = [N1, N2, N3, . . . ] =
1

N1 + [N2, N3, . . . ]
(12.406)

Then N1 bands split into N2 subbands split into N3 subsubbands etc.

2. The labeling of the gaps is related to some interesting mathematics and physics. On

the mathematical side one should consider the K-theory of the C∗-algebra K0(Aφ).

We will discuss what this means below, but for now suffice it to say that we define

equivalence classes on projection operators in (roughly speaking) Aφ.
39 Then we

39More precisely, in matrix algebras over Aφ, MN (Aφ) where N can be arbitrarily large. We can define

equivalences of projectors Pi ∈Mni
(A) by declaring them to be equivalent if there exists ki and v ∈MN (A)

so that vv∗ = Diag{P1,1k1} and v∗v = Diag{P2,1k2}. The abelian group structure is then [P1] + [P2] :=

[Diag{P1, P2}].
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Figure 34: Figure 1 from Hoftstadter’s paper. Energy bands are plotted horizontally and sit inside

[−4, 4]. The vertical axis is φ, ranging from 0 to 1. Hofstadter plotted the bands for rational values

of φ with q ≤ 50.

define an Abelian group structure on these equivalence classes. The result is the

K-theory of the operator algebra. The K-theory for Aφ has been computed and for

φ irrational it turns out to be isomorphic to Z⊕ Z:

K0(Aφ) = Z[1] + Z[Pφ] (12.407)

where 1 is the unit in Aφ (certainly a projector!) and Pφ is a very non-obvious

projector known as the Powers-Rieffel projector. It satisfies τ(Pφ) = φ. Now suppose

that ε is in a spectral gap, and let P (ε) the the spectral projection of the self-adjoint

operator H associated with the Borel set (−∞, ε]. (See the discussion of the spectral

theorem below.) Then one can label the gap by the integer n such that

[P (ε)] = m[1] + n[Pφ] (12.408)

Applying τ to this formula we obtain ♣Need to explain

my τ is defined on

the K-theory class.

♣nφ = τ(P (ε))mod1 (12.409)

This determines n uniquely, if φ is irrational. Now, τ(P ) for a projector P is a kind of

regularized dimension, so in the case of rational φ, τ(P (ε)) = r should be the number

of the gap in a successive labeling of the gaps in the direction of positive energy with
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Figure 35: Gaps in the Hofstadter spectrum are colored in this figure, taken from [39]. Note

the figure has been rotated by 90 degrees relative to the previous figure: Now φ is plotted on the

horizontal axis. Different colors label gaps with fixed value of so that τ(P (ε)) = nφmod1.

the gap including −∞ labeled by r = 0 and the gap including +∞ labeled by r = q.

Therefore, when φ = p/q is rational the equation becomes

n
p

q
= rmod1 (12.410)

that is we have a Diophantine equation

np− qs = r (12.411)

It was shown in the extremely important paper by TKNN [48] that n has the inter-

pretation of the quantized Hall conductance. Gaps of fixed values of n are plotted in

Figure 35.

For more about this see [4, 39].

3. Is the above phenomena experimentally observable? Hoftstadter’s original paper

noted that φ = Φ/Φ0 of order one would require unreasonably large magnetic fields

in traditional solid state setups. For example, the lattice constant for diamond at

T = 300K is about 4Å = 4 × 10−10m. Recalling that Φ0 ∼ 4 × 10−15Tesla ·meter2

we see that φ = 1 requires a magnetic field of about 25, 000 Tesla. However, in

two different ways this obstacle has been overcome in the past two years. Some

groups have used tricks with graphene and claimed to find experimental confirmation.
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Another set of experiments makes use of one of the very interesting experimental

developments of the past 20 years - the realization of BEC and optical lattices. The

Hamiltonian (12.377) is used to describe fermionic atoms in an optical lattice. Typical

lattice lengths are that of optical wavelengths, hence thousands of Angstroms. Hence,

in optical lattices one can obtain values of φ that would normally require 104 − 105

Tesla in conventional solid state setups. (In the optical lattices one does not literally

use a magnetic field. Rather one uses a “synthetic magnetic field.”) ♣ADD MANY

REFS ♣

Exercise Symmetries of the butterfly

Observe that the Hofstadter butterfly has a four-fold symmetry.

Why is that?

12.7.10 The Effective Topological Field Theory

Describe σxy and QHE.

Laughlin argument

Abelian CS.

12.8 Deforming The Algebra Of Functions On R2n

12.8.1 The Moyal (or ∗) Product

As a second example of interesting algebras realized as operator algebras we consider a

deformation of the algebra of functions on R2n. To begin with we will work quite formally,

and then state the precise class of functions at the end (as well as a precise definition of

the meaning of “deformation of the algebra”).

Let Θij be a 2n × 2n constant, antisymmetric, nondegenerate matrix. One can then

define the “∗-product” for multiplying two functions on R2n via the formula: 40

(f1 ∗Θ f2) (x) := exp

[
i

2
Θij ∂

∂xi1

∂

∂xj2

]
(f1(x1)f2(x2))

∣∣∣∣∣
x1=x2=x

(12.412)

For examples, let us compute:

[xi, xj ] := xi ∗Θ xj − xj ∗Θ xi = iΘij (12.413)

It is also very useful to introduce the plane-wave function:

ek(x) := eikx (12.414)

Then one easily computes:

ek1 ∗Θ ek2 = e−
i
2
k1,iΘ

ijk2,jek1+k2 (12.415)

40This is often referred to as the “Moyal product” although according to Wikipedia it was introduced

earlier by Groenewald.
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This defines an algebra structure on a suitable space of functions on R2n. We will call

it A(R2n
Θ ), once we specify a suitable class of functions below. (This class will certainly

include the Schwarz functions S(R2n) of exponentially rapid decrease.)

Here are some properties of this algebra. They are most easily proven after we have

related it to Weyl quantization:

1. The algebra is noncommutative as is clear from (12.413).

2. The algebra is associative.

3. If we formally expand in Θij then the algebra is a deformation of the usual commu-

tative algebra structure of functions on R2n:

f1 ∗Θ f2 = f1 · f2 +
i

2
Θij ∂f1

∂xi
∂f2
∂xj

− 1

8
ΘijΘkl ∂2f1

∂xi∂xk
∂2f2
∂xj∂xl

+ · · · (12.416)

4. If we include the unit function 1(x) = 1 in the algebra then it acts as a unit

1 ∗ f = f ∗ 1 = f (12.417)

5. The algebra has a trace:

τ(f) = N
∫

R2n

f(x)d2nx (12.418)

(where N can be any normalization constant) such that

τ(f1 ∗Θ f2) = τ(f2 ∗Θ f1) (12.419)

(Note that if we include 1 in the algebra its trace is not finite.)

Note that we can define a derivation of A(R2n
Θ ):

∂if := −iΘ−1
ij (xj ∗ f − f ∗ xj) = −i[Θ−1

ij x
j , f ] (12.420)

Note that these “derivatives” do not actually commute:

[∂i, ∂j ] = iΘ−1
ij (12.421)

Note that the planewave ek is an eigenstate of ∂i:

∂iek = ikiek (12.422)

Using this one can check that

(ek ∗ f ∗ e−k) (x) =
(
e−kiΘ

ij∂j
)
f(x)

= f(xi −Θijkj)
(12.423)
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12.8.2 The Dipole Model

We would like to interpret the formula (12.423) in heuristic physical terms. Set n = 1. ♣Ref.

Bigatti-Susskind.

Sheik-Jabbari. ♣Then equation (12.421) should remind us of a charged particle in two dimensions with a

transverse magnetic field. Consider two 2D charged particles of mass m but of opposite

electric charges moving in a constant magnetic field B with a harmonic potential between

them. The action is

S =

∫ [
1

2
m
(
‖ ẋ1 ‖2 + ‖ ẋ2 ‖2

)
− V (x1 − x2)

]
dt+

∮

γ1

eA−
∮

γ2

eA (12.424)

Let us choose symmetric gauge A = 1
2Bǫµνx

µdxν , and - very importantly - consider

the large B limit. Formally we take the mass m→ 0. Then the action becomes 41

S =

∫ [
B

2
ǫµν (ẋ

µ
1x

ν
1 − ẋµ2x

ν
2)− V (x1 − x2)

]
dt (12.425)

Now, we assume that the interaction potential V is such that it binds the two particles into

a composite system. Let us change variables to the center-of-mass and relative degrees of

freedom:

Xµ :=
1

2
(xµ1 + xµ2 ) ∆µ :=

1

2
(xµ1 − xµ2 ) (12.426)

so that the action becomes:

S =

∫ [
2BǫµνẊ

µ∆ν − V (∆) +
B

2

d

dt
(ǫµνx

µ
1x

ν
2)

]
dt (12.427)

Ignoring the total derivative term we see that the center-of-mass momentum is

Pµ = 2Bǫµν∆
ν (12.428)

Thus, the spatial extent of the dipole depends on the center-of-mass momentum. There-

fore, the dipole as a single system will appear to have nonlocal interactions. If particle 1

interacts with an external potential U(x1) then, in terms of the center of mass and relative

coordinates we have

U(xµ1 ) = U(Xµ +∆µ) = U(Xµ − 1

2B
ǫµνPµ) (12.429)

We usually describe particles in momentum eigenstates by plane waves eikx and compute

transition amplitudes (in the Born approximation) by taking Fourier transforms of the

potential. The similarity of (12.429) to (12.423) suggests that we can think of the non-

commutative plane waves as representing such low mass dipoles in a magnetic field.

Remark: Equation (12.428) is an absolutely crazy equation from the point of view of

a physicist: Usually we think of momentum and length as inversely related - as in the

41This is really a specialization of an Abelian Chern-Simons action, if we drop the harmonic potential.
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uncertainty principle. This leads to the usual picture of “UV” (for “ultraviolet”) being

related to short distances and high energies - the two limits are thought of as equivalent.

Similarly, “IR” (for “infrared”) is related to long distances and low energies. Again, the two

limits are thought of as equivalent. However (12.428) relates a momentum Pµ linearly to a

length ∆µ. This, ultimately, leads to strange effects of “UV-IR mixing” in noncommutative

field theory.

12.8.3 The Weyl Transform

We now relate the algebra A(R2n
Θ ) to standard formulae in quantum mechanics.

Since Θij is nondegenerate we can make a linear change of variables so that it has the

form

Θij = ~

(
0 1n×n

−1n×n 0

)
(12.430)

Let us call the coordinates in this basis

(x1, . . . , x2n) = (qa, pa) = (q1, . . . , qn, p1, . . . , pn) (12.431)

Then we have

qa ∗ pb − pb ∗ qa = [qa, pb] = i~δab (12.432)

Now we can appeal to the Stone-von Neumann theorem. Up to unitary isomorphism the

unique unitary irreducible representation of this algebra on a Hilbert space is H := L2(Rn)

with

(Q̂aψ)(q) = qaψ a = 1, . . . n (12.433)

(P̂aψ)(q) = −i~
∂

∂qa
a = 1, . . . n (12.434)

This gives a nice perspective on the algebra A(R2n
Θ ).

For a function f(q, p) on R2n we define the Weyl transform to be the linear operator

on H defined by

Weyl(f) :=

∫

R2n

f̌(u, v)S(u, v)
dnudnv

(2π)n
(12.435)

f̌(u, v) :=

∫

R2n

f(q, p)ei(u·q+v·p)
dnqdnp

(2π)n
(12.436)

S(u, v) := e−i(uQ̂+vP̂ ) (12.437)

where Q̂ = ρ(q) and P̂ = ρ(p) are operators on H.

Note that if f is real then f̌(u, v)∗ = f̌(−u,−v) and hence,

Weyl(f)† = Weyl(f) (12.438)

so when f is real Weyl(f) is, a symmetric operator, and, least formally, it is self-adjoint.

(If f is such that Weyl(f) is a bounded operator then it is certainly self-adjoint.)

Note that for a plane-wave:

f(q, p) = ei(αq+βp) (12.439)
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we have

f̌(u, v) = (2π)nδ(u+ α)δ(v + β) (12.440)

and hence

Weyl(f) = S(−α,−β) = ei(αQ̂+βP̂ ) (12.441)

that is:

Weyl(ei(αq+βp)) = ei(αQ̂+βP̂ ) (12.442)

Comparing with (12.415) we now deduce the key fact that (for the above skew-

diagonalized Θ)

Weyl(f1 ∗Θ f2) = Weyl(f1) Weyl(f2) (12.443)

Thus, the Moyal product on R2n, interpreted as a symplectic manifold, is nothing but

standard quantum mechanics in disguise.

The Weyl transform of real analytic functions: By expanding the exponentials on both

sides of (12.442), using linearity, and matching powers of αnβm we deduce that the Weyl

transform of a polynomial in q, p is the total symmetrization of that polynomial. Thus, for

example:

Weyl(q) = Q̂

Weyl(p) = P̂

Weyl(qp) =
1

2
(P̂ Q̂+ Q̂P̂ )

Weyl(q2p) =
1

3
(Q̂2P̂ + Q̂P̂ Q̂+ P̂ Q̂2)

(12.444)

and so forth.

The same result can be obtained, somewhat more tediously, as follows: To compute

Weyl(p) we compute the distribution

f̌(u, v) = −2πiδ(u)δ′(v) (12.445)

so

Weyl(p) = i

∫
(δ(u)δ(v)∂vS(u, v)) dudv = P̂ (12.446)

and similarly Weyl(q) = Q̂. Alternatively, one can simply take derivatives of (12.442)

with respect to α, β and then set them to zero. Now consider f(q, p) = qp. So: let us

check:

f̌(u, v) = −2πδ′(u)δ′(v) (12.447)

So

Weyl(f) := −
∫

R2n

δ(u)δ(v)∂u∂v(S(u, v))dudv (12.448)

We have to be careful about computing the derivatives of S(u, v) before evaluating the

delta functions. One way to do this is to write

S(u, v) = e
i
2
uv~e−iuQ̂e−ivP̂ (12.449)
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Now, thanks to the delta-functions, the two derivatives act on the c-number prefactor or

on the operator to give

Weyl(f) = − i

2
~+ Q̂P̂ =

1

2
(Q̂P̂ + P̂ Q̂) (12.450)

as expected. For a general real-analytic function we need the result for f(q, p) = qnpm.

Now

f̌ = (2π)(−i)n+mδ(n)(u)δ(m)(v) (12.451)

Weyl(f) = (i)n+m
∫
δ(u)δ(v) (∂nu∂

m
v S(u, v)) dudv (12.452)

Now, to compute the derivatives we have to be a bit more careful. Recall that for any

family of operators O(t) we have

d

dt
eO(t) =

∫ 1

0
e(1−s)O(t) d

dt
O(t)esO(t)ds (12.453)

Remarks

1. It is useful to note that

TrHS(u
′, v′)S(u, v)−1 = ~−ne

i~
2
(u′v′−uv)δ(u− u′)δ(v − v′) (12.454)

This is easily proved by inserting complete sets of states and recalling (12.462). There-

fore

TrH
(
Weyl(f)S(u, v)−1

)
= (2π~)−nf̌(u, v) (12.455)

Therefore
∫

(f1(q, p))
∗f2(q, p)

dnqdnp

(4π2~)n
= Tr Weyl(f1)

† Weyl(f2) (12.456)

Note that from (12.456) it follows that f ∈ L2(R2n) maps to the space of Hilbert-

Schmidt operators. The space of Hilbert-Schmidt operators is a Hilbert space, and

hence complete in the Hilbert-Schmidt norm. Thus one rigorous way of defining

A(R2n
Θ ) would be to take the completion of the Schwarz space in the Hilbert-Schmidt

norm. The resulting algebra is the space of Hilbert-Schmidt operators. ♣Say what happens

if you take the

norm-closure of the

Hilbert-Schmidt

operators.

‖ T ‖≤‖ T ‖2 so

the norm closure

will be bigger. ♣

2. Note too that evaluation of (12.455) at u = v = 0 gives the trace

TrH ( Weyl(f)) =

∫

R2n

f(q, p)
dnqdnp

(4π2~)n
= τ(f) (12.457)

Exercise

Compute the Moyal product of two Gaussian wavepackets.

– 156 –



Exercise

Show that in the position space representation ♣Need to check this

formula. ♣

( Weyl(f)ψ)(q) =

∫
K(q, q′)ψ(q′)dnq′ (12.458)

K(q, q′) =

∫
f(
q + q′

2
, p)e−i p

~
(q−q′) dnp

(2π~)n

=

∫
f̌(v,

q − q′

2
)e−i v

2
(q+q′) dnv

(2π~)n

(12.459)

12.8.4 The Wigner Function

The inverse of a Weyl transform defines theWigner function associated to a linear operator

T̂ ∈ L(B).
Wigner( Weyl(f)) = f (12.460)

The explicit formula is that Wigner(T̂ ) is the function on phase space:

Wigner(T̂ )(q, p) :=

∫
〈q − 1

2
v|T̂ |q + 1

2
v〉ei p~ vdnv (12.461)

To prove (12.464) note that it suffices to prove it for T̂ = ei(αQ̂+βP̂ ). Now, recall that

〈q|p〉 = 1√
(2π~)n

eiqp/~ (12.462)

Then compute:

∫
〈q − 1

2
v|ei(αQ̂+βP̂ )|q + 1

2
v〉ei p~ vdnv =

∫
eiαβ~/2〈q − 1

2
v|eiαQ̂eiβP̂ |q + 1

2
v〉ei p~ vdnv

=

∫
eiαβ~/2〈q − 1

2
v|eiαQ̂|p′〉〈p′|eiβP̂ |q + 1

2
v〉ei p~ vdnvdnp′

= (2π~)−n
∫
eiαβ~/2eiα(q−

1
2
v)+ipv/~eip

′(β−v/~)dnvdnp′

= ei(αq+βp)

(12.463)

So the equation is true for plane-waves. But this is enough by linearity and Fourier trans-

form. Of course, an analogous argument also gives

Wigner(T̂ )(q, p) :=

∫
〈p+ 1

2
u|T̂ |p− 1

2
u〉ei q~udnu (12.464)

Wigner introduced his transform to attempt to associate a classical probability dis-

tribution on phase space with a quantum state. In order to do this we should apply the

Wigner transform to a density matrix (i.e. a quantum state). In this case the operator
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T̂ = ρ is a positive self-adjoint operator of trace one. Thus the Wigner function will be

real. For example, for a pure state, a line through ψ ∈ H we have a rank one projector

ρ = Pψ = |ψ〉〈ψ| (12.465)

(we assume 〈ψ|ψ〉 = 1). Then the corresponding Wigner function is

̟ψ(q, p) =

∫
ψ∗(q − 1

2
v)ψ(q +

1

2
v)eipv/~dv (12.466)

Note that ∫
dp̟ψ(q, p) = ψ∗(q)ψ(q) (12.467)

and one can show that similarly
∫
dq̟ψ(q, p) = ψ̂∗(p)ψ̂(p) (12.468)

Indeed, if we have any two states then the overlap is

|〈ψ1|ψ2〉|2 = TrHPψ1Pψ2 =

∫
Pψ1(q, p)Pψ2(q, p)dqdp (12.469)

But this means that if ψ1 and ψ2 are orthogonal then
∫
Pψ1(q, p)Pψ2(q, p)dqdp = 0 (12.470)

Hence we conclude that ̟ψ(q, p) cannot always be positive and do not represent true

probability distributions.

It is amusing to work out the Wigner functions in some simple cases. For the harmonic

oscillator groundstate P = |0〉〈0|

̟ψ(q, p) ∼ exp[−p2 − x2] (12.471)

♣Should also do

first excited state ♣
Moreover, if ψ is any state and we evolve it as a function of time using the harmonic

oscillator Hamiltonian H = 1
2(p

2 + x2) then, remarkably, we have

̟ψ(t)(q, p) = ̟ψ(q(t), p(t)) (12.472)

where (q(t), p(t)) is the classical trajectory in phase space. For some nice pictures of Wigner

functions of various standard quantum states see http://www.iqst.ca/quantech/wiggalery.php.

Remark: The Wigner functions satisfy some peculiar properties [8]. Apply the defi-

nition (12.466) for a normalized function ψ. Now apply the Cauchy-Schwarz inequality to

obtain

|̟ψ(q, p)| ≤ 2 (12.473)

This is another feature we would not expect from a general probability distribution on

phase space. Moreover, if we consider the value at the origin then

̟ψ(0, 0) = ±2 (12.474)
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if ψ(q) is an even or odd function of q, respectively. Note that this is true even if ψ

represents far separated wavepackets whose value at q = 0 is nearly zero.

************

SHOULDDO THE EXAMPLES OF COHERENT STATES AND SQUEEZED STATES.

FIGURE OF H.O. TIME EVOLUTION OF COHERENT STATE. (COHERENT STATE

OPERATOR AS TRANSLATION OPERATOR IN PHASE SPACE.

************

12.8.5 Field Theory On A Noncommutative Space

Since fields are functions on a spacetime, it is natural to try to generalize field theory on

spacetime to field theory on a spacetime like R2n
Θ . One can take one’s favorite Lagrangian

field theory and every time a product of fields

Φ1(x)Φ2(x) (12.475)

appears in the action density, one simply replaces it by the Moyal product

Φ1(x) ∗Φ2(x) (12.476)

Then one “integrates” using a trace τ on the algebra. For the Moyal algebra this is just

an ordinary integral over R2n. The resulting theories share many of the characteristics of

ordinary field theory. This is extremely surprising! In general if one introduces derivative

interactions with arbitrarily high numbers of derivatives then the resulting field theory is

very badly behaved: The Cauchy problem does not make sense and the quantum perturba-

tion theory is badly behaved. Remarkably, if one introduces nonlocality in the controlled

way given by the Moycal product, the resulting theories are relatively well-behaved. There

is a curious “mixing between IR and UV.”

See the review [15] for more details. ♣Should say more

here. ♣

12.9 Relation To Open String Theory

We now give a perspective on Moyal quantization following from string theory. This per-

spective also gives significant insight into the fact that there is an isomorphism of C∗

algebras Aθ1 and Aθ2 when θ1 and θ2 are related by integer fractional linear transforma-

tions.

The physical interpretation uses the theory of open strings moving in a target space

with constant metric and B-field. In a certain limit where the string length goes to zero.

The open string vertex operator algebra of a brane wrapped on a torus approaches the

algebra Aθ, in a way analogous to the degeneration of the VOA of the WZW model for

k → ∞. See, for example, [9, 46, 47] and the review [15] and references therein. We mostly

follow the definitive version from Seiberg and Witten.

12.9.1 String Theory In A p-nutshell

We consider a bosonic perturbative string theory. It is based on maps

x : Σ → X (12.477)
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where the worldsheet Σ is a two-dimensional surface equipped with a metric, and the target

space X , is equipped with a metric g, and other geometrical structures. For our purposes we

can consider it to be equipped with a globally defined two-form b. (More generally, b is part

of a “gerbe connection.”) There is an important issue of the signature of the worldsheet

and target space metrics. If we think about strings propagating in spacetime then both the

worldsheet and target space metrics should have Lorentzian signature metrics. However, it

is technically much more convenient to take the target space to have Euclidean signature,

and we will do so. We begin with Lorentzian signature worldsheet metric and then Wick

rotate to Euclidean signature worldsheet metric.

Remark: In string theory one integrates over the space of Riemann surfaces and over

maps. The integration over Riemann surfaces includes a sum over topologies. When the

worldsheet has Lorentzian signature this leads to singularities, so in string perturbation

theory a Euclidean signature is always assumed. When the target space is Lorentzian and

has nontrivial time-dependence in the geometry many new subtleties arise that the subject

is not completely understood.

We will focus on oriented string theory. Thus Σ will be assumed to have an orientation.

The string action, entering the path integral as eiSL/~ is: ♣And we were not

careful about that

orientation. For

self-duality dσ ∧ dτ

is best with

Lorentzian metric

−dτ2 + dσ2. ♣

SL[h, x; g, b] = − 1

4πℓ2s

∫

Σ

[
(dx, ∗dx) − x∗(b)

]
(12.478)

where the Hodge star uses the metric on Σ and (·, ·) is contraction in the metric on X .

Upon analytic continuation to Euclidean signature worldsheet metric the Euclidean action,

entering the path integral as e−SE/~ is:

SE[h, x; g, b] =
1

4πℓ2s

∫

Σ

[
(dx, ∗dx) − ix∗(b)

]
(12.479)

where the worldsheet metric is positive definite and oriented (so that we can integrate

x∗(b)). With positive definite target space metric the path integral is at least formally

convergent. Written in terms of local coordinates the action is:

SE[h, x; g, b] =
1

4πℓ2s

∫

Σ

[√
hhabgij(x(ξ))∂ax

i∂bx
j − ibij(x(ξ))ǫ

ab∂ax
i∂bx

j

]
d2ξ (12.480)

Remarks:

1. The parameter ℓs determines a fundamental length-scale, called the string length. In

much of the string theory literature one finds instead

ℓ2s = α′ (12.481)
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There is much evidence that, in string theory, the nature of space and time changes

dramatically at length scales on the order of ℓs. Note that 1/ℓ
2
s has units of [Length]

−2.

Since we have set ~ = c = 1 this is the same as [Energy]/[Length]. Indeed, T ∼ 1/ℓ2s
has the interpretation of the string tension.

2. Classically, the action only depends on the conformal structure, and this is also true

quantum mechanically, if dimX = 26 and the metric and b-field are flat. We will

not need to worry about the quantum Weyl anomaly for the following discussion, so

we leave the dimension D of the target unspecified. This is fine for tree level string

theory on flat worldsheets. ♣Should say more

here and mention

Mumford

isomorphism. ♣

We now specialize considerably to the case of a target space

X = R2n × RD−2n (12.482)

We assume a constant metric and b-field, and moreover we assume that they respect the

product structure. We write the metric as:

g =
∑

1≤i,j≤2n

gijdx
i ⊗ dxj +

∑

2n<i,j

gijdx
i ⊗ dxj (12.483)

and the constant b-field as

b =
∑

1≤i,j≤2n

bijdx
i ∧ dxj . (12.484)

Remark: The theory we are studying is a special case of the WZW model where the Lie

group target space is just the abelian group RD. In this case the WZ term is just the b-field

action, and we have the freedom to add a flat gerbe connection. The string tension ℓ−2
s

plays the role of the level k.

First consider the Lorentz-signature worldsheet h = −dτ2 + dσ2 where Σ is the strip

R× [0, π]. The action is:

SL =
1

4πℓ2s

∫

R
dτ

∫ π

0
dσ
[
gij(∂τx

i∂τx
j − ∂σx

i∂σx
j) + 2bij∂τx

i∂σx
j
]

(12.485)

The equation of motion is simply the free wave equation ♣Here we make a

choice of

orientation. ♣

(−∂2τ + ∂2σ)x
i = 0 (12.486)

The quantization of the free quantum field theory defined by the action (12.485) is

relatively straightfoward and well-known textbook material. We review it briefly. First we

compute the momentum density of the string:

pi(σ) :=
δS

δẊi(σ)
=

1

2πℓ2s

(
gij∂τx

j + bij∂σx
j
)

(12.487)
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The phase space thus consists of maps (x, P ) : [0, π] → T ∗X . The naive symplectic

structure is, formally:

ω =

∫ π

0
δxi(σ) ∧ δpi(σ)dσ (12.488)

but the presence of the b-field can alter this naive formula. ♣Give the correct

omega. Derive it

from first principles.

Explain relation to

“second class

constraints.” ♣

Now we come to the important consideration of boundary conditions. For closed strings

we would take xi(σ) and pi(σ) to be maps from a spatial circle S1. For the open string, by

conformal invariance we can, and will take the spatial domain to be the interval [0, π].

In general perturbation theory, for open strings we take Σ to be a Riemann surface

with boundary. The boundary values of the fields must lie in a Lagrangian subspace of

phase space defined (for Euclidean signature worldsheet) by

δxi
(
gij∂nx

j + ibij∂‖x
j
)
|δΣ = 0 (12.489)

Here ∂n and ∂‖ are normal and tangential derivatives on the boundary and there is a sum

over i = 1, . . . ,D.

Without trying to find the most general boundary condition, the most obvious choice

is to set δxi|∂ = 0 or
(
gij∂nx

j + ibij∂‖x
j
)
|∂ = 0. We can make different choices for different

values of i and different choices for different connected components of the boundary. There

are clearly many choices one can make here. They correspond to very different physical

situations.

We will make the choice that

(
gij∂σx

j + bij∂τx
j
)
|σ=0,π = 0 i ≤ 2n (12.490)

and

δxi|σ=0,π = 0 2n < i (12.491)

The physical interpretation is that there is a 2n-dimensional hyperplane, defined by

xi = xi0, on which the open string endpoints are confined. This hyperplane should be

thought of as dynamical: It can wiggle and have waves moving on it: It is a “brane” with

2n spacetime dimensions. 42
♣More on this.

FIGURE ♣
One very nice viewpoint on phase space is that it is the space of (gauge invariant)

solutions to the equations of motion [13]. In this free field theory it is straightforward to

give the general solution to the equations of motion and find linear coordinates on it.

We will now say a little about the quantization. Focussing on the fields xi with i ≤ 2n.

We will parametrize phase space by finding the general solution of the equation of motion:

We can separate the solution into the zero- and nonzero-Fourier modes: xi = xilin + xiosc
where

xilin = xi0 + Li1τ + Li2σ (12.492)

and

xiosc =
∑

n 6=0

xi(n)(σ)e
inτ (12.493)

42The physics terminology originated from the joke that branes with p spatial dimensions should be called

p-branes. Thus, a 0-brane is a particle, a 1-brane is a string, a 2-brane is a (dynamical) surface, and so on.
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where xin(σ) is a linear combination of cos(nσ) and sin(nσ). Recall that the Schrödinger

equation is i~∂Ψ∂t = HΨ. Thus, n > 0 corresponds to negative energies and n < 0 corre-

sponds to positive energies.

To obtain the linear piece we need two equations for L1 and L2. The boundary condi-

tions determine

gijL
j
2 + bijL

j
1 = 0 (12.494)

To get the second equation, define

pi :=

∫ π

0
pi(σ)dσ =

1

2ℓ2s
(gijL

j
1 + bijL

j
2) (12.495)

we now have two linear equations for L1 and L2 and we find:

xilin = xi0 + 2ℓ2s(G
ijpjτ − (g−1bG−1)ijpjσ) (12.496)

Where it is convenient to define a matrix Gij by

G := g − bg−1b (12.497)

or, with indices:

Gij = gij − bikg
klblj (12.498)

Then Gij are the matrix elements of the inverse G−1. Note that

Gij =

(
1

g + b

)ij

symmetric

(12.499)

Similarly, the oscillator piece is determined by the boundary conditions to have the

form:

xi(n)(σ) = ℓs
(
iδij cos(nσ) + (g−1b)ij sin(nσ)

) αjn
n

(12.500)

The on-shell momentum density now turns out to be

pi(σ, τ) = pi −
1

2ℓs

∑

n 6=0

Gijα
j
n cos(nσ)e

inτ (12.501)

These equations give a complete set of linear coordinates on the subspace of phase

space determined by the boundary conditions.

With a suitable symplectic form the quantization is given by: ♣Need to explain

this symplectic form

more thoroughly. ♣

[xi0, pj ] = iδij [αin, α
j
m] = Gijnδn+m,0 (12.502)

The quantization of the harmonic oscillators is then standard. One chooses the representa-

tion based on the vacuum line with αin|0〉 = 0 for n > 0. Thus, the free one-string Hilbert

space is just

H1−string = L2(R2n)⊗F (12.503)

where F is the Fock space for an infinite set of harmonic oscillators α±n of frequency n.

Remarks
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1. The normalization of the amplitude using αjn turns out to be very convenient in the

quantization. The fluctuations are order one. So the oscillator modes are fluctuating

on the order of a string length. Meanwhile, for small string length, the momentum

of the oscillator modes is large: These oscillations cost a lot of energy.

2. Note that there is a very nice intuitive interpretation of (12.504). Let us write the

equation as

gijx
j
(n)(σ, τ) =

iℓs
2

(
(g + b)ije

in(τ−σ) + (g − b)ije
in(τ+σ)

) αjn
n

=
iℓs
2
(g + b)ij

(
δjke

in(τ−σ) + (R)jke
in(τ+σ)

) αkn
n

(12.504)

Written this way it is apparent that the left- and right-moving waves ein(τ±±σ) are

reflected with a matrix

R = (g + b)−1(g − b) (12.505)

One can check that, with respect to the metric g, this is an orthogonal matrix. That

is:

RtrgR = g (12.506)

One could diagonalize g1/2Rg−1/2. In that basis left and right-moving waves are

reflected with a phase.

The formulation in terms of oscillators is conceptually important but can become

computationally very messy. It is better to use Green’s functions on Euclidean worldsheets.

We Wick rotate the strip worldsheet to Euclidean signature with coordinate w = σ + iτ .

Next we make a conformal transformation to the upper half-plane:

z = ei(σ+iτ) (12.507)

Thus, strings in the far past are near z = 0 and time-ordering becomes radial ordering.

The equal τ spatial slices become semicircles as in Figure 36.

The Euclidean action is

S =
1

4πℓ2s

∫

Σ

(
habgij∂ax

i∂bx
j − ibijdx

i ∧ dxj
)

(12.508)

Here hab is a Riemannian metric on Σ.

The boundary conditions are, once again:

(
gij∂nx

j + ibij∂tx
j
)
|δΣ = 0 (12.509)

♣Need to give some

excuses for the fact

that real fields

cannot solve this

boundary condition.

♣

When σ = 0, π, τ is a real coordinate along the boundary of the strip. Correspondingly

τ̃ = ±exp[−τ ] is a real coordinate along the positive and negative real axis. For simplicity

of notation we henceforth denote

τ̃ → τ. (12.510)
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Figure 36: Left: An open string worldsheet represented as a strip: The spatial coordinate σ runs

from 0 to π. The time direction τ is upward. The Euclidean worldsheet has the same picture

but now we view the strip as a domain in the complex plane with w = σ + iτ . A conformal

transformation of this domain z = exp[iw] maps it to the upper half-plane. The dot represents

z = 0. This is the infinite past on the string worldsheet. The red semicircles are equal time slices.

We want to consider the OPE of the open string vertex operators Vk(τ) =: eikx(τ) :.

Here the normal-ordering symbols refer to that relevant to the oscillators αi±n acting on

H1−string. In this free field theory all we need is the Green’s function for the x-field restricted

to the boundary since

Vk1(τ1)Vk2(τ2) = e−k1,ik2,j〈x
i(τ1)xj(τ2)〉 : eik1,ix

i(τ1)+ik1,ix
i(τ1) : (12.511)

where the colons denote normal-ordering symbols, and we are working in radial quantization

around z = 0.

Now, to compute the Green’s function 〈xi(τ1)xj(τ2)〉 we will compute the Green’s

function 〈xi(z1)xj(z2)〉 and then take the boundary values z1 = τ1 and z2 = τ2. The latter

Green’s function is the solution of the equations of motion:

∂1∂̄1〈xi(z1)xj(z2)〉 = ∂2∂̄2〈xi(z1)xj(z2)〉 = 0 (12.512)

with logarithmic singularity at z1 = z2, at most log growth at infinity and satisfying the

boundary conditions (12.509), which in our special case become
(
gij(∂ − ∂̄)xj + bij(∂ + ∂̄)xj

)
|∂Σ = 0 (12.513)
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We therefore have

〈xi(z1)xj(z2)〉 = Aij1 log(z1 − z2) +Aij2 log(z1 − z̄2) +Aij3 log(z̄1 − z2) +Aij4 log(z̄1 − z̄2) +Aij5
(12.514)

where Aijα are matrix functions of gij and bij, constant as functions of z1, z2. These matrices

are determined by the boundary conditions. Solving and taking the boundary value of the

propagator we get:

〈xi(τ)xj(τ ′)〉 = −ℓ
2
sG

ij

2π
log(τ − τ ′)2 +

i

2
Θijsign(τ − τ ′) +Aij5 (12.515)

and

Gij =

(
1

g + b

)ij

symm

Θij = ℓ2s

(
1

g + b

)ij

anti−symm

(12.516)

The matrix Aij5 will not play an important role and can be dropped.

Then, applying (12.511) we find that for τ1 > τ2:

Vk1(τ1)Vk2(τ2) ∼ (τ1 − τ2)
ℓ2sG

ijk1,ik2,j/πe−
i
2
Θijk1,ik2,jVk1+k2(τ2) +O(τ1 − τ2) (12.517)

and for τ1 < τ2:

Vk1(τ1)Vk2(τ2) ∼ (τ1 − τ2)
ℓ2sG

ijk1,ik2,j/πe
i
2
Θijk1,ik2,jVk1+k2(τ2) +O(τ1 − τ2) (12.518)

The prefactor depending on Gij determines “anomalous dimensions.” It is part of the

fairly complicated story of vertex operator algebras. However, one can take a limit in which

that story reduces to the Moyal product of functions. In order to have ordinary functions

Vk should have dimension zero and therefore we want a limit so that

ℓ2sG
ij → 0 (12.519)

while Θij remains order one.

Definition [Seiberg-Witten limit ]. Let Bij be 2n × 2n antisymmetric and invertible. In-

troduce ℓ0, g0,ij and set:

ℓ2s = ǫ1/2ℓ20 (12.520)

gij = ǫg0,ij (12.521)

bij := ℓ2sBij (12.522)

The Seiberg-Witten limit is defined by the limit ǫ→ 0 holding g0,ij , ℓ
2
0 and Bij fixed.

In the SW limit we can expand the expressions for Gij and Θij as series in g/B:

(g + b)−1 = b−1 − b−1gb−1 + · · · (12.523)
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we find that in the SW limit:

Gij → −(B−1g0B
−1)ij Θij = (B−1)ij (12.524)

(Note that Gij is positive definite, and the minus sign is required so that the expression is

positive definite.)

In this limit Vk(τ) has zero conformal dimension, and there is no singularity in the

OPE. This means:

1. We can now safely take τ1 → τ2, suppressing the contribution to the OPE of all the

oscillator modes. The resulting algebra is independent of τ and is isomorphic to the

Moyal algebra.

2. The can represent ordinary functions on the target space manifold X . More precisely,

In string field theory the operators Vk(τ) multiply the momentum modes of a field

on spacetime:

Ψ =

∫
dkT (k)Vk(τ) (12.525)

where Ψ is the string field. By deducing the couplings of this field theory from the

string S-matrix we will discover it is a noncommutative field theory. Actually, when

this is done more properly, what one finds is noncommutative gauge theory on space

time. (It is the gauge theory modes have have zero mass and survive the SW limit.)

There is a very nice connection to the dipole picture of Section §12.8.2 above. In the

SW limit the string action becomes

S = − i

4π

∫

Σ
x∗(B) = − i

4π

∫

Σ
Bijdx

i ∧ dxj (12.526)

This is a topological field theory. The action is (locally) a total derivative. Therefore, for

the case of a strip worldsheet R× [0, π] we have

S =
i

4π

∫

R
Bijx

i
2

dxj2
dτ

dτ − i

4π

∫

R
Bijx

i
1

dxj1
dτ

dτ (12.527)

where xi2(τ) = xi(σ = π, τ) and xi1(τ) = xi(σ = 0, τ). This is the essential part of the

action used in the dipole picture. Note that in the SW limit the string tension T ∼ ℓ−2
s

has gone to infinity. This suppresses all the oscillator modes, since exciting them requires

an infinite amount of energy, so we should think of the endpoints of the string as being

connected by a rigid rod.

Remark: It is just a happy coincidence that the traditional notation Bij for the string

theory B-field coincides with the traditional notation B for the magnetic component of the

electromagnetic fieldstrength. The two geometric quantities are, a priori quite distinct. In

general Bij is really a local connection for a gerbe. In electromagnetism B is a particular

component of a fieldstrength.
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12.9.2 Toroidal Compactification

Now we consider the target space of the string theory to be

X = T 2n × RD−2n (12.528)

For simplicity we will form the torus by identifying coordinates

xi ∼ xi + 2πR, i = 1, . . . , 2n (12.529)

Not surprisingly, the vertex operator algebra Vk(τ), for k in the cotangent space of T 2n

becomes the noncommutative torus algebra in the limit (12.520), (12.521).

To see this we use the dipole picture described above. The action (12.527) is first

order in time derivatives, and hence should be considered an action on phase space with

symplectic form

ω =
1

4π
Bijdx

i
2dx

j
2 −

1

4π
Bijdx

i
1dx

j
1 (12.530)

Now, both xii and xi2 are periodic coordinates on T 2n. But this does not mean that the

phase space is T 2n×T 2n with the above symplectic form, because we must remember that

there is a string that connects the two points!

In fact, the phase space is the space of morphisms of the fundamental groupoid of

T 2n. This is the category whose objects are points of T 2n and whose morphisms are

homotopy classes of paths between two points. In our example, given two points there is

a string connecting them. Physically, since the tension of the string goes to infinity, the

string should be the minimal length path in its homotopy class, i.e., a straight line on the

universal cover.

Alternatively, if one simply starts from the action (12.527) then there is a gauge invari-

ance xi(σ, τ) → xi(σ, τ) + δxi(σ, τ) with δxi(σ, τ)|σ=0,π = 0. The reason is that the action

is the pullback of a closed 2-form on X . So the variation vanishes by Stokes’ theorem. In

the case where the worldsheet has a boundary ∂Σ 6= ∅ we must require that the variation

of xi on the boundary vanishes. Again, the conclusion is the same: Since the two points

x1, x2 ∈ T 2n are connected by a string the phase space is the space of morphisms of the

fundamental groupoid.

Viewing x1, x2 ∈ R2n as elements of the universal cover we can make a change of

variables

xi1 = yi +
1

2
∆i

xi2 = yi − 1

2
∆i

(12.531)

Note that under the Deck transformations:

xi1 → xi1 + 2πniR,

xi2 → xi2 + 2πniR,
(12.532)

(where we use the same integer ni when transforming both xi1 and xi2) the center of mass

transforms as

yi → yi + 2πniR (12.533)
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so it descends to a point on the torus, while the difference ∆i, which measures the homotopy

class of the geodesic on T 2n defined by the straight-line path between x1 and x2 on R2n, is

invariant under the Deck transformation.

In these coordinates the symplectic form is

ω =
Bij
2π

d∆idyj (12.534)

This is a symplectic form on T ∗T 2n. The Poisson brackets are

{∆i, yj} = 2π(B−1)ij = Θij (12.535)

and upon quantization we have

∆i = −2πiΘij ∂

∂yj
(12.536)

Now, classically, the operators associated with one endpoint of the string are

Ui = exp[ixi1/R] (12.537)

and they generate the algebra of functions on T 2n. Upon quantization we have

UiUj = exp[
2πi

R2
Θij]UjUi (12.538)

and we get the noncommutative torus algebra. Note that the other end of the string

describes functions

Ũi = exp[ixi2/R] (12.539)

and upon quantization these satisfy

ŨiŨj = exp[−2πi

R2
Θij]ŨjŨi (12.540)

(Do not confuse this with the fact that the commutant of the noncommutative torus algebra

in L2(R) with parameter θ is the algebra with parameter 1/θ.) ♣We can also arrive

at this conclusion

using crossed

products and

orbifolds. ♣
12.9.3 Closed Strings And T -Duality

It is good to begin by recalling a few aspects of electric-magnetic duality in 1+1 dimensions:

Recall that given an orientation on a finite-dimensional vector space V of dimension n

with metric the Hodge dual satisfies

ω ∗ ω =‖ ω ‖2 vol (12.541)

where ω is a p-form in ΛpV ,

‖ ω ‖2= 1

p!
gµ1ν1 · · · gµpνpωµ1...µpων1...νp (12.542)

is the induced norm on ΛpV and vol is the volume form

vol = e1 ∧ . . . en (12.543)
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for an oriented orthonormal basis of V . We have

∗ : ΛpV → Λn−pV (12.544)

and

∗2 = (signdetg) · (−1)p(n−p) (12.545)

For the Minkowski metric on the worldsheet, −dτ2+ dσ2 with orientation dσ∧ dτ the ♣Actually, the

opposite orientation

was assumed in the

action (12.485)

above. ♣

action of Hodge ∗ on one-forms is determined by

∗dτ = dσ

∗dσ = dτ
(12.546)

Now suppose that we have a one-form abelian fieldstrength F ∈ Ω1(Σ). In the absence

of sources it satisfies the Bianchi identity and equation of motion

dF = 0

d ∗ F = 0
(12.547)

For a worldsheet Σ = R × D, where D is a spatial domain (a circle for closed strings, an

interval for open strings) we can solve, at least locally:

F = dx (12.548)

and then x satisfies the wave equation. Note that the self dual equations imply

F = ∗F ⇒ x = xL(τ + σ)

F = − ∗ F ⇒ x = xR(τ − σ)
(12.549)

Every fieldstrength can be decomposed into self-dual and anti-self-dual parts, and corre-

spondingly the general solution of the wave equation is

x = xL(τ + σ) + xR(τ − σ) (12.550)

That is, it is a sum of left- and right-moving waves. Now the electromagnetic dual field-

strength is defined to be

FD := ∗F (12.551)

At the level of the 0-form potential we can define the dual coordinate xD by:

dxD := ∗dx (12.552)

so

(xD)
′
L = x′L

(xD)
′
R = −x′R

(12.553)

We can choose the constant of integration so that

(xD)L = xL

(xD)R = −xR
(12.554)
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Thus, electric-magnetic duality maps left-movers to left-movers, and right-movers to

right-movers, but with an important sign flip on the right-movers. Note that if D has a

boundary, say at σ = 0 then:

1. Dirichlet boundary conditions reflect left-movers into right-movers with a minus

sign:

∂τ (xL(τ + σ) + xR(τ − σ)) |σ=0 ⇒ x′L(τ) = −x′R(τ) (12.555)

2. Neumann boundary conditions reflect left-movers into right-movers with a plus

sign:

∂σ (xL(τ + σ) + xR(τ − σ)) |σ=0 ⇒ x′L(τ) = +x′R(τ) (12.556)

Therefore, electric-magnetic duality exchanges Dirichlet and Neumann boundary con-

ditions

Now let us consider the case of closed strings with a target space X = S1. We have

x : R× S1 → X (12.557)

Do not confuse the worldsheet spatial circle with the target space circle X . We take the

metric dx⊗ dx on the target but impose boundary conditions

x ∼ x+ 2πR (12.558)

Put differently (this will be useful in the discussion of the general case) we consider

X = R/(2πRZ) (12.559)

the metric is induced from dx⊗dx on R and is equivalent to the metric on a circle of radius

R.

The general solution of the equation of motion looks like

x = x0 +
1

2
(ℓ2sp+ wR)(τ + σ) +

1

2
(ℓ2sp− wR)(τ − σ) + xosc. (12.560)

We briefly review the quantization of xosc, in a more general context, below. The “zero-

mode part” requires a bit more discussion.

The momentum density is

p(τ, σ) =
δS

δẋ
=

1

2πℓ2s
ẋ(τ, σ) (12.561)

The zeromode of p(τ, σ) as a function of σ is, by definition, denoted p. Quantization gives

[p̂, x̂0] = −i, so exp[i(2πR)p̂] = 1 and the eigenvalues of p̂ are quantized to be of the form

n/R where n ∈ Z. Similarly the integral around the worldsheet must be of the form

∮

S1

dx =

∮

S1

∂σxdσ = 2πRw (12.562)
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where w ∈ Z. Of course, the expansion (12.560) is written on the universal cover R of the

target space, and w is interpreted as the winding number of the map x : S1 → X at fixed

τ .

It is useful to rewrite (12.560) as:

x = x0 +
1

2
ℓ2spL(τ + σ) +

1

2
ℓ2spR(τ − σ) + xosc (12.563)

ℓspL = n
ℓs
R

+ w
R

ℓs

ℓspR = n
ℓs
R

− w
R

ℓs

(12.564)

Note that under electric-magnetic duality we have

nD = w

wD = n

RRD = ℓ2s

(12.565)

Moreover, the Hamiltonian of the theory is

H =
1

4πℓ2s

∮ [
(2πℓ2sp(σ))

2 + (∂σx)
2

]
dσ

=
1

4

[
(ℓspL)

2 + (ℓspR)
2

]
+Hosc

=
1

2

[
n2
(
ℓs
R

)2

+ w2

(
R

ℓs

)2]
+Hosc

(12.566)

From these equations we see that the theory is completely invariant under

R

ℓs
→ ℓs

R
. (12.567)

This quantum equivalence of two different quantum field theories in 1 + 1 dimensions is

the first example of a duality known as T -duality. It is electro-magnetic duality in 1 + 1

dimensions and exchanges momentum and winding modes, or equivalently, electrically and

magnetically charged states. It is a simple demonstration of the general claim that the

nature of spacetime changes dramatically at the string scale. In ordinary QFT on the

target space circle X the theories at small and large values of R are completely different.

For example, the spectrum of the Hamiltonian is completely different.

Remark: At the fixed point of the duality transformation, R = ℓs, we should expect

something special to happen. Indeed this is the case, the theory generically has symmetry

under the centrally-extended loop groups L̂U(1) × L̂U(1). These are associated with the

holomorphic currents−i∂x(z) and −i∂̄x(z̄). However, at R = ℓs the vertex operator algebra

has a larger symmetry group L̂SU(2) × L̂SU(2) (with k = 1). In general in the Gaussian

model we have the symmetry vir⊕ ṽir, with the expressions

L0 =
1

4

(n
r
+mr

)2
+
∑

n>0

α−nαn (12.568)

– 172 –



L̃0 =
1

4

(n
r
−mr

)2
+
∑

n>0

α̃−nα̃n (12.569)

where r := R/ℓs. There are primary operators associated with the exponentials:

Vp =: eipLxL(z)⊗ eipRxR(z̄) : (12.570)

Note that when r2 = p/q it is possible to choose integers n,m so that the operator is purely

holomorphic or anti-holomorphic. In particular, at r = 1, if we choose n = m = ±1 we get

the purely holomorphic dimension one current

e±i2xL/ℓs(z) (12.571)

and similarly n = −m = ±1 gives purely anti-holomorphic dimension one currents. The

operators −i∂x(z), e±i2xL/ℓs(z) have an OPE corresponding to the currents of a level one

su(2) affine Lie algebra. This is known in mathematics as the Frenkel-Kac-Segal construc-

tion. More generally, when r2 = p/q there are holomorphic vertex operators

exp[i2
√
pqxL(z)/ℓs] (12.572)

of ∆ = pq. These are holomorphic higher spin currents and lead to extra symmetries. One

consequence of these higher spin symmetries is that there are nice holomorphic factoriza-

tions of the partition functions and correlation functions of the theory. These are examples

of rational conformal field theories (and the name actually originates from these examples).

Let us now generalize these equations to the case that X = Rd/(2πΛ) where Λ is an

embedded lattice and Rd is equipped with constant metric gij and B-field bij. We can

write, once again:

xi = xi0 +
1

2
ℓ2sp

i
L(τ + σ) +

1

2
ℓ2sp

i
R(τ − σ) + xiosc i = 1, . . . , d (12.573)

but now

pi(τ, σ) =
δSL
δẋi

=
1

2πℓ2s

(
gij∂τx

j + bij∂σx
j
)

(12.574)

From the viewpoint of electric-magnetic duality we have a gauge group U(1)d with magnetic

charges

mi :=

∮

S1

dxi = πℓ2s(p
i
L − piR)

ei :=

∮

S1

∗dxi = πℓ2s(p
i
L + piR)

(12.575)

Once again, there will be quantization of the electric and magnetic charges. The

magnetic quantization is easiest since mi must be a vector in 2πΛ.
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We can choose a basis of the form ℓsea, a = 1, . . . , d, for Λ so that ea are dimensionless.

The components of the vectors will be e i
a . Therefore we have the magnetic quantization

conditions:
1

2
ℓs(p

i
L − piR) = wae ia (12.576)

where wa, a = 1, . . . , d, is a vector of winding integers.

Similarly, the momenta conjugate to the zeromode xi0 is

pi =
1

2πℓ2s

∮ (
gij∂τx

j + bij∂σx
j
)
dσ

=
1

2πℓ2s

(
gije

j + bijm
j
)

=
1

2

(
gij(pL + pR)

j + bij(pL − pR)
j
)

(12.577)

Again upon quantization we have that

exp[i2πℓse
i
a p̂i] = 1 (12.578)

on the free one-string Hilbert space. This quantizes pi to be vectors in the dual lattice Λ∨.

More precisely, we assume the lattice has full rank so det(e i
a ) 6= 0, so e ia has an inverse

matrix e a
i

e i
a e

b
i = δ b

a e a
i e

j
a = δ j

i (12.579)

Then p̂i must have a spectrum of the form

ℓ−1
s nae

a
i (12.580)

where the na are integers for a = 1, . . . , d.

Putting together (12.576) and (12.580) we get the quantization of (ℓsp
i
L, ℓsp

i
R):

1

2
(ℓspL − ℓspR)

i = wae i
a

1

2

(
gij(ℓspL + ℓspR)

j + bij(ℓspL − ℓspR)
j
)
= nae

a
i

(12.581)

where na, w
a are integers. We are going to put (12.581) in a more beautiful mathematical

form, but first we would like to make a side remark about the relation to an analogous

effect in 3 + 1-dimensional Yang-Mills theory.

Remark: Analog in magnetic monopole theory: The equations (12.577) and (12.580) are

closely related to a phenomenon in magnetic monopole theory known as the Witten effect.

We consider Yang-Mills-Higgs theory where the YM action has a θ-term:

− 1

g2

∫
(F, ∗F ) + θ

8π2

∫
(F,F )− 1

g2

∫
(DΦ,DΦ) + · · · (12.582)

Then if the Higgs field spontaneously breaks the gauge group to a maximal torus at infinity

there can be magnetic charges. These are measured by

1

2π

∫

S2
∞

F = m (12.583)
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where S2
∞ is a spatial sphere at infinity, and m ∈ Λcw is quantized to be in the “coweight

lattice” inside the Cartan subalgebra t. Similarly, the electric charge is defined to be

2

g2

∫

S2
∞

∗F = e (12.584)

Because of the θ term, the momentum conjugate to Ai(x) is not the electric field but rather

Πi(x) =
1

g2
Ei(x) +

θ

4π2
ǫijkFjk (12.585)

where Ei := F0i. Upon quantization we have operators

[Π̂i(x), Âj(y)] = −iδijδ
(3)(x− y) (12.586)

The momentum translates the gauge fields, as usual, and in particular gauge transforma-

tions by ǫ : R3 → g are implemented by

Q(ǫ) = i

∫

R3

(ǫ,DiΠ̂
i) (12.587)

Gauge transformations are implemented by ǫ such that limx→∞ ǫ(x) = 0, and for these

transformations Q(ǫ) acts as zero on the physical Hilbert space. But there are also global

gauge transformations with limx→∞ ǫ(x) = H ∈ t. In general these do not act trivially

on the Hilbert space. However, this must generate a representation of the unbroken gauge

group T ⊂ G. Therefore, if H is in the co-character lattice, so that exp[2πH] = 1 then the

quantum operator exp[2πQ(H)] must act as the identity on the Hilbert space. This means

that the operator

lim
r→∞

∫

S2

n̂iΠi(x)r2 sin θdθdφ (12.588)

should exist in the quantum theory, and moreover it will have quantized eigenvalues. Specif-

ically, it must be in the integral dual of the cocharacter lattice ΛG ⊂ t with respect to the

quadratic form given by the Killing metric used to define the action. (It is isomorphic to

the character lattice of G.) Call this quantized momentum γ̂e. From equation (12.585) we

learn that

e = γ̂e +
θ

2π
m (12.589)

That is, in the presence of a magnetic monopole, the physical electric charge has a fractional

part proportional to θ
2π . Monopoles with electric charge are known as dyons. We learn

that in the presence of a generic theta angle all monopoles are in fact dyons. This is quite

analogous to the fact that, in the presence of a generic B-field strings with nonzero winding

number must carry momentum.

Let us now return to our closed string theory with target space X = T d and interpret

the facts about the quantization (12.581) of (ℓsp
i
L, ℓsp

i
R). Rearranging those equations

slightly we find:

ℓsp
i
L = gije a

j na + wae i
a + wae j

a bjkg
ki

ℓsp
i
R = gije a

j na − wae i
a + wae j

a bjkg
ki

(12.590)
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This equation can be more usefully written in matrix form

1√
2

(
ℓspL
ℓspR

)
= E

(
n

w

)
(12.591)

Here E is a 2d× 2d matrix. It can be written in block form

E =

(
E11 E12
E21 E22

)
(12.592)

where the d× d blocks have matrix elements

(E11)ia = (E21)ia =
1√
2
gije a

j

(E12)ia =
1√
2

(
e i
a + e j

a bjkg
ki
)

(E22)ia = − 1√
2

(
e i
a − e ja bjkg

ki
)

(12.593)

Now, define the two quadratic forms of signature (d, d):

Q0 :=

(
gij 0

0 −gij

)
Q :=

(
0 1

1 0

)
(12.594)

then a small, but important, computation shows that:

EtrQ0E = Q (12.595)

One way to read equation (12.595) is that it states that the columns of E define a

collection of vectors in R2d. This space is equipped with signature (d, d) metric Q0, and

we denote that space by Rd;d. Thus, the columns of E generate a rank 2d embedded lattice

Γ ⊂ Rd;d with Gram matrix Q.

In the classification of integral lattices, (equivalently, in the classification of integral

symmetric quadratic forms), those with Gram matrix equivalent to Q are unique. These

are the even unimodular lattices of signature (d, d) and their equivalence class is denoted

IId,d. It is a direct sum of the basic case II1,1. A standard model for II1,1 is Ze ⊕ Zf

where the two generators have inner products:

Q(e, e) = Q(f, f) = 0 Q(e, f) = Q(f, e) = 1 (12.596)

Thus, the set of quantized zeromodes

p :=
1√
2

(
ℓspL
ℓspR

)
(12.597)

given by the integral span of the columns of E is an embedding of a standard copy of IId,d

into the space Rd;d.
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Note that the inner product Q0 on Rd;d expressed in terms of p is

p2 =
1

2

(
ℓsp

i
Lgijℓsp

j
L − ℓsp

i
Rgijℓsp

j
R

)
(12.598)

Now let us briefly review the (straightforward) treatment of the oscillators. The general

solution of the equation of motion is

xiosc = i
ℓs√
2

∑

n 6=0

(
αin
n
ein(τ+σ) +

α̃in
n
ein(τ−σ)

)
(12.599)

Reality imposes (αin)
∗ = αi−n and similarly for α̃in. Thus, the (αin, α̃

i
n) for n > 0 are

(complex) coordinates on phase space. We can therefore determine pi(τ, σ) from the above

equations as another function on phase space.

Now, the natural symplectic form on phase space is

ω =

∮

S1

dσδpi(τ, σ) ∧ δxi(τ, σ) (12.600)

Substituting the expressions in terms of the oscillators, doing the σ-integral, and taking

into account numerous cancellations one finally arrives at:

ω = δpi ∧ δxi0 − i
∑

n>0

(
δαingijδα

j
−n

n
+
δα̃ingijδα̃

j
−n

n

)
(12.601)

Now recall that for the harmonic oscillator with frequence ω we have the standard complex

coordinates on phase space

a =
p− iq√

2ω

ā =
p+ iq√

2ω

(12.602)

so that

δp ∧ δq = −i
δa ∧ δā
ω

(12.603)

It follows that in the quantum theory the oscillators satisfy:

[αin, α
j
m] = gijnδn+m,0

[α̃in, α̃
j
m] = gijnδn+m,0

(12.604)

with all other commutators vanishing. Note that we use here the closed string metric gij .

The representation is the standard Fock space

F ⊗ F̃ (12.605)

with the vacuum line annihilated by the negative energy oscillators (that is, annihilated by

αin, α̃
i
n for n > 0).
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Putting together the zeromodes and the oscillators the Hilbert space of the CFT can

be viewed as

H1−closedstring = C[Γ]⊗F ⊗ F̃ = ⊕p∈ΓF ⊗ F̃ ⊗ Vp (12.606)

where Vp is the vacuum line for the Heisenberg representation of the oscillator modes

determined by a vector in p ∈ Γ. In the language of 2d CFT it is the state created from

the SL(2,R)× ˜SL(2,R)-invariant vacuum by the vertex operator exp[ipL,ix
i
L + ipR,ix

i
R].

Now let us discuss the moduli space of conformal field theories with target space

X = T d. The matrix E is the essential piece of data that determines the entire CFT. For

example, as we have just explained, using E we can determine the lattice Γ of zero-modes.

So, to begin, we have a family of conformal field theories over the space E given by the

space of real matrices of the form (12.592) and (12.593). (Note one can easily recover gij
and bij separately from this matrix.) However, there is some redundancy in this matrix.

For example, the Hamiltonian of the theory is

H =
ℓ2s
4
(piLgijp

j
L + piRgijp

j
R) +Hosc (12.607)

Hosc =
∑

n>0

(
αi−ngijα

j
n + α̃i−ngijα̃

j
n

)
(12.608)

This can be written as

H = L0 + L̃0 (12.609)

L0 =
ℓ2s
4
piLgijp

j
L +

∑

n>0

αi−ngijα
j
n (12.610)

L̃0 =
ℓ2s
4
piRgijp

j
R +

∑

n>0

α̃i−ngijα̃
j
n (12.611)

The spectrum of Hosc is just N + Ñ , where N, Ñ ∈ Z+ with degeneracy pd(N)pd(Ñ ).

That is

TrF⊗F̃q
Losc
0 q̄L̃

osc
0 =

(qq̄)d/24

ηdη̄d
(12.612)

The spectrum of the Hamiltonian for zeromodes only depends on

(
ℓspL ℓspR

)(gij 0

0 +gij

)(
ℓspL
ℓspR

)
=
(
na w

a
)( g̃ab −(g̃−1b̃)ab

(b̃g̃−1) ba g̃ab − (b̃g̃−1b̃)ab

)(
nb
wb

)

(12.613)

where we define

g̃ab := e i
a e

j
b gij b̃ab := e i

a e
j
b bij . (12.614)

Therefore the spectrum of the Hamiltonian only depends on the projection of E under

π : E → (OR(g)×OR(g)) \E := B (12.615)

where

OR(g) := {α ∈ GL(d,R)|αtrgα = g} (12.616)
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We can identify the coset space B with the space of d×d real matrices with positive definite

real part. An explicit map to this space is

E → (E11)−1E12 = e ja (gjk − bjk)e
k
b = g̃ab − b̃ab := Eab (12.617)

♣Usually E is

defined with g + b.

Change

conventions? ♣

Not only the spectrum of the Hamiltonian but the entire CFT actually descends from

a family over E to a family over B. This is especially obvious if we recall that we are

identifying

x ∼ x+ 2πΛ (12.618)

and hence we can change coordinates to

xi = ℓsξ
ae ia (12.619)

so that the fields ξa(τ, σ) are dimensionless have all have periodicity

ξa ∼ ξa + 2π (12.620)

In terms of these fields we can write the action as

SL =
1

4π

∫

Σ
dτdσ(∂τ − ∂σ)ξ

aEab(∂τ + ∂σ)ξ
b =

1

4π

∫

Σ
dτdσ(∂τ + ∂σ)ξ

aEtr
ab(∂τ − ∂σ)ξ

b

(12.621)

There is another source of redundancy in E . We can construct the lattice of zeromodes

from an embedding of IId,d into Rd;d. However, what matters in the construction of the

theory is not the choice of basis vectors ea ∈ Γ, but just the lattice Γ itself. We do not

change the lattice of zeromodes by changing basis! An integral change of basis on ea
is obtained by right-multiplication of E by an invertible integral matrix d ∈ GL(2d,Z).

However this change of basis must preserve (12.595) and hence we must have d ∈ OZ(Q),

that is, d must be in the group of integral matrices such that dtrQd = Q. We can write d

in block form as

d =

(
α β

γ δ

)
∈ OZ(Q) (12.622)

where d ∈ OZ(Q) iff α, β, γ, δ ∈Md(Z) satisfy:

αtrδ + γtrβ = 1

αtrγ + γtrα = 0

δtrβ + βtrδ = 0

(12.623)

(It is often useful to note that (12.623) holds iff

δαtr + γβtr = 1

αβtr + βαtr = 0

δγtr + γδtr = 0.)

(12.624)
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The space of embedded lattices is

L := E/OZ(Q) (12.625)

Thus, there are two sources of redundancy and the space of CFT’s descends from a

family over E in two ways:

E

��⑦⑦
⑦⑦
⑦⑦
⑦

��❄
❄❄

❄❄
❄❄

❄

B L

(12.626)

where B is the moduli space of classical sigma models: They are determined by Eab. L is

the moduli space of embeddings of the unique even unimodular lattice of signature (d, d)

into Rd;d.

These two sources of redundancy in E are independent of each other so that in fact

the family of CFT’s descends to

E

||③③
③③
③③
③③
③

!!❉
❉❉

❉❉
❉❉

❉❉

B

!!❈
❈❈

❈❈
❈❈

❈ L

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤

Nd,d

(12.627)

where

Nd,d := (OR(g)×OR(g)) \E/OZ(Q) (12.628)

This is the moduli space of 2d CFT’s with target space X = T d with flat metric and

B-field. In the string theory literature it is known as Narain moduli space.

If we look at two points of B related by the right action of d ∈ OZ(Q) then we get

very different background data E and Ẽ :

Ẽ = E ·
(
α β

γ δ

)
(12.629)

Under this transformation E transforms by the fractional linear transformation:

Ẽ = Ẽ−1
11 Ẽ12

= (E11α+ E12γ)−1(E11β + E12δ)
= (α+ Eγ)−1(β + Eδ)

(12.630)

This is the famous formula for T -duality transformations.

Finally, we claim that the space E is essentially a real orthogonal group for a form of

signature (d, d). To facilitate the proof we first make a small simplification: Actually it is

redundant to introduce both a family of metrics gij on Rd and a family of embedded lattices

2πΛ ⊂ Rd if we want to discuss the family of metrics on the torus T d. So we simplify our
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formulae, without loss of generality, by choosing linear coordinates on the universal cover

Rd so that gij = δij .
43 Then

g̃ab := e i
a e

i
b (12.631)

is the (dimensionless) Gram matrix for the embedded lattice Λ ⊂ Rd. Now ♣Use a better

notation than g̃ab.

♣

Q0 =

(
1 0

0 −1

)
(12.632)

and if we let

S :=
1√
2

(
1 1

1 −1

)
(12.633)

then S = S−1 = Str and

StrQ0S = Q (12.634)

(After all 1
2(σ

3 + σ1)σ3(σ3 + σ1) = 1
2 [σ

1, σ3]σ3 = σ1.)

A second way to read equation (12.595) is that it says that, up to a left- or right-

multiplication by an invertible matrix, E is in a real orthogonal group of signature (d, d).

Indeed, for any E ∈ E we have

ES ∈ OR(Q0) (12.635)

SE ∈ OR(Q) (12.636)

Conversely, given one embedding of IId,d into Rd;d any rotation by OR(Q0) gives another

embedding, so we can in fact identify E with the entire orthogonal group, not just a subset.

Thus, we finally obtain the standard form for the Narain moduli space as a double-coset:

Nd,d := (O(d)×O(d)) \E/OZ(Q) ∼= (O(d) ×O(d)) \OR(Q)/OZ(Q) (12.637)

Example 1: For d = 1, we have a 1 × 1 matrix e ia = r := R/ℓs so that e i
a = 1/r.

Therefore

E =
1√
2

(
1
r r
1
r −r

)
(12.638)

so there are two spanning vectors from the columns:

e =
1√
2

(
1
r
1
r

)
f =

1√
2

(
r

−r

)
(12.639)

Using the Lorentz metric on R1;1 we compute

e · e = f · f = 0 e · f = f · e = 1 (12.640)

43We did not do this for the case of open strings on R2n above because we wanted to consider a family

of backgrounds determined by the SW limit, and it is more convenient to think of a family of metrics gij
rather than a family of coordinate transformations. Now, however, our family will be given by the family

of lattices Λ so also keeping gij is an unnecessary complication.
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thus confirming that E describes an embedding of II1,1 into R1;1. Moreover, OZ(Q) ∼=
Z2 × Z2. After all, if we drop the integrality condition, we are talking about the Lorentz

group in 1 + 1 dimensions, and it has four connected components.

OZ(Q) = {±1,±σ1} (12.641)

The element −1 does not act effectively on B, but σ1 takes

1√
2

(
1
r r
1
r −r

)
→ 1√

2

(
1
r r
1
r −r

)
σ1 =

1√
2

(
r 1

r

−r 1
r

)
(12.642)

and by an OR(1) ×OR(1) transformation we can map this to:

1√
2

(
r 1

r

−r 1
r

)
→ σ3

1√
2

(
r 1

r

−r 1
r

)
=

1√
2

(
r 1

r

r −1
r

)
(12.643)

so the net result is equivalent to r → 1/r and we simply recover the T-duality transforma-

tion of the simple introductory discussion above.

Figure 37: A picture of the Narain moduli space N2,2 for two-dimensional toroidal compactifica-

tions of the closed string.

Example 2: Already for d = 2 the story is much richer. To begin, recall that the vector

space of M2(R) of 2×2 real matrices is isomorphic to R4 and has a natural quadratic form
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of signature (2, 2) given by the determinant. Therefore, left-action by SL(2,R)×SL(2,R)

preserves this quadratic form. In this way we derive the exact sequence:

1 → Z2 → SL(2,R)× SL(2,R)
ψ→O0

R(Q) → 1 (12.644)

where the superscript indicates the connected component of 1 and the kernel is the group

generated by (−1,−1). To be more explicit suppose

x =




x1
x2
x3
x4


 ∈ R4 (12.645)

then define

X(x) =

(
x1 x2
−x4 x3

)
(12.646)

so that

2detX = 2(x1x3 + x2x4) = xtrQx (12.647)

Then we define the projection

ψ : SL(2,R)× SL(2,R) → O0
R(Q) (12.648)

by

AX(x)Btr = X(ψ(A,B) · x) (12.649)

Explicitly, if

A =

(
a b

c d

)
∈ SL(2,R) (12.650)

then

ψ(A, 1) =




a 0 0 −b
0 a b 0

0 c d 0

−c 0 0 d


 (12.651)

ψ(1, A) =




a b 0 0

c d 0 0

0 0 d −c
0 0 −b a


 (12.652)

Now for E = g̃ − b̃ define

ρ = −b̃12 + i
√

detg̃ (12.653)

τ =
g̃12 + i

√
detg̃

g̃22
(12.654)

These have the interpretation of the “complexified Kähler class” and complex structure of

the target space torus T 2. Note that, importantly, both τ and ρ have positive imaginary
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part. A set of generators for OZ(Q) is given in Appendix B. Using these one can show

that the group action on (τ, ρ) ∈ H ×H is generated by

(τ, ρ) →
(
aτ + b

cτ + d
, ρ

) (
a b

c d

)
∈ SL(2,Z) (12.655)

(τ, ρ) →
(
τ,
aρ+ b

cρ+ d

) (
a b

c d

)
∈ SL(2,Z) (12.656)

(τ, ρ) → (ρ, τ) (12.657)

(τ, ρ) → (−τ̄ ,−ρ̄) (12.658)

Thus, N2,2 is isomorphic to (F × F)/(Z2 × Z2) where F is a fundamental domain for the

PSL(2,Z) action on H. The transformation (12.657) is the mirror symmetry transforma-

tion for T 2, considered as a one-dimensional Calabi-Yau manifold.

Remarks

1. Relation to another common convention. The fractional linear transformation of T-

duality is often written as E → (αE + β)(γE + δ)−1. On can obtain this particular

form by using simple redefinitions. In particular, let

E′ = Etr (12.659)

(i.e. we exchange b→ −b) and let

d′ := d−1 =

(
δtr βtr

γtr αtr

)
:=

(
α′ β′

γ′ δ′

)
(12.660)

then E → (α+ Eγ)−1(β + Eδ) is equivalent to

E′ → (α′E′ + β′)(γ′E′ + δ′)−1 (12.661)

2. Open strings and the SW limit. Let us now return to the open string. Recall that in

the SW limit the open string field theory becomes noncommutative field theory on a

Moyal space, and in the case of toroidal compactification we argued that it becomes

noncommutative field theory for the noncommutative torus. What happens to E in

the Seiberg-Witten limit? At this point we set d = 2n and reinstate gij , since we

once again want to speak of a family of spacetime metrics on R2n. Recall the SW

limit is defined by

ℓ2s = ǫ1/2ℓ20

gij = ǫg0,ij

bij = ℓ2sBij

(12.662)
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with ǫ → 0 holding ℓ0, g0, Bij fixed. To define the limit in toroidal compactification

we also have to say that dimensionless vectors e ia are of the form

e i
a =

R

ℓs
ē i
a e ai =

ℓs
R
ē ai (12.663)

and we will define the Seiberg-Witten limit by holding R and ē i
a , ē

a
i fixed. Recall

that in this limit the open string metric behaves like:

Gij → −(B−1g0B
−1)ij

Gij → −(Bg−1
0 B)ij

(12.664)

Now, we want to check that the limit is compatible with T-duality. First of all

Eab = e ja (gjk − bjk)e
k
b → −R2ē ja ē

k
b Bjk (12.665)

becomes antisymmetric. Now recall that T -duality acts as fractional linear transfor-

mations on Eab. It is not immediately obvious that the T -dual transform is antisym-

metric. Nevertheless, using the conditions (12.624) one can readily show that if Eab
is antisymmetric then

Ẽ = (α+ Eγ)−1(β + Eδ) (12.666)

is also antisymmetric. This suggests that it is consistent to send the closed string

metric to zero, in spite of the naive expectation that a transformation taking r → 1/r

would be inconsistent with the SW limit. Indeed, recall that the inverse of the open

string metric is

Gab =

(
1

E

)

symmetric

(12.667)

so this goes to zero since E becomes antisymmetric. That is compatible with

Gab = e ai e
b
j G

ij (12.668)

and the fact that Gij has an order one SW limit. Thus the inverse open string

metric goes to zero in lattice units. This means that Gab → ∞. Again, let us check

compatibility with T-duality: Under (12.666) we have

G̃ab =
1

2

(
1

Ẽ
+

1

Ẽtr

)

=
1

2
(β + Eδ)−1(E + Etr)(β + Eδ)−1,tr

=
1

2
(β + Eδ)−1E(E−1 + E−1,tr)Etr(β +Eδ)−1,tr

=
1

2
(δ + E−1β)−1(E−1 + E−1,tr)(δ + E−1β)−1,tr

= (δ + E−1β)−1G−1(δ + E−1β)−1,tr

(12.669)

Therefore, Gab → 0 in any duality frame so long as δ+E−1β is invertible. (However,

δ+E−1β is not always invertible. In fact, if E is a rational antisymmetric matrix then
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Eδ+β will fail to be invertible for some duality transformations. See the next remark.)

Note that line two of the above equation also shows that G̃−1 = (β + Eδ)−1g̃(β +

Eδ)−1,tr. Sice g̃ab = e ia e
j̃
bgij = ǫ1/2g̃0,ab → 0 there is no contradiction. Therefore, in

any duality frame we will get a noncommutative algebra of functions as the limit of

the vertex operator algebra. 44 Recalling that Bij controls the noncommutativity

parameter of the noncommutative torus algebra we have arrived at a very elegant

physical explanation of Rieffel’s theorem on the isomorphism of C∗-algebras!

3. Ergodic Action Of T-Duality On The Boundary Of Narain Moduli Space. Using the

property that g̃ab is positive definite one can show that the action of the T -duality

group on B is properly discontinuous. 45 However, the SW limit takes E to the

“boundary” of B. Typically, arithmetic groups GZ have an ergodic action on the

boundary of noncompact domains of the form K\G. For example, SL(2,Z) acts

properly discontinuously on SO(2)\SL(2,R) ∼= H, but on the boundary of H, namely

the real line: R = ∂H, the action

x→ ax+ b

cx+ d
(12.670)

is not properly discontinuous. For example the rational numbers form one dense

orbit. Now consider the SW limit in the case of d = 2. Of course τ is conformally

invariant and doesn’t vary with ǫ, but

ρ→ B̃0,12 (12.671)

so ρ reduces to a real number. The duality group action is therefore ergodic. More

generally, if we define a “boundary” of B by allowing g̃ab to become degenerate (in

particular to become zero) then the action of OZ(Q) on this boundary will be ergodic.

The SW limit takes g̃ab → 0 so E becomes an element of the boundary. This is also

why the action on the open string metric is not always well-defined: To get a well-

defined action on the boundary we must add points at infinity, just as in the SL(2,Z)

action on the boundary of the upper half-plane: To get a well-defined action one must

add the point at infinity and consider the boundary to be RP1.

Note that in the SW limit the bundle of CFT’s becomes a bundle over a noncommu-

tative manifold.

The above facts are also related to the fact that toroidal compactification on Lorentzian ♣say how ♣

signature target space tori also has an ergodic action of the T -duality group [36]. In-

deed, for a two-dimensional torus the conformal classes of Lorentzian signature is

defined by the foliation by left- and right-moving lightrays. These describe a pair of

44One should also check that the string coupling does not blow up. See [47], p.68 for this.
45Recall that the action of a discrete topological group G on a topological spaceX is properly discontinuous

if the map G×X → X×X defined by (g, x) → (g ·x, x) is proper. If X is locally compact then an equivalent

statement is that for every compact K ⊂ X the set of g with g ·K ∩K 6= ∅ is finite. If a discrete group has

a properly discontinuous action on a Hausdorff manifold then the quotient is a Hausdorff orbifold.
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points τ± on the boundary of the upper half-plane and, as we remarked, the action

of SL(2,Z) on such pairs of points is ergodic. (In fact, the idea that there would be a

role for noncommutative geometry in toroidal compactification was predicted in [36]

based on the fact that the boundary of Narain moduli space is a noncommutative

manifold. This should not be confused with Seiberg-Witten’s statement that the

target space torus, for a fixed point path in Narain moduli space (defined by the SW

limit) becomes a noncommutative manifold.)

4. Full proof of T-duality. The main claim above about the Narain moduli space being

Nd,d was only partially justified by the arguments above. We only checked that

the spectrum of the Hamiltonian on the circle descends to this space. For the full

conformal field theory one really needs to show that there is an isomorphism between

the vertex operator algebras. This is actually not difficult since it is implemented by

interpreting O(d, d;R) as a group of Bogoliubov transformations mixing left-movers

with right-movers. The result is that there is actually an equivariant bundle of

conformal field theories over B descending to a bundle over Nd,d. In fact, this bundle

of CFT’s comes equipped with a natural equivariant connection. For details see

[36, 41].

5. Rational Conformal Field Theories. Let

πL : Rd;d → Rd;0 πR : Rd;d → R0;d (12.672)

be the projections to the positive definite and negative definite subspaces of Rd;d. In

general the projection of the zeromode lattice Γ is a dense set of points. For example,

in the d = 1 case

πL(e) =
r√
2

πL(f) =
r−1

√
2

(12.673)

Unless r2 ∈ Q the projection of these two vectors will generate a dense subgroup of

the real line. However, when Eab is a matrix of rational numbers the left and right

projections are, separately, crystals in Rd. To see this we define:

p̃L,a := g̃abe
b
i ℓsp

i
L p̃R,a := g̃abe

b
i ℓsp

i
R (12.674)

so that

g̃abp̃L,ap̃L,b = (ℓsp
i
L)gij(ℓsp

j
R) (12.675)

and

1√
2

(
p̃L,a
p̃R,a

)
=

1√
2

(
1 E

1 −Etr

)(
na
wa

)
= Ẽ

(
na
wa

)
(12.676)

where ẼtrQ0Ẽ = Q but now with

Q0 →
(
g̃ab 0

0 −g̃ab

)
(12.677)
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Now, we claim that if Eab is a matrix of rational numbers then there is a rank d lattice

of “purely left-moving vectors” in Γ, that is, vectors that project to zero under πR.

The equation πR(p) = 0 is equivalent to the system of Diophantine equations:

p̃R,a = na − (Etr)abw
b = 0 (12.678)

for integers na, w
b. For such solutions of (12.678) we have

p̃L,a = 2g̃abw
b (12.679)

The set of solutions (na, w
a) ∈ Z2d of (12.678) forms a subgroup. It is a finitely

generated torsion free abelian group and the rank is at most d since the na are

determined from the wa. In fact the rank is exactly d since, if we write the matrix

elements as fractions in lowest terms Eab = pab/qab then, taking all the wb to be

divisible by the LCM, N of the qab we can solve the equations for integers na. That

is, if we take all wa = Nw̄a with arbitrary integers w̄a we get a sub-lattice of the

solution lattice. Let us denote by ΓL ⊂ Rd;0 the lattice of purely left-moving vectors

p. The lattice ΓL is even, but in general is not unimodular. 46 To see that it is even

we use (12.598) to write

p2 =
1

2
p̃L,ag̃

abp̃L,b = 2wag̃abw̃
b ∈ 2NZ. (12.680)

In an entirely analogous way, there is also a rank d lattice ΓR ⊂ R0;d of purely

rightmoving momenta. Therefore ΓLR := ΓL ⊕ ΓR is a finite index sublattice of Γ.

The index grows with N and is a highly discontinuous function on Nd,d. We can write

Γ = ∐s(ΓLR + ps) for a finite set of glue vectors ps. The significance of these points

for CFT is that there are integer spin purely (anti-)holomorphic vertex operators:

exp[ip̃L,aξ
a
L](z)⊗ 1 1⊗ exp[ip̃R,aξ

a
R](z̄) (12.681)

that “enhance” the u(1)⊕dL ⊕ u(1)⊕dR current algebra that is present for all the CFT’s

parametrized by Nd,d. These “enhancing” vertex operators correspond to states in

the CFT with

L0 =
1

4
p̃L,ag̃

abp̃L,b = wag̃abw
b L̃0 = 0 (12.682)

L0 = 0 L̃0 =
1

4
p̃R,ag̃

abp̃R,b = wag̃abw
b (12.683)

respectively. Even though g̃ab is a rational number these conformal dimensions will

be integral.

6. Remarks on the genus one partition function and RCFT. The torus partition func-

tion is

Z = (ηη̄)−d
∑

p∈Γ

q
1
4
(ℓspL)

2
q̄

1
4
(ℓspR)

2
:=

ΘΓ(τ, τ̄ )

ηdη̄d
(12.684)

46It can happen that Γ has crystallographic symmetries but the projections πL, πR are not crystals, but

rather quasicrystals. For a nice example see [24].
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The numerator is known as a Siegel-Narain theta function.

In general if Λ ⊂ Rb+;b− is an embedded lattice in a pseudo-Euclidean space with

signature (+1b+ ,−1b−) then we can define the general Siegel-Narain theta function

ΘΛ(τ, τ̄ ;α, β; ξ) := exp[
π

2y
(ξ2+−ξ2−)]

∑

λ∈Λ

exp

{
iπτ(λ+β)2++iπτ̄(λ+β)

2
−+2πi(λ+β, ξ)−2πi(λ+

1

2
β, α)

}

(12.685)

where Imτ = y, and λ± is the projection of a vector into the positive (resp. negative)-

definite subspaces. The main transformation law is:

ΘΛ(−1/τ,−1/τ̄ ;α, β;
ξ+
τ

+
ξ−
τ̄
) =

√
1

|D|(−iτ)
b+/2(iτ̄ )b−/2ΘΛ∗(τ, τ̄ ;β,−α; ξ)

(12.686)

where Λ∗ is the dual lattice, and D = Λ∗/Λ is a finite abelian group known as the

discriminant group. Equation (12.686) can be proven straightforwardly by using the

Poisson summation formula.

In the case of toroidal bosonic string compactification Γ is even and unimodular. It

then follows from (12.686) that the partition function (12.684) is modular invariant.

In the case when Eab is a matrix of rational numbers, that is, for rational conformal

field theories, Z can be written as a finite sum of holomorphic times anti-holomorphic

“conformal blocks”:

Z =

N∑

s=1

Zs(τ)Z̃s(τ̄) (12.687)

for some integer N . the Siegel-Narain theta function factorizes as

ΘΓ =
∑

s

ΘΓL+ps,L
(τ)ΘΓR+ps,R

(τ̄) (12.688)

and

Zs(τ) =
ΘΓL+ps,L

(τ)

ηd
(12.689)

transform in a finite-dimensional unitary representation of SL(2,Z). The Z̃s(τ̄ ) ♣Say this in more

detail. ♣
transform in a dual representation so that Z(τ, τ̄ ) is modular invariant.

The Zs(τ) are examples of conformal blocks of an RCFT. In general, the correlation

functions of all operators on all Riemann surfaces factorize into finite sums of holo-

morphic times anti-holomorphic objects. The vector space of these objects provides

a finite-dimensional projective representation of the mapping class group of a punc-

tured Riemann surface. These finite-dimensional spaces can also be identified with

the space of states of a 2 + 1 dimensional TQFT.

7. Crystallographic symmetries and orbifold points. At the rational points, where πL(Γ)

and πR(Γ) are crystals these crystals can have nontrivial crystallographic symmetries.
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That is, there can be elements of OR(g)×OR(g) that are equivalent to change of ba-

sis:

RE = Ed (12.690)

where R ∈ OR(g) × OR(g) and d ∈ OZ(Q). The set of R’s for which this holds will

be a finite group P because they also form the point group for the lattice ΓL ⊕ ΓR
with positive definite signature. At points where there is nontrivial crystallographic

symmetry Nd,d has orbifold singularities. We have different crystallographic groups

P at different points. Nd,d is a good example of a moduli stack. For example for

d = 1, N1,1 = R+/Z2 and there is a single Z2 orbifold point at r = 1. For d = 2

the story is much richer. The quotient H/SL(2,Z) already has Z2 and Z3 orbifold

points at τ = i, eiπ/3. 47 Using these points for τ or ρ we construct 4 components

of complex codimension one orbifold loci in N2,2. In addition there is a locus of Z2

singularities along τ = ρ due to the mirror symmetry transformation.

8. A Special Example With Special Crystallographic Symmetry. At any point with purely

left- and/or right-acting crystallographic symmetries we have orbifold points. As a

dramatic example, consider the case of d = 24. One very interesting point is

Γ = (ΛLeech, 0) ⊕ (0,ΛLeech) (12.691)

where ΛLeech is the famous Leech lattice. It is the unique even unimodular integral

lattice of rank 24 with no vectors of length-squared = 2. Now, crystallographic

symmetries in OR(g)×OR(g) are equivalent to a product of Conway groups.

9. Points with enhanced level one affine Lie algebra symmetry. An important set of spe-

cial points in Nd,d can be constructed as follows. Let g be a semi-simple Lie algebra of

rank d where the summands are simply-laced: An, Dn or En. Embed the weight lat-

tice Λwt(g) ⊂ Rd so that the root lattice is generated by root vectors of square-length

two. Consider the rank 2d embedded lattice

Γ(g) ⊂ (Λwt(g); 0) ⊕ (0; Λwt(g)) ⊂ Rd;d (12.692)

where Γ(g) is defined by the condition that it contains the vectors p such that pL −
pR ∈ Λrt(g). We claim that Γ(g) ⊂ Rd;d is an even unimodular lattice and hence

defines a point in Nd,d. We will call these g-points. To see that Γ(g) is an even lattice

note that a general vector is of the form (pL; pR) = (qL + λ; qR + λ) where qL, qR are

in the root lattice and λ is one of the fundamental weights. Then Γ is even because:
48

p2 = q2L − q2R + 2(qL − qR) · λ ∈ 2Z (12.693)

Γ(g) is also unimodular. Perhaps the best way to see that is to make a modular

transformation on the Siegel-Narain theta function. According to our formula above

47It is in fact the moduli stack of elliptic curves.
48It is convenient to take ℓs =

√
2 and the standard Euclidean metric for gij .
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(with ξ = α = 0):

ΘΛrt+λ(−1/τ) =
1√
|Z|

(−iτ)d/2
∑

λ̃∈Λwt

eiπτλ̃
2−2πi(λ̃,λ)

=
1√
|Z|

(−iτ)d/2
∑

[λ̃]∈Λwt/Λrt

∑

q∈Λrt

eiπτ(q+λ̃)
2−2πi(q+λ̃,λ)

(12.694)

where Z = Λwt/Λrt is isomorphic to the center of the simply connected Lie group

G with Lie algebra g. We choose a set of fundamental weights λs representing the

elements of this group and define:

Zs(τ) =
ΘΛrt+λs

ηd
(12.695)

Then the modular group representation is generated by

Zs(−1/τ) =
1√
|Z|

∑

s′

e−2πi(λs,λs′)Zs′(τ) (12.696)

Zs(τ + 1) = e2πi(
1
2
(λs,λs)−d/24)Zs(τ) (12.697)

It is worthwhile checking that we really do get a representation of the modular group.

The generator S is represented by a finite Fourier transform, so in indeed S2 = −1

is satisfied. The harder relation to check is

(ST )3 = S2 (12.698)

This should be written as

S−1TS = T−1S−1T−1 (12.699)

Then the relation is easily checked using the Gauss-Milgram formula: If q(x) is a

quadratic refinement on the discriminant group of an integral lattice with q(0) = 0

then
1√
|D|

∑

x∈D

e2πiq(x) = e2πiσ/8 (12.700)

Applying this to the present case we have

∑

λs

eiπ(λs,λs) =
√

|Z|e2πid/8 (12.701)

from which it is easy to check the nontrivial relation of the modular group. We

conclude that
∑

s Zs(τ)Zs(τ̄) is modular invariant and hence Γ(g) is unimodular. ♣Explain where we

used the assumption

that g is simply

laced. ♣
The g-points define orbifold points of Nd,d since they are fixed points under the

left-action on L of (w1;w2) ∈ OR(g)×OR(g) where wi ∈W (g). For example,

(w1; 1) : (qL + λ; qR + λ) 7→ (w1qL + w1λ; qR + λ)

7→ (w1qL + q′L + λ; qR + λ)
(12.702)
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since, for any element of the weight lattice and for any element of the Weyl group

λ− w · λ ∈ Λrt. This follows since for Weyl reflections:

σα · λ− λ = −2
(α, λ)

(α,α)
α ∈ Λrt (12.703)

At these points the conformal field theory has enhanced Lie algebra symmetry, gen-

eralizing the discussion we gave above for d = 1, R = ℓs. Among the holomorphic

vertex operators are

exp[iα · ξL](z)⊗ 1 1⊗ exp[iα · ξR](z̄) (12.704)

where α ∈ Λrt(g). These operators have conformal dimensions (1, 0) and (0, 1),

respectively and combine with the u(1) currents to form a symmetry

g
(1)
k=1 ⊕ g

(1)
k=1 (12.705)

That is, at these points the conformal field theory becomes the level k = 1 WZW

model for G.

10. A Tale Of Two Field Theories. In order to appreciate better the significance of the g-

points we have just identified we need to recall briefly some basic ideas about string

theory. This is a theory that simultaneously describes two field theories. One is

quantum gravity in two-dimensions. One couples a CFT to 2-dimensional quantum

gravity and integrates over all topologies and metrics. On the other hand, when the

CFT is a nonlinear sigma model with target space X , the amplitudes of string theory

can also be interpreted as S-matrix amplitudes for scattering of particles on X . One

can then attempt to associate a quantum field theory on the target space X which

likewise describes the same S-matrix amplitudes. Such a target space QFT is known

as a string field theory. We will denote it as QFT (X ). Skipping over an enormous

number of subtleties the basic ideas for writing down a string field theory are the

following:

On-shell particles are described, at tree level by the Lie algebra cohomology for the

Virasoro algebra with values in the Virasoro module provided by the CFT. In order

for the differential to be well-defined the total central charge of the CFT must be

c = 26. Knowing the particles we can write a quadratic action ∼
∫
ΨQΨ where Ψ, the

string field is a general element of the closed string Hilbert space. The interactions are

then obtained by computing correlation functions of Ψ and integrating over suitable

portions of the moduli space of Riemann surfaces.

11. Spacetime Yang-Mills Theory. Suppose the target space is X = RD × T d, and we

have a constant metric and B-field on T d.

At generic points on Nd,d the target space theory contains a Yang-Mills theory with

abelian gauge group U(1)2d. The vertex operators:
∫

R̂D
dkeikŷ(z,z̄) ⊗ (∂xi(z)⊗ ǫµ∂̄ŷ

µ
R(z̄))Ai,ǫ(k) ∈ Hclosed string (12.706)
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and ∫

R̂D
dkeikŷ(z,z̄) ⊗ (ǫµ∂ŷ

µ
L(z)⊗ ∂̄xiR(z̄))Ãi,ǫ(k) ∈ Hclosed string (12.707)

where ŷ(z, z̄) are the coordinates of the string describing the mapping of Σ → RD,

while ǫ ∈ T ∗RD is a cotangent vector on RD and the coefficients in the expansion

Ai,ǫ(k), Ãi,ǫ(k) define Fourier modes of spacetime fields Ai,µ(y), Ãi,µ(y) on the space

y ∈ RD with polarization ǫ:

ǫµAi,µ(y) :=

∫

R̂D
dkeikyAi,ǫ(k) i = 1, . . . , d (12.708)

ǫµÃi,µ(y) :=

∫

R̂D
dkeikyAi,ǫ(k) i = 1, . . . , d (12.709)

By computing string theory scattering amplitudes with such vertex operators we

learn that the QFT of these fields on RD is just a generalized Maxwell theory with

gauge group U(1)d × U(1)d and variable coupling constants:

∫

RD

2d∑

I,J=1

1

e2IJ(n)
FI ∗ FJ ⊂ SQFT (X ) (12.710)

where the coupling constants e2IJ(n) are functions on the Narain moduli space: n ∈
Nd,d.

The notation S ⊂ SQFT (X ) means that we can write the action SQFT (X ) as a sum of

terms, linearly independent under field redefinition, such that S is one of the terms.

However, at the points on Nd,d defined by Γ(g) we can also form the vertex operators:

Ψ =

∫

R̂D
dkeikŷ ⊗ (exp[iα · ξL](z)⊗ ǫ∂ŷR(z̄)))Eα,ǫ(k) (12.711)

where α is a root vector, so α2 = 2, and the coefficients Eα(k) define Fourier com-

ponents of spacetime fields on the space RD that we can call Aαµ(y). By computing

string theory scattering amplitudes with such vertex operators we learn that the QFT

of these fields on RD is a nonabelian Yang-Mills theory with the Aα(y) playing the

role of Fourier modes of “W-bosons.” The gauge group of the theory at these points

will be enhanced to G×G where G is an exponentiated form of g. Historically, this

mechanism for producing nonabelian Yang-Mills gauge fields on X was extremely

important in the development of techniques for constructing string theories intended

to describe nature. A modification of this mechanism was used in the construction

of the heterotic string, for example.

Another important conceptual lesson we learn from this is that the duality transfor-

mations are generalizations of gauge transformations in string theory, since the Weyl

transformations are part of the gauge group of the target space Yang-Mills theory.

For more details about these special points in Nd,d see [21]. ♣Should explain

that this shows we

actually have a

moduli stack. Also,

describe the

Zamolodchikov

metric on this

space? ♣– 193 –



12. Low Energy Effective Couplings As Automorphic Forms For OZ(Q). In addition to

the spacetime gauge fields mentioned above there are also d2 massless scalar fields

associated with the vertex operators

Ψ =

∫

R̂D
dkeik·ŷϕij(k)∂xiL(z)⊗ ∂xjR(z̄) (12.712)

where as usual the spacetime field is

ϕij(y) =

∫

R̂D
dkϕij(k)eiky (12.713)

These are fields in a nonlinear sigma model with RD as the domain and Nd,d as the

target:

ϕ : RD → Nd,d (12.714)

The field ϕab is a spacetime variation of the data Eab. The Lagrangian for these fields

is a nonlinear sigma model with action

∫

RD
dygab,cd(n)∂µϕ

ab∂µϕcd ⊂ SQFT (X ) (12.715)

The couplings gab,cd(n) are derived from a metric on Nd,d known as the Zamolodchikov

metric. It is essentially just the homogeneous space matric on the double coset

O(d) × O(d)\O(d, d;R)/O(d, d;Z). In general, the effective coupling constants of ♣Say more? ♣

the spacetime theory will be interesting automorphic forms for O(d, d;Z).

13. Special (generating) elements of the T-duality group. Some special elements of the

T-duality group OZ(Q) have simple physical interpretations. Let us return to the

version of the action given in (12.621): We can of course make a change of coordinates

ξa → ξ̃a = αabξ
b (12.716)

where, because of the periodicities ξa ∼ ξa + 2π we must have α ∈ GL(d,Z). This

transformation clearly takes:

E → αtrEα (12.717)

and corresponds to duality transformations in OZ(Q) of the form:

d =

(
αtr,−1 0

0 α

)
(12.718)

Similarly, an “obvious” T -duality transformation corresponds to E → E+β, where β

is an antisymmetric matrix of integers. Under this transformation the action changes

by

S → S +
i

2π

∫
βabdξ

a ∧ dξb (12.719)
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but the periods of βabdξ
a∧dξb on X are in (2π)2Z, and hence there is no effect on the

theory. These transformations are often called “B-field shifts.” These correspond to

elements of OZ(Q) of the form

d =

(
1 β

0 1

)
(12.720)

Thus the couplings (or spacetime fields in QFT (X )) b̃ab are periodic variables.

Finally, a less-obvious set of transformations are given by

di =

(
1− eii eii
eii 1− eii

)
(12.721)

for i = 1, . . . , d. In the case of a square torus with zero B-field we have

E = Diag{r21, . . . , r2d} (12.722)

and di takes ri → 1/ri holding the other radii fixed.

In Appendix B we show how to construct a set of generators for OZ(Q). A corollary

of this discussion shows that (12.718), (12.720), and (12.721) generate all of OZ(Q).

So if one wants to prove duality symmetry directly from a path integral it suffices

to show the theory is invariant under these transformations. The invariance under

(12.718) and (12.720) follows immediately from the action. The duality transforma-

tions (12.721) are much less obvious, and we will give a path integral argument for

them in Section 12.9.4. In fact they are special cases of a more general transformation

known as Buscher duality. ♣Comment on the

fact that the duality

group in superstring

theory is actually

Pin(d, d; Z). This

arises from the

action in Ramond

sectors. In the

spacetime theory,

the duality action

must be defined on

spacetime spinors.

Note that just the

O(d) × O(d)

subgroup of O(d, d)

must be lifted, and

therefore the entire

group must be lifted

to a double cover.

♣

14. SYZ Picture Of Mirror Symmetry.

12.9.4 Relation to electric-magnetic duality

One nice way to see that the partition functions of T -dual CFT’s with target T d are the

same is to view T -duality as electromagnetic duality and implement the transformation in

the path integral. In fact there is a significant generalization, known as Buscher duality

[6] to a larger class of sigma models. The idea to relate it to electro-magnetic duality is

in [44]. We will follow that discussion with a very slight improvement in the treatment of

some global issues.

The proper context for the duality is that of general sigma models of the form:

SE =
1

4πℓ2s

∫

Σ

[
gijdx

i ∧ ∗dxj − ibijdx
i ∧ dxj + 2Φ(x)e

]
. (12.723)

Here gij , bij can be functions of xi, and we have added another term. The last term has

the Euler density of the worldsheet metric e :=
√
hR(2)(h) so that

∫
Σ e = 2πχ(Σ) is the

Euler character of Σ. The conjugate field Φ(x) on spacetime X is known as the “dilaton.”

Note that if Φ(x) = Φ0 is constant then the partition function with Euclidean signature

worldsheet is weighted by exp[−(Φ0/ℓ
2
s)χ(Σ)] so that the closed string coupling constant

is exp[Φ0/ℓ
2
s].
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In order to implement Buscher duality we must assume there is a U(1) action on X ,

acting without fixed points, and acting as a symmetry of the background fields (g, b,Φ).

What this means in practice is that we can choose (locally) target space coordinates (x0, xs)

on X with s = 2, . . . , d so that gij , bij, and Φ are independent of x0. Therefore we can ♣Strange

convention. If s

runs from 2 to d

then the periodic

coordinate should

be x1. Or perhaps

use another letter

emphasizing it is an

angle? ♣

write the Euclidean action as:

SE =
1

4πℓ2s

∫

Σ

[
g00dx

0∧∗dx0+2g0sdx
0∧∗dxs+gstdxs∧∗dxt

]
−i

[
2b0sdx

0∧dxs+bstdxs∧dxt
]
+2Φe

(12.724)

where all background fields are functions of xs, but not functions of x0.

Now, there can be winding modes for the field x0 and we can normalize it so that

ϕ := eix
0/ℓs (12.725)

is single-valued on Σ.

A good way to discuss electromagnetic duality (for all generalized abelian gauge the-

ories in all dimensions) is to introduce differential cohomology. In our extremely simple

case the relevant differential cohomology group is just

Ȟ1(Σ) := Map(Σ, U(1)) (12.726)

(We will assume the maps are differentiable.) Note that this is indeed an abelian group.

To an element ϕ ∈ Ȟ1(Σ) we can associate

1. The fieldstrength

F (ϕ) :=
1

2πi
ϕ−1dϕ ∈ Ω1

Z(Σ) (12.727)

Here Ω1
Z(Σ) is the abelian group of 1-forms on Σ that have integral periods. Note

that a differential form with integral periods is necessarily closed.

2. The characteristic class

a(ϕ) := ϕ∗(ω) ∈ H1(Σ;Z) (12.728)

where ω ∈ H1(U(1);Z) is a generator. The characteristic class measures the winding

numbers of ϕ around the various cycles in Σ.

This differential cohomology group, like all differential cohomology groups, fits in two

(compatible) exact sequences:

0 → H0(Σ;R/Z) → Ȟ1(Σ)
F→Ω1

Z(Σ) → 0 (12.729)

0 → Ω0(Σ)/Ω0
Z(Σ) → Ȟ1(Σ)

a→H1(Σ;Z) → 0 (12.730)

Here H0(Σ;R/Z), the flat fields with zero fieldstrength are just the constant maps. This

group is just a copy of U(1). Meanwhile Ω0
Z(Σ) are the functions with integral “periods.”

These are just the constant functions given by an integer.

One can noncanonically write the abelian group Ȟ1(Σ) as a product of three groups:

Ȟ1(Σ) = U(1)× Zb1(Σ) × V (12.731)
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where V is an infinite-dimensional vector space. For example, if we choose a metric on Σ

then we can decompose F into a harmonic piece and an exact form:

F = ω + dφ (12.732)

where ω ∈ H1(Σ) is in the real vector space (of dimension b1(Σ) ) of harmonic forms and

φ is a globally well-defined map φ : Σ → R. Then we can take U(1) = ker(d)/Z, to circle

of gauge inequivalent constant modes, and V is (kerd)⊥. Then, since the periods of F are

integral ω actually lies in the full rank lattice H1
Z(Σ) ⊂ H1(Σ), and if we choose a basis for

H1(Σ;Z) the we can use the periods to define an isomorphism H1
Z(Σ)

∼= Zb1(Σ).

Now we can write the action in terms of the fieldstrength F = F (ϕ) as:

SE = S1
E + S2

E

=

∫

Σ
πg00F ∧ ∗F + g0sF ∧ ∗d(xs/ℓs)− ib0sF ∧ d(xs/ℓs)

+
1

4πℓ2s

∫

Σ

[
gstdx

s ∗ dxt − ibstdx
s ∧ dxt + 2Φe

] (12.733)

We have split the action into a piece S1
E that depends on x0 and an action S2

E that

does not depend on x0. We are going to focus on the path integral over x0, holding the

remaining coordinates xs fixed. Therefore, in doing this path integral we can treat the

couplings as constant. The path integral measure is a rather formal object that we will

denote µ(ϕ). Formally it is the Riemannian volume element on function space induced

from the metric:

‖ δx0 ‖2g00 :=
∫

Σ
g00δx

0 ∧ ∗δx0 (12.734)

We will just denote it as µ(ϕ). One important aspect of this measure is that it is a

translationally invariant measure on the group Ȟ1(Σ).

The next step is to gauge the U(1) symmetry. Thus we replace F (ϕ) by

F := F (ϕ) −A = d

(
x0

2πℓs

)
−A (12.735)

where A ∈ Ω1(Σ) is a one-form. Conceptually, it is a one-form on a principal U(1) bundle

over Σ. However, this bundle is trivial so we can consider it to be a globally well-defined

form. (See Remark 3 below for more about this.) We follow the physics convention and

take A to be real. and we will integrate over A.

Next, we consider the following path integral:

I = N−1

∫

Ȟ1(Σ)
µ(ϕ)

∫

Ȟ1(Σ)
µ(ϕD)

∫

Ω1(Σ)
µ(A)

exp

[
−
∫

Σ
[πg00F ∧ ∗F + g0sF ∧ ∗dξs − ib0sF ∧ dξs] + 2πi

∫

Σ
A ∧ FD

] (12.736)

Here
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1. ϕD ∈ Ȟ1(Σ) will be the dual field with fieldstrength FD = F (ϕD). The measure

µ(ϕD) is defined as before, but with g00 → g−1
00 .

2. We defined ξs = xs/ℓs to simplify the notation.

3. The measure on µ(A) is defined formally using the metric ‖ δA ‖2=
∫
Σ δA ∧ ∗δA.

4. The normalization factor is, formally, given by

N = vol g00(H1
Z)g

−1/2
00 (12.737)

where H1
Z is the lattice of harmonic one-forms on Σ with integral periods, and again

the volume form formally follows from the metric with g00 included, as above. The

reason for this strange factor will become apparent from the derivation below. The

volume of the lattice can be more rigorously treated by introducing a Gaussian sup-

pression factor and using the volume of the divergence ǫ−b1(Σ)/2 as ǫ→ 0.

Now the idea is to do the path integral I in two different ways and thereby obtain a

duality transformation.

The first evaluation does the integral over ϕD and then the integral over A. The result

is the original path integral over x0 with action S1
E. The second path integral does the

Gaussian integral over A. Then does the integral over ϕ. The result is the dual path

integral over x0D. We now explain this in great detail:

First we do the integral over ϕD. We have
∫

Ȟ1(Σ)
µ(ϕD)e

2πi
∫
ΣA∧FD = g

−1/2
00 δ(Anh)

∑

ω∈H1
Z

e2πi
∫
Ah∧ω

= g
−1/2
00 δ(Anh)

∑

ω∈H1
Z

δ(Ah − ω)
(12.738)

Here we used the worldsheet metric to give our noncanonical decomposition of Ȟ1(Σ) as

well as the orthogonal decomposition A = Ah + Anh into its harmonic and non-harmonic

part. The factor g
−1/2
00 is the volume of the flat fields.

Next we can easily do the path integral over A by evaluating the δ-functions. The

result is a sum over H1
Z with F = F (ϕ)−ω. But, precisely because ω has integral periods,

and because µ(ϕ) is translation invariant we can shift away ω in each term of the sum.

The result is

I = N−1g
−1/2
00 vol g00(H1

Z)

∫

Ȟ1(Σ)
e−S

1
E =

∫

Ȟ1(Σ)
e−S

1
E (12.739)

That is, thanks to our choice of normalization in (12.737), I is just the x0 path integral.

Now we turn to the second evaluation of I. Now we first do the integral over A. This

is just a Gaussian integral. For a fixed ϕ we can shift A so that F is just −A. To do the

Gaussian integral most efficiently proceed as follows:

Pick complex coordinates on Σ so that ∗dz = −idz and ∗dz̄ = +idz̄. (This coincides

with the standard orientation on the plane for z = x1 + ix2.) Then decompose:

A = αdz + ᾱdz̄ (12.740)
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FD = fDdz + f̄Ddz̄ (12.741)

dξs = ∂ξsdz + ∂̄ξsdz̄ (12.742)

Next, write out the action separating out idz ∧ dz̄. Next find the stationary point with

respect to α and ᾱ:

α∗ = −g−1
00 (fD − (g0s + b0s)∂(ξ

s/2π))

ᾱ∗ = g−1
00 (f̄D − (g0s − b0s)∂̄(ξ

s/2π))
(12.743)

Now, substitute back into the action. After some algebra one should find:

S̃1
E =

∫

Σ

[
π

g00
FD ∧ ∗FD − b0s

g00
FD ∧ ∗dξs + i

g0s
g00

FD ∧ dξs
]

− 1

4πℓ2s

∫

Σ

[
gt0g0s + bt0b0s

g00
dxt ∧ ∗dxs + i

bt0g0s + gt0b0s
g00

dxt ∧ dxs
] (12.744)

Putting this together with S2
E we obtain the “Buscher rules”:

g̃00 =
1

g00

g̃0s = − b0s
g00

b̃0s = −g0s
g00

g̃st = gst −
gt0g0s + bt0b0s

g00

b̃st = gst −
bt0g0s + gt0b0s

g00

(12.745)

The integral over A also produces a “one-loop determinant” which is, formally:

(
1√
g00

)dimΩ1(Σ)

(12.746)

Now, the result of the Gaussian integral on A is independent of ϕ so we can now do the

integral over ϕ to get an overall normalization constant:

N−1

(
1√
g00

)dimΩ1(Σ)

vol g00(Ȟ
1) = g

1/2
00

(
1√
g00

)dimΩ1(Σ) vol g00(Ȟ
1)

vol g00(H1
Z)

= g
1/2
00

(
1√
g00

)dimΩ1(Σ) g
1/2
00 vol g00(H1

Z)vol g00(Ω
1
nh)

vol g00(H1
Z)

= g00

(
1√
g00

)dimΩ1(Σ)

(
√
g00)

dimΩ1
nh

= g00g
− 1

2
dimH1

00

= g
1
2
χ(Σ)

00

(12.747)
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Thus, the string coupling constant also changes: ♣Clearly not

mathematically

rigorous. Comment

on how to make it

ok by Gaussian

regularization of the

volumes. ♣

g̃
−χ(Σ)
string = g

−χ(Σ)
string g

1
2
χ(Σ)

00 (12.748)

A more conceptual version of this equation is:

g̃−2
string

√
g̃00 = g−2

string

√
g00 (12.749)

(See remark **** below for an explanation of why it is more conceptual.) Thus, the dilaton

field shifts:

Φ̃ = Φ− ℓ2s
2
logg00 (12.750)

Remarks:

1. Applying this to the special case where X = T d and gij , bij are constant, we have

d independent U(1) isometries, and we have given a path integral derivation of the

dualities di mentioned above, as promised.

2. Buscher’s original argument was based on a symmetry of the beta functions for the

sigma model. To leading order, the beta functions are [7]:

βΦ =
d− 26

48π2
+

ℓ2s
16π2

(
4(∇Φ)2 − 4∇2Φ−R+

1

12
H2

)
+O(ℓ4s/L

4)

βG = Rµν −
1

4
H λρ
µ Hνλρ + 2∇µ∇ν(Φ/ℓ

2
s) +O(ℓ2s/L

2)

βH = ∇λHλµν − 2(∇λ(Φ/ℓ
2
s))H

λ
µν +O(ℓ2s/L

2)

(12.751)

These are the first terms in an expansion in ℓs/L where L is a typical length scale of

the target space. When the sigma model also has supersymmetry many of the higher

corrections vanish. For (2,2) worldsheet supersymmetry this is how one derives the

Calabi-Yau condition (at H = 0, and subject to some important subtleties). Buscher

observed that for targets with U(1) isometries his eponymous transformation rules

are a symmetry of the fixed point equations.

3. We have interpreted ϕ = exp[ix0/ℓs] to be a U(1)-valued function on Σ. However, in

the presence of vertex operators this geometric interpretation can change. In order

to illustrate it suffices to take X = R/2πZ with x ∼ x + 2πR. If we insert a vertex

operator

exp[ipx(P)] (12.752)

at a point P on Σ then the Euclidean signature path integral becomes

∫
[dx]e

− i

2πℓ2s

∫
Σ
∂x∂̄x+ipx(P)

(12.753)
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In this free field theory we can shift by the stationary point (solution of the equations

of motion). The stationary point is given by

∂∂̄x = −πℓ2spδ(P) (12.754)

where δ(P) is a (1, 1) Dirac delta form with support at P ∈ Σ. So we can shift

x(Q) = −πℓ2spG(Q,P) + xquantum (12.755)

where G(Q,P) is Green’s function for ∂∂̄.

In the special case Σ = C with Euclidean metric the following formulae are helpful:

(∂2x + ∂2y)logr
2 = 4πδ(2)(0)

∂z∂z̄log|z|2 = πδ(2)(0)

∂z
1

z̄
= ∂z̄

1

z
= πδ(2)(0)

(12.756)

Now F = dx = (∂ + ∂̄)x so ∗F = i(−∂ + ∂̄)x so the classical equations of motion

become

dF = 0

d ∗ F = 2i∂∂̄x = −2πℓ2spδ(P) = je
(12.757)

where je is the electric current, supported at P.

One the other hand, in the dual picture the insertion of the vertex operator (12.752)

is handled quite differently. Now the classical equations of motion for the dual field

are:

d ∗ FD = 0

dFD = je
(12.758)

In this interpretation, if je 6= 0 then we cannot have FD = dxD for a smooth field

xD. Nevertheless, there are two (related) geometrical interpretations of xD:

For the first interpretation let us recall that in general if (P,∇) is a principal U(1)

bundle with connection over any manifold M and if s : U → P is any local section

defined over U ⊂ M then ∇s is a 1-form valued in P . Therefore s−1∇s is a locally

defined 1-form. It is only defined in the region U where the section s is defined. This

is just the one-form of the connection relative to the trivialization of P defined by

s. Then d(s−1∇s) is the curvature of the connection. As opposed to the connection

one-form, the curvature one-form can be globally defined: If we choose another patch

U ′ and section s′ we will produce the same curvature form on the overlap U ∩ U ′.

Therefore in the presence of je we should view exp[ixD] as a locally trivializing section

of a principal U(1) bundle with curvature. Thus, as we have seen several times in

this course the geometrical nature of the field has changed.
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Now, since FD must be globally well-defined the Gauss law implies that
∫

Σ
je = 0 (12.759)

in order for there to be nonzero correlators. Therefore, if we interpret xD as local

trivializing sections of a U(1) bundle P → Σ that bundle must be trivializable.

However, there is no natural trivialization.

Back in the original frame it is natural to allow for both magnetic and electric cur-

rents:

dF = jm

d ∗ F = je
(12.760)

Indeed, we have already done so! These correspond to the states with general mo-

mentum and winding number. To convert states into vertex operators we should use

the exponential map to convert a cylinder to a punctured complex plane:

z = ei(σ+iτ) (12.761)

Recall that on the cylinder we had the on-shell expansion (12.573), and for a Eu-

clidean signature worldsheet the Wick rotated version is:

xi = xi0 +
1

2
ℓ2sp

i
L(iτ + σ) +

1

2
ℓ2sp

i
R(iτ − σ) + xiosc i = 1, . . . , d (12.762)

so that

x = x0 −
iℓ2s
2

(pLlogz + pRlogz̄) + xosc (12.763)

so that

F = dx = −1

2
iℓ2s

(
pL
dz

z
+ pR

dz̄

z̄

)
+ dxosc (12.764)

Now recall that

d

(
dz̄

z̄

)
= ∂z

(
1

z̄

)
dzdz̄ = πδ(2)(0)dzdz̄ (12.765)

d

(
dz

z

)
= −∂z̄

(
1

z

)
dzdz̄ = −πδ(2)(0)dzdz̄ (12.766)

Therefore

dF =
iπℓ2s
2

(pL − pR) δ
(2)(0)dzdz̄

d ∗ F =
πℓ2s
2

(pL + pR) δ
(2)(0)dzdz̄

(12.767)

For our second interpretation we see from (12.763) that when pL− pR 6= 0 the field x

is not single-valued in the neighborhood of the vertex operator. This is just what we

expect from a vertex operator for a winding mode: It is an example of a “disorder
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operator” Nevertheless, the physically relevant quantity is the “fieldstrength” (in the

sense of differential cohomology) F = dx. This is single-valued, but it is singular. In

general, disorder operators, or “defect” such as “’t Hooft operators,” “monopole oper-

ators,” and so on can be incorporated into a path integral by specifying a singularity

of the fields in the path integral.

4. The exchange of g0s with b0s in the Buscher rules has dramatic consequences. Suppose

the target space X is a nontrivial circle bundle π : X → X̄ , so the fibers of π are

copies of U(1) and there is a fixed-point free right action on X with π(p · eiθ) = π(p).

We assume moreover that this right U(1) action is an isometry of the metric and

B-field on X . Therefore the metric has the form:

ds2 = ḡstdx
sdxt +̟(xs)Θ2 (12.768)

where Θ is a connection on the circle bundle and can be locally written as Θ = dx0+A.

The function ̟(xs) is a function known as a warp factor. Expanding this out we see

that

g00 = ̟

g0s = ̟As

gst = ḡst +̟(xs)AsAt

(12.769)

Although the local one-forms Asdx
s are not globally defined in general (and cannot

be globally defined on topologically nontrivial circle bundles) the field-strength F =

d(Asdx
s) is a globally well-defined 2-form. Now (for simplicity) assume bij = 0 and

consider the dual model. According to the Buscher rules the dual picture now has

g̃0s = 0

b̃0s = As
(12.770)

This is remarkable: T -duality has “untwisted” the circle bundle. The dual geometry

is now globally X̄ × S1. Moreover, the B-field is only locally defined: We have a

topologically nontrivial gerbe connection, and H̃ = db̃ = F ∧ dx̃0. ♣Write out the

example of level k

SU(2) WZW model

using Hopf

fibration. ♣
5. COMMENT ON WHAT HAPPENS WHEN U(1) HAS FIXED POINTS.

6. EXPLAIN THAT (12.749) means that the Planck length and Einstein frame metric

are T-duality invariant.

7. COMMENT A BIT on the generalization of differential cohomology to ℓ-forms for

ℓ > 1.

12.10 Deformations Of Algebras And Hochschild Cohomology

Above we noted that the Moyal product is a formal deformation of the commutative algebra

of functions on R2n.

We can formalize this notion as follows:
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Definition: Let A be an associative algebra over a field κ. Then a formal deformation

of the algebra is an associative algebra structure on the algebra A[[t]] over the ring formal

series κ[[t]] such that:

µ(a, b) = µ0(a, b) + µ1(a, b)t+ µ2(a, b)t
2 + · · · (12.771)

where µ0 is the original algebra structure on A.

Note that this definition implies

1. µ is bilinear over κ[[t]].

2. µ is associative so

µ(µ(a, b), c) − µ(a, µ(b, c)) = 0 (12.772)

Expanding out in t this gives a lot of complicated equations on the µn. Of course the zeroth

order equation is satisfied since, by assumption, µ0 is associative. If we write µ0(a, b) = ab

for simplicity then the first order equation is

aµ1(b, c) − µ1(ab, c) + µ1(a, bc)− µ1(a, b)c = 0 (12.773)

and similarly, the higher order equations are

aµn(b, c)−µn(ab, c)+µn(a, bc)−µn(a, b)c =
n−1∑

j=1

{
µj(a, µk(b, c))−µj(µk(a, b), c)

}
(12.774)

where in the sum j + k = n.

For a nontrivial first order deformation we must solve equation (12.773), but we must

also be sure that the deformation can’t be undone by a simple redefinition. This leads to

the

Definition Two formal deformations µ and µ̃ of an associative algebra A are equivalent if

there is a κ[[t]]-linear map

F : A[[t]] → A[[t]] (12.775)

such that for a ∈ A,

F (a) = a+
∞∑

n=1

tnfn(a) (12.776)

(so the fn : A→ A are themselves linear) and such that

F (µ̃(a, b)) = µ(F (a), F (b)) (12.777)

In particular, a first order deformation µ̃1 will be equivalent to µ1 if there exists a

linear map f1 : A→ A such that

µ̃1(a, b) = µ1(a, b) + (af1(b)− f1(ab) + f1(a)b) (12.778)
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Thus, we can phrase the problem of finding first-order deformations as a cohomology

problem: Define

Cn(A,A) := Homκ(A
⊗n, A) (12.779)

The reason for the two arguments of Cn will be explained below. Note that our deforma-

tions are µn ∈ C2(A,A). Define a map

d : C2(A,A) → C3(A,A) (12.780)

by saying that if m ∈ C2(A,A) then

dm(a, b, c) := am(b, c)−m(ab, c) +m(a, bc)−m(a, b)c (12.781)

So our first order deformation must satisfy dµ1 = 0. Similarly, define a map

d : C1(A,A) → C2(A,A) (12.782)

by saying that if f ∈ C1(A,A) then

df(a, b) := af(b)− f(ab) + f(a)b (12.783)

One easily checks that d(df) = 0:

d(df)(a, b, c) = adf(b, c) − df(ab, c) + df(a, bc)− df(a, b)c

= a(bf(c)− f(bc) + f(b)c)

− (abf(c)− f(abc) + f(ab)c)

+ af(bc)− f(abc) + f(a)bc)

− (af(b)− f(ab) + f(a)b)c

= 0

(12.784)

So µ̃1 ∼ µ1 if there is an f1 with

µ̃1 = µ1 + df1 (12.785)

and we conclude:

Equivalence classes of first order deformations of an associative algebra are given by

cohomology classes in

H2(A,A) := ker[d : C2 → C3]/im[d : C1 → C2]. (12.786)

Moreover, if we define ∆µ :=
∑∞

n=1 t
nµn so that µ = µ0+∆µ, then the full deformation

equation can be written as a kind of Maurer-Cartan equation:

d(∆µ)− 1

2
[∆µ,∆µ] = 0 (12.787)

where, for δ1, δ2 ∈ C2 we define [δ1, δ2] ∈ C3 by the formula:

[δ1, δ1](a, b, c) := δ1(δ2(a, b), c) − δ1(a, δ2(b, c))

+ δ2(δ1(a, b), c) − δ2(a, δ1(b, c))
(12.788)
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There is a larger algebraic structure here:

Definition The Hochschild chain complex of an associative algebra A with values in the

bimodule A is the graded vector space

C•(A,A) := ⊕∞
n=0C

n(A,A) (12.789)

Cn(A,A) := Homκ(A
⊗n, A) (12.790)

(where C0(A,A) is naturally isomorphic to A via f(1) = a ∈ A) with differential

d : Cn(A,A) → Cn+1(A,A) n ≥ 0 (12.791)

df(a1, . . . , an+1) = a1 · f(a2, . . . , an+1)

+

n∑

i=1

(−1)if(a1, . . . , ai−1, aiai+1, . . . , an+1)

+ (−1)n+1f(a1, . . . , an) · an+1

(12.792)

The Hochschild cohomology of A is the cohomology of this differential. The first few

cohomology groups have simple interpretations:

1. A zero-cochain f maps κ → A so that if we write f(1) = b then df : A → A is the

linear map:

df(a) = ab− ba (12.793)

Thus H0(A,A) = Z(A) is the center of A.

2. If f ∈ C1(A,A), then df = 0 means f is a derivation:

f(ab) = af(b) + bf(a) (12.794)

Of course, the commutator with b is always a derivation, therefore H1(A,A) is the

quotient of the space of derivations of A by the space of inner derivations.

Note: A covariant derivative is a derivation, and under gauge transformation it trans-

forms by the addition of an inner derivation. ♣Explain more

here! ♣

3. As we have seen H2(A,A) is isomorphism classes of first order deformations of the

algebra structure.

There is another very interesting algebraic structure on C•(A,A): It is a graded Lie

algebra.

If f ∈ Cn(A,A) and g ∈ Cn(A,A) then define

f ◦ g ∈ Cn+m−1 (12.795)

by

f ◦ g(P ) :=
∑

Pa3

(−1)|P1|f(P1, g(P2), P3) (12.796)
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Here P is an ordered (n+m− 1)-tuple of elements of A:

P = {a1, · · · , an+m−1} (12.797)

and the sum is over ordered disjoint decompositions P = P1 ∐ P2 ∐ P3, meaning that each

of P1, P2, P3 is ordered, and the ordering is inherited from P . Each of P1, P2, P3 can be

disjoint. Finally |P1| is the number of elements of P1. Now, the Gerstenhaber bracket is

defined as

[f, g] := f ◦ g − (−1)(n−1)(m−1)g ◦ f (12.798)

♣Sign here is from

Takhtadjan. But it

seems to simple. It

differs from GMW

Appendix A, but

they have a

mistake. ♣

Theorem: Give C•(A,A) a grading so that Cn(A,A) has grading (n − 1). Then the

G-bracket satisfies the graded Jacobi identity:

(−1)|f1||f3|[f1, [f2, f3]] + (−1)|f2||f1|[f2, [f3, f1]] + (−1)|f3||f2|[f3, [f1, f2]] = 0. (12.799)

where |f | is the degree of f . ♣Need to give a

proof ♣
In fact, restoring the notation µ0 for the multiplication operator on A, and considering

it as a 2-cochain, the Hochschild differential is just

df = [f, µ0] (12.800)

♣Check sign ♣

Remarks

1. The above description of Hochschild cohomology is just the beginning of a much

larger algebraic story. For one thing, if M is any bimodule for A then we can define

Hochschild cohomology with coefficients in a bimodule HH•(A;M). Now n-cochains

are maps φ : A⊗n →M and the formula for the differential (12.792) still makes sense

and still squares to zero. There is also a dual theory of Hochschild homology, that

plays an important role in noncommutative geometry.

2. INTERPRETATION OF H1 IN TERMS OF COVARIANT DERIVATIVES

3. SHIFTING THE ZERO

4. It is natural to ask about the Hochschild cohomology of the Weyl algebra. See [20].

5. GENERALIZATION TO LINEAR CATEGORIES.

6. PUT INTO CONTEXT OF L∞ ALGEBRAS

Exercise

Show that the operator d defined in (12.792) really is a differential, that is, that d2 = 0.
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12.10.1 Poisson Manifolds

Definition: A Poisson algebra is an associative algebra associated with a bracket: {·, ·} :

A⊗A→ A that is:

1. A Lie bracket, so {a, b} = −{b, a} and the Jacobi identity is satisfied.

2. A derivation:

{a, bc} = {a, b}c + b{a, c} (12.801)

♣Should do graded

case? ♣IfA is a commutative algebra, then a Hochschild cocycle of degree two defines a Poisson

algebra.

DEFINE POISSON MANIFOLDS

TWO EXAMPLES.

STATEMENT OF DEFORMATION QUANTIZATION PROBLEM

KONTSEVICH THEOREM

Observe SW limit of (??) is

S = −2πi

∫

Σ
Bijdx

i ∧ dxj (12.802)

Generalization: Hochschild cohomology of A-modules. (A infty?) categories.

FINISH THIS NEXT TIME. REFERENCES:

1. M. Kontsevich, arXiv:math/9904055

2. A. Cattaneo and G. Felder, arXiv:hep-th/0102208

3. A. Voronov, arXiv:math/0111009

4. L. Baulieu, A. Losev, and N. Nekrasov, arXiv:hep-th/0106042

5. A. Kapustin http://arxiv.org/abs/hep-th/0502212

(Also Nekrasov emails: Nov. 13, 2015; Kapustin email: Nov. 13, 2015; Witten email:

Nov. 18, 2015)

12.11 C∗-Algebra Approach To Quantum Mechanics

Now return to our discussion of C∗-algebras. For technicalities on C∗ algebras and func-

tional analysis we mostly follow [31, 42].

12.11.1 Positive Elements And Maps For C∗ Algebras

Definition: An element a ∈ A in a C∗ algebra A is positive if a = a∗ and its spectrum is

positive: σ(a) ⊂ R+. We write a ≥ 0 and denote the set of positive elements by A+.

Examples:

1. A = B(H). Then a is positive iff (ψ, aψ) ≥ 0 for all ψ.

2. A = C0(X). Then f is positive iff f(x) ≥ 0 for all x ∈ X.
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Theorem: a ∈ A is positive iff a = b2 for a self-adjoint element b ∈ A. Likewise a is

positive iff a = b∗b for some element b ∈ A.

Proof : The proof is immediate using the continuous functional calculus. If σ(a) ⊂ R+ then

apply f(x) =
√
x to a to get b = f(a). ♠

Every self-adjoint element a ∈ A can be written as a = a+ − a−. This follows again from

the continuous functional calculus. Note that:

f(x) :=

{
x x ≥ 0

0 x ≤ 0
(12.803)

is a positive continuous function. So we define a+ = f(a) and a− = f(−a). With this

choice of a± we also see that in the decomposition we can take a± such that ‖ a± ‖≤‖ a ‖.
Therefore every element can be written as

a = a+ − a− + i(b+ − b−) (12.804)

where a±, b± are all positive, and ‖ a± ‖≤‖ a ‖ and ‖ b± ‖≤‖ a ‖.
We can also speak of positive linear maps between C∗ algebras:

Definition: A linear map ϕ : A → B between two C∗ algebras is positive if ϕ(a) ≥ 0

whenever a ≥ 0.

It is not difficult to show tht positive maps are bounded, and therefore continuous.

(Landsman 2.8.5). We stress that ϕ need only be a linear map and in applications it is

usually not a morphism of C∗ algebras. In fact, if ϕ is a morphism of C∗ algebras then it

is automatically positive since

ϕ(a∗a) = b∗b (12.805)

where b = ϕ(a).

There is a generalization of the notion of a positive map known as a completely positive

map. We first observe that if A is any C∗ algebra then Mn(A), the ∗-algebra of n × n

matrices over A (where ∗ includes hermitian conjugation of the matrix). If H is a faithful

representation of A then H ⊗ Cn is a faithful representation of Mn(A) and we define the

C∗-norm on Mn(A) by the operator norm on H ⊗ Cn. This makes Mn(A) a C∗-algebra.

(Recall the C∗ norm is unique.)

Now, if ϕ : A → B is a linear map we say it is completely positive if for all n ≥ 1

induced map ϕ : Mn(A) → Mn(B) (defined by applying ϕ to the matrix elements) is

positive. ♣Need to give an

example of a map

that is positive but

not completely

positive. ♣
12.11.2 States On A C∗-Algebra

Definition A state on a C∗ algebra is a positive norm 1 linear map

ω : A → C. (12.806)
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In the case that A is a unital C∗ algebra we could alternatively define a state ω as a

positive map so that ω(1) = 1.

Note that since ω(a) ≥ 0 for a ∈ A+, and since every self-adjoint element can be

written as a = a+ − a− with a± positive, it follows that ω(a) ∈ R when a is self-adjoint.

Therefore

ω(a∗) = ω(a)∗. (12.807)

Example 1: A key example is obtained by taking a C∗-subalgebra A ⊂ B(H) and a rank

one projection operator P ∈ A. Then

ωP (a) = TrH(Pa) =
〈ψ|a|ψ〉
〈ψ|ψ〉 (12.808)

If ψ is any nonzero vector in H then there is a corresponding rank one projector to the line

ℓψ spanned by ψ:

P =
|ψ〉〈ψ|
〈ψ|ψ〉 (12.809)

Therefore for ψ e a nonzero vector in H we can define

ωψ(a) :=
〈ψ|a|ψ〉
〈ψ|ψ〉 (12.810)

So these states are consequently sometimes called vector states. The corresponding state

only depends on the line in H through ψ, that is

ωψ = ωzψ (12.811)

for every z ∈ C∗. In physics one hears the statement that the physical state is a “ray” in

Hilbert space.

Example 2: More generally, if ρ is a positive traceclass operator of trace one, i.e. a density

matrix, then

ω(a) = TrHρa (12.812)

is a state. For the ideal of compact operators K(H) ⊂ B(H) one can show that these are

the only states. (Landsman 2.13.10.1). Warning! This is far from true for the C∗-algebra

of all bounded operators B(H). See the very useful remarks at the beginning of section

2.13 of [31].

Example 3: Another key example arises for commutative C∗ algebras A = C0(X) where

X is a locally compact Hausdorff topological space. By the Riesz-Markov theorem there is

a (complex regular Borel) measure µ on X so that any linear functional ℓ : C0(X) → C is

given by

ℓ(f) =

∫

X
fdµ (12.813)

Moreover, ‖ ℓ ‖= |µ(X)|. Therefore, the states on C0(X) are positive measures of total

measure µ(X) = 1.
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Theorem: The space of states S(A) is a compact convex set.

Proof: Use the w∗ topology and apply the Banach-Alaoglu theorem.

Because it is convex we can define the extremal points. These are the states ω ∈ S(A)
which cannot be written in the form

ω = tω1 + (1− t)ω2 (12.814)

where 0 < t < 1 and ω1, ω2 are states. An extremal state is known as a pure state. A state

that is not a pure state is a mixed state.

Example 1: Vector states are always pure states.

Example 2: For the compact operators K(H) ⊂ B(H) the pure states are precisely the

set of vector states (Landsman 2.13.10.1). However, one can show that for any C∗ algebra

A, given any self-adjoint element a ∈ A, and E ∈ σ(a), there is a pure state ωE on A

such that ωE(a) = E. If we choose a to have continuous spectrum and E to be in the

continuous spectrum, then there is no normalizable eigenvector with eigenvalue E, so ωE
is not a vector state.

Example 3: If A = C0(X) where X is a locally compact Hausdorff topological space then

the pure states of Ã (where we must unitize if X is noncompact) are the Dirac measures

supported at a point. δx. Therefore, the space of pure states is in fact homeomorphic to

X+, the one-point compactification. ♣More remarks on

the case where X is

noncompact. ♣

12.11.3 GNS Construction

Given a state ω on a C∗-algebra A we construct a Hilbert space Hω and a C∗-morphism

ρ : A → B(Hω).

A representation of A on a Hilbert space H is non-degenerate if the only vector anni-

hilated by π(a) for all a ∈ A is the zero vector. A representation is called cyclic if there is

a vector Ψ0 so that the closed subspace π(A)Ψ0 of H coincides with H.

Now suppose that A is unital, and ω ∈ S(A) is a state on A. We now construct a

representation π : A → Hω as follows:

We begin by using ω to define a sesquilinear form on A:

(a1, a2) := ω(a∗1a2) (12.815)

Note that the form is positive semi-definite:

(a, a) = ω(a∗a) ≥ 0 (12.816)

but it might well have a nontrivial radical :

Nω := {a ∈ A|(a, b) = 0 ∀b ∈ A}
= {a ∈ A|(b, a) = 0 ∀b ∈ A}

(12.817)

The equality of the two sets follows because ω(a∗) = ω(a)∗ = 0 for every a ∈ A.
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Note that Nω is clearly a left-ideal, for if a ∈ Nω and c ∈ A then ca ∈ Nω because

(ca, b) = ω((ca)∗b) = ω(a∗(c∗b)) = 0 (12.818)

There is another characterization of Nω which can be useful. Note that, putting b = a

in the first line of (12.817) we see that if a ∈ Nω then ω(a∗a) = 0. In fact, this is a sufficient

condition, that is:

Nω = {a ∈ A|ω(a∗a) = 0} (12.819)

To prove this we first note that, quite generally, for any state ω on a C∗ algebra we have

the Cauchy-Schwarz inequality: 49

|ω(a∗b)|2 ≤ ω(a∗a)ω(b∗b) (12.820)

Now, if ω(a∗a) = 0 then for any b we have |ω(a∗b)|2 ≤ ω(a∗a)ω(b∗b) = 0. This proves

(12.819).

As we see from the examples of vector states on B(H), the radical might well be be

nonzero! For ωψ the radical consists of all operators containing ψ in the kernel. If we

choose ψ to be the first basis vector in an orthogonal basis then the matrix representation

of a ∈ Nωψ has first column equal to zero. (Note this is obviously a left ideal.) Given this

characterization it is clear that B(H)/Nωψ
∼= H.

The GNS representation is now defined by constructing a positive definite inner product

on A/Nω:

([a], [b]) := ω(a∗b) (12.821)

The expression (12.821) is well-defined because Nω is an ideal: If n1, n2 ∈ Nω then

ω((a+ n1)
∗(b+ n2)) = ω(a∗b) + ω(n∗1b) + ω(a∗n2) + ω(n∗1n2)

= ω(a∗b)
(12.822)

Now the nondegeneracy is immediate: If (a, b) = 0 for all b then a ∈ Nω by definition

so [a] = 0. Actually, A/Nω with this inner product needs to be completed, and that defines

the Hilbert space:

Hω := A/Nω (12.823)

Now we define π : A → B(Hω) by

πω(a)[b] := [ab] (12.824)

Next one needs to show that this is a C∗-algebra morphism. Note that:

([c], πω(a)
∗[b]) := (πω(a)[c], [b])

= ([ac], [b])

= ω((ac)∗b)

= ω(c∗a∗b)

= ([c], [a∗b])

= ([c], πω(a
∗)[b])

(12.825)

49Proof: ω((a− zb)∗(a− zb)) ≥ 0 as a function of z ∈ C. Thus we have a positive semidefinite quadratic

form in the real and imaginary parts of z, and the Cauchy-Schwarz inequality is the corresponding condition

on the discriminant.
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Note that the Hilbert space Hω has a canonical vector

Ψω := [1] (12.826)

provided by the projection of the unit of A. By definition

πω(A)Ψω = A/Nω (12.827)

so, by definition, Ψω is a cyclic vector since Hω is the completion of A/Nω.

Example 1 If A = C(X) then, as we have seen, a state is a positive measure µ on X. The

corresponding Hilbert space is Hµ = L2(X, dµ).

There is also a kind of converse to the GNS construction: If A is represented on a

Hilbert space H and Ψ0 is a cyclic vector then we can construct the vector state associated

with Ψ0 and the corresponding GNS representation of A is unitarily isomorphic to the

original one. Moreover, Hω is irreducible iff ω is a pure state.

Now we are ready to state and prove the famous Gelfand-Neumark theorem:

Theorem If A is a C∗ algebra then there is a Hilbert space HU and an injective morphism

of C∗ algebras πU : A → HU .

Proof : Recall that the space of states S(A) is a compact space, and for each state ω we

can construct a cyclic representation Hω. We simply take

HU := ⊕ω∈S(A)Hω (12.828)

The proof is now trivial. If πU (a) = 0 then ω(a∗a) = 0 for all states ω and this implies

‖ a∗a ‖= 0 so ‖ a ‖= 0 by the C∗-identity and hence a = 0 by the definition of a norm. ♠
Actually, this definition of HU is overdoing things a bit. It suffices to take a direct

sum just over the pure states. That is:

⊕ω∈P(A)Hω (12.829)

will also provide a faithful representation. In fact, we can do better: We can define to ♣Should interpret

as space of states of

a Hilbert bundle. ♣pure states to be equivalent iff their GNS representations are unitarily equivalent. Then

A ∼= ⊕[ω]πω(A) (12.830)

where we sum over equivalence classes of pure states. In particular, the irreducible repre-

sentations of a finite-dimensional C∗ algebra are finite-dimensional and hence any finite-

dimensional C∗ algebra is a direct sum of a finite number of matrix algebras.

12.11.4 Operator Topologies

When we speak of operators on a Hilbert space H there are other topologies of operator

algebras that can be defined. There are three topologies which one typically encounters,

known as the strong, weak, and norm topologies. They are included in each other according

to

Tweak ⊂ Tstrong ⊂ Tnorm (12.831)
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1. Tweak: limweak
n→∞ an = a iff for all ψ1, ψ2 ∈ H:

lim
n→∞

(ψ1, (a− an)ψ2) = 0 (12.832)

2. Tstrong: limstrong
n→∞ an = a iff for all ψ ∈ H:

lim
n→∞

‖ (a− an)ψ ‖= 0 (12.833)

3. Tnorm: limnorm
n→∞ an = a iff

lim
n→∞

‖ (a− an) ‖= 0 (12.834)

Note that equation (12.834) implies (12.833) by the definition of the operator norm,

while (12.833) implies (12.832) by the Cauchy-Schwarz inequality. Therefore if a set C ⊂
B(H) is closed in the norm topology it is closed in the strong topology, and if it is closed

in the strong topology it is also closed in the weak topology. Of course, a closed set is the

complement in B(H) of an open set, and hence if U ⊂ B(H) is open in the weak topology

then it is open in the strong topology, and if it is open in the strong topology then it is

also open in the strong topology. This establishes the inclusions (12.831).

GIVE BASIS OF OPEN SETS.

The inclusions (12.831) are proper inclusions. A standard set of examples (Reed and

Simon p.184) is the following: Assume H is separable and choose an orthonormal basis

{en}∞n=1 (thus choosing an isomorphism H ∼= ℓ2).

1. Consider Nn(ξ) =
1
nξ. Clearly Nn → 0 in the norm topology.

2. Now let Sn the the projector onto the orthogonal complement to the space spanned

by the first n vectors {ej}nj=1, that is:

Sn(ξ) = (0, . . . 0, ξn+1, ξn+2, . . . ) (12.835)

Then ‖ Snξ ‖2=
∑∞

n+1 |ξj|2 → 0 for every vector ξ, so Sn → 0 in the strong topology,

but it is also true that ‖ Sn(ej) ‖= 1 for j > n so Sn does not converge to zero in the

norm topology.

3. Now let Wn be the nth iteration of the Hilbert hotel map:

Wn(ξ) = (0, . . . , 0, ξ1, ξ2, . . . ) (12.836)

That is,Wn : ei → ei+n. Then for any two vectors ξ, ξ̃ we have (ξ,Wnξ̃) = (Snξ,Wnξ̃)

so

|(ξ,Wnξ̃)| = |(Snξ,Wnξ̃)| ≤‖ Sn(ξ) ‖‖Wnξ̃ ‖=‖ Sn(ξ) ‖‖ ξ̃ ‖→ 0 (12.837)

So, Wn → 0 in the weak operator topology. However, ‖ Wn(ξ) ‖=‖ ξ ‖ so Wn does

not go to zero in the strong operator topology.
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12.11.5 Von Neumann Algebras And Measure Spaces

A measurable space is a set X together with a collection M of subsets of X such that

X ∈ M, and M is closed under complements and countable unions. (It follows that ∅ ∈ M

andM is closed under countable intersections.) Such a collection of subsets ofX has several

names in the literature, among them σ-algebra. Elements of M are called measurable sets.

A morphism of measure spaces f : (X,MX ) → (Y,MY ) is a function f : X → Y so

that if S ∈ MY then f−1(S) ∈ MX . An isomorphism of measures spaces is a bijection

f : X → Y so that f and f−1 are morphisms.

Remark It is interesting to compare a topological space with a measure space. Both are

defined by collections of sets on a set X. If X is simultaneously endowed with a topology

and a measure, that is, a topological space with a measure then measurable functions can

be highly discontinous. For this reason there is no such thing as a “dimension” of a measure

space. For example, Rn with the Euclidean measure are all equivalent as measure spaces! ♣Say more, and

prove this. Discuss

the “standard”

measure space. ♣

By definition, a von Neumann algebra is a ∗-subalgebra of B(H) that is closed in the

weak topology.

To give a good example of a von Neumann algebra, let (X,M, µ) be a measure space.

We can then form a Hilbert space H = L2(X,µ). The space of bounded measurable

functions on X, L∞(X,µ) is an algebra and acts on H as multiplication operators:

(Mfψ)(x) = f(x)ψ(x) (12.838)

It can be shown that this is an abelian von Neumann algebra.

In fact, there is a nice analog of Gelfand’s theorem for von Neumann algebras:

Theorem: Commutative von Neumann algebras are in 1-1 correspondence with measure

spaces. That is, if V is a commutative von Neumann algebra then there is a measure space

(X,µ) and an isomorphism of V ∼= L∞(X,µ).

PROOF OR REFERENCE??

Remark: Since the weak topology is weaker than the norm topology a von Neumann

algebra is automatically a C∗ algebra. One might therefore wonder what Gelfand’s theorem

implies about commutative von Neumann algebras.

[Explain Graeme Segal’s emails: Oct 5,6, 2015] ♣Should at least

state the double

commutant theorem

♣

An absolutely central result is the following (Landsman 2.14.13):

Theorem If H is a Hilbert space and M is a ∗-subalgebra of B(H) then M is weakly-

closed iff it is strongly-closed. Moreover, it is weakly-closed iff the double commutant is

the original algebra:

M′′ = M (12.839)

Proof : First of all M ⊂ M′′ trivially, since elements of M define linear functionals on M′.

Now, by definition of weak-closure it follows that for any subalgebra N ⊂ B(H) the linear

dual N′ is always weakly-closed: For suppose that {an} is a sequence (or more generally a
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net) of operators in N′ that is a Cauchy sequence in B(H) in the weak topology. Then for

all b ∈ N,

0 = lim
n→∞

(ψ1, [an, b]ψ2) an ∈ N′

= lim
n→∞

((ψ1, anbψ2)− (ψ1, banψ2))

= lim
n→∞

((ψ1, anbψ2)− (b∗ψ1, anψ2))

= ((ψ1, abψ2)− (b∗ψ1, aψ2)) def. of weak closure

= (ψ1, [a, b]ψ2)

(12.840)

Therefore, M′′ = (M′)′ is automatically weakly closed, so if M = M′′ then M is weakly

closed.

Since the weak topology is weaker than the strong topology, if M is weakly closed then

its complement is weakly open. But Tweak ⊂ Tstrong, so the complement of M is strongly

open. Therefore M is strongly closed.

Therefore we can close the loop of implications if we show that M strongly closed

implies M = M′′. This is more nontrivial....

.... FINISH ♠

12.11.6 The Spectral Theorem
♣Need to give more

proofs and examples

in this section. ♣Recall continuous functional calculus: If a is a self-adjoint element of A then it generates an

abelian C∗ subalgebra C∗(1, a) ⊂ A and the spectrum of a, namely σ(a), is the same con-

sidered as an element of either C∗ algebra. Moreover, the topological space Spec(C∗(1, a))

defined by Gelfand’s theorem is isomorphic to the compact set σ(a) ⊂ R. Therefore

C(σ(a)) ∼= C∗(1, a). (12.841)

Moreover, under this isomorphism the Gelfand transform of a is just the inclusion of σ(a) →֒
R. Applying the Stone-Weierstrass theorem to σ(a) we learn that every continuous function

on σ(a) is uniformly approximated by polynomial functions. It follows that if f : σ(a) → C

is a continuous function then f(a) ∈ A makes sense and σ(f(a)) = f(σ(a)). (The last

statement is the “spectral mapping theorem”)

The above “continuous functional calculus” can be extended to the “Borel functional

calculus” as follows: Suppose now that we are given a self-adjoint element a ⊂ B(H) and

a vector ψ ∈ H. Then the map

f → (ψ, f(a)ψ) (12.842)

is a positive linear functional on the algebra of continuous functions C(σ(a)). By the

Riesz-Markov theorem it follows that there is a positive measure µa,ψ such that

(ψ, f(a)ψ) =

∫

σ(a)
f(x)dµa,ψ(x) (12.843)

Now, if g is a measurable function on R then, for every ψ ∈ H we define:

(ψ, g(a)ψ) :=

∫

σ(a)
g(x)dµa,ψ(x) (12.844)
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Now, by the polarization identity we can recover (ψ1, g(a)ψ2) for any two vectors ψ1, ψ2,

and hence we have defined the operator g(a). If g is bounded then g(a) ∈ B(H), since one

can show

‖ g(a) ‖B(H)≤‖ g ‖∞ (12.845)

Moreover, one can show that if fn → f pointwise, and ‖ fn ‖∞ is bounded, then

fn(a) → f(a) in the strong topology. Thus we have a ∗-homomorphism

Φ : B(R) → B(H) (12.846)

where B(R) is the ∗ algebra of bounded Borel measurable functions on R, given by Φ(f) =

f(a). The image of B(R) is the smallest C∗ algebra containing a that is strongly closed.

(It is therefore larger than C∗(1, a), which is norm closed.)

The main point of the extension to the Borel functional calculus is that we can now

consider the characteristic function associated to any measurable set E ⊂ R:

χE(x) =

{
1 x ∈ E

0 x /∈ E
(12.847)

and it makes sense to speak of χE(a) for a bounded self-adjoint operator a ∈ B(H).

Example 1: For a finite dimensional Hilbert space H a self-adjoint operator a has a finite

set of distinct eigenvalues {λi}ni=1 and there is a finite set of orthogonal projection operators

Pi onto the eigenspace of eigenvalue λi. These projectors can be written as polynomials in

a:

Pi =

∏
j 6=i(a− λj1)∏
j 6=i(λi − λj)

(12.848)

Then for a Borel subset E ⊂ R we have

χE(a) =
∑

λi∈E

Pi (12.849)

In fact, this applies to infinite dimensions provided a has a discrete spectrum. If there is

an infinite set of eigenvalues in E then the infinite sum converges in the strong topology.

Example 2: Suppose a ∈ C(X). Then, as we have seen σ(a) = {a(x)|x ∈ X}. However,

χE(a) cannot be in the C∗-algebra C(X) because its Gelfand transform would correspond

to the function χE(x) on R, restricted to σ(a). But this, in general is not a continuous

function on σ(a).

Definition: A projection-valued measure is a map

P : B(R) → L(H) (12.850)

such that
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1. P (E) is an orthogonal projection operator for all E ∈ B(R).

2. P (∅) = 0 and P (R) = 1.

3. If E = ∐∞
i=1 is a countable disjoint union of sets Ei ∈ B(R) then

P (E) = s− limn→∞

n∑

i=1

P (Ei) (12.851)

where the convergence is in the strong topology.

The Borel functional calculus tells us that to a self-adjoint operator a ∈ B(H) we have

a corresponding projection-valued measure Pa. Then, given any vector ψ ∈ H we have an

ordinary measure on R given by

E 7→ (ψ,Pa(E)ψ) (12.852)

Let us call this µ̂a,ψ.

Recall that, via the Riesz-Markov theorem given ψ and a Borel measurable function g

we had

(ψ, g(a)ψ) =

∫

σ(a)
g(x)dµa,ψ(x) (12.853)

Now, using the projection valued measure Pa we obtain an alternative expression:

(ψ, g(a)ψ) =

∫

R
g(x)dµ̂a,ψ(x) (12.854)

This equation is the content of the spectral theorem: There is a one-one correspondence

between projection valued measures in B(H) and bounded self-adjoint operators on H.

*****************

EXPLAIN UNITARY EQUIVALENCE TOA SUMOFHILBERT SPACES ONWHICH

a IS A MULTIPLICATION OPERATOR

*****************

12.11.7 States And Operators In Classical Mechanics

Classical mechanics is, by definition the study of symplectic manifolds (M,ω).

From the viewpoint of C∗ algebra theory we naturally associate to it the algebra

A = C(M) for M compact and C0(M) for M noncompact.

Physical observables should be real-valued functions on M . These are clearly the

self-adjoint elements of A.

What are states in classical mechanics? The standard viewpoint is that they are points

in phase space.

For example, if we have a system of N interacting particles in RD the corresponding

symplectic manifold is

M := T ∗RD = V ⊕ V ∨ (12.855)
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where V ∼= RD and there is a canonical symplectic form ω based on the antisymmetric

form:

〈q1 ⊕ p1, q2 ⊕ p2〉 := p1 · q2 − p2 · q1 (12.856)

In this context we would typically think of a state of a classical mechanical system as

a specification of the coordinates and momenta, that is, a point in M .

However, to make the formulation of classical mechanics as parallel as possible with

quantum mechanics we should broaden our notion of “physical states” to include states on

the C∗ algebra A = C0(M). As we saw above these correspond to probability measures

on M . The pure states, corresponding to Dirac measures supported at points p ∈ M are

what are typically thought of as states in classical mechanics. The general states, in the

sense of C∗-algebra theory might be considered “classical probability distributions.”

Now note that we have a natural pairing of states and observables to the set B of Borel

measures on the real line:

S × O → B (12.857)

The value of the measure (f, µ) on a measurable set E ⊂ R is defined by:

(f, µ)(E) :=

∫

f−1(E)
fdµ (12.858)

A key point here is that the expectation value of f is
∫
X fdµ and if dµ is a Dirac

measure at some point x ∈ M then there is no variance, 〈f2〉dµ = 〈f〉2dµ.
Finally, since M is symplectic there is a canonical Liouville measure dµLiouville =

ωn

n!

where ω is the symplectic form and given a state dµ we can define dµ(x) = ρ(x)dµLiouville.

Then the classical analog of the Schrödinger equation is the Liouville equation

dρ(x; t)

dt
= −{H, ρ} (12.859)

12.11.8 States And Operators In Quantum Mechanics

The essential part of quantum mechanics is the Born rule, a pairing of physical observables

O and states ω to produce a probability distribution on the real line: (ω,O) ∈ B. The

value of (ω,O) evaluated on the Borel set E ⊂ R is interpreted as the probability that the

observable O measured in the state ω will take values in the set E.

Now, in the C∗-algebra approach to quantum mechanics the central object is not a

phase space, but a C∗-algebra A. So, to a physical system that we wish to describe,

first and foremost we assign a C∗ algebra. Then the self-adjoint elements AR are meant

to correspond to the (bounded) physical observables. The physical states are meant to

correspond to the the states S(A) in the sense of C∗-algebra theory.

In order to formulate the Born rule we need a Hilbert space, because there is no

spectral theorem for abstract C∗-algebras. Rather we have a spectral theorem for bounded

operators on a Hilbert space. Given a representation π : A → B(H) and given a self-adjoint

element a ∈ A there is a corresponding projection-valued-measure Pπ(a) of operators on

Hilbert space. The state on the C∗ algebra maps to a trace-class positive operator ρ of

trace one. Now we can state the Born rule: The pairing of state and observable is the ♣Does A have to be

in the compact

operators? ♣
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probability measure on R given by

(a, ω)(E) := TrHPπ(a)(E)ρ (12.860)

on Borel-measurable subsets E ⊂ R.

An important special case arises when the physical system also has a version described

in terms of classical mechanics, hence using a symplectic manifold (M,ω). Then we some-

how want to assign quantum operators to functions on M , but they might no longer

commute. Thus, at the minumum we want a map

Q : C0(M) → B(H) (12.861)

However, Q is in general not a representation. In order to make good sense of probabilities,

it should be a positive map of C∗ algebras.

*******

1. Example: M = T ∗X.

2. Example: M is Kähler with positive holomorphic line bundle.

3. Special case: Induced representations and the orbit method.

4. Semiclassical limits and coherent states.

*******

13. Boundary conditions

Now let us enrich our theory by allowing the time-slices Y to be manifolds with boundary.

There will be a set of boundary conditions B0, and we will attach an element of B0 to each

boundary component of ∂Y .

A bordism X from Y0 to Y1 will thus have two kinds of boundaries:

∂X = Y0 ∪ Y1 ∪ ∂cstrX (13.1)

where ∂cstrX is the time-evolution of the spatial boundaries. We will call this the “con-

strained boundary.”

Figure 38: A general open-closed bordism.

In d = 2, in this enlarged geometric category the initial and final state-spaces are

associated with circles, as before, and now also with intervals. The boundary of each

interval carries a label a, b, c, . . . from the set B0.
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Figure 39: Morphism space for open strings: Oab.

Definition: We denote the space Oab for the space associated to the interval [0, 1]

with label b at 0 and a at 1.

In the theory of D-branes, the intervals are open strings ending on submanifolds of

spacetime. That is why we call the time-evolution of these boundaries the “constrained

boundaries” – because the ends are constrained to live in the D-brane worldvolume.

Figure 40: Basic bordism of open strings.

As in the closed case, the bordism [0, 1] × [0, 1] defines Pab : Oab → Oab, and we can

assume WLOG that it is Pab = 1.

Now consider the bordism in ??. This clearly gives us a bilinear map

Oab ×Obc → Oac (13.2)

As in the closed case we see that these maps satisfy an associativity law. Moreover, as in the

closed case, there is an element 1a, defined by ?? which is an identity for the multiplication.

Comparing with the definition of a category we see that we should interpret B0 as the

space of objects in a category B, whose morphism spaces Hom(b, a) = Oab. Note that the

morphism spaces are vector-spaces. This is the defining property of a C-linear category. In

fact, this category has a very special property. We also have the trace map ??, and as we
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Figure 41: A disk defining an element 1a ∈ Oaa

Figure 42: The trace element: θa : Oaa → C.

learn from considering the S-shaped bordism (the open string analog of 7. We learn that

θa : Oaa → C defines a nondegenerate inner product:

Qa(ψ1, ψ2) = θa(ψ1ψ2) (13.3)

Thus, the Oaa are Frobenius algebras.

Moreover, using the S-shaped bordism analogous to 7 we learn that Oab is dual to Oba.

In fact we have

Oab ⊗Oba → Oaa
θa→ C

Oba ⊗Oab → Obb
θb→ C

(13.4)

are perfect pairings with

θa(ψ1ψ2) = θb(ψ2ψ1) (13.5)

for ψ1 ∈ Oab, ψ2 ∈ Oba.
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Definition A Frobenius category is a C-linear category in which there is a perfect

pairing of Hom(a, b) with Hom(b, a) for all a, b ∈ Ob(C) by a pairing which factorizes

through the composition in either order.

Remark: It is important to note that the argument for commutativity fails in the

open case: The algebras Oaa are in general noncommutative. This is an elementary but

important point to emphasize: There is no natural ordering of small disks in a larger disk,

but there is an ordering of points, or intervals, on a one-dimensional line.

Figure 43: The open-closed transition maps

So, to give an open and closed TFT involves giving a Frobenius cateogry. But the

open and closed strings must also be related to each other. The essential new information

is a pair of linear maps

ιa : C → Oaa

ιa : Oaa → C
(13.6)

corresponding to the open-closed string transitions of ??.

By drawing pictures we can readily discover the following necessary algebraic condi-

tions:

1. ιa is an algebra homomorphism

ιa(φ1φ2) = ιa(φ1)ιa(φ2) (13.7)

2. The identity is preserved

ιa(1C) = 1a (13.8)

3. Moreover, ιa is central in the sense that

ιa(φ)ψ = ψιb(φ) (13.9)
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Figure 44: Factorization of the open string loop on closed string exchange. Also known as the

“Cardy condition.”

for all φ ∈ C and ψ ∈ Oab

4. ιa and ιa are adjoints:

θC(ι
a(ψ)φ) = θa(ψιa(φ)) (13.10)

for all ψ ∈ Oaa.

5. The “Cardy conditions.”50 Define π a
b : Oaa → Obb as follows. Since Oab and Oba

are in duality (using θa or θb), if we let ψµ be a basis for Oba then there is a dual basis ψµ

for Oab. Then we define

π a
b (ψ) =

∑

µ

ψµψψ
µ, (13.11)

and we have the “Cardy condition”:

π a
b = ιb ◦ ιa. (13.12)

This is illustrated in ??.

Exercise

Draw pictures associated to the other algebraic conditions given above.

Theorem Open-Closed Sewing Theorem. The above conditions are the complete set

of sewing constraints on the algebraic data.

50These are actually generalization of the conditions stated by Cardy. One recovers his conditions by

taking the trace. Of course, the factorization of the double twist diagram in the closed string channel is an

observation going back to the earliest days of string theory.
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This is proved in the paper of Moore-Segal cited below.

Example: Let G be a finite group. There is a natural category B associated to G,

namely the category of all finite-dimensional complex representations of G. We take the

morphisms to be

hom(V, V ′) = HomG(V, V
′) (13.13)

that is, morphisms are C-linear transformations V → V ′ commuting with the G-actions,

also known as intertwiners.

The algebra OV V = EndG(V ) and the natural trace is

θV (ψ) =
1

|G|TrV (ψ) (13.14)

Let {Vµ} be a complete set of distinct irreps of G. Then, for G compact, all repre-

sentations are completely decomposable into sums of irreps. More precisely, we have the

isotypical decomposition

V ∼= ⊕µMµ ⊗ Vµ (13.15)

Here Mµ are degeneracy spaces. They can be identified with

Mµ := hom(Vµ, V ) (13.16)

Schur’s lemma then tells us that

EndG(V ) ∼= ⊕µEnd(Mµ) (13.17)

is a sum of matrix algebras.

What shall we take for the closed string algebra? The closed to open map ιV must

map to the center. If all the spaces Mµ are nonzero then the center of EndG(V ) is just

a direct sum of C, one for each irrep, or equivalently, one for each conjugacy class. We

can identify this space with the group algebra discussed above in the examples of closed

theories. In particular, we can take C to be the algebra of class functions on G. Given such

a function f =
∑

g agg we define ιV (f) to be
∑

g agρ(g), and if f is a class function then

ιV (f) will be central in EndG(V ). Conversely ιV (Ψ) is

∑

µ

TrV (PµΨ)χµ (13.18)

where Pµ is the projector to the isotypical subspace for Vµ.

Exercise

Write out the full set of open-closed string data for the example of a finite group and

check the sewing conditions.

Once again - we can ask what geometrical problem we are solving here. We will see

the answer below.
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14. Open and closed 2D TFT in the semisimple case: D-branes and vector

bundles

As we saw in the closed case, if C is semisimple one can go further. In this case we can

derive a spacetime X = Spec(C), and the data of a Frobenius algebra is given by the closed

string coupling θx = g−2
x on each connected component of spacetime.

In this section we address the question: What is the “spacetime interpretation” of the

open string sector?

We first need two theorems from abstract algebra, which we just state:

Definition: A Frobenius algebra is simple if there are no nontrivial ideals. It is semisimple

if it is a direct sum of simple algebras.

Wedderburn Theorem A semisimple (noncommutative) Frobenius algebra O is iso-

morphic to a direct sum of matrix algebras:

O = ⊕N
i=1Matni(C) (14.1)

with θ = ⊕iθiTri.

Theorem. A Frobenius algebra is semisimple iff the characteristic element H =∑
ψµψ

µ is invertible.

In one direction this is obvious. One simply computes that if (14.1) is true then

H = ⊕i
ni
θi
1ni is clearly invertible. For the other direction we use a standard criterion for

semisimplicity: An algebra is semisimple if the trace in the left-regular representation de-

fines a nondegenerate quadratic form: (ψ,ψ′) → Trψψ′. [See Lang’s Algebra, for example.]

Now one need only note that θ(Hψ) = Trψ ♠
Now we have:

Theorem: If C is semisimple, then for any boundary condition a, O = Oaa is semisim-

ple and O = EndC(W ) for some finite-dimensional representation W of C.

Proof: If C is semisimple it is a direct sum of C for each spacetime point x. Fix a single

point x and a boundary condition a. Then ιa(ǫx) = Px,a are central projection operators

and Ox = PxOPx is an algebra over the Frobenius algebra Cx = ǫxC. So we can work over

a single spacetime point. Therefore, we must have ιa(1Ox) = α1Cx . In fact, α = θa(1Ox)/θx
from the adjoint relation. From the Cardy condition

α1Ox =
∑

ψµψ
µ (14.2)

where ψµ is a basis for Ox. Applying θa we find αθa(1Ox) = dimOx. Let us assume L that

Ox is nonzero. Then α is nonzero. This says the characteristic element of Ox is invertible,
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and hence Ox is semisimple. By the Wedderburn theorem we conclude that Ox is a direct

sum of matrix algebras:

Ox = ⊕s
i=1Matni(C) (14.3)

However, we can go further. By cyclicity, the trace θa must have the form

θa(ψ) =
s∑

i=1

θiaTr(ψ
i) ψ = ⊕s

i=1ψ
i (14.4)

Now, going back to the Cardy condition one finds that in fact we must have s = 1;

there can be only one summand in (14.4); that is, Oaa must be a full matrix algebra. ♠
Thus, the most general Oaa is obtained by choosing a vector space Wx,a for each

spacetime point x and

Oaa = ⊕xEnd(Wx,a) (14.5)

What we have discovered is that to a boundary condition a we can associated a vector

bundle over spacetime. These are the D-branes in this 2D TFT. 51

Exercise Show that if ψ = ⊕xψx then

θa(ψ) =
∑

x

√
θxTr(ψx)

ιa(ψ) = ⊕xTr(ψx)
εx√
θx

π a
b (ψaa) = ⊕x

1√
θx

TrWx,a(ψx,aa)Px,b

(14.6)

Oab
∼= ⊕xHom(Wx,a;Wx,b) (14.7)

So, we have a complete answer to the category of boundary conditions in this simplest

of all cases:

Theorem

• If C is semisimple, corresponding to a space-time X, then the category B of boundary

conditions is equivalent to the category Vect(X) of vector bundles on X, by the inverse

functors

{Wx} 7→ ⊕Wx ⊗ ax, (14.8)

a 7→ {Oaxa}. (14.9)

51Notice that the bundle is not unique, since we can always tensor with a line bundle Wx → Wx ⊗ Lx
where Lx is one-dimensional. This, ultimately, is the source of the B-field degree of freedom in string

theory.
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where Oaxax
∼= C is suppored at x.

• The equivalence of B with Vect(X) is unique up to transformations Vect(X) →
Vect(X) given by tensoring with a line bundle L = {Lx} on X. • The Frobenius structure

on B is determined by choosing a square-root {
√
θx} of the dilaton field. It is therefore

unique up to multiplication by an element σ ∈ C such that σ2 = 1.

Exercise Boundary states

Let Ba := ιa(1Oaa). This is known as the “boundary state” for boundary condition a.

a.) Show that the partition function for a genus g amplitude with h holes all with

constrained boundaries with boundary condition a is given by

Z = θC(H
gBh

a ) (14.10)

b.) Show that under a change of scale θC → λ−2θC the boundary states scale as

Ba → λBa.

c.) Show that the closed string coupling is always the square of the open string coupling.

Exercise Open Problem

Generalize the above theorem to the unoriented case, and relate the classification of

boundary conditions to KR theory of spacetime.

15. Closed strings from open strings

In string theory one usually thinks of specifying a spacetime manifold, then a metric on that

manifold, then other closed-string data, and finally one starts “wrapping branes” around

various cycles. This way of thinking puts the closed string on a more fundamental basis -

one asks - for a given closed string background, what are the D-branes in that background?

How do we classify them?

The above 2D TFT suggests a radically different point of view, which makes the open

strings more fundamental, and the spacetime, and its closed strings a derived concept.

There is evidence that this is indeed a more fundamental view from the Matrix theory

approach to defining M-theory and from the AdS/CFT correspondence.

If one begins with a Frobenius category, one can try to derive the closed string algebra.

In the semisimple case we might proceed by considering a “generic” boundary condition a

and then taking the center of the algebra Oaa. Generic means - a postiori - that Wa,x is

the nonzero vector space on every spacetime point x.

How does one generalize this idea? The essential point, as described in ref. 2 below

is to take the “cyclic cohomology” of the Frobenius category. This will define for us a

commutative Frobenius algebra, from which we can derive the spacetime. See reference 2

and references therein for further details. ♣Explain more

about cyclic

cohomology ♣
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15.1 The Grothendieck group

In the category of boundary conditions we can always define direct sums of objects a ⊕ b

as follows. For any two objects a and b we define a new object a⊕ b by

Oa⊕b,c := Oac ⊕Obc (15.1)

Oc,a⊕b := Oca ⊕Ocb, (15.2)

and hence

Oa⊕b,a⊕b :=

(
Oaa Oab

Oba Obb

)
, (15.3)

with the composition laws using the above data and matrix multiplication. (This

construction is known in operator algebra theory as the linking algebra.) Finally, the trace

is

θa⊕b : Oa⊕b,a⊕b → C (15.4)

given by

θa⊕b

(
ψaa ψab
ψba ψbb

)
= θa(ψaa) + θb(ψbb). (15.5)

The new object is the direct sum of a and b in the enlarged category of boundary

conditions.

Now, let us recall that a semigroup S is a set with an associative binary product. We

asume it is commutative so we denote the product a⊕ b, because of the application below.

There is no notion of a unit or an inverse, so S is not a group.

Nevertheless, - one can form a corresponding group K(S) by manufacturing inverses

as follows. K(S) is defined to be the set of equivalence classes of pairs (a, b) where the

equivalence relation is

(a, b) ∼ (a′, b′) ⇔ ∃c a⊕ b′ ⊕ c = a′ ⊕ b⊕ c (15.6)

(Note that in general a⊕ c = b⊕ c does not imply a = b.)

Then the group law is

[(a, b)] + [(c, d)] := [(a⊕ c, b⊕ d)] (15.7)

We can think of [(a, b)] informally as a − b and the equivalence relation comes from

rearranging a− b = a′ − b′.

This simple construction is known as the Grothendieck construction.

Example 1: Let S = N+ be the natural numbers 1, 2, 3, . . . . Then K(S) = Z, the

integers.
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Example 2: Let S be isomorphism classes of finite dimensional vector spaces. Then

K(S) is the group of virtual vector spaces. These are in 1-1 correspondence with the

integers.

The Grothendieck construction can be applied to the set of isomorphism classes of

objects in our category B to define K(B). Then applied to the category of vector bundles

on a topological space X it defines K0(X).

In the semisimple case one can show that the recovery of the closed string sector from

the open string sector amounts to

K(B)⊗ C ∼= C. (15.8)

Exercise

a.) Show that the group law (15.7) is well-defined.

b.) If there is an infinite element in S, i.e. an element ∞ ∈ S such that a ⊕∞ = ∞
then K(S) = 0.

Exercise

Using K(pt) ∼= Z prove equation (15.8).

16. Three Dimensions And Modular Tensor Categories
♣Put unitarity

here, since this is

where the concept is

used in an

important way. ♣

17. Other Generalizations

1. Homotopy Field Theory. Turaev’s book. Equivariant theory: Coupling to a gauge

bundle.

2. Invertible TFT’s

3. Anomaly Field Theories

4. Field theories valued in other field theories, and “relative field theory”

18. Higher Categories, Locality, and extended objects

Finally, we would like to indicate one direction in which the above ideas continue to be

developed in current research. See the papers by J. Lurie and A. Kapustin cited below for

details.

One way to motivate this subject is to impose a greater degree of locality than we have

thus far imposed.
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Figure 45: Cutting a closed 2-fold into two pieces

Figure 46: Cutting a circle into two intervals.

We have shown how the notion of a functor allows us to compute partition functions

Z(M2) of a compact two-manifold by splitting it up into pieces and associating algebraic

data with the pieces.

For example, in 45 we cut a Riemann surface, and associate algebraic objects with the

pieces. But now, we can ask if we can similarly learn about the value of Z(Y ), where Y

is the cutting circle, by splitting Y = S1 into intervals: Can we define a Z(I±) and glue

these to get a vectorspace Z(Y ) as in 46 ?

This becomes important if we want to evaluate Z(M) in d-dimensional TFT for d ≥ 3.

Now there is no simple decomposition analogous to that for Riemann surfaces, in general.

In general we would need to chop up M into manifolds with corners. A manifold with

corners is a space which is locally like Rn × Rm+ .

Figure 47: Hierarchies of structure in 2d and 3d TFT

So, let us look at the hierarchy we had in 2d TFT. See 47.

In the d=3 case there is a nice way to say what the category associated to S1 would

be: Letting Z denote the functor, we can define

Z̃(M) = Z(S1 ×M) (18.1)
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and then Z̃ is a two-dimensional TFT. As we have just seen, for such things we associate

a C-linear category to a point. This will then be the category we associate with Z(S1):

This is a baby version of the Kaluza-Klein idea.

Figure 48: Pictorial version of morphisms between morphisms

But what should we then assign to a point in the 3d TFT? The answer is some kind

of 2-category. In a two category we have objects, morphisms, and morphisms between

morphisms, which can be pictured as in 48. There are now lots of axioms and, in fact,

mathematicians are not quite in agreement as to what is the best definition of an n-category.

Figure 49: A physical realization of higher morphisms using point and line defects in a boundary.

One nice way, advocated by Kapustin, of understanding the physical role of these

higher categories is to introduce extended objects into the field theory. Let us define

a domain wall to be some extended object which separates space into two components.

Thus it is real codimension one in spacetime. Let us imagine that there are many kinds of

domain walls, labeled by A,B, .... A domain wall in which there is no space on one side is

a boundary condition.

Now, within the domain wall there could be “sub”-domain walls. These might or might

not be “bound” to the domain wall. If they are not, they would constitute real codimension

two objects in spacetime. Now they will have labels α, β, .... If they can be fused then they

can be viewed as “morphisms” between the “objects” A,B, ... which are the domain walls.

Now, within the sub-domain walls we could have sub-sub-domain walls, labeled by

i, j, k... and separating type α from β, etc. These would correspond to codimension three

objects. Mathematically they could be interpreted as 2-morphisms.

The simplest example of a 2-category is the 2-category of algebras:

1. Objects = Algebras.

2. Morphisms = Bimodules. So, if A,B are algebras then a morphism is a left-A and

right-B bimodule. These can be tensored to give composition of morphisms.

3. 2-Morphisms: Maps of bimodules.
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A. Sums Over Symplectic Lattices And Theta Functions

A.1 Symplectic structures, complex structures, and metrics

A frequently recurring problem is how to express a sum of a gaussian function over a

symplectic lattice in terms of theta functions.
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Suppose VZ ⊂ VR is a lattice, of rank 2N , and suppose we have a symplectic form Ω,

integral valued on VZ.

A complex structure J on VR is compatible with Ω if

Ω(Jv, Jw) = Ω(v,w) (A.1)

In this situation we can define a symmetric quadratic form:

g(v,w) := Ω(Jv,w). (A.2)

We now assume there is a symplectic basis 52 αI , βI for VZ, I = 1, . . . , N , such that

Ω(αI , αJ ) = Ω(βI , βJ ) = 0

Ω(αI , βJ ) = δIJ
(A.3)

Now we choose a basis of vectors ζI of type (0, 1). We extend J C-linearly to VC so

that, by definition

J · ζI = iζI (A.4)

We can express the complex structure J in terms of the components of the period

matrix. The latter is defined by choosing a basis ζI of vectors of type (1, 0) of the form:

ζI := αI + τ IJβJ (A.5)

From g(ζI , ζJ) = g(ζJ , ζI) we learn that τ IJ is symmetric, and moreover g is of type

(1, 1). Note that

g(ζI , ζ̄J) = 2Imτ IJ (A.6)

We can express the complex structure in terms of the period matrix as follows. The

complex structure acts as:

J · αI = A I
I′α

I′ + CI
′IβI′

J · βI = BI′Iα
I′ +DI′

IβI′
(A.7)

We define components of vectors by

v = v1Iα
I + vI2βI =

(
v1I v

I
2

)(αI
βI

)
(A.8)

so that J acts on the components as the matrix

52We would like to relax this assumption and discuss what happens when the skew eigenvalues of Ω are

other integers.
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J =

(
A B

C D

)
(A.9)

Compatibility of the complex structure implies that this defines a symplectic matrix.

Equating real and imaginary parts of (A.4), using the definition (A.7) we find the

matrix expression of J in the basis αI , βI :

J =

(
−Y −1X Y −1

−Y −XY −1X XY −1

)
(A.10)

One can check both J2 = −1 and J trΩJ = Ω.

The metric g in the α, β basis is:

g(v,w) =
(
v1I v

J
2

)(XY −1X + Y −XY −1

−Y −1X Y −1

)(
w1
I

wJ2

)
(A.11)

It is useful to have formulae for the transformation from the integral symplectic basis

to the complex basis.

(
ζI

ζ̄I

)
=

(
1 τ

1 τ̄

)(
α

β

)
(A.12)

has inverse:

(
α

β

)
=
i

2

(
τ̄ −τ
−1 1

)
Y −1
IJ

(
ζJ

ζ̄J

)
(A.13)

Thus the complex projections of (A.8) are:

v(1,0) = − i

2
(vJ2 − v1I τ̄

IJ)Y −1
JKζ

K

v(0,1) =
i

2
(vJ2 − v1I τ

IJ)Y −1
JK ζ̄

K
(A.14)

Note that

v = v(1,0) + v(0,1) (A.15)

A.2 Statement Of The Problem

We will now assume that g is positive definite, i.e. Imτ is positive definite. The first

problem is to express

S0 :=
∑

ν∈VZ

e−
1
2
πkg(ν,ν)+Ω(ν,ℓ̃) (A.16)

in terms of theta functions for the complex torus VR/VZ. We write
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l̃ = −l2IαI + lI1βI (A.17)

so that Ω(ν, l̃) = nI l
I
1 +mI l2I .

An important variation on (A.16) is the following. Suppose that ϕ is a quadratic

refinement of Ω, i.e.

ϕ(ν1 + ν2) = ϕ(ν1)ϕ(ν2)e
iπkΩ(ν1,ν2) (A.18)

Then we can define a twisted sum:

S1 :=
∑

ν∈VZ

ϕ(ν)e−
1
2
πkg(ν,ν)+Ω(ν,ℓ̃) (A.19)

and again we would like to express this in terms of theta functions for VR/VZ. Note

that for k even, there is no distinction between a twisted and untwisted sum.

A.3 Level κ Theta Functions

We define our level κ theta functions to be

Θβ,κ(ξ, τ) =
∑

sI∈Z

e2πiκ(sI+
1
2κ
βI)τ

IJ (sI+
1
2κ
βI)e2πiξ

I(2κsI+βI) (A.20)

MORE ABOUT THETA FUNCTIONS

Having chosen a symplectic basis the general quadratic refinement can be written as

ϕ(ν) = e2πi(θ
Iν1I+φIν

I
2 )eiπkν

1
I ν
I
2 (A.21)

Claim 1:

S1 =

√
det

2

k
Y eQ

∑

β∈(Z/kZ)N

Θβ,k/2(δ
I , τ IJ)Θ−β,k/2(δ̄

I ,−τ̄ IJ) (A.22)

where δ and δ̃ are, essentially, the (0, 1) and (1, 0) components of ℓ, respectively. More

precisely:

lI1 + τ IJ l2J + (2πi)(θI + τ IJφJ) = 2πikδI

lI1 + τ̄ IJ l2J + (2πi)(θI + τ̄ IJφJ) = 2πikδ̄I

lI1 + τ IJ l2J = −2iY IJ l̃
(0,1)
J

lI1 + τ̄ IJ l2J = 2iY IJ l̃
(1,0)
J

(A.23)

and

Q =
πk

2
(δI − δ̄I)Y −1

IJ (δJ − δ̄J ) (A.24)

Claim 2:
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S0 =

√
det

2

k
Y e

1
2πk

ℓ2JY
JK l2K

∑

β,β̄

Θβ,2k(
1

4πik
ψI , τ IJ)Θβ̄,2k(

1

4πik
ψ̄I ,−τ̄ IJ) (A.25)

where ψI are defined in the proof below. We sum over a set of 4k characteristics (β, β̄)

described below. They satisfy 2(β + β̄) = 0 and k(β − β̄) = 0.

********************

Stress that the original sums did NOT make use of a Lagrangian splitting and that

there are many Lagrangian splittings related by Sp(2N,Z). Derive the transformation laws

on τ and theta functions from this.

********************

A.4 Splitting instanton sums

Proof: The lattice splits as Λ = Λ1 ⊕ Λ2. We write ν = nIα
I +mIβI , with Λ1 spanned by

αI . We do a PSF onmI . By shifting the vector l̃ it suffices to consider the case θI = φI = 0.

The main formula is then

Sǫ =

√
det

2

k
Y e

1
2πk

ℓ2JY
JK l2K

∑

pL,pR

exp

{
iπk(pL)Iτ

IJ(pL)J − iπk(pR)I τ̄
IJ(pR)J + (pL)Iψ

I + (pR)I ψ̄
I

} (A.26)

with

(pL)I =
1

2
nI +

1

k
(m̃I +

kǫ

2
nI)

(pR)I =
1

2
nI −

1

k
(m̃I +

kǫ

2
nI)

(A.27)

and

ψI = lI1 + τ IJ l2J

ψ̄I = lI1 + τ̄ IJ l2J
(A.28)

Now, we need to split the sum. We need to discuss the twisted and untisted cases

separately.

For ǫ = 1 we can write m̃I = βI − ksI , where sI ∈ Z are unconstrained integers and

βI ∈ {0, 1, . . . , k − 1}. Then the splitting is immediate, and we have

S1 =

√
det

2

k
Y eQ

∑

β∈(Z/kZ)N

Θβ,k/2(
1

2πik
ψI , τ IJ )Θ−β,k/2(

1

2πik
ψ̄I ,−τ̄ IJ) (A.29)
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ψI = lI1 + τ IJ l2J

ψ̄I = lI1 + τ̄ IJ l2J

lI1 + τ IJ l2J = −2iY IJ l̃
(0,1)
J

lI1 + τ̄ IJ l2J = 2iY IJ l̃
(1,0)
J

(A.30)

and

Q =
1

2πk
l2JY

JK l2K (A.31)

To recover the general case we shift lI1 → lI1 + 2πiθI , l2I → l2I + 2πiφI . this leads to

(A.22) above.

For ǫ = 0 we must work harder. We need to split pL = n/2 +m/k, pR = n/2 −m/k.

We first write

n = 2s′ + γ s ∈ Z, γ ∈ {0, 1}
m = kt′ + ρ , t ∈ Z, ρ ∈ {0, 1, . . . , k − 1}

(A.32)

Then we decompose

s′ + t′ = 2s+ ζ

s′ − t′ = 2t+ ζ, s, t ∈ Z, ζ ∈ {0, 1}
(A.33)

Now we have

βI = 2kζI + kγI + 2ρI

β̄I = 2kζI + kγI − 2ρI
(A.34)

Note that these are, unfortunately, not defined modulo 4k, but only modulo 2k. Since

we have chosen explicit fundamental domains above these equations still make sense, and

define 2× 2× k = 4k distinct pairs (β, β̄). ♠
Remarks:

• Finally, note that when k is even, the twisted sum is in fact equivalent to the

untwisted sum. The way this comes about is as follows. One can express theta functions

of one level in terms of those of another level. Decompose the sum over integers into a sum

over integers relative to some modulus. For example, in

Θµ,k(ω, τ) ≡
∑

n∈Z

qk(n+µ/(2k))
2
y(µ+2kn)

(A.35)

we could write n = ℓ∆+ δ, 0 ≤ δ ≤ ∆− 1. In this way we show that
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Θµ,k(ω, τ) =
∆−1∑

δ=0

Θ∆(µ+2kδ),k∆2(ω/∆, τ) (A.36)

Thus, we can write a theta function of index k as a linear combination of theta functions

of index k∆2. When k is even we can arrange the sum on β, β̄ in (A.25) to rewrite it as

(A.22).

A.5 Geometrical Interpretation

VR/VZ is a principally polarized variety. Θβ,κ(ξ, τ) is a section of a line bundle. If µ is a

vector of integers:

Θβ,κ(ξ + µ, τ) = Θβ,κ(ξ, τ)

Θβ,κ(ξ + τµ, τ) = e−2πiκµIτ
IJµJ−4πiκξIµIΘβ,κ(ξ, τ)

(A.37)

Therefore,

e−4πκ(ImξI)Y −1
IJ (ImξJ )Θβ,κ(ξ, τ)Θβ′,κ(ξ, τ) (A.38)

is invariant. Now we compute the representative of cl(L):

ω =
1

2πi
∂∂̄log ‖ s ‖2= 2κdxIdyI (A.39)

where ξI = xI + τ IJyJ .

B. Generators For OZ(Q)

The idea is to use induction on the rank d in IId,d. We also use some tricks mentioned in

Appendix F of [23] (and I thank Steve Miller for pointing out this reference as having the

relevant tricks.)

Let U be our standard copy of II1,1. Then we first establish the result for the duality

group for d = 2, that is, for Aut(U⊕U). Recall we defined a homomorphism ψ : SL(2,Z)×
SL(2,Z) → OZ(Q) such that if

A =

(
a b

c d

)
∈ SL(2,Z) (B.1)

then

ψ(A, 1) =




a 0 0 −b
0 a b 0

0 c d 0

−c 0 0 d


 (B.2)

ψ(1, A) =




a b 0 0

c d 0 0

0 0 d −c
0 0 −b a


 (B.3)
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Recall also that SL(2,Z) is generated by S and T with

S =

(
0 1

−1 0

)
T =

(
1 1

0 1

)
(B.4)

We begin by giving a minimal set of generators for OZ(Q) for the case d = 2:

Proposition: For d = 2, OZ(Q) is generated by ψ(S, 1), ψ(T, 1), ψ(1, S), ψ(1, T ) together

with 


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1


 (B.5)

and 


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 (B.6)

and no proper subset of these six generators will generate the entire group.

Proof : We consider a generic element d and try to reduce it to a diagonal form, using a

reduction procedure that will also be useful for the case of general d.

A fundamental observation, valid for all d, is that every row and column of d consists

of a set of integers with gcd = 1. This follows since det(d) = ±1.

A second very useful observation, again valid for all d is that the bottom row γdj and

δdj of d are orthogonal vectors. To show this note that from (12.624) we know that

δγtr + γδtr = 0 (B.7)

Taking the dd matrix element says that we have orthogonal vectors:

d∑

j=1

δdjγdj = 0 (B.8)

Now let us turn to d = 2. Our first goal is to bring the bottom row of d to (0, 0, 0,±1).

The first step in setting the bottom row to (0, 0, 0,±1) is to set γ2,1 = 0. Using right-

multiplication by ψ(1, A) for a suitable A we can set γ2,1 = 0. The detailed argument

for this is the following: Suppose γ2,1 is nonzero. Then, if γ2,2 = 0 we right-multiply by

ψ(1, S). If γ2,2 is also nonzero then γ2,1 = gx and γ2,2 = gy where g is gcd(γ2,1, γ2,2) and

x, y are relatively prime nonzero integers. Therefore we right-multiply by ψ(1, A) with

a = y and c = −x, we can always find a corresponding b, d to get A ∈ SL(2,Z) because

x, y are relatively prime. Thus we can set γ2,1 = 0.

But now by (B.8) we know that γ2,2δ2,2 = 0, so at least one of γ2,2, δ2,2 is zero. We

now consider cases:
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1. If γ2,2 = δ2,2 = 0 then we must have δ2,1 = ±1. Then right-multiplication by ψ(1, S)

puts d into the desired form.

2. If γ2,2 = 0 but δ2,2 6= 0 then we can multiply by ψ(1, A) for a suitable A preserving

γ2,1 = γ2,2 = 0 and setting δ2,1 = 0. Then δ2,2 = ±1. Now d is in the desired form.

3. If γ2,2 6= 0 and δ2,2 = 0 then we use

d → d

(
0 1

1 0

)
=

(
β α

δ γ

)
(B.9)

to exchange δ and γ and use the previous argument. Note that

ψ(1, S)ψ(S, 1) =

(
0 1

1 0

)
(B.10)

(where we define S with b = 1, c = −1).

Now we consider the consequences of the group conditions (12.623) and (12.624). The

following is valid for all d: Suppose that the bottom row of d is of the form (0, . . . , 0,±1.

That is γdj = 0 for all j and δd,j = 0 for j = 1, . . . , d− 1. Consider the j, d matrix element

of (B.7). Using (B.26) we learn that also

γj,d = 0 (B.11)

Similarly, from

δαtr + γβtr = 1 (B.12)

taking the d, j matrix elements gives

αj,d = δdd1j,d (B.13)

Altogether we learned that if d has a bottom row of the form (0, . . . , 0,±1) then it must

be an element of the “parabolic subgroup” defined by

αj,d = δdd1j,d

γd,j = γj,d = 0

δd,i = δdd1d,i

(B.14)

Now return to the case d = 2. We have reduced d to the form:



∗ 0 ∗ ∗
∗ δ22 ∗ ∗
∗ 0 ∗ ∗
0 0 0 δ22


 (B.15)

with δ22 = ±1.
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The next step is to try to set the last column of d to the form (0, 0, 0,±1). In order to

do this we first put β1,2 = 0. If it is not already zero we can left-multiply by ψ(T±β1,2 , 1).
53 This does not disturb the condition that the bottom row is (0, 0, 0, δ22)

Next we again apply the group conditions: In particular, the dd matrix element of

δtrβ + βtrδ = 0 (B.16)

Taking the dd matrix element shows that

d∑

j=1

δjdβjd = 0 (B.17)

are orthogonal vectors. In the case of d = 2, if β1,2 = 0 then β22δ22 = 0 but since δ22 = ±1

we have β22 = 0. Next we left-multiply by ψ(1, A) (with b = 0) to set δ1,2 = 0. Now we

have achieved a column of the form (0, 0, 0,±1). Now again using the group conditions we

find that β2j = 0 and α2j = 12,jδ2,2. We have therefore arrived at the form



α11 0 β11 0

0 δ22 0 0

γ11 0 δ11 0

0 0 0 δ22


 (B.18)

Again we apply the group conditions and find there are two possibilities:



0 0 β11 0

0 δ22 0 0

β11 0 0 0

0 0 0 δ22


 (B.19)

with β11 = ±1 and δ22 = ±1 and



δ11 0 0 0

0 δ22 0 0

0 0 δ11 0

0 0 0 δ22


 (B.20)

By multiplying by −1 we reduce each of these possibilities from four to two cases. Thus

we need to add two new generators



0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1


 (B.21)

and 


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 (B.22)

53At this point we have used all the generators ψ(S, 1), ψ(T, 1), ψ(1, S), ψ(1, T ).
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This completes the proof of our proposition ♠
Now that we have understood the case d = 2 completely we can solve the general case

by induction. The inductive step follows essentially the procedure we used for reducing the

d = 2 case.

We claim that the automorphism group for U⊕d is generated by the subgroups acting

as Aut(Ui ⊕ Uj) while holding the other Uk, k 6= i, j fixed generate the entire group. One

proves this by induction as follows.

Consider a 2d×2d matrix d ∈ OZ(Q). The bottom row of integers has gcd=1, since the

determinant of d is ±1. Therefore, using embedded SL(2,Z) subgroups of the O(2, 2;Z)

groups Aut(Ui ⊕ Uj) one can use right-multiplication to bring the bottom row of d to the

form (0, 0, . . . , 0, δdd) where δdd = ±1. We describe in detail how to do this:

Recall the homomorphism ψ : SL(2,Z) × SL(2,Z) → OZ(U ⊕ U) defined in (12.649)

above. Let ψij denote the homomorphism into Aut(Ui⊕Uj). Now, using right-multiplication

successively by

ψ12(1, A1), ψ23(1, A2), . . . ψd−1,d(1, Ad−1) (B.23)

with suitable SL(2,Z) matrices A1, A2, . . . , Ad−1 we can set

γd,1 = γd,2 = · · · = γd,d−1 = 0 (B.24)

Once again using right-multiplication by matrices of the form (B.23) up to ψd−2,d−1 we

can, without disturbing the condition (B.24) also set

δd,1 = δd,2 = · · · = δd,d−2 = 0 (B.25)

Now, as in the d = 2 case we know that γddδdd = 0. So, at least one of γdd and δdd
is zero and at least one of γdd, δd,d−1, δdd is nonzero. As in the d = 2 example we have

three cases to deal with. The same manipulations that we used there allow us to bring the

bottom row to the form

γd,i = 0

δd,i = δdd1d,i
(B.26)

Moreover, δdd = ±1.

Now for the next step in the reduction we multiply on the left by

ψ12(1, A1), ψ23(1, A2), . . . ψd−2,d−1(1, Ad−2) (B.27)

with suitable SL(2,Z) matrices A1, A2, . . . , Ad−2 to set

βi,d = 0 i = 1, . . . , d− 2 (B.28)

δi,d = 0 i = 1, . . . , d− 2 (B.29)

without disturbing the conditions (B.14). Now, finally, we can multiply on the left by

ψd−1,d(A, 1) to set βd−1,d = 0 without disturbing the previous conditions. Then again we

act on the left with ψd−1,d(A
′, 1) without disturbing previous conditions to set δd−1,d = 0.
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Now we apply the group conditions

δtrβ + βtrδ = 0 (B.30)

Taking the dd matrix element shows that βdd = 0. Now taking the j, d matrix elements

shows that βdj = 0. Next we use

αtrδ + γtrβ = 1 (B.31)

Taking the j, d matrix elements and using the previous conditions shows that αd,j = δdd1d,j .

We have now set to zero all matrix elements of α, β, δ with row or column index equal

to d, except for αdd = δdd = ±1. The remaining matrix elements define an automorphism

of U⊕(d−1) and therefore by induction we have established our claim. ♣There is probably

a simpler inductive

proof adapting the

inductive proof that

every automorphism

of an integral lattice

is a product of

reflections. See

Cassels for the

latter. ♣

♣Another approach

is to use the

Steinberg theorem

on generators of

Chevalley groups

using exponentials

of roots. ♣
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