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1. Introduction

These are lecture notes for a course I gave at Rutgers University during the Fall of 2013. The

main goal of the notes is to give mathematical background necessary for an understanding of

a specific point of view on the recent developments in the theory of topological insulators

and superconductors. This viewpoint, which builds on the work of C. Kane et. al., A.

Kitaev, A. Ludwig et. al., and A. Altland and M. Zirnbauer, was developed in [22].

The main theme is how symmetries are implemented in quantum mechanics and how the

presence of symmetries constrains the possible Hamiltonians that a quantum system with

a specified symmetry can have. I have tried to explain how the results follow simply from

the basic principles of quantum mechanics.

I have aimed the notes at graduate students in both physics and mathematics, with

the idea that a solid grounding in some of the topics chosen will serve them well in their

future research careers, even if their interests are far removed from topological states of

matter. If one’s purpose is simply to understand the recent developments in topological

insulators then, for example, the extensive discussions of Chapters 3-8 and Chapters 12,

13, 17 and 18 are clearly overkill. But the mathematics developed here is very useful in a

wide variety of areas in Physical Mathematics. In some places I have used the approach

of first-rate mathematicians writing about physics. For example, the treatment of Clifford

algebras in Chapters 13 and 17 is slightly nonstandard for physicists since it emphasizes

the role of Z2-graded or super-linear algebra. Some sections rely heavily on the masterful

treatment by P. Deligne [16]. As I learned in my (unpublished) work with J. Distler and D.

Freed on the K-theory approach to orientifolds of string theory, this is an excellent way to

approach the subject of twisted equivariant K-theory. (And, in turn, as explained in [22],

the classification of topological insulators properly relies on twisted equivariant K-theory.)

In some parts of the chapter on fermions and the spin representation I have borrowed

liberally from the beautiful book of Pressley and Segal [35].

One thing I have stressed which, in my opinion, is not very well appreciated in the

literature, is that there are many conceptually distinct “10-fold ways.” There is a straight-

forward generalization of Dyson’s 3-fold way which applies to all quantum systems, inter-

acting or not, bosonic, fermionic - whatever. This is rather nicely based on the fact that
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there are 10 superdivision algebras over the real numbers, in close analogy to Dyson’s en-

sembles. (As explained in Chapters 8-10, Dyson’s classification follows from simple group

theory and the Frobenius theorem, which identifies the 3 (associative) division algebras

over the real numbers as R,C,H.) This 10-fold way is described in Chapters 14- 16. I do

not believe it has been properly explained in the literature before, although [20] and [22]

came close.

Another “10-fold way” is associated with the work of Altland and Zirnbauer and is

discussed in Chapter 19. The AZ classification involves classical Cartan symmetric spaces.

The large N limit of these spaces are classifying spaces of K-theory and this is briefly

discussed in Chapter 20.

I do make some effort to connect the various “10-fold ways.” For example, Dyson’s

original paper [18] entitled “The Threefold Way:...” in fact contains a 10-fold classification

of what he called “corepresentations.” 1 Dyson’s 10-fold classification of irreducible φ-reps

can be related again to the 10 real superdivision algebras, although that precise relation

relies on a conjecture, not fully proven in [22]. It seems to me to be conceptually distinct

from the 10-fold way of Chapter 15, although it is clear that both trace their existence back

to the 10 real superdivision algebras. Similarly, the AZ classification described in Chapter

19 asks a physically different question from that answered by Dyson’s classification or the

above-mentioned 10-fold classifications. Since the symmetric spaces can be related to the

classifying spaces of K-theory (Chapter 20) and the latter are related to Clifford algebras

there is once again a connection to the 10 real super-division algebras. From the viewpoint

of K-theory, 10 = 2+8. From the viewpoint of Chapter 15 on the other hand, 10 = 3+7. In

the problems discussed in these notes these decompositions are unnatural. The underlying

unifying concept is that of a real super-division algebra.

In one of those delicious ironies, with which the history of mathematics and physics

is so pregnant, the relation of the Clifford algebras to K-theory was developed by Atiyah,

Bott, and Shapiro [7] and Wall [40] almost simultaneously with Dyson’s work.

The original plan for the lecture series was to expand a little on two lectures given

at a school in St. Ottilien (July 2012) [32] and on a lecture given at a conference on

topological insulators at the SCGP in May 2013 [33]. Time flies, all too often I stopped

to smell the flowers, and so the final Chapters 22-25 have not yet been written (although

they correspond to definite slides in the talk [33]). As the course was ending I was just

beginning to write Chapter 21 which extends the AZ classification to free bosonic systems.

(This possibility was also noted in [44].) This chapter is even more incomplete than the

previous ones. I do think it is very likely these ideas could be very profitably applied to

systems of ultracold atoms and Bose-Einstein condensates which are the subject of many

exciting current experimental discoveries. But I leave that for the future.

I hope to finish these notes at some point in the future. In the meantime, I hope they

will be useful to students, even in this manifestly unfinished state. So they will remain

available on my homepage.

1Since the term “corepresentations” has many misleading connotations I have deprecated this usage in

favor of “φ-twisted representations” or “φ-representations”. See Chapter 8. I’m still looking for a better

name.
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2. Quantum Automorphisms

2.1 States, operators and probabilities

We begin with first principles. The Dirac-von Neumann axioms of quantum mechanics

posit that to a physical system we associate a complex Hilbert space H such that

1. Physical states are identified with traceclass positive operators ρ of trace one. They

are usually called density matrices. We denote the space of physical states by S.
2. Physical observables are identified with self-adjoint operators. We denote the set of

(bounded) self-adjoint operators by O.

Recall that pure states are the extremal points of S. They are the dimension one

projection operators. They are often identified with rays in Hilbert space for the following

reason:

If ψ ∈ H is a nonzero vector then it determines a line

ℓψ := {zψ|z ∈ C} := ψC (2.1)

Note that the line does not depend on the normalization or phase of ψ, that is, ℓψ = ℓzψ
for any nonzero complex number z. Put differently, the space of such lines is projective

Hilbert space

PH := (H− {0})/C∗ (2.2)

Equivalently, this can be identified with the space of rank one projection operators. Indeed,

given any line ℓ ⊂ H we can write, in Dirac’s bra-ket notation: 2

Pℓ =
|ψ〉〈ψ|
〈ψ|ψ〉 (2.3)

where ψ is any nonzero vector in the line ℓ.

The “Born rule” states that when measuring the observable O in a state ρ the proba-

bility of measuring value e ∈ E ⊂ R, where E is a Borel-measurable subset of R, is

Pρ,O(E) = TrPO(E)ρ. (2.4)

Here PO is the projection-valued-measure associated to the self-adjoint operator O by the

spectral theorem.

2.2 Automorphisms of a quantum system

Now we state the formal notion of a general “symmetry” in quantum mechanics:

2We generally denote inner products in Hilbert space by (x1, x2) ∈ C where x1, x2 ∈ H. Our convention

is that it is complex-linear in the second argument. However, we sometimes write equations in Dirac’s

bra-ket notation because it is very popular. In this case, identify x with |x〉. Using the Hermitian structure

there is a unique anti-linear isomorphism of H with H∗ which we denote x 7→ 〈x|. Sometimes we denote

vectors by Greek letters ψ, χ, . . . , and scalars by Latin letters z, w, . . . . But sometimes we denote vectors

by Latin letters, x,w, . . . and scalars by Greek letters, α, β, . . . .
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Definition An automorphism of a quantum system is a pair of bijective maps s1 : O → O
and s2 : S → S where s1 is real linear on O such that (s1, s2) preserves probability

measures:

Ps1(O),s2(ρ) = PO,ρ (2.5)

This set of mappings forms a group which we will call the group of quantum automorphisms. ♣Need to state

some appropriate

continuity

properties. ♣

The meaning of s1 being linear on O is that if T1, T2 ∈ O and D(T1)∩D(T2) is a dense

domain such that α1T1 + α2T2, with α1, α2 real has a unique self-adjoint extension then

s1(α1T1 + α2T2) = α1s1(T1) + α2s1(T2). A consequence of the symmetry axiom is that s2
is affine linear on states:

s2(tρ1 + (1− t)ρ2) = ts2(ρ1) + (1− t)s2(ρ2) (2.6)

The argument for this is that (s1, s2) must preserve expectation values 〈T 〉ρ = Tr(Tρ).

However, positive self-adjoint operators of trace one are themselves observables and we

have 〈ρ1〉ρ2 = 〈ρ2〉ρ1 , so the restriction of s1 to S must agree with s2. Now apply linearity

of s1 on the self-adjoint operators. From (2.6) it follows 3 that s must take extreme states

to extreme states, and hence s2 induces a single map

s : PH → PH. (2.7)

Moreover, the preservation of probabilities, restricted to the case of self-adjoint operators

given by rank one projectors and pure states (also given by rank one projectors) means

that the function

o : PH× PH → [0, 1] (2.8)

defined by

o(ℓ1, ℓ2) := TrPℓ1Pℓ2 (2.9)

must be invariant under s:

o(s(ℓ1), s(ℓ2)) = o(ℓ1, ℓ2) (2.10)

Definition The function defined by (2.8) and (2.9) is known as the overlap function.

Remarks

1. The upshot of our arguments above is that the quantum automorphism group of a

system with Hilbert space H can be identified with the group of (suitably continuous)

maps (2.7) such that (2.10) holds for all lines ℓ1, ℓ2. We denote the group of such

maps by Autqtm(PH).

2. The reason for the name “overlap function” or “transition probability” which is also

used, is that if we choose representative vectors ψ1 ∈ ℓ1 and ψ2 ∈ ℓ2 we obtain the -

perhaps more familiar - expression:

TrPℓ1Pℓ2 =
|〈ψ1|ψ2〉|2

〈ψ1|ψ1〉〈ψ2|ψ2〉
(2.11)

3For some interesting discussion of related considerations see [37].
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2.3 Overlap function and the Fubini-Study distance

If H is finite dimensional then we can identify it as H ∼= CN with the standard hermitian

metric. Then PH = CPN−1 and there is a well-known metric on CPN−1 known as the

“Fubini-Study metric” from which one can define a minimal geodesic distance d(ℓ1, ℓ2)

between two lines (or projection operators). When the FS metric is suitably normalized

the overlap function o is nicely related to the Fubini-Study distance d by

o(ℓ1, ℓ2) =

(
cos

d(ℓ1, ℓ2)

2

)2

(2.12)

Let us first check this for the case N = 2. Then we claim that for the case

PH2 = CP 1 ∼= S2 (2.13)

d is just the usual round metric on the sphere and the proper normalization will be unit

radius. Let us first check this:

First we write the most general general density matrix in two dimensions. Any 2 × 2

Hermitian matrix is of the form a+~b · ~σ where ~σ is the vector of “Pauli matrices”:

σ1 =

(
0 1

1 0

)

σ2 =

(
0 −i
i 0

)

σ3 =

(
1 0

0 −1

)
(2.14)

a ∈ R and ~b ∈ R3. Now a density matrix ρ must have trace one, and therefore a = 1
2 . Then

the eigenvalues are 1
2 ± |~b| so positivity means it must have the form

ρ =
1

2
(1 + ~x · ~σ) (2.15)

where ~x ∈ R3 with ~x2 ≤ 1.

The extremal states, corresponding to the rank one projection operators are therefore

of the form

P~n =
1

2
(1 + ~n · ~σ) (2.16)

where ~n is a unit vector. This gives the explicit identification of the pure states with

elements of S2. Moreover, we can easily compute:

TrP~n1
P~n2

=
1

2
(1 + ~n1 · ~n2) (2.17)

and ~n1 · ~n2 = cos(θ1 − θ2) where |θ1 − θ2| (with θ’s chosen so this is between 0 and π) is

the geodesic distance between the two points on the unit sphere. Thus we obtain (2.12).
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There is another viewpoint which is useful. Nonzero vectors in C2 can be normalized

to be in the unit sphere S3. Then the association of projector to state given by

|ψ〉 → |ψ〉〈ψ| = 1

2
(1 + ~n · ~σ) (2.18)

defines a map π : S3 → S2 known as the Hopf fibration.

The unit sphere is a principal homogeneous space for SU(2) and we may coordinatize

SU(2) by the Euler angles:

u = e−i
φ
2
σ3e−i

θ
2
σ2e−i

ψ
2
σ3 (2.19)

with range 0 ≤ θ ≤ π and identifications:

(φ,ψ) ∼ (φ+ 4π, ψ) ∼ (φ,ψ + 4π) ∼ (φ+ 2π, ψ + 2π) (2.20)

We can make an identification with the unit sphere in C2 by viewing it as a homogeneous

space:

ψ =

(
e−i

ψ+φ
2 cos θ/2

e−i
ψ−φ
2 sin θ/2

)
= u ·

(
1

0

)
(2.21)

The projector onto the line through this space is

Pℓψ = |ψ〉〈ψ| = 1

2
(1 + ~n · ~σ) (2.22)

with ~n = (sin θ cosφ, sin θ sinφ, cos θ) as usual. Alternatively, we could map π : S3 → S2

by π(ψ) = [ψ1 : ψ2] ∼= CP 1, and this will correspond to the point in S2 by the usual

stereographic projection. ♣from which pole?

♣
In any case, for the case N = 2 we see that Autqtm(PH) is just the group of isometries

of S2 with its round metric. This group is well known to be the orthogonal group O(3).

Moving on to higher N we can define the FS metric in a number of ways:

1. Identify CPN as a homogeneous space

CPN ∼= U(N + 1)/U(N) × U(1) ∼= SU(N + 1)/SU(N) × U(1) (2.23)

This follows from the stabilizer-orbit theorem: There is a transitive action of U(N +1) on

the set of lines in CN+1 and the stabilizer of a line ℓ is the product of the unitary group of

ℓ (which is U(1)) and the unitary group of ℓ⊥ (which is U(N)). If we give an orthogonal

decomposition of the Lie algebras using a Cartan-Killing metric on SU(N + 1): 4

su(N + 1) ∼= su(N)⊕ u(1)⊕ p (2.24)

then we can identify p with the tangent space at the origin. The restriction of the Cartan-

Killing form to p, then made left-invariant by group translation defines the FS metric.

2. We can identify the holomorphic tangent space to ℓ ∈ PCN+1 as

TℓPC
N+1 ∼= Hom(ℓ, ℓ⊥) (2.25)

4Since SU(N + 1) is simple the CK metric is unique up to scale.
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Put this way, a tangent vector is a linear map t : ℓ→ ℓ⊥, and we can define an Hermitian

metric by the formula

h(t1, t2) := Tr(t†1t2) (2.26)

This viewpoint has the advantage that it works in infinite dimensions if t1, t2 are traceclass

operators. ♣Check the proper

class of operators.

♣3. Indeed, the Hermitian metric just defined is a Kähler metric and one choice of

Kähler potential is K = log
∑

iXiX̄i where Xi are homogeneous coordinates.

It is known that the FS metric on CPN has the property that the submanifolds CP k →
CPN embedded by [z1 : · · · : zk+1] → [z1 : · · · : zN+1] are totally geodesic submanifolds.

Definition If (M,g) is a Riemannian manifold a submanifold M1 ⊂ M is said to be

totally geodesic if the geodesics between any two points in M1 with respect to the induced

metric (the pullback of g) are the same as the geodesics between those two points considered

as points of M .

Example: If (M,g) is the two-dimensional Euclidean plane then the totally geodesic

one-dimensional manifolds are straight lines. Any one-dimensional submanifold which

bends affords a short-cut in the ambient space.

If M1 is the fixed point set of an isometry of (M,g) then it is totally geodesic. Now ♣simple proof or

ref? ♣
note that the submanifolds CP k are fixed points of the isometry

[z1 : · · · : zN+1] → [z1 : · · · : zk+1 : −zk+2 : · · · : −zN+1] (2.27)

Another way to see this from the viewpoint of homogeneous spaces is that if we exponentiate

a Lie algebra element in p to give a geodesic in U(N + 1) and project to the homogeneous

space we get all geodesics on the homogeneous space. But for any t ∈ p we can put it into

a U(2) subalgebra.

Now, any two lines ℓ1, ℓ2 span a two-dimensional sub-Hilbert space of H, so, thanks to

the totally geodesic property of the FS metric, our discussion for H ∼= C2 suffices to check

(2.12) in general.

2.4 From (anti-) linear maps to quantum automorphisms

Now, there is one fairly obvious way to make elements of Autqtm(PH). Suppose u ∈ U(H)

is a unitary operator. Then it certainly takes lines to lines and hence can be used to define

a map (which we also denote by u) u : PH → PH. For example if we identify ℓ as ℓψ for

some nonzero vector ψ then we can define

u(ℓψ) := ℓu(ψ) (2.28)

One checks that which vector ψ we use does not matter and hence the map is well-defined.

In terms of projection operators:

u : P 7→ uPu† (2.29)

and, since u is unitary, the overlaps Tr(P1P2) are preserved.

Now - very importantly - this is not the only way to make elements of Autqtm(PH).
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We call a map a : H → H anti-linear if

a(ψ1 + ψ2) = a(ψ1) + a(ψ2) (2.30)

but

a(zψ) = z∗a(ψ) (2.31)

where z is a complex scalar. It is in addition called anti-unitary if it is norm-preserving:

‖ a(ψ) ‖2=‖ ψ ‖2 (2.32)

Exercise

Show that

(a(ψ1), a(ψ2)) = (ψ2, ψ1) (2.33)

Now, anti-unitary maps also can be used to define quantum automorphisms. If we try

to define a(ℓ), ℓ ∈ CH by

a(ℓψ) = ℓa(ψ) (2.34)

then the map is indeed well-defined because if ℓψ′ = ℓψ then ψ′ = zψ for some z 6= 0 and

then

a(ℓψ′) = ℓa(ψ′) = ℓa(zψ) = ℓz∗a(ψ) = ℓa(ψ) (2.35)

Moreover,
|(a(ψ1), a(ψ2))|2

(a(ψ1), a(ψ1))(a(ψ2), a(ψ2))
=

|(ψ1, ψ2)|2
(ψ1, ψ1)(ψ2, ψ2)

(2.36)

and hence the induced map on PH does indeed preserve overlaps.

Remark: One may ask why we don’t simply say that a induces a map on projection

operators P 7→ aPa†. Indeed we can, if we define the adjoint by (ψ1, aψ2) = (ψ2, a
†ψ1).

2.5 Wigner’s theorem

In the previous subsection we showed how unitary and antiunitary operators on Hilbert

space induce quantum automorphisms. Are there other ways of making quantum automor-

phisms? Wigner’s theorem says no:

Theorem: Every quantum automorphism Autqtm(PH) is induced by a unitary or

antiunitary operator on Hilbert space, as above.

I don’t know of a simple intuitive proof of Wigner’s theorem. In addition to Wigner’s

own argument the paper [39] cites 26 references with alternative proofs! (And there are

others, for examples [41][21].)

We will indicate two proofs.
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Let us first consider the case of a two-dimensional Hilbert space. In this case we

identified PH ∼= S2 and the isometry group is just O(3). Now,

O(3) = Z2 × SO(3) (2.37)

Let us first consider the connected component of the identity.

There is a standard homomorphism

π : SU(2) → SO(3) (2.38)

defined by π(u) = R where

u~x · ~σu−1 = (R~x) · ~σ (2.39)

Therefore, under the Hopf fibration

|ψ〉〈ψ| = 1

2
(1 + ~n · ~σ) (2.40)

we see - using the Euler angle parametrization - that any proper rotation on ~n is induced by

some SU(2) action on |ψ〉. Elements in the connected component of O(3) not containing the

identity can be written as PR where R ∈ SO(3) and P is any reflection in a plane. It will

be convenient to choose P to be reflection in the plane y = 0 so that it transforms (φ, θ) →
(−φ, θ). But this just corresponds to complex conjugation of ψ(~n), which establishes the

theorem for two-dimensional Hilbert space. 5

Having established Wigner’s theorem for N = 2 one can now proceed by induction on

dimension. See [39] for details.

A second proof, due to V. Bargmann [11], (and which also works for separable infinite

dimensional H) proceeds as follows

Let Sρ denote the sphere of radius ρ inside Hilbert space:

Sρ = {ψ ∈ H| ‖ ψ ‖2= ρ2} (2.41)

Now Sρ/U(1) ∼= PH for ρ 6= 0, as we henceforth assume. We will denote equivalence classes

in Sρ/U(1), by [ψ] where ‖ ψ ‖2= ρ2. These equivalence classes are often called “rays”

in physics, although in fact such an equivalence class is a circle of vectors in the Hilbert

space.

Given a quantum automorphism s : PH → PH we can unambiguously define a corre-

sponding map

s : Sρ/U(1) → Sρ/U(1) (2.42)

We will also denote it by s to avoid cluttering the notation. The meaning should be clear

from context. To define s in (2.42) consider [ψ] ∈ Sρ/U(1). Then ℓψ, the line through ψ,

is well-defined, so we can consider ℓ′ = s(ℓψ). Choose any nonzero vector ψ′ ∈ ℓ′. We can

always choose ψ′ to be of norm ρ. For any such choice define s[ψ] := [ψ′]. This map does

5We stress that there is no basis-independent notion of “complex conjugation.” But in the above

description of the unit sphere as a homogeneous space for SU(2) we made an explicit choice of basis, so

then complex conjugation is well-defined.
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not depend on the choice of ψ′ and is therefore well-defined. Note that ‖ ψ ‖2=‖ ψ′ ‖2. If
we define the overlap function o : Sρ1/U(1) × Sρ2/U(1) → R+ by

o([ψ1], [ψ2]) := |(ψ1, ψ2)|2 (2.43)

then o is well-defined and preserved by s.

Now note a key

Lemma: If ℓn, n = 1, 2, . . . is a set of orthogonal lines, so, o(ℓn, ℓm) = δn,m, then

s(ℓn) = ℓ′n is another set of orthogonal lines. Therefore if we choose nonzero vectors

fn ∈ ℓn then we claim that for any set of vectors f ′n ∈ ℓ′n such that

s([fn]) = [f ′n] (2.44)

we have |(f ′n, f ′m)| = |(fn, fm)| = δn,m ‖ fn ‖2 and moreover if

v =
∑

αnfn (2.45)

then for any v′ such that s([v]) = [v′] we have

v′ =
∑

α′
nf

′
n (2.46)

with |αn| = |α′
n|.

Proof of Lemma: Note that

|αn|2 = o([fn], [v]) = o(s[fn], s[v]) = |α′
n|2. (2.47)

Now, choose any unit vector e ∈ H. Then choose another unit vector e′ ∈ H so that

s([e]) = [e′]. We will construct a unitary or anti-unitary operator T on H which induces s.

To begin, we set T (e) = e′, so T will depend on the choice of e′.

Let P := ℓ⊥e ⊂ H and P ′ := ℓ⊥e′ ⊂ H. Our first aim is to construct a map T : P → P ′.

To do this consider a nonzero vector p ∈ P. Since ℓe and ℓp are orthogonal lines we know

that s(ℓe) and s(ℓp) are orthogonal lines. Since s(ℓe) = ℓe′ there must exist a vector p′ ∈ P ′

with

s([p]) = [p′] (2.48)

and moreover ‖ p′ ‖=‖ p ‖. We choose such a vector p′. Two different choices p′ and p̃′ are

related by a phase p̃′ = eiθ1p′.

Similarly, consider the vector v = e+ p ∈ H, and choose a v′ so that

s([v]) = [v′] (2.49)

Any two choices of v′ and ṽ′ are related by a phase ṽ′ = eiθ2v′. By our Lemma with

f1 = e, f2 = p we know that we must have

v′ = α′e′ + β′p′ (2.50)
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with |α′| = 1 and |β′| = 1. The only ambiguity in choosing v′ was an overall phase so if we

divide by α′ we get a canonical vector:

v′′ = e′ +
β′

α′
p′ (2.51)

In particular the vector p′′ := β′

α′ p
′ is independent of the choices of phase in p′ and v′.

That is, having made a choice of e, e′ and p there is a canonically defined vector p′′ ∈ P ′.

We now define T (p) by

T (p) := p′′ (2.52)

Note that

‖ T (p) ‖=‖ p′′ ‖=‖ p′ ‖=‖ p ‖ . (2.53)

so we can extend to p = 0 by T (0) = 0. We have now defined a map T : P → P ′. Moreover,

we also define

T (e+ p) := e′ + p′′ = e′ + T (p) (2.54)

To summarize, for any nonzero p ∈ P we have defined T (p) ∈ P ′ and T (e+ p) so that

s([p]) = [T (p)]

s([e+ p]) = [T (e+ p)] = [e′ + T (p)]
(2.55)

Now, the invariance of overlaps under s means that if p1, p2 ∈ P then

|(p1, p2)|2 = |(T (p1), T (p2))|2

|(e+ p1, e+ p2)|2 = |(e′ + T (p1), e
′ + T (p2))|2

(2.56)

and therefore:

1. For all p1, p2 ∈ P we have

Re((T (p1), T (p2)) = Re(p1, p2) (2.57)

2. Moreover, if (p1, p2) ∈ R then

(T (p1), T (p2)) = (p1, p2). (2.58)

Now assume that dimP > 1. Otherwise, we are in the two-dimensional case which we

have already covered.

Given any vector w ∈ P define a function χw : C → C by

T (αw) := χw(α)T (w) (2.59)

and since T is norm-preserving on P we have |χw(α)| = |α|. We are going to show that in

fact this function is independent of w. To this end choose any ON set of vectors {fi} in P.

Then we know that f ′i := T (fi) are ON. For brevity write T (αfi) = χi(α)f
′
i . Apply (2.57)

to p1 = αfi and p2 = βfi (same i) to get:

Re(χi(α)
∗χi(β)) = Re(α∗β) (2.60)
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Since χi(1) = 1, we can take α = 1 in (2.60), and hence

Re(χi(β)) = Re(β) (2.61)

Now, we saw before in our lemma that if p =
∑

i αifi then T (p) =
∑
α′
if

′
i with

|α′
i| = |αi|. We claim that in fact α′

i = χi(αi). This is trivial if αi is zero. If it is not zero

then let γi = 1/α∗
i so that (γifi, αifi) = 1. But then by (2.58) χi(γi)

∗χi(αi) = 1. On the

other hand, it is also true that (γifi, p) = 1 so again by (2.58) we have

1 = (χi(γi)f
′
i ,
∑

j

α′
jf

′
j) = χi(γi)

∗α′
i (2.62)

and hence α′
i = χi(αi). Next, we also claim that χi(α) is independent of i. To see this let

w = fi + fj with i 6= j. Then T (w) = χi(1)f
′
i + χj(1)f

′
j = f ′i + f ′j. Then

T (αw) = χi(α)f
′
i + χj(α)f

′
j = T (w)χw(α) = (f ′i + f ′j)χw(α) (2.63)

Now, another simple little lemma: Suppose that v1, v2 are two linearly independent

vectors and α1, α2, α3 are complex numbers such that

α1v1 + α2v2 = α3v3 (2.64)

Then α1 = α2 = α3. Proof: Let Pi be the orthogonal projection onto the plane perpendic-

ular to vi, i = 1, 2. Then P1v2 and P2v1 are nonzero vectors. Applying P1 and then P2 to

(2.64) gives the statement.

So, invoking (2.64) we have χ1(α) = χ2(α) = χw(α). Denote this common function as

χ(α). Using the properties we proved above we know that |χ(i)| = 1 and Re(χ(i)) = 0.

Therefore χ(i) = ηi with η = ±1. Therefore ♣At this point in

the argument does

it still depend on

f1, f2? ♣Im(χ(β)) = Re(i∗χ(β)) = ηRe(χ(i)∗χ(β) = ηRe(i∗β) = ηIm(β) (2.65)

and combining this with (2.61) we learn that for any β ∈ C

χ(β) =

{
β η = 1

β∗ η = −1
(2.66)

In particular, it follows that χ is real linear: χ(α1+α2) = χ(α1)+χ(α2) and χ(rα) = rχ(α)

for r ∈ R and α ∈ C. Therefore T : P → P ′ is also real-linear. Now we can extend T to

the entire Hilbert space: If v ∈ H then it has a unique decomposition

v = αe+ p (2.67)

with α ∈ C and p ∈ P. We then define

T (v) := χ(α)e′ + T (p) (2.68)

One can check that T (v) is either C linear or anti-linear. Moreover:

‖ T (v) ‖2= |α|2+ ‖ T (p) ‖2= |α|2+ ‖ p ‖2=‖ v ‖2 (2.69)
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Finally:

s([v]) = s([αe+ p])

= s[|α|( α|α|e+
1

|α|p)]

= s[|α|(e + 1

α
p)]

= [|α|(e′ + T (
1

α
p))]

= [|α|(e′ + 1

χ(α)
T (p))]

= [χ(α)e′ + T (p))]

= [T (v)]

(2.70)

so T really does induce the original map s. This concludes the proof of Wigner’s theorem.

Theorem: Any two lifts T, T̃ of s differ by a phase.

This is clear from the construction above: The only essential choice was the choice of

e′. Any two choices of e′ differ by a phase. The dependence on e is not so obvious, so

let us simply consider two anti-unitary operators T1, T2 which induce the same s. Then

[T1(v)] = [T2(v)] for every v and hence T1(v) = α(v)T2(v), where |α(v)| = 1. One might

worry that this phase could depend on v, however, invoking the simple fact (2.64) above

we see that - at least when dimH > 1, the phase is independent of v.

Exercise

Simplify the above proof of Wigner’s theorem!

3. A little bit about group extensions

We assume a basic familiarity with abstract group theory. However, let us recall that a

group homomorphism is a map ϕ : G1 → G2 between two groups such that

ϕ(g1g
′
1) = ϕ(g1)ϕ(g

′
1) ∀g1, g′1 ∈ G1 (3.1)

We define the kernel of ϕ to be kerϕ := {g ∈ G1|ϕ(g) = 1} and the image to be Im ϕ :=

{g2 ∈ G2|∃g1 ∈ G1, ϕ(g1) = g2}. These are natural subgroups of G1 and G2 respectively.

Given three groupsG1, G2, G3 and a pair of homomorphisms ϕ1 and ϕ2 we say the sequence

G1
ϕ1→G2

ϕ2→G3 (3.2)

is exact at G2 if kerϕ2 = Im ϕ1.

If N , G, and Q are three groups and ι and π are homomorphisms such that

1 → N
ι→ G

π→ Q→ 1 (3.3)

is exact at N,G and Q then the sequence is called a short exact sequence and we say that

G is an extension of Q by N . This is equivalent to the three conditions:
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1. ι is an injective homomorphism.

2. π is a surjective homomorphism.

3. ker(π) = Im (ι).

Note that since ι is injective we can identify N with its image in G. Then, N is a

kernel of a homomorphism (namely π) and is hence a normal or invariant subgroup (hence

the notation). Then it is well-known that G/N is a group and is in fact isomorphic to the

image of π. That group Q is thus a quotient of G (hence the notation).

There is a notion of homomorphism of two group extensions

1 → N
ι1→ G1

π1→ Q→ 1 (3.4)

1 → N
ι2→ G2

π2→ Q→ 1 (3.5)

This means that there is a group homomorphism ϕ : G1 → G2 so that the following diagram

commutes:

1 // N
ι1 // G1

ϕ

��

π1 // Q // 1

1 // N
ι2 // G2

π2 // Q // 1

(3.6)

When there is a homomorphism of group extensions based on ψ : G2 → G1 such that ϕ◦ψ
and ψ ◦ϕ are the identity then the group extensions are said to be isomorphic extensions.

Given group N and Q it can certainly happen that there is more than one nonisomor-

phic extension of Q by N . Classifying all extensions of Q by N is a difficult problem.

We would encourage the reader to think geometrically about this problem, even in

the case when Q and N are finite groups, as in Figure 1. In particular we will use the

important notion of a section, that is, a right-inverse to π: It is a map s : Q→ G such that

π(s(q)) = q for all q ∈ Q. Such sections always exist.6 Note that in general s(π(g)) 6= g.

This is obvious from Figure 1: The map π projects the entire “fiber over q” to q. The

section s chooses just one point above q in that fiber.

Now, given an extension and a choice of section s we define a map

ω : Q→ Aut(N) (3.7)

q 7→ ωq (3.8)

The definition is given by

ι(ωq(n)) = s(q)ι(n)s(q)−1 (3.9)

Because ι(N) is normal the RHS is again in ι(N). Because ι is injective ωq(n) is well-

defined. Moreover, for each q the reader should check that indeed ωq(n1n2) = ωq(n1)ωq(n2),

6By the axiom of choice. For continuous groups such as Lie groups there might or might not be continuous

sections.
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Figure 1: Illustration of a group extension 1 → N → G → Q → 1 as an N -bundle over Q. The

fiber over q ∈ Q is just the preimage under π.

therefore we really have homomorphism N → N . Moreover ωq is invertible (show this!)

and hence it is an automorphism.

Remark: Clearly the ι is a bit of a nuisance and leads to clutter and it can be safely

dropped if we consider N simply to be a subgroup of G. The confident reader is encouraged

to do this. The formulae will be a little cleaner. However, we will be pedantic and retain

the ι in most of our formulae.

Let us stress that the map ω : Q→ Aut(N) in general is not a homomorphism and in

general depends on the choice of section s. Let us see how close ω comes to being a group

homomorphism:

ι (ωq1 ◦ ωq2(n)) = s(q1)ι(ωq2(n))s(q1)
−1

= s(q1)s(q2)ι(n)(s(q1)s(q2))
−1

(3.10)

In general the section is not a homomorphism, but clearly something nice happens when

it is:

Definition: We say an extension splits if there is a section s : Q→ G which is also a

group homomorphism.
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Theorem: An extension is isomorphic to a semidirect product iff there is a splitting.

Proof :

Suppose there is a splitting. Then from (3.10) we know that

ωq1 ◦ ωq2 = ωq1q2 (3.11)

and hence q 7→ ωq defines a homomorphism ω : Q → Aut(N). Therefore, we can aim to

prove that there is an isomorphism of G with N ⋊ω Q.

Note that for any g ∈ G and any section (not necessarily a splitting):

g(s(π(g)))−1 (3.12)

maps to 1 under π (check this: it does not use the fact that s is a homomorphism).

Therefore, since the sequence is exact

g(s(π(g)))−1 = ι(n) (3.13)

for some n ∈ N . That is, every g ∈ G can be written as

g = ι(n)s(q) (3.14)

for n ∈ N and q ∈ Q.

In general if s is just a section the image s(Q) ⊂ G is not a subgroup. But if the se-

quence splits, then it is a subgroup. Moreover, when the sequence splits the decomposition

is unique:

ι(n1)s(q1) = ι(n2)s(q2) ⇒ ι(n−1
2 n1) = s(q2)s(q1)

−1 = s(q2q
−1
1 ) (3.15)

Now, applying π we learn that q1 = q2, but that implies n1 = n2.

How does the group law look like in this decomposition? Write

ι(n1)s(q1)ι(n2)s(q2) = ι(n1)
(
s(q1)ι(n2)s(q1)

−1
)
s(q1q2) (3.16)

Note that

s(q1)ι(n2)s(q1)
−1 = ι(ωq1(n2)) (3.17)

so

ι(n1)s(q1)ι(n2)s(q2) = ι (n1ωq1(n2)) s(q1q2) (3.18)

But this just means that

Ψ(n, q) = ι(n)s(q) (3.19)

is in fact an isomorphism Ψ : N ⋊ω Q→ G. Indeed equation (3.18) just says that:

Ψ(n1, q1)Ψ(n2, q2) = Ψ((n1, q1) ·ω (n2, q2)) (3.20)

where ·ω stresses that we are multiplying with the semidirect product rule.

Thus, we have shown that a split extension is isomorphic to a semidirect product

G ∼= N ⋊Q. The converse is straightforward. ♠
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Remark/Definition: In general, when N is abelian it does not follow that ι(N) is

in the center of G. However, very nice things happen when this is true. These are called

central extensions.

Exercise

If s : Q→ G is any section of π show that for all q ∈ Q,

s(q−1) = s(q)−1n = n′s(q)−1 (3.21)

for some n, n′ ∈ N .

3.1 Example 1: SU(2) and SO(3)

Returning to (3.23) there is a standard homomorphism

π : SU(2) → SO(3) (3.22)

defined by π(u) = R where

u~x · ~σu−1 = (R~x) · ~σ (3.23)

Note that:

1. Every proper rotation R comes from some u ∈ SU(2): This follows from the Euler

angle parametrization.

2. ker(π) = {±1}. To prove this we write the general SU(2) element as cosχ+sinχ~n·~σ.
This only commutes with all the σi if sinχ = 0 so cosχ = ±1.

Thus we have the extremely important extension:

1 → Z2
ι→ SU(2)

π→ SO(3) → 1 (3.24)

The Z2 is embedded as the subgroup {±1} ⊂ SU(2), so this is a central extension.

Note that there is no continuous splitting. Such a splitting πs = Id would imply that

π∗s∗ = 1 on the first homotopy group of SO(3). But that is impossible since it would have

factor through π1(SU(2)) = 1.

Remarks

1. As a manifold H1(SO(3);Z2) ∼= Z2 so there are two double covers of SO(3) and

SU(2) is the nontrivial double cover.

2. The extension (3.27) generalizes to

1 → Z2
ι→ Spin(d)

π→ SO(d) → 1 (3.25)

as well as the two Pin groups which extend O(d):

1 → Z2
ι→ Pin±(d)

π→ O(d) → 1 (3.26)

we discuss these in Section *** below.
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3.2 Example 2: Extensions of Z2 by Z2

Now let us ask which groups G can fit into

1 → Z2
ι→ G

π→ Z2 → 1 (3.27)

One obvious possibility is

G = Z2 × Z2 = 〈σ1, σ2|σ21 = σ22 = (σ1σ2)
2 = 1〉 (3.28)

We could take ι(σ1) = σ1 and π(σ1) = 1 and π(σ2) = σ2. In this case there is an obvious

splitting π(σ2) = σ2.

On the other hand, let us consider the group of complex numbers generated by ω = i.

Then G = {±1,±i} ∼= Z4. Define π : G → {±1} by π(ω) = ω2 and extending so it is a

homomorphism. Then kerπ = {1, ω2} ∼= Z2. Therefore G is also an extension of Z2 by Z2.

Yet, G cannot be isomorphic to Z2 × Z2 because G has an element of order four. There is

clearly no splitting: If s(σ) = ωj then π ◦ s(σ) = σ implies that ω2j = −1 but then

1 = s(1) = s(σ2) = s(σ)s(σ) = ω2j = −1. (3.29)

which is a contradiction.

Remarks

1. It turns out that these are the only extensions of Z2 by Z2, up to isomorphism.

2. Warning: If p is prime there are only two groups of order p2, up to isomorphism.

These can be taken to be Zp×Zp and Zp2 . Nevertheless, there are p distinct isomor-

phism classes of extensions of Zp by Zp.

3.3 Example 3: The isometry group of affine Euclidean space Ed

Definition Let V be a vector space. Then an affine space modeled on V is a principal

homogeneous space for V . That is, a space with a transitive action of V (as an abelian

group) with trivial stabilizer.

The point of the notion of an affine space is that it has no natural origin. A good

example is the space of connections on a topologically nontrivial principal bundle.

Let Ed be the affine space modeled on Rd with Euclidean metric. The isometries are

the 1-1 transformations f : Ed → Ed such that

‖ f(p1)− f(p2) ‖=‖ p1 − p2 ‖ (3.30)

for all p1, p2 ∈ Ed. These transformations form a group Euc(d).

The translations act naturally on the affine space. Given v ∈ Rd we define the isome-

try:

Tv(p) := p+ v (3.31)

so Tv1+v2 = Tv1 + Tv2 and hence v 7→ Tv defines a subgroup of Euc(d) isomorphic to Rd.
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One can show that there is a short exact sequence:

1 → Rd → Euc(d) → O(d) → 1 (3.32)

The rotation-reflections O(d) do not act naturally on affine space. In order to define such

an action one needs to choose an origin of the affine space.

If we do choose an origin then we can identify Ed ∼= Rd and then to a pair R ∈ O(d)

and v ∈ Rd we can associate the isometry: 7

{R|v} : x 7→ Rx+ v (3.33)

In this notation -known as the Seitz notation - the group multiplication law is

{R1|v1}{R2|v2} = {R1R2|v1 +R1v2} (3.34)

which makes clear that

1. There is a nontrivial automorphism used to construct the semidirect product: O(d):

{R|v}{1|w}{R|v}−1 = {1|Rw} (3.35)

and π : {R|v} → R is a surjective homomorphism Euc(d) → O(d).

2. Thus, although Rd is abelian, the extension is not a central extension.

3. On the other hand, having chosen an origin, the sequence is split. We can choose a

splitting s : O(d) → Euc(d) by

s : R 7→ {R|0} (3.36)

Exercise Manipulating the Seitz notation

a.) Show that:

{R|v}−1 = {R−1| −R−1v}
{R|0}{1|v} = {R|Rv}
{1|v}{R|0} = {R|v}
{1|w}{R|v} = {R|w + v}

{R1|v1}{R2|v2}{R1|v1}−1 = {R1R2R
−1
1 |R1v2 + (1−R1R2R

−1
1 )v1}

[{R1|v1}, {R2|v2}] = {R1R2R
−1
1 R−1

2 |(1−R1R2R
−1
1 )v1 −R1R2R

−1
1 R−1

2 (1−R2R1R
−1
2 )v2}

(3.37)

b.) Using some of these identities check the statements made above.

c.) We stressed that the splitting depends on a choice of origin. Show that another

choice of origin leads to the splitting R 7→ {R|(1−R)v}, and verify that this is a splitting.

7Logically, since we operate with R first and then translate by v the notation should have been {v|R},

but unfortunately the notation used here is the standard one.
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Figure 2: A portion of a crystal in the two-dimensional plane.

4. A little bit about crystallography

4.1 Crystals and Lattices

A crystal should be distinguished from a lattice. The term “lattice” has several related

but slightly different meanings in the literature.

Definition A lattice Λ is a free abelian group equipped with a nondegenerate, symmetric

bilinear quadratic form:

〈·, ·〉 : Λ× Λ → R (4.1)

where R is a Z-module.

The natural notion of equivalence is the following: Two lattices (Λ1, 〈·, ·〉1) and (Λ2, 〈·, ·〉2)
are equivalent if there is a group isomorphism φ : Λ1 → Λ2 so that φ∗(〈·, ·〉2) = 〈·, ·〉1.

However, we usually think of lattices as actual subsets of some vector space or affine

space. If an origin of the lattice has been chosen then we can define:

Definition An embedded lattice is a subgroup L ⊂ V where V is a vector space with

a nondegenerate symmetric bilinear quadratic form b. The induced form on Λ defines a

lattice in the previous sense.

Now there are several notions of equivalence, discussed briefly in §4.5 below. The most

obvious one is that L1 is equivalent to L2 if there is an element of the orthogonal group

O(b) of V taking L1 to L2.
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Sometimes it is important not to choose an origin, so we can also have the definition:

Definition An affine Euclidean lattice is a subset L of an affine Euclidean space En which

is a principal homogeneous space for a free abelian group (i.e. Zn). If we choose a point

as an origin we obtain an embedded lattice in real Euclidean space Rn.

Again, there are several notions of equivalence, discussed below.

Definitions Let L be an embedded lattice in Euclidean space Rn. Then:

a.) A crystal is a subset C ⊂ En invariant under translations by a rank n lattice

L(C) ⊂ Rn ⊂ Euc(n).

b.) The space group G(C) of a crystal C is the subgroup of Euc(n) taking C → C.

c.) The point group P (C) of G(C) is the projection of G(C) to O(n). Thus, G(C) sits

in a group extension:

1 → L(C) → G(C) → P (C) → 1 (4.2)

and P (C) ∼= G(C)/L(C).

d.) A crystallographic group is a discrete subgroup of Euc(n) which acts properly

discontinuously on En and has a subgroup isomorphic to an embedded rank n-dimensional

lattice in the translation subgroup. It therefore sits in a sequence of the form (4.2).

e.) If the group extension (4.2) splits the crystal is said to be symmorphic. Similarly, for

a crystallographic group G if the corresponding sequence splits it is said to be a symmorphic

group.

An example of a two-dimensional crystal is shown in Figure 2. The point group is

trivial. If we replace the starbursts and smiley faces by points then the point group is a

subgroup of O(2) isomorphic to Z2 × Z2.

4.2 Examples in one dimension

Choose a real number 0 < δ < 1 and consider the set

C = Z∐ (Z+ δ) (4.3)

In this case G(C) contains the translation group Z whose typical element is {1|n}. It also
contains {−1|δ}, which exchanges the two summands in the above disjoint union. So

1 → Z → G(C) → Z2 → 1 (4.4)

However, note that

{−1|δ}2 = 1 (4.5)

and therefore the sequence splits. This is a symmorphic crystal. Indeed, G(C) = Z⋊Z2 is

the infinite dihedral group. If we move on to consider

C = Z∐ (Z+ δ1)∐ (Z+ δ2) (4.6)

with 2δ1 − δ2 6= 0modZ and 2δ2 − δ1 6= 0modZ and 0 < δ1, δ2 <
1
2 then there is no point

group symmetry and G(C) ∼= Z.
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4.3 Examples in two dimensions

In a manner similar to our one-dimensional example, if we consider Z2 ∐ (Z2 + ~δ) for

a generic vector δ the symmetry group will be isomorphic to the infinite dihedral group

Z2 ⋊ Z2, where we can lift the Z2 to, for example {−1|~δ}.
Now let 0 < δ < 1

2 and ~δ = (δ, 12). Consider the crystal in two dimensions

C = Z2 ∐ (Z2 + ~δ) (4.7)

Now

1 → Z2 → G(C) → Z2 × Z2 → 1 (4.8)

If we let σ1, σ2 be generators of Z2 × Z2 then they have lifts:

σ̂1 : (x1, x2) 7→ (−x1 + δ, x2 +
1

2
) (4.9)

σ̂2 : (x1, x2) 7→ (x1,−x2) (4.10)

That is, in Seitz notation:

σ̂1 = {
(
−1

1

)
|(δ, 1

2
)} (4.11)

σ̂2 = {
(
1

−1

)
|0} (4.12)

Note that the square of the lift σ̂21 = {1|(0, 1)} is a nontrivial translation. Thus σi → σ̂i is

not a splitting, and in fact this crystallagraphic group is nonsymmorphic.

4.4 Examples in three dimensions: cubic symmetry and diamond structure

A nice example of the distinction between split and non-split groups in nature are the crys-

tallographic groups of the cubic lattice and of the diamond structure. These are manifested

by several materials in nature.

We begin with the hypercubic lattice, considered as the embedded lattice L = Zn ⊂
Rn. The automorphisms must be given by integer matrices which are simultaneously in

O(n). Since the rows and columns must square to 1 and be orthogonal these are signed

permutation matrices. Therefore

Aut(Zn) = Zn2 ⋊ Sn (4.13)

where Sn acts by permuting the coordinates (x1, . . . , xn) and Zn2 acts by changing signs

xi → ǫixi, ǫi ∈ {±1}.
Now, an important sublattice is the fcc lattice, defined to be

Dn := {(x1, . . . , xn) ∈ Zn|x1 + · · ·+ xn = 0 mod2} (4.14)

It is called fcc because the vectors 2ei form an n-dimensional cubic lattice (of side length

2!) but then, for the case of n = 3, the vectors (1, 1, 0), (0, 1, 1) and (1, 0, 1) and their

translates by 2ei form the midpoints of the faces of the cube.
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The dual lattice D∗
n = Hom(Dn,Z) is

D∗
n =

1

2
BCCn (4.15)

where where bcc stands for “body-centered cubic.” The lattice BCCn is the sublattice of

Zn consisting of (x1, . . . , xn) so that the xi are either all even or all odd. Note that if

all the xi are even (odd) then adding ~e produces a vector with all xi odd (even), where

~e = (1, 1, . . . , 1) = ~e1 + · · ·+ ~en. Therefore, we can write:

BCCn = 2Zn ∪ (2Zn + ~e) (4.16)

Clearly 2Zn is proportional to the “cubic” lattice. Adding in the orbit of ~e produces one

extra lattice vector inside the center of each n-cube of side length 2, hence the name bcc.

Since Dn is an integral lattice it is a sublattice of D∗
n, and it is interesting to show how

D∗
n is constructed from Dn. We have

D∗
n = Dn ∪ (Dn + s) ∪ (Dn + v) ∪ (Dn + s′) (4.17)

The vectors s, v, s′ are known as “glue vectors” and are given by

[s] = [(
1

2
, . . . ,

1

2︸ ︷︷ ︸
n times

)]

[v] = [( 0, . . . , 0︸ ︷︷ ︸
n−1 times

, 1)]

[s′] = [(
1

2
, . . . ,

1

2︸ ︷︷ ︸
n−1 times

,−1

2
)]

(4.18)

where the square brackets refer to the equivalence class under translation by Dn. ♣Explain this ♣

Remark: These lattices have a nice interpretation in the theory of simple Lie groups:

The fcc lattice is the root lattice of Dn = so(2n). The dual bcc lattice is the weight lattice

and s and s′ are spinor weights. The “glue group” or “disciminant group” is

D∗
n/Dn

∼=
{
Z2 × Z2 n = 0mod2

Z4 n = 2mod2
(4.19)

This is easily verified by noting that 2[s] = [0] for n even and 2[s] = [v] for n odd. Note

that [s]+[s′] = [v]. Related to this the center of Spin(N) is Z4 for N = 2mod4 and Z2×Z2

for N = 0mod4. ♣DO AUT AND

COMMENT ON

RELATION TO

WEYL GROUPS ♣

Now let us specialize to the case n = 3, most relevant in the current story to 3 physical

dimensions.

Exercise
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Show that if we multiply D3 by 2 then the sum of the coordinate values xi is 0mod4.

Then the three cosets are characterized by the other residues mod 4: 2(D3+s) has
∑
xi =

3mod4, but 2(D3 + s′) has
∑
xi = 1mod4, and finally 2(D3 + v) = 2mod4.

Let us consider the point group of D3. This turns out to be cubic group Oh which is

also the point group of the cubic lattice. As we showed above, Oh ∼= Z3
2 ⋉ S3 where S3

acts as a group of automorphisms on Z3
2 by permutation. It acts on R3 by permuting the

coordinates (x1, x2, x3) and by sign flips of the coordinates. Let us denote sign flips by ǫi.

Elements of S3 are denoted by (ab) and (abc).

The cubic group is a 48 element group. As an abstract group

Oh ∼= S4 × Z2 (4.20)

The Z2 factor corresponds to inversion I. 8

A much more geometrical way to think about the group elements is to think about

symmetries of the cube. The S4 factor can be thought of as permutations of the axes

through antipodal vertices of the cube. Then we can organize the elements as follows:

1. Identity.

2. 6 elements of order 4: These are order 4 rotations about an axis through two

antipodal midpoints of faces. These are denoted C4. They correspond to ǫi(ij).

3. 3 elements of order 2: These are the squares C2
4 . These correspond to ǫiǫj .

4. 6 elements of order 2: These are rotations by π about an axis which goes through

the midpoint of two opposite edges. These are denoted C2. They correspond to ǫi(jk) and

I(ij).

5. 8 elements which are 3-fold rotations around axes through opposite vertices. They

correspond to (ijk) and ǫiǫj(ijk).

6. Then we have inversion I times the above 24 elements.

See the table below for the explicit transformations.

The space group of D3 is split since the transformations {R|0} where R ∈ Oh clearly

preserves D3.

Now let us turn to the diamond structure which is, by definition, D3 ∪ (D3 + s).

Note

a.) 4s ∈ D3

b.) Diamond structure is not a lattice.

c.) The space group of the diamond structure is non-split, i.e., non-symmorphic. Half

of the elements of the point group Oh take D3+s→ D3+s
′ and hence must be accompanied

by a translation by an element of D3 + s in order to preserve the diamond structure.

For the diamond structure a natural lift of ǫi is {ǫi|s} which exchanges D3 and D3+ s.

Note that the crystal group is non-symmorphic: This lift does not square to one, and in

fact, there is no lift which will square to one. A lift of ǫiǫj is {ǫiǫj|0}. A lift of ǫ1ǫ2ǫ3 is

{ǫ1ǫ2ǫ3|s}
8The S4 is the Weyl group of so(6) = su(4).

– 28 –



Since s is invariant under the permutations the lift of any element σ ∈ S3 is simply

{σ|0}.
The following canonical lifts have half of the group elements lifting with no translation

and half lifting with a translation by s.

1. {1|0}
2. {I|s}
3. {C2

4 |0}
4. {IC2

4 |s}
5. {C2|s}
6. {IC2|0}
7. {C3|s}
8. {IC3|0}
9. {C4|s}
10. {IC4|0}
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Cube symmetry Z3
2 ⋉ S3 (x1, x2, x3) (T 3)g Lift to G(C)

1 1 (x1, x2, x3) (y, y′, y′′) {1|0}
I ǫ1ǫ2ǫ3 (x̄1, x̄2, x̄3) (ε, ε′, ε′′) {I|s}
C2
4 ǫiǫj (x̄1, x̄2, x3) (ε, ε′, y) {C2

4 |0}
(x̄1, x2, x̄3) (ε, y, ε′)

(x1, x̄2, x̄3) (y, ε, ε′)

IC2
4 ǫi (x1, x2, x̄3) (y, y′ε) {IC2

4 |s}
(x1, x̄2, x3) (y, ε, y′)

(x̄1, x2, x3) (ε, y, y′)

C2 ǫi(jk) (x̄1, x3, x2) (ε, y, y) {C2|s}
(x3, x̄2, x1) (y, ε, y)

(x2, x1, x̄3) (y, y, ε)

I(ij) (x̄1, x̄3, x̄2) (ε, y, ȳ)

(x̄3, x̄2, x̄1) (y, ε, ȳ)

(x̄2, x̄1, x̄3) (y, ȳ, ε)

IC2 ǫiǫj(ij) (x1, x̄3, x̄2) (y′, y, ȳ) {IC2|0}
(x̄3, x2, x̄1) (y, y′, ȳ)

(x̄2, x̄1, x3) (y, ȳ, y′)

(ij) (x1, x3, x2) (y′, y, y)

(x3, x2, x1) (y, y′, y)

(x2, x1, x3) (y, y, y′)

C3 (ijk) (x2, x3, x1) (y, y, y) {C3|0}
(x3, x1, x2) (y, y, y)

ǫiǫj(ijk) (x2, x̄3, x̄1) (y, y, ȳ)

(x̄2, x3, x̄1) (ȳ, y, y)

(x̄2, x̄3, x1) (y, ȳ, y)

(x3, x̄1, x̄2) (y, ȳ, y)

(x̄3, x1, x̄2) (y, y, ȳ)

(x̄3, x̄1, x2) (ȳ, y, y)

IC3 I(ijk) (x̄2, x̄3, x̄1) (ε, ε, ε) {IC3|s}
(x̄3, x̄1, x̄2) (ε, ε, ε)

ǫi(ijk) (x̄2, x3, x1) (ε, ε, ε)

+ 5 more

C4 ǫi(ij) (x̄2, x1, x3) (ε, ε, y) {C4|s}
(x2, x̄1, x3) (ε, ε, y)

(x̄3, x2, x1) (ε, y, ε)

(x3, x2, x̄1) (ε, y, ε)

(x1, x̄3, x2) (y, ε, ε)

(x1, x3, x̄2) (y, ε, ε)

IC4 ǫjǫk(ij) (x2, x̄1, x̄3) (ε, ε, ε′) {IC4|0}
(x̄2, x1, x̄3) (ε, ε, ε′)

(x3, x̄2, x̄1) (ε, ε′, ε)

(x̄3, x̄2, x1) (ε, ε′, ε)

(x̄1, x3, x̄2) (ε′, ε, ε)

(x̄1, x̄3, x2) (ε′, ε, ε)
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Notation: ε, ε′, ε′′ stands for 0 or 1
2 . xi stand for real numbers modulo 1. (x1, x2, x3)

is a coordinate system on the Brillouin torus of the cubic lattice. Recall that it must be

quotiented by x → x + s. y, y′, y′′ stand for real numbers modulo 1. The primes here

indicate that ε and ε′ might be different, although they need not be different. Similarly

for the y, y′. A bar x̄ means −x. It is standard CM notation. A blank means the entry is

identical to the one above it.

4.5 A word about classification of lattices and crystallographic groups

This is an enormous subject, but perhaps a few words would help put some of the material

into context.

When classifying lattices or crystallographic groups we need to be careful about the

notion of equivalence.

If we want to speak of the classification of integral lattices that amounts to the classi-

fication of positive definite matrices Q over Z under the equivalence

Q ∼ SQStr S ∈ GL(n,Z) (4.21)

This is an extremely difficult and subtle problem with lots of nontrivial number theory -

already for the case n = 2.

Let us turn to the classification of embedded lattices in Euclidean Rn. First, note that

the set of bases for a vector space V is a principal homogeneous space for GL(n,R): Any

two bases are related by such a transformation. If we choose one basis and identify V ∼= Rn

then we can choose the standard ordered ON basis {ei}

∑

i

xiei =



x1
...

xn


 (4.22)

Then, given any ordered basis {b(1), . . . , b(n)} of Rn we can form a matrix B whose columns

are the components b
(α)
i of those vectors. The change of basis formula for a linear trans-

formation is b̃(β) =
∑

α Tαβb
(α) which acts on B on the right: B → BT .

Now, consider an embedded lattice L ⊂ Rn. Then if we choose one basis B ∈ GL(n,R)
for L any other basis is related by right-multiplication by an element T ∈ GL(n,Z). Note

well that T must be an integral matrix invertible over the integers! Therefore, we can

identify a lattice in a basis-independent way with a single coset of GL(n,Z) in GL(n,R)

and the set of lattices is in one-one correspondence with the set of orbits

GL(n,R)/GL(n,Z) (4.23)

We have not quite characterized the set of lattices intrinsically because our construction

made a choice of basis {ei}. We can eliminate this dependence by left-multiplication of b

by elements of O(n). Or - to take an active viewpoint - we can naturally identify two em-

bedded lattices L and L′ if one can be brought to the other through an (active) orthogonal

transformation. Thus, the set of lattices in Rn is canonically identified with

O(n)\GL(n,R)/GL(n,Z) (4.24)
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To make a connection with the kind of classification discussed around (4.21) note that if

we are given a basis B of L then Q = BtrB is a symmetric positive definite matrix of

inner products, invariant under B → OB, O ∈ O(n). Under change of basis for L, Q is

transformed as in (4.21).

Now (4.24) is an interesting manifold, but for many purposes it is far too fine a clas-

sification to be useful. For example L = Zn and L = λZn are considered different for any

nonzero real number λ 6= ±1.

A courser - but more useful - classification is obtained by the general notion of strata

of a group action: [28]

Definition If G acts on a set M then a stratum is the set of G-orbits whose stabilizer

groups are conjugate in G. The set of strata is denoted M ‖ G.
As an example, consider the Lorentz group acting on a vector space with Minkowskian

signature. There are four strata (if we consider all four components of the Lorentz group)

corresponding to spacelike, lightlike, timelike orbits and the origin.

If we consider the set of strata of O(n) acting on the set of embedded lattices then we

will find a finite set. And, for dimension n = 3 we get the 7 crystal classes [30], named:

Triclinic, Monoclinic,Orthorhombic, Tetragonal, Trigonal, Hexagonal, Cubic. (There is a

partial order on this set so they are almost always listed in this order.)

When we consider classification of crystallographic groups G ⊂ Euc(n) we again must

consider the proper notion of equivalence. The set of conjugacy classes within Euc(n) is

continuously infinite. Again this is related to the fact that continuous deformations of

lattices might change their “symmetries.” The standard notion of equivalence then is to

consider G and G′ equivalent if, as subgroups of Aff(n) there is an element s ∈ Aff(n) such

that G′ = sGs−1.

Warning! Euc(n) ⊂ Aff(n) is not a normal subgroup. Similarly, O(n) ⊂ GL(n,R)

is not a normal subgroup. Therefore, we are not saying that any affine transformation

deforming a crystal leads to a crystal with the “same” symmetry.

Before stating the classification result it is important to distinguish between Aff(n)

and its orientation-preserving subgroup Aff+(n). This is the subgroup which projects to

GL+(n,R) ⊂ GL(n,R), the subgroup of invertible matrices with positive determinant.

The result of Fedorov and Schoenfliess from 1892 is that in 3 dimensions if we use

conjugacy in Aff+(3) then there are 230 types of crystallographic group. There are 11

types which can be related to each other by an improper, but not by a proper affine

transformation, and hence there are 219 types related by conjugacy in Aff+(3)

If we view the space group as an extension of a finite subgroup by a lattice then

the finite subgroup acts as a group of automorphisms of the lattice and hence has an

representation by integral matrices. The pair (P, ρ) where P is a point group and ρ is an

integral representation up to conjugacy in GL(n,Z) is called an arithmetic type. There are

73 such types in n = 3 dimensions. Of the 230 space groups 73 are split and the remaining

157 are nonsplit.

In his famous list of problems for the 20th century Hilbert’s 18th problem (part of it)

asked whether there were a finite set of space groups in n dimensions for all n. This was
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answered in the affirmative by Bieberbach in 1910. Such groups do in fact have physical

applications. For example, they are very useful in orbifold constructions of conformal field

theories.

5. Restatement of Wigner’s theorem

Now that we have the language of group extensions it is instructive to give simple and

concise formulation of Wigner’s theorem.

Let us begin by introducing a new group AutR(H). This is the group whose elements

are unitary and anti-unitary transformations on H. The unitary operators U(H) form a

subgroup of AutR(H). If u is unitary and a is anti-unitary then ua and au are also anti-

unitary, but if a1, a2 are antiunitary, then a1a2 is unitary. Thus the set of all unitary and

anti-unitary operators on H form a group, which we will denote as AutR(H). Thus we

have the exact sequence

1 → U(H)
ι→ AutR(H)

φ→ Z2 → 1 (5.1)

where φ is the homomorphism:

φ(S) :=

{
+1 S unitary

−1 S anti− unitary
(5.2)

Now, in Section *** above we defined a homomorphism π : AutR(H) → Autqtm(PH)

by π(S)(ℓ) = ℓS(ψ) if ℓ = ℓψ. (Check it is indeed a homomorphism.) Now we recognize the

state of Wigner’s theorem as the simple statement that π is surjective. What is the kernel?

We also showed that ker(π) ∼= U(1) where U(1) is the group of unitary transformations:

ψ 7→ zψ (5.3)

with |z| = 1. We will often denote this unitary transformation simply by z. Thus, we have

the exact sequence

1 → U(1)
ι→ AutR(H)

π→ Autqtm(PH) → 1 (5.4)

Remarks:

1. For S ∈ AutR(H)) we have

Sz = zφ(S)S =

{
zS φ(S) = +1

z̄S φ(S) = −1
(5.5)

So the sequence (5.4) is not central!

2. If we restrict the sequence (5.4) to ker(φ) then we get (taking dimH = N here, but

it also holds in infinite dimensions):

1 → U(1)
ι→ U(N)

π→ PU(N) → 1 (5.6)

which is a central extension, but it is not split. This is in fact the source of interesting

things like anomalies in quantum mechanics.
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3. The group AutR(H) has two connected components, measured by the homomor-

phism φ used in (5.1). This homomorphism “factors through” a homomorphism

φ′ : Autqtm(PH) → Z2 which likewise detects the connected component of this two-

component group. The phrase “factors through” means that φ and φ′ fit into the

diagram:

1 // U(1)
ι // AutR(H)

φ

''❖❖
❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

❖

π // Autqtm(PH)

φ′

��

// 1

Z2

(5.7)

Example: Again let us take H ∼= C2. As we saw,

Autqtm(PH) = O(3) = SO(3) ∐ P · SO(3), (5.8)

where P is any reflection. 9 Similarly, if we choose a basis for H then we can identify

AutR(H) ∼= U(2) ∐ C · U(2) (5.9)

where C is complex conjugation with respect to that basis so that Cu = u∗C. (Note that C
does not have a 2× 2 matrix representation.) Now

PU(2) := U(2)/U(1) ∼= SU(2)/Z2
∼= SO(3) (5.10)

Again, there is no continuous cross-section s : SO(3) → U(2) because such a continuous

map would induce

s∗ : π1(SO(3)) → π1(U(2)) (5.11)

but this would be a homomorphism s∗ : Z2 → Z and the only such homomorphism is zero.

But that is incompatible with π ◦ s = Id which implies π∗s∗ = Id. A splitting of (5.6)

would restrict to one for N = 2, so there is also no splitting for N > 2.

Exercise

Show that the sequence (5.1) splits.

6. φ-twisted extensions

So far we have discussed the group of all potential automorphisms of a quantum system

Autqtm(PH). However, when we include dynamics, and hence Hamiltonians, a given quan-

tum system will in general only have a subgroup of symmetries. If a physical system has

a symmetry group G then we should have a homomorphism ρ : G→ Autqtm(PH).

9Please do not confuse this with the notation PGL(n), PU(n) etc!
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In terms of diagrams we have

G

ρ

��
1 // U(1)

ι // AutR(H)
π // Autqtm(PH) // 1

(6.1)

The question we now want to address is:

How are G-symmetries represented on Hilbert space H?

Note that each operation ρ(g) in the group of quantum automorphisms has an entire

circle of possible lifts in AutR(H). These operators will form a group of operators which is

a certain extension of G. What extension to we get?

To answer this we need the “pullback construction.”

6.1 The pullback construction

There is one general construction with extensions which is useful when discussing symme-

tries in quantum mechanics. This is the notion of pullback extension. Suppose we are given

both an extension

1 // H ′ ι // H
π // H ′′ // 1 (6.2)

and a homomorphism

ρ : G′′ → H ′′ (6.3)

Then the pullback extension is defined by a subgroup of the Cartesian productG ⊂ H×G′′:

G := {(h, g′′)|π(h) = ρ(g′′)} ⊂ H ×G′′ (6.4)

and is an extension of the form

1 // H ′ ι // G
π̃ // G′′ // 1 (6.5)

where π̃(h, g′′) := g′′. It is easy to see that this extension fits in the commutative diagram

1 // H ′ // G

ρ̃
��

π̃ // G′′ //

ρ
��

1

1 // H ′ // H
π // H ′′ // 1

(6.6)

Moreover, show that this diagram can be used to define the pullback extension.

Remark: In terms of principal bundles, this coincides with the pullback of a principal

H ′ bundle over H ′′ via the map ρ : G′′ → H ′′.

6.2 φ-twisted extensions

Now, let us return to the situation of (6.1) and apply the pullback construction to define

a group Gtw that fits in the diagram:
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1 // U(1) // Gtw

ρtw

��

π̃ // G //

ρ

��

1

1 // U(1)
ι // AutR(H)

π // Autqtm(PH) // 1

(6.7)

That is, the group of operators representing the G-symmetries of a quantum system

form an extension of G by U(1).

This motivates two definitions. First

Definition: A Z2-graded group is a pair (G,φ) where G is a group and φ : G → Z2 is a

homomorphism.

When we have such a group of course we have an extension of Z2 by G. Our examples

above show that in general it does not split. The group is a disjoint union G0 ∐ G1 of

elements which are even and odd under φ and we have the Z2-graded multiplications:

G0 ×G0 → G0

G0 ×G1 → G1

G1 ×G0 → G1

G1 ×G1 → G0

(6.8)

This is just saying that φ is a homomorphism.

Next we have the

Definition Given a Z2-graded group (G,φ) we define a φ-twisted extension of G to be an

extension of the form

1 // U(1) // Gtw π // G // 1 (6.9)

where Gtw is a group such that

g̃z = zφ(g)g̃ =

{
zg̃ φ(g) = 1

z̄g̃ φ(g) = −1
(6.10)

where g̃ is any lift of g ∈ G, and |z| = 1 is any phase. Put differently, if we define φtw := φ◦π
then

g̃z = zφ
tw(g̃)g̃ ∀g̃ ∈ Gtw (6.11)

Example

Take G = Z2 It will be convenient to denote M2 = {1, T̄ }, with T̄ 2 = 1. Of course,

M2
∼= Z2. We take the Z2 grading to be φ(T̄ ) = −1, that is, φ : Z2 → Z2 is the identity

homomorphism. There are two inequivalent φ-twisted extensions:

1 // U(1) //M tw
2

π̃ //M2
// 1 (6.12)
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Choose a lift T of T̄ . Then π(T 2) = 1, so T 2 = z ∈ U(1). But, then

Tz = TT 2 = T 2T = zT (6.13)

on the other hand, φ(T̄ ) = −1 so

Tz = z−1T (6.14)

Therefore z2 = 1, so z = ±1, and therefore T 2 = ±1. Thus the two groups are

M±
2 = {zT |zT = Tz−1 & T 2 = ±1} (6.15)

These possibilities are really distinct: If T ′ is another lift of T̄ then T ′ = µT for some

µ ∈ U(1) and so

(T ′)2 = (µT )2 = µµ̄T 2 = T 2 (6.16)

Remarks

1. For φ = 1 a φ-twisted extension is a central extension.

2. For a given Z2-graded group (G,φ) there can be several non-isomorphic φ-twisted

extensions. These isomorphism classes can be classified by (twisted) group cohomol-

ogy.

3. It turns out that M±
2 is also a double cover of O(2) and in fact these turn out to be

isomorphic to the Pin-groups Pin±(2).

4. The representation (Gtw, ρtw) is always guaranteed to act on the Hilbert space, but

in a particular situation it might well happen that a set of lifts of ρ(g) generates a

smaller group. For example, suppose that G = M2. We therefore have M+
2 or M−

2

acting on H. If M+
2 acts then in fact s : T̄ → T is a splitting and a Z2 group acts on

H. On the other hand, if M−
2 acts then T itself generates a Z4 subgroup of M−

2 . So,

Z2 does not act on the Hilbert space, but a double cover of it does.

5. The above mechanism is the basic origin of anomalies in quantum systems: One

expects a G symmetry but in fact only a φ-twisted extension Gtw acts on H. Thus,

in the example of M−
2 the fact that T generates a Z4 group of operators acting on H

rather than a Z2 group of operators may be regarded as a kind of “anomaly.”

7. Real, complex, and quaternionic vector spaces

7.1 Complex structure on a real vector space

Definition Let V be a real vector space. A complex structure on V is a linear map

I : V → V such that I2 = −1.

Choose a squareroot of −1 and denote it i. If V is a real vector space with a complex

structure I, then we can define an associated complex vector space (V, I). We take (V, I)
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to be identical with V , as sets, but define the scalar multiplication of a complex number

z ∈ C on a vector v by

z · v := x · v + I(y · v) = x · v + y · I(v) (7.1)

where z = x+ iy with x, y ∈ R.

If V is finite dimensional and has a complex structure its dimension (as a real vector

space) is even. The dimension of (V, I) as a complex vector space is

dimC(V, I) =
1

2
dimRV (7.2)

We will prove this as follows. First note that if v is any nonzero vector in V then v

and Iv are clearly linearly independent over R. Linear independence is equivalent to the

statement that

v = αIv (7.3)

for a real number α. But then, acting with I we get

Iv = −αv (7.4)

and hence α2 = −1, which is not possible. Now, suppose that there is a set of linearly

independent vectors v1, . . . , vn in V with

S = {v1, Iv1, v2, Iv2, . . . , vn, Ivn} (7.5)

linearly independent over R. Suppose that w is a vector not in the linear span of S. Then
we claim that

{w, Iw} ∪ S (7.6)

is also linearly independent over R. A linear dependence would have to take the form

αw + βIw +
∑

i

(γivi + δiIvi) = 0 (7.7)

Acting on this equation by I, and then taking a suitable combination of the two equations

gives

(α2 + β2)w +
∑

i

((αγi + βδi)vi + (αδi − βγi)Ivi) = 0 (7.8)

But α and β cannot be both zero since S was a linearly independent set, and since they are

real α2+β2 6= 0. But this means that w is in the linear span of S, which is a contradiction.

It then follows that the maximal set of the form S must be a basis for V , which therefore

must have a basis of the form S for some n.

Note that we have proven a nice lemma: ♣Note that in

several of the later

chapters our

basepoint complex

structure is −I0.

Need to straighten

out this convention!

♣

Lemma If I is any 2n×2n real matrix which squares to −12n then there is S ∈ GL(2n,R)

such that

SIS−1 = I0 :=

(
0 −1n
1n 0

)
(7.9)

Remarks
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1. Using the Jordan canonical form theorem we learn that SIS−1 = I0 for some complex

matrix S ∈ GL(2n,C), but we proved something stronger above because our matrix

S was real.

2. While v and I(v) are linearly independent in the real vector space V they are linearly

dependent in the complex vector space (V, I). The very definition i · v := I(v)

expresses this linear dependence!

Example Consider the real vector space V = R2. Let us choose

I =

(
0 −1

1 0

)
(7.10)

Then multiplication of the complex scalar z = x+ iy, with x, y ∈ R on a vector

(
a1
a2

)
∈ R2

can be defined by:

(x+ iy) ·
(
a1
a2

)
:=

(
a1x− a2y

a1y + a2x

)
(7.11)

By equation (7.2) this must be a one-complex dimensional vector space, so it should be

isomorphic to C as a complex vector space. Indeed this is the case. Define Ψ : (V, I) → C

by

Ψ :

(
a1
a2

)
7→ a1 + ia2 (7.12)

Then one can check (exercise!) that this is an isomorphism of complex vector spaces.

Quite generally, if I is a complex structure then so is Ĩ = −I. So what happens if we

take our complex structure to be instead:

Ĩ =

(
0 1

−1 0

)
(7.13)

Now the rule for multiplication by a complex number in (V, Ĩ) is

(x+ iy) ·
(
a1
a2

)
:=

(
a1x+ a2y

−a1y + a2x

)
(7.14)

Now one can check that Ψ̃ : (V, Ĩ) → C defined by

Ψ̃ :

(
a1
a2

)
7→ a1 − ia2 (7.15)

is also an isomorphism of complex vector spaces. (Check carefully that Ψ̃(z~a) = zΨ̃(~a). )

How are these two constructions related? Note that if we introduce the real linear

operator

C :=

(
1 0

0 −1

)
(7.16)
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then C2 = 1 and

CIC−1 = CIC = −I (7.17)

We see from the above example that a real vector space can have more than one

complex structure. Indeed, it follows from our Lemma above that the space of all complex

structures on R2n is a homogeneous space for GL(2n,R). The stabilizer of I0 is the set of

GL(2n,R) matrices of the form

(
A B

−B A

)
= A⊗ 12 + iB ⊗ σ2 (7.18)

and since σ2 is conjugate to σ3, over the complex numbers this can be conjugated to

(
A+ iB 0

0 A− iB

)
(7.19)

The determinant is clearly |det(A + iB)|2 and hence A + iB ∈ GL(n,C). Therefore, the

stabilizer of I0 is a group isomorphic to GL(n,C) and hence we have proven:

Proposition: The space of complex structures on R2n is:

CplxStr(R2n) = GL(2n,R)/GL(n,C) (7.20)

If we introduce a metric g on V then we can say that a complex structure I is compatible

with g if

g(Iv, Iv′) = g(v, v′) (7.21)

So, when expressed relative to an ON basis for g the matrix I is orthogonal: Itr = I−1.

But I−1 = −I, and hence I is anti-symmetric. Then it is well known that there is a matrix

S ∈ O(2n) so that

SIS−1 = I0 (7.22)

Now the stabilizer of I0 in O(2n) is of the form (7.18) and can therefore be conjugated to

(7.19). But now A+ iB must be a unitary matrix so

The space of complex structures on R2n compatible with the Euclidean metric a ho-

mogeneous space isomorphic to

CmptCplxStr(R2n) ∼= O(2n)/U(n) (7.23)

where A+ iB ∈ U(n) with A,B real is embedded into O(2n) as in (7.18). ♣Put here a

discussion of the

two components

and the relation

between I and

orientation. ♣
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7.2 Real structure on a complex vector space

Given a complex vector space V can we produce a real vector space? Of course, by

restriction of scalars, if V is complex, then it is also a real vector space, which we can call

VR. V and VR are the same as sets but in VR the vectors v and iv, are linearly independent

(they are not linearly independent in V !). Thus:

dimRVR = 2dimCV. (7.24)

There is another way we can get real vector spaces out of complex vector spaces. A

real structure on a complex vector V space produces a different real vector space of half

the real dimension of VR, that is, a vector space of real dimension equal to the complex

dimension of V .

Definition An antilinear map T : V → V on a complex vector space V satisfies

1. T (v + v′) = T (v) + T (v′),

2. T (αv) = α∗T (v) where α ∈ C and v ∈ V .

Note that T is a linear map on the underlying real vector space VR.

Definition Suppose V is a complex vector space. Then a real structure on V is an

antilinear map C : V → V such that C2 = +1.

If C is a real structure on a complex vector space V then we can define real vectors to

be those such that

C(v) = v (7.25)

Let us call the set of such real vectors V+. This set is a real vector space, but it is not a

complex vector space, because C is antilinear. Indeed, if C(v) = +v then C(iv) = −iv. If

we let V− be the imaginary vectors, for which C(v) = −v then we claim

VR = V+ ⊕ V− (7.26)

The proof is simply the isomorphism

v 7→
(
v + C(v)

2

)
⊕
(
v − C(v)

2

)
(7.27)

Moreover multiplication by i defines an isomorphism of real vector spaces: V+ ∼= V−. Thus

we have

dimRV+ = dimCV (7.28)

Example V = C,

C : x+ iy → eiϕ(x− iy) (7.29)

The fixed vectors under C consist of the real line at angle ϕ/2 to the x-axis as shown in

Figure 3.
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Figure 3: The real structure C has fixed vectors given by the blue line. This is a real vector space

determined by the real structure C.

In general, if V is a finite dimensional complex vector space, if we choose any basis

(over C) {vi} for V then we can define a real structure:

C(
∑

i

zivi) =
∑

i

z̄ivi (7.30)

and thus

V+ = {
∑

aivi|ai ∈ R} (7.31)

The space of real structures on Cn is GL(n,C)/GL(n,R). ♣EXPLAIN THIS

♣

Remark: We introduced a group AutR(H). This is the automorphisms of H as a Hilbert

space which are real-linear. It should be distinguished from Aut(HR) which would be a

much larger group of automorphisms of a real inner product space HR.

Exercise Antilinear maps from the real point of view

SupposeW is a real vector space with complex structure I giving us a complex vector

space (W, I).

Show that an antilinear map T : (W, I) → (W, I) is the same thing as a real linear

transformation T : W → W such that

TI + IT = 0 (7.32)

7.2.1 Complex conjugate of a complex vector space

There is another viewpoint on what a real structure is which can be very useful. If V is

a complex vector space then we can, canonically, define another complex vector space V̄ .

We begin by declaring V̄ to be the same set. Thus, for every vector v ∈ V , the same

vector, regarded as an element of V̄ is simply written v̄. However, V̄ is different from V as
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a complex vector space because we alter the vector space structure by altering the rule for

scalar multiplication by α ∈ C:

α · v̄ := α∗ · v (7.33)

where α∗ is the complex conjugate in C.

Of course V̄ = V .

Note that, given any C-linear map T : V → W between complex vector spaces there

is, canonically, a C-linear map

T̄ : V̄ → W̄ (7.34)

defined by

T̄ (v̄) := T (v) (7.35)

With the notion of V̄ we can give an alternative definition of an anti-linear map: An

anti-linear map T : V → V is the same as a C-linear map T : V → V̄ , related by

T (v) = T (v) (7.36)

Similarly, we can give an alternative definition of a real structure on a complex vector

space V as a C- linear map

C : V → V̄ (7.37)

such that CC̄ = 1 and C̄C = 1, where C̄ : V̄ → V is canonically determined by C as above.

In order to relate this to the previous viewpoint note that C : v 7→ C̄(v̄) is an antilinear

transformation V → V which squares to 1.

Remark: Real structures always exist and therefore V and V̄ are isomorphic complex

vector spaces, but not canonically isomorphic.

Exercise

A linear transformation T : V → W between two complex vector spaces with real

structures CV and CW commutes with the real structures if the diagram

V
T→ W

↓ CV ↓ CW
V̄

T̄→ W̄

(7.38)

commutes.

Show that in this situation T defines an R-linear transformation on the underlying real

vector spaces: T+ : V+ →W+.

Exercise Complex conjugate from the real point of view
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Suppose W is a real vector space with complex structure I so that we can form the

complex vector space (W, I). Show that

(W, I) = (W,−I) (7.39)

7.3 Complexification

If V is a real vector space then we can define its complexification VC by putting a complex

structure on V ⊕ V . This is simply the real linear transformation

I : (v1, v2) 7→ (−v2, v1) (7.40)

and clearly I2 = −1. Another way to define the complexification of V is to take

VC := V ⊗R C. (7.41)

Note that we are taking a tensor product of vector spaces over R to get a real vector space,

but there is a natural action of the complex numbers on these vectors:

z · (v ⊗ z′) := v ⊗ zz′ (7.42)

making VC into a complex vector space. In an exercise below you show that these two

definitions are equivalent.

Note that

dimCVC = dimRV (7.43)

Note that VC has a canonical real structure. Indeed

VC = V ⊗R C (7.44)

and we can define C : VC → VC by setting

C : v ⊗ 1 7→ v ⊗ 1̄ (7.45)

and extending by C-linearity. Thus

C(v ⊗ z) = C(z · (v ⊗ 1)) def of VC

= z · C((v ⊗ 1)) C− linear extension

= z · (v ⊗ 1̄)

= v ⊗ z∗ definition of scalar action onV̄C

(7.46)

Finally, it is interesting to ask what happens when one begins with a complex vector

space V and then complexifies the underlying real space VR. If V is complex then we claim

there is an isomorphism of complex vector spaces:

(VR)C ∼= V ⊕ V̄ (7.47)
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Proof: The vector space (VR)C is, by definition the space of pairs (v1, v2), vi ∈ VR with

complex structure defined by I : (v1, v2) → (−v2, v1). Now we map:

ψ : (v1, v2) 7→ (v1 + iv2)⊕ (v1 − iv2) (7.48)

and compute

(x+ Iy) · (v1, v2) = (xv1 − yv2, xv2 + yv1) (7.49)

so

ψ : z · (v1, v2) 7→ (x+ iy) · (v1 + iv2)⊕ (x− iy) · (v1 − iv2) = z · v + z̄ · v̄ (7.50)

Another way to look at (7.47) is as follows. Let V be a real vector space with complex

structure I. Now consider V ⊗R C. There are now two ways of multiplying by a complex

number z = x + iy: We can multiply the second factor C by z or we could operate on

the first factor with x+ Iy. We can decompose our space V ⊗R C into eigenspaces where

Iv = +iv and Iv = −iv using the projection operators

P± =
1

2
(1∓ I ⊗ i) (7.51)

The image of P+ is the vector space V of vectors with Iv = iv and the image of P− is the

vector space V̄ of vectors with Iv = −iv.

Exercise Equivalence of two definitions

a.) Suppose V is a real vector space. Show that the two definitions (7.40) and (7.41)

define canonically isomorphic complex vector spaces. 10

b.) If V is a real vector space write the canonical real structure of VC in terms of pairs

(v1, v2) in V ⊕ V . 11

Exercise

Show that

C⊗R C = C⊕ C (7.52)

C⊗C C ∼= C (7.53)

as algebras.

10Answer: (v1, v2) → v1 ⊗ 1 + v2 ⊗ i.
11Answer: C : (v1, v2) → (v1,−v2). Check that this anticommutes with I .
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Exercise

Suppose V is a complex vector space with a real structure C and that V+ is the real

vector space of fixed points of C.

Show that, as complex vector spaces

V ∼= V+ ⊗R C. (7.54)

7.4 The quaternions and quaternionic vector spaces

If V is a complex vector space then the complex vector space

V ⊕ V̄ (7.55)

has some interesting extra structure. Of course, it is a complex vector space, so it has

multiplication by I:

I : (v1, v2) 7→ (iv1, iv2) = (iv1,−iv2) (7.56)

But now, let us introduce another operator J

J : (v1, v2) 7→ (−v2, v1) (7.57)

Note that

1. J2 = −1

2. IJ + JI = 0. So J is C-anti-linear.

Whenever we have a vector space with two independent operators I and J with

I2 = −1 J2 = −1 IJ + JI = 0 (7.58)

we get a third: K := IJ . Note that

I2 = −1 J2 = −1 K2 = −1 (7.59)

IJ + JI = JK +KJ = KI + IK = 0 (7.60)

These are the abstract relations of the quaternions. To put this in proper context recall

the definition:

Definition An algebra A over a field κ is a κ-vector space together with a κ-bilinear map

A×A → A.

Concretely, this means that there is a multiplication A × A → A written a · b for

a, b ∈ A such that

1. a · (b+ c) = a · b+ a · c,

2. (b+ c) · a = b · a+ c · a,
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3. α(a · b) = (αa) · b = a · (αb), for α ∈ κ.

If there is a multiplicative unit A is called unital. If a · (b · c) = (a · b) · c then A is

called associative.

A good example of an algebra over κ is End(V ) where V is a vector space over κ.

Choosing a basis we can identify this with the set of n × n matrices over κ. We will see

many more examples.

Definition The quaternion algebra H is the algebra over R with generators i, j, k satisfying

the relations

i2 = −1 j2 = −1 k2 = −1 (7.61)

ij + ji = ik+ ki = jk+ kj = 0 (7.62)

The quaternions form a four-dimensional algebra over R, as a vector space we can

write

H = Ri⊕ Rj⊕Rk⊕ R ∼= R4 (7.63)

The algebra is associative, but noncommutative. It has a rich and colorful history, which

we will not recount here. Note that if we denote a generic quaternion by

q = x1i+ x2j+ x3k+ x4 (7.64)

then we can define the conjugate quaternion by the equation

q̄ := −x1i− x2j− x3k+ x4 (7.65)

and

qq̄ = q̄q = xµxµ (7.66)

Definition: A quaternionic vector space is a vector space V over κ = R together with

three real linear operators I, J,K ∈ End(V ) satisfying the quaternion relations. In other

words, it is a real vector space which is a module for the quaternion algebra.

Just as we can have a complex structure on a real vector space, so we can have a

quaternionic structure on a complex vector space V . This is a C-anti-linear operator K on

V which squares to −1. Once we have K2 = −1 we can combine with the operator I which

is just multiplication by
√
−1, to produce J = KI and then we can check the quaternion

relations. The underlying real space VR is then a quaternionic vector space.

It is possible to put a quaternionic Hermitian structure on a quaternionic vector space

and thereby define the quaternionic unitary group. Alternatively, we can define U(n,H)

as the group of n × n matrices over H such that uu† = u†u = 1. In order to define the

conjugate-transpose matrix we use the quaternionic conjugation q → q̄ defined above.

Exercise

Show that U(1,H) ∼= SU(2)
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Exercise

a.) Show that a

i →
√
−1σ1 j → −

√
−1σ2 k →

√
−1σ3 (7.67)

defines a set of 2 × 2 complex matrices satisfying the quaternion algebra. Under this

mapping a quaternion q is identified with a 2× 2 complex matrix

q → ρ(q) =

(
z −w̄
w z̄

)
(7.68)

with z = x4 + ix3 and w = x2 + ix1.

b.) Show that det(ρ(q)) = qq̄ = xµxµ and use this to define a homomorphism SU(2)×
SU(2) → SO(4).

Exercise Complex structures on R4

a.) Show that the complex structures on R4 compatible with the Euclidean metric can

be identified as the maps

q 7→ nq n2 = −1 (7.69)

OR

q 7→ qn n2 = −1 (7.70)

b.) Use this to show that the space of such complex structures is S2 ∐ S2.

c.) Explain the relation to O(4)/U(2).

Exercise A natural sphere of complex structures

Show that if V is a quaternionic vector space with complex structures I, J,K then

there is a natural sphere of complex structures give by

I = x1I + x2J + x3K x21 + x22 + x23 = 1 (7.71)

Exercise Regular representation ♣This is too

important to be an

exercise, and is used

heavily later. ♣
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Compute the left and right regular representations of H on itself Choose a real basis

for H with v1 = i, v2 = j, v3 = k, v4 = 1. Let L(q) denote left-multiplication by a quaternion

q and R(q) right-multiplciation by q. Then the representation matrices are:

L(q)va := q · va := L(q)bavb (7.72)

R(q)va := va · q := R(q)bavb (7.73)

a.) Show that:

L(i) =




0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0


 (7.74)

L(j) =




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


 (7.75)

L(k) =




0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


 (7.76)

R(i) =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 (7.77)

R(j) =




0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0


 (7.78)

R(k) =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 (7.79)

b.) Show that these matrices generate the full 16-dimensional algebra M4(R).

Exercise ’t Hooft symbols and the regular representation of H

The famous ’t Hooft symbols, introduced by ’t Hooft in his work on instantons in

gauge theory are defined by

α±,i
µν :=

1

2
(±δiµδν4 ∓ δiνδµ4 + ǫiµν) (7.80)
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where 1 ≤ µ, ν ≤ 4

a.) Show that

α+,1 =
1

2
R(i) α+,2 =

1

2
R(j) α+,3 =

1

2
R(k) (7.81)

α−,1 = −1

2
L(i) α−,2 = −1

2
L(j) α−,3 = −1

2
L(k) (7.82)

b.) Verify the relations

[α±,i, α±,j ] = −ǫijkα±,k

[α±,i, α∓,j ] = 0

{α±,i, α±,j} = −1

2
δij

(7.83)

So

α+,iα+,j = −1

4
δij − 1

2
ǫijkα+,k

α−,iα−,j = −1

4
δij − 1

2
ǫijkα−,k

(7.84)

7.5 Summary

To summarize we have described three basic structures we can put on vector spaces: ♣Actually, there are

four. We can have a

complex structure

on a quaternionic

space. We should

also derive the the

moduli spaces of all

four cases as

recorded in (C.14)

to (C.17). These are

used later. ♣

1. A complex structure on a real vector space W is a real linear map I : W → W with

I2 = −1.

2. A real structure on a complex vector space V is a C-anti-linear map K : V → V with

K2 = +1.

3. A quaternionic structure on a complex vector space V is a C-anti-linear map K :

V → V with K2 = −1.

Exercise Tensor algebras and real and quaternionic structures

Suppose V is a complex vector space.

a.) Show that if V has a real structure then it induces a natural real structure on V ⊗n.

Moreover, each of the fixed symmetry types under Sn (i.e. the isotypical subspaces under

the symmetric group) have a real structure.

b.) Show that if V has a quaternionic structure then it naturally induces a real

structure on V ⊗n for n even and a quaternionic structure on V ⊗n for n odd.
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8. φ-twisted representations

Wigner’s theorem is the source of the importance of group representation theory in physics.

In these notes we are emphasizing the extra details coming from the fact that in general

some symmetry operators are represented as C-antilinear operators. In this section we

summarize a few of the differences from standard representation theory.

8.1 Some definitions

There are some fairly straightforward definitions generalizing the usual definitions of group

representation theory.

Definitions:

1. A φ-representation (or φ-rep for short) of a Z2-graded group (G,φ) is a complex

vector space V together with a homomorphism

ρ : G→ End(VR) (8.1)

such that

ρ(g) =

{
C− linear φ(g) = +1

C− anti− linear φ(g) = −1
(8.2)

2. An intertwiner or morphism between two φ-reps (ρ1, V1) and (ρ2, V2) is a C-linear

map T : V1 → V2, i.e., T ∈ HomC(V1, V2), which commutes with the G-action:

Tρ1(g) = ρ2(g)T ∀g ∈ G (8.3)

We write HomG
C (V1, V2) for the set of all intertwiners.

3. An isomorphism of φ-reps is an intertwiner T which is an isomorphism of complex

vector spaces.

4. A φ-rep is said to be φ-unitary if V has a nondegenerate sesquilinear pairing such

that ρ(g) is an isometry for all g. That is, it is unitary or anti-unitary according to

whether φ(g) = +1 or φ(g) = −1, respectively.

5. A φ-rep (ρ, V ) is said to be reducible if there is a proper (i.e. nontrivial) φ-sub-

representation. That is, if there is a complex vector subspace W ⊂ V , with W not

{0} or V which is G-invariant. If it is not reducible it is said to be irreducible.

Remarks:

1. In our language, then, what we learn from Wigner’s theorem is that if we have a

quantum symmetry group ρ : G → Autqtm(PH) then there is a Z2-graded exten-

sion (Gtw, φ) and the Hilbert space is a φ-representation of (Gtw, φ). In general we

will refer to a φ-representation of some extension (Gtw, φ) of (G,φ) as a φ-twisted

representation of G.
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2. In the older literature of Wigner and Dyson the term “corepresentation” for a φ-

unitary representation is used, but in modern parlance the name “corepresentation”

has several inappropriate connotations, so we avoid it. The term “φ-representation”

is not standard, but it should be.

3. If G is a compact group it has a left- and right-invariant Haar measure. Using this

one can show that any φ-rep on an inner product space is unitarizable. That is, by

choosing an appropriate basis one can make all the operators ρ(g) unitary or anti-

unitary. The way to show this is that if h(1) is the original inner product on V then

we define a new inner product by

h(2)(v1, v2) :=

∫

G
[dg]h(1)(ρ(g)v1, ρ(g)v2) (8.4)

and it is straightforward to see that the rep is φ-unitary with respect to h(2).

4. An important point below will be that HomG
C (V1, V2) is, a priori only a real vector

space. If T is an intertwiner the iT certainly makes sense as a linear map from V1 to

V2 but if any of the ρ(g) are anti-linear then iT will not be an intertwiner. Of course,

if the Z2-grading φ of G is trivial and φ(g) = 1 for all g then HomG
C (V1, V2) admits a

natural complex structure, namely T → iT .

Example: Let us consider the φ-twisted representations ofM2 = {1, T̄ } where φ(T̄ ) = −1.

We showed above that there are precisely two φ-twisted extensions M±
2 . First, let us

suppose H is a φ-rep of M+
2 . Then set

K = ρ(T ). (8.5)

This operator is anti-linear and squares to +1. Therefore K is a real structure on H. On

the other hand, if the φ-twisted extension of M2 is M−
2 then K2 = −1. Therefore we

have a quaternionic structure on H. Thus we conclude: The φ-twisted representations

of (M2, φ), with φ(T̄ ) = −1 are the complex vector spaces with a real structure (for M+
2 )

union the complex vector spaces with a quaternionic structure (for M−
2 ).

Exercise φ-reps and Z2-gradings

a.) Show that a φ-representation of (G,φ) can be defined as a real vector space W

with a complex structure I and a homomorphism

ρ : G→ End(W ) (8.6)

such that

ρ(g)I = φ(g)Iρ(g) (8.7)

b.) Show that if (W, I) is a real vector space with a complex structure then conjugation

by I defines a Z2-grading on End(W ) and on the group Aut(G) so that a φ-rep is a

homomorphism of Z2-graded groups. This leads to a mathematically more sophisticated

viewpoint on φ-reps.
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8.2 Schur’s Lemma for φ-reps

While many of the standard notions and constructions of representation theory carry over

straightforwardly to the theory of φ-reps, sometimes they come with very interesting new

twists. A good example of this is Schur’s lemma.

One very important fact for us below will be the analog of Schur’s lemma. To state it

correctly we recall a basic definition:

Definition An associative division algebra over a field κ is an associative unital algebra

A over κ such that for every nonzero a ∈ A there is a multiplicative inverse a−1 ∈ A, i.e.

aa−1 = a−1a = 1.

Then we have

Theorem [Schur’s Lemma].

a.) If A is an intertwiner between two irreducible φ-reps (ρ, V ) and (ρ′, V ′) then either

A = 0 or A is an isomorphism.

b.) Suppose (ρ, V ) is an irreducible φ-representation of (G,φ). Then the commutant,

that is, the set of all intertwiners A of (ρ, V ) with itself:

Z(ρ, V ) := {A ∈ EndC(V )|∀g ∈ G Aρ(g) = ρ(g)A} (8.8)

is a real associative division algebra.

Proof :

Part a: Suppose A ∈ HomG
C (V, V

′). Then ker(A) ⊂ V is a sub-φ-representation of V

and also Im (A) ⊂ V ′ is a sub-φ-rep of V ′. Since V is irreducible it must be that one of

the following is true:

• ker(A) = 0

• ker(A) = V

If ker(A) = V then A = 0. So, if A 6= 0 then ker(A) = 0. Moreover Im (A) ⊂ V ′ is nonzero.

Since V ′ is irreducible it follows that Im (A) = V ′. Therefore A is an isomorphism of φ-reps.

Part b: Now suppose that A is an interwiner of (ρ, V ) with itself. If A 6= 0 then

ker(A) = 0, which means that A is invertible. Since Z(ρ, V ) is a subalgebra of an associative

algebra it is also associative. Therefore Z(ρ, V ) is an associative division algebra over the

field κ = R. As we remarked above, even though A is C-linear the ground field must be

considered to be R and not C because some elements ρ(g) might be C-anti-linear, so if

A ∈ Z(ρ, V ) it does not follow that iA ∈ Z(ρ, V ). ♦
Schur’s lemma for φ-representations naturally raises the question of finding examples

of real division algebras. In fact, there are only three. This is the very beautiful theorem

of Frobenius:

Theorem: If A is a finite dimensional 12 real associative division algebra then one of three

possibilities holds:

12The Gelfand-Mazur theorem asserts that any unital Banach algebra over R is R,C or H.
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• A ∼= R

• A ∼= C

• A ∼= H

Proof : Let D be a real, associative division algebra. Given a ∈ D we can form L(a) ∈
End(D), defined by

L(a) : b 7→ a · b (8.9)

Let V := {a|Tr(L(a)) = 0}. Then D ∼= R⊕V , separates D into the traceless and trace

parts. Now we need a little

Lemma: V = {a ∈ D|a2 ≤ 0}.
Proof of Lemma: If a 6= 0 consider the characteristic polynomial of L(a)

pa(x) := det(x− L(a)). (8.10)

This polynomial has real coefficients and therefore has a factorization over C which we can

write as

pa(x) =
∏

i

(x− ri)
∏

α

(x− zα)(x− z̄α) (8.11)

where ri are the real roots and zα are a collection of roots which are not real, so that all

non-real roots can be arranged in complex conjugate pairs. Thanks to the Cayley-Hamilton

theorem we know that pa(a) = 0. But since D is a division algebra this must mean that:

a− ri = 0 (8.12)

for some i, OR

a2 − 2Re(zα)a+ |zα|2 = 0 (8.13)

for some α.

Note that in the case (8.13) we must use the second-order polynomial with real coef-

ficients rather than the first-order polynomial with complex coefficients since the division

algebra is over the real numbers. Now, if we are in the case (8.12) then Tr(L(a)) 6= 0 so to

prove the Lemma we assume we are in the case (8.13). Moreover, this equation cannot hold

for two different values of α, otherwise we would subtract the two equations and reduce to

the case of (8.12). Therefore, the characteristic polynomial of L(a) is of the form:

pa(x) = (x2 − 2Re(z)x+ |z|2)m (8.14)

for some non-real complex number z and some positive integer m. Now, recall that the

coefficient of x2m−1 must be −Tr(L(a)). Since we are assuming this is zero we must have

Re(z) = 0 and hence a2 = −|z|2 < 0. This proves the Lemma ♦.

Now, note that Q(a, b) := −ab − ba is a positive definite form on V since Q(a, b) =

a2 + b2 − (a + b)2 and hence Q(a, a) = −2a2 ≥ 0 on V . If D 6= R so that V is nonzero
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then the quadratic form Q(a, a) on V is positive definite over R we can diagonalize it to

the form 2δij . Therefore, we can choose a basis {ei}i=1,...,N for V such that

eiej + ejei = −2δij 1 ≤ i, j ≤ n (8.15)

Now, we can choose a minimal set of generators of the algebra from the set {ei}i=1,...,N .

(The trace part is generated by squaring any ei so we do not need to include any element of

R to generate the algebra.) Without loss of generality we can say that the first n elements of

the basis constitute a minimal set of generators. Thus, we have algebraically independent

elements ei ∈ V with 1 ≤ i ≤ n, n ≤ N , satisfying (8.15). These are the defining relations

of the real Clifford algebra, Cℓ−n, something we will study at length later on.

For n > 2 we note that 13

(1 + e1e2e3)(1− e1e2e3) = 0 (8.16)

Since D is a division algebra this means we must have e1e2e3 = ±1, and hence e3 = ±e1e2.
But we assumed we had a minimal set of generators. So we have reached a contradiction

and hence n = 1, 2 are the only possibilities other than D = R.

For n = 1, 2 we can check explicitly that D ∼= C or D ∼= H as real algebras: For n = 1

the general element is x1 + ex2 where x1, x2 are real. The identification with x1 +
√
−1x2

is an isomorphism with C. Similarly, the generators e1, e2 and e1e2 can be mapped to i, j

and k, respectively to define an isomorphism of the case n = 2 with H. ♦♦

Examples

1. Let G = M2 with φ(T̄ ) = −1. Take V = C, ρ(T̄ ) = C ∈ EndR(C) given by complex

conjugation C(z) = z̄. Then Z(ρ, V ) = R.

2. Let G = U(1) with φ = 1, so the grading is trivial (all even). Let V = C and

ρ(z)v = zv. Then Z(ρ, V ) = C. Notice we could replace G with any subgroup of

multiplicative nth roots of 1 in this example, so long as n > 2.

3. Let G =M−
2 , with φ(T ) = −1. Take V = C2 and represent

ρ(eiθ)

(
z1
z2

)
=

(
eiθz1
eiθz2

)
(8.17)

ρ(T )

(
z1
z2

)
=

(
−z̄2
z̄1

)
(8.18)

One checks that these indeed define a φ-representation of M−
2 . We claim that in this

case Z(ρ, V ) ∼= H.

To prove the claim let us map C2 → H by
(
z1
z2

)
7→ z1 + z2j = (x1 + iy1) + (x2 + iy2)j (8.19)

13It is precisely at this point that we use the hypothesis that D is associative.
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Thus, if we think of the φ-twisted representation as acting on the quaternions then

we have:

ρ(eiθ) = cos θ + sin θL(i) (8.20)

and T is represented by

ρ(T ) = L(j) (8.21)

Of course, the commutant algebra Z(ρ, V ) must commute with the real algebra gen-

erated by all the elements ρ(g). Therefore, it must commute with left-multiplication ♣Perhaps put this

general remark

earlier. ♣by arbitrary quaternions. From this it easily follows that Z(ρ, V ) is the algebra of

right-multiplication by arbitrary quaternions. In fact this identifies Z(ρ, V ) ∼= Hopp

but as you show in an exercise below Hopp ∼= H as a real algebra.

so the algebra of operators generated by ρ(g) is the quaternion algebra acting on

V = R4 as the left regular representation. The commutant of these operations is

therefore right-multiplication by any quaterion R(q), and hence Z ∼= H.

Remarks:

1. The above argument shows that the only division algebras over the complex numbers

is C itself. The only change in the proof is that the characteristic polynomial pa(x)

factorizes and a− zα = 0 for some root. Therefore, the traceless part of the algebra

vanishes and hence D ∼= C.

2. One can drop the associativity condition in the definition of a division algebra by

modifying the defining property to the statement that if a 6= 0 then the equation

ax = y for any y has a unique solution x = by for some b. Then a theorem from

topology (due to Kervaire and Bott-Milnor) says that the only division algebras over

R have real dimensions 1, 2, 4, 8. Moreover, a theorem of Hurwitz says that the

normed division algebras over R (i.e. those with a norm so that ‖ ab ‖=‖ a ‖‖ b ‖
) are precisely R,C,H and just one more finite dimensional division algebra over R,

namely the octonions O. This has dimension 8 and can be constructed from a kind

of doubling of the quaternions. The dimensions of the divison algebras 1, 2, 4, 8 are

related to the dimensions in which minimal supersymmetric Yang-Mills theory can

exist: 3, 4, 6, 10.

3. Note that the C-linear map v → iv is in Z(ρ, V ) iff φ(g) = 1 for all g. If i ∈ Z(ρ, V )

then Z(ρ, V ) is in fact a division algebra over C, and hence must be isomorphic to

C. Thus, we recover Schur’s lemma for ordinary irreps of G over C as a special

case: If φ = 1 then Z(ρ, V ) ∼= C given by v → zv. Warning: It is possible to have

Z(ρ, V ) ∼= C even when φ 6= 1 and hence i /∈ Z(ρ, V ).

Exercise
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If ei satisfy the defining relations (8.15) of Cℓ−n show that

(eiej)
2 = −1 ∀i 6= j (8.22)

(eiejek)
2 = +1 ∀i 6= j 6= k 6= i (8.23)

Exercise

The quaternions H form a division algebra over R. Therefore H ⊗R C is an algebra

over C. It has 4 dimensions as a complex algebra. Why is it not a division algebra?

Exercise Opposite algebra

If A is an algebra then we define the opposite algebra Aopp to be the same vector space

as A over the field κ but the multiplication mopp : Aopp × Aopp → Aopp is related to the

multiplication m : A×A → A by

mopp(a, b) := m(b, a) (8.24)

Show that Hopp is isomorphic to H. 14

Exercise

Consider G = AutR(C2) acting on C2 in the standard way. Show that Z ∼= R if φ = φH
is the canonical Z2-grading while Z ∼= C if φ = 1.

8.3 Complete Reducibility

A very important theorem in ordinary representation theory is the complete reducibility

of representations of compact groups. This extends more or less directly to φ-reps.

If (G,φ) is a Z2-graded group then (G,φ)∨, known as the “dual,” is the set of in-

equivalent irreducible φ-representations of G. For each element of λ ∈ (G,φ)∨ we select a

representative irrep Vλ. Thanks to Schur’s lemma it is unique up to isomorphism.

Theorem: If (ρ, V ) is a finite-dimensional φ-unitary rep of (G,φ) then V is isomorphic

to a representation of the form

⊕λ∈(G,φ)∨Wλ (8.25)

14Answer : Take q → q̄
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where, for each λ,Wλ is itself (noncanonically) isomorphic to a direct sum of representations

Vλ:

Wλ
∼= Vλ ⊕ · · · ⊕ Vλ︸ ︷︷ ︸

sλ times

(8.26)

(If sλ = 0 this is the zero vector space.)

Proof : The proof is a simple consequence of the following lemma: Suppose that W ⊂ V is

a φ-sub-rep of V . Then we claim that

W⊥ = {w′|(w,w′) = 0 ∀w ∈W} (8.27)

is also a φ-sub-rep of V . This is simple because if w′ ∈ W⊥ then for all g ∈ G and all

w ∈W

(w, ρ(g)w′) = (ρ(g−1)w,w′) = 0 (8.28)

Therefore, choose any nonzero vector v ∈ V and let W (v) be the smallest G-invariant

subspace containing v. This must be an irrep. Now consider W (v)⊥ and choose a nonzero

vector in that space (if it exists) and repeat. Because V is finite-dimensional, after some

number of steps the subspace

(W (v1)⊕W (v2)⊕ · · · ⊕W (vn))
⊥ (8.29)

must in fact be zero and the procedure stops. By arranging the summands into subsets

corresponding to the isomorphism class λ we arrive at (8.25), (8.26). ♦

Remarks

1. The isomorphism of a representation with (8.25), (8.26) is known as an isotypical

decomposition. The nonnegative integers sλ are known as degeneracies.

2. Concretely the theorem means that we can choose a “block-diagonal” basis for V so

that relative to this basis the matrix representation of ρ(g) has the form

ρ(g) ∼




. . .

1sλ ⊗ ρλ(g)
. . .


 (8.30)

We need to be careful about how to interpret ρλ(g) because anti-linear operators

don’t have a matrix representation over the complex numbers. If we are working

with ordinary representations over C and dimCVλ = tλ then 1sλ ⊗ ρλ(g) means a

matrix of the form

1sλ ⊗ ρλ(g) =




ρλ(g) 0 0 · · · 0

0 ρλ(g) 0 · · · 0
...

...
... · · · ...

0 0 0 · · · ρλ(g)




(8.31)
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where ρλ(g) and each of the 0’s above is a tλ × tλ matrix and there is an sλ × sλ
matrix of such blocks. On the other hand, if ρ(g) is anti-linear then it does not have

a matrix representation over the complex numbers. If we wish to work with matrix

representations what we must do is work with (VR, I) where I is a complex structure

on VR, and similarly for the irreps (Vλ,R, Iλ). Then ρλ(g) means a real representation

matrix which is 2tλ × 2tλ and anticommutes with Iλ. See the beginning of §8.4 for a

specific way to do this.

3. Equation (8.26) is noncanonical. What this means is that in the isomorphism (8.26)

one could compose with an isomorphism that mixes the summands. Put differently,

one could change basis in (8.31) by a matrix of the form S ⊗ 1tλ with S an invertible

sλ × sλ matrix. However, we would like to stress that the decomposition (8.25) is

completely canonical. We can define Wλ to be the image of the map

HomG
C (Vλ, V )⊗ Vλ → V (8.32)

given by the evaluation map

T ⊗ v 7→ T (v) (8.33)

Note that the G-action on the left-hand side is g : T ⊗ v 7→ T ⊗ ρ(g)v and on the

right-hand side g : T (v) 7→ g · T (v). Hence the evaluation map is an intertwiner.

Therefore, the canonical way to write the isotypical decomposition is

V ∼= ⊕λHom
G
C (Vλ, V )⊗R Vλ (8.34)

Recall that HomG
C (Vλ, V ) is a real vector space, while Vλ is a complex vector space.

We therefore take the tensor product over R regarding Vλ as a real vector space but

the result of the tensor product is naturally a complex vector space.

4. Now if we combine this canonical formulation of the isotypical decomposition with

the second part of Schur’s lemma to compute the real algebra of self-endomorphisms

EndGC (V ). To lighten the notation let Sλ := HomG
C (Vλ, V ) and let Dλ be the real

division algebra over R of self-intertwiners of Vλ. Then we compute:

HomC(V, V ) ∼= V ∗ ⊗C V

∼= ⊕λ,λ′ (S
∗
λ ⊗R Sλ′)⊗R (V ∗

λ ⊗C Vλ′)

∼= ⊕λ,λ′Hom(Sλ, Sλ′)⊗R HomC(Vλ, Vλ′)

(8.35)

NowG acts trivially on the Hom(Sλ, Sλ′) factors and in the natural way on HomC(Vλ, Vλ′).

Therefore, taking the G-invariant part to get the intertwiners we invoke Schur’s

lemma

HomG
C (Vλ, Vλ′) = δλ,λ′Dλ (8.36)

and hence

HomG
C (V, V ) ∼= ⊕λEnd(Sλ)⊗R Dλ (8.37)
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Of course, End(Sλ) is isomorphic to the algebra of real matrices Matsλ(R) upon

choosing a basis and therefore

EndGC (V ) ∼= ⊕λMatsλ(Dλ) (8.38)

is a direct sum of matrix algebras over real division algebras.

5. We proved complete reducibility for finite-dimensional φ-unitary reps. For G which

is compact the result extends to infinite-dimensional representations. In fact, this is

equivalent to the Peter-Weyl theorem. For a nice discussion see [36]. For noncompact

groups the theorem can fail. For example the representation of Z or R on R2 given

by matrices of the form (
1 x

0 1

)
(8.39)

is reducible but not completely reducible. The subspace W of vectors of the form

(
r

0

)
(8.40)

is a nontrivial invariant subspace, but there is no complementary invariant subspace

in R2.

8.4 Complete Reducibility in terms of algebras

The complete reducibility and commutant subalgebra can also be expressed nicely in terms

of the group algebra R[G]. We work with VR with complex structure I with operators

ρR(g) commuting or anticommuting with I according to φ(g). This defines a subalgebra of

End(VR). If G is compact this algebra can be shown to be semisimple and therefore, by a

theorem of Wedderburn all representations are matrix representations by matrices over a

division algebra over R. See Appendix A for background on semisimple algebras.

It is useful to be explicit and make a choice of basis. Therefore, we choose a basis to

identify V ∼= CN . Then we identify VR ∼= R2N by mapping each coordinate

z →
(
x

y

)
(8.41)

The complex structure on R2N is therefore

I0 =

(
0 −1

1 0

)
⊕ · · · ⊕

(
0 −1

1 0

)
(8.42)

While the real structure of conjugation with respect to this basis is the operation

C =

(
1 0

0 −1

)
⊕ · · · ⊕

(
1 0

0 −1

)
(8.43)
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Having chosen a basis V ∼= CN the C-linear operators ρ(g) with φ(g) = 1 can identified

with N × N complex matrices and then they are promoted to 2N × 2N real matrices by

replacing each complex matrix element by

zij →
(
xij −yij
yij xij

)
(8.44)

The operators with φ(g) = −1 must be represented by C times a matrix of the above type.

Now we want to describe the algebra ρ(G) over R generated by the real 2N × 2N

matrices ρ(g) together with I0. To do this let us introduce some notation: If K is any

algebra then mK will denote the algebra of m ×m matrices over K of the specific form

Diag{k, k, . . . , k}. Thus mK and K are isomorphic as abstract algebras. Similarly, if K is

any algebra we denote by K[m] the algebra of all m ×m matrices whose elements are in

K. Note that m(K[n]) and (mK)[n] are canonically isomorphic so we just write mK[n]

when we combine the two constructions. Finally, with this notation we can state the:

Theorem The algebra A(ρ(G), I) ⊂ End(VR) generated over R by the operators ρ(g) and

I is equivalent to

ρ(G) ∼= ⊕λsλDλ[τλ] (8.45)

and the commutant Z(ρ, V ) is equivalent to

Z(ρ, V ) ∼= ⊕λτλD
opp
λ [sλ] (8.46)

Note that the dimensions τλ are slightly different from the complex dimensions tλ
of Vλ in general. Let us denote the real dimension of Dλ by dλ = 1, 2, 4 according to

Dλ = R,C,H. Then

τλ =
2

dλ
tλ (8.47)

Recall that when Dλ
∼= H there must be an action of H on V and hence tλ must be even,

so τλ is always an integer, as it must be.

Remarks

1. We omit the proof, which may be found in Weyl’s book. It amounts to the statement

that R[G] is a semisimple algebra over R together with Wedderburn’s theorem that

any representation of a semisimple algebra over R is a direct sum of matrix algebras

over a division algebra over R.

2. To illustrate the reason that Dopp appears in the commutant consider the following

representative example. Suppose we have an algebra such as H[m]. If we represent

this as real matrices then we must represent the quaternions i, j, k as real matrices. We

do this using - say - the left regular representation. Hence each of the matrix elements

is promoted to a 4× 4 real matrix to make a 4m× 4m real matrix. Thus we regard

H[m] ⊂ R[4m] as a subalgebra of matrices. We ask: What is the commutant of H[m]

within R[4m]? Some elements of the commutant are obvious, namely the matrices
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of the form Diag{R(q), . . . , R(q)} where R(q) is the 4× 4 matrix representing right-

multiplication of q on quaternions. This represents rightmultiplication of an m×m

matrix of quaternions by q. The theorem says that this is the full commutant. Note

that since R(q1)R(q2) = R(q2q1) so that the commutant is more naturally regarded

as Hopp.

8.5 Application: Classification of Irreps of G on a complex vector space

As an application of §8.4 we rederive the standard trichotomy of complex irreducible rep-

resentations of a group. The question we want to address is this:

Suppose ρ : G → Aut(V ) is an ordinary irreducible representation of V . (That is, an

irreducible unitary φ-rep with φ = 1.) Then there is canonically a complex conjugate rep-

resentation (ρ̄, V̄ ). If we choose a basis for V so that ρ(g) are complex matrices then ρ(g)∗

is also a representation. The conjugate representation (ρ̄, V̄ ) is easily seen to be irreducible

and the question is: What is the relation between the original rep and its conjugate?

To answer this we consider two real algebras. This first, denoted by A is the real

algebra generated by the set of operators ρ(G) ⊂ End(VR). The second, denoted by B is

the algebra generated by A and I, the complex structure on VR. Both of these algebras

are semisimple and hence the above theorem applies.

Because we have an irreducible representation Schur’s lemma tells us that

B ∼= C[n] (8.48)

and hence

Z(B) ∼= nC (8.49)

Let us now consider A. There are two cases: I ∈ A and I /∈ A. If I ∈ A then A = B and so

A has real dimension 2n2. If I /∈ A then B must have twice the dimension of A and hence

A has real dimension n2. The only possibilities compatible with Weyl’s theorem above are

• A = 2R[n] and Z(A) = nR[2]

• A = C[n] and Z(A) = nC

• A = H[n2 ] and Z(A) =
n
2H

opp

We call the three cases above as type R,C,H. In the cases where Z(A) is of type R or

H we can check by hand that there is an operator P ∈ Z(A) with PI = −IP . Of course,

P /∈ Z(B). On the other hand, since P is in Z(A) we know that

Pρ(g)R = ρ(g)RP (8.50)

But this means that in terms of complex matrices there is an invertible matrix S such that

ρ(g)∗ = Sρ(g)S−1 (8.51)
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Moreover, we can take S to be unitary. 15 So the representation (ρ, V ) and its complex con-

jugate (ρ̄, V̄ ) are unitarily equivalent. Moreover, compatibility of (8.51) with the complex

conjugate equation shows that

ρ(g) = S∗Sρ(g)(S∗S)−1 (8.52)

and hence, by Schur’s lemma S∗S = z1 for a complex number z. Since S is unitary,

the determinant of this equation shows that z is a root of unity. On the other hand,

conjugating the equation show that z is real. Therefore, z must be ±1. Moreover, again

since S is unitary, the equation implies that Str = zS is symmetric or antisymmetric. So

P = CS where C is complex conjugation and P 2 = z, is ±1. We check that in case R

we have P 2 = +1 and in case H we have P 2 = −1. Conversely, if there is an invertible

matrix satisfying (8.51) it follows that we can take S to be unitary and we can construct

a P ∈ Z(A) but P /∈ Z(B) with P 2 = ±1. Therefore, the above trichotomy is equivalent

to the following statement:

If (ρ, V ) is an irrep of G then one of the following holds:

• Potentially Real Representations: (ρ, V ) is equivalent to its conjugate and there exists

an S with Str = S. In this case we can find a basis of V where the representation

matrices are real.

• Complex Representations: (ρ, V ) is not equivalent to its conjugate.

• Pesudoreal Representations or, equivalently, Quaternionic Representations: (ρ, V )

is equivalent to its conjugate and there exists an S with Str = −S. In this case

V has a quaternionic structure commuting with ρ(g). Thus, we can identify the

representation with a quaternionic matrix representation. ♣Interpret S as a

sesquilinear form

which is orthogonal

or symplectic. ♣

Examples

1. Consider the irreducible representations of SU(2). Using the fact that USp(2) =

SU(2) = U(1,H) we see that there is a canonical representation of the SU(2) on

H by left-multiplication by unit quaternions. Identifying H ∼= C2 this becomes the

standard fundamental two-dimensional representation of SU(2) on C2. The standard

identity on Pauli matrices:

(σℓ)∗ = −σ2σℓσ2 (8.53)

means that the generators of the representation transform as

(
√
−1σℓ)∗ = S(

√
−1σℓ)S−1 (8.54)

where S =
√
−1σ2 is antisymmetric. The isomorphism of the representation with

its complex conjugate is v →
√
−1σ2v∗ where v ∈ C2. Taking symmetric tensor

products SymnC2 will have a real structure commuting with SU(2) for n even and

a quaternionic structure for n. This is the familiar rule that integer spin has a

representation by real matrices and half-integer spin is pseudoreal and does not.
15To prove this show that S†S is in the commutant over C. Therefore, by irreducibility S†S = z1 for

some complex number z. By a suitable rescaling of S we can then make it unitary.
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2. For G = U(1) the representations ρn(e
iθ) = einθ are complex for n 6= 0.

3. For G = SU(n) with n > 2 the fundamental representation of dimension n is complex.

A quick way to prove this is to note that the characters of a real or pseudoreal

representation must be real functions on the Cartan torus. This is clearly not the

case for the characters of the n-dimensional representation, when n > 2.

4. A beautiful result of Frobenius and Schur is the following. Let [dg] be an invariant

measure on G of weight 1. Then if (ρ, V ) is an irreducible representation of G on a

complex vector space V then

∫

G
[dg]TrV (ρ(g))

2 =





+1 type R

0 type C

−1 type H

(8.55)

For a proof see [18]. There is an analog for φ-reps which we give below.

Exercise

Write the representation of a unit quaternion u ∈ U(1,H) in the spin-3/2 representation

of SU(2) as a 2× 2 matrix of quaternions.

9. Symmetry of the dynamics

With the possible exception of exotic situations in which quantum gravity is important,

physics takes place in space and time, and time evolution is described, in quantum me-

chanics, by unitary evolution of states.

That is, there should be a family of unitary operators U(t1, t2), strongly continuous in

both variables and satisfying composition laws U(t1, t3) = U(t1, t2)U(t2, t3) so that

ρ(t1) = U(t1, t2)ρ(t2)U(t2, t1) (9.1)

Let us - for simplicity - make the assumption that our physical system has time-translation

invariance so that U(t1, t2) = U(t1− t2) is a strongly continuous group of unitary transfor-

mations.

Again, except in unusual situations associated with nontrivial gravitational fields we

can assume our spacetime is time-orientable. Then, any physical symmetry group G must

be equipped with a homomorphism

τ : G→ Z2 (9.2)

telling us whether the symmetry operations preserve or reverse the orientation of time.

That is τ(g) = +1 are symmetries which preserve the orientation of time while τ(g) = −1

are symmetries which reverse it.
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On the other hand, Wigner’s theorem also provides us with an intrinsic homomorphism

φ : G→ Z2 and it is natural to ask how these two homomorphisms are related.

By Stone’s theorem, U(t) has a self-adjoint generator H, the Hamiltonian, so that we ♣There is an

obvious

generalization of

this statement for

U(t1, t2). Is it

proved rigorously

somewhere? ♣

may write

U(t) = exp

(
− it
~
H

)
(9.3)

Now, we say a quantum symmetry ρ : G→ Autqtm(PH) lifting to ρtw : Gtw → AutR(H) is

a symmetry of the dynamics if for all g ∈ Gtw:

ρtw(g)U(t)ρtw(g)−1 = U(τ(g)t) (9.4)

where τ : Gtw → Z2 is inherited from the analogous homomorphism on G.

Now, substituting (9.3) and paying proper attention to φ we learn that the condition

for a symmetry of the dynamics (9.4) is equivalent to

φ(g)ρtw(g)Hρtw(g)−1 = τ(g)H (9.5)

in other words,

ρtw(g)Hρtw(g)−1 = φ(g)τ(g)H (9.6)

Thus, the answer to our question is that φ and τ are unrelated in general. We should

therefore define a third homomorphism c : G→ Z2

χ(g) = φ(g)τ(g) ∈ {±1} (9.7)

Note that

φ · τ · χ = 1 (9.8)

Remarks

1. We should stress that in general a system can have time-orientation reversing sym-

metries but the simple transformation t→ −t is not a symmetry. Rather, it must be

accompanied by other transformations. Put differently, the exact sequence

1 → ker(τ) → G→ Z2 → 1 (9.9)

in general does not split. Many authors assume it does, and that we can always

write G = G0 × Z2 where G0 is a group of time-orientation-preserving symmetries.

However, when considering, for example, the magnetic space groups the sequence

typically does not split. As a simple example consider a crystal

C = (Z+ (δ1, δ2)) ∐ (Z+ (−δ2, δ1)) ∐ (Z+ (−δ1,−δ2)) ∐ (Z+ (δ2,−δ1)) (9.10)

and suppose there is a dipole moment, or spin S on points in the sub-crystal

C+ = (Z+ (δ1, δ2)) ∐ (Z+ (−δ1,−δ2)) (9.11)
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Figure 4: If a symmetry operation has χ(g) = −1 then the spectrum of the Hamiltonian must be

symmetric around zero.

but a spin −S at the complementary sub-crystal

C− = (Z+ (−δ2, δ1))∐ (Z+ (δ2,−δ1)) (9.12)

such that reversal of time orientation exchanges S with−S. Then the time-orientation-

reversing symmetries must be accompanied by a π/2 or 3π/2 rotation around some

integer point or a reflection in some diagonal. See Figure 5. Therefore, the extension

of the point group is our friend:

1 → Z2 → Z4 → Z2 → 1 (9.13)

which does not split.

2. It is very unusual to have a nontrivial homomorphism χ. Note that

ρtw(g)Hρtw(g)−1 = χ(g)H (9.14)

implies that if any group element has χ(g) = −1 then the spectrum of H must be

symmetric around zero as shown in Figure 4. In many problems, e.g. in the standard

Schrödinger problem with potentials which are bounded below, or in relativistic QFT

with H bounded below we must have χ(g) = 1 for all g and hence φ(g) = τ(g), which

is what one reads in virtually every physics textbook: A symmetry is anti-unitary iff

it reverses the orientation of time.
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Figure 5: In this figure the blue crosses represent an atom with a local magnetic moment pointing

up while the red crosses represent an atom with a local magnetic moment pointing down. The

magnetic point group is isomorphic to D4 but the homomorphism τ to Z2 has a kernel Z2 × Z2

(generated by π rotation around a lattice point together with a reflection in a diagonal). Since D4

is nonabelian the sequence 1 → P̂0 → P̂
τ→Z2 → 1 plainly does not split.

3. However, there are physical examples where χ(g) can be non-trivial, that is, there

can be symmetries which are both anti-unitary and time-orientation preserving. An

example are the so-called “particle-hole” symmetries in free fermion systems. We will

discuss those later.

4. The transformations with χ(g) = −1 are sometimes called “charge-conjugation sym-

metries” and are sometimes called “particle-hole symmetries.” The CMT literature

is inconsistent about whether we should allow “symmetry groups” with χ 6= 1 and

about whether “particle-hole symmetry” should be a C-linear or a C-anti-linear op-

eration. So we have deliberately avoided using the term “particle-hole symmetry”

and “charge conjugation” associated with χ(g).

9.1 A degeneracy threorem

Suppose that χ = 1 and there is a time-orientation-reversing symmetry with ρ(g)2 = −1.

Then since ρ(g) is anti-unitary H has a quaternionic structure which commutes with H.

It follows that the H-eigenspaces have a quaternionic structure which means that their

complex dimension must be even. That is, the eigenvalues of the Hamiltonian must have

even degeneracy.
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One important example where this comes up is systems with a rotational symmetry

together with a time-reversal symmetry T which takes (x, t) → (x,−t). Then it follows that

the Hermitian generators of rotations must satisfy T ~JT−1 = − ~J so T must be an antilinear

operator that commutes with the SU(2) representation. We have seen that the natural

quaternionic structure on the fundamental induces an antilinear operator commuting with

SU(2) which satisfies

T 2 = (−1)2j (9.15)

and hence for half-integer spin T defines a quaternionic structure, whereas for integer spin

it defines a real structure. If we are working with a Hamiltonian for a half-integer spin

particle then it follows that the energy eigenvalues have even degeneracy. This is sometimes

referred to as “Kramer’s theorem.”

10. Dyson’s 3-fold way

Often in physics we begin with a Hamiltonian (or action) and then find the symmetries

of the physical system in question. However there are cases when the dynamics are very

complicated. A good example is in the theory of nuclear interactions. The basic idea

has been applied to many physical systems in which one can identify a set of quantum

states corresponding to a large but finite-dimensional Hilbert space. Wigner had the beau-

tiful idea that one could understand much about such a physical system by assuming the

Hamiltonian of the system is randomly selected from an ensemble of Hamiltonians with a

probability distribution on the ensemble. In particular one could still make useful predic-

tions of expected results based on averages over the ensemble.

So, suppose E is an ensemble of Hamiltonians with a probability measure dµ. Then

if O is some attribute of the Hamiltonians (such as the lowest eigenvalue, or the typical

eigenvalue spacing) then we might expect our complicated system to have the attribute O
close to the expectation value:

〈O〉 :=
∫

E
dµO. (10.1)

Of course, for this approach to be sensible there should be some natural or canonical

measure on the ensemble E , justified by some a priori physically reasonable principles. For

example, if we take the space of all Hermitian operators on some (say, finite-dimensional)

Hilbert space CN then any probability distribution which is

• Invariant under unitary transformation.

• Statistically independent for Hii and Re(Hij) and Im(Hij) for i < j

can be shown [27] to be of the form

dµ =

N∏

i=1

dHii

∏

i<j

d2Hije
−aTr(H2)+bTr(H)+c (10.2)
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The specific choice

dµ =
1

Z

N∏

i=1

dHii

∏

i<j

d2Hije
−N

2
TrH2

(10.3)

where Z is a constant chosen so that
∫
dµ = 1 defines what is known as the Gaussian

unitary ensemble.

Now sometimes we know a priori that the system under study has a certain kind of

symmetry. Dyson pointed out in [18] that such symmetries can constrain the ensemble in

ways that affect the probability distribution dµ in important ways.

10.1 The Dyson problem

Now we can formulate the main problem which was addressed in [18]:

Given a Z2-graded group (G,φ) and a φ-unitary rep (ρ,H), what is the ensemble of

commuting Hamiltonians? That is: What is the set of self-adjoint operators commuting

with ρ(g) for all g?

Note that the statement of the problem presumes that χ(g) = 1. In Section §15 below

we generalize the problem to allow for χ 6= 1.

The solution to Dyson’s problem follows readily from the machinery we have developed.

We assume that we can write the isotypical decomposition of H as

H ∼= ⊕λSλ ⊗R Vλ (10.4)

This will always be correct if G is compact. Moreover, H is a Hilbert space and there are

Hermitian structures on Sλ and Vλ so that Vλ a φ-unitary rep and we have an isomorphism

of φ-unitary reps.

Now, if χ(g) = 1 then any Hamiltonian H on H must commute with the symmetry

operators ρ(g) and hence must be in EndGC (H). But we have computed this commutant

above. Choosing an ON basis for Sλ we have

Z(ρ,H) ∼= ⊕λMatsλ(Dλ) (10.5)

The subset of matrices Matsλ(Dλ) which are Hermitian is

Hermsλ(Dλ) =





Real symmetric Dλ = R

Complex Hermitian Dλ = C

Quaternion Hermitian Dλ = H

(10.6)

where quaternion Hermitian means that the matrix elements Hij of H are quaternions and

Hij = Hji. (In particular, the diagonal elements are real.)

In conclusion, the answer to the Dyson problem is the ensemble:

E =
∏

λ

Hermsλ(Dλ) (10.7)
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Each ensemble HermN (D) has a natural probability measure invariant under the uni-

tary groups

U(N,D) :=





O(N ;R) D = R

U(N) D = C

Sp(N) ∼= USp(2N ;C) D = H

(10.8)

such that the matrix elements (not related by symmetry) are statistically independent.

These are:

dµGOE =
1

ZGOE

N∏

i=1

dHii

∏

i<j

dHije
− N

2σ2
TrH2

(10.9)

where H ∈ HermN (R) is real symmetric.

dµGUE =
1

ZGUE

N∏

i=1

dHii

∏

i<j

d2Hije
− N

2σ2
TrH2

(10.10)

where H ∈ HermN (C) is complex Hermitian.

dµGSE =
1

ZGSE

N∏

i=1

dHii

∏

i<j

d4Hije
− N

2σ2
TrH2

(10.11)

where H ∈ HermN (H) is quaternionic Hermitian.

Remarks: Examples of physical systems exhibiting the different ensembles are discussed

in [43, 44].

• GOE (Type R): Highly excited levels of atomic nuclei, as probed by scattering with

low energy neutrons. Since the strong force is both parity and time-reversal invari-

ant here G = O(3) × Z2 with the Z2 factor coming from time-reversal. This was

the original context for the Wigner hypothesis. Conjecturally, the large energy lev-

els of a Schrödinger Hamiltonian with classical chaotic dynamics with time-reversal

invariance obey GOE statistics.

• GUE (Type C): Similarly, conjecturally, the large energy levels of the quantization

of Schrödinger Hamiltonian with chaotic dynamics and no time-reversal invariance.

Here G = Z2. A very interesting aspect of the Riemann zeta function is that the

zeroes on the critical line with large imaginary part appear to exhibit GUE statistics.

This in fact generalizes to other L-functions of analytic number theory [Katz-Sarnak,

Keating-Snaith].

• GSE (Type H): Electrons in disordered metals. In the single electron approximation

H =
p2

2m
+ U(x) + ~VSO(x) · (~σ × ~p) (10.12)

where U(x) and VSO(x) are drawn from a statistical ensemble. This has time reversal

invariance so we can take G = Z2.
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Exercise

Show that

a.) ZGOE = 2
N
2

(
πσ2

2N

)N(N+1)/4
.

b.) ZGUE =

c.) ZGSE =

10.2 Eigenvalue distributions

The space of Hermitian matrices is a cone so we could rescale H by any real number and

hence change the variance of the distribution. The reason we chose the factor N above is

that with this normalization the eigenvalue distribution has a good large N limit known

as Wigner’s semicircle law. Indeed, by making a change of variables

H = UΛU † (10.13)

where Λ = Diag{λ1, . . . , λN} is a diagonal matrix of real eigenvalues we get a joint proba-

bility distribution for the eigenvalues. To find it we use the map

RN × U(N,D) → HermN (D) (10.14)

given by (Λ, U) → UΛU †. This factors through to a map

π : RN × U(N,D)/U(1,D)N → HermN (D) (10.15)

Near the origin of U(N,D) we parametrize the group elements by the Lie algebra using

the exponential map. So U = eǫ = 1 + ǫ+ · · · where ǫ =
∑

i,j ǫijeij with ǫij = −ǫji. Then
the group invariant measure on U(N,D)/U(1,D)N at the origin is just

∏
i<j d

βǫij with

β =





1 R

2 C

4 H

(10.16)

Now note that

H =
∑

i,j

Hijeij = (1 + ǫ+ · · · )
∑

k

λkekk(1− ǫ+ · · · )

= Λ + [ǫ,Λ] + · · ·

= Λ+


∑

i<j

(λi − λj)ǫijeij + h.c.


 + · · ·

(10.17)

so that, the measure
∏
k dHkk

∏
i<j d

βHij pulls back under π∗ to

∏

k

dλk
∏

i<j

|λi − λj|βdβǫij(1 +O(ǫ)2) (10.18)
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Now we use group translation invariance to conclude that

∫

U(N,D)/U(1,D)N
π∗


∏

k

dHkk

∏

i<j

dβHij


 = const.

∏

1≤i<j≤N

|λi − λj|β
∏

k

dλk (10.19)

and hence the joint probability distribution for the eigenvalues is

dµ(Λ) =
1

ZΛ,β

∏

1≤i<j≤N

|λi − λj |βexp
(
− N

2σ2

N∑

i=1

λ2i

)
(10.20)

From the joint probability distribution of eigenvalues we can determine the probability

distribution for one eigenvalue ρN (λ)dλ. With the above normalization of the variance

ρN (λ) has a good limit for N → ∞ which can be shown by saddle-point methods to be

lim
N→∞

ρN (λ)dλ =
2

π

√
1− x2θ(1− x2)dx (10.21)

where θ(α) is the Heaviside step function (= 0 for α < 0 and = 1 for α > 0) and

x =
λ

λ0
λ0 = σ−1

√
β

2
. (10.22)

This is known as Wigner’s semicircle law. For much more about this see [27]. Note that

the single-eigenvalue distribution is essentially independent of symmetry type. However,

the joint probability distribution (10.20) is clearly strongly β-dependent. ♣Say more. ♣

11. Gapped systems and the notion of phases

An active area of current 16 research in condensed matter theory is the “classification of

phases of matter.” There are physical systems, such as the quantum Hall states, “topolog-

ical insulators” and “topological superconductors” which are thought to be “topologically

distinct” from “ordinary phases of matter.” We put quotation marks around all these

phrases because they are never defined with any great precision, although it is quite clear

that precise definitions in principle must exist.

One way to define a “phase of matter” is to consider gapped systems.

Definition By a gapped system we mean a pair of a Hilbert space H with a self-adjoint

Hamiltonian H where 0 is not in the spectrum of H and 1/H is a bounded operator.

Remarks

1. Except in quantum theories of gravity one is always free to add a constant to the

Hamiltonian of any closed quantum system. Typically, though not always, the con-

stant is chosen so that E = 0 lies between the ground state and the first excited state.

For example, if we were studying the Schrodinger Hamiltonian for a single electron

in the Hydrogen atom instead of the usual operator Ha =
p2

2m − Ze2

r we might choose

Ha + 12eV so that the groundstate would be at −1.6eV and the continuum would

begin at Ec = 12eV .
162007-2013
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Now suppose we have a continuous family of quantum systems. Defining this notion

precisely is not completely trivial. See Appendix D of [22] for details. Roughly speaking,

we have a family of Hilbert spaces Hs and Hamiltonians Hs varying continuously with

parameters s in some topological space S. 17

Suppose we are given a continuous family of quantum systems (Hs,Hs)s∈S . Then a

subspace D ⊂ S of Hamiltonians for which 0 ∈ Spec(H) is a generically real codimension

one subset of S. It could be very complicated and very singular in places.

Definition Given a continuous family of quantum systems (Hs,Hs)s∈S we define a phase

of the system to be a connected component of S − D.

Another way to define the same thing is to say that two quantum systems (H0,H0) and

(H1,H1) are homotopic if there is a continuous family of systems (Hs,Hs) interpolating

between them. 18 Phases are then homotopy classes of quantum systems in the set of all

gapped systems.

PHASE 1 PHASE 2

Figure 6: A domain wall between two phases. The wavy line is meant to suggest a localized low

energy mode trapped on the domain wall.

Remark: A common construction in this subject is to consider a domain wall between

two phases as shown in Figure 6. The domain wall has a thickness and the Hamiltonian

is presumed to be sufficiently local that we can choose a transverse coordinate x to the

domain wall and the Hamiltonian for the local degrees of freedom is a family Hx. (Thus,

x serves both as a coordinate in space and as a parameter for a family of Hamiltonians.)

Then if the domain wall separates two phases by definition the Hamiltonian must fail to

be gapped for at least one value x = x0 within the domain wall. This suggests that there

will be massless degrees of freedom confined to the wall. That indeed happens in some nice

examples of domain walls between phases of gapped systems.

17To be slightly more precise: We use the compact-open topology to define a bundle of Hilbert spaces

over S and we use this topology for the representations of topological groups. The map s → Hs should

be such that (t, s) → exp[−itHs] is continuous from R × S → U(H)c.o. where we use the compact-open

topology on the unitary group.
18Strictly speaking, we should allow for an isomorphism between the endpoint systems and the given

(H0,H0) and (H1,H1) so that homotopy is an equivalence relation on isomorphism classes of quantum

systems.
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The focus of these notes is on the generalization of this classification idea to continuous

families of quantum systems with a symmetry. Thus we assume now that there is a group

G acting as a symmetry group of the quantum system: ρ : G → Autqtm(PH). As we have

seen that G is naturally Z2-graded by a homomorphism φ, there is a φ-twisted extension

Gtw and a φ-representation of Gtw on H. Now, as we have also seen, if we have a symmetry

of the dynamics then there is are also homomorphisms τ : Gtw → Z2 and χ : Gtw → Z2 with

φ(g)τ(g)χ(g) = 1. When we combine this with the assumption that H is gapped we see

that we can define a Z2-grading on the Hilbert space given by the sign of the Hamiltonian.

That is, we can decompose:

H = H0 ⊕H1 (11.1)

where H0 subspace on which H > 0 and H1 is the subspace on which H < 0. Put

differently, since H is gapped we can define Π = sign(H). Then Π2 = 1 and Π serves as the

grading operator defining the Z2 grading (11.1). From this viewpoint the equation (9.4),

written as

ρtw(g)H = χ(g)Hρtw(g) (11.2)

means that the operators ρtw(g) have a definite Z2-grading: They are even if χ(g) = +1.

That means they preserve the sign of the energy and hence take H0 → H0 and H1 → H1

while they are odd if χ(g) = −1 and exchange H0 with H1. See §12 below for a summary

of Z2-graded linear algebra.

This motivates the following definition:

Definition Suppose G is a bigraded group, that is, it has a homomorphism G→ Z2 × Z2

or, what is the same thing, a pair of homomorphisms (φ, χ) from G to Z2. Then we define

a (φ, χ)-representation of G to be a complex Z2-graded vector space V = V 0 ⊕ V 1 and a

homomorphism ρ : G→ End(VR) such that

ρ(g) =

{
C− linear φ(g) = +1

C− anti− linear φ(g) = −1
and ρ(g) =

{
even χ(g) = +1

odd χ(g) = −1
(11.3)

In terms of this concept we see that if G is a symmetry of a gapped quantum system

then there is a (φ, χ)-representation of Gtw. We can again speak of continuous families

of quantum systems with G-symmetry. This means that we have (Hs,Hs, ρs) where the

representation ρs is a symmetry of the dynamics of Hs which also varies continuously with

s ∈ S. If we have a continuous family of gapped systems then we have a continuous family

of (φ, χ)-representations. Again we can define phases with G-symmetry to be the connected

components of S − D. This can lead to an interesting refinement of the classification of

phases without symmetry, as explained in Figure 7. We will denote the set of phases by

T P(Gtw, φ, χ,S) (11.4)

In general, this is just a set. In some nice examples that set turns out to be related to an

abelian group which in turn ends up being a twisted equivariant K-theory group.

An example of how this refinement is relevant to condensed matter physics is that

in topological band structure we can consider families of one-electron Hamiltonians which

– 74 –



Figure 7: The blue regions in the top row represent different phases of a family of gapped Hamil-

tonians. The red regions in the bottom row represent different phases with a specified symmetry.

Some of the original phases might not have the symmetry at all. Some of the connected components

of the original phases might break up into several components with a fixed symmetry.

respect a given (magnetic) space-group. Then there is an interesting refinement of the

usual K-theoretic classification of band structures [22] which will be discussed in Chapter

25.

We have been led rather naturally to the notion of Z2-graded linear algebra. Therefore

in the next section §12 we very briefly recall a few relevant facts and definitions. ♣Probably better to

make super-linear

algebra review an

appendix ♣

12. Z2-graded, or super-, linear algebra

In this section “super” is merely a synonym for “Z2-graded.” Super linear algebra is

extremely useful in studying supersymmetry and supersymmetric quantum theories, but

its applications are much broader than that and the name is thus a little unfortunate.

Superlinear algebra is very similar to linear algebra, but there are some crucial differ-

ences: It’s all about signs.

For a longer version of this chapter see my notes, Linear Algebra User’s Manual, section

23.

12.1 Super vector spaces

It is often useful to add the structure of a Z2-grading to a vector space. A Z2-graded vector

space over a field κ is a vector space over κ which, moreover, is written as a direct sum

V = V 0 ⊕ V 1. (12.1)

The vector spaces V 0, V 1 are called the even and the odd subspaces, respectively. We may

think of these as eigenspaces of a “parity operator” PV which satisfies P 2
V = 1 and is +1

on V 0 and −1 on V 1. If V 0 and V 1 are finite dimensional, of dimensions m,n respectively

we say the super-vector space has graded-dimension or superdimension (m|n).
A vector v ∈ V is called homogeneous if it is an eigenvector of PV . If v ∈ V 0 it is

called even and if v ∈ V 1 it is called odd. We may define a degree or parity of homogeneous
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vectors by setting deg(v) = 0̄ if v is even and deg(v) = 1̄ if v is odd. Here we regard 0̄, 1̄

in the additive abelian group Z/2Z = {0̄, 1̄}. Note that if v, v′ are homogeneous vectors of

the same degree then

deg(αv + βv′) = deg(v) = deg(v′) (12.2)

for all α, β ∈ κ. We can also say that PV v = (−1)deg(v)v acting on homogeneous vectors.

For brevity we will also use the notation |v| := deg(v). Note that deg(v) is not defined for

general vectors in V .

Mathematicians define the category of super vector spaces so that a morphism from

V → W is a linear transformation which preserves grading. We will denote the space of

morphisms from V to W by Hom(V,W ). The underline is there to distinguish from the

space of linear transformations from V to W discussed below. The space of morphisms

Hom(V,W ) is just the set of ungraded linear transformations of ungraded vector spaces,

T : V → W , which commute with the parity operator TPV = PWT .

So far, there is no big difference from, say, a Z-graded vector space. However, important

differences arise when we consider tensor products.

Put differently: we defined a category of supervector spaces, and now we will make it

into a tensor category. (See definition below.)

The tensor product of two Z2 graded spaces V and W is V ⊗W as vector spaces over

κ, but the Z2-grading is defined by the rule:

(V ⊗W )0 := V 0 ⊗W 0 ⊕ V 1 ⊗W 1

(V ⊗W )1 := V 1 ⊗W 0 ⊕ V 0 ⊗W 1
(12.3)

Thus, under tensor product the degree is additive on homogeneous vectors:

deg(v ⊗ w) = deg(v) + deg(w) (12.4)

If κ is any field we let κp|q denote the supervector space:

κp|q = κp︸︷︷︸
even

⊕ κq︸︷︷︸
odd

(12.5)

Thus, for example:

Rne|no ⊗ Rn
′
e|n

′
o ∼= Rnen

′
e+non

′
o|nen

′
o+non

′
e (12.6)

and in particular:

R1|1 ⊗ R1|1 = R2|2 (12.7)

R2|2 ⊗ R2|2 = R8|8 (12.8)

R8|8 ⊗ R8|8 = R128|128 (12.9)

Now, in fact we have a braided tensor category :

In ordinary linear algebra there is an isomorphism of tensor products

cV,W : V ⊗W →W ⊗ V (12.10)

– 76 –



given by cV,W : v ⊗ w 7→ w ⊗ v. In the category of super vector spaces there is also an

isomorphism (12.10) defined by taking

cV,W : v ⊗ w → (−1)|v|·|w|w ⊗ v (12.11)

on homogeneous objects, and extending by linearity.

Let us pause to make two remarks:

1. Note that in (12.11) we are now viewing Z/2Z as a ring, not just as an abelian

group. Do not confuse degv + degw with degvdegw! In computer science language

degv + degw corresponds to XOR, while degvdegw corresponds to AND.

2. It is useful to make a general rule: In equations where the degree appears it is

understood that all quantities are homogeneous. Then we extend the formula to

general elements by linearity. Equation (12.11) is our first example of another general

rule: In the super world, commuting any object of homogeneous degree A with any

object of homogeneous degree B results in an “extra” sign (−1)AB . This is sometimes

called the “Koszul sign rule.”

With this rule the tensor product of a collection {Vi}i∈I of super vector spaces

Vi1 ⊗ Vi2 ⊗ · · · ⊗ Vin , (12.12)

is well-defined and independent of the ordering of the factors. This is a slightly nontrivial

fact. See the remarks below.

We define the Z2-graded-symmetric and Z2-graded-antisymmetric products to be the

images of the projection operators

P =
1

2

(
1± cV,V

)
(12.13)

Therefore the Z2-graded-symmetric product of a supervector space is the Z2-graded vector

space with components:

S2(V )0 ∼= S2(V 0)⊕ Λ2(V 1)

S2(V )1 ∼= V 0 ⊗ V 1
(12.14)

and the Z2-graded-antisymmetric product is

Λ2(V )0 ∼= Λ2(V 0)⊕ S2(V 1)

Λ2(V )1 ∼= V 0 ⊗ V 1
(12.15)

Remarks

1. In this section we are stressing the differences between superlinear algebra and ordi-

nary linear algebra. These differences are due to important signs. If the characteristic

of the field κ is 2 then ±1 are the same. Therefore, in the remainder of this section

we assume κ is a field of characteristic different from 2.
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2. Since the transformation cV,W is nontrivial in the Z2-graded case the fact that (12.12)

is well-defined is actually slightly nontrivial. To see the issue consider the tensor

product V1 ⊗V2 ⊗V3 of three super vector spaces. Recall the relation (12)(23)(12) =

(23)(12)(23) of the symmetric group. Therefore, we should have “coherent” isomor-

phisms:

(cV2,V3 ⊗ 1)(1 ⊗ cV1,V3)(cV1,V2 ⊗ 1) = (1⊗ cV1,V2)(cV1,V3 ⊗ 1)(1 ⊗ cV2,V3) (12.16)

and this is easily checked.

In general a tensor category is a category with a bifunctor C×C → C denoted (X,Y ) →
X⊗Y with an associativity isomorphism FX,Y,Z : (X⊗Y )⊗Z ∼= X⊗(Y ⊗Z) satisfying
the pentagon coherence relation. A braiding is an isomorphism cX,Y : X⊗Y → Y ⊗X.

The associativity and braiding isomorphisms must satisfy “coherence equations.” The

category of supervector spaces is perhaps the simplest example of a braided tensor

category going beyond the category of vector spaces.

3. Note well that S2(V ) as a supervector space does not even have the same dimension

as S2(V ) in the ungraded sense! Moreover, if V has a nonzero odd-dimensional

summand then Λn(V ) does not vanish no matter how large n is.

Exercise

a.) Show that cV,W cW,V = 1.

b.) Check (12.16).

Exercise Reversal of parity

a.) Introduce an operation which switches the parity of a supervector space: (ΠV )0 =

V 1 and (ΠV )1 = V 0. Show that Π defines a functor of the category of supervector spaces

to itself which squares to one.

b.) In the category of finite-dimensional supervector spaces when are V and ΠV

isomorphic? 19

c.) Show that one can identify ΠV as the functor defined by tensoring V with the

canonical odd one-dimensional vector space κ0|1.

19Answer : An isomorphism is a degree-preserving isomorphism of vector spaces. Therefore if V has

graded dimension (m|n) then ΠV has graded dimension (n|m) so they are isomorphic in the category of

supervector spaces iff n = m.
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12.2 Linear transformations between supervector spaces

If the ground field κ is taken to have degree 0 then the dual space V ∨ in the category of

supervector spaces consists of the morphisms V → κ1|0. Note that V ∨ inherits a natural

Z2 grading:

(V ∨)0 := (V 0)∨

(V ∨)1 := (V 1)∨
(12.17)

Thus, we can say that (V ∨)ǫ are the linear functionals V → κ which vanish on V 1+ǫ.

Taking our cue from the natural isomorphism in the ungraded theory:

Hom(V,W ) ∼= V ∨ ⊗W (12.18)

we use the same definition so that the space of linear transformations between two Z2-

graded spaces becomes Z2 graded. We also write End(V ) = Hom(V, V ).

In particular, a linear transformation is an even linear transformation between two

Z2-graded spaces iff T : V 0 → W 0 and V 1 → W 1, and it is odd iff T : V 0 → W 1 and

V 1 → W 0. Put differently:

Hom(V,W )0 ∼= Hom(V 0,W 0)⊕Hom(V 1,W 1)

Hom(V,W )1 ∼= Hom(V 0,W 1)⊕Hom(V 1,W 0)
(12.19)

The general linear transformation is neither even nor odd.

If we choose a basis for V made of vectors of homogeneous degree and order it so that

the even degree vectors come first then with respect to such a basis even transformations

have block diagonal form

T =

(
A 0

0 D

)
(12.20)

while odd transformations have block diagonal form

T =

(
0 B

C 0

)
(12.21)

Remarks

1. Note well! There is a difference between Hom(V,W ) and Hom(V,W ). The latter is

the space of morphisms from V to W in the category of supervector spaces. They

consist of just the even linear transformations: 20

Hom(V,W ) = Hom(V,W )0 (12.22)

One reason for this definition is that otherwise the graded dimension (ne|no) is not

an invariant of a super-vector-space.

20Warning! Some authors use the opposite notation Hom vs. Hom for distinguishing hom in the category

of supervector spaces from “internal hom.” In particular, see §1.6 of [15].
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2. If T : V → W and T ′ : V ′ → W ′ are linear operators on super-vector-spaces then

we can define the Z2 graded tensor product T ⊗ T ′. Note that deg(T ⊗ T ′) =

deg(T ) + deg(T ′), and on homogeneous vectors we have

(T ⊗ T ′)(v ⊗ v′) = (−1)deg(T
′)deg(v)T (v)⊗ T ′(v′) (12.23)

As in the ungraded case, End(V ) is a ring, but now it is a Z2-graded ring un-

der composition: T1T2 := T1 ◦ T2. That is if T1, T2 ∈ End(V ) are homogeneous then

deg(T1T2) = deg(T1) + deg(T2), as one can easily check using the above block matrices.

These operators are said to graded-commute, or supercommute if

T1T2 = (−1)degT1degT2T2T1 (12.24)

Exercise

Show that if T : V → W is a linear transformation between two super-vector spaces

then

a.) T is even iff TPV = PWT

b.) T is odd iff TPV = −PWT .

12.3 Superalgebras

The set of linear transformations End(V ) of a supervector space is an example of a super-

algebra. In general we have:

Definition

a.) A superalgebra A is a supervector space over a field κ together with a morphism

A⊗A → A (12.25)

of supervector spaces. We denote the product as a⊗ a′ 7→ aa′. Note this implies that

deg(aa′) = deg(a) + deg(a′). (12.26)

We assume our superalgebras to be unital so there is a 1A with 1Aa = a1A = a. Henceforth

we simply write 1 for 1A.

b.) The superalgebra is associative if (aa′)a′′ = a(a′a′′).

c.) Two elements a, a′ in a superalgebra are said to graded-commute, or super-commute

provided

aa′ = (−1)|a||a
′|a′a (12.27)

If every pair of elements a, a′ in a superalgebra graded-commmute then the superalgebra

is called graded-commutative or supercommutative.
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d.) The supercenter, or Z2-graded center of an algebra, denoted Zs(A), is the subsu-

peralgebra of A such that all homogeneous elements a ∈ Zs(A) satisfy

ab = (−1)|a||b|ba (12.28)

for all homogeneous b ∈ A.

Example 1: Matrix superalgebras. If V is a supervector space then End(V ) as described

above is a matrix superalgebra. As an exercise, show that the supercenter is isomorphic

to κ, consisting of the transformations v → αv, for α ∈ κ. So in this case the center and

super-center coincide.

Example 2: Grassmann algebras. The Grassmann algebra of an ordinary vector space W

is just the exterior algebra of W considered as a Z2-graded algebra. We will denote it as

Grass[W ]. In plain English, we take vectors in W to be odd and use them to generate a

superalgebra with the rule that

w1w2 + w2w1 = 0 (12.29)

for all w1, w2. In particular (provided the characteristic of κ is not two) we have w2 = 0

for all w. Thus, if we choose basis vectors θ1, . . . , θn for W then we can view Grass(W ) as

the quotient of the supercommutative polynomial superalgebra κ[θ1, . . . , θn]/I where the

relations in I are:

θiθj + θjθi = 0 (θi)2 = 0 (12.30)

The typical element then is

a = x+ xiθ
i +

1

2!
xijθ

iθj + · · · + 1

n!
xi1,...,inθ

i1 · · · θin (12.31)

The coefficients xi1,...,im are mth-rank totally antisymmetric tensors in κ⊗m. We will some-

times also use the notation Grass[θ1, . . . , θn].

Definition Let A and B be two superalgebras. The graded tensor product A⊗̂B is the

superalgebra which is the graded tensor product as a vector space and the multiplication

of homogeneous elements satisfies

(a1⊗̂b1) · (a2⊗̂b2) = (−1)|b1||a2|(a1a2)⊗̂(b1b2) (12.32)

Example For matrix superalgebras we have End(V )⊗̂End(V ′) ∼= End(V ⊗ V ′), and in

particular:

End(Cne|no)⊗̂End(Cn
′
e|n

′
o) ∼= End(Cne|no ⊗ Cn

′
e|n

′
o) ∼= End(Cnen

′
e+non

′
o|nen

′
o+non

′
e) (12.33)

Remarks
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1. Every Z2-graded algebra is also an ungraded algebra: We just forget the grading.

However this can lead to some confusions:

2. An algebra can be Z2-graded-commutative and not ungraded-commutative: The

Grassmann algebras are an example of that. We can also have algebras which are

ungraded commutative but not Z2-graded commutative. The Clifford algebras Cℓ±1

described below provide examples of that.

3. The Z2-graded-center of an algebra can be different from the center of an algebra

as an ungraded algebra. Again, the Clifford algebras Cℓ±1 described below provide

examples.

4. One implication of (12.32) is that when writing matrix representations of graded

algebras we do not get a matrix representation of the graded tensor product just

by taking the tensor product of the matrix representations. This is important when

discussing reps of Clifford algebras, as we will stress below.

5. As for ungraded algebras, there is a notion of simple, semi-simple, and central super-

algebras. These are discussed in the Appendix A.

Exercise

If V is a supervector space show that the super-center of End(V ) consists of scalar

multiples of the identity.

Exercise The opposite algebra

a.) For any ungraded algebra A we can define the opposite algebra Aopp by the rule

a ·opp b := ba (12.34)

Show that Aopp is still an algebra. ♣We already said

this above. ♣
b.) Show that there is natural morphism of algebras: 21 A⊗Aopp → End(A).

c.) For any superalgebra A we can define the opposite superalgebra Aopp by the rule

a ·opp b := (−1)|a||b|ba (12.35)

Show that Aopp is still an superalgebra.

d.) Show that A is supercommutative iff A = Aopp.

e.) Show that there is natural morphism of super-algebras: A⊗̂Aopp → End(A). ♣Check it out for

Grassmann algebras

♣

21Answer : Given a⊗ b we consider the linear transformation x 7→ axb.
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12.4 Modules over superalgebras

Definition A super-module M over a super-algebra A (where A is itself a superalgebra

over a field κ) is a supervector space M over κ together with a κ-linear map A×M →M

defining a left-action or a right-action. That is, it is a left-module if, denoting the map by

L : A×M →M we have

L(a, L(b,m)) = L(ab,m) (12.36)

and it is a right-module if, denoting the map by R : A×M →M we have

R(a,R(b,m)) = R(ba,m) (12.37)

In either case:

deg(R(a,m)) = deg(L(a,m)) = deg(a) + deg(m) (12.38)

The notations L(a,m) and R(a,m) are somewhat cumbersome and instead we write

L(a,m) = am and R(a,m) = ma so that (ab)m = a(bm) and m(ab) = (ma)b. We also

sometimes refer to a super-module over a super-algebra A just as a representation of A.

Definition A linear transformation between two super-modules M,N over A is a κ-linear

transformation of supervector spaces such that if T is homogeneous and M is a left A-

module then T (am) = (−1)|T ||a|aT (m) while if M is a right A-module then T (ma) =

T (m)a. We denote the space of such linear transformations by HomA(M,N). If N is a left

A-module then HomA(M,N) is a left A-module with (a · T )(m) := a · (T (m)). If N is a

right A-module then HomA(M,N) is a right A-module with (T ·a)(m) := (−1)|a||m|T (m)a.

When M = N we denote the module of linear transformations by EndA(M).

Definition A morphism or intertwiner from a A-module M1 to a A-module M2 is a

morphism T of supervector spaces which commutes with the A-action.

Example Matrix superalgebras. In the ungraded world a matrix algebra End(V ) for a

finite dimensional vector space, say, over C, has a unique irreducible representation, up

to isomorphism. This is just the space V itself. A rather tricky point is that if V is a

supervector space V = Cp|q then V and ΠV are inequivalent representations of End(V ).

One way to see this is that if η is a generator of Π = C0|1 then T (ηv) = (−1)|T |ηT (v) is a

priori a different module. In terms of matrices

(
D −C
−B A

)
=

(
0 1

−1 0

)(
A B

C D

)(
0 −1

1 0

)
(12.39)

So the LHS gives a representation of the matrix superalgebra, but it is not related by an

invertible element of End(Cp|q). The even subalgebra End(Cp) ⊕ End(Cq) has a unique

faithful representation Cp ⊕ Cq and hence the matrix superalgebra End(Cp|q) has exactly

two irreducible modules.
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Exercise Tensor product of modules

Let A and B be superalgebras with modules M and N , respectively. Show that the

rule

(a⊗ b) · (m⊗ n) := (−1)|b||m|(am)⊗ (bn) (12.40)

does indeed define M ⊗N as an A⊗̂B module. Be careful with the signs!

Exercise Left modules vs. right modules

a.) Show that if (a,m) → L(a,m) defines the structure of a left-A-module on M then

the new product R : Aopp ×M →M defined by

R(a,m) := (−1)|a||m|L(a,m) (12.41)

defines M as a right Aopp-module. That is, show that

R(a1, R(a2,m)) = R(a2 ·opp a1,m) (12.42)

b.) Similarly, show that ifM is a right A-module then it can be canonically considered

also to be a left- Aopp module.

c.) Show that if M is a module for a supercommutative algebra A then it can be con-

sidered either as a left- or right- A-module. Because of this, when A is supercommutative,

we will sometimes write the module multiplication on the left or the right, depending on

which order is more convenient to keep the signs down.

12.5 Star-structures and super-Hilbert spaces

There are at least three notions of a real structure on a complex superalgebra which one

will encounter in the literature:

1. It is a C-antilinear involutive automorphism a 7→ a⋆. Hence deg(a⋆) = deg(a) and

(ab)⋆ = a⋆b⋆.

2. It is a C-antilinear involutive anti-automorphism. Thus deg(a∗) = deg(a) but

(ab)∗ = (−1)|a||b|b∗a∗ (12.43)

3. It is a C-antilinear involutive anti-automorphism. Thus deg(a⋆) = deg(a) but

(ab)⋆ = b⋆a⋆ (12.44)
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If A is a supercommutative complex superalgebra then structures 1 and 2 coincide:

a→ a⋆ is the same as a→ a∗. See remarks below for the relation of 2 and 3.

Definition A sesquilinear form h on a complex supervector spaceH is a map h : H×H → C

such that

1. It is even, so that h(v,w) = 0 if v and w have opposite parity

2. It is C-linear in the second variable and C-antilinear in the first variable

3. An Hermitian form on a supervector space is a sesquilinear form which moreover

satisfies the symmetry property:

(h(v,w))∗ = (−1)|v||w|h(w, v) (12.45)

4. If in addition for all nonzero v ∈ H0

h(v, v) > 0 (12.46)

while for all nonzero v ∈ H1

i−1h(v, v) > 0, (12.47)

then H endowed with the form h is a super-Hilbert space.

For bounded operators we define the adjoint of a homogeneous linear operator T :

H → H by

h(T ∗v,w) = (−1)|T ||v|h(v, Tw) (12.48)

The spectral theorem is essentially the same as in the ungraded case with one strange

modification. For even Hermitian operators the spectrum is real. However, for odd Her-

mitian operators the point spectrum sits in a real subspace of the complex plane which is

not the real line! If T is odd then an eigenvector v such that Tv = λv must have even and

odd parts v = ve + vo. Then the eigenvalue equation becomes

Tve = λvo

Tvo = λve
(12.49)

Now the usual proof that the point spectrum is real is modified to:

λ∗h(vo, vo) = h(λvo, vo) = h(Tve, vo) = h(ve, T vo) = λh(ve, ve)

λ∗h(ve, ve) = h(λve, ve) = h(Tvo, ve) = −h(vo, T ve) = −λh(vo, vo)
(12.50)

These two equations have the same content: Since v 6= 0 and we are in a superHilbert

space it must be that

h(ve, ve) = i−1h(vo, vo) > 0 (12.51)

and therefore the phase of λ is determined. It lies on the line passing through eiπ/4 =

(1 + i)/
√
2 in the complex plane, as shown in Figure 8
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Figure 8: When the Koszul rule is consistently implemented odd super-Hermitian operators have

a spectrum which lies along the line through the origin which runs through 1 + i.

Example: An example of a natural super-Hilbert space is the Hilbert space of L2-spinors

on an even-dimensional manifold with (−1)F given by the chirality operator. An odd self-

adjoint operator which will have nonhomogeneous eigenvectors is the Dirac operator on an

even-dimensional manifold. One usually thinks of the eigenvalues as real for this operator

and that is indeed the case if we use the star-structure ⋆, number 3 above. See the exercise

below.

Remarks

1. In general star-structures 2 and 3 above are actually closely related. Indeed, given a

structure a→ a∗ of type 2 we can define a structure of type 3 by defining either

a⋆ =

{
a∗ |a| = 0

ia∗ |a| = 1
(12.52)

or

a⋆ =

{
a∗ |a| = 0

−ia∗ |a| = 1
(12.53)

It is very unfortunate that in most of the physics literature the definition of a star

structure is that used in item 3 above. For example a typical formula used in manip-

ulations in superspace is

θ1θ2 = θ̄2θ̄1 (12.54)

and the fermion kinetic energy ∫
dtiψ̄

d

dt
ψ (12.55)

is only “real” with the third convention. The rationale for this convention, especially

for fermionic fields, is that they will eventually be quantized as operators on a Hilbert

space. Physicists find it much more natural to have a standard Hilbert space struc-

ture, even if it is Z2-graded. On the other hand, item 2 implements the Koszul rule
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consistently and makes the analogy to classical physics as close as possible. So, for

example, the fermionic kinetic term is
∫
dtψ̄

d

dt
ψ (12.56)

and is “manifestly real.”

Fortunately, as we have just noted one convention can be converted to the other, but

the difference will, for example, show up as factors of i in comparing supersymmetric

Lagrangians in the different conventions, as the above examples show.

Exercise

a.) Show that a super-Hermitian form h on a super-Hilbert space can be used to define

an ordinary Hilbert space structure on H by taking H0 ⊥ H1 and taking

(v,w) := h(v,w) v,w ∈ H0

(v,w) := i−1h(v,w) v,w ∈ H1
(12.57)

b.) Show that if T is an operator on a super-Hilbert-space then the super-adjoint T ∗

and the ordinary adjoint T †, the latter defined with respect to (12.57), are related by

T ∗ =

{
T † |T | = 0

iT † |T | = 1
(12.58)

c.) Show that T → T † is a star-structure on the superalgebra of operators on super-

space which is of type 3 above.

d.) Show that if T is an odd self-adjoint operator with respect to ∗ then e−iπ/4T is an

odd self-adjoint operator with respect to †. In particular e−iπ/4T has a point spectrum in

the real line.

e.) More generally, show that if a is odd and real with respect to ∗ then e−iπ/4a is real

with respect to ⋆ defined by (12.53).

13. Clifford Algebras and Their Modules

Some references for this section are:

1. E. Cartan, The theory of Spinors

2. Chevalley,

2’. P. Deligne, “Notes on spinors,” in Quantum Fields and Strings: A Course for

Mathematicians

3. One of the best treatments is in Atiyah, Bott, and Shapiro, “Clifford Modules”

4. A textbook version of the ABS paper can be found in Lawson and Michelson, Spin

Geometry, ch.1
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5. Freund, Introduction to Supersymmetry

6. M. Sohnius, “Introducing Supersymmetry” Phys. Rept.

7. T. Kugo and P. Townsend, “Supersymmetry and the division algebras,” Nuc. Phys.

B221 (1983)357.

8. M. Rausch de Traubenberg, “Clifford Algebras in Physics,” arXiv:hep-th/0506011.

9. Freedman and van Proeyen, Supergravity

13.1 The real and complex Clifford algebras

13.1.1 Definitions

Clifford algebras are defined for a general nondegenerate symmetric quadratic form Q on a

vector space V over κ. They are officially defined as a quotient of the tensor algebra of V by

the ideal generated by the set of elements of TV of the form v1⊗v2+v2⊗v1−2Q(v1, v2) ·1
for any v1, v2 ∈ V . A more intuitive definition is that Cℓ(Q) is the Z2 graded algebra

over κ which has a set of odd generators {ei} in one-one correspondence with a basis, also

denoted {ei}, for the vector space V . The only relations on the generators are given by ♣Poor choice of

notation since eij is

an element of the

Clifford algebra but

also our notation for

matrix units... ♣

{ei, ej} = 2Qij · 1 (13.1)

where Qij ∈ κ is the matrix of Q with respect to a basis {ei} of V , and 1 ∈ Cℓ(Q) is

the multiplicative identity. Henceforth we will usually identify κ with κ · 1 and drop the

explicit 1.

Because ei are odd and 1 is even, the algebra Cℓ(Q) does not admit a Z-grading.

However, every expression in the relations on the generators is even so the algebra admits

a Z2 grading:

Cℓ(Q) = Cℓ(Q)0 ⊕Cℓ(Q)1 (13.2)

Of course, one is always free to regard Cℓ(Q) as an ordinary ungraded algebra, and this is

what is done in much of the physics literature. However, as we will show below, comparing

the graded and ungraded algebras leads to a lot of insight.

Incidentally, it turns out that Cℓ(Q)0 is isomorphic to an ungraded Clifford algebra:

See Section §13.1.2 below.

Suppose we can choose a basis {ei} for V so that Qij is diagonal. Then e
2
i = qi 6= 0. It

follows that Cℓ(Q) is not supercommutative, because an odd element must square to zero

in a supercommutative algebra. Henceforth we assume Qij has been diagonalized, so that

ei anticommutes with ej for i 6= j. Thus, we have the basic Clifford relations:

eiej + ejei = 2qiδij (13.3)

When {i1, . . . , ip} are all distinct is useful to define the notation

ei1···ip := ei1 · · · eip (13.4)

Of course, this expression is totally antisymmetric in the indices, and a moment’s thought

shows that it forms a basis for Cℓ(Q) as a vector space and so we have

Cℓ(Q) ∼= Λ∗V (13.5)

– 88 –



We stress that (13.5) is only an isomorphism of vector spaces. If V is finite-dimensional

with d = dimκV then we conclude that

dimκCℓ(Q) =

d∑

p=0

(
d

p

)
= 2d (13.6)

We must also stress that while the left and right hand sides (13.5) are both algebras over

κ the equation is completely false as an isomorphism of algebras. The right hand side of

(13.5) is a Grassmann algebra, which is supercommutative and as we have noted Cℓ(Q) is

not supercommutative.

If we take the case of a real vector space Rd then WLOG we can diagonalize Q to the

form

Q =

(
+1r 0

0 −1s

)
(13.7)

For such a quadratic form on a real vector space we denote the real Clifford algebra Cℓ(Q)

by Cℓr+,s−.
22

♣It is probably

better to use the

notation Cℓr,−s

where r, s are

always understood

to be nonnegative

integers. ♣

We can similarly discuss the complex Clifford algebras Cℓn. Note that over the complex

numbers if e2 = +1 then (ie)2 = −1 so we do not need to account for the signature, and

WLOG we can just consider Cℓn for n ≥ 0.
♣Nevertheless, it is

sometimes useful to

consider the

algebras with the

extra data of a basis

so that e2i have

definite signs, and

then speak of Cℓn
with n ∈ Z. Should

we discuss this? ♣

Exercise

a.) Show that v ∈ V is considered as an element of Cℓ(Q) then

v · v = Q(v) · 1 (13.8)

b.) Show that (13.8) could in fact be taken as a definition of the generating relations

of the Clifford algebra Cℓ(Q).

Remark: In physics we often distinguish v ∈ V from v ∈ Cℓ(Q) by the notation /v.

Thus, for example, if p = piei is a vector on the pseudo-sphere

pipjQij = R2. (13.9)

then /p2 = R2 · 1.

Exercise Opposite Clifford algebra

22The notation Cℓr,s is used in different ways by different authors. Some have r generators squaring

to +1 and s generators squaring to −1, and and some have the opposite convention. It is impossible to

remember this convention so we always explicitly write which are + and which are −, when it matters,

except when one of then is negative. For an integer n we denote Cℓn := Cℓn+,0− when n is nonnegative

and we denote Cℓn := Cℓ|n|−,0+ for n nonpositive. So we have a single notation Cℓn and the sign of n tells

us the sign of e2i .
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Show that if A = Cℓr+,s− then Aopp = Cℓs+,r−.

Since A is not supercommutative we cannot conclude that these are isomorphic, and,

in general, they are not.

13.1.2 The even subalgebra

The even subalgebra is an ungraded algebra and is isomorphic, as an ungraded algebra, to

another Clifford algebra.

For example, if d ≥ 1 then

Cℓ0d ∼= Cℓd−1 ungraded algebras. (13.10)

The proof is straightfoward. For d = 1 the statement is obvious. If d > 1 then choose some

basis vector, say e1 and let

ẽj := e1ej+1 j = 1, . . . , d− 1 (13.11)

Then one easily checks that the ẽj satisfy the standard Clifford relations defining Cℓd−1,

albeit with quadratic form−2δij . However, as we have remarked, over the complex numbers

one can always change the signature. Note that there is no canonical isomorphism - we

made a choice of a basis vector in our construction.

When working over the real numbers we must be more careful about signs. choose any

basis element ei0 and consider the algebra generated by

ẽj = ei0j j 6= i0 (13.12)

Note that

ẽj ẽk + ẽkẽj = −2qi0i0qjk j, k 6= i0 (13.13)

and therefore 23

Cℓ0(r+, s−) ∼= Cℓ(r+, (s − 1)−) s ≥ 1

Cℓ0(r+, s−) ∼= Cℓ(s+, (r − 1)−) r ≥ 1
(13.14)

Exercise

Show that when both r ≥ 1 and s ≥ 1 then the two equations in (13.14) are compatible.

23Note that this implies that we must have Cℓ((r+ 1)+, s−) ∼= Cℓ((s+ 1)+, r−) for all r, s ≥ 0. One can

indeed prove this is so using the periodicity isomorphisms and the observation that Cℓ(2+) ∼= Cℓ(1+, 1−) ∼=

R(2). Nevertheless, at first site this might seem to be very unlikely since the transverse dimensions are

r−s−1 and s−r−1 and in general are not equal modulo 8. Note that the sum of the transverse dimensions

is −2 = 6mod8. Thus, we have the pairs (0, 6), (1, 5), (2, 4), and (3, 3). One can check from the table that

these all do in fact have the same Morita type! Of course, the dimensions are the same, so they must in

fact be isomorphic.
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Exercise

Show that

(Cℓ(r+, s−))
0 ∼= (Cℓ(s+, r−))

0 (13.15)

13.1.3 Relations by tensor products

One important advantage of regarding Cℓ(Q) as a superalgebra, rather than just an algebra

is that if Q1 ⊕Q2 is a quadratic form on V1 ⊕ V2 then

Cℓ(Q1 ⊕Q2) ∼= Cℓ(Q1)⊗̂Cℓ(Q2) (13.16)

As we will see below, this is completely false if we regard the Clifford algebras as ungraded

algebras. Since equation (13.16) is crucially important below let us give a proof: Let {ei}
and {fα} be bases for V1 and V2 respectively. In the Clifford algebra the corresponding

generators anticommute:

eifα + fαei = 0 (13.17)

Now in an ordinary tensor product we have

(ei ⊗ 1) · (1⊗ fα) = (1⊗ fα) · (ei ⊗ 1) (13.18)

but in a graded tensor product we get an extra sign, since ei and fα are both odd:

(ei⊗̂1) · (1⊗̂fα) = −(1⊗̂fα) · (ei⊗̂1) (13.19)

Therefore we must use the graded tensor product in (13.16).

From (13.16) we have some useful identities: First, note that for n > 0:

Cℓn ∼= Cℓ1⊗̂ · · · ⊗̂Cℓ1︸ ︷︷ ︸
n times

(13.20)

Cℓ−n ∼= Cℓ−1⊗̂ · · · ⊗̂Cℓ−1︸ ︷︷ ︸
n times

(13.21)

More generally we have

Cℓr+,s− = Cℓ1⊗̂ · · · ⊗̂Cℓ1︸ ︷︷ ︸
r times

⊗̂Cℓ−1⊗̂ · · · ⊗̂Cℓ−1︸ ︷︷ ︸
s times

(13.22)

Moreover

Cℓn ∼= Cℓ1⊗̂ · · · ⊗̂Cℓ1︸ ︷︷ ︸
n times

(13.23)

If we view the Clifford algebras as ungraded algebras then the tensor product relations

are a bit more complicated:

Lemma: As ungraded algebras we have the following isomorphisms:
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Cℓ(r+, s−)⊗ Cℓ(2+) ∼= Cℓ((s+ 2)+, r−) (13.24)

Cℓ(r+, s−)⊗ Cℓ(2−) ∼= Cℓ(s+, (r + 2)−) (13.25)

Cℓ(r+, s−)⊗ Cℓ(1+, 1−) ∼= Cℓ((r + 1)+, (s + 1)−) (13.26)

Cℓn ⊗ Cℓ2 ∼= Cℓn+2 (13.27)

Proofs:

• Let ei be generators of Cℓr+,s− , fα, α = 1, 2 be generators of Cℓ2. Note that the

obvious set of generators ei ⊗ 1 and 1 ⊗ fα, do not satisfy the relations of the Clifford

algebra, because they do not anticommute. On the other hand if we take

ẽi := ei ⊗ f12 ẽd+α := 1⊗ fα (13.28)

where f12 = f1f2, then ẽM , M = 1 . . . , d+ 2 satisfy the Clifford algebra relations and also

generate the tensor product. Now note that (f12)
2 = −1 and hence:

(ei ⊗ f12)
2 = −(ei)

2 (13.29)

(no sum on i).

An almost identical proof works for tensoring with Cℓ−2. Similarly, in the case Cℓ1+,1−
we have (f12)

2 = +1 and hence:

(ei ⊗ f12)
2 = +(ei)

2 (13.30)

(no sum on i).

Complexifying any of the above identities yields the last one. ♦

Remarks These isomorphisms, and the consequences below are very useful in physics

because they relate Clifford algebras and spinors in different dimensions. Notice in par-

ticular, item 2, which relates the Clifford algebra in a spacetime to that on the transverse

space to the lightcone. Since they are relations of ungraded tensor products they can be

used to build up (ungraded) representations of larger algebras from smaller algebras. For

the complex case see **** below.

Exercise

Show that Cℓ((s+ 1)+, r−) ∼= Cℓ((r + 1)+, s−) as ungraded algebras.
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13.1.4 The Clifford volume element

A key object in discussing the structure of Clifford algebras is the Clifford volume element.

When V is provided with an orientation this is the canonical element in Cℓ(Q) defined by

ω := e1 · · · ed (13.31)

where d = dimκV and e1 ∧ · · · ∧ ed is the orientation of V . Since there are two orientations

there are really two volume elements.

Note that:

Remarks

1. The Clifford volume element ω or ωc in the complex case (see below) is often referred

to as the chirality operator in physics, or sometimes as γ5.

2. For d even, ω is even and anti-commutes with the generators eiω = −ωei. Therefore
it is neither in the center nor in the ungraded center of Cℓ(Q). It is in the ungraded

center of the ungraded algebra Cℓ(Q)0.

3. For d odd, ω is odd and eiω = +ωei. Therefore it is in the ungraded center Z(Cℓ(Q))

but, because it is odd, it is not in the graded center Zs(Cℓ(Q)).

4. Thus, ω is never in the supercenter of Cℓ(Q). In fact, we will see that the super-center

of Cℓr,s is R and the super-center of Cℓd is C.

5. ω2 is always ±1 (independent of the orientation). The precise rule is worked out

in equation (13.37) below. Here is the way to remember the result: The sign only

depends on the value of r+ − s− modulo 4. Therefore we can reduce the question to

Cℓn and the result only depends on n modulo four. For n = 0mod4 the sign is clearly

+1. For n = 2mod4 it is clearly −1, because (e1e2)
2 = −e21e22 = −1 as long as e21 and

e22 have the same sign. For Cℓ+1 and Cℓ−1 it is obviously +1 and −1, respectively.

Exercise The transpose anti-automorphism

An important anti-automorphism, the transpose β : Cℓ(Q) → Cℓ(Q) is defined as

follows: β(1) = 1 and β(v) = v for v ∈ V . Now we extend this to be an anti-automorphism

so that β(φ1φ2) = φ2φ1. In particular:

β(ei1ei2 · · · eik) = eikeik−1
· · · ei2ei1 (13.32)

Show that:

β(ei1···ik) = eik···i1 = (−1)
1
2
k(k−1)ei1···ik (13.33)

Note: The functions f(k) = (−1)
1
2
k(k−1) and g(k) = (−1)

1
2
k(k+1) appear frequently

when doing computation with Clifford algebras. Note that f(k) and g(k) only depend on

kmod4, f(k) = g(−k) and
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(−1)
1
2
k(k−1) =

{
+1 k = 0, 1mod4

−1 k = 2, 3mod4
(13.34)

(−1)
1
2
k(k+1) =

{
+1 k = 0, 3mod4

−1 k = 1, 2mod4
(13.35)

Exercise The Clifford volume element

a.) Show that the volume element in Cℓ(r+, s−)

ω = e1e2 · · · ed (13.36)

d = r+ + s−, satisfies

ω2 = (−1)
1
2
(s−−r+)(s−−r++1) =

{
+1 for(s− − r+) = 0, 3mod4

−1 for(s− − r+) = 1, 2mod4
(13.37)

[Answer: The easiest way to compute is to write

ω · ω = (−1)
1
2
d(d−1)ωβ(ω) = (−1)

1
2
d(d−1)+s = (−1)

1
2
(s−r)(s−r+1)] (13.38)

b.) Show that under a change of basis eµ → fµ =
∑
gνµeν where g ∈ O(Q) we have

ω′ = detg ω, so that ω indeed transforms as the volume element.

d.) ωeµ = (−1)d+1eµω. Thus ω is central for d odd and is not central for d even.

Note:

1. dT = s− − r+ generalizes the number of dimensions transverse to the light cone in

Lorentzian geometry.

2. ω2 = 1 and ω is central only for dT = s− r = 3mod4.

Exercise Clifford volume element and Hodge star

If V is a real vector space with nondegenerate metric then given an orientation we can

define a Hodge ∗. This is a linear operator on Λ∗V which exchanges ΛkV with Λd−kV such

that, on differential forms

ω ∗ ω =‖ ω ‖2 vol (g) (13.39)

Under the isomorphism (13.5) the Hodge ∗ must correspond to a linear operator on

Cℓr,−s. Find this operator. ♣Give the answer

in a footnote. ♣
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13.2 Clifford algebras and modules over κ = C

13.2.1 Structure of the (graded and ungraded) algebras and modules

Let us begin by considering the low-dimensional examples. We will contrast both the

graded and ungraded structures, to highlight the differences.

Of course Cℓ0 ∼= C is purely even. Nevertheless, as a superalgebra it has two inequiv-

alent irreducible graded modules M+
0

∼= C1|0 and M−
0

∼= C0|1. As an ungraded algebra it

has one irreducible module - the regular representation N0
∼= C.

Moving on to Cℓ1. As a vector space it is isomorphic to C2 with the natural basis

{1, e}, so the general element is z1 + z2e with multiplication

(z1 + z2e)(z
′
1 + z′2e) = (z1z

′
1 + z2z

′
2) + (z1z

′
2 + z2z

′
1)e (13.40)

As an exercise the reader should show that this algebra is a simple superalgebra: There

are no proper graded ideals. It is also central: The graded center is Zs(Cℓ1) ∼= C. Thus, it

is a central simple superalgebra over C. (See the Appendix A for the basic definitions of

central and simple superalgebras.)

The algebra Cℓ1 is a two-dimensional vector space and thus cannot be a matrix su-

peralgebra! The latter would be End(Cn|m) and would have complex dimension (n+m)2,

but 2 is not a perfect square.

As an ungraded algebra

Cℓ1 ∼= C⊕ C ungraded! (13.41)

where the RHS is the algebra with multiplication

(z1 ⊕ z2)(z
′
1 ⊕ z′2) = z1z

′
1 ⊕ z2z

′
2 (13.42)

This is not a simple algebra and P± = 1
2(1± e) are orthogonal projectors to the two ideals

given by the two summands. Moreover, the ungraded center is the whole algebra. Thus it

is not an central algebra: Its center contains the ground field as a proper subalgebra.

Let us consider the representations of Cℓ1:

As a superalgebra Cℓ1 has a unique irrep M1
∼= C1|1. We must represent ρ(e) by an

odd operator which squares to +1. The most general such operator is

ρ(e) = xσ1 + yσ2 x2 + y2 = 1, x, y ∈ C (13.43)

But all these choices are equivalent by an even automorphism, hence an invertible element

of End(C1|1). Indeed, conjugation by the even transformation cos θ+ i sin θσ3 rotates (x, y)

by 2θ. However, we cannot represent ρ(e) by σ3 because this would not be odd.

On the other hand, as an ungraded algebra Cℓ1 has two inequivalent one-dimensional

representations N±
1

∼= C with ρ±(e) = ±1.

Now let us move on to Cℓ2. As a superalgebra we can write two inequivalent irreducible

modules M±
2 for Cℓ2 with M±

2
∼= C1|1 as supervector spaces. Therefore Cℓ2 ∼= End(C1|1)
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as a superalgebra. This superalgebra has super-center Zs(Cℓ2) ∼= C and is graded-simple.

Thus it is a central simple superalgebra. For M−
2 we can take, for example,

ρ(e1) =

(
0 1

1 0

)
ρ(e2) =

(
0 −i
i 0

)
(13.44)

and for M+
2

ρ(e1) =

(
0 1

1 0

)
ρ(e2) = −

(
0 −i
i 0

)
(13.45)

The invariant distinction between these is apparent when we look at the volume form:

ω = e1e2. This is even, is in the center of Cℓ02, and squares to −1. Therefore, in an

irrep it should act as a scalar ±i on the even subspace. That cannot be changed by a

superisomorphism.

The above matrix representations also show that, as an ungraded algebra Cℓ2 is iso-

morphic to M2(C) = C(2). This is a simple algebra with ungraded center Z ∼= C. It has a

unique irrep N2
∼= C2. Note that this simple example already shows us the failure of the

identity (13.23) for the ordinary tensor product. Indeed, with the ordinary tensor product

we have

Cℓ1 ⊗C Cℓ1 ∼= (C⊕ C)⊗C (C⊕ C) ∼= C⊕ C⊕C⊕ C (13.46)

which is an abelian, nonsimple algebra of dimension four.

At this point we have established:

Clifford Algebra Cℓ0 Cℓ+1 Cℓ+2

Graded algebra C C[e], e2 = 1 End(C1|1)

Ungraded algebra C C⊕ C M2(C)

Graded irreps M±
0

∼= C1|0,C0|1 M1
∼= C1|1 M±

2
∼= C1|1, ρ(e1e2)|M±,0

2
= ±i

Ungraded irreps N0
∼= C N±

1
∼= C, ρ(e) = ±1 N2

∼= C2

What about dimensons n > 2? Now we can use tensor products to get the general

structure.

First, in the superalgebra case we can invoke (13.23). We know how to multiply matrix

superalgebras by (12.33). As we have stressed, Cℓ1 is not a matrix superalgebra, but Cℓ2
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is. Therefore, since Cℓn+2
∼= Cℓn⊗̂Cℓ2 we have the key fact

Cℓn+2
∼= End(C1|1)⊗̂Cℓn (13.47)

Therefore, one can show inductively that

Cℓ2k ∼= End(C2k−1|2k−1
) (13.48)

and hence

Cℓ2k+1
∼= End(C2k−1|2k−1

)⊗̂Cℓ1 (13.49)

In both cases they are central simple superalgebras.

Note that

ω2 =

{
+1 n = 0, 1mod4

−1 n = 2, 3mod4
(13.50)

so if we define

ωc :=

{
ω n = 0, 1mod4

iω n = 2, 3mod4
(13.51)

then ω2
c = 1

For n even there are two irreducible modulesM±
n

∼= C2[
n
2 ]−1|2[

n
2 ]−1

. The volume element

ωc is even and therefore can be restricted to the even subspace M0 of any Cℓn module (for

n even). Moreover ωc is central in the even algebra and will therefore be a scalar in an

irreducible module. The two irreducible modules are then distinguished by the sign of the

volume element ωc restricted to the even subspace (M±
n )0. For n odd there is a unique

irreducible module Mn
∼= C2[

n
2 ]|2[

n
2 ]

.

We can use the above results to derive the ungraded algebras. For n = 2k even

Cℓn ∼= End(C2k) n = 0(2), ungraded (13.52)

This is a central simple algebra with a unique irrep N2k
∼= C2k . For n = 2k + 1 odd

Cℓn ∼= End(C2k)⊕ End(C2k) n = 1(2), ungraded (13.53)

Now ωc is (ungraded) central and we can make orthogonal projection operators P± =
1
2 (1 ± ωc) onto the two simple ideals (i.e. the two summands in (13.53). There are two

inequivalent representations on C2k according to whether ωc is represented as ±1.

To summarize, we have:

Clifford Algebra Cℓ2k Cℓ2k+1

Graded algebra End(C2k−1|2k−1
) End(C2k−1|2k−1

)⊗̂Cℓ1
Ungraded algebra C(2k) C(2k)⊕ C(2k)

Graded irreps M±
2k

∼= C2k−1|2k−1
, ρ(ωc)|M±,0

2k
= ±1 M2k+1

∼= C2k|2k

Ungraded irreps N2k
∼= C2k N±

2k+1
∼= C2k , ρ(ωc) = ±1
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Remarks

1. The irreducible representation N2k is often called the “Dirac representation.”

2. Although Cℓn is not supercommutative, it is nevertheless true that Cℓoppn
∼= Cℓ−n ∼=

Cℓn. Therefore we do not need to distinguish left-modules from right-modules. (See

exercise ***** above.) In our discussion above we have always implicitly worked with

left-modules.

3. A more conceptual way to explain the relation between the ungraded and graded

modules is that there is an equivalence of categories between the category Nn of

ungraded modules of Cℓn and the category Mn+1 of graded modules of Cℓn+1. To

go in one direction, if we have M ∈ Mn+1 then M0 is a module for Cℓ0n+1. But

Cℓ0n+1
∼= Cℓn as an ungraded module, so we can regard M0 as an object in Nn. In

the other direction we note that Cℓn+1 is a right Cℓ0n+1-module, so given N ∈ Nn we

can produce a graded Cℓn+1-module via

Cℓn+1 ⊗Cℓ0n+1
N (13.54)

These are inverse functors. ♣Should explain

why. ♣

4. It is also interesting to compare the irreducible modules in different dimensions. We

can do this by embedding ι : Ck →֒ Ck+1 say, by (z1, . . . , zk) → (z1, . . . , zk, 0). Then

it is not hard to show that

ι∗(M±
2k)

∼=M2k−1 ι∗(M2k+1) ∼=M+
2k ⊕M−

2k (13.55)

ι∗(N±
2k+1)

∼= N2k ι∗(N2k) ∼= N+
2k−1 ⊕N−

2k−1 (13.56)

5. We are now in a position to write explicit matrix representations for the Clifford

modules. We use (13.27) as follows. Suppose that γi, i = 1, . . . , 2k − 1 is an ♣Line this up with

the explicit rep

from harmonic

oscillators given in

Section 18 below. ♣

irreducible representation of C2k−1 by complex 2k−1×2k−1 matrices with, say, (γi)2 =

1. Since it is irreducible we must have

γ123···(2k−1) = γ1γ2 · · · γ2k−1 = zk12k−1 (13.57)

where zk is a complex number in {±1,±i}. Now we can produce an irrep of Cℓ2k+1

by

Γi = γi ⊗ σ1 =

(
0 γi

γi 0

)
i = 1, . . . , 2k − 1

Γ2k = 12k−1 ⊗ σ2 =

(
0 −i
i 0

)

Γ2k+1 = 12k−1 ⊗ σ3 =

(
1 0

0 −1

)
(13.58)
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In this way we build up an explicit irrep in two higher dimensions. For example, if

we start out with γ1 = 1 in one dimension we build the three Pauli matrices in three

dimensions. In general we have

Γ123···(2k+1) = Γ1Γ2 · · ·Γ2k+1 = izk12k (13.59)

In particular, choosing the two values for zk produces the two irreps of Cℓ2k+1 as an

ungraded algebra. Starting with γ1 = z1 = ±1 one obtains

zk = ik−1z1 (13.60)

As an illustration of (13.56) the matrices Γ1, . . . ,Γ2k provide an explicit irreducible

representation of Cℓ2k. (In fact, it can be also be taken as a graded representation.)
24

13.2.2 Morita equivalence and the complex K-theory of a point

Equation (13.47) shows that the Morita equivalence classes of complex Clifford algebras

have a mod two periodicity :

[Cℓn+2] = [Cℓn] (13.61)

As explained in Appendix A there is a group structure on Morita equivalence classes

[Cℓn] · [Cℓm] := [Cℓn⊗̂Cℓm] = [Cℓn+m] = [Cℓ(n+m)mod2] (13.62)

Therefore, the graded Brauer group of C is the group Z2. ♣Need to

distinguish Morita

equivalence classes

from notation for

K-theory classes

below. ♣

At this point we are at the threshhold of the subject of K-theory. This is a generaliza-

tion of the cohomology groups of topological spaces. At this point we are only equipped to

discuss the “cohomology groups” of a point, but even this involves some interesting ideas.

Let M0 be the abelian monoid of finite-dimensional complex super-vector-spaces. This

is in harmony with our notation above because a finite-dimensional complex supervector

space is the same thing as a graded module for Cℓ0 = C. The monoid operation is direct

sum and the identity is the 0 vector space. We consider a submonoid Mtriv
0 of supervector

spaces for which there exists an odd invertible operator T . That is, T ∈ End(V )1 so that

T : V 0 → V 1 is an isomorphism. This is a submonoid because if (V1, T1) and (V2, T2)

are “trivial” then T1 ⊕ T2 “trivializes” V1 ⊕ V2. Now we consider the quotient monoid

M0/Mtriv
0 . There is a well-defined sum on equivalence classes:

[M1]⊕ [M2] := [M1 ⊕M2] (13.63)

and in the quotient monoid there are additive inverses. The reason is that

[M ]⊕ [ΠM ] = [M ⊕ΠM ] = 0 (13.64)

24In particle physics courses the logic is exactly the reverse of what we said here. Usually one finds an

irreducible representation of γµ, with µ = 1, 2, 3, 4 and then discovers that one can introduce γ5 = γ1234 to

give an irreducible representation in five dimensions.
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The second equality holds because the map super-linear transformation of M ⊕ΠM given

by v1 ⊕ v2 7→ v2 ⊕ v1 is odd (why ?!?) and obviously invertible. The abelian group K0(pt)

is, by definition,

K0(pt) := M0/Mtriv
0 (13.65)

with the above abelian group structure. Indeed K0(pt) ∼= Z. One way to see that is to

define a linear map M0 → Z via

V 7→ ne − no (13.66)

if V ∼= Cne|no . Clearly the kernel of this map are supervector spaces isomorphic to Cr|r for

some r ≥ 0. But these are precisely the super-vector spaces in Mtriv
0 .

Now let us similarly define, for n > 0,

K−n(pt) := Mn/Mtriv
n . (13.67)

Here Mn is the monoid of finite-dimensional complex graded modules for Cℓn. Meanwhile

Mtriv
n is the submonoid of Cℓn-modulesM such that there exists an invertible odd operator

T ∈ End(M) such that T graded-commutes with the Cℓn-action. The choice of superscript

−n instead of +n in (13.67) is related to the connection to algebraic topology, a connection

which is far from obvious at this point!

Let us work out some examples of K−n(pt) with n > 0.

Consider K−1(pt). Then there is a unique irreducible module M1 for Cℓ1. We can

take M1
∼= C1|1 with, say, ρ(e) = σ1. Then we can introduce the odd invertible operator

T = σ2 which graded commutes with ρ(e). Therefore M1 ∈ Mtriv
1 and since Cℓ1 is a

super-simple algebra all the modules are direct sums of M1. Therefore Mtriv
1 = M1 and

hence K−1(pt) ∼= 0.

Next consider K−2(pt). Then there are two irreducible modules M±
2 for Cℓ2. We can

represent M±
2 as M±

2
∼= C1|1 together with ρ(e1) = ±σ1 and ρ(e2) = σ2. Any module will

be a direct sum of copies of M±
2 . Now, any odd operator T on C1|1 which anticommutes

with σ1 and σ2 must vanish. Therefore neither M+
2 nor M−

2 are in Mtriv
0 . We should not

hastily conclude that Mtriv
0 is the zero monoid! Indeed, consider M+

2 ⊕M−
2

∼= C2|2. Let

v0, v1 be an ordered basis for M+
2 , with v0 even and v1 odd, and similarly let w0, w1 be

an ordered basis for M−
2 and consider the ordered basis v0, w0 for the even subspace of

M+
2 ⊕M−

2 and v1, w1 for the odd subspace of M+
2 ⊕M−

2 . Then in this basis, as a Cℓ2
module we have

ρ(e1) =




0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


 = σ1 ⊗ σ3 ρ(e2) =




0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0


 = −σ2 ⊗ 1 (13.68)

Having made these choices notice that we can introduce

T =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 = σ1 ⊗ σ1 (13.69)
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which is plainly odd, invertible, and anticommutes with ρ(e1) and ρ(e2). (Note that it also

cannot be written as a direct sum of operators on M+
2 and M−

2 , respectively.) Therefore,

in K−2(pt) we have [M−
2 ] = −[M+

2 ]. From this it is clearly that, as abelian monoids

M2
∼= Z+ ⊕ Z+ (13.70)

(generated by M±
2 ) while

Mtriv
2

∼= Z+ (13.71)

(generated by M+
2 ⊕M−

2 ). Therefore

K−2(pt) ∼= Z (13.72)

the isomorphism being given by [n+M
+
2 ⊕ n−M

−
2 ] 7→ n+ − n−.

We have gone through this in excruciating detail, but now, thanks to the mod-two

periodicity it should be clear that for n ≥ 0

K−n(pt) ∼=
{
Z n = 0(2)

0 n = 1(2)
(13.73)

Remarks

1. Equation (13.73) should be contrasted with the more familiar (co)homology theory

of singular, Cech, or DeRham cohomology. The cohomology groups Hp(X) of a

topological space X can be defined for all integers p, but for X = pt only one group

is nonzero:

Hp(pt) =

{
Z p = 0

0 else
(13.74)

2. There are very many ways to introduce and discuss K-theory. In the original approach

of Atiyah and Hirzebruch [8], K−n(pt) was defined in terms of stable isomorphism

classes of complex vector bundles on Sn. One of the main points of [7] was the

reformulation in terms of Clifford modules, an approach which culminated in the

beautiful paper of Atiyah and Singer [9]. We have chosen this approach because it

is the one closest to the way K-theory appears in physics. In string theory, T turns

out to be the classical value of a tachyon field [42]. In the applications to topological

phases of matter T is related to “topologically trivial pairing of particles and holes”.

See, e.g. [29, 38].

3. In general, given an abelian monoid M there are two ways to produce an associated

abelian group. One, the method adopted here, is to define a submonoid Mtriv so

that the quotient M/Mtriv admits inverses and hence is a group. A second method,

known as the Grothendieck group is to consider the produce M×M and divide by

an equivalence relation. We say that (a, b) is equivalent to (c, d) if there is an e ∈ M
with

a+ d+ e = c+ b+ e (13.75)
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The idea is that if we could cancel then this would say a − b = c − d. Now it

is easy to see that the set of equivalence classes [(a, b)] is an abelian group, with

[(a, b)] = −[(b, a)]. A standard example is that the Grothendieck group of M = Z+

produces the integers. Note that if we took M = Z+ ∪ {∞} then the Grothendieck

group would be the trivial group. This idea actually generalizes to additive categories ♣Explain the

Grothendieck group

approach to

K−n(pt)? ♣

where we have a notion of sum of objects. In that case (13.75) should be understood

to mean that there exists an isomorphism between a+ d+ e and c+ b+ e. Then one

takes the monoid of isomorphism classes of objects to the Grothendieck group of the

category.

4. In fact, there is more mathematical structure here because we can take graded tensor

products of Clifford modules. These induce a product structure on the equivalence

classes:

[M1] · [M2] := [M1⊗̂M2] (13.76)

This is well-defined because if M ∈ Mtriv
n then M⊗̂M ′ has an odd invertible linear

transformation T ⊗̂1 and hence M⊗̂M ′ ∈ Mtriv
n . This allows us to define a graded

ring:

⊕n≥0K
−n(pt) ∼= Z[u] (13.77)

where u, known as the Bott element can be take to be u = [M+
2 ]. Note that it has

degree two.

13.2.3 Digression: A hint of the relation to topology

Consider a representation of Cℓd by anti-Hermitian gamma matrices on a vector space (with

basis) V where Γµ are such that {Γµ,Γν} = −2δµν , where µ = 1, . . . , d. Let dimCV = L.

Suppose x0, xµ, µ = 1, . . . , d are functions on the unit sphere Sd embedded in Rd+1,

so

x20 + xµxµ = 1 (13.78)

Consider the matrix-valued function

T (x) := x01 + xµΓ
µ (13.79)

Note that

T (x)T (x)† = 1 (13.80)

and therefore T (x) is a unitary matrix for every (x0, xµ) ∈ Sd. We can view T (x) as

describing a continuous map T : Sd → U(L). Therefore it defines an element of the

homotopy group [T ] ∈ πd(U(L)). The following examples show that the homotopy class of

the map can be nontrivial:

Example 1: If d = 1 then we could take either of the ungraded irreducible representations

V = C and Γ = ±i. If x20 + x21 = 1 then

T±(x) = x0 ± ix1 (13.81)
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and, for either choice of sign, [T±] is a generator of π1(U(1)) = Z.

Example 2: If d = 3 then we may choose either of the ungraded representations V = C2

and Γi = ±
√
−1σi and then

T (x) = x0 + xiΓ
i (13.82)

is one way to parametrize SU(2). Thus the map T : S3 → SU(2) is the identity map (with

the appropriate orientation on S3). If we fix a an orientation on S3 we get winding number

±1 and hence [T±] is a generator of π3(SU(2)) ∼= π3(S
3) ∼= Z.

Here is one easy criterion for triviality of [T ]: Suppose we can introduce another anti-

Hermitian L × L gamma matrix on V , call it Γ, so that Γ2 = −1 and {Γ,Γµ} = 0. Now

consider the unit sphere

Sd+1 = {(x0, xµ, y)|x20 +
d∑

µ=1

xµxµ + y2 = 1} ⊂ Rd+2 (13.83)

Then we can define

T̃ (x, y) = x0 + xµΓ
µ + yΓ (13.84)

When restricted to Sd+1 ⊂ Rd+2, T̃ is also unitary and maps Sd+1 → U(L). Moreover

T̃ (x, 0) = T (x) while T̃ (0, 1) = Γ. Thus T̃ (x, y) provides an explicit homotopy of T (x) to

the constant map.

Figure 9: The map on the equator extends to the northern hemisphere, and is therefore homo-

topically trivial.

Thus, if the representation V of Cℓd is the restriction of a representation of Cℓd+1

then T (x) is automatically homotopically trivial.

Let us see what this means if we combine it with what we learned above about the

irreducible ungraded representations of Cℓd.

1. If d = 2p we have irrep N2p
∼= C2p . It is indeed the restriction of N±

2p+1
∼= C2p and

hence, T (x) must define a trivial element of π2p(U(L)), with L = 2p.

2. On the other hand, if d = 2p+ 1 then N±
2p+1

∼= C2p is not the restriction of N2p+2
∼=

C2p+1
. All we can conclude from what we have said above is that T (x) might define a

homotopically nontrivial element of π2p+1(U(L)) with L = 2p. On the other hand, if

we had used V = N+
2p+1 ⊕N−

2p+1 then since V is the restriction of the representation

N2p+2 and T = T+ ⊕ T−, it follows that the homotopy classes satisfy [T−] = −[T+].
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Now, a nontrivial result of [7] is:25

Theorem[Atiyah, Bott, Shapiro]. If V is an irreducible representation of Cℓd then then

[T ] generates πd(U(L)).

It therefore follows that π2p(U(L)) = 0 and π2p+1(U(L)) ∼= Z, with generator [T+] or

[T−].

These facts are compatible with the statement in topology that

π2p−1(U(N)) = Z N ≥ p (13.85)

π2p(U(N)) = 0 N > p (13.86)

Note that these equations say that for N sufficiently large, the homotopy groups do

not depend on N . These are called the stable homotopy groups of the unitary groups and

can be denoted πk(U). The mod two periodicity of πk(U) as a function of k is known as

Bott periodicity.

To make the connection to vector bundles on spheres we use the above matrix-valued

functions as transition functions in the clutching construction.

Now we recall from the theory of fiber bundles the following

Theorem. If d > 1 and G is connected then principal G-bundles on Sd are topologi-

cally classified by πd−1(G), i.e. there is an isomorphism of sets:

PrinG(S
d) ∼= πd−1(G)

It follows from this theorem that, for N > d/2 we have

VectN (S
d) ∼=

{
Z d = 0(2)

0 d = 1(2)
(13.87)

where VectN (S
d) is the set of isomorphism classes of rank N complex vector bundles over

Sd.

One way to measure the integer is via a characteristic class known as the Chern charac-

ter ch(E) ∈ H2∗(X;Q). If we put a connection on the bundle then we can write an explicit

representative for the image of ch(E) in DeRham cohomology. Locally the connection is

an anti-hermitian matrix-valued 1-form A. It transforms under gauge transformations like

(d+A) → g−1(d+A)g (13.88)

25More precisely, they used the above T (x) to define a K-theoretic Thom class. Then the result we have

stated follows from the relation of K-theory to homotopy theory.
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The fieldstrength is

F = dA+A2 (13.89)

and is locally an anti-hermitian matrix-valued 2-form transforming as F → g−1Fg. Then,

in DeRham cohomology

ch(E) = [Trexp

(
F

2πi

)
] (13.90)

and the topological invariant is measured by

∫

Sd
ch(E) (13.91)

Note that since ch(E) has even degree this only has a chance of being nonzero for d even.

On a bundle with transition function g on the equator we can take A = rg−1dg on the

northern hemisphere, where g(x) is a function only of the “angular coordinates” on the

hemisphere and A = 0 on the southern hemisphere. Note that thanks to the factor of r,

which vanishes at the north pole this defines a first-order differentiable connection. For

this connection the fieldstrength is

F = drg−1dg − r(1− r)(g−1dg)2 (13.92)

and hence if d = 2ℓ

∫

S2ℓ

ch(E) = (−1)ℓ−1 1

(2πi)ℓ(ℓ− 1)!

∫ 1

0
(r(1− r))ℓ−1dr

∫

S2ℓ−1

Tr(g−1dg)2ℓ−1

= (−1)ℓ−1 (ℓ− 1)!

(2πi)ℓ(2ℓ− 1)!

∫

S2ℓ−1

Tr(g−1dg)2ℓ−1

(13.93)

The integral of the Maurer-Cartan form over the equator measures the homotopy class of

the transition function g. It is not at all obvious that this integral will be an integer, but

for U(N) and the trace in the N it is. This is a consequence of the Atiyah-Singer index

theorem.

Note that from the viewpoint of vector bundles there is no obvious abelian group

operation on VectN (S
d), despite the fact that in this isomorphism of sets the RHS has a

structure of an abelian group. We can of course take direct sum, but this operation changes

the rank.

It is fruitful to consider the abelian monoid obtained by taking the direct sum

Vect(Sd) := ⊕N≥0VectN (S
d). (13.94)

As mentioned above, we can immediately obtain an abelian group by using the Grothendieck

construction. More generally, consider the Grothendieck construction applied to Vect(X)

for any topological space X. We consider equivalence classes [(E1, E2)] where [(E1, E2)] =

[(F1, F2)] if there exists a G with

E1 ⊕ F2 ⊕G ∼= F1 ⊕ E2 ⊕G (13.95)
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Intuitively, we think of [(E1, E2)] as a difference E1 − E2. The Grothendieck group of

Vect(X) is the original Atiyah-Hirzebruch definition of K0(X).

Example: If we consider from this viewpoint the K-theory of a point K0(pt) then we

obtain the abelian group Z, the isomorphism being [(E1, E2)] → dimE1 − dimE2.

For vector bundles the Grothendieck construction can be considerably simplified thanks

to the Serre-Swan theorem:

Theorem[Serre; Swan] Any vector bundle 26 has a complementary bundle so that E⊕E⊥ ∼=
θN is a trivial rank N bundle for some N . Equivalently, every bundle is a subbundle of a

trivial bundle defined by a continuous family of projection operators.

This leads to the notion of stable equivalence of vector bundles: Two bundles E1, E2

are stably equivalent if there exist trivial bundles θs of rank s so that

E1 ⊕ θs1
∼= E2 ⊕ θs2 (13.96)

Example: A very nice example, in the category of real bundles is the tangent bundle of

S2. The real rank two bundle TS2 is topologically nontrivial. You can’t comb the hair on

a sphere. However, if we consider S2 ⊂ R3 the normal bundle is a real rank one bundle

and is trivial. But that means TS2 ⊕ θ1 ∼= θ3. So TS
2 is stably trivial.

Returning to the general discussion. In the difference E1−E2 we can add and subtract

the complementary bundle to get (E1 ⊕E⊥
2 )− θN for some N . If we restrict the bundle to

any point we get an element of K0(pt). By continuity, it does not matter what point we

choose, provided X is connected.

In other words, there is a homomorphism

K0(X) → K0(pt) (13.97)

The kernel of this homomorphism is, by definition, K̃0(X). We can represent it by formal

differences of the form E − θN where N = rank(E).

For spheres, we have

K̃0(Sd) =

{
Z d = 0(2)

0 d = 1(2)
(13.98)

and this is the abelian group which is to be compared with the group (13.73) defined above. ♣Explain a little

more that ch is a

homomorphism to

deduce this

isomorphism of

groups. ♣

Remarks

1. We can nicely tie together the relation to projected bundles by noting that if Γi

are Hermitian matrices then P± = 1
2(1 ± xiΓi) are projection operators on spheres.

Therefore, consider the relation between irreducible representations of Cℓ2k−1 and

Cℓ2k+1 given in (13.58). Let µ = 1, . . . , 2k+1 and consider the projection operators

P±(Xµ) :=
1

2
(1 +XµΓ

µ) (13.99)

26over a suitable nice topological space
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acting on the trivial bundle S2k × V where V = C2k .

We now define two bundles V± → S2k of rank 2k−1 which are the images of the

projection operators P±, respectively.

Focus on V+ which is the image of P+. Let us compute a trivialization on the two

hemispheres and compute the transition function. Write the coordinates as

Xµ = (xi, x2k, y) (13.100)

Choose a basis vα, α = 1, . . . , 2k−1 for the irrep of Cℓ2k−1. Then
(
vα
0

)
(13.101)

is a trivialization of the bundle V+ at the north pole y = 1. Indeed:

P+

(
vα
0

)
=

1

2

(
(1 + y)vα

(γixi + ix2k)vα

)
(13.102)

Similarly, (
0

vα

)
(13.103)

provides a trivialization at the south pole y = −1 and

P+

(
0

vα

)
=

1

2

(
(γixi − ix2k)vα

(1− y)vα

)
(13.104)

The transition function at y = 0 is, essentially, the unitary matrix

T (x) = x2k + iγixi (13.105)

which is where we began our discussion above. This construction generalizes the stan-

dard constructions of the magnetic monopole and instanton bundles on S2 and S4,

respectively. Indeed, the projected connections on V± define the basic (anti)monopole

and (anti)instanton connections. ♣Need to improve

notation here! ♣

♣Should tie this

into Bott

periodicity: A loop

of projectors is a

unitary and a loop

of unitaries is a

projector. ♣

2. Now, as in our discussion using Clifford modules, there is another approach where

we consider an abelian monoid and divide by a submonoid of ”trivial” elements. As

we mentioned, the latter viewpoint is closer to the physics. The abelian monoid

consists of isomoprhism classes of Z2-graded bundles equipped with odd operators.

The trivial submonoid are those with invertible odd operators. Very roughly speaking

the difference E0 − E1 in the Grothendieck construction is to be compared with a

Z2-graded bundle E with an odd operator T ∈ End(E) so that E0 ∼= kerT and

E1 ∼= cokT . Introducing Hermitian structures we have E1 ∼= kerT † so the picture is

that

E0 − E1 ∼= (kerT |E0 ⊕ (kerT |E0)⊥)− (kerT †|E1 ⊕ (kerT †|E1)⊥). (13.106)

Now T provides a bundle isomorphism between kerT |E0)⊥ and kerT †|E1)⊥, so these

can be canceled.
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13.3 Real Clifford algebras and Clifford modules of low dimension

In this section we consider the real Clifford algebras Cℓn for |n| ≤ 4. We also describe their

irreducible modules and hence the abelian monoid Mn of isomorphism classes of Z2-graded

representations. ♣Should go back to

previous section and

change notation to

Mc
n. etc. ♣13.3.1 dimV = 0

Already for Cℓ0 ∼= R there is a difference between graded and ungraded modules. There

is a unique irreducible ungraded module, namely R acting on itself. But there are two

inequivalent graded modules, R1|0 and R0|1.

13.3.2 dimV = 1

As in the complex case, Cℓ±1 cannot be a matrix superalgebra for simple dimensional

reasons. It therefore defines a new Morita equivalence class. Unlike the complex case we

need to distinguish the cases where e2 = ±1.

As a vector space Cℓ+1 is

Cℓ+1 = R⊕ Re (13.107)

the algebra structure is:

(a⊕ be)(c ⊕ de) = (ac+ bd)⊕ (bc+ ad)e. (13.108)

As an ungraded algebra this is sometimes known as the “double numbers.” As an ungraded

algebra Cℓ+1
∼= R⊕ R because we can introduce projection operators P± = 1

2(1± e), so

Cℓ+1
∼= RP+ ⊕ RP− ungraded! (13.109)

However, as a graded algebra there is a unique irreducible representation, η̃. As a

graded vector space η̃ = R1|1 and, WLOG, we can take

ρ(e) =

(
0 1

1 0

)
(13.110)

Note that e is odd and squares to 1. Since the irrep is unique up to isomorphism ♣Really should

prove this. ♣

M1
∼= Z+η̃ (13.111)

In the ungraded case there are two inequivalent ungraded irreducible representations

N±
1

∼= R with ρ(e) = ±1.

Similarly, Cℓ−1 has a single generator e with relation e2 = −1. Therefore

Cℓ−1 = R⊕ Re (13.112)

as a vector space. The multiplication is

(a⊕ be)(c ⊕ de) = (ac− bd)⊕ (bc+ ad)e (13.113)
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so Cℓ−1 is isomorphic to the complex numbers C as an ungraded algebra, although not as

a graded algebra.

As a graded algebra Cℓ−1 has a unique irreducible representation η which is, as a

super-vector space is η = R1|1, but now with

ρ(e) =

(
0 −1

1 0

)
:= ǫ = −iσ2 (13.114)

We therefore have:

M−1
∼= Z+η (13.115)

As an ungraded algebra Cℓ−1 has a unique ungraded irreducible representation: N−1 =

C acts on itself. (As representations of a real algebra ρ(e) = ±i are equivalent.)

Remark: As with Cℓ1, both Cℓ−1 and Cℓ+1 are commutative as ungraded algebras

but noncommutative as superalgebras. Thus the centers of these as ungraded algebras are

Cℓ±1 but the supercenter of Cℓ±1 as graded algebras are Zs(Cℓ±1) ∼= R.

13.3.3 dimV = 2

Now, Cℓ1,−1 has two irreducible graded representations R1|1
± with

ρ(e1) = ±
(
0 1

1 0

)
ρ(e2) =

(
0 −1

1 0

)
:= ǫ (13.116)

Note that these are both odd, they anticommute, and they square to ±1, respectively.

Moreover, they generate all linear transformations on R1|1:

ρ(a+ be1 + ce2 + de1e2) =

(
a+ d b+ c

b− c a− d

)
(13.117)

and the algebra is that of R(2). Therefore, Cℓ1,−1 is a supermatrix algebra:

Cℓ1,−1
∼= End(R1|1) (13.118)

It is interesting to compare this with Cℓ+2. We claim that Cℓ+2 is not equivalent

to a matrix superalgebra. This is no longer immediately clear from dimensional reasons.

However, the only possibility would be End(R1|1) for dimensional reasons. Now WLOG

we can take

ρ(e1) =

(
0 1

1 0

)
(13.119)

But then what do we take for ρ(e2)? It must be odd, and it must anticommute with ρ(e1).

The only possibility is a real multiple of the matrix ǫ = −iσ2. But this matrix squares to

−1. Hence Cℓ+2 is not a matrix superalgebra.

As an ungraded algebra we can write a faithful representation of Cℓ+2:

ρ(e1) =

(
0 1

1 0

)
ρ(e2) =

(
1 0

0 −1

)
(13.120)
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since these matrices anticommute and both square to +1. These generate the full matrix

algebra M2(R) as an ungraded algebra: Note that

e1e2 = −iσ2 =
(
0 −1

1 0

)
(13.121)

Now we can write an arbitrary 2× 2 real matrix as a linear combination of 1, σ1, σ3,−iσ2:

ρ(a+ be1 + ce2 + de1e2) =

(
a+ c b− d

b+ d a− c

)
(13.122)

However, if we try to use the operators (13.120) on R1|1 this is not a representation of

Cℓ+2 as a graded algebra because ρ(e2) is not odd.

One can show that there is a unique irreducible representation of Cℓ+2 as a superalge-

bra. One way to construct it is to take the graded tensor product η̃2 := η̃⊗̂η̃. As a vector

space this is R2|2. Since we take the graded tensor product we must be careful about signs,

and we cannot just take the usual tensor product of the matrix representations. Thus let

v0, v1 be even, odd basis elements of η with

ρ(e)v0 = v1

ρ(e)v1 = v0
(13.123)

Now to take the graded tensor product let w0, w1 be a corresponding basis for the second

factor. Then choose an ordered basis for η̃2 to be

{v0⊗̂w0, v1⊗̂w1, v0⊗̂w1, v1⊗̂w0} (13.124)

A little computation shows that

ρ(e1) = ρ(e)⊗̂1 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 = σ1 ⊗ σ1 (13.125)

ρ(e2) = 1⊗̂ρ(e) =




0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0


 = σ1 ⊗ σ3 (13.126)

One can show that

M+2
∼= Z+η̃

2 (13.127)

Now consider the opposite algebra Cℓ−2. Again, one can show it is not a matrix su-

peralgebraby an argument analogous to that we gave for Cℓ+2. As an ungraded algebra we

can write an isomorphism with H by sending the generators to imaginary unit quaternions:

e1 → i

e2 → j

e1e2 → k

(13.128)
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Therefore, as an ungraded algebra

Cℓ−2
∼= H (13.129)

Once again there is a unique irreducible graded module up to isomorphism which we

can identify with η2 := η⊗̂η:
M−2

∼= Z+η
2 (13.130)

The reader should do the analogous computation to what we did for η̃2 and show that for

η2 the representation is

ρ(e1) = ρ(e)⊗̂1 =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


 = σ1 ⊗ ǫ (13.131)

ρ(e2) = 1⊗̂ρ(e) =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


 = ǫ⊗ 1 (13.132)

Remarks

1. When we complexify there is no distinction between the signatures. Any of the above

three algebras can be used to show that

Cℓ(2) ∼= C(2) (13.133)

2. The above representation of Cℓ1,−1 is useful for describing a Majorana-Weyl fermion

in 1 + 1 dimensions. Let us modify it slightly and write

γ0 =

(
0 1

−1 0

)
γ1 =

(
0 1

1 0

)
γ0γ1 =

(
1 0

0 −1

)
(13.134)

For example, the 1 + 1 Dirac equation on 1 + 1 dimensional Minkowski space M1,1

(γ0∂0 + γ1∂1)Ψ = 0 (13.135)

can be rewritten as (
∂0 − ∂1 0

0 ∂0 + ∂1

)(
ψ+

ψ−

)
= 0 (13.136)

so that ψ+ is a left-mover and ψ= is a right-mover. This explains why the volume

element γ0γ1 is called the “chirality operator.”

Exercise Even subalgebra
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a.) Using the ungraded representation of Cℓ−2 in (13.120) show that the even subal-

gebra of Cℓ(2, 0) is the algebra of matrices:
(
a −b
b a

)
(13.137)

and is isomorphic to C.

b.) Show that the even subalgebra of Cℓ±2 is isomorphic to C.

c.) Show that we can identify Cℓ±2 as C[ε±] where ε is odd, ε2± = ±1 and zε = εz̄.

Exercise

We have now obtained two algebra structures on the vector space R4: R(2) and H.

Are they isomorphic? (Hint: Is R(2) a division algebra?)

Exercise Representations of Clifford algebras

Show that

ρ(e1) =

(
0 σ1

σ1 0

)
ρ(e2) =

(
0 σ3

σ3 0

)
(13.138)

is a graded representation of Cℓ+2 on R2|2. Show that it is equivalent to the one given

above.

Exercise

Show that η2 gives an irreducible graded representation of Cℓ−2.

13.3.4 dimV = 3

Again, as graded algebras Cℓ±3 are not matrix superalgebras, simply for dimensionful

reasons. We might ask whether they are matrix algebras over simpler superalgebras. For

dimensional reasons the only possibility would be End(R1|1)⊗̂Cℓ±1. However, the latter

contain the element (
1 0

0 0

)
(13.139)

which is nonzero, even, and noninvertible. However, an argument along the lines of (14.1)

below shows that in Cℓ±3 any nonzero even element is in fact invertible.

Nevertheless, Cℓ±3 can be expressed more simply as follows. We claim that, as graded

algebras:

Cℓ±3
∼= H⊗̂Cℓ∓1 (13.140)
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where H is purely even. This is easily proved by mapping the generators according to

e1 → i⊗ e

e2 → j⊗ e

e3 → k⊗ e

(13.141)

Note that since H is purely even this map of generators is even, as it must be, and moreover

preserves the Clifford relations.

As ungraded algebras we can use the tensor product rules and the isomorphisms already

established to conclude

Cℓ3 ∼= Cℓ−1 ⊗ Cℓ2
∼= C⊗R R(2)

∼= C(2)

(13.142)

Cℓ−3
∼= Cℓ1 ⊗ Cℓ−2

∼= (R⊕ R)⊗R H

∼= H⊕H

(13.143)

Note particularly, that, as an ungraded algebra Cℓ−3 is not a simple algebra. The reason

is that we can introduce projection operators

P± =
1

2
(1± e1e2e3) (13.144)

One can show that once again

M+3
∼= Z+η̃

3 (13.145)

M−3
∼= Z+η

3 (13.146)

Note that, as a vector space η3 ∼= R4|4, as is η̃3.

Remark: Again we can illustrate the failure of the ungraded version of (13.16) (a

failure which we already pointed out in (13.46)). Note that as ungraded algebras with

ungraded tensor product

Cℓ1 ⊗R Cℓ−1
∼= C⊕ C (13.147)

but Cℓ1,−1
∼= R(2), as an ungraded algebra. Moreover

C⊗R C ∼= C⊕ C (13.148)

To prove this, simply note that we have projection operators P± = 1
2(1⊗1±i⊗i). Therefore,

as ungraded algebras

Cℓ−1 ⊗R Cℓ−1
∼= C⊗R C ∼= C⊕ C (13.149)

but in fact Cℓ−2
∼= H as an ungraded algebra. Finally,

C⊗R H ∼= C(2) (13.150)
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This follows since the usual Pauli matrices (together with the identity) form a basis of all

2× 2 matrices over the complex numbers. Therefore

Cℓ−1 ⊗R Cℓ−2
∼= C(2) (13.151)

as an ungraded algebra, but we just showed above that Cℓ−3
∼= H ⊕ H, as an ungraded

algebra. I hope at this point that it is clear that the graded viewpoint is both useful and

more elegant.

Exercise

Write Cℓ1+,2− and Cℓ1−,2+ in terms of simpler superalgebras.

13.3.5 dimV = 4

Now, something important and interesting happens when we reach Cℓ±4.

Now we can show that, as graded algebras Cℓ±4
∼= End(R1|1)⊗H with H purely even.

We do this by exhibiting explicit graded isomorphisms as follows:

For Cℓ+4 we use:

e1 → κ

(
0 i

−i 0

)

e2 → κ

(
0 j

−j 0

)

e3 → κ

(
0 k

−k 0

)

e4 →
(
0 1

1 0

)

(13.152)

where κ ∈ {±1}. This defines two irreducible graded modules µ̃± which are isomorphic

to R4|4 as supervector spaces. (One should think of them as R1|1⊗̂H.) The invariant

distinction is that ρ(e1e2e3e4) = κ = ±1 on the even subspace.

Similarly, for Cℓ−4:

e1 → κ

(
0 i

i 0

)

e2 → κ

(
0 j

j 0

)

e3 → κ

(
0 k

k 0

)

e4 →
(

0 1

−1 0

)

(13.153)
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The two cases κ = ±1 define two modules µ±.

One can show that

M4
∼= Z+µ̃

+ ⊕ Z+µ̃
− (13.154)

M−4
∼= Z+µ

+ ⊕ Z+µ
− (13.155)

13.3.6 Summary

It is time to summarize what we have learned about the graded and ungraded irreps of the

low dimensional real Clifford algebras. (Here ε± is odd and ε2± = ±1. See exercise above):

Clifford Algebra Ungraded algebra Graded algebra Ungraded irreps Graded irreps

Cℓ+4 H(2) End(R1|1)⊗H H2 µ̃±

Cℓ+3 C(2) H⊗̂R[ε−] C2 η̃3

Cℓ+2 R(2) C[ε+], zε+ = ε+z̄ R2 η̃2

Cℓ+1 R⊕ R R[ε+] R±, ρ(e) = ±1 η̃

Cℓ0 R R R R1|0,R0|1

Cℓ−1 C R[ε−] C η

Cℓ−2 H C[ε−], zε− = ε−z̄ H η2

Cℓ−3 H⊕H H⊗̂R[ε+] H±, ρ(e1e2e3) = ±1 η3

Cℓ−4 H(2) End(R1|1)⊗H H2 µ±

13.4 The periodicity theorem

The fact that Cℓ±4 are the same, and are matrix superalgebras over the even division

algebra H is very significant. Together with the tensor product rules (13.22) we can derive

a beautiful periodicity structure. It is the analog of (13.47) for Clifford algebras over the

real numbers.

We can use the tensor product rule (13.20) to build up Cℓn from Cℓ1, for n > 0. When

we get to n = 8 something special happens. We can

Cℓ8 ∼= Cℓ4⊗̂Cℓ4
∼= End(R2|2)⊗̂(H⊗H)

(13.156)

But now we can use

H⊗R H ∼= End(R4|0). (13.157)
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We have already proven (13.157) above: Recall that Hopp ∼= H and the operators L(q) and

R(q) of left- and right-multiplication of quaternions in the regular representation generate

the most general linear transformation on H. Therefore,

Cℓ8 ∼= End(R8|8) (13.158)

and hence we have a mod-eight periodicity of Morita classes:

Cℓn+8
∼= End(R8|8)⊗̂Cℓn n ≥ 0 (13.159)

By induction we conclude that

Cℓ8k+r ∼= End(R24k−1|24k−1
)⊗ Cℓr (13.160)

with k, r ≥ 0.

We can of course do something similar with the negative signature algebras Cℓ−n.

But now, thanks to (13.140), which we repeat:

Cℓ±3
∼= H⊗̂Cℓ∓1 (13.161)

we can relate Cℓn for n’s which are negative and positive to each other at the level of

Morita equivalence. For example note that

Cℓ5 ∼= Cℓ4⊗̂Cℓ1
∼= End(R1|1)⊗̂H⊗ Cℓ1

∼= End(R1|1)⊗̂Cℓ−3

(13.162)

and therefore

Cℓ6 ∼= Cℓ5⊗̂Cℓ1
∼= End(R1|1)⊗̂Cℓ−3⊗̂Cℓ1
∼= End(R1|1)⊗̂(Cℓ1⊗̂Cℓ−1)⊗̂Cℓ−2

∼= End(R1|1)⊗̂End(R1|1)⊗̂Cℓ−2

∼= End(R2|2)⊗̂Cℓ−2

(13.163)

and similarly,

Cℓ7 ∼= End(R4|4)⊗̂Cℓ−1 (13.164)

There is an entirely analogous set of formulae relating Cℓn for n = −5,−6,−7 to matrix

superalgebras over the smaller Clifford algebras Cℓ3, Cℓ2, Cℓ1, respectively.

The upshot is that if we define the following 8 basic superalgebras:

Ds
0 := R

Ds
±1 := Cℓ±1

Ds
±2 := Cℓ±2

Ds
±3 := Cℓ±3

Ds
4 = Ds

−4 := H

(13.165)

where Ds
0 and Ds

4 are purely even, then all the Clifford algebras are matrix superalgebras

over the Ds
α:
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Clifford Algebra Ungraded Algebra Mr|s ⊗Ds
α

Cℓ+8 R(16) EndR(R8|8)⊗̂Ds
0

Cℓ+7 C(8) EndR(R4|4)⊗̂Ds
−1

Cℓ+6 H(4) EndR(R2|2)⊗̂Ds
−2

Cℓ+5 H(2)⊕H(2) EndR(R1|1)⊗̂Ds
−3

Cℓ+4 H(2) EndR(R1|1)⊗̂Ds
4

Cℓ+3 C(2) Ds
3

Cℓ+2 R(2) Ds
2

Cℓ+1 R⊕ R Ds
1

Cℓ0 R Ds
0

Cℓ−1 C Ds
−1

Cℓ−2 H Ds
−2

Cℓ−3 H⊕H Ds
−3

Cℓ−4 H(2) EndR(R1|1)⊗̂Ds
4

Cℓ−5 C(4) EndR(R1|1)⊗̂Ds
+3

Cℓ−6 R(8) EndR(R2|2)⊗̂Ds
+2

Cℓ−7 R(8)⊕ R(8) EndR(R4|4)⊗̂Ds
+1

Cℓ−8 R(16) EndR(R8|8)⊗̂Ds
0

Note particularly that, at the level of Morita equivalence we have

[Cℓ±1] = [Cℓ∓7] [Cℓ±2] = [Cℓ∓6] [Cℓ±3] = [Cℓ∓5] (13.166)

Therefore, the graded Morita equivalence class of [Cℓn] where n ∈ Z is positive or negative

is determined by the residue α = nmod8, and we have:

[Cℓn] = [Ds
α] (13.167)

and moreover, the multiplication on Morita equivalence classes is just given by

[Ds
α] · [Ds

β ] = [Ds
α+β ] (13.168)

Thus the real graded Brauer group over R is Z/8Z.

The Wedderburn type of the ungraded algebras is now easily determined from the

graded ones by using the explicit determination we gave above for the basic cases Cℓn with

|n| ≤ 4. Notice that there is a basic genetic code in this subject

R,C,H,H⊕H,H,C,R,R⊕ R,R, . . . (13.169)

We will meet it again and again. One would do well to memorize this sequence. It is

illustrated in Figure 10.

Finally, we can now easily determine the structure of Cℓr+,s− for all r, s. The Morita

class is determined by:

[Cℓr+,s−] = [Ds
r−s] (13.170)
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Figure 10: An illustration of the “Bott clock”: For Cℓn with decreasing n read it clockwise (=

decreasing phase) and with increasing n read it counterclockwise (= increasing phase).

and hence, lifting α = (r − s)mod8 to |α| ≤ 4

Cℓr+,s−
∼= End(R2n|2n)⊗̂Cℓα (13.171)

for an n which can be computed by matching dimensions (see exercise below).

Exercise

Show that the nonnegative integer n in (13.171) is given by

n =
r + s− |α|

2
− 1 (13.172)

Exercise

Show that if n,m are any integers, then

Cℓn⊗̂Cℓm ∼= Cℓn+m⊗̂M (13.173)

where M is a matrix superalgebra End(Rℓ|ℓ) and find a formula for ℓ.
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Exercise

Show that

End(R1|1)⊗̂Cℓ∓2
∼= H⊗̂Cℓ±2 (13.174)

One way to answer :

H⊗̂Cℓ2 ∼= H⊗̂Cℓ1⊗̂Cℓ1
∼= Cℓ−3⊗̂Cℓ1
∼= Cℓ1⊗̂Cℓ−1⊗̂Cℓ−2

∼= End(R1|1)⊗̂Cℓ−2

(13.175)

Exercise The real Clifford algebras in Lorentzian signature

Using the above results compute the real Clifford algebras in Lorentzian signature as

ungraded algebras:

d = s+ 1 Cℓ(s+, 1−) Cℓ(1+, s−)

0+1 C R⊕ R

1 +1 R(2) R(2)

2 +1 R(2)⊕ R(2) C(2)

3 +1 R(4) H(2)

4 +1 C(4) H(2)⊕H(2)

5 +1 H(4) H(4)

6 +1 H(4)⊕H(4) C(8)

7 +1 H(8) R(16)

8 +1 C(16) R(16)⊕ R(16)

9 +1 R(32) R(32)

10 +1 R(32)⊕ R(32) C(32)

11 +1 R(64) H(32)
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13.5 KO-theory of a point

Now in this section we describe the real KO-theory ring of a point along the lines we

discussed in Section §13.2.2. In order to complete the story we need to name the irreducible

representations of Cℓ±8. These are supermatrix algebras and so we have simply λ± ∼= R8|8

for Cℓ−8 and λ̃± ∼= R8|8 for Cℓ+8. The superscript ± refers to the sign of the volume form

on the even subspace.

One can construct very nice explicit modules for λ± and λ̃±. See Section **** below.

Now let us consider KO−n(pt) along the above lines. A useful viewpoint is that we are

considering real algebras and modules as fixed points of a real structure on the complex

modules and algebras. Recall we described Mtriv,c
n (where the extra c in the superscript

reminds us that we are talking about complex modules of complex Clifford algebras) as

those modules which admit an odd invertible operator which graded commutes with the

Clifford action. In order to speak of real structures we can take our complex modules to

have an Hermitian structure. Then the conjugation will act as T → ±T † where the ± is

a choice of convention. We will choose the convention T → −T †. The other convention

leads to an equivalent ring, after switching signs on the degrees. ♣check ♣

Note that we have introduced an Hermitian structure into this discussion. If one

strictly applies the the Koszul rule to the definition of Hermitian structures and adjoints

in the Z2-graded case then some unusual signs and factors of
√
−1 appear. See Section

§12.5 above. We will use a standard Hermitian structure on Rn|m and Cn|m such that

the even and odd subspaces are orthogonal and the standard notion of adjoint. Since we

introduce the structure the question arises whether the groups we define below depend on

that choice. It can be shown that these groups do not depend on that choice, and the main

ingredient in the proof is the fact that the space of Hermitian structures is a contractible

space.

This motivates the following definitions:

Definition

a.) For n ∈ Z, Mn is the abelian monoid of modules for Cℓn under direct sum.

b.) For n ∈ Z, Mtriv
n is the submonoid of Mn consisting of those modules which admit

an odd invertible anti-hermitian operator T which graded-commutes with the Cℓn action.

c.)

KOn(pt) := Mn/Mtriv
n (13.176)

We now compute the KOn(pt) groups for low values of n:

1. Of course KO0(pt) ∼= Z, with the isomorphism given by the superdimension.

2. Now consider KO1(pt). In our model for η̃ we had ρ(e) = σ1. Therefore we could

introduce T = ǫ. Thus [η̃] = 0 in KO-theory and KO1(pt) = 0.

3. Next consider KO−1(pt). In our model for η we had ρ(e) = ǫ. Now we cannot

introduce an antisymmetric operator which graded commutes with ǫ. Thus, η is a
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nontrivial class. However, we encounter a new phenomenon relative to the complex

case. Consider 2η = η ⊕ η. As a vector space this is R2|2 and as usual taking an

ordered bases with even elements first we have

ρ(e) =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0


 = ǫ⊗ 1 (13.177)

We can therefore introduce T = σ1 ⊗ ǫ which is odd, anticommutes with ρ(e), and

squares to −1. Therefore, KO−1(pt) ∼= Z2 with generator [η].

4. Moving on to KO−2(pt). One can use our explicit model for η2 to show that there is

no odd operator T of the required type. Of course 2η2 will again be a trivial module ♣Give more details

on this point. ♣
in KO. Thus KO−2(pt) ∼= Z2.

5. Now consider KO+2(pt). The monoid M+2 is generated by η̃2 and since η̃ is trivial

in the KO-group, so is η̃2. Therefore KO+2(pt) = 0. Exactly the same reasoning

shows that KO+3(pt) = 0.

6. Next we consider KO−3(pt). M−3 is generated by η3. However, as a vector space

η3 ∼= R4|4. But this space supports the representations µ± of Cℓ−4. Therefore, the

fourth Clifford generator can serve as T and we learn that η3 is trivial in the KO

group. Thus KO−3(pt) = 0.

7. Next we consider KO−4(pt). Of course µ± descend to nontrivial elements in the KO-

group. On the other hand, Cℓ−5
∼= End(R1|1)⊗̂Cℓ+3 so we can construct a graded

irrep of Cℓ−5 on R1|1⊗̂η̃3 and this generates M−5. One can check that the restriction

of R1|1⊗̂η̃3 is just µ+⊕µ−. Therefore, we can take T = ρ(e5) and hence [µ−] = −[µ+]

in the quotient M−4/Mtriv
−4 . Thus, KO−4(pt) ∼= Z. Again, since M−5 is generated

by R1|1⊗̂η̃3 we have KO−5(pt) = 0

8. Similarly, from our table above we read off that M−6 is generated by R2|2⊗̂η̃2 and

M−7 is generated by R3|3⊗̂η̃. Hence KO−6(pt) = KO−7(pt) = 0.

9. Reasoning as above from the table we learn that KO4(pt) ∼= Z generated by ei-

ther [µ̃+] or [µ̃−] = −[µ̃+], while KO5(pt) = 0, (because [η3] = 0), KO6(pt) ∼= Z2

(generated by R2|2⊗̂η2 ) and KO7(pt) ∼= Z2 (generated by R3|3⊗̂η )

10. Finally, KO+8(pt) is generated by [λ̃±], with [λ̃−] = −[λ̃+], while KO−8(pt) is gen-

erated by [λ±]. with [λ−] = −[λ+].

Now, using the periodicity of the Clifford algebras we conclude that:

Theorem
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KOn(pt) is mod-eight periodic in n and the groups KO−n(pt) for 1 ≤ n ≤ 8 are given

by 27

Z2,Z2, 0,Z, 0, 0, 0,Z (13.178)

Once again, one can introduce an interesting ring structure in the KO-group. This ring

structure has not yet played any significant role in the physical applications of K-theory,

neither to string theory nor to condensed matter physics. But we explain it anyway for its

mathematical virtue.

As in the complex case we define the product on equivalence classes of modules by

[M1] · [M2] ∼= [M1⊗̂M2] (13.179)

(As before, check that the multiplication is well-defined on KO-theory.) If we consider

KO≤0(pt) := ⊕n≥0KO
−n(pt) (13.180)

Then the graded ring is given by

KO≤0(pt) = Z[η, µ, λ]/I (13.181)

where η, µ, λ are generators 28 of degree

deg(η) = −1 deg(µ) = −4 deg(λ) = −8 (13.182)

and the relations are given by the ideal:

I = 〈2η, η3, ηµ, µ2 − 4λ〉 (13.183)

We have already checked the relations 2η = 0 and η3 = 0. Then ηµ is a module for

Cℓ−5 but we have already shown this KO-group is zero. Consider µ2. As a vector space

this is R32|32. The volume form on the even subspace is +1. Therefore µ2 is a nonzero

multiple of λ+ ∼= R8|8, and by dimensions that multiple must be four. Thus

µ2 ∼= 4λ (13.184)

♣Need to argue

there are no further

relations. ♣There is a similar result for KO≥0(pt): We introduce generators deg(µ̃) = +4 and

deg(λ̃) = +8, while KO7 and KO6 are generated by λ̃η and λ̃η2 respectively. 29

Finally, using Morita equivalence we can define a ring structure on

KO∗(pt) = ⊕n∈ZKO
n(pt) (13.185)

When multiplying modules for Cℓn with Cℓm with n and m of different sign we identify

with the Morita equivalent module for Cℓn+m.

27This is easily memorized using the “Bott song.” Sing the names of the groups to the tune of ”Ah! vous

dirai-je, Maman,” aka ”Twinkle, twinkle, little star.”
28Here µ = µ+ and λ = λ+.
29Given our table above we know these are not minimal dimensional representations but by Morita

equivalence they generate the same KO group.
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The net result is then

KO∗(pt) = Z[η, µ, µ̃, λ, λ̃]/I (13.186)

I = 〈2η, η3, ηµ, ηµ̃, µµ̃− 4, λλ̃− 1, µ2 − 4λ, µ̃2 − 4λ̃〉 (13.187)

where µ̃ = µ̃+ and λ̃ = λ̃+.

As an example consider λ̃λ. This is a module for Cℓ+8,−8
∼= End(R128|128). But

λ̃λ ∼= R128|128 as supervector spaces. Therefore λλ̃ = 1 in the KO-ring.

Remarks:

1. The discussion we gave in 13.2.3 about the relation to the topology of complex vector

bundles has a direct analog for real vector bundles. The upshot is that the stable

homotopy groups of the orthogonal groups O(N) are given by the Bott song:

p 0 1 2 3 4 5 6 7

πp(O) Z2 Z2 0 Z 0 0 0 Z

Note, for example, that indeed π0(O) = Z2, because O(N) has two components. (In

this case, it is true for all N and there is no need to take the stable limit). The other

homotopy groups require a choice of a basepoint, and a natural choice of basepoint

is the identity element of the group

2. Since Cℓ±4
∼= End(R1|1)⊗̂H, the category of quaternionic vector spaces is equivalent

to the category of Cℓ4-modules. This implies that if we look at quaternionic vector

bundles, whose transition functions can be reduced to the compact symplectic group

USp(2n), then we learn about the stable homotopy groups of the symplectic groups.

The interpretation in terms of Cℓ4-modules shifts the degree by 4 and so we have

p 0 1 2 3 4 5 6 7

πp(Sp) 0 0 0 Z Z2 Z2 0 Z

13.6 Digression: A model for λ using the octonions

A beautiful model for λ± and λ̃± can be constructed using a nonassociative division algebra

known as the octonions. We recommend the engaging review article by Baez [10] on this

subject.
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The octonions O is a nonassociative real division algebra of dimension 8. One way to

define the multiplication - via the “Cayley-Dickson process” - is to identify O ∼= H⊕H and

define the multiplication as: 30

(a, b) · (c, d) ≡ (ac− d̄b, da+ bc̄) (13.188)

In the double-quaternion notation x = (q1, q2) we have x̄ ≡ (q̄1,−q2) and Re(x) ≡ Re(q1) =
1
2 (x+ x̄).

e2
e3

e5

e6

e7

e4

e1

Figure 11: The multiplication law of the imaginary unit octonions. The arrow encodes the sign of

the nonzero structure constants. Thus e1e2 = e3, etc. There are 7 points and 7 lines in this figure.

Let ea, a = 1, . . . , 7 be the ordered basis of imaginary octonions given by

(i, 0), (j, 0), (k, 0), (0, 1), (0, i), (0, j), (0, k) (13.189)

Now make a basis vα, α = 0, . . . , 7 for O by taking v0 = (1, 0) and vα = eα, 1 ≤ α ≤ 7.

Applying the rule (13.188) one finds that v0 is the identity and

eαeβ + eβeα = −δα,β (13.190)

Therefore if we define 7 real 8× 8 matrices:

ea · vα :=
7∑

β=0

(γa)βαvβ (13.191)

they will be antisymmetric and will give an ungraded irrep of Cℓ−7. It turns out that

ω = +1. The matrix elements are always in {0,±1}. Indeed, if α 6= β then eα · eβ is ±eγ ♣CHECK! ♣

30A multiplication table is in Jacobsen, Basic Algebra I, p. 426. Note he has a sign mistake for i7 × i3.
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for some γ and the precise rule for multiplication is given in Figure 11. In other words, the

matrix elements of the gamma matrices are just the structure constants of the octonions! ♣CHECK! ♣

Now, using these matrices we can give an explicit model for λ±:

ρ(ei) = κ

(
0 γi
γi 0

)
= σ1 ⊗ γi 1 ≤ i ≤ 7

ρ(e8) =

(
0 −1

1 0

)
= ǫ⊗ 1

(13.192)

with κ = ±1. Similarly, we can give an explicit model for λ̃±.

Exercise

Compute the explicit 8-dimensional real representation of Cℓ−7 defined by the octo-

nions.

14. The 10 Real Super-division Algebras

Definition An associative unital superalgebra over a field κ is an associative super-division

algebra if every nonzero homogeneous element is invertible.

Example 1: We claim that Cℓ1 is a superdivision algebra over κ = C (and hence a

superdivision algebra over R). Elements in this superalgebra are of the form x + ye with

x, y ∈ C. Homogeneous elements are therefore of the form x or ye, and are obviously

invertible, if nonzero. Note that it is not true that every nonzero element is invertible!

For example 1 + e is a nontrivial zero-divisor since (1 + e)(1 − e) = 0. Thus, Cℓ1 is not a

division algebra, as an ungraded algebra.

Example 2: We also claim that the 8 superalgebrasDs
α, with α ∈ Z/8Z defined in (13.165)

are real super-division algebras. The argument of Example 1 show that Cℓ±1 are super-

division algebras. For Cℓ±2 the even subaglebra is isomorphic to the complex numbers,

which is a division algebra. It follows that Cℓ±2 are superdivision algebras. To spell this

out in more detail: For Cℓ+2 we note that for even elements we can write

(x+ ye12)(x− ye12) = x2 + y2 (14.1)

and for odd elements we can write

(xe1 + ye2)
2 = x2 + y2 (14.2)

where x, y ∈ R. Thus the nonzero homogeneous elements are invertible. For Cℓ−2 the

equation (14.1) holds and (14.2) simply has a sign change on the RHS. So this too is a

superdivision algebra. More conceptually, note that Cℓ0±2 is isomorphic to C, which is a
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division algebra, and Cℓ1±2 is related to Cℓ0±2 by multiplying with an invertible element. We

can now apply this strategy to Cℓ±3: The even subalgebra is isomorphic to the quaternion

algebra, which is a division algebra and the odd subspace is related to the even subspace

by multiplication with an invertible odd element. Hence Cℓ±3 is a superdivision algebra.

Note well that Cℓ+1,−1 being a matrix superalgebra is definitely not a superdivision

algebra! For example (
1 0

0 0

)
(14.3)

is even and is a nontrivial zerodivisor. By the same token, Cℓ±4
∼= End(R1|1)⊗̂H is also

not a superdivision algebra.

The key result we need is really a corollary of Wall’s theorem classifying central simple

superalgebras. For a summary of Wall’s result see Appendix A.4.

Theorem There are 10 superdivision algebras over the real numbers: The three purely

even algebras R,C,H, together with the 7 superalgebras Cℓ1, Cℓ±1, Cℓ±2, Cℓ±3.

Proof : A superdivision algebra Ds over R must be a simple superalgebra over R. Oth-

erwise some element a ∈ Ds would have a nontrivial Jordan form for L(a) from which we

could construct a nontrivial zero-divisor.

Wall’s paper [40] gives a classification of simple superalgebras over a general field κ.

The first invariant is the even part of the supercenter Z0
s (D

s). This must be both a field ♣Need to explain

how that is related

to the triple of

invariants in Wall’s

theorem in the

appendix. ♣

and a division algebra, and is therefore either R or C. The algebra Ds is then central

simple over R or C. These we can then classify central simple superalgebras over κ = R

and over κ = C using Wall’s paper. The central simple superalgebras with nonzero odd

part turn out to be all Clifford algebras. From our previous characterizations of these we

see that except for Cℓ1 and Cℓ±1, Cℓ±2, Cℓ±3, all the Clifford algebras have a factor which

is a matrix superalgebra. These cannot be superdivision algebras. On the other hand, we

have checked explicitly that Cℓ1 and Cℓ±1, Cℓ±2, Cℓ±3 are in fact superdivision algebras.

So we have the complete list. ♦ ♣If we drop

associativity are

there super-analogs

of the octonions? ♣

15. The 10-fold way for gapped quantum systems

We are now in a position to describe the generalization of Dyson’s 3-fold way to a 10-fold

way, valid for gapped quantum systems.

Recall from our discussion of a general symmetry of dynamics (§9) that if G is a

symmetry of the dynamics of a quantum system then there are two independent homo-

morphisms (φ, χ) : G → Z2. In the Dyson problem one explicitly assumes that χ = 1.

Nevertheless, as we saw when discussing phases of gapped systems in Section §11, there
is a natural Z2-grading of the Hilbert space so that, if χ 6= 1 then the Hilbert space is a

(φ, χ)-representation of G. (See Definition (11.3).) Therefore we can state the
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Generalized Dyson Problem: Let G be a bigraded compact group and H a Z2-graded

(φ, χ)-representation H of G. What is the ensemble of gapped Hamiltonians H such that

G is a symmetry of the dynamics and H induces the original Z2-grading ?

We can proceed to answer this along lines closely analogous to those for Dyson’s 3-fold

way.

First, we imitate the definitions of Section §8.1 for φ-representations:

Definitions:

1. If G is a bigraded group by (φ, χ) then a (φ, χ)-representation is defined in (11.3).

2. An intertwiner or morphism between two (φ, χ)-reps (ρ1, V1) and (ρ2, V2) is a C-linear

map T : V1 → V2, which is a morphism of super-vector spaces: T ∈ HomC(V1, V2),

which commutes with the G-action:

Tρ1(g) = ρ2(g)T ∀g ∈ G (15.1)

We write HomG
C (V1, V2) for the set of all intertwiners.

3. An isomorphism of (φ, χ)-reps is an intertwiner T which is an isomorphism of complex

supervector spaces.

4. A (φ, χ)-rep is said to be φ-unitary if V has a nondegenerate even Hermitian structure
31 such that ρ(g) is an isometry for all g. That is, it is unitary or anti-unitary

according to whether φ(g) = +1 or φ(g) = −1, respectively.

5. A (φ, χ)-rep (ρ, V ) is said to be reducible if there is a nontrivial proper (φ, χ)-sub-

representation. That is, if there is a complex super-vector subspace W ⊂ V , (and

hence W 0 ⊂ V 0 and W 1 ⊂ V 1) with W not {0} or V which is G-invariant. If it is

not reducible it is said to be irreducible.

As before, if G is compact and (ρ, V ) is a (φ, χ)-rep then WLOG we can assume that

the rep is unitary, by averaging. Then if W is a sub-rep the orthogonal complement is

another (φ, χ)-rep, and hence we have complete reducibility.

Let {Vλ} be a set of representatives of the distinct isomorphism classes of irreducible

(φ, χ)-representations. We then obtain the isotypical decomposition of (φ, χ)-representations:

H ∼= ⊕λHom
G
C (Vλ, V )⊗̂Vλ (15.2)

Now we need to deal with a subtle point. In addition to intertwiners we needed to

consider the graded intertwiners HomG
C (V, V

′) between two (φ, χ)-representations. These

31See Section §12.5 above.
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are super-linear transformations T such that if we decompose T = T 0 + T 1 into even and

odd transformations then T 0 ∈ HomG
C (V, V

′) but T 1 instead satisfies

T 1ρ(g) = χ(g)ρ′(g)T 1 ∀g ∈ G (15.3)

Two irreducible representations can be distinct as (φ, χ)-representations but can be graded-

isomorphic. The simplest example is G = {1} which has graded irreps C1|0 and C0|1.

Let {Vλ} be a set of representatives of the distinct graded-isomorphism classes of

irreducible (φ, χ)-representations. We then obtain the isotypical decomposition of (φ, χ)-

representations:

H ∼= ⊕λHom
G
C (Vλ, V )⊗̂Vλ (15.4)

Note that HomG
C (Vλ, V ) is no longer an even vector space in general. This will be more

convenient to us because of the nature of the super-Schur lemma:

Lemma[Super-Schur] Let G be a Z2 × Z2-graded group, graded by the pair of homo-

morphisms (φ, χ).

a.) If T is a graded intertwiner between two irreducible (φ, χ)-representations (ρ, V )

and (ρ′, V ′) then either T = 0 or there is an isomorphism of (ρ, V ) and (ρ′, V ′).

b.) If (ρ, V ) is an irreducible (φ, χ)-representation then the super-commutant Zs(ρ, V ),

namely, the set of graded intertwiners of (ρ, V ) with itself is a super-division algebra.

Proof : The usual proof of the Schur lemma works, although one should take some care

because Z2-gradings introduce some extra things to check.

a.) If T is nonzero then T = T 0 + T 1 and at least one of T 0 or T 1 is nonzero. If T 0 is

nonzero then we consider W = kerT 0. Note that W is a Z2-graded subspace of V since if

T 0(w0 ⊕w1) = 0 then we conclude that both T 0(w0) = 0 and T 0(w1) = 0. Moreover, W is

G-invariant. If T 0 is nonzero then W 6= V and hence, by irreducibility W = {0}. Moreover

if T 0 6= 0 then W ′ = Im T 0 is nonzero. Again, we check that W ′ is a Z2-graded subspace

of V ′ and is G-invariant and hence W ′ = V ′. Similarly, if T 1 is nonzero then we can check

that W = kerT 1 is a G-invariant nonzero Z2-graded subspace of V and hence is {0} and

W ′ = Im T 1 is a G-invariant nonzero Z2-graded subspace of V ′ and hence is {V ′}. Either
way, T 0 or T 1 will provide the required (graded) isomorphism.

b.) The argument used in the proof of (a) shows that when (ρ, V ) = (ρ′, V ′) if T is

homogeneous then it is an isomorphism, and hence invertible. ♦

Now we can now proceed as before to derive the analog of Dyson’s ensembles. We

consider the isotypical decomposition (15.4) of H. Let Sλ := HomG
C (Vλ, V ). It is a real

super-vector space of degeneracies. Now we compute the set of superlinear transforma-

tions:

HomC(V, V ) ∼= ⊕λ,µ(S
∗
λ⊗̂Sµ)⊗̂HomC(Vλ, Vµ) (15.5)

Now we take the graded G-invariants and apply the super-Schur lemma to get

HomG
C (V, V ) ∼= ⊕λ,µEnd(Sλ)⊗̂Ds

λ (15.6)
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where for each isomorphism class of graded-irreducible (φ, χ)-rep λ, Ds
λ is one of the 10 real

super-division algebras. Since End(Sλ) is a real matrix superalgebra the graded commutant

is

Zs(ρ,H) ∼= ⊕λMatsλ(D
s
λ) (15.7)

Finally, let us apply this to the generalized Dyson problem. If G is a symmetry of the

dynamics determined by H then

Hρ(g) = χ(g)ρ(g)H (15.8)

and hence the C-linear operator H is in the graded-commutant of the given (φ, χ) repre-

sentation H. Therefore, H is in the space (15.7). For each irreducible representation λ

there is a corresponding super-division algebra Ds
λ and this gives the 10-fold classification.

To write the ensemble of Hamiltonians more explicitly we recall that H must be a self-

adjoint element of Zs(ρ,H). There is a natural ∗ structure on the superdivision algebras

since the Clifford generators can be represented as Hermitian or anti-Hermitian operators.

That is, we take e∗i = ±ei with the sign determined by e∗i = e3i . We then extend this to be

an anti-automorphism, and for Matsλ(D
s
λ) we take ∗ to include transposition. H must be

a self-adjoint element of this superalgebra.

Moreover, if χ(g) is nontrivial for any g then H must be in the odd subspace of the

superdivision algebra.

Thus, the 10-fold way is the following:

1. If the (φ, χ) representation has χ = 1 then the generalized Dyson problem is identical

to the original Dyson problem, and there are three possible ensembles.

2. But if χ is nontrivial then there are new ensembles not allowed in the Dyson classi-

fication. In these cases, Ds
λ is one of the 7 superalgebras which are not purely even

and H is an odd element of the superalgebra Matsλ(D
s
λ).

Remarks:

1. It was easy to give examples of the three classes in Dyson’s 3-fold way. Below we will

give examples using the 10 bigraded “CT-groups” discussed in Section §16 below.

2. The above is, strictly speaking, a new result, although it is really a simple corollary

of [22]. However, it should be stressed that the result is just a general statement

about quantum mechanics. No mention has been made of bosons vs. fermions, or

interacting vs. noninteracting.

3. A key point we want to stress is that the 10-fold way is usually viewed as 10 = 2+8,

where 2 and 8 are the periodicities in complex and real K-theory. And then the

K-theory classification of topological phases is criticized because it only applies to

free systems. However, we believe this viewpoint is slightly misguided. The unifying

concept is really that of a real super-division algebra, and there are 10 such. They

can be parceled into 10 = 8 + 2 but they can also equally naturally be parceled into

10 = 7 + 3 (with the 3 referring to the purely even superdivision algebras).

– 129 –



4. The Altland-Zirnbauer classification discussed below makes explicit reference to free

fermions.

♣Note: We already

had an exercise on

parity reversal

above. There is

some redundancy

here. ♣

Exercise Parity reversal

If V is a supervector space its parity-reverse ΠV is the supervector space such that

(ΠV )0 = V 1 and (ΠV )1 = V 0.

a.) Let V be a super-vector space. Under what conditions are V and ΠV isomorphic

in the category of super-vector spaces? 32

b.) Show that there is a canonical super-linear transformation π : V → ΠV given by

π(v0 ⊕ v1) = v1 ⊕ v0. Is it even or odd? 33

c.) Show that if V is a (φ, χ)-representaton of G then ΠV is also a (φ, χ) representation.

Show that, in the physical context this corresponds to switching the sign of the Hamiltonian.

d.) Is the operator π of part (b) a graded intertwiner?

e.) Can V and ΠV be inequivalent (φ, χ) representations?

Exercise

Show that (13.140) is an isomorphism of ∗-structures.

15.1 Digression: Dyson’s 10-fold way

As a curious digression we note that in Dyson’s original paper on φ-representations [18]

he in fact had a 10-fold classification of irreducible φ-representations! For completeness we

review it here.

Dyson assumes that φ is surjective, i.e. φ is nontrivial, and considers an irreducible

φ-representation (ρ, V ) of complex dimension n. Let G0 = kerφ. One useful approach to

Dyson’s 10-fold way is to identify V with (VR, I), where I is a complex structure on VR and

consider certain subalgebras of EndR(VR) generated by group representation operators.

The algebra generated by ρ(g) for g ∈ G0 is denoted A. The algebra generated by A
together with I is denoted B. Finally, the algebra generated by I and ρ(g) for all g ∈ G

is denoted D. The commutants in EndR(V ) of A,B,D are denoted X ,Y,Z, respectively.

Note that EndR(V ) ∼= R(2n). Dyson’s 10 cases are then summarized by the table:

32Answer : If V is finite-dimensional then we must have dimV 0 = dimV 1. In general there is no canonical

isomorphism between V and ΠV .
33Answer : π is an odd operator.
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Dyson Type D B A X Y Z
RR R(2n) C(n) 2R(n) nR(2) nC 2nR

RC R(2n) C(n) C(n) nC nC 2nR

RH R(4m) C(2m) H(m) mH 2mC 4mR

CR C(2m) C(m)⊕ C(m) 2R(m)⊕ 2R(m) mR(2)⊕mR(2) mC⊕mC 2mC

CC1 C(2m) C(m)⊕ C(m) C(m)⊕ C(m) mC⊕mC mC⊕mC 2mC

CC2 C(2m) C(m)⊕ C(m) 2C(m) mC(2) mC⊕mC 2mC

CH C(4p) C(2p)⊕ C(2p) H(p)⊕H(p) pH⊕ pH 2pC⊕ 2pC 4pC

HR H(m) 2C(m) 4R(m) mR(4) mC(2) mH

HC H(m) 2C(m) 2C(m) mC(2) mC(2) mH

HH H(2p) 2C(2p) 2H(p) pH(2) 2pC(2) 2pH

Recall from Section §8.4 the notation: K(s), for s a positive integer, is the algebra of s× s

matrices over a real division algebra K. Then ℓK(s) is the algebra of ℓs× ℓs block diagonal

matrices over K where all ℓ diagonal s×s blocks are the same. Thus ℓK(s) is isomorphic to

K(s) as an abstract algebra. On the quaternionic space Hs there is a left action of H(s) and

a right action of the opposite algebra H. Finally, while V always has complex dimension

n, in some cases it is useful to define integers m = n/2 and p = n/4.

The fact that D and its commutant Z are matrix algebras over a real division algebra

follows (and is equivalent to) the assumption that (ρ, V ) is an irreducible φ-rep. In general,

although V is irreducible it will become reducible when considered as a representation of

the index two subgroup G0 of G. The algebra A will be semisimple and Dyson proves that

when writing it as a direct sum over simple algebras they all have the same Wedderburn

type. Thus there is a well-defined pair of Wedderburn types (K1,K2) of (D,A), or, ♣Is this somehow a

simple consequence

of G0 being a

normal subgroup of

index two? ♣

equivalently, of (Z,X ). Dyson shows, by exhibiting examples, that these are uncorrelated:

All nine possible combinations do occur for some suitable φ-representation. Finally, the

case (C,C) usefully splits into two subcases according to whether the two representations

of G0 are equivalent or inequivalent. That gives 10 cases.

From the viewpoint of these notes we should remark that there is an a priori different

10-fold classification of irreducible φ-representations [22]. The algebra EndR(VR) has an

involution

T → ITI−1 (15.9)

and we can use this to define a Z2-grading on EndR(VR) without choosing any Z2-grading

on VR. The subalgebra D has graded commutant Zs(ρ, V ) consisting of A ∈ EndR(VR) so

that if we decompose A = A0 +A1 into even and odd pieces then

A0I = IA0 & A0ρ(g) = ρ(g)A0 ∀g ∈ G (15.10)

A1I = −IA1 & A1ρ(g) = φ(g)ρ(g)A1 ∀g ∈ G (15.11)

Then Zs(ρ, V ) is a real super-division algebra (apply the reasoning of the proof of the

Schur lemma), and we have seen that there are ten types, yielding a 10-fold classification

of irreducible φ-representations.
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This raises the obvious question of whether Dyson’s old 10-fold classification coincides

with the one given by the real superdivision algebras.

In general it is clear that the even part of the superdivision algebra is precisely the same

as the algebra Z. On the other hand, the definition of the odd part of the superdivision

algebra does not appear in Dyson’s discussion so the relation between the two classification

schemes is not obvious, even though both are 10-fold ways. The fact that there are 10

distinct cases does not mean that they are the “same” ! 34

Nevertheless we conjecture that the two classifications are the same. More precisely:

Conjecture: There is a 1-1 correspondence between the 10 Dyson types and the real

superdivision algebras so that the classification of irreducible φ-representations, for all

Z2-graded groups (G,φ) with G compact and φ nontrivial, is the same.

Assuming this conjecture, examination of examples leads to the correspondence:

Superdivision Algebra R C H Cℓ1 Cℓ−3 Cℓ−2 Cℓ−1 Cℓ1 Cℓ2 Cℓ3

Dyson Type RC CC1 HC CC2 HH CH RH RR CR HR

Example 1: Suppose G = Z2, φ(σ) = −1, where σ ∈ G is the nonidentity element.

We take V = C and ρ(σ) acts by complex conjugation. Then VR = R2, I = ǫ, A = 2R,

X = R(2), and σ acts by σ3. So D is generated by ǫ and σ3 and hence D = R(2) so Z = 2R.

Thus, this example is Dyson type RR. On the other hand, in the supercommutant we search

for a T with Tǫ = −ǫT and Tσ3 = −σ3T . Such a T is proportional to σ1 and hence the

graded commutant is Cℓ1 = R⊕ RT .

Example 2: Suppose G = O(2), graded by φ(g) = detg. Thus G0 = SO(2). Let

V = C so that VR = R2, I = ǫ, and O(2) acts by its defining representation. Now

A = X = {x + yǫ|x, y ∈ R} ∼= C. To compute D we adjoin any reflection, and then we

find D = R(2), so Z = 2R. Thus, this representation is Dyson type RC. On the other

hand, any odd element T in the graded commutant must anticommute with ǫ (so it is odd),

and yet commute with ρ(G0) which consists of matrices of the form cos θ1 + sin θǫ. This

is clearly impossible, so that the graded commutant is just 2R, and is thus isomorphic to

Cℓ0 = R.

Example 3: Now take G = Z4
∼= 〈ω〉 where ω is a primitive fourth root of unity. Define

the Z2-grading by φ(ω) = ω2 = −1. Thus G0 = {1, ω2} ∼= Z2. Our φ-representation

34For example, I am fortunate to have all 10 fingers. Which superdivision algebra corresponds to my

right thumb?
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space will be V = C2, which we identify with VR = R4 ∼= H and the complex structure is

I = L(i). Then the φ-representation is defined by ρ(ω) = L(j). (Note that even though G

is abelian we have an irreducible φ-representation of complex dimension two!) Note that

ρ(ω) is indeed antilinear, and ρ(ω2) = −1. Thus, the restriction of the representation to

G0 is highly reducible: It is four copies of the sign representation of Z2. Now the algebra

D generated by L(i) and L(j) is the algebra of operators L(q) for q ∈ H and hence is

isomorphic to H. The commutant, Z, is therefore the algebra of operators R(q) for q ∈ H

and is therefore isomorphic to Hopp. On the other hand, since ρ(ω2) = −1 is a multiple of

the identity matrix the algebra A is just 4R and hence the commutant X is R(4). Therefore,

this example is of Dyson type HR. Next, to compute the graded commutant we note that

the odd operators anticommuting with L(j) are those of the form L(k)R(q) for q ∈ H. That

is,

D1 = {L(k)R(q)|q ∈ H} (15.12)

This means that the superdivision algebra is generated by

e1 = L(k)R(i) e2 = L(k)R(j) e3 = L(k)R(k) (15.13)

and hence the superdivision algebra is Cℓ+3. ♣Link this to

Example 3 of

Section 8.2. ♣

Exercise Challenge

Prove the conjecture. If you succeed, you get an automatic A+ in the course! 35

16. Realizing the 10 classes using the CT groups

To make contact with some of the literature on topological insulators we describe here the

10 “CT groups.” (This is a nonstandard term used in [22].) This is a set of 10 bigraded

groups which we now define.

To motivate the 10 CT groups note that in some disordered systems, (sometimes well-

described by free fermions), the only symmetries we might know about a priori are the

35Here is one approach: For each Dyson type we try to construct a central simple superalgebra in such

a way that there is a one-one correspondence between the Dyson type and the Morita equivalence class of

the algebra. To this end we first define a φ-representation V to be of type p if there exists a P ∈ X which

anticommutes with I and P 2 ∝ 1. We say V of type np otherwise. Equivalently, a φ-rep is of type p if as

representation of G0 it is either real or quaternionic. Now, in seven out of the ten cases with V irreducible

it turns out that the φ-rep is of type p. The remaining 3 cases, which are necessarily of type np, are the

Dyson types RC, HC, and CC1. In these cases note that that V ⊕ V̄ is of type p. Let U = V if V is of type

p and U = V ⊕ V̄ if V is of type np. Consider the sub-algebras D,A,X ,Z of EndR(U), defined as above.

One can check in examples that adjoining P to Z defines a Z2-graded Clifford algebra Z+, (with the sign

of the commutation with I defining the grading) and U is a Clifford module for Z+. The choice of P is not

unique, so one must prove that the Morita class of Z+ is independent of P and that the Morita class only

depends on the Dyson type, and not the particular representation.
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presence or absence of “time-reversal” and “particle-hole” symmetry. Thus it is interesting

to consider the various φ-twisted extensions of the group

M2,2 = 〈T̄ , C̄|T̄ 2 = C̄2 = T̄ C̄T̄ C̄ = 1〉 ∼= Z2 × Z2 (16.1)

or of its subgroups. We make this a Z2-graded group with the choice

φ(T̄ ) = φ(C̄) = −1. (16.2)

Figure 12: The 5 subgroups of Z2 × Z2.

Now let us consider the φ-twisted extensions of M2,2. This is a simple generalization

of the example we discussed in Section §6, equation (6.12). First, let us note that there are

5 subgroups of M2,2 depending on whether T̄ , C̄ or T̄ C̄ is in the group. See Figure 12.

As in the example (6.12) the isomorphism class of the extension is completely deter-

mined by whether the lift T and/or C of T̄ and/or C̄ squares to ±1. After a few simple

considerations discussed in the exercises below it follows that one has the table of 10 φ-

twisted extensions of the subgroups of M2,2:
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Subgroup U ⊂M2,2 T 2 C2 [Clifford]

{1} [Cℓ0] = [C]

{1, S̄} [Cℓ1]

{1, T̄ } +1 [Cℓ0] = [R]

M2,2 +1 −1 [Cℓ−1]

{1, C̄} −1 [Cℓ−2]

M2,2 −1 −1 [Cℓ−3]

{1, T̄ } −1 [Cℓ4] = [H]

M2,2 −1 +1 [Cℓ+3]

{1, C̄} +1 [Cℓ+2]

M2,2 +1 +1 [Cℓ+1]

Now the group M2,2 has a natural bigrading, which, WLOG (see the exercise below)

we can take to be

φ(T̄ ) = −1 φ(C̄) = −1

χ(T̄ ) = +1 χ(C̄) = −1

τ(T̄ ) = −1 τ(C̄) = +1

(16.3)

where we have defined τ from φ and χ so that τ · φ · χ = 1. These can be used to define

bigradings of the ten φ-twisted extensions of all the subgroups of M2,2.

Now, we can generalize the remark near the example of Section §8.1. Recall that we

could identify φ-representations of φ-twisted extensions of M2 with real and quaternionic

vector spaces. If we consider subgroups of M2 then for the trivial subgroup we also get

complex vector spaces. This trichotomy is generalized to a decachotomy for the CT groups:

Theorem There is a one-one correspondence, given in the table above, between the ten

CT groups and the ten real super-division algebras (equivalently, the 10 Morita classes

of the real and complex Clifford algebras) such that there is an equivalence of categories

between the (φ, χ)-representations of the CT group and the graded representations of the

corresponding Clifford algebra.

Proof:

We systematically consider the ten cases beginning with a (φ, χ)-representation of a

CT group and producing a corresponding representation of a Clifford algebra. Then we

show how the inverse functor is constructed.

1. First, consider the subgroup U = {1}. A (φ, χ) representation W is simply a Z2-

graded complex vector space, so V =W is a graded Cℓ0-module.
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2. Now consider U = {1, S̄}. There is a unique central extension and S = CT acts on

W as an odd operator which, WLOG, we can take to square to one. Moreover, S is

C-linear. Therefore, we can take V = W and identify S with an odd generator of

Cℓ1.

3. Now consider U = {1, C̄}. On the representation W of U tw we have two odd anti-

linear operators C and iC. Note that

(iC)2 = C2 {iC,C} = 0 (16.4)

since C is antilinear. Therefore, we can define a graded Clifford module V =W with

e1 = C and e2 = iC. It is a Clifford module for a real Clifford algebra, again because

C is anti-linear. The Clifford algebra is Cℓ+2 if C2 = +1 and Cℓ−2 if C2 = −1.

4. Next, consider U = {1, T̄ }. The lift T to U tw acts on a (φ, χ) representation W

as an even, C-antilinear operator. It is therefore a real structure if T 2 = +1 and a

quaternionic structure if T 2 = −1. In the first case, the fixed points of T define a

real Z2-graded vector space V =W |T=+1 which is thus a graded module for Cℓ0. In

the second case, T defines a quaternionic structure on V = WR. As we have seen,

Cℓ4 is Morita equivalent to H, and in fact the Cℓ4 module is V ⊕V . (Recall equation

(13.152) above.)

5. Now consider U =M2,2. This breaks up into 4 cases:

6. If T 2 = +1 then, as we have just discussed T defines a real structure. As shown in

the exercises, WLOG we can choose the lift of C so that CT = TC. Therefore, C

acts as an odd operator on the real vector space of T = +1 eigenstates: V =W |T=+1.

Then V is the corresponding module for Cℓ±1 according to whether C2 = ±1.

7. If T 2 = −1, then, as we just discussed, T defines a quaternionic structure on V =WR.

Then C, iC, and iCT are odd endomorphisms of WR and one checks they generate

a Cℓ+3 action if C2 = +1 and a Cℓ−3 action if C2 = −1.

To complete the proof we need to describe the inverse functor, namely, given a Clif-

ford module V in each of the 10 cases, how do we produce a (φ, χ)-representation for a

corresponding CT group?

For Cℓ0,Cℓ1 we take W = V and e1 represents S. For Cℓ0,±1, given a real module V

we take W = V ⊗C, and let T = 1⊗ C where C is complex conjugation. Then C = e1 ⊗ C
defines the corresponding CT module. If V is a real Cℓ±2 module then we make a complex

vector space W = (V, I = e1e2). We may take C = e1. This is odd and antilinear. If V is

a real Cℓ±3 module then W = (V,∓e1e2) and we take C = e1 and T = −e2e3.
We leave it to the reader to check that these are indeed inverse functors. ♦

Now, in order to give our application to the generalized Dyson problem we note a key:
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Proposition: Let U tw be one of the 10 bigraded CT groups and let D be the associated

real superdivision algebra. Let (ρ,W ) be an irreducible (φ, χ)-rep of U tw. Then, the graded

commutant Zs(ρ,W ) is a real superdivision algebra isomorphic to Dopp.

Proof : We consider the 10 cases in succession. ♣There must be a

simpler conceptual

proof! ♣

1. For U = {1} we have D = C and there are two inequivalent irreducible (φ, χ) repre-

sentations W = C1|0 and W = C0|1. (There is only one graded-irreducible represen-

tation.) In either case we clearly have Zs = C.

2. Now consider U = {1, S̄} so D = Cℓ1. There is a unique (up to isomorphism)

irreducible representation W = C1|1, and choosing the natural basis we have

ρ(S) =

(
0 1

1 0

)
(16.5)

It follows that the graded commutant Zs(ρ,W ) consists of the C-linear transforma-

tions which in this basis have the form
(
α β

−β α

)
α, β ∈ C (16.6)

The Z2-graded algebra of such matrices is isomorphic to Cℓ−1
∼= Cℓopp1 . (It is also

isomorphic to Cℓ1 in this example.)

3. Now consider U = {1, C̄} with C2 = ξ, where ξ ∈ {±1}. These correspond to

D = Cℓ±2 for ξ = ±1, respectively. Then up to isomorphism we can take the irrep

to be W = C1|1 and we can take

C :

(
z1
z2

)
7→
(
ξz̄2
z̄1

)
(16.7)

Computing the conditions A0C = CA0 and A1C = −CA1 reveals that A must be a

C-linear transformation which in this basis is

A =

(
α β

−ξβ̄ ᾱ

)
α, β ∈ C (16.8)

so Zs(ρ,W ) ∼= Cℓ∓2
∼= Dopp.

4. Next, consider U = {1, T̄ }. If T 2 = +1 then D = Cℓ0 = R and there are two

inequivalent irreducible (φ, χ) representations of U tw namely W = C1|0 or W = C0|1.

In both cases in the natural basis Tz = z̄. Therefore Zs ∼= R ∼= Cℓopp0 . If T 2 = −1

then D = H and there are again two inequivalent irreps W = C2|0 or W = C0|2 and

we can take

T :

(
z1
z2

)
7→
(
−z̄2
z̄1

)
(16.9)
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(Note: This is an even transformation!) Now a simple computation shows that if A

is a 2× 2 complex matrix in this basis then

TA = ǫĀǫ−1T (16.10)

where Ā is simply complex conjugation of the matrix elements of A. The fixed points

A = ǫĀǫ−1 defines a matrix realization of the quaternions:

A =

(
α β

−β̄ ᾱ

)
α, β ∈ C (16.11)

and therefore Zs ∼= H ∼= Dopp. (An alternative and slicker argument identifiesW ∼= H

with I given by L(i) and T given by L(j). Then it is clear that Zs = {R(q)|q ∈ H} ∼=
Hopp. )

5. Now consider U =M2,2. This breaks up into 4 cases:

6. If T 2 = +1 and C2 = ξ then D = Cℓ±1 for ξ = ±1 and there is a unique irrep

isomorphic to W ∼= C1|1. We can still take C to act according to (16.7) but now we

must take

T :

(
z1
z2

)
7→
(
z̄1
z̄2

)
(16.12)

so that T is even, antilinear, and commutes with C. From our computations above we

know that graded commutation with C implies that a graded intertwiner A is of the

form (16.8) and commutation with T implies that α, β ∈ R and hence for D ∼= Cℓ±1

we have Zs(ρ,W ) ∼= Cℓ∓1
∼= Dopp.

7. If T 2 = −1, then, up to isomorphism we have W ∼= C2|2 and now, up to isomorphism

we can take

C :




z1
z2
z3
z4


 7→




ξz̄3
ξz̄4
z̄1
z̄2


 (16.13)

T :




z1
z2
z3
z4


 7→




−z̄2
z̄1
−z̄4
z̄3


 (16.14)

Now write A as a 2× 2 block matrix

A =

(
α β

γ δ

)
α, β, γ, δ ∈M2(C) (16.15)

Then AT = TA shows that each 2× 2 block satisfies α = ǫᾱǫ−1, and so forth. Then

graded commutativity with C shows that δ = ᾱ and γ = −ǫβ̄. Therefore

A =

(
α β

−ǫβ̄ ᾱ

)
(16.16)
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where α, β are 2× 2 complex matrices satisfying the quaternion condition α = ǫᾱǫ−1

and β = ǫβ̄ǫ−1. Therefore, for D = Cℓ±3 we get Zs(ρ,W ) ∼= Cℓ∓3
∼= Dopp. ♦

We can now give examples of all 10 generalized Dyson classes. If U tw corresponds to

one of the even superdivision algebras R,C,H then there are two irreps W±. The general

rep of U tw is isomorphic to H =W
⊕n+
+ ⊕W

⊕n−
− . Then the graded commutant is

Zs(ρ,H) = End(Rn+|n−)⊗̂Dopp (16.17)

In these cases the group U tw (which is isomorphic to Pin±(1), see below) is purely even so

the Hamiltonian can be even or odd or a sum of even and odd. We can therefore forget

about the grading and we recover precisely Dyson’s 3 cases. If U tw corresponds to one of

the remaining 7 superdivision algebras (those which are not even) then there is a unique

graded irrep W and up to isomorphism H =W⊕n so again

Zs(ρ,H) = End(Rn)⊗̂Dopp (16.18)

As discussed above we can impose Hermiticity conditions on the graded commutant

to get the relevant ensembles of Hamiltonians. ♣We should write

those ensembles out

explicitly. ♣

Remark: We motivated the study of M2,2 and its subgroups using the example of dis-

ordered systems. Unfortunately, in the literature on this subject it is often assumed that

given a pair of homomorphisms

(τ, χ) : G→M2,2 (16.19)

such that τ · χ = φ, we will always have G ∼= G0 × U , where U is a subgroup of M2,2 and

G0 is ker(t) ∩ ker(χ). This is not true in general! There is a sequence

1 → G0 → G→ U → 1 (16.20)

and in general it will not split, let alone be a direct product. ♣Should mention

some examples here.

♣

Exercise

Show that for M2,2 one may always choose, (after a possible rescaling by a phase), lifts

T and C of C̄ and T̄ , respectively so that TC = CT .

Exercise

Show that in the case the subgroup is U = {1, S̄} with S̄ = C̄T̄ , one may always choose

a lift so that S2 = 1 (or S2 is any other phase, for that matter.)
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Exercise

a.) Consider M2,2
∼= Z2 × Z2 and suppose ψ1, ψ2 are two distinct homomorphisms to

Z2
∼= {±1}. Then WLOG we can choose generators T̄ , C̄ with

ψ1(T̄ ) = −1 ψ2(T̄ ) = +1

ψ1(C̄) = +1 ψ2(C̄) = −1
(16.21)

In particular, if τ, χ are distinct and we define φ = τ · χ then φ(T̄ ) = φ(C̄) = −1.

17. Pin and Spin

17.1 Definitions

The Pin and Spin groups are double covers of orthogonal and special orthogonal groups,

respectively. They are best defined as groups of invertible elements inside a Clifford algebra.

To motivate the definition let us recall a few facts about the orthogonal and special

orthogonal groups. Let Rt,s be the real vector space of dimension d = t+s with symmetric

bilinear form (x, y) = ηijx
iyj where ηij = Diag{−1t,+1s}. By definition, O(t, s) is the

group of automorphisms of this bilinear form. If the form is definite we write Rd and O(d).

Now, if x ∈ Rt,s is a vector such that (x, x) 6= 0 then we can define a transformation

Rx : Rt,s → Rt,s:

Rx : y 7→ y − 2
(x, y)

(x, x)
x (17.1)

Note that, Rx = Rαx where α is any nonzero real number and hence Rx only depends

on the unoriented real line through x, so we could write Rℓ, where ℓ is the line through

x. A short computation, making use of the symmetry of the form, shows that Rx is an

orthogonal transformation:

(Rxy1, Rxy2) = (y1, y2) (17.2)

In the case of definite signature there is a simple geometric intuition here: A real line

in Rd determines a unique orthogonal plane through the origin and Rx is reflection in that

plane. A basic fact of group theory is that the group O(t, s) is generated by the reflections

Rx in vectors of nonzero norm.

The group O(t, s) has four connected components when t > 0 and s > 0 and two

components when the form has definite signature. The special orthogonal group SO(t, s)

is the subgroup of orientation preserving transformations and has two components. The

transformations Rx are orientation reversing and hence SO(t, s) contains products Rx1Rx2 .

In fact, these products generate the group SO(t, s).

Returning to definite signature, the product of two reflections Rx1Rx2 is a rotation in

the two dimensional plane spanned by the vectors x1, x2. See Figure 13.

Now, to define the Pin and Spin groups we consider the vector space Rt,s as embedded

in the real Clifford algebra Cliff−t,s as the linear span of the generators, and we must make

a few definitions:
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Figure 13: A product of reflectionsRℓ1Rℓ2 is a rotation by angle 2θ around the point of intersection,

where 0 ≤ θ ≤ π

2
is the acute angle between ℓ1 and ℓ2. The rotation is ccw (cw) if the rotation of

ℓ2 into ℓ1 by θ is ccw (cw). The easy way to remember this is to consider the image of a point on

a plane orthogonal to ℓ2, as shown.

First consider the group Cℓ∗−t,s of invertible elements of the algebra.

Examples:

1. Cℓ∗1 = {a+be1|a2−b2 6= 0} ∼= R∗×R∗. Recall that as an ungraded algebra Cℓ1 ∼= R⊕R

via the projection operators P± = 1
2(1± e), from which the group structure above is

obvious.

2. Cℓ∗−1 = C∗ ∼= R+ × U(1)

3. Cℓ∗−2 = H∗ ∼= R+ × SU(2)

4. Cℓ∗−3
∼= H∗ ×H∗

5. Cℓ∗−4

6. Cℓ∗−5
∼= GL(4,C)

7. Cℓ∗−6
∼= GL(8,R)

8. Cℓ∗−7
∼= GL(8,R)×GL(8,R)

9. Cℓ∗−8k
∼= GL(24k,R)
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♣Are these the best

examples?? ♣Now define the algebra automorphism λ : Cℓ−t,s → Cℓ−t,s by defining it on the gener-

ators to be λ(ei) = −ei and extending it to be an algebra automorphism. On homogeneous

elements it is just the Z2-grading. If φ ∈ Cℓ∗−t,s we define the twisted adjoint action: It is ♣The notation φ for

a general element of

Clifford is bad since

it is an important

homomorphism

above and below. ♣

a homomorphism of groups (not algebras!):

Ãd : Cℓ∗−t,s → GL(Cℓ−t,s) ∼= GL(2t+s,R) (17.3)

where on the RHS we mean the group of invertible linear transformations of Cℓ−t,s as a

vector space. It is defined by

Ãd(φ) : ψ 7→ λ(φ) · ψ · φ−1 ∀ψ ∈ Cℓ−t,s (17.4)

One easily checks the homomorphism property: Ãd(φ1)Ãd(φ2) = Ãd(φ1 ·φ2) and hence Ãd

defines a representation of the the group Cℓ∗−t,s. The reason we put in the extra twisting by

parity, λ, is that we want certain operators of the form Ãd(φ) to act as reflection operators

on the subspace Rt,s ⊂ Cℓ−t,s spanned by the generators ei. In particular, x = xiei ∈ Rt,s

is an invertible element of Cℓ−t,s iff (x, x) 6= 0 and the inverse, in the group Cℓ∗−t,s, is

x−1 =
x

(x, x)
(17.5)

Then for any y = yiei ∈ Rt,s ⊂ Cℓ−t,s (invertible or not) we have

Ãd(x)y = −xyx−1

= − xyx

(x, x)
= −(xy + yx)x

(x, x)
+ y

= y − 2
(y, x)

(x, x)
x

(17.6)

It follows that if we consider the subgroup of Cℓ∗−t,s generated by x with (x, x) 6= 0

then under Ãd that subgroup covers the entire orthogonal group O(t, s). Moreover, since

Ãd(αx) = Ãd(x) for α a nonzero scalar we can, WLOG take those vectors to be of norm

±1. This leads to the definitions:

Definition: Pin(t, s) is the subgroup of Cℓ∗−t,s generated by vectors of norm ±1. Spin(t, s)

is the subgroup of even elements. In equations: 36

Pin(t, s) := {±v1 · · · vn | vs ∈ Rt,s & |(vs, vs)| = 1 1 ≤ s ≤ n} (17.7)

Spin(t, s) := {±v1 · · · v2n | vs ∈ Rt,s & |(vs, vs)| = 1 1 ≤ s ≤ 2n} = Cℓ0−t,s∩Pin(t, s)
(17.8)

In the case of a definite signature we write Pin+(d) = Pin(0, d) and Pin−(d) = Pin(d, 0).

36With the exception of Pin(0, 1) = Pin+(1) and Spin(1) = {±1} we can drop the ± in the definition of

the Pin and Spin group. If t, s are positive then for an appropriate vector v we can arrange that v2 = ±1.

In the definite signature case of Pin(d) or Spin(d) consider (e1e2)
2 = −1 .
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We will see that Spin(d, 0) ∼= Spin(0, d) so we just denote this as Spin(d).

Note that under the homomorphism Ãd, the group Pin(t, s) maps to the linear trans-

formations on Cℓ−t,s that have the special property that they take the subspace Rt,s to

itself and preserve the norm. That is,

Ãd : Pin(t, s) → O(t, s) → 1 (17.9)

Moreover, for a single vector v, Ãd(v) is orientation reversing and hence

Ãd : Spin(t, s) → SO(t, s) → 1 (17.10)

Now we consider the kernel of Ãd. Suppose φ ∈ Pin(t, s) is in the kernel. Decompose

φ into its even and odd pieces: φ = φ0 + φ1. Then, for all y ∈ Rt,s we have λ(φ)y = yφ.

Since y is odd this is equivalent to two equations:

φ0y = yφ0

φ1y = −yφ1
(17.11)

In particular, since the generators of Cℓ−t,s are in Rt,s these equations say that φ is in the

graded center of Cℓ−t,s. But we know that the Clifford algebra is a central superalgebra,

so φ ∈ R∗ is an invertible scalar. What scalars can we get? If

v1 · · · vn = α ∈ R∗ (17.12)

then we can apply the transpose anti-automorphism β (see exercise 1 in Section §13.1.4
above) to this equation and multiply the two equations to get

v21 · · · v2n = α2 (17.13)

and hence α2 = ±1. Since α is real, α2 = +1 and hence α = ±1. Therefore, the kernel is

just the group {±1} ∼= Z2 and we have the exact sequences:

1 → Z2 → Pin(t, s)
Ãd→ O(t, s) → 1 (17.14)

1 → Z2 → Spin(t, s)
Ãd→ SO(t, s) → 1 (17.15)

17.1.1 The norm function

Recall from exercise 1 in Section §13.1.4 above that the transpose operation φ → β(φ) is

defined to be the unique ungraded anti-automorphism that is the identity on Rt,s. Thus,
37

β(φ1φ2) = φ2φ1 (17.16)

and β(ei) = ei. In terms of a basis:

β(ei1ei2 · · · eik) = eikeik−1
· · · ei2ei1 (17.17)

37Note well that this violates the Koszul sign rule! That leads to some awkward signs in some equations

with β. It is possible to define a closely related anti-automorphism which respects the Koszul rule.
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Definition Define φ̄ := λ ◦ β(φ), and the norm function:

N(φ) := φφ̄. (17.18)

The norm function has some nice properties when restricted to the Clifford group

Γ(t, s), namely is the subgroup of Cℓ(t, s)∗ which preserves the vector space Rt,s generated

by ei under twisted adjoint action. That is, φ ∈ Γ(t, s) if for all vectors y = yiei (where y
i

are real numbers)

λ(φ) · y · φ−1 ∈ Rt,s (17.19)

First, we claim that if φ ∈ Γ(t, s) then N(φ) ∈ R∗. To see this let λ(φ)yφ−1 := y′.

Take the transpose of this equation and solve for y to get y = λ(φ̄)y′φ̄−1. Therefore

y′ = λ(φ)yφ−1

= λ(φ)λ(φ̄)y′φ̄−1φ−1

= λ(φφ̄)y′(φφ̄)−1

= Ãd(φφ̄)y′

(17.20)

is true for all y′. Therefore φφ̄ ∈ ker(Ãd) and we have already shown 38 that ker(Ãd) ∼= R∗.

It follows that N(φ1φ2) = φ1φ2φ̄2φ̄1 = φ1N(φ2)φ̄1 = φ1φ̄1N(φ2) = N(φ1)N(φ2) and

hence N : Γ(t, s) → R∗ is a homomorphism.

Moreover, we claim that for φ ∈ Γ(t, s) we have Ãd(φ) ∈ O(t, s). To prove this, note

that if φ ∈ Γ(t, s) and y ∈ Rt,s then

Ãd(φ)y · Ãd(φ)y = λ(φ)yφ−1φ̄−1ȳλ(φ̄)

= (λ(φ)λ(φ̄))(φ̄φ)−1yȳ

= yȳ

(17.21)

Alternatively, just use the fact that N is a homomorphism: N(Ãd(φ)y) = N(λ(φ)yφ−1) =

N(φ)N(y)N(φ)−1 = N(y).

Therefore we have shown that:

1 → R∗ → Γ(t, s)
Ãd→ O(t, s) → 1 (17.22)

Moreover, it follows that an alternative definition of Pin(t, s) can be given as

Pin(t, s) := {φ ∈ Γ(t, s) : |N(φ)| = 1} ⊂ Γ(t, s) (17.23)

and in fact Γ(t, s) ∼= Pin(t, s)×R+.

Note that since Spin(t, s) := Pin(t, s) ∩ Cℓ0−t,s and Cℓ0−t,s = Cℓ0−s,t it follows that

Spin(t, s) = Spin(s, t). However, the analogous statement for Pin is definitely false.

One useful application of the norm function is that it gives a neat definition of the

groups Pinc and Spinc which are useful in both geometry and physics. To define these

38The same argument works for Γ(t, s).
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we work with the complexified Clifford algebras. In the complex case we define x → x̄ to

include complex conjugation. That is, if x is in a real Clifford algebra then (x⊗ z) = x̄⊗ z̄.
We can again define the Clifford group Γc(t, s) ⊂ Cℓ∗d as the group preserving the subspace

Rt,s ⊗ C under Ãd. Now the kernel of Ãd is C∗ and for x ∈ C∗ we have N(x) = 1 for

|x| = 1, i.e. for x ∈ U(1). The same computation (17.21) above shows that in the complex

case the image of Ãd is in U(d) ⊂ GL(d,C), but one can also show that

Ãd(y) = Ãd(ȳ) (17.24)

and hence the image is in fact in O(d) ⊂ U(d).

Taking our queue from (17.23) we define:

Pinc(d) := {φ ∈ Γc(t, s) ⊂ Cℓd : |N(φ)| = 1} (17.25)

The intersection with (Cℓ(d))0 defines Spinc(d) so we get

1 → U(1) → Pinc(d)
Ãd→O(d;R) → 1 (17.26)

1 → U(1) → Spinc(d)
Ãd→SO(d;R) → 1 (17.27)

From this one can show

Pinc(d) = (Pin±(d)× U(1))/Z2 (17.28)

Spinc(d) = (Spin(d)× U(1))/Z2 (17.29)

Exercise

Show that in general that for φ ∈ Γ(t, s) ⊂ Cℓs,−t, the norm N(φ) can be positive or

negative.

Exercise

Show that e1234 is not connected to the identity in Spin(1, 3).

Exercise

a.) Consider the quaternions realized as Cℓ(0, 2). Show that xx̄ is the norm of the

quaternion.

b.) Show that we can identify Cℓ(0, 2)∗ ∼= R4 − {0}
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17.2 The relation of Pin and Spin for definite signature

We consider the case of definite signature for simplicity. Then we define Pin±(d) according

to whether e2i = +1 or e2i = −1.

If P ∈ O(n) is any reflection, then {1, P} ∼= Z2 generates a Z2 subgroup of O(n). In

Pin+(n) this subgroup is covered by Z2×Z2, and the double coverings ±P̃ of the reflection

squares to 1 ∈ Pin+(n). On the other hand, in Pin−(n), this subgroup is covered by Z4

and the double coverings of the reflection ±P̃ squares to −1 ∈ Spin(n).

The difference between Pin+ and Pin− is that the double coverings of a reflection

squares to 1 in Pin+ and squares to −1 in Pin−.

Now, from the definition it is clear that Spin(d) ⊂ Pin(d) is a normal subgroup of

index two. We can define an explicit homomorphism

δ : Pin(d) → {±1} ∼= Z2 (17.30)

by δ(φ) := detÃd(φ), and Spin(d) = ker(δ). So

0 → Spin(d) → Pin±(d)
δ→ Z2 → 0 (17.31)

In the case of Pin+(d) we can split this sequence by taking s(−1) = e1 (or any other

vector of unit norm). The associated automorphism of Spin(d) is:

φ→ e1φe1 (17.32)

and in general is an outer automorphism. It follows that

Pin+(d) ∼= Spin(d) ⋊ Z2. (17.33)

It turns out that Pin−(d) is more complicated. To describe the group structure of

Pin−(d) we define an automorphism of Z4 on Spin(d). Choose any vector v with v2 = −1

(e.g. it could be any of the generators). Then ωj ∈ Z4 acts by

αωj : E → vjE(vj)−1 (17.34)

Using this automorphism construct the semidirect product Spin(d) ⋊ Z4. Then we claim

there is a well-defined surjective homomorphism

Spin(d)⋊ Z4 → Pin−(d) → 0 (17.35)

given by (E , ωj) → Evj . Now, the kernel of this homomorphism is just Z2 with the nontrivial

element being (−1,−1).

To summarize:

Pin+(d) = Spin(d)⋊ Z2 (17.36)

Pin−(d) = (Spin(d)⋊ Z4) /Z2 (17.37)
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Figure 14: Illustrating Pin±(1) double covering O(1). The red arrow indicates e2 = +1 in Pin+(1)

and the golden arrow indicates e2 = −1 in Pin−(1). Of course, Spin(1) is the Z2 subgroup double

covering the identity I in O(1).

17.3 Examples of low-dimensional Pin and Spin groups

In this section we give some explicit examples of Pin and Spin groups in low dimensions.

These examples have the nice feature that one can easily parametrize the general group

element in a way which makes the group multiplication simple. On the other hand, the

reader should be warned that the topological properties in these cases are not representative

of the general case.

17.3.1 Pin±(1)

Pin+(1) = {±1,±e} ∼= Z2 × Z2 (17.38)

Pin−(1) = {±1,±e} ∼= Z4 (17.39)

Now, O(1) = {I, P}, where I is the identity and P is the nontrivial element, acts on

the 1-dimensional vector space Re by P : e→ −e. We have

Ãd(±1) = I Ãd(±e) = P (17.40)

Thus we have
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0 → Z2 → Pin±(1) → O(1) → 0 (17.41)

There is a homomorphism O(1) → Pin+(1) which splits the sequence, but there is no

such homomorphism for Pin−(1).

Note that Spin(1) = {±1} is the double cover of the identity element I ∈ O(1).

See Figure 14.

17.3.2 Pin+(2)

Now consider Pin+(2) ⊂ Cℓ∗+2
∼= GL(2,R).

For α ∼ α+ 2π we define:

O(α) = cos(α)e1 + sin(α)e2

E(α) = cos(α) + sin(α)e1e2
(17.42)

Then

Pin+(2) = {E(α)} ∐ {O(α)} (17.43)

has two components, both isomorphic to the circle. To compute the group structure

note that E(α)E(β) = E(α + β), so these elements form a subgroup. This is the group

Spin(2). The group multiplication for Pin+(2) is easily worked out to be:

E(α)E(β) = E(α+ β)

O(α)E(β) = O(α+ β)

E(β)O(α) = O(α− β)

O(α)O(β) = E(β − α)

(17.44)

In particular Spin(2) is isomorphic to U(1). Note that for any α, O(α)O(α) = +1.

If we consider the homomorphism Ãd : Pin+(2) → O(2) we have a matrix representa-

tion defined by

Ãd(φ)(ea) =
∑

b

(Ãd(φ))bae
b (17.45)

Then in the ordered basis {e1, e2}:

Ãd(E(β)) =
(

cos(2β) sin(2β)

− sin(2β) cos(2β)

)

Ãd(O(β)) =

(
− cos(2β) sin(2β)

sin(2β) cos(2β)

) (17.46)

These relations nicely illustrate the exact sequence (17.36):

0 → Z2 → Pin+(2) → O(2) → 0 (17.47)
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Topologically, both Spin(2) and SO(2) are copies of the circle. From the above we see

that the double-covering Spin(2) → SO(2) is the nontrivial double-covering of a circle

over a circle. The group O(2) has two connected components, each component is a circle.

The group Pin(2) also has two connected components, each is a circle nontrivially double-

covering the circle in O(2).

Note that we also can define a homomorphism φ : Pin+(2) → Z2 given by φ(x) =

detÃd(x). The kernel is Spin(2) ∼= U(1) and the sequence

0 → U(1) → Pin+(2) → Z2 → 0 (17.48)

splits by

s : T̄ → T := O(α) (17.49)

where we can choose any reflection O(α) we please. Thus we recognize (17.48) as the

φ-twisted extension we called M+
2 in the example (6.12) above.

17.3.3 Pin−(2)

Now consider Pin−(2) ⊂ Cℓ∗−2
∼= H∗ ∼= R+ × SU(2).

For α ∼ α+ 2π we define:

O(α) = cos(α)e1 + sinαe2

E(α) = cos(α) + sin(α)e1e2
(17.50)

Then

Pin−(2) = {E(α)} ∐ {O(α)} (17.51)

has two components, both isomorphic to the circle. The group structure is then easily

computed:

E(α)E(β) = E(α + β)

O(α)E(β) = O(α− β)

E(β)O(α) = O(α+ β)

O(α)O(β) = E(α − β + π)

(17.52)

If we consider the homomorphism Ãd : Pin−(2) → O(2) we have a matrix representa-

tion

Ãd(E(β)) =
(
cos(2β) − sin(2β)

sin(2β) cos(2β)

)

Ãd(O(β)) =

(
− cos(2β) − sin(2β)

− sin(2β) cos(2β)

) (17.53)
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The first line shows the double-covering of Spin(2) over SO(2). In the next line we

have the set of all reflections in O(2) double-covered by the elements O(β). In particular,

we have (17.37):

0 → Z2 → Pin−(2) → O(2) → 0 (17.54)

Note that we also can define a homomorphism φ : Pin−(2) → Z2 given by φ(x) = detÃd(x).

The kernel is Spin(2) ∼= U(1) and the sequence

0 → U(1) → Pin−(2) → Z2 → 0 (17.55)

does not split. The most general section we can choose is

s : T̄ → T := O(α) (17.56)

where we can choose any reflection O(α) we please, but now reflections square to −1. Thus

we recognize (17.48) as the φ-twisted extension we called M−
2 in Section §**** above.

17.3.4 Pin(1, 1)

Now consider Cℓ1,−1 and let the generators be {e1, e2} with e21 = +1 and e22 = −1. It is

useful to form the isotropic elements

e+ :=
e1 + e2

2
e− :=

e1 − e2
2

(17.57)

so that

e2+ = e2− = 0 {e+, e−} = 1 (17.58)

Indeed P+ = e−e+ = 1
2(1 + e12) and P− = e+e− = 1

2(1 − e12) are orthogonal projection

operators, and provide a basis for the even subalgebra.

We can define group elements

Eχ+,χ−(θ) = χ+e
θP+ + χ−e

−θP−

Oχ+,χ−(θ) = χ+e
θe+ + χ−e

−θe−
(17.59)

where θ ∈ R and χ± ∈ {±1}. It is not difficult to show that these are the most general

even and odd elements in Pin(1, 1). Thus, Spin(1, 1) has four connected components, each

a copy of R as a manifold, while Pin(1, 1) has eight connected components, again each a

copy of R as a manifold. This presentation of the group elements makes the computation

of the group law especially transparent.

Exercise

Compute the action of Spin(1, 1) on R1,1 by twisted adjoint action:

Ãd(Eχ+,χ−(θ))e+ = χ+χ−e
−2θe+

Ãd(Eχ+,χ−(θ))e− = χ+χ−e
2θe−

(17.60)
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For the components with χ+χ− = 1 the image is a boost of rapidity 2θ. For the components

with χ+χ− = −1 the image is such a boost together with a PT transformation.

Exercise Pin±(3)

Using the fact that Cℓ0±3
∼= H give an analogous presentation of the group structure

of Pin±(3) parametrizing even and odd elements in terms of unit quaternions.

17.4 Some useful facts about Pin ad Spin

17.4.1 The center

We focus on the case of definite signature.

For d = 1 the groups Pin±(d) and Spin(d) are abelian as we saw above.

For d = 2 Spin(2) is abelian, while the center of Pin±(2) is just {±1}. This follows

from the explicit discussion of the group law above.

To understand d > 2 note that any element of the center of Pin±(d) or Spin(d) must

map to the center of O(d) or SO(d) under Ãd, respectively. But for d > 2 any element

of the center of O(d) or SO(d) must be proportional to the identity matrix. The only

orthogonal matrices of the form α1d are ±1d. Viewing −1d as a product of reflections in

the planes orthogonal to e1, . . . , ed it is clear that the inverse image of −1d is ±ω where

ω = e1 · · · ed is the volume form. Therefore, the center of Pin±(d) and Spin(d) must be

contained in the group {±1,±ω}.
To compute the structure of the group {±1,±ω} recall that the square of the volume

form is

ω2 =





ǫ d = 1mod4

−1 d = 2mod4

−ǫ d = 3mod4

+1 d = 4mod4

(17.61)

where ǫ = ± for Pin±(d). Thus {±1,±ω} is isomorphic to Z2 × Z2 or Z4 according to the

above cases.

For d even the element ω is indeed in Spin(d) and clearly is in fact central. For d odd

ω is not in Spin(d). Therefore:

Z(Spin(d)) =





Z2 × Z2 d = 0mod4

Z4 d = 2mod4

Z2 d = 1mod2

(17.62)
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For Pin the situation is reversed: If d is even then ω is not central and if d is odd then

ω is central, and hence:

Z(Pin+(d)) =





Z2 × Z2 d = 1mod4

Z4 d = 3mod4

Z2 d = 0mod2

(17.63)

Z(Pin−(d)) =





Z4 d = 1mod4

Z2 × Z2 d = 3mod4

Z2 d = 0mod2

(17.64)

17.4.2 Connectivity

For d = 1, Spin(1) = {±1} has two components, while Pin±(1) has four components.

For d > 1, Spin(d) is a connected double-cover of the connected group SO(d). The

connectedness follows directly from the definition: Consider an element v1 · · · v2n. Each

vector vs lies on the unit sphere v2 = +1. But that sphere is connected, for d > 1.

Therefore for each vs we may choose a continuous path of vectors vs(x), 0 ≤ x ≤ 1 of unit

norm connecting vs to some common vector, say e1, at x = 1. Then v1(x) · · · v2n(x) is a

continuous path of elements in Spin(d) connecting v1 · · · v2n to 1.

Although not strictly necessary, we can also exhibit an explicit path connecting −1 to

+1 within Spin(d). Consider the path of elements:

r(t) := cos t+ sin te1e2 0 ≤ t ≤ π. (17.65)

This path is useful in discussing simple-connectivity below.

Applying the same argument to Pin±(d) with d > 1 shows that it has exactly two

components. For v1 · · · vn we choose paths vs(x) as before. At x = 1 we have (e1)
n which is

= 1 for n even or e1 for n odd. Since these map to disconnected components of O(d) under

the continuous map Ãd there cannot be any path connecting 1 and e1. Each component

double-covers the corresponding connected component of O(n). These facts also follow

from the group-theoretic discussion of the relation of Pin and Spin above, once we know

Spin is connected.

For the general case of Spin(t, s) and Pin(t, s) with t > 0 and s > 0 and d > 2 a

similar argument can be used to investigate the components: Spin(t, s) has 2 connected

components and Pin(t, s) has 4 connected components. Each component is a nontrivial

double cover of one of the 4 connected components of O(t, s).

To prove the above claims note that the sphere in Rt,s given by

−x21 − · · · − x2t + x2t+1 + · · ·+ x2t+s = 1 (17.66)

(where xµ are the coordinates of v) is a bundle over Rt whose fiber is topologically Ss−1.

The sphere S0 has two components and Sn has one component for n > 0. Therefore the

solution space of (17.66) has one component for s > 1 and two for s = 1. By the same

token

−x21 − · · · − x2t + x2t+1 + · · · + x2t+s = −1 (17.67)
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has one component for t > 1 and two for t = 1.

Now consider an arbitrary group element in Pin(t, s). Since d > 2 either s > 1 or

t > 1 and this allows us to prove that −1 is connected to +1. Therefore the general group

element is path connected to one of the form

v1 · · · vn (17.68)

If s > 1 and t > 1 then for each vector vs with v2s = +1 we choose a path of unit norm

vectors connecting it to ed. For each vector with v2s = −1 we choose a path connecting it

to e1. Therefore, at the endpoint of our path we obtain a group element ±eℓ11 eℓdd which is

±eℓ11 eℓdd , where ℓ1, ℓd are valued in {0, 1} and are congruent module two to ℓ1, ℓd, respec-

tively. Again, since −1 is connected to +1 we have shown that the arbitrary group element

in Pin(t, s) is connected to one of 1, e1, ed, e1ed. But each of these projects under Ãd to

each of the four components of O(t, s), with e1 projecting to a “time reflection,” and ed
projecting to a “space reflection.” If t = 1 or s = 1 the argument needs to be supplemented

but the conclusion is unchanged. For example, if t = 1 then there are two components of

the set of vectors with v2 = −1. These vectors are pathwise connected to ±e1. But then,

so long as s > 1, e1 can be path connected to −e1 in the group. ♦

17.4.3 Simple-Connectivity

Now consider the simple-connectivity. Spin(d) is a principal Z2 bundle over SO(d). From

the exact homotopy sequence for fibrations:

0 → π1(Spin(d)) → π1(SO(d)) → π0(Z2) → 0 (17.69)

For sufficiently large d we can use the Bott song to see that π1(SO(d)) ∼= Z2 and therefore

it follows that π1(Spin(d)) = 0. In fact this applies for d > 2. Of course π1(SO(2)) ∼= Z

and hence π1(Spin(2)) = Z.

Now, consider the path r(t) in equation (17.65). Let us compute its image under Ãd:

Ãd(r(t))e1 = (cos t+ sin te1e2)e1(cos t− sin te1e2)

=
(
cos2 t− sin2 t

)
e1 − 2 cos t sin te2

= cos(2t)e1 − sin(2t)e2

Ãd(r(t))e2 = sin(2t)e1 + cos(2t)e2

(17.70)

and of course Ãd(r(t))ei = ei for i > 2. The matrix representation is thus

Ãd(r(t)) =

(
cos(2t) sin(2t)

− sin(2t) cos(2t)

)
⊕i>2 1 (17.71)

Thus the image is the path of rotations R(2t) in the e1e2 plane. Note in particular it is a

closed path for 0 ≤ t ≤ π. Thus this closed loop in SO(d), which is homotopically nontrivial

and in fact generates π1(SO(d), 1), lifts to an open loop in Spin(d) which connects +1 to

−1, thus explicitly showing how the connecting homomorphism in (17.69) maps the basic

loop to the nontrivial element of π0(Z2).
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17.5 The Lie algebra of the spin group

We consider the general situation of a quadratic form Q on a real vector space and compute

the Lie algebra spin(Q). Since Ãd is a 2 : 1 covering and a group homomorphism we are

guaranteed that Lie algebra spin(Q) of Spin(Q) is isomorphic to that of so(Q). However,

since we are thinking of Spin(Q) as a subgroup of Cℓ(Q)∗ we can also give a very nice

description of this Lie algebra as a Lie subalgebra of Cℓ(Q). After all, the tangent space

to Spin(Q) at the origin will be a linear subspace of T1Cℓ(Q) ∼= Cℓ(Q), as a vector space.

Moreover, Cℓ(Q) can also be considered to be a a Lie algebra with the obvious Lie product

[a, b] := ab− ba, and we will see that L(Spin(Q)) := spin(Q) is a Lie subalgebra.

To motivate the construction we want to think of the identity element as the product

v2 = 1 for some vector v ∈ Rt,s ⊂ Cℓs,−t. Consider a path of elements v1(t)v2(t) with

vi(0) = v and v2i (t) = 1. The tangent vector is

d

dt
|0(v1(t)v2(t)) = v̇1v + vv̇2 (17.72)

where v̇i =
d
dt |0vi(t). On the other hand, differentiating v2i (t) = 1 gives vv̇i + v̇iv = 0. It

follows that we can equally well write the tangent vector as

d

dt
|0(v1(t)v2(t)) =

1

2
(v̇1v − vv̇1) +

1

2
(vv̇2 − v̇2v) = vw − wv (17.73)

where w = 1
2(v̇2 − v̇1).

This suggests that

spin(t, s) = {v1v2 − v2v1|v1, v2 ∈ Rt,s} ⊂ Cℓs,−t (17.74)

and indeed, by the above remark the RHS must be a subspace. On the other hand, it is

easy to see that it is already the full dimension of spin(t, s), and hence the spaces are equal.

Indeed, if eµ is a basis for Rt,s with Q(eµ, eν) = ηµ,ν then a natural basis for spin(t, s) is

the set of generators:

Mµν :=
1

2
eµν =

1

4
[eµ, eν ] (17.75)

where µ 6= ν and we need only take those for µ < ν to get a basis sinceMµν is antisymmetric

on µ, ν.

As a check of the isomorphism spin(t, s) ∼= so(t, s) the reader should use the Clifford

algebra relations to compute

[eµν , eλρ] = 2

(
ηνλeµρ − ηµλeνρ − ηνρeµλ + ηµρeνλ

)
(17.76)

It is easy to remember this formula by specializing to the case ν = λ 6= µ, ρ, using the

Clifford algebra property, and then imposing the antisymmetry on the pairs µ, ν and λ, ρ.

Therefore we get the desired equation:

[Mµν ,Mλρ] = ηνλMµρ ± 3 terms (17.77)
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A natural choice of Cartan subalgebra is given by the span of

h1 =
1

2
e12, h2 =

1

2
e34, , . . . , hr =

1

2
e2r−1,2r (17.78)

where r = [d/2] is the rank of the complex simple Lie algebra so(d)⊗C. Indeed the hi can

be taken to be a set of simple coroots. ♣check ♣

Exercise

Show that Ad(eµν) acts on V as a linear transformation

[eµν , eλ] = [eµeν , eλ]

= eµ{eν , eλ} − {eµ, eλ}eν
= 2eµQνλ − 2eνQµλ

(17.79)

Exercise

Check that the linear transformation Ad(eµν) preserves the quadratic form Q:

2Q([eµν , eλ], eρ) + 2Q(eλ, [eµν , eρ]) = [eµν , eλ]eρ + eρ[eµν , eλ]

+ eλ[eµν , eρ] + [eµν , eρ]eλ

= [eµν , eλeρ + eρeλ] = [eµν , 2Qλρ1]

= 0

(17.80)

Thus, Ad(eµν) acts as linear transformations on V preserving the quadratic form Q on V

and they generate the Lie algebra so(Q).

Exercise

If Tµν is the antisymmetric matrix with 1 (−1) in matrix element µ, ν ( ν, µ) and zero

elsewhere and exp(12ω
µνTµν) = g ∈ SO0(r, s) then

exp

(
1

4
ωµνeµν

)
eλexp

(
−1

4
ωµνeµν

)
= gρλeρ (17.81)
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17.5.1 The exponential map

Let us consider the image of the exponential map. Note that for each pair µ < ν we can

write:

exp

(
1

2
θeµν

)
=

{
cos(12θ) + sin(12θ)eµν if ηµµηνν = +1

cosh(12θ) + sinh(12θ)eµν if ηµµηνν = −1
(17.82)

Although it is guaranteed to be true, let us note that these expressions can be written

as the product of two vectors of norm-square ±1:

exp

(
1

2
θeµν

)
=

{
eµ(ηµµ cos(

1
2θ)eµ + sin(12θ)eν) if ηµµηνν = +1

eµ(ηµµ cosh(
1
2θ)eµ + sinh(12θ)eν) if ηµµηνν = −1

(17.83)

Now, a small computation shows that the image under Ãd of e 1
2
θeµν

is a rotation (or

boost) by angle θ in the µν plane:

Ãd(exp

(
1

2
θeµν

)
)(eλ) = eλ λ 6= µ, ν (17.84)

Ãd(exp

(
1

2
θeµν

)
)(eµ) = c(θ)eµ − ηµµs(θ)eν (17.85)

Ãd(exp

(
1

2
θeµν

)
)(eν) = c(θ)eν + ηννs(θ)eµ (17.86)

where c(θ) is cos θ or cosh θ according to the sign of ηµµηνν , etc.

Now let us restrict to the case of definite signature, say all +, so (eµ)
2 = 1 (no sum on

µ). Then the maximal torus is the subgroup of Spin(d) composed of elements of the form:

(cos θ1 + e12 sin θ1)(cos θ2 + e34 sin θ2) · · · (cos θr + e(2r−1)(2r) sin θr) (17.87)

where r = [d/2] and θi ∼ θi+2π. Recall that the reflection in a plane by two lines at angle

θ is a rotation by 2θ. Since we can write (cos θ1 + e12 sin θ1) = e1(cos θ1e1 + sin θ1e2) the

above element maps to

(
cos 2θ1 sin 2θ1
− sin 2θ1 cos 2θ1

)
⊕ · · · ⊕

(
cos 2θr sin 2θr
− sin 2θr cos 2θr

)
(17.88)

for d = 2r and (
cos 2θ1 sin 2θ1
− sin 2θ1 cos 2θ1

)
⊕ · · · ⊕

(
cos 2θr sin 2θr
− sin 2θr cos 2θr

)
⊕ 1 (17.89)

for d = 2r + 1. In either case this gives a 2r-fold covering of the maximal torus of Spin(d)

over the maximal torus of SO(d).
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17.6 Pinors and Spinors

Let us now consider representations of Spin(t, s) and Pin(t, s). We first want to define

spinorial representations.

Suppose ρ : Spin(t, s) → Aut(V ) is a representation on a vector space V over a field

κ. We automatically get a representation of the Lie algebra spin(t, s), and hence of the

universal enveloping algebra Uspin(t, s):

ρ : Uspin(t, s) → End(V ) (17.90)

On the other hand, the upshot of Section §17.5 is that there is an embedding of algebras

ι : Uspin(t, s) → Cℓ0s,−t (17.91)

Moreover, Cℓ0s,−t is generated by products v1v2 of vectors in Rt,s and since

v1v2 =
1

2
(v1v2 − v2v1) +

1

2
(v1v2 + v2v1) =

1

2
(v1v2 − v2v1) +Q(v1, v2)1 (17.92)

this embedding is surjective, and hence ι is in fact an isomorphism of algebras.

We say that the representation ρ “factors through” a representation of Cℓ0s,−t if we

can write ρ = ρcliff ◦ ι where ρcliff is a representation of Cℓ0s,−t.

Definition

a.) A representation (ρ, V ) of spin(t, s) is spinorial if it factors through a representation

of Cℓ0s,−t.

b.) A representation of Spin(t, s) is spinorial if its Lie algebra representation is spinorial.

c.) A spinor representation S is an irreducible representation of Cℓ0s,−t restricted to

Spin(t, s). Typical vectors in S are called spinors.

d.) A pinor representation S is an irreducible representation of Cℓs,−t, restricted to

Pin(t, s). Typical vectors in S are called pinors (if we wish to emphasize that the rep-

resentation extends to the other components).

Thanks to the isomorphism ι we know that irreducible representations of Cℓ0s,−t restrict

to irreducible representations of Spin(t, s). Similarly, irreducible representations of Cℓs,−t
restrict to irreducible representations of Pin(t, s).

In view of this relation of Spin to the even parts of the Clifford algebras, together with

the relation

Cℓ0d
∼= Cℓ1−d (17.93)

for d > 0, and using the tables above for the structure of the ungraded Clifford algebras

we can immediately read off the spin representations of Spin(d):
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d Cℓ0d
∼= Cℓ1−d IrrepsR(Cℓ

0
d) IrrepsC(Cℓ

0
d)

∼= IrrepsC(Cℓ
0
d) IrrepsR(Pin

−(d))

2 C S ∼= C S±
c
∼= C H

3 H S ∼= H Sc ∼= C2 S± ∼= H

4 H⊕H S± ∼= H, ω = ±1 S±
c
∼= C2 S ∼= H2

5 H(2) S ∼= H2 Sc ∼= C4 S ∼= C4

6 C(4) S ∼= C4 S±
c
∼= C4 S ∼= R8

7 R(8) S ∼= R8 Sc ∼= C8 S± ∼= R8

8 R(8)⊕ R(8) S± ∼= R8, ω = ±1 S±
c
∼= C8 S ∼= R16

9 R(16) S ∼= R16 Sc ∼= C16 S ∼= C16

10 C(16) S ∼= C16 S±
c
∼= C16 S ∼= H16

11 H(16) S ∼= H16 Sc ∼= C32 S± ∼= H16

We need to make a number of remarks about this table:

1. We left off the case d = 1 because Spin(1) = {±1} is not a connected group, the

argument based on the Lie algebra does not apply.

2. We could have stopped at d = 9 and invoked periodicity for higher d since the

ungraded algebra just changes by multiplying by the appropriate number of factors

of R(16). These merely shift the dimensions in the obvious way. We put in the last

two rows because they are useful in physics.

3. The algebra Cℓ0d is ungraded and hence we are considering ungraded representations

of Cℓ1−d here.

4. Note we must be careful to distinguish representations over R from those over C. As

an example, consider Spin(2) ∼= U(1). There is a unique irreducible representation

over R which is the vector space V ∼= C with representation matrix

ρ(cos θ + sin θe12)z = eiθz (17.94)

Of course, one might wonder about the representation

ρ(cos θ + sin θe12)z = e−iθz (17.95)

As a representation over R we can use the R-linear intertwiner z → z̄ to prove that

(17.94) is equivalent to (17.95). That is why there is a single spinor representation

S ∼= R in the table. On the other hand, as representations over C the representations

on V ∼= C given by (17.94) and (17.95) are inequivalent, because there is no complex-

linear transformation on V which conjugates one into the other.
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5. The presence of two inequivalent representations in the table can always be under-

stood from the volume element ω, which in some contexts is called the chirality

operator. For d even the volume element of Cℓd is in Cℓ
0
d. It will be, up to a sign, the

same as the volume element of Cℓ1−d. For d = 0, 4mod8 it squares to +1 and hence

we can define projection operators P± = 1
2(1±ω) projecting onto the two simple sum-

mands in Cℓ0d. For d = 2, 6mod8 it squares to −1 and there are no such projection

operators over R. However, if we complexify the Clifford algebra, or the represen-

tation, then we can multiply ω by
√
−1 and then produce a projection operator,

thus giving two inequivalent complex representations. In general the representations

S±
c

∼= C2d/2 for d = 0mod2 with ωc = ±1 are known as Weyl or chiral or semi- spin

representations. For the case of odd d the volume element is not in Cℓ0d, and the

algebra, and its complexification, are simple.

6. Of course, for representations of Pin−(d) over R the situation is different and the

Clifford algebra is not simple for d = 3mod4, yielding two inequivalent pinor repre-

sentations.

Now, for representations of Spin(t, s) more generally we can use Morita equivalence in

the following sense:

If Cℓs,−t has an irreducible graded representation V = V 0 ⊕ V 1 then V 0 and V 1 will

be irreducible representations of the ungraded even subalgebra Cℓ0s,−t. On the other hand,

we can always write

Cℓs,−t ∼= Cℓℓ,−ℓ⊗̂Cℓα (17.96)

along the lines of (13.171). Note the change of conventions so that α = −dTmod8

dTmod8 = (t− s)mod8 (17.97)

Now Cℓℓ,−ℓ is a super-matrix algebra and has a unique graded irrep U ∼= Rs|s where

s = 2ℓ−1. Now it follows (Morita equivalence) that there is a one-one correspondence of ♣check! ♣

graded irreps S of the definite signature Clifford algebra Cℓα and those of Cℓs,−t given by

S 7→ U⊗̂S. Therefore, there is also such a correspondence for the irreps of Spin(t, s) and

Spin(dT ) with ♣Something not

quite right here.

This is not 1-1. ♣S0, S1 7→ Rs ⊗ (S0 ⊕ S1). (17.98)

Thus the properties of representations being real and or quaternionic is invariant under

the shift (s, t) → (s + ℓ, t + ℓ). One example of this is physically very important: It

relates Spinor representations for Lorentzian signature Spin(d + 1, 1) to those of the Spin

representations of the space transverse to the lightcone Spin(d). ♣What about

chirality? Even for

d = 2mod4 S0 ⊕ S1

would have a real

structure... ♣
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dTmod8 Real (Majorana) Quaternionic (Pseudoreal) Chiral (Weyl) Majorana-Weyl

-4 - yes yes -

-3 - yes - -

-2 - - yes -

-1 yes - - -

0 yes - yes yes

1 yes - - -

2 - - yes -

3 - yes - -

4 - yes yes -

Remark: In the physics literature the reality properties of spin representations are

usually established by considering irreducible representations of the complex Clifford alge-

bras and then showing the existence (or not) of intertwining matrices between Γµ and

±Γµ,±(Γµ)tr,±(Γµ)∗,±(Γµ)† (17.99)

Once one knows that the key properties of these intertwiners does not depend on a partic-

ular representation one can even use a particularly convenient one, such as that given by

fermionic oscillators (see below) to compute explicit intertwiners. ♣SAY MORE. ♣

♣Really should

discuss symplectic

Majorana

conditions as these

are quite important

in physics. ♣

17.7 Products of spin representations and antisymmetric tensors

For spinorial representations S of Spin and Pin some key constructions in physics involve

the existence of covariant maps (morphisms of representations) of the following form:

1. S ⊗ S → V : Super-Poincaré and super-conformal algebras.

2. S ⊗ S ⊗ V → 1: Kinetic terms in Lagrangians.

3. S ⊗ S → 1: Mass terms in Lagrangians.

4. V ⊗ S1 → S2: Dirac operators

The last morphism is given by Clifford mulitplication by V ⊂ Cℓ(V,Q) in the pinor

representation. If the spin group admits chiral representations then it exchanges these

chiral representations.

The existence and the properties of the first three kinds of morphisms depends on the

signature and the dimension mod eight. This mod-eight dependence should be reminiscent

of the graded Brauer group for κ = R, and indeed one can find a conceptual discussion

based on that in [16]. We are going to take a much more concrete and down-to-earth
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approach to these matters, but the beautiful conceptual underpinnings are worth bearing

in mind.

Our approach will be to decompose the products of spinors (bispinors) into sums of

antisymmetric tensors. The existence and properties of the above morphisms will be a

corollary of that discussion.

17.7.1 Statements

We begin with the Clifford algebra generated by

{eµ, eν} = 2ηµν = 2Diag{+1s,−1t}µν (17.100)

over R. Choose an irreducible Clifford representation on a complex vector space S. Let ♣Notation Sc? ♣

V = Rt,s⊗C ∼= Cd, with d = s+ t. Then, thanks to Ãd, V is an irreducible representation

of Spin(t, s), and so are all the antisymmetric powers ΛkV for 0 ≤ k ≤ d.

We want to study Spin(t, s)-equivariant maps

S ⊗ S → ⊕d
k=0Λ

kV (17.101)

We immediately see that there is an important distinction between d even and odd. If d is

even both the LHS and RHS are of complex dimension 2d/2 × 2d/2 = 2d. Indeed, we will

see that there is an isomorphism (17.101). On the other hand, if d is odd then S is 2(d−1)/2

dimensional and the LHS is only 2(d−1)-dimensional so there can be no isomorphism.

For fixed k the space of intertwiners

HomSpin(d)(S ⊗ S,ΛkV ) (17.102)

is one-dimensional, when d is odd, and two-dimensional, when d is even. In Section ♣Need to justify

this! ♣§17.7.2, see equation (17.131), we will show that - given a representation of the Clifford

algebra by gamma matrices Γµ - there are canonical intertwiners Φξk, where ξ ∈ {±1} is

a sign which enters the construction. When d is even there are two distinct intertwiners

labeled by ξ and when d is odd there is only one. Moreover

• For d = 1mod4 then ξ = +1.

• For d = 3mod4 then ξ = −1.

Note that since the intetwiners are nonzero they are surjective by the reasoning of

Schur’s lemma, since the target representation is irreducible.

We want to understand how the maps (17.101) behave when restricted to irreducible

representations of Spin(t, s), what the symmetry properties are, and what the reality prop-

erties are. As we mentioned above, these properties depend on both s and t modulo eight.

In order to express the answer we need to understand the roles of chirality, Hodge duality,

and symmetry for these maps.

First, let us discuss the role of chirality:
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Denote the representation of the volume form Γ := Γ1...d = ρ(ω). In representations

over the complex numbers we can always diagonalize this operator. The eigenvalues of Γ

are denoted by ζ and they obey

ζ2 = (−1)
1
2
d(d−1)+t = (−1)

1
2
dT (dT+1) (17.103)

where we recall dT = t− s for Cℓs,−t. For d even the trace of Γ in the Dirac representation

Sc is zero. In order to state our results in a convention-independent way we let ζ± denote

the eigenvalue of Γ on the irreducible representation S±. Then ζ− = −ζ+. When ζ2 = 1

it would be natural (but not necessary) to choose ζ+ = +1 and when ζ2 = −1 which root

we assign to S+ is a matter of convention.

Now, when d is even we have

Φξk(ψ1,Γψ2) = (−1)k+d/2Φξk(Γψ1, ψ2) (17.104)

The identity (17.104) implies that if ψ1, ψ2 have definite chiralities ζ1, ζ2, respectively

then Φk(ψ1, ψ2) can only be nonzero if

ζ̄1ζ2 = (−1)
d
2
+k (17.105)

We say that the spinors have opposite chirality if ζ̄1ζ2 = −1 and the same chirality if

ζ̄1ζ2 = 1. This gives the following table summarizing when Φk(ψ1, ψ2) can be nonzero if

ψ1, ψ2 have definite chirality:

k = 0mod2 k = 1mod2

d = 0mod4 same opposite

d = 2mod4 opposite same

For d even the Φk can be assembled to give isomorphisms

S+ ⊗ S+ ⊕ S− ⊗ S− ∼= ⊕k= d
2
(2)Λ

kCd

S− ⊗ S+ ⊕ S+ ⊗ S− ∼= ⊕k=(d2+1)(2)Λ
kCd

(17.106)

Now let us consider the role of Hodge duality:

Given a metric on V and an orientation, expressed as a volume form vol of unit norm,

the Hodge ∗ operator is the unique C-linear operator ∗ : ΛkV → Λd−kV such that

f ∗ f =‖ f ‖2 vol (17.107)

where ‖ f ‖2 is the norm-squared of the differential form f in the metric.

Using the metric ds2 = ηµνe
µ ⊗ eν and the orientation

vol := e1 ∧ · · · ∧ ed = 1

d!
(−1)tǫµ1···µde

µ1 ∧ · · · ∧ eµd (17.108)
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the Hodge ∗ acts on the natural basis as

∗ (eν1 ∧ · · · ∧ eνd−k) = (−1)t
1

k!
ǫ
ν1···νd−k

µ1···µke
µ1 ∧ · · · ∧ eµk (17.109)

where ǫµ1···µd ∈ {0,±1} is the totally antisymmetric tensor normalized by ǫ1···d = +1, and

indices are raised and lowered with ηµν . Note especially that, restricted to ΛkV for any k

we have the important sign:

∗2 = (−1)t(−1)k(d−k). (17.110)

When this is +1 we can diagonalize ∗ over the reals with eigenvalues ±1, and when it is

−1 we can only diagonalize over the complex numbers.

The Hodge star commutes with the Spin(t, s) action (but not with the Pin(t, s) action!

For orientation-reversing group elements it anti-commutes) and hence defines isomorphism

of Spin(t, s) representations

ΛkV ∼= Λd−kV (17.111)

Moreover, if d is odd then ∗2 = (−1)t. Denote the two eigenvalues of ∗ by ±ε, with
ε = +1 for t = 0(2) and ε = i for t = 1(2). Then, as representations of Spin(t, s) we can

decompose Λ∗V into two equivalent (highly reducible) representations given by

Λ∗V ∼=
[
⊕d
k=0Λ

kV

]ε
⊕
[
⊕d
k=0Λ

kV

]−ε
(17.112)

where the superscripts ±ε indicate the corresponding eigenspaces of ∗. Of course, thanks

to (17.111) each of the summands is isomorphic to, say,

⊕k< d
2
ΛkV (17.113)

as a Spin(t, s) representation.

When d is even then ∗2 = (−1)t+k and hence Λ∗V decomposes into two subspaces.

One is the subspace on which ∗2 = +1 and the other is the subspace on which ∗2 = −1.

These two subspaces are distinguished by the parity of k. Each of these subspaces may be

decomposed into ∗ eigenspaces. The “middle” space Λ
d
2V splits into two representations

given by the ∗ = ±ε eigenspaces, where

ε =

{
+1 (−1)t+d/2 = +1

+i (−1)t+d/2 = −1
(17.114)

Therefore, we can decompose Λ∗V into eigenspaces of ∗ as

Λ∗V ∼=
[
⊕k= d

2
(2)Λ

kV

]ε
⊕
[
⊕k= d

2
(2)Λ

kV

]−ε

⊕
[
⊕k=( d2+1)(2)Λ

kV

]iε
⊕
[
⊕k=(d2+1)(2)Λ

kV

]−iε
(17.115)
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Now, returning to our equivariant maps Φξk : S ⊗ S → ΛkV , the key identity which

relates Hodge ∗ and chirality is

∗Φξk(ψ1 ⊗ ψ2) = (−1)t+
1
2
d(d−1)(−1)

1
2
k(k−1)Φξd−k(ψ1 ⊗ Γψ2) (17.116)

This identity holds for d even or odd. If ψ2 is an eigenstate of Γ of eigenvalue ζ2 then by

(17.103) we can simplify (17.116) to

∗Φξk(ψ1 ⊗ ψ2) = ζ−1
2 (−1)

1
2
k(k−1)Φξd−k(ψ1 ⊗ ψ2) (17.117)

Again, this equation holds for d even or odd.

Now, for d odd, since each Φk is surjective, it follows that we have ♣True for SO(d)

reps but we should

refine the statement

to include O(d)

reps. ♣
S ⊗ S ∼= ⊕k< d

2
ΛkV ∼=

[
⊕d
k=0Λ

kV

]ε
∼=
[
⊕d
k=0Λ

kV

]−ε
(17.118)

where we can form the self-dual or anti-self-dual linear combinations of Φk and Φd−k as we

please, using (17.117).

For d even equation (17.117) implies that

S+ ⊗ S+ ∼= ⊕k< d
2
,k= d

2
(2)Λ

kV ⊕
[
Λ
d
2V

]ε

∼=
[
⊕k= d

2
(2)Λ

d
2V

]ε (17.119)

S− ⊗ S− ∼= ⊕k< d
2
,k= d

2
(2)Λ

kV ⊕
[
Λ
d
2V

]−ε

∼=
[
⊕k= d

2
(2)Λ

d
2V

]−ε (17.120)

where

ε = ζ−1
+ (−1)

d(d−2)
8 (17.121)

Meanwhile, because of the isomorphism (17.111) we also have

S− ⊗ S+ ∼= ⊕k< d
2
,k=(d2+1)(2)Λ

kV (17.122)

Finally, we can meaningfully ask how the symmetric and anti-symmetric decomposi-

tions of S ⊗ S (for d odd) and S+ ⊗ S+, S− ⊗ S− (for d even ) map to antisymmetric

tensors. The key identity is now

Φξk(ψ1 ⊗ ψ2) = ξkη(ξ, d)(−1)
1
2
k(k−1)Φξk(ψ2 ⊗ ψ1) (17.123)

where η(ξ, d) is a sign which depends on ξ and dmod8 and is given by
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dmod8 ξ = +1 ξ = −1

0 +1 +1

1 +1 *

2 +1 −1

3 * −1

4 −1 −1

5 −1 *

6 −1 +1

7 * +1

It follows that for d odd we have

Sym2(S) ∼= ⊕k= d±1
2

(4),k< d
2
ΛkV (17.124)

Λ2(S) ∼= ⊕k= d±5
2

(4),k< d
2
ΛkV (17.125)

On the other hand, if d is even then we have

Sym2(S+) ∼=
[
⊕k= d

2
mod4Λ

kV
]ε

(17.126)

Λ2(S+) ∼= ⊕k=(d
2
+2)mod4,k< d

2
ΛkV (17.127)

Sym2(S−) ∼=
[
⊕k= d

2
mod4Λ

kV
]−ε

(17.128)

Λ2(S−) ∼= ⊕k=(d2+2)mod4,k< d
2
ΛkV (17.129)

Returning to the questions at the beginning of this section the above identities easily

reproduce Table 1.5.1 from [16]. In the entries in the second column, “orthogonal” means

there is a symmetric nondegenerate Spin-invariant form on the spin representation, while

“symplectic” means there is an anti-symmetric nondegenerate Spin-invariant form.

dmod8 Forms on spinors Symmetry of S ⊗ S → V

0 S±
c orthogonal S+

c ⊗ S−
c → V

1 orthogonal symmetric

2 S+
c dual to S−

c symmetric (on S±
c separately)

3 symplectic symmetric

4 S±
c symplectic S+

c ⊗ S−
c → V

5 symplectic antisymmetric

6 S+
c dual to S−

c antisymmetric (on S±
c separately)

7 orthogonal antisymmetric
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Finally, we comment on the reality properties. For d = 2mod4 S±
c are complex conju-

gates of each other. In the other cases S±
c are self-conjugate.

The proofs of the key identities (17.104), (17.116), and (17.123) did not use complex

conjugation. From our discussions of Clifford algebras we know that we can form a real

representation of gamma matrices for dT = ±1, 0mod8 and hence the same story holds

with real representations. For quaternionic representations dT = ±3, 4mod8 the story is

a little more complicated. See [16] for one discussion. We will merely remark that the

product of two quaternionic complex vector spaces carries a natural real structure, so that

one can use the reality conditions to map to real antisymmetric tensors. ♣Should have a

more extensive

discussion about

symplectic

Majorana

conditions. They

are important in

physics. ♣

17.7.2 Proofs

We begin with a definition of the intertwiners:

Φξk : S ⊗ S → ΛkV (17.130)

To define it choose an irreducible matrix representation Γµ of Cℓr,−s. Think of spinors as

column vectors and consider

Φξk(ψ1, ψ2) :=
1

k!

(
ψT1 CξΓ

µ1···µkψ2

)
eµ1 ∧ · · · ∧ eµk (17.131)

The reason for the matrix Cξ is the following: In the spin representation ψ transforms

according to

ρ(e
1
2
ωµνeµν ) · ψ = ψ̃ = e

1
2
ωµνΓµνψ (17.132)

so we need to know how the transpose transforms. (That is, we are looking at the dual

representation space S∨.) This requires the introduction of an intertwiner Cξ, which has ♣Explain more

thoroughly about

the dual

representation. ♣

the property

CξΓ
µC−1

ξ = ξΓµ,tr (17.133)

where ξ = ±1. We will see below that such intertwiners always exist with the only restric-

tion that ξ = +1 for d = 1mod4 and ξ = −1 for d = 3mod4.

Given a choice of Cξ the representation on the dual space is

ψ̃trCξ = (ψtrCξ)e
− 1

2
ωµνΓµν (17.134)

Consequently, the RHS of (17.131) is invariant if we replace ψi → ρS(g) · ψi and eµ →
Ãd(g)(eµ) for g ∈ Spin(t, s).

Our first rule is about how k is correlated with the pairing of chirality. Note that:

(Γ1···d)tr = ξd(−1)
1
2
d(d−1)CξΓ

1···dC−1
ξ (17.135)

This holds for any value of d, even or odd.

For d odd Γ1···d is represented by a scalar and therefore ξd = (−1)
1
2
d(d−1). Thus:

• For d = 1mod4 then Cξ can only exist for ξ = +1. (And it turns out it does exist for

ξ = +1.)
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• For d = 3mod4 then Cξ can only exist for ξ = −1. (And it turns out it does exist for

ξ = −1.)

For d even we may simplify (17.135) to

(Γ1···d)tr = (−1)d/2CξΓ
1···dC−1

ξ (17.136)

Therefore we compute

ψT1 CξΓ
µ1···µkΓψ2 = (−1)kψT1 (CξΓC

−1
ξ )CξΓ

µ1···µkψ2

= (−1)d/2+k(Γψ1)
TCξΓ

µ1···µkψ2

(17.137)

Thus proving (17.104).

Next we take into account Hodge duality and use the crucial identity:

Γµ1···µkΓ1···d = (−1)
1
2
k(k−1) 1

(d− k)!
ǫµ1···µkν1···νd−kΓν1···νd−k (17.138)

where Γ = Γ1···d and ǫ1···d = +1.

We now compute

∗Φξk(ψ1 ⊗ ψ2) =
1

k!

(
ψtr1 CξΓµ1···µkψ2

)
(∗eµ1···µk)

= (−1)t
1

(d− k)!k!

(
ψtr1 CξΓµ1···µkψ2

)
ǫµ1···µkν1···νd−k

eν1···νd−k)
(17.139)

On the other hand,

Φξd−k(ψ1 ⊗ Γψ2) =
1

(d− k)!

(
ψtr1 CξΓ

ν1···νd−kΓψ2

)
eν1···νd−k)

= (−1)
1
2
(d−k)(d−k−1)(−1)k(d−k)

1

(d− k)!k!

(
ψtr1 CξΓµ1···µkψ2

)
ǫµ1···µkν1···νd−keν1···νd−k

(17.140)

Comparing these equations and doing a little algebra leads to (17.116).

Finally, for the symmetry properties note that from the definition of Cξ we can com-

pute:

(CξΓ
µ1···µk)tr = ξk(−1)

1
2
k(k−1)CξΓ

µ1···µkC−1
ξ Ctrξ (17.141)

Now we can therefore say

Φξk(ψ1 ⊗ ψ2) =
1

k!

(
ψtr1 CξΓµ1···µkψ2

)
eµ1···µk

=
1

k!

(
ψtr2 (Γµ1···µk)

tr Ctrξ ψ1

)
eµ1···µk

= ξk(−1)
1
2
k(k−1) 1

k!

(
ψtr2 CξΓµ1···µk(C

−1
ξ Ctrξ )ψ1

)
eµ1···µk

(17.142)

Now note that (17.133) implies

Ctrξ ΓµCtr,−1
ξ = ξΓµ,tr (17.143)

– 167 –



and by Schur’s lemma it follows that C−1
ξ Ctrξ is a scalar, and consistency of (17.141)

implies that scalar is ±1. The symmetry nature of the tensor product decompositions

depends on that sign.

Again by Schur’s lemma that sign cannot depend on the matrix representation. If we

multiply matrices by
√
−1 we can change the signature but not the anti-symmetry prop-

erties, so we might as well choose signature +1d and compute in a specific representation.

We will use the harmonic oscillator representation constructed in Section §18.4.1 below ♣Perhaps would be

better to use the

explicit

representation

(13.58) above. ♣

For d = 2n, define U = Γ2Γ4 · · ·Γ2n, and then check that we can take:

C+ =

{
U n even

ΓωU n odd
(17.144)

C− =

{
ΓωU n even

U n odd
(17.145)

and by explicit computation

U−1U tr = (−1)
1
2
n(n+1) (ΓωU)−1(ΓωU)tr = (−1)

1
2
n(n−1) (17.146)

Finally, recall that for d odd, we may only use C+ for n even, i.e. d = 1mod4 and C−

for n odd, i.e. d = 3mod4.

In this way we compute

dmod8 C−1
+ Ctr+ C−1

− Ctr−
0 +1 +1

1 +1 *

2 +1 −1

3 * −1

4 −1 −1

5 −1 *

6 −1 +1

7 * +1

This proves (17.123).

Note that from this table we deduce
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0 1 2 3 4 5 6 7

C+Γ
0(4) S S S * A A A *

C−Γ
0(4) S * A A A * S S

C+Γ
1(4) S S S * A A A *

C−Γ
1(4) A * S S S * A A

C+Γ
2(4) A A A * S S S *

C−Γ
2(4) A * S S S * A A

C+Γ
3(4) A A A * S S S *

C−Γ
3(4) S * A A A * S S

Across the top we have written the value of dmod8 and in the left-column C+Γ
0(4)

means a matrix C+Γ
µ1···µk with k = 0mod4. The S,A in the table denotes symmetry or

anti-symmetry, respectively. This leads to the final refinements (17.126), et. seq.

Remark: Note that for some columns, e.g. d = 2mod8 and k = 0 we can have both

symmetric and antisymmetric matrices. This is not a contradiction because in such cases

we are pairing spinors of opposite chirality.

Exercise Checking dimensions

a.) Show that: 39

∑

k=0(4)

(
d

k

)
= 2d−2 + 2

1
2
d−1 cos(

πd

4
)

∑

k=1(4)

(
d

k

)
= 2d−2 + 2

1
2
d−1 sin(

πd

4
)

∑

k=2(4)

(
d

k

)
= 2d−2 − 2

1
2
d−1 cos(

πd

4
)

∑

k=3(4)

(
d

k

)
= 2d−2 − 2

1
2
d−1 sin(

πd

4
)

(17.147)

These identities hold for any positive integer d, even or odd.

b.) Using these identities check that the dimensions match in the various decomposi-

tions of products of spinors into antisymmetric tensors given above.

Exercise

Find the explicit linear combinations of Φk which project into the eigenspaces of ∗.
39Answer : Apply the binomial expansion to (1 + κ)d for the four distinct fourth roots κ of 1.
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Hints:

a.) It is useful to remark that

(−1)
1
2
(d−k)(d−k−1) =

{
+1 k = d, d+ 3mod4

−1 k = d+ 1, d+ 2mod4
(17.148)

and hence {
(−1)

1
2
(d−k)(d−k−1) = (−1)

1
2
k(k−1) k = d

2mod2

(−1)
1
2
(d−k)(d−k−1) = −(−1)

1
2
k(k−1) k =

(
d
2 + 1

)
mod2

(17.149)

b.) In particular, if k = d
2mod2 then

∗ (Φk(ψ1, ψ2) + Φd−k(ψ1, ψ2)) = ζ−1
2

(
(−1)

1
2
k(k−1)Φd−k + (−1)

1
2
(d−k)(d−k−1)Φk

)

= ζ−1
2 (−1)

1
2
k(k−1) (Φk(ψ1, ψ2) + Φd−k(ψ1, ψ2))

(17.150)

c.) On the other hand, if k = d
2 + 1mod2 then (−1)

1
2
k(k−1) = −(−1)

1
2
(d−k)(d−k−1) and

hence

∗ (Φk(ψ1, ψ2)− iΦd−k(ψ1, ψ2)) = ζ−1
2

(
(−1)

1
2
k(k−1)Φd−k − i(−1)

1
2
(d−k)(d−k−1)Φk

)

= iζ−1
2 (−1)

1
2
k(k−1) (Φk(ψ1, ψ2)− iΦd−k(ψ1, ψ2))

(17.151)

d.) It follows that we can refine the decompositions to

S+ ⊗ S+ ∼=
[
⊕k= d

2
(4)Λ

kV
]ε

⊕
[
⊕k=( d2+2)(4)Λ

kV
]−ε

(17.152)

where the superscripts ±ε mean the spaces are eigenspaces of Hodge ∗ with eigenvalues

ε = ζ−1
+ (−1)

d(d−2)
8 (17.153)

respectively. Here ζ+ is the eigenvalue of Γ on S+. For S− we have the same story with

ζ− = −ζ+ and so we get the complementary space

S− ⊗ S− ∼=
[
⊕k= d

2
(4)Λ

kV
]−ε

⊕
[
⊕k=(d2+2)(4)Λ

kV
]+ε

(17.154)

e.) Similarly, the map (17.151) leads to

S− ⊗ S+ ∼=
[
⊕k=( d2+1)(4)Λ

kV
]+ε′

⊕
[
⊕k=( d2+3)(4)Λ

kV
]−ε′

(17.155)

where now the ± superscripts mean

ε′ = iζ−1
+ (−1)

d(d+2)
8 (17.156)
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17.7.3 Fierz identities

For d even we can rewrite the main result of the previous section as

(ψ1)α(ψ2)β = 2−d/2
d∑

k=0

1

k!
(ψtr1 CξΓµ1···µkψ2)(Γ

µk ···µ1C−1
ξ )βα (17.157)

Proof: The Clifford algebra is simple as an ungraded algebra so Γµ1···µk)αβ forms a

linear basis for the full matrix algebra, and hence so does (Γµk···µ1C−1
ξ )βα. Therefore, we

can certainly write

(ψ1)α(ψ2)β =

d∑

k=0

1

k!
N(ψ1, ψ2)µ1...µk(Γ

µk ···µ1C−1
ξ )βα (17.158)

for some some totally antisymmetric tensors N(ψ1, ψ2)µ1...µk which are linear in ψ1 and ψ2.

Moreover, the trace in the Dirac representation has the property that

TrΓµ1...µk = 0 (17.159)

for 0 < k ≤ d. When k is odd this immediately follows by thinking of the Dirac representa-

tion as a Z2-graded representation. (Equivalently, we can insert Γ2
χ = 1 and use cyclicity.)

When k is even we can cycle, say, Γµk . Therefore it follows that

Tr(Γµ1···µkΓνℓ···ν1) = δk,ℓ2
d/2

∑

σ∈Sk

sgn (σ)δµ1νσ(1) · · · δ
µk
νσ(k)

(17.160)

Using this property of the trace we can determine N(ψ1, ψ2)µ1...µk as above.

Further contraction of (17.157) with spinors ψ3, ψ4 gives a way of rearranging products

of spinor bilinears known as Fierz rearrangement.

Remark: Fierz rearrangements are frequently used in computations in perturbative

quantum field theory and in computations involving supersymmetric field representations

and invariant Lagrangians. ♣Give an exercise

based on Fierz

rearrangement in

some physics

computation. ♣17.8 Digression: Spinor Magic

17.8.1 Isomorphisms with (special) unitary groups

The minimal dimensional irreps of the Spin group give insight into the special isomorphisms

between the different classical Lie groups in low dimension.

We consider the definite signature Clifford algebra and study Spin(d). The irreducible

representations on real vector spaces are of the form Kn where K = R,C,H according to

dmod8. After extension to complex scalars n is a power of 2 given 2[d−1]/2. If the signature

is positive we can choose the representation matrices Γµ to be hermitian and if negative we

can choose them to be anti-hermitian. In either case they are unitary matrices considered

as complex matrices. In any case, the representation is given by a homomorphism ρ into

the norm-preserving elements of Kn which we will denote U(Kn) with the understanding
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that

U(Rn) ∼= SO(n;R)

U(Cn) ∼= U(n)

U(Hn) ∼= USp(2n)

(17.161)

Now, using the irreps of Spin(d) over R we construct homomorphisms ρ : Spin(d) →
U(V ) with

ρ : Spin(2) → U(C) ∼= U(1)

ρ : Spin(3) → U(H) ∼= USp(2) ∼= SU(2)

ρ : Spin(4) → U(H ⊕H) ∼= USp(2)× USp(2) ∼= SU(2)× SU(2)

ρ : Spin(5) → U(H2) ∼= USp(4)

ρ : Spin(6) → U(C4) ∼= U(4)

ρ : Spin(7) → U(R8) ∼= SO(8)

ρ : Spin(8) → U(R8) ∼= SO(8)

ρ : Spin(9) → U(R16) ∼= SO(16)

(17.162)

In the above the kernel of ρ is one. This follows since Spin(d) is simple, except for d = 2,

where we can check the kernel explicitly, and for d = 4, which is why we mapped to the two

chiral spin representations. The center of the spin group acts nontrivially on the spinor. ♣Need a better

argument to rule

out a kernel which

is a finite group ♣

Now, we compare dimensions. In the cases where the dimensions match we obtain

isomorphisms of Spin groups with (special) unitary groups. These isomorphisms are:

Spin(2) ∼= U(C) ∼= U(1)

Spin(3) ∼= U(H) ∼= USp(2) ∼= SU(2)

Spin(4) ∼= U(H)× U(H) ∼= USp(2)× USp(2) ∼= SU(2)× SU(2)

Spin(5) ∼= U(H2) ∼= USp(4)

Spin(6) ∼= SU(C4) ∼= SU(4)

(17.163)

In general the image of ρ will only be a small subgroup of U(Vd,K) since the dimension

of Vd is growing like ∼ 2d/2 while the real dimension of the Spin group is 1
2d(d − 1). The

dimensions coincide for d = 2, 3, 4, 5, 6. By the time we get to d = 9 the Spin group is

dimension 36 but the dimension of SO(16) is 120.

***************

Compatibility with Ãd. Explain the relation to Ax · ΓA−1 = R(x) · Γ.
******************

17.8.2 The spinor embedding of Spin(7) → SO(8)

Once we reach d = 7 we have an image of ρ : Spin(7) → SO(8) and just counting dimensions

we see that it cannot be onto. This hardly means the magic is over!
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We should note that there is another natural homomorphism from Spin(7) to SO(8)

given by

Ãd : Spin(7) → SO(7) → SO(8) (17.164)

where we embed SO(7) into SO(8) so that it is the stabilizer of a nonzero vector.

Now let us compare with the embedding by the spin representation. Cℓ(7−) has two

inequivalent representations on R8, giving two inequivalent representations of Pin(7−) on

R8. These become equivalent when restricted to Spin(7). A beautiful explicit matrix

representation is obtained by considering the action of the seven imaginary units in the

octonions on O ∼= R8 as described in (13.188) et. seq. above.

Now, in this representation if we consider the stabilizer of a nonzero vector then we

do not get SO(7) but rather a completely different group, known as the exceptional group

G2. Thus, the spinor 8 of Spin(7) becomes reducible as a representation of G2:

8 = 1⊕ 7 (17.165)

where 7 is the smallest nontrivial representation of G2. ♣Another definition

of G2 is that it is

the subgroup of

SO(7) which

stabilizes the 3-form

defined by the

structure constants

of the octonions.

Need to explain the

relation between

these definitions. ♣

From the octonionic description we obtain 7 explicit 8×8 real antisymmetric matrices.

The two inequivalent representations of Cℓ−7 are related by γi → −γi. The spinor rep-

resentation is obtained by multiplying even numbers of vectors of norm-squared −1 or by

exponentiating γij . We will next use the matrices γi to construct the spinor representations

of Spin(8).

17.8.3 Three inequivalent 8-dimensional representations of Spin(8)

Something very special happens at d = 8. Then there are three inequivalent 8-dimensional

representations. Two of these are the spinor representations S±. These are obtained by

eij → −γij 1 ≤ i < j ≤ 7

ei8 → ±γi 1 ≤ i ≤ 7
(17.166)

Put differently, we can form a representation of Cℓ(8+) ∼= R(16) by taking

γ̃i =

(
0 γi

−γi 0

)
i = 1, . . . , 7 γ̃8 =

(
0 1

1 0

)
(17.167)

so that if γ1 · · · γ7 = 1 then the chirality matrix is

γ̃χ := γ̃1 · · · γ̃8 =
(
1 0

0 −1

)
(17.168)

Then the two representations of spin(8) are given by the two block diagonal components

of γ̃MN , 1 ≤M < N ≤ 8.

In addition, there is the vector, or defining representation of SO(8) on R8, and thanks

to the Ãd homomorphism, this is also a representation of Spin(8). Thus, we have con-

structed three irreducible representations of Spin(8) on R8. We claim that these represen-

tations are in fact inequivalent. One way to see this is to consider the representation of
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the center of Spin(8). This is Z = {±1,±ω} where ω = e1 · · · e8 is the volume form. Note

that ω2 = 1 so the center is Z ∼= Z2 × Z2. In the two spin representations (ρ±, S
±) the

element ω is represented by the 11, and 22 blocks of γ̃χ above. Thus, ρ+(ω) = +1 and

ρ−(ω) = −1, and hence they are inequivalent. Of course, −1 ∈ Spin(8) is represented by

−1 on both S± but is represented by +1 in the vector representation V : Ãd(−1) = +1.

Thus, there are three inequivalent 8-dimensional representations. Of course, the volume

element ω = (e12)(e34)(e56)(e78) double covers (under Ãd ) a rotation by π in the 12, 34,

56, 78 planes and hence Ãd(ω) = −1. Thus, we have the following table (of course, the

last column is the product of the first two):

g ∈ Spin(8) −1 ω −ω
ρ+ −1 +1 −1

ρ− −1 −1 +1

Ãd +1 −1 −1

It turns out that the group of outer automorphisms of Spin(8) is isomorphic to the

symmetric group S3, and the automorphism can be detected by its action on the center:

Outer(Spin(8))/Inner(Spin(8)) ∼= Aut(Z2 × Z2) ∼= S3 (17.169)

Moreover, S3 permutes the three 8-dimensional representations amongst themselves. This

very beautiful group of outer automorphisms of Spin(8) is known as the triality group,

discovered by E. Cartan in 1925.

Figure 15: The Dynkin diagram of D4 with nodes labeled by fundamental representations corre-

sponding to the simple roots.

Triality can be understood in several different ways. Here are a few of them: Label

the three real eight-dimensional representations by R1 = S+, R2 = S−, R3 = V .

1. The most direct way utilizes the relation between Lie groups and Lie algebras and

the characterization of the Lie algebra by Dynkin diagrams. Since the Lie algebra

can be reconstructed from its root system it suffices to give an automorphism of the
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root system. The group of outer automorphisms of a simple Lie algebra is given

by the automorphisms of its Dynkin diagram. The most symmetric case is that of

D4
∼= so(8) ∼= spin(8) and shown in Figure 15. The three legs can be permuted

arbitrarily. In spin(8) the four simple coroots can be taken to be

1

2
e12,

1

2
e34,

1

2
e56,

1

2
e78. (17.170)

Then the permutation σ12 ∈ S3 can be lifted to the automorphism which acts on the

Cartan subalgebra as 40

σ̃12




e12
e34
e56
e78


 =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1







e12
e34
e56
e78


 (17.171)

A more nontrivial automorphism is

σ̃13




e12
e34
e56
e78


 = H




e12
e34
e56
e78


 (17.172)

where

H =
1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


 (17.173)

is a matrix that squares to 1. Note that

(σ̃13σ̃12)
3 = 1 (17.174)

and hence σ̃12 and σ̃13 generate a copy of the group S3 in the group of automorphisms.

2. Using this we can write a group-theoretic version. 41 An outer automorphism σ12
which permutes S± holding V fixed is defined by its action on the generators

eij → eij 1 ≤ i, j ≤ 7

ei8 → −ei8 i = 1, . . . , 7
(17.175)

To see this, note that one can write ω = e18e28 · · · e78. Thus σ12 exchanges ω for

−ω holding −1 fixed. A glance at the table above showing the representation of

the center shows that the represesentations R1, R2 i.e. S± are exchanged, holding V

fixed.

40Rows 2 and 3 in this matrix are not misprints. They differ from the naive transformation by an inner

automorphism.
41One should be careful not to interpret the transformation (17.172) as an automorphism of the Clifford

algebra. This would map ω to a projection operator.
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To construct the permutation σ13 note that since ω = exp
(
π 1
2(e12 + e34 + e56 + e78)

)

it follows that the induced automorphism on the group, denoted σ13 is given by

σ∗13(ω) = −1. We see that exchanging ω and −1 in the table above exchanges S+ for

V , leaving S− fixed.

17.8.4 Trialities and division algebras

A very nice viewpoint on the triality automorphism of Spin(8) is provided by stepping back

and thinking first about trialities more generally. We are here following the nice exposition

in [10] who is describing ideas of J.F. Adams.

If V1, V2 are two vector spaces over a field κ they are said to be in duality if there is a

nondegenerate bilinear form

d : V1 × V2 → κ (17.176)

This is also known as a perfect pairing. It establishes an isomorphism V1 ∼= V ∨
2 .

Thus, it is reasonable to say that three vector spaces V1, V2, V3 are in triality if there

exists a trilinear form

t : V1 × V2 × V3 → κ (17.177)

which is nondegenerate in the sense that if we fix any two nonzero arguments we obtain

a nonzero linear functional on the third vector space. This can be interpreted as defining

maps

mi : Vi × Vi+1 → V ∨
i+2 (17.178)

and nondegeneracy implies that if we choose any nonzero vector vi ∈ Vi then

mi(vi, ·) : Vi+1
∼= V ∨

i+2 (17.179)

mi(·, vi+1) ∼= V ∨
i (17.180)

Therefore, with a choice of nonzero vectors v1, v2 we have an isomorphism V2 ∼= V ∨
3

∼= V1.

Let us call the common vector space V . The triality defines a product

V × V → V (17.181)

Since left and right multiplication by a nonzero vector is an isomorphism it follows that V ♣This is a little

tricky. Explain it

more carefully. ♣is a division algebra! If we take the field κ = R then by a theorem of Kervaire-Bott-Milnor

the dimension of V must be 1, 2, 4, 8.

Now, if we consider the representations over R of Spin(d) then we have irreps S±
d for

d = 0, 4mod8 and unique irrep Sd otherwise. Taking V ∼= Rd to be the vector representation

we certainly have multiplication maps

md : V × S±
d → S∓

d d = 0, 4mod8

md : V × Sd → Sd else
(17.182)

Since the reps are self-dual we get trilinear maps

td : V × S+
d × S−

d → R d = 0, 4mod8

td : V × Sd × Sd → R else
(17.183)
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Essentially, the coefficients of the map in a basis are the matrix elements Γiαβ of the gamma

matrices.

In order for the gamma matrices to define a triality we must have an isomorphism V ∼=
Sd. One checks this only happens for d = 1, 2, 4, 8. Moreover, the form is nondegenerate.

In this way we define the three division algebras

t1 : V1 × S1 × S1 → R ⇒ D = R

t2 : V2 × S2 × S2 → R ⇒ D = C

t4 : V4 × S+
4 × S−

4 → R ⇒ D = H

t8 : V8 × S+
8 × S−

8 → R ⇒ D = O

(17.184)

Under the isomorphisms V ∼= O, and S± ∼= O the multiplication maps are

x⊗ y → x̄y (17.185)

and the triality map is just

t(x1, x2, x3) = Re(x̄1x̄2x̄3) (17.186)

(For more about this see [16].)

The triality automorphism can be written very explicitly in terms of the unique (up

to scale) nondegenerate trilinear coupling

t : S+ ⊗ S− ⊗ V → R (17.187)

Given g ∈ Spin(8) there exist unique elements g± ∈ Spin(8) such that, for all vectors

s± ∈ S± and v ∈ V ,

t(ρ+(g+)s+, ρ−(g−)s−, ρV (g)v) = t(s+, s−, v) (17.188)

Then the maps α± : g → g± are outer automorphisms and descend (taking the quotient

by inner automorphisms) to generators of the group of outer automorphisms. ♣Need to explain

why! ♣

17.8.5 Lorentz groups and division algebras

Finally, we remark that there is a beautiful uniform prescription for the Lorentz groups

in the special dimensions 2 + 1, 3 + 1, 5 + 1 and 9 + 1 where the transverse dimension

s − t is a power of 2. In terms of spinor representations Cℓ1, Cℓ2, Cℓ4, Cℓ8 have graded

representations

S+ ⊕ S− (17.189)

where S± ∼= R,C,H,O as a real vector space. Now

Cℓd+1,−1
∼= Cℓ1,−1⊗̂Cℓd (17.190)

Let {v0, v1} be a basis of even and odd vectors for the irreducible module R1|1 of Cℓ1,−1 in

which the generators take the values

ρ(e+) =

(
0 1

0 0

)
ρ(e−) =

(
0 0

1 0

)
(17.191)
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Then the even part of the irreducible Cℓd+1,−1 module is

S+ ⊗ v0 ⊕ S− ⊗ v1 (17.192)

and hence we can think of spinors in these Minkowski spaces as pairs of elements of K =

R,C,H,O.

Moreover, bispinors can be related to 2×2 Hermitian matrices over the normed division

algebra K:

X =

(
x0 + x1 xt
x∗t x0 − x1

)
(17.193)

with x0±x1 ∈ R light cone coordinates and xt ∈ K a transverse coordinate. It makes sense

to define the determinant of such an Hermitian matrix as

(x0)2 − (x1)2− ‖ xt ‖2 (17.194)

The idea is that spin transformations should act on X as

X → SXS† (17.195)

The transformation S should have unit determinant and hence transformations of the spin

group should act on spacetime as norm-preserving transformations. This works well and is

quite useful for K = R,C. It is the basis of the spinor helicity formalism! It is problematic

but suggestive for K = H,O. There is, however, the suggestion of a beautiful and profound

pattern:

Spin(1, 2) ∼= SL(2,R)

Spin(1, 3) ∼= SL(2,C)

Spin(1, 5) ∼= SL(2,H)

Spin(1, 9) ∼= SL(2,O)

(17.196)

The last two lines require some nontrivial interpretation: It is nontrivial to say what these

are as groups and to interpret the det(S) = 1 condition. See [10] and [16] for the elegant

details.

18. Fermions and the Spin Representation

We now return to quantum mechanics.

The central motivation for this chapter, in the context of these notes, is that important

examples of the 10-fold way described above are provided by free fermions. They also

appear in the Altland-Zirnbauer classification, and in applications to topological band

structure.

Of course, the basic mathematics of free fermion quantization is very broadly applica-

ble. In this chapter we give a summary of that quantization and comment on the relation

to the Spin group and spin representations.
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18.1 Finite dimensional fermionic systems

A finite dimensional fermionic system (FDFS) is a quantum system based on a certain kind

of operator algebra and its representation:

Definition: A finite dimensional fermionic system is the following data:

1. A finite-dimensional real vector space M ∼= RN , called the mode space with a positive

symmetric bilinear form Q.

2. An extension of the complex Clifford algebra

A = Cliff(M, Q)⊗ C (18.1)

to a ∗-algebra.

3. A choice of Hilbert space HF together with a ∗ homomorphism of A into the algebra

of C-linear operators on HF .
42

Here are a number of remarks about this definition:

1. As an algebra A is the complex Clifford algebra of V := M ⊗ C with Q extended

C-linearly.

2. From (M, Q) we can make the real Clifford algebra Cliff(M, Q). In quantum me-

chanics we will want a ∗-algebra of operators and the observables will be the operators

fixed by the ∗-action. For us the ∗-algebra structure on

A := Cliff(M, Q) ⊗C (18.2)

is β⊗C, where β is the canonical anti-automorphism of Cliff(M, Q) and C is complex

conjugation on C. Thus ∗ fixes M and is an anti-automorphism. (These conditions

uniquely determine ∗.) Axioms of quantum mechanics would simply give us some

∗-algebra without extra structure. The fermionic system gives us the extra data

(M, Q).

3. Since we have a ∗ structure on a Z2-graded algebra we must deal with a convention

issue. Here we are taking the convention that (ab)∗ = b∗a∗ for any a, b because this

is the convention almost universally adopted in the physics literature. However, a

systematic application of the Koszul sign rule in the definition of ∗ would require

(ab)∗ = (−1)|a|·|b|b∗a∗. One can freely pass between these two conventions and, if

used consistently, the final results are the same. See Section §12.5 above for more

discussion.

42The subscript “F” is for “Fock.”
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4. If Q is positive definite then we can diagonalize it to the unit matrix. If ei is a choice

of basis in which Q is δij then the usual Clifford relations

eiej + ejei = 2δij i, j = 1, . . . , N (18.3)

are known in this context as the fermionic canonical commutation relations. Be-

cause of our choice of ∗-structure we have e∗i = ei. Of course, the choice of basis

is far from unique. Different choices are related by O(N) transformations. Those

transformations commute with the ∗ structure. The ei are known in the literature

as real fermions or Majorana fermions. In terms of the ei the most general quantum

observable is

O = O0 +

d∑

k=1

Oi1...ikei1...ik (18.4)

where the coefficients are totally antisymmetric tensors such that O0 ∈ R and

O∗
i1...ik

= (−1)
1
2
k(k−1)Oi1...ik . (18.5)

5. In quantum mechanics we must also have a Hilbert space representation of the ∗-
algebra of operators so that ∗ corresponds to Hermitian conjugation in the Hilbert

space representation. That is, we have an algebra homomorphism

ρF : A → EndC(HF ) (18.6)

to the C-linear operators on the Hilbert space HF . The is a ∗-homomorphism in the

sense that

(ρF (a))
† = ρF (a

∗) (18.7)

In the fermionic system we are assuming that HF is a choice of an irreducible module

for A. We will describe explicit models for HF in great detail below. (Of course, we

have already discussed them at great length - up to isomorphism.)

6. The notation N is meant to suggest some large integer, since this is a typical case in

the cond-matt applications. But we will not make specific use of that property.

18.2 Left regular representation of the Clifford algebra

The Clifford algebra acts on itself, say, from the left. On the other hand, it is a vector

space. Thus, as with any algebra, it provides a representation of itself, called the left-regular

representation (LRR).

Note that this representation is 2N dimensional, and hence rather larger than the

∼ 2[N/2] dimensional irreducible representations. Hence it is highly reducible. In order to

find irreps we should “take a squareroot” of this representation.

We will now describe some ways in which one can take such a “squareroot.” To

motivate the construction we first step back to the general real Clifford algebra Cℓr,−s and

interpret the LRR in terms of the exterior algebra. Recall that we identified

Cℓ(r+, s−) ∼= Λ∗Rr+s (18.8)
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as a vector spaces. Also, while the exterior algebra Λ∗Rr,s is an algebra we stressed that

(18.8) is not an algebra isomorphism.

Nevertheless, since (18.8) is a vector space isomorphism this means that Λ∗(Rr,s) must

be a Clifford module, that is, a representation space of the Clifford algebra. We now

describe explicitly its structure as a module.

If v ∈ Rr,s then we can define the contraction operator by

i(v)(vi1 ∧ · · · ∧ vik) :=
k∑

s=1

(−1)s−1Q(v, vis)vi1 ∧ · · · ∧ v̂is ∧ · · · ∧ vik (18.9)

where the hat superscript v̂ means we omit that factor. Similarly, we can define the wedge

operator by

w(v)(vi1 ∧ · · · ∧ vik) := v ∧ vi1 ∧ · · · ∧ vik (18.10)

These operators are easily shown to satisfy the algebra:

{i(v1), i(v2)} = 0

{w(v1),w(v2)} = 0

{i(v1),w(v2)} = Q(v1, v2)

(18.11)

Using these relations we see that we can (using symmetry of Q) represent Clifford

multiplication by v on Λ∗Rr,s by the operator:

ρ(v) = i(v) +w(v) (18.12)

Since the v ∈ V generate the Clifford algebra we can then extend this to a representation of

the entire Clifford algebra by taking ρ(a1a2) = ρ(a1)ρ(a2), and scalars in A act as scalars

on Λ∗Rr,s.

Of course, this representation is highly reducible! We have seen that it is isomorphic to

the tensor product of spin representations. Thus, spin representations take a square root

of this representation. In order to describe that square-root intrinsically in terms of the

exterior complex we need to split the vector space V in half in an appropriate way. This

is the topic of the next Section.

18.3 Spin representations from complex isotropic subspaces

Let us assume dimRM is even so that N = 2n. The standard finite-dimensional fermionic ♣Put remark below

on the odd case. ♣
Fock space construction begins by choosing a complex structure I on M. As shown in

(7.47) above we automatically have

M⊗ C = V ∼=W ⊕W (18.13)

given by the projection operators P± = 1
2(1± I ⊗ i). Here we take

W := P−M⊗ C = SpanC{e− iIe|e ∈ M} (18.14)

W ∼= P+M⊗ C = SpanC{e+ iIe|e ∈ M} (18.15)
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If a vector P−v = v then Iv = iv, so W is the (1, 0) space of V .

Now, we henceforth assume that I is compatible with the quadratic form Q so

Q(Iv1, Iv2) = Q(v1, v2) (18.16)

We then extend Q to be a symmetric C-linear form on V . Note that W is a maximal

dimension isotropic complex subspace of V . For if w1, w2 ∈W then

Q(w1, w2) = Q(Iw1, Iw2) = Q(iw1, iw2) = i2Q(w1, w2) = −Q(w1, w2) (18.17)

and hence Q(w1, w2) = 0. Note we have crucially used the fact that the extension of Q is

C-linear.

Remark: Recall that the space of complex structures compatible with Q is a homogeneous

space CmptCplxStr(M, Q) isomorphic to O(2n)/U(n). (See (7.23) above.) Once we have

extended Q in this C-linear fashion we can also understand the space of complex structures

as the Grassmannian of maximal dimension complex isotropic subspaces in V . This inter-

pretation is sometimes quite useful, especially in giving a geometrical interpretation of the

spin representation in Section 18.4.7 below. We denote this Grassmannian by G(V,Q).

Now, given the decomposition V ∼=W ⊕ W̄ it is fairly evident how to take a “square-

root” of

Λ∗V ∼= Λ∗W ⊗ Λ∗W (18.18)

We could, for example, consider the vector space

Λ∗W = ⊕n
k=0Λ

kW (18.19)

We can make this vector space into an irreducible Clifford module for Cliff(V,Q) by simi-

larly taking “half” of the representation (18.12):

1. For w ∈W we define ρF,W (w) := w(w)

2. For w̄ ∈W we define ρF,W (w̄) = i(w̄).

3. Now define ρF on V by extending the above equations C-linearly: ρF,W (w1⊕w2) :=

ρF,W (w1) + ρF,W (w2).

Now one checks that indeed

{ρF,W (w1 ⊕ w2), ρF,W (u1 ⊕ u2)} = 2Q(w1 ⊕ w2, u1 ⊕ u2)1 (18.20)

so that the Clifford relations are satisfied and ρF,W defines the structure of a Clifford

module on Λ∗W . We will often denote this module as

HF,W := Λ∗W (18.21)

and to lighten the notation we sometimes abbreviate ρF,W by ρF if W is understood or

drop it altogether if the context is clear.
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In fact (ρF,W ,HF,W ) is naturally a graded representation with

H0
F,W

∼= ΛevenW := ⊕k=0(2)Λ
kW (18.22)

H1
F,W

∼= ΛoddW := ⊕k=1(2)Λ
kW (18.23)

Now if we think of Spin(2n) as a group of invertible elements in

Spin(2n) ⊂ Cliff(M, Q) ⊂ Cliff(V,Q) (18.24)

then through ρF the group Spin(2n) acts on HF,W , but not irreducibly. The operations

of contraction and wedging with a vector change the parity of k, but Spin(2n) involves

the action of an even number of vectors so we see that, as a representation of Spin(2n),

HF,W
∼= Sc and this decomposes into:

S+
c
∼= ΛevenW (18.25)

S−
c
∼= ΛoddW (18.26)

♣Need to check

conventions for

chiral vs. antichiral!

♣

In the physical applications it is important to note that we can put an Hermitian

structure on V by defining the sesquilinear form

h(v1, v2) := Q(v1, v2) (18.27)

where v is defined from the decompositionW ⊕W . Note that V =W ⊕W̄ is an orthogonal

Hilbert space decomposition: W and W̄ are separately Hilbert spaces and are orthogonal.

To prove this note that orthogonality follows since W and W̄ are isotropic with respect

to Q. Then since W is maximal isotropic and Q is nondegenerate the sesquilinear form

restricted to W must be nondegenerate. Moreover, since Q > 0, this defines a Hilbert

space inner product on V .

The Fock space HF,W now inherits a Hilbert space structure since we can define

h(w1 ∧ · · · ∧ wk, w′
1 ∧ · · · ∧ w′

ℓ) := δk,ℓdeth(wi, w
′
j) (18.28)

for k, ℓ > 0. We extend this to Λ0W by declaring it orthogonal to the subspaces ΛkW with

k > 0 and normalizing:

h(1, 1) := 1 (18.29)

Note that ρF,W (ei) are self-adjoint operators so that ρF,W is indeed a ∗ homomorphism,

as desired. Moreover, ρF,W (eij) are anti-self-adjoint. Therefore with this Hilbert space

structure HF,W is a unitary representation of Spin(2n). Indeed, the operators representing

the group Spin(2n) are of the form exp[12ω
ijρF,W (eij)] with real ωij .

The upshot of this discussion is the theorem:

Theorem: There is a bundle of Z2-graded finite dimensional Hilbert spaces over

CmptCplxStr(M, Q) ∼= G(V,Q) ∼= O(2n)/U(n) (18.30)
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whose fiber at a complex maximal isotropic subspace W ⊂ V is the fermionic Fock space

HF,W
∼= ΛevenW ⊕ ΛoddW (18.31)

The homogeneous subspaces in the fibers are naturally unitary chiral representations of

the spin group Spin(2n).

Remark: The reader might well be wondering: “Why not choose Λ∗W ?” Indeed that

works too. Exchanging I and −I is equivalent to exchanging W and W . So, with our

construction, ρF,W is simply the module we would get from complex structure −I. The

space of complex structures O(2n)/U(n) has two connected components. These can be

distinguished by the extra data of a choice of orientation of M. For example, we could

associate to any basis in which I is of the form

I =

(
0 1

−1 0

)
⊕ · · · ⊕

(
0 1

−1 0

)
(18.32)

the orientation e1 ∧ e2 ∧ · · · ∧ e2n. Then, thanks to (7.19) above, this association is well-

defined. ♣Maybe this

discussion should be

in Section 7.1. ♣

18.4 Fermionic Oscillators

Now let us connnect the construction of the spin representation in 18.3 to the usual discus-

sion in the physics literature using fermionic harmonic oscillators. In particular, we would

like to justify the terminology “fermionic Fock space” for HF,W .

Given a complex structure I on M compatible with Q we can find an ON basis ei for

M such that

Ie2j−1 = −e2j
Ie2j = e2j−1, j = 1, . . . , n

(18.33)

Put differently, the ordered basis:

{e}2nα=1 := {e1, e3, . . . , e2n−1, e2, e4, . . . , e2n}, (18.34)

is a basis in which

I =

(
0 1

−1 0

)
(18.35)

Once again: The choice of such a basis is far from unique. Different choices are related ♣Opposite sign

from I0 in Section

7.1. ♣by a subgroup of O(2n) isomorphic to U(n), as described in Section §7.1. We will explore

this in detail below.

Then applying projection operators gives us a basis for W and W̄ , respectively:

āj = P−e2j−1 =
1

2
(e2j−1 + ie2j)

aj = P+e2j−1 =
1

2
(e2j−1 − ie2j)

(18.36)
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e2j−1 = aj + āj

e2j = i(aj − āj)
(18.37)

We easily compute the fermionic CCR’s in this basis to get the usual fermionic har-

monic oscillator algebra:

{aj , ak} = {āj , āk} = 0

{aj , āk} = δj,k
(18.38)

The space Λ∗W has a natural basis 1, āj , . . . where the general basis element is given

by āj1 · · · ājℓ for j1 < · · · < jℓ. In particular, note that 43

ρF,W (ai) · 1 = 0 (18.39)

where 1 ∈ Λ0W ∼= C. We build up the other basis vectors by acting with ρF,W (āj) on 1.

The transcription to physics notation should now be clear. The vacuum line is the

complex vector space Λ0W ∼= C. Physicists usually choose an element of that line and

denote it |0〉. Moreover, they drop the heavy notation ρF,W , so, in an irreducible module

we have just

ai|0〉 = 0. (18.40)

The state |0〉 is variously called the Dirac vacuum, the Fermi sea, or the Clifford vacuum.

However, irrespective of whose name you wish to name the state after, it must be stressed

that these equations only determine a line, not an actual vector, and, when considering

families of representations this can be important. Indeed, some families of quantum field

theories are inconsistent because there is no way to assign an unambiguous vacuum vector

to every element in the family which varies with sufficient regularity.

In our case we have a canonical choice 1 ∈ Λ0W ↔ |0〉 ∈ HF , where HF is our

notation for the fermionic Fock space. Then, ΛkW is the same as the subspace spanned

by āj1 · · · ājk |0〉.
In physical interpretations ΛkW is a subspace of a Fock space describing states with

k-particle excitations above the vacuum |0〉. It is very convenient to introduce the fermion

number operator

F :=

n∑

i=1

āiai =
n

2
− i

4

∑

α,β

eαIαβeβ (18.41)

so that ΛkW is the subspace of “fermion number k.”

The operator (−1)F commutes with the spin group and decomposes the Fock space

into even and odd subspaces. That is, the eigenspaces (−1)F = ±1 are isomorphic to the

chiral spin representations.

Finally, consider the Hilbert space structure. With respect to the Hilbert space struc-

ture (18.28) we find that indeed

ρF,W (āi) = ρF,w(ai)
†, (18.42)

43Note that, if we drop the ρF,W then the equation would be wrong!
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so in physics we would just write āi → a†i . The normalization condition (18.29) is written

in physics notation as

〈0|0〉 = 1. (18.43)

Remarks:

1. In the physics literature the decomposition of V = W ⊕ W̄ into orthogonal Hilbert

spaces given by a bilinear form and compatible complex structure is sometimes re-

ferred to as a Nambu structure. Note that we therefore have two Hilbert spaces

associated to the system of free fermions. This is important in the K-theory classifi-

cation.

2.

Exercise Change of basis between fermionic harmonic oscillators and Majorana op-

erators

a.) Compute the matrix for the change of ordered basis {eα} for V = M ⊗ C to the

ordered basis

{aα} := {ā1, . . . , ān, a1, . . . , an} (18.44)
♣S is bad notation

since it is already

used for a spinor

rep. ♣

Answer : aα = uβαeβ with

u =
1

2

(
1 1

i −i

)
(18.45)

b.) Check that

u−1 =

(
1 −i
1 i

)
utru =

1

2

(
0 1

1 0

)
uutr =

1

2

(
1 0

0 −1

)
(18.46)

These identities are useful in Section §18.4.3.
c.) Show that

Q(ai, aj) = Q(āi, āj) = 0

Q(ai, āj) = Q(āj , ai) =
1

2
δi,j

(18.47)

Exercise

Show that

e2j−1e2j = i(2ājaj − 1) (18.48)

so this has eigenvalues ±i and the representation of the volume element for the orientation

ω = e1 · · · e2n is

ρF,W (ω) = in
n∏

j=1

(2a†jaj − 1) (18.49)
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18.4.1 An explicit representation of gamma matrices

The Fock space HF gives a nice representation of the full complex Clifford algebra Cℓ2n.

Consider first the case n = 1. It is useful to make a change of notation:

|0〉 := | − 1

2
〉 a†|0〉 := |+ 1

2
〉 (18.50)

We will write |±〉 = |± 1
2 〉 for brevity. This labelling will be useful later for representations

of the spin group. It follows that

a†|−〉 = |+〉 a|+〉 = |−〉 (18.51)

Now taking

x1|+〉+ x2|−〉 →
(
x1
x2

)
(18.52)

we have the representation

ρ(e1) =

(
0 1

1 0

)
ρ(e2) =

(
0 −i
+i 0

)
(18.53)

We recognize one of our standard graded irreducible representations of Cℓ2. According to

(13.44), with the choice of orientation ωc = ie12 and taking the upper component as the

even subspace it is M−
2 .

Now, with n oscillator pairs we have a natural basis for a 2n dimensional Fock space:

(a†n)
sn+

1
2 (a†n−1)

sn−1+
1
2 · · · (a†1)s1+

1
2 |0〉 (18.54)

where si = ±1
2 . We identify these states with the basis for the tensor product of represen-

tations

|sn, sn−1, . . . , s1〉 = |sn〉⊗̂|sn−1〉⊗̂ · · · ⊗̂|s1〉 (18.55)

Note that because the a†j anticommute we are really taking a graded tensor product.

Let Γj(n−1) be the 2n−1 × 2n−1 representation matrices of ej for a collection of (n− 1)

oscillators. Then when we add the nth oscillator pair we get

ρn(ej) = Γj
(n)

=

(
−1 0

0 +1

)
⊗ Γj

(n−1)
j = 1, . . . , 2n − 2

ρn(e2n−1) = Γ2n−1
(n) =

(
0 1

1 0

)
⊗ 12n−1

ρn(e2n) = Γ2n
(n) =

(
0 −i
i 0

)
⊗ 12n−1

(18.56)

Note the first factor in the first line of (18.56). It is a direct manifestation of the fact that

we are taking a graded tensor product.
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For example, for n = 2 we have

Γ1
(2) =

(
−1 0

0 +1

)
⊗
(
0 1

1 0

)

Γ2
(2) =

(
−1 0

0 +1

)
⊗
(

0 −i
+i 0

)

Γ3
(2) =

(
0 1

1 0

)
⊗
(
1 0

0 +1

)

Γ4
(2) =

(
0 −i
+i 0

)
⊗
(
1 0

0 +1

)

(18.57)

By induction we see that the volume form ωc is represented by ♣Conventions! ♣

Γω = (−i)nΓ1 · · ·Γ2n =

(
1 0

0 −1

)
⊗
(
1 0

0 −1

)
⊗ · · · ⊗

(
1 0

0 −1

)
(18.58)

where there are n factors. Note that this can be expressed in terms of the fermion

number operator as

Γω = (−1)n(−1)F (18.59)

♣Better to redefine

Γω but then must

be careful about

intertwiners. ♣

For d = 2n+ 1 we still take n pairs of oscillators and set Γ2n+1 = Γω.

When we consider the Fock space as a representation of Spin(2n) the vectors (sn, . . . , s1)

become the spinor weights of the spinor representations of so(2n;C). That is, we choose a

basis for a Cartan subalgebra, in this case - (M2n−1,2n, . . . ,M12). Then these operators are

simultaneously diagonalizable, and the basis (18.54) is a simultaneous eigenbasis for these

operators with vector of eigenvalues given by (sn, . . . , s1). Note that the weights of S
+ and

S− are distinguished by the parity of
∑

i(si − 1
2). ♣Again, check

conventions! ♣
Remark Explicit intertwiners. We can now fill a gap in our discussion above. In

our explicit basis Γi are real and symmetric for i odd, and imaginary (= i× real) and

antisymmetric for i even. Our explicit intertwiners are

B±Γ
iB−1

± = ±(Γi)∗

C±Γ
iC−1

± = ±(Γi)tr
(18.60)

Note that in this basis we can take B± = C±. Because of the simple reality and symmetry

properties we can easily construct the intertwiners using the operator U := Γ2Γ4 · · ·Γ2n.

In particular, we have

C+ = B+ =

{
U neven

ΓωU nodd
(18.61)

C− = B− =

{
ΓωU neven

U nodd
(18.62)

It is now a matter of straightforward computation to compute the scalars C−1
ξ Ctrξ and

B∗
ξBξ.
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18.4.2 Characters of the spin group

The character of a representation is the function on the group given by the trace. The

character is a class function and therefore determined by its restriction to the maximal

torus.

Parametrize the Cartan subalgebra by x ·M := x1M12 + x2M34 + · · · + xnM2n−1,2n

where n = [N/2]. Then the character functions for Spin(N) are given by

chSc(x) := TrSc(e
x·M ) =

n∏

i=1

(e
1
2
xi + e−

1
2
xi) =

n∏

i=1

(2 cosh xi/2) (18.63)

This follows immediately from the above oscillator construction of the spin represen-

tation since M2j−1,2j has eigenvalue sj . The sum over the representation is a sum over the

spinor weights (±1
2 ,±1

2 , . . . ,±1
2).

When N = 2n is even the representation is reducible. If we look back at the oscillator

construction we see that the volume form acts on a basis state |sn, sn−1, . . . , s1〉 as

Γω|sn, sn−1, . . . , s1〉 = (−1)
∑n
i=1(si−

1
2
)|sn, sn−1, . . . , s1〉 = (−1)F |sn, sn−1, . . . , s1〉 (18.64)

Exercise

a.) Show that:

TrSc
[
(−1)Fex·M

]
=

n∏

i=1

(e
1
2
xi − e−

1
2
xi) =

n∏

i=1

(2 sinh xi/2) (18.65)

This formula is important in index theory.

b.) Deduce that

chS±
c
(x) =

1

2

[∏
(2 cosh xi/2)±

∏
(2 sinh xi/2)

]
(18.66)

c.) Check the special isomorphisms with unitary groups with these formulae.

d.) Check the identity on characters implied by the decomposition of S ⊗ S and its

variants.

18.4.3 Bogoliubov transformations

We now return to the fact that we had to choose a complex structure to construct an

irreducible spin representation in Section §18.3. However, as we saw in equation (7.23)

above there is a whole family of complex structures I which we can use to effect the

construction. On the other hand, the irreducible spin representations S±
c are unique up

to isomorphism. Therefore there must be an isomorphism between the constructions: this
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isomorphism is known in physics as a “Bogoliubov transformation.” It can have nontrivial

physical consequences.

To a mathematician, there is just one isomorphism class of chiral spin representation

S+
c or S−

c (distinguished, invariantly, by the volume element). However, in physics, the

fermionic oscillators represent physical degrees of freedom: Nature chooses a vacuum, and

if, as a function of some control parameters a new vacuum becomes preferred when those

parameters are varied then the Bogoliubov transformation has very important physical

implications. A good example of this is superconductivity. ♣Explain

somewhere what a

polarization is. ♣

♣We need to

explain that

although Spin(2n)

acts on HF,W for

fixed W we can also

make it (through

the map to O(2n))

act on the space of

complex structures.

So we could ask

how the actions on

different complex

structures is

defined. Thus, we

could also ask about

whether the bundle

HF → G(V,Q) can

be interpreted as an

equivariant bundle.

♣

Returning to mathematics, suppose we choose one complex structure I1 with a com-

patible basis {eα} satisfying (18.33) for I1. Next, we consider a different complex structure

I2 with corresponding basis {fα} satisfying (18.33) for I2.

With the different basis {fα} we can form fermionic oscillators according to (18.36):

b̄j =
1

2
(f2j−1 + if2j)

bj =
1

2
(f2j−1 − if2j)

(18.67)

Now we must have a transformation of the form

b̄i = Ajiāj + Cjiaj

bi = Bjiāj +Djiaj 1 ≤ i, j ≤ n
(18.68)

Observation: For a general transformation of the form (18.68), with complex n × n

matrices A,B,C,D the fermionic CCR’s are preserved iff the matrix

g =

(
A B

C D

)
(18.69)

satisfies:

gtr

(
0 1

1 0

)
g =

(
0 1

1 0

)
(18.70)

That is

AtrD + CtrB = 1

AtrC = −(AtrC)tr

DtrB = −(DtrB)tr
(18.71)

Proof : The proof is a straightforward computation. ♦
The proposition characterizes the general matrices which preserve the CCR’s. We

recognize (18.70) as the definition of the complex orthogonal group for the quadratic form

q =

(
0 1

1 0

)
(18.72)
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So, Bogoliubov transformations can be effected by complex orthogonal transformations

O(q;C) := {g ∈ GL(2n;C)|gtrqg = q} (18.73)

The form q has signature (n, n) over the real numbers but is, of course, equivalent to

the standard Euclidean form over the complex numbers. Indeed, the transformation
√
2u

transforms between them thanks to equations (18.45) et. seq. above.

The change of complex structure does not induce the most general Bogoliubov trans-

formation. From (7.23) we know that there must exist an orthogonal matrix R ∈ O(2n) in

the compact orthogonal group such that

fα = Rβαeβ (18.74)

and

I2 = RI1R
tr (18.75)

Using the change of basis (18.45) we check that (with bα defined analogously to (18.44)):

bα = uβαfβ

= uβαRγβeγ

= (u−1Ru)δαaδ

(18.76)

and hence

R = ugu−1 (18.77)

Remarks:

1. There are some elementary matrix multiplications it would be well to record here.

Note that the transformation of the matrix g related to R via (18.77) indeed produces

a complex orthogonal matrix:

R ∈ O(2n;C) := {R ∈ GL(2n;C)|RtrR = 1}. (18.78)

so

O(q;C) = u−1O(2n;C)u (18.79)

If R ∈ O(2n;C) is written in block form as

R =

(
α β

γ δ

)
(18.80)

then

g = u−1Ru (18.81)
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has

A =
1

2
(α+ δ + i(β − γ))

D =
1

2
(α+ δ − i(β − γ))

B =
1

2
(α− δ − i(β + γ))

C =
1

2
(α− δ + i(β + γ))

(18.82)

It follows that the image of O(2n) := O(2n;R) in O(q;C) consists precisely of those

matrices g ∈ O(q;C) such that A = D∗ and B = C∗. We claim that this is precisely

the intersection U(2n) ∩ O(q;C). To prove this observe that if g ∈ U(2n) has block

form (18.69) then

g−1 =

(
A† C†

B† D†

)
(18.83)

On the other hand if g ∈ O(q;C) then

g−1 = qgtrq =

(
Dtr Btr

Ctr Atr

)
(18.84)

The inverse of g is unique. Therefore, if g ∈ U(2n) ∩ O(q;C), then (18.83) equals

(18.84), but this is true iff A = D∗ and B = C∗, which is precisely the defining

relation of u−1O(2n;R)u.

2. In particular, note that a Bogoliubov transformation preserves the ∗-automorphism

(ai)
∗ = ai iff g ∈ U(2n)∩O(q;C). A general Bogoliubov transformation would change

the hermitian structure on the Fock space.

Exercise

Show that if g ∈ O(q;C) is written in block form (18.69) then it is also true that

ADtr +BCtr = 1

BAtr = −(BAtr)tr

CDtr = −(CDtr)tr

(18.85)

and that (18.71) is true iff (18.85) is true.

Exercise

Consider the case of n = 1.
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a.) Show that O(q;C) has two components, given by matrices of the form

g =

(
λ 0

0 λ−1

)
λ ∈ C∗ (18.86)

or

g =

(
0 λ

λ−1 0

)
λ ∈ C∗ (18.87)

b.) Show that under the transformation R = SgS−1 with R ∈ O(2), those Bogoliubov

transformations arising from orthogonal transformations in O(2) connected to the identity

correspond to (18.86) while those in the nonidentity component correspond to (18.86) with

λ = eiθ.

Exercise

Given a complex structure I there is always a second complex structure −I. Of course,

since I has a stabilizer, there are many transformations R ∈ O(2n) which conjugate I to

−I, but since exchanging I and −I exchanges the projection operators P± = 1
2(1 ± I ⊗ i)

the most natural transformation is

b̄j = aj

bj = āj
(18.88)

If we exchange I for −I then we exchange W for W̄ so the corresponding Fock space is

HF,W̄
∼= Λ∗W̄ (18.89)

Interpret the unitary transformation from HF,W to HF,W̄ in terms of the Hodge ∗
operation. ♣Important. Spell

this out more. ♣

18.4.4 The spin representation and U(n) representations

As we stressed at the end of Section §18.3, the Fock space constructure provides us with a

Hilbert bundle of fermionic Fock spaces over the base manifold O(2n)/U(n). Now O(2n)

acts on the base manifold and hence a natural question is whether this action “lifts” to the

bundle HF so that it is an “equivariant bundle.” Let us define this term.

Suppose π : E → X is a general fiber bundle over a topological space X and that a

group G acts on X, say, as a left-action. So we write ψg(x) = g · x for the action of g ∈ G

on x ∈ X. We say that E is an equivariant bundle if there exists a lift of this action to E.

That is, for each g ∈ G there should be a bundle map so that ψ̃g fits into the commutative

diagram:

E
ψ̃g

//

π
��

E

π
��

X
ψg

// X

(18.90)
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In more concrete terms, for each x there should be a map ψ̃g,x : Ex → Eg·x so that the

maps compose according to the group law of G:

ψ̃g1,g2·xψ̃g2,x = ψ̃g1g2,x (18.91)

The statement “ψ̃g is a bundle map” means that it must preserve the structures on the

fiber. Thus, if E is a vector bundle then ψ̃g must be linear on the fibers. Note that this

means that the isotropy group Hx ⊂ G at a point x must act on the fiber at x.

In our case we will now show that for an O(2n) action on CmptCplxStr(M, Q) the

stabilizer group is isomorphic to U(n) but this U(n) group does not act compatibly on

HF,W . Rather a double cover acts.

Let us choose a complex structure I and a compatible basis (18.33). Order the basis

eα given in (18.34) above. Now, as we discussed in Section §7.1 (see equations (7.18),

(7.19)) the stabilizer of a complex structure is a subgroup of O(2n) isomorphic to U(n).

In particular, we have the embedding ι : U(n) → SO(2n) defined on u ∈ U(n) by writing

it in terms of its real and imaginary parts u = α+ iβ and defining

ι(u) =

(
α β

−β α

)
∈ SO(2n) (18.92)

The unitary subgroup can be thought of as follows. The Bogoliubov group O(q;C)

acts on the vector space of oscillators V . The most general Bogoliubov transformation

which stabilizes the decomposition V = W ⊕ W̄ expresses the b̄i as linear combinations

of āi and bi as linear combinations of ai. In other words Cji = 0 and Bji = 0, and

therefore A = Dtr,−1 ∈ GL(n,C). Those transformations which preserve the ∗ structure

have A = D∗ and therefore we are lead to the unitary group A ∈ U(n).

The U(n) group of Bogoliubov transformations that stabilizes HF,W in fact commutes

with the fermion number operator F . We might therefore expect that there is a well-defined

action of U(n) on the k-particle subspaces ΛkW . Indeed, acting on the oscillators, W is

just the defining representation of U(n) and hence there is a very natural action of U(n)

on ΛkW . But is this action actually compatible with the Spin-representation?

We have to be a little careful here. The stabilizer group U(n) discussed here is a

subgroup

U(n) → SO(2n) (18.93)

acting on the space of oscillators - the vector representation of Spin(2n). But SO(2n) only

acts projectively on HF,W . Indeed the spin double-cover is nontrivial, the sequence given

by Ãd does not split, and −1 ∈ Spin(2n) acts nontrivially on the spin representation. It

is therefore not a priori obvious that we can make U(n) act on the spin representation in

a way compatible with its action on V in the vector representation. That is, we want an

action ρ(u) of U(n) on HF,W so that such that

ρ(u) (ρF,W (v)ψ)
?
=ρF,W (ι(u) · v)ρ(u)ψ (18.94)

for u ∈ U(n), v ∈ V ⊂ Cliff(V,Q) and ψ ∈ HF,W . Here ι(u) · v = Ãd(ι(u))v. (Although

there are two lifts of ι(u) to Spin(2n) they differ by sign so Ãd(ι(u)) is well-defined.) A
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less-formal way of stating (18.94) is that we want to say how g ∈ U(n) acts on a†i1 · · · a
†
ik
|0〉

and we should surely have

g · a†i1 · · · a
†
ik
|0〉 = (ga†i1g

−1) · · · (ga†ikg
−1)g|0〉 (18.95)

where ga†g−1 is determined by the vector representation of O(2n).

Since U(n) is a “small” subgroup of SO(2n) one might think that we do not need to

worry, but in fact we do! The subtlety is typical of some of the tricky points one encounters

when working with spin groups, so we will describe the problem and its resolution in some

detail.

Since Spin(2n) → SO(2n) is a double-covering the problem is going to be a sign

problem in defining ρ(u) on HF,W . It therefore suffices to examine the Cartan subgroups.

Every element can be conjugated into the Cartan subgroup, and a sign ambiguity in the

conjugating operators will cancel out.

Let us start with the U(1) subgroup of matrices in U(n) proportional to the identity .

From the embedding (7.18) we see that, in the ordered basis {e1, e2, . . . , e2n} this embeds

eiθ1n ∈ U(n) as the SO(2n) matrix:

ι(eiθ) = R(θ)⊕ · · · ⊕R(θ) (18.96)

The action on the oscillators is just

ai → eiθai

āi → e−iθāi.
(18.97)

What should be the compatible action on the Fock space HF,W ? Under the twisted

adjoint map Ãd : Spin(2n) → SO(2n) (18.96) lifts to a nonclosed loop in Spin(2n):

Ãd : exp[
θ

2
(e12 + e34 + · · ·+ e2n−1,2n)] → R(θ)⊕ · · · ⊕R(θ) (18.98)

When n is odd this will have a sign problem: The U(1) is only projectively represented on

HF,W !

One way of discussing the problem is this. The Fock space is a representation of

Spin(2n). Now we have the diagram:

Spin(2n)

Ãd
��

U(1)
ι // SO(2n)

(18.99)

and we ask whether we can find a homomorphism f such that it can be completed to a

commutative diagram

Spin(2n)

Ãd
��

U(1)

f
::

ι // SO(2n)

??? (18.100)
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Since the Spin representation is given by a homomorphism ρ from Spin(2n), in order to

represent the U(1) subgroup of U(n) in a way compatible with Ãd we need to lift the

homomorphism ι to f as in equation (18.100). However, what we have just observed is

that no such lift exists! On the other hand, we “almost” managed to lift it: We “just”

missed by a minus sign. Mathematically what we can do about this is consider the double-

cover of π : U(1) → U(1) given by π(eiθ) = ei2θ and then there is indeed a homomorphism

ι̃ enabling a commutative diagram:

U(1)

π

��

ι̃ // Spin(2n)

Ãd
��

U(1)
ι // SO(2n)

(18.101)

In order to extend this idea to the full group U(n) we define double coverings:

U(n)± := {(u, λ) ∈ U(n)× U(1)|λ±2 = det(u)} (18.102)

Then, (18.101) generalizes to

U(n)±

π

��

ι± // Spin(2n)

Ãd
��

U(n)
ι // SO(2n)

(18.103)

and under ρ ◦ ι±, where ρ is the spin representation U(n)± takes the k-particle space ΛkW

to itself and acts as

ρ ◦ ι±(u, λ) = λ∓1Λk(u) (18.104)

In order to prove (18.103), (18.104) we use the group Spinc(2n) (see equation (17.27)

above). Note that Spin(2n)×U(1) acts on HF with the U(1) acting by scalars. Therefore

(−1,−1) acts trivially and we have an action of Spinc(2n) = Spin(2n) × U(1)/Z2 on HF .

Now we can solve the lifting problem

Spinc(2n)

p

��
U(n)

F±

77

f±
// SO(2n)× U(1)

(18.105)

where p(g, z) := (Ãd(g), z2) is a two-fold cover of Spinc(2n) → SO(2n)×U(1), and f±(u) =

(ι(u), (detu)±1). This can be proven using abstract covering theory from algebraic topology,

but in this example we can in fact give an explicit description:

As we mentioned above, we need only define the lifting on a Cartan torus in U(n).

Thus we take

u = Diag{eiθ1 , . . . , eiθn} (18.106)

and therefore

ι(u) = R(θ1)⊕R(θ2)⊕ · · · ⊕R(θn) (18.107)
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Then we take

F±(u) := [

n∏

i=1

e
1
2
θie2i−1e2i , e±

i
2

∑
i θi ]. (18.108)

Note that each of the angles θi is only defined modulo 2π, that is, we identify θi ∼ θi+2π.

Therefore neither e
1
2
θie2i−1e2i nor e±

i
2

∑
i θi is well-defined: They both change by a minus

sign if we shift θi → θi + 2π. However, the pair is well-defined in Spinc(2n) = (Spin(2n)×
U(1))/Z2.

The main conclusion from the above discussion is that the Fock space bundle HF →
G(V,Q) ∼= O(2n)/U(n) constructed in Section §18.3 is not an equivariant bundle for O(2n).

However, we could also consider the homogeneous space CmptCplxStr(M, Q) to be a

homogeneous space for Pin−(2n) and we will show below that there is a lift the Pin−(2n)

action.

Lie algebra level :

It is quite interesting to see how the decomposition of the spin representation works

as a representation of Lie algebras. Recall that spin(2n) ∼= so(2n) with 1
2eµν

∼=Mµν .

If we choose a complex structure I with +i eigenspace of V given by W together with

a compatible set of harmonic oscillators ai, āi then, in terms of the oscillator basis we have

generators of su(n) given by

T ij =

(
āiaj −

1

n
δijF

)
i, j = 1, . . . , n (18.109)

Note that
∑

i T
i
i = 0. One easily computes

[T ij, T
k
ℓ] = δkjT

i
ℓ − δiℓT

k
j (18.110)

which is a standard presentation of the Lie algebra su(n) in terms of generators and struc-

ture constants. Note that this is not a real basis, rather, the general element of the su(n)

Lie algebra (which is a Lie algebra over κ = R) is t =
∑
x j
i T

i
j such that t∗ = −t. Thus

x i
i are pure imaginary and (x j

i )
∗ = −x i

j .

To complete the Lie algebra of U(n), namely, u(n) = su(n) ⊕ u(1) we must again

be careful. The generator t ∈ u(1) of the U(1) subgroup of U(n) ⊂ SO(2n) of diagonal

matrices lifts to

t̃ =
1

2
(e12 + · · · + e2n−1,2n) (18.111)

In terms of harmonic oscillators we write e2j−1 = aj + āj and e2j = i(aj − āj) so that

t̃ = iF − i
n

2
(18.112)

Thus:

1. The vacuum is not invariant under the U(1)

2. When n is odd t̃ only exponentiates to give a projective representation of U(1), in

accord with our discussion above.

The point of this exercise is that if one is sufficiently careful with normalizations of

generators one can detect topological subtleties.

Remarks:
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1. One interesting implication of the above formulae is an important formula in Kähler

geometry. Let K denote the determinant representation of U(n). Then we consider

the projective representation K1/2. This has precisely the same cocycle as the pro-

jective U(n) representation on the Fock space. These two Z2-valued cocycles cancel

if we consider S⊗K1/2, which becomes a true representation of U(n). Thus we have

the identities of true U(n) ⊂ SO(2n) representations:

S+ ⊗K1/2 ∼= ⊕k=0(2)Λ
kW ∼= ⊕k=0(2)Λ

k,0V (18.113)

S− ⊗K1/2 ∼= ⊕k=1(2)Λ
kW ∼= ⊕k=0(2)Λ

k,0V (18.114)

where W ∼= Cn is the defining representation of U(n). If we exchange the complex ♣CHECK! ♣

structure I for −I then we exchange W and W̄ . Then we have

S+ ⊗K−1/2 ∼= ⊕k=0(2)Λ
kW̄ ∼= ⊕k=0(2)Λ

0,kV (18.115)

S− ⊗K−1/2 ∼= ⊕k=1(2)Λ
kW̄ ∼= ⊕k=0(2)Λ

0,kV (18.116)

♣This is confusing

unless you explain

the role of

orientations in these

isomorphisms. ♣
2. The identities (18.115) and (18.116) are very important in Kahler geometry where

we can exchange Dirac operators for Dolbeault operators [26]:

/D ↔ ∂ + ∂† (18.117)

We will explain this a little bit by considering M = R2n with the Euclidean metric.

To define the Dirac operator we consider Cliff(T ∗M). Choosing standard coordinates

we can use an ON basis eα = dxα and represent ρ(eα) on a Dirac representation and

form the Spinor bundle S = M × Sc. Spinor fields will be functions on M valued

in Sc. We denote the space of spinor fields as the sections of the spin bundle Γ(S).
Then the Dirac operator /D is defined by the exterior derivative d : Γ(S) → Ω1(S)
followed by Clifford contraction back to Γ(S). In explicit equations

/D = ρ(eα)
∂

∂xα
= Γα

∂

∂xα
(18.118)

Of course S = S+ ⊕ S− is Z2-graded and /D is odd:

/D
±
: Γ(S±) → Γ(S∓) (18.119)

Now choose a complex structure I so that we can split T ∗M ⊗ C ∼= T ∗(1,0)M ⊕
T ∗(0,1)M . Let us choose the complex structure **** above. Then

āj =
1

2
(dx2j−1 + idx2j) :=

1

2
dzj

aj =
1

2
(dx2j−1 − idx2j) :=

1

2
dz̄j

(18.120)
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We have introduced standard complex coordinates so

∂

∂zj
=

1

2
(

∂

∂x2j−1
− i

∂

∂x2j
)

∂

∂z̄j
=

1

2
(

∂

∂x2j−1
+ i

∂

∂x2j
)

(18.121)

In terms of complex coordinates the Dirac operator becomes

/D =
n∑

j=1

(
ρ(2āj)

∂

∂zj
+ ρ(2aj)

∂

∂z̄j

)
(18.122)

Now under the isomorphism (18.115), etc. ρ(āj) becomes wedging with 1
2dz

j and

ρ(aj) becomes contraction with 2( ∂
∂zj

), so we can identify /D with ∂ + ∂†. ♣Need to explain

hermitian structure

and † better. ♣

18.4.5 Bogoliubov transformations and the spin Lie algebra

Above we identified an action of O(q;C) on V preserving the harmonic oscillator algebra.

By considering one-parameter subgroups of matrices satisfying (18.71) we see that the Lie

algebra of this group consists of matrices of the form

m =

(
α β

γ −αtr

)
∈Mat2n(C) (18.123)

with β, γ antisymmetric. The α, β, γ are otherwise arbitrary complex n × n matrices.

Note that m is antihermitian iff α† = −α and β† = −γ. Such antihermitian matrices

exponentiate to elements of U(2n) and U(2n) ∩O(q;C) ∼= O(2n;R).

For matrices (18.123) with m ∈ o(q;C) define a corresponding element of the Clifford

algebra:

m̃ :=

n∑

i,j=1

(
αjiājai +

1

2
γijaiaj +

1

2
βij āiāj

)

=
1

2

n∑

i,j=1

(αji(ājai − aiāj) + γijaiaj + βij āiāj) +
1

2
Tr(α)1

(18.124)

Note that m is antihermitian, so that α† = −α and β† = −γ if and only if m̃ is a pure

imaginary element of the ∗-algebra A: m̃∗ = −m̃.

We claim that the element g̃ := exp[m̃] in the complex Clifford algebra conjugates the

column vector aα defined in (18.44) according to the matrix g := em ∈ O(q;C):

g̃aαg̃
−1 = gβαaβ (18.125)

with

g =

(
A B

C D

)
(18.126)

satisfying (18.71).
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To prove this, use [AB,C] = A{B,C} − {A,C}B to check that

[m̃, āi] = αjiāj + γjiaj

[m̃, ai] = βjiāj − αijaj
(18.127)

In other words, if we define a vector aα from the ordered basis (18.44) then

[m̃, aα] = mβαaβ (18.128)

This formula exponentiates to give (18.125).

The matrices defined in (18.123) span the Lie algebra o(q;C). This does not imply

that the corresponding elements m̃ generate an isomorphic Lie algebra! That is, the map

o(q;C) → Cliff(M;Q) ⊗ C, need not be a Lie algebra homomorphism. The origin of the

problem is that the relations (18.128) would also be satisfied if we shifted m̃ by any scalar.

Indeed, given m the general element of the Clifford algebra satisfying (18.128) is of the

form m̃ plus a scalar.

One can compute the commutator [m̃1, m̃2] using the relation

[AB,CD] = A{B,C}D − {A,C}BD + CA{B,D} − C{A,D}B (18.129)

and a small computation shows that in fact

[m̃1, m̃2] = ˜[m1,m2]−
1

2
Tr(β1γ2 − β2γ1)1 (18.130)

The term proportional to 1 is easily computed from the VEV 〈0| · · · |0〉 of the LHS and

the RHS. The expression ω(m1,m2) := Tr(β1γ2−β2γ1) is a two-cocycle on the Lie algebra

so(2n). It follows that the elements m̃ of A do not close to form a Lie sub-algebra of A,

but rather they generate a Lie algebra g which fits in a central extension of Lie algebras:

0 → C → g → o(q;C) → 0 (18.131)

See Appendix B below for a very brief précis of the relation of Lie algebra cohomology to

central extensions. As explained there, the extension is only nontrivial if the cocycle is

nontrivial. In fact, in the present case the cocycle can be trivialized! To see this note that

in the block decomposition (18.123) we have

([m1,m2])11 = [α1, α2] + β1γ2 − β2γ1 (18.132)

and therefore, the linear functional f(m) := 1
2Tr(α) trivializes ω, i.e. ω = df , where d is

the Chevalley-Eilenberg differential. In particular, if we define

m̂ := m̃− 1

2
Tr(α) · 1 =

1

2

n∑

i,j=1

(αji(ājai − aiāj) + γijaiaj + βij āiāj) (18.133)

then we can compute

[m̂1, m̂2] = [m̃1 −
1

2
Tr(α1) · 1, m̃2 −

1

2
Tr(α2) · 1]

= ˜[m1,m2]−
1

2
Tr(β1γ2 − β2γ1)1

= ̂[m1,m2]

(18.134)
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and therefore m 7→ m̂ is a homomorphism of Lie algebras.

Note that if we express m̂ in terms of ei using (18.36) then we obtain an element

of spin(2n) ⊗ C, which becomes an element of spin(2n) when we impose the condition

m∗ = −m. It follows that

g ∼= spin(2n)⊗ C⊕ C (18.135)

At the group level we know from (17.22) that Γ(t, s) ∼= Pin(t, s) × R+ and hence we can

identify g with the Lie algebra of the complexified Clifford group Γc(d).

Corresponding to the central extension of Lie algebras there is a central extension of

groups:

1 → C∗ → Γc(2n) → O(q;C) → 1 (18.136)

In particular, we have the group multiplication:

g̃1g̃2 = c(g1, g2)g̃1g2 (18.137)

where c(g1, g2) is a group cocycle related to ω. Locally, the extension splits, thanks to the

splitting of the Lie algebras, but the extension does not split at the group level, ultimately

because the cover Spin(2n) → O(2n) is nontrivial.

18.4.6 The Fock space bundle as a Spin(2n)-equivariant bundle

Let us now return to the question of lifting the Spin(2n) action on CmptCplxStr(M, Q) ∼=
G(V,Q) to the bundle HF . We summarize the situation so far. We have described a bundle

of Fock spaces

HF → CmptCplxStr(M, Q) ∼= O(2n)/U(n) (18.138)

where the isomorphism is obtained by choosing a complex structure I on M, or, equiva-

lently ♣LD introduced

below. Description

of G(V,Q) as a

homogeneous space

should be in a

previous section. ♣

HF → G(V,Q) ∼= O(q;C)/LD (18.139)

where the isomorphism is obtained by choosing a maximal isotropic subspace W̄ in V . The

two fibrations are related by identifying W̄ with the I = −i eigenspace in V . We have

seen that neither O(2n) nor O(q;C) lifts to define an equivariant structure on HF . We will

show that rather, the spin double covers do lift.

The key will be to understand how Bogoliubov transformations change the vacuum line.

Suppose we make one choice of harmonic oscillators {āi, ai} with a corresponding vacuum

line generated, say, by the state |0〉W . Thus ai|0〉W = 0. Now consider a Bogoliubov

transformation generated by g = exp(m) ∈ O(q;C). If the Bogoliubov transformation is

implemented by the matrix

g =

(
A B

C D

)
(18.140)

then

em̃|0〉W (18.141)

will generate the vacuum line relative to the new oscillators {bα} = {b̄i, bi} defined in

(18.68).
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Let us now try to write the new vacuum state more explicitly in terms of the operators

aα and |0〉W . If D is invertible then we can write

g =

(
1 S

0 1

)(
A′ 0

0 D

)(
1 0

R 1

)

= exp

[(
0 S

0 0

)]
exp[

(
x 0

0 −xtr

)
exp

[(
0 0

R 0

)] (18.142)

where

S = BD−1

R = D−1C

A′ = A−BD−1C

ex = A′

e−x
tr
= D

(18.143)

Note that by the defining relations of O(q;C) the matrices R,S are antisymmetric. There-

fore we have

em̃ = κe
1
2

∑
i,j Sij āiāje

∑n
i,j=1 xjiājaie

1
2

∑
i,j Rijaiaj (18.144)

where κ is a nonzero scalar and therefore the new vacuum line is spanned by

em̃|0〉 = κe
1
2

∑
i,j Sij āiāj |0〉 (18.145)

This is the fermionic analog of a squeezed state.

More precisely, for a complex anti-symmetric n×n matrix S define the squeezed state

|S〉W := ρF,W

(
e

1
2

∑
i,j Sij āiāj

)
|0〉W (18.146)

Now consider g̃ which is a lift of

g =

(
A B

C D

)
(18.147)

We want to compute ρF,W (g̃)|S〉. Now using (18.142) and (18.143) we know that

(
A B

C D

)(
1 S

0 1

)
=

(
A AS +B

C CS +D

)
=

(
1 g · S
0 1

)(
∗ 0

0 ∗

)(
1 0

∗ 1

)
(18.148)

where

g · S := (AS +B)(CS +D)−1 (18.149)

follows immediately from the general formulae of (18.143). Let LD ⊂ O(q;C) be the group

of block-lower-diagonal matrices. That is, those with B = 0. Then S is a coordinate in

a dense open set of the homogeneous space O(q;C)/LD. Because there is a group action

from the left we know that

g1 · (g2 · S) = (g1g2) · S (18.150)
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provided the relevant matrices are invertible so that the formula makes sense.

Therefore, thanks to (18.149) we know that

ρF,W (g̃)|S〉 = κ(g̃, S)|g · S〉W (18.151)

where κ(g̃, S) is a scalar, at least for those transformations such that det(CS +D) 6= 0.

Once we know how the vacuum transforms, that is, once we have computed κ(g̃, S) in

(18.151) we can lift the transformation g̃ on G(V,Q) to the entire Fock bundle since the

other states are obtained by acting with oscillators, and these just transform in the vector

representation. (See (18.94) above.)

In equations (18.189)- (18.193) below we will see how to compute κ(g̃, S) once we have

a good formula for the overlaps 〈S1|S2〉. Therefore, in order to compute κ(g̃, S) we need a

key identity for the the overlaps of squeezed states. One way of stating the identity is: 44

〈0|exp


−1

2

∑

ij

Sijaiaj


 exp


1

2

∑

ij

Tij āiāj


 |0〉 =

√
det(1− ST ) := pf(1− ST )

(18.152) ♣It would be good

to give a proof

based on on

fermionic quantum

mechanics path

integrals, reducing

this to a finite

dimensional

fermionic integral.

♣

Remarks

1. Note that we could replace the operator in the vev with the group commutator, so

that this is an exponentiated version of the identity (18.130).

2. The notation pf(1− ST ) is something of an abuse because neither 1 nor ST nor the

difference 1− ST is an antisymmetric matrix. The notation is just meant to denote

the canonical squareroot of det(1− ST ) when S, T are antisymmetric.

3. Note that the bra- dual to the ket |S〉 is

〈S| = W 〈0|ρF,W (e−
1
2

∑
i,j S̄ijaiaj ) (18.153)

So in math notation we would write instead:

h(e
1
2
Sij āiāj , e

1
2
Tij āiāj ) = pf(1− S̄T ) (18.154)

We need to define pf(1− ST ) and prove these formulae. Here we will follow the very

elegant discussion of Pressley and Segal [35] In order to do this we need the notion of the

Pfaffian of an antisymmetric matrix.

Reminder: Properties of Pfaffians

44There is an easier proof based on fermionic Gaussian integrals and the fermionic coherent state repre-

sentation. See Section 21.6 below.

– 203 –



1. If Sij is an N ×N antisymmetric matrix then pf(S) := 0 for N odd, and if N = 2n

is even the Pfaffian of S, denoted pf(S) is defined by

pf(S) :=
1

n!2n

∑

σ∈S2n

sign(σ)Sσ(1)σ(2) · · ·Sσ(2n−1),σ(2n)

= S12S34 · S2n−1,2n ± · · ·
(18.155)

In particular, if S is skew-diagonal

S =

(
0 λ1

−λ1 0

)
⊕ · · · ⊕

(
0 λn

−λn 0

)
(18.156)

then

pf(S) =
n∏

i=1

λi (18.157)

2. Some important properties are the following (See [34] Sections 23.12 and 24.4 for

more details):

3. pf(S)2 = detS

4. pf(RSRtr) = det(R)pf(S) ♣Does R have to be

invertible? ♣

5. If we define the 2-form ωS := 1
2Sij āiāj ∈ Λ2W then

ωnS
n!

= pf(S)ā1 · · · ān (18.158)

Now consider expanding the exponential to get:

exp


1

2

∑

ij

Sij āiāj


 |0〉 = |0〉+

∑

I

pf(SI)|I〉 (18.159)

Here we denote an ordered multi-index by I = {i1 < i2 < · · · i2ℓ}. We need only consider

multi-indices of even length |I| = 2ℓ. We denote

|I〉 := āi1 · · · āi2ℓ |0〉 (18.160)

Also, given an multi-index we let SI be the (2ℓ) × (2ℓ) antisymmetric matrix obtained by

retaining the rows and columns enumerated by the elements of I. For example, if I = {1, 3}
and S and n > 1 then

SI =

(
0 a13

−a13 0

)
(18.161)

Now let us consider the inner product of such fermionic squeezed states. The Dirac

conjugate of |I〉 is the linear functional:

〈I| = 〈0|ai2ℓ · · · ai1 (18.162)
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Note that

〈I|J〉 = δI,J (18.163)

It thus follows that

〈0|exp


−1

2

∑

ij

Sijaiaj


 exp


1

2

∑

ij

Tij āiāj


 |0〉 = 1 +

∑

I

pf(SI)pf(TI) (18.164)

Note well that this is a polynomial in the matrix elements of S and T .

Now, suppose that S is any invertible N × N matrix and T is any N × N matrix.

Then, we certainly have:

det(1− ST ) = detSdet(S−1 − T ) (18.165)

If S, T are anti-symmetric and S is invertible then it is therefore sensible to define

pf(1− ST ) := pf(S)pf(S−1 − T ) (18.166)

The RHS is a rational expression in the matrix elements Sij but since its square is a

polynomial it must in fact be a polynomial.

Now, for a multi-index I let I ′ be the ordered complementary multi-index. So, for

example, if 2n = 6 and I = {1 < 4} then I ′ = {2 < 3 < 5 < 6}. Let εI be the sign of the

permutation

{1, 2, . . . , 2n} → {I, I ′} = {i1, . . . , i2k, i′1, . . . , i′2k′} (18.167)

where k + k′ = n. Then we claim that if R and T are antisymmetric matrices then

pf(R+ T ) =
∑

I

εIpf(RI)pf(TI′) (18.168)

In this sum we have included I = ∅, with the definition pf(R∅) := 1, and similarly for I ′.

The same convention will be used in similar sums below.

The proof is to consider the associated 2-forms ωR and ωT and then expand

1

n!
(ωR + ωT )

n =
1

n!

n∑

k=0

(
n

k

)
ωkRω

n−k
T

=
∑

k

1

k!
ωkR

1

(n− k)!
ωn−kT

=
∑

k

∑

|I|=k

pf(RI)pf(TI′)āI āI′

=

(∑

I

εIpf(RI)pf(TI′)

)
ā1 · · · ā2n

(18.169)

Applying this to (18.166) we find

pf(1− ST ) =
∑

I

εI(−1)|I
′|/2pf(S)pf((S−1)I)pf(TI′) (18.170)
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so now we must simplify pf(S)pf((S−1)I).

Now we use a curious identity from linear algebra

pf(S)pf((S−1)I′) = (−1)|I|/2εIpf(SI) (18.171)

The proof is discussed in the remark below.

Now, finally, we apply (18.171) to (18.170) to get

pf(1− ST ) =
∑

I

pf(SI)pf(TI) (18.172)

This completes the proof of (18.152). ♦

Remarks: Here we give an extended commentary on the identity (18.171).

1. An identity from linear algebra known as Jacobi’s determinantal identity (see, e.g.

eq. 11 of [13]) states that, for any matrix S

detSdet((S−1)I′) = det(SI) (18.173)

with the sign as above, provided I and I ′ inherit their ordering from {1, . . . , n}.

2. One proof of (18.173) makes use of Grassmann integrals. Consider the integral

∫ n∏

i=1

dθidχi

n∏

a∈I′

dηadνaexp[χiSijθj + ηaχa + νaθa] (18.174)

Integrating out first (θ, χ) and then (η, ν) gives detSdet(S−1)I′ . On the other hand,

integrating out first (η, ν) and then (θ, χ) gives detSI . This elegant proof was pointed

out to me by N. Arkani-Hamed. ♣Fix signs. Then

do it for real

fermions to get the

result for Pfaffians.

♣
3. Now, if in addition S is antisymmetric it follows from (18.173) that

pf(S)pf((S−1)I′) = ±pf(SI) (18.175)

The sign cannot depend on the matrix elements sij since the LHS and RHS are

rational expressions in the matrix elements, but it can depend on I and I ′. To check

the sign, evaluate left and right hand sides for the case that S is skew diagonal.

4. There is a nice conceptual interpretation of the identity (18.173). Suppose V is

a vector space over κ of dimension n. Then we claim that there is a canonical

isomorphism

c : ΛnV ⊗
(
Λn−kV ∨

)
→ ΛkV (18.176)

it is defined by

(v1 ∧ · · · ∧ vn)⊗ (α1 ∧ · · · ∧ αn−k) 7→
∑

I

εI〈vI′ , α〉vI (18.177)
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where

〈vI′ , α〉 := det〈vis , αj〉 (18.178)

Now, let {ui} be an ordered basis for V and {ǔi} the dual basis. Choose another

basis wi = Sjiuj so that w̌i = (Str,−1)jiw̌j . Then, by naturalness we must have

c : (w1 ∧ · · · ∧wn)⊗ w̌I′ 7→ wI (18.179)

as well as

c : (u1 ∧ · · · ∧ un)⊗ ǔI′ 7→ uI (18.180)

That is the meaning of naturalness: We have the same formula in any basis. On the

other hand, expressing the w’s in terms of the u’s we are lead to the identity (18.173).

The next preliminary we need is the observation that if g ∈ O(q;C) is in block form

(18.69) and S is antisymmetric then

det(CS +D) (18.181)

is a square of a polynomial in the matrix elements of S. This follows from our key identity

(18.152) above, for if D is invertible then by the defining relations (18.85) of O(q;C) we

know that D−1C is an antisymmetric matrix but then we can write

det(CS +D) = det(D)det
(
1 + (D−1C)S

)
(18.182)

and now the RHS has a squareroot as a polynomial in the matrix elements in S. This

formula can be extended to D noninvertible. ♣Need to extend to

D noninvertible. ♣
Now the expression det(CS + D) has a very nice group multiplication property. If

g1g2 = g3 and so (
A1 B1

C1 D1

)(
A2 B2

C2 D2

)
=

(
A3 B3

C3 D3

)
(18.183)

then we claim that

C3S +D3 = (C1(g2 · S) +D1)(C2S +D2) (18.184)

and hence

det(C3S +D3) = det(C1(g2 · S) +D1)det(C2S +D2) (18.185)

The proof of (18.184) is sketched in an exercise below.

The fact that det(CS+D) admits a square root as a polynomial in S allows us to give

a convenient formulation of the Spin group: 45

Proposition: Consider the group of pairs (g, f) where g ∈ O(q;C) and f is a polynomial

function on n× n antisymmetric matrices S such that

(f(S))2 = det(CS +D) (18.186)

45This generalizes nicely to the metaplectic double cover of the symplectic group in the case of bosons.
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The group multiplication is

(g1, f1)(g2, f2) = (g1g2, f3) (18.187)

where (see (18.185)):

f3(S) = f1(g2 · S)f2(S) (18.188)

Claim: This group is isomorphic to Pin−(2n)c.

Proof : The group is clearly a 2 : 1 covering of the group O(q;C) since f(S) is deter-

mined by g up to sign. We need only show it is nontrivial on the connected component of

the identity. The proof is that the group cocycle in defining the sign of f is precisely that

used to define the Pin double cover. We can demonstrate this by considering an elementary

loop in the group O(q;C). Consider, for example the loop which rotates {e1, e2} by R(θ)

and leaves the remaining ei fixed. Using the transformations (18.82) these transformations

correspond to a loop of elements g(θ) ∈ O(q;C) with B = C = 0 and D = Atr,−1 is a

diagonal matrix with all diagonal entries 1 except for the 11 element which is e−iθ. For

this loop of matrices f(S)2 = e−iθ and taking the squareroot of f produces the necessary

cocycle. ♦
We are now finally ready to compute κ(g̃, S) in (18.151). We restrict to g̃ such that

ρF,W (g̃) are unitary, so g̃ ∈ Spin(2n) and g ∈ U(2n) ∩O(q;C) ∼= O(2n). Then we have

W 〈S1|S2〉W = W 〈S1|ρF,W (g̃)†ρF,W (g̃)|S2〉W
= κ(g̃, S1)

∗κ(g̃, S2)W 〈g · S1|g · S2〉W
(18.189)

and hence

κ(g̃, S1)
∗κ(g̃, S2)pf(1− g · S1g · S2) = pf(1− S1S2) (18.190)

Now, using the property that g ∈ U(2n) it is straightforward to compute:

det(1− g · S1g · S2) =
det
[
(C̄S̄1 + D̄)tr(CS2 +D) + (ĀS̄1 + B̄)tr(AS2 +B)

]

det(C̄S̄1 + D̄)trdet(CS2 +D)

= det(CS1 +D)∗,−1det(CS2 +D)−1det(1− S1S2)

(18.191)

where we have just used antisymmetry of S and unitarity of g. It follows from (18.190)

that

(κ(g̃, S1)
∗κ(g̃, S2))

2 = (det(CS1 +D))∗det(CS2 +D) (18.192)

and therefore

κ(g̃, S)2 = det(CS +D) (18.193)

so κ(g̃, S) is one of the two squareroots. From this, and the above characterization of the

Spin group we have finally constructed HF as an equivariant bundle over G(V,Q), at least

on a dense open set. ♣Need to explain

more that it is the

“right” square root

for the spin action.

♣

We summarize this long computation in the following beautiful statement:

Theorem: The action of g̃ ∈ Spin(2n) on squeezed states is given by

ρF,W (g̃)|S〉W =
√

det(CS +D)|g · S〉W (18.194)
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where g = Ãd(g̃) ∈ SO(2n) has block decomposition (18.147) when considered as an element

of O(q;C) and g ·S = (AS+B)(CS+D)−1. The inverse image g̃ of g under Ãd determines

the choice of the square root. That is, the fermionic vacuum transforms as an automorphic

form of weight 1/2.

Remarks:

1. With a little algebraic geometry we can extend it to the entire isotropic Grassmannian

G(V,Q). For details see Pressley and Segal.

2. A very similar story holds for representations of the metaplectic group by systems of

free bosons. See 21 below.

3. It is worth giving a more geometrical interpretation to some of these expressions which

will be useful in Section §18.4.7 below. The Grassmannian G(V,Q) is a homogeneous

space for O(q;C). If we think of W as the span of the oscillators {āi} and W̄ as

the span of {ai} then it acts according to (18.68). More invariantly, given W̄ , a

maximal isotropic subspace of V , we identify W̄ with the I = −i subspace of a

complex structure I on M and then define W to be the I = +i subspace. Then

O(q;C) transforms W ⊕ W̄ to W ′ ⊕ W̄ ′ with W ′ = Span{b̄i} and W̄ ′ = Span{bi}.
(Warning: Since we are using general Bogoliubov transformations we are changing

the ∗-structure.) Since we are focusing on the vacuum line through |0〉W which is, by

definition, the annihilator of W̄ it is more natural to think of G(V,Q) as the space of

the W̄ ’s. The stabilizer of the span of {ai} under the action (18.68) is the subgroup

of O(q;C) with Bij = 0:

LD = {g =

(
A 0

C Atr,−1

)
} ⊂ O(q;C) (18.195)

Then, on the subset of O(q;C)/LD where D is invertible (18.142) shows that we can

regard the antisymmetric matrix S as a set of coordinates. More invariantly, we can

interpret Sij as the matrix of an operator S : W̄ → W . Given such an operator its

graph is the linear subspace of V

Graph(S) := {S(w̄)⊕ w̄|w̄ ∈ W̄} ⊂ V (18.196)

Note that Graph(S) is isotropic iff S is skew symmetric. This follows from the

identity:

Q(S(w̄1)⊕ w̄1, S(w̄2)⊕ w̄2) = Q(S(w̄1), w̄2) +Q(w̄1, S(w̄2)). (18.197)

Therefore Graph(S) is isotropic iff in oscillator basis the matrix Sij is antisymmetric.

the new oscillators bi = Sjiāj + ai span W̄ ′ and from W̄ ′ we construct W ′. The

squeezed state |S〉 spans a line which is the line annihilated by W̄ ′. The set of isotropic

subspaces which can be written as Graph(S) for some antisymmetric matrix S forms
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a dense open set UW̄ of one component of G(V,Q). The complement of UW̄ in that

component is the set of W̄ ′ so that W̄ ′∩W 6= {0} and is of complex codimension one.

The open sets UW̄ for different choices of maximal isotropic subspaces form an atlas

for G(V,Q). The map from isotropic spaces Graph(S) to the vacuum line through

the squeezed state |S〉W will play an important role in the next section.

Exercise

Let S be a (2n)× (2n) matrix and let I and I ′ be complementary multi-indices.

Prove or give a counterexample to the hypothetical equation

pf(SI)pf(SI′)
?
=pf(S) (18.198)

Exercise

Compute the generating function

〈0|exp


−1

2

∑

ij

Sijaiaj


 exiāieyiaiexp


1

2

∑

ij

Tij āiāj


 |0〉 (18.199)

Hint : Consider the xi, yi to be generators of a Grassmann algebra.

Exercise Proof of equation (18.184)

Prove (18.184).

One answer : Compute

(
A1 B1

C1 D1

)(
A2 B2

C2 D2

)(
1 S

0 1

)
(18.200)

in two ways using the refinement of (18.148)

(
A B

C D

)(
1 S

0 1

)
=

(
1 g · S
0 1

)(
(CS +D)tr,−1 0

0 (CS +D)

)(
1 0

∗ 1

)
(18.201)
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(corresponding to a coordinate system on a homogeneous space). Therefore

(
A1 B1

C1 D1

)(
A2 B2

C2 D2

)(
1 S

0 1

)
=

(
A1 B1

C1 D1

)(
1 g2 · S
0 1

)(
(C2S +D2)

tr,−1 0

0 (C2S +D2)

)(
1 0

∗ 1

)

=

(
1 g1 · (g2 · S)
0 1

)(
(C1S

′ +D1)
tr,−1 0

0 (C1S
′ +D1)

)(
1 0

∗ 1

)(
(C2S +D2)

tr,−1 0

0 (C2S +D2)

)(
1 0

∗ 1

)

=

(
1 g1 · (g2 · S)
0 1

)(
(C1S

′ +D1)
tr,−1 0

0 (C1S
′ +D1)

)(
(C2S +D2)

tr,−1 0

0 (C2S +D2)

)(
1 0

∗ 1

)

(18.202)

where S′ = g2 · S.

Exercise Alternative proof of (18.152)

a.) Check equation (18.152) for the case that S and T are simultaneously skew-

diagonalizable. (This is easy.)

b.) Now consider a family of fermionic states:

|Ω(t)〉 := exp[− t

2
Sijaiaj ]exp[

t

2
Tij āiāj]|0〉 (18.203)

Note that c(t) = 〈0|Ω(t)〉 is equal to 1 for t = 0 and we wish to compute it for t = 1. Show

that |Ω(t)〉 is annihilated by the set of operators

(1− t2ST )jiaj + tTjiāj i = 1, . . . , n (18.204)

♣check ♣

c.) Derive a simple differential equation for c(t) and use it to reduce the proof of

(18.152) to the easy case where S, T are simultaneously skew-diagonalizable. 46
♣Add more hints ♣

18.4.7 Digression: A geometric construction of the spin representation

In this section we are again following closely the beautiful presentation of Pressley and

Segal in [35]. One reason for this digression is that the geometrical interpretation of repre-

sentation theory is very beautiful, unifying as it does different mathematical perspectives

on a single object. Another reason is that it provides an elegant and rigorous approach to

the quantization of fermionic quantum field theories, and this was in fact one of the central

points of [35].

Let us begin with a broader view of a geometric interpretation of representations of

Lie groups more generally. To do this we must take another step back and describe an

important general idea in complex geometry. That idea is the correspondence between

46I thank Y. Nidaiev for suggesting this line of proof.
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holomorphic line bundles over a complex manifold X and maps of X into a projective

space based on the following two constructions:

Construction 1: Let X be a complex manifold. Then given a holomorphic map:

f : X → P(V ) (18.205)

(where P(V ) is the projective space of a complex vector space V ) we can produce a holo-

morphic line bundle Lf over X.

The map f → Lf is easy: We view the projective space P(V ) as the space of complex

lines in V . Therefore to give a map (18.205) is to give, for each x ∈ X, a complex line

f(x) ⊂ V . But this is just the data needed to construct a line bundle π1 : Lf → X. It is a

subbundle of the trivial bundle X × V whose fiber at x is just the line (Lf )|x = f(x), i.e.

Lf := {(x, v)|v ∈ f(x)} ⊂ X × V. (18.206)

We take π1(x, v) = x, so the fiber is a complex line. Everything varies holomorphically, so

π1 : Lf → X is a holomorphic line bundle.

Note that the projection π2 : X × V → V is holomorphic so that if α ∈ V ∨ then

sα := α ◦ π2 defines a map

sα : Lf → C (18.207)

which is, moreover, linear on the fibers of Lf . Because it is defined for every fiber and is

linear on each fiber we can view sα as a holomorphic section of L∨ and hence we have an

injective map

Ψf : V ∨ → Γ(X;L∨
f ). (18.208)

♣Need to explain

when the vector

spaces are

isomorphic. ♣Construction 2: Suppose X is a complex manifold and Q → X is a holomorphic line

bundle which admits holomorphic sections such that for every x there exists s ∈ Γ(X;Q)

such that s(x) 6= 0. Then we can construct a map

fQ : X → P(VQ) (18.209)

where

VQ := Γ(X;Q)∨ (18.210)

The most conceptual way to construct the map fQ is to recall that for any vector space

there is a natural 1-1 correspondence between lines in V and hyperplanes in V ∨: Given a

line ℓ ⊂ V the annihilator in V ∨ is a hyperplane. Apply that to V = VQ. Thus, it suffices

to show how, for each x ∈ X, to construct a hyperplane in Γ(X;Q). This is simply done

by considering the set of sections such that s(x) = 0.

Let us give a slightly more concrete description of fQ. Define a map fQ : X → P(VQ)

by evaluation at x as follows: For any x choose a local trivialization ψx : Qx ∼= C. Then

define a linear functional on Γ(X;Q) by

ℓx,ψ : s 7→ ψx(s(x)). (18.211)
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This is clearly a nonzero linear functional on Γ(X;Q) and hence a vector in VQ. This

vector depends on x as well as on the choice of trivialization ψx. However, any two triv-

ializations of Qx differ by an element of Aut(C) which is canonically a nonzero complex

number. Therefore the line Lx,Q ⊂ VQ through ℓx,ψ does not depend on the choice of local

trivialization ψx. The line Lx,Q is, by definition, fQ(x).

Given these constructions it is natural to ask how LfL compares with L∨ and how fL∨
f

compares with f , and whether Ψf above is an isomorphism. Under “good” conditions, for

example if X is a smooth compact Kähler manifold and L has a suitable first Chern class

we will indeed have

LfL
∼= L∨ (18.212)

fL∨
f

∼= f (18.213)

and Ψf will be an isomorphism. This is the Kodaira embedding theorem. See [23]. ♣Improvement

needed here. ♣

Example: We illustrate these constructions with the important example of holomorphic

line bundles over CPN = Gr1(CN+1). Denote a point in CPN by [X0 : X1 : · · · : XN ]

where the square brackets indicate the usual equivalence relation

[X0 : X1 : · · · : XN ] = [λX0 : λX1 : · · · : λXN ] (18.214)

and of course at least one Xi is nonzero. Choose a positive integer d and consider the

vector space Vd = Vd(CN+1) of homogeneous degree d polynomials on CN+1. Think of

such polynomials as expressions 47

∑

|I|=d

cIu
i0
0 · · · uiNN (18.215)

Now, we claim that there is a canonical map fd : CPN → P(V ∨
d ), for if we have [X0 : · · · :

XN ] ∈ CPN then for each choice (X0, . . . ,XN ) in the equivalence class we have a nonzero

linear functional on Vd taking

∑

|I|=d

cIu
i0
0 · · · uiNN 7→

∑

|I|=d

cIX
i0
0 · · ·XiN

N (18.216)

Therefore, associated to the equivalence class [X0 : · · · : XN ] ∈ CPN is a well-defined line

in V ∨
d . Since we have assigned a line in V ∨

d to each point in CPN we have defined the map

fd.

Another more concrete way of describing the maps fd might be helpful. First choose

N = 1. Then a map

fd : CP
1 → CP d (18.217)

can be defined by

fd : [X0 : X1] 7→ [Xd
0 : Xd−1

0 X1 : X
d−2
0 X2

1 : · · · : X0X
d−1
1 : Xd

1 ] (18.218)

47Unlike the multi-indices we have been using until now, here repeated entries are allowed.
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On the other hand, if d = 1 and we take any N then we could of course take f1 to be the

identity map:

f1 : [X0 : · · · : XN ] 7→ [X0 : · · · : XN ] (18.219)

The general case with d > 1 and N > 1 is a simple generalization of these. It is helpful to

state it more invariantly. Let U be a complex vector space of dimension N + 1. Then the

general case is a map

fd : P(U) → P(Symd(U)) (18.220)

We can write it explicitly by choosing a basis for U and then using that to construct a

corresponding basis of

((
N + 1

d

))
=

(N + 1)(N + 2) · · · (N + d)

d!
(18.221)

homogeneous expressions. 48

What holomorphic line bundles do we get from these functions fd? The line Lf1 is

particularly easy to describe: It is called the tautological line bundle. If we take f1 : P(U) →
P(U) to be the identity map the line bundle Lf1 is just the subbundle of P(U)× U whose

fiber above a point ℓ ⊂ U in P(U) is the one-dimensional subspace ℓ ⊂ U . The bundle Lf1
is commonly denoted O(−1).

The tautological line bundle is very important. Its first Chern class generates the

integral cohomology of CPN and all holomorphic line bundles are powers of O(−1). In

particular Lfd turns out to be (Lf1)
⊗d. It is usually denoted O(−d).

Following through the above definitions (and using the fact that CPN is smooth,

compact, and Kähler) one can check that the space of holomorphic sections of the line

bundle L∨
fd

(also denoted O(d)) is naturally isomorphic to the vector space of homogeneous

degree d polynomials in N + 1 variables. We can think - informally - of the holomorphic

sections as homogeneous degree d polynomials
∑

|I|=d cIX
i0
0 · · ·XiN

N . Although trying to

assign a value to such a polynomial at a point of CPN does not make sense, the zero set of

the polynomial in CPN is a well-defined subvariety of CPN . For example for N = 1 there

will be precisely d zeroes and hence d points in CP 1, counted with multiplicity. This turns

out to be quite significant because the theory of divisors shows how zero-sets of sections of

holomorphic line bundles can be used to characterize them uniquely. See [23].

If we return to the line bundle Lfd
∼= O(−d) then we see it has no holomorphic

sections. After all, any putative holomorphic section t∨ of O(−d) would have to pair

with a holomorphic section s of O(d) to produce a holomorphic function 〈s, t∨〉, and by

Liouville’s theorem this function would have to be constant. But then, if s has zeroes, t∨

would have to have poles, so it wouldn’t be holomorphic. Note that there is a big difference

between Γ(X;L)∨ and Γ(X;L∨) !

Finally, note that if f : X → P(V ) then the line bundle Lf → X defined in (18.206) is

just the pullback f∗OP(V )(−1).

48In the literature on algebraic geometry the map fd is known as a Veronese map. Veronese considered

the case N = 2 and d = 2.
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Now, let us apply these general constructions to the representation theory of compact

Lie groups G. Here is a lightning summary of some basic definitions.

1. Up to conjugation, G has a unique maximal abelian subgroup, the Cartan torus

T ⊂ G. We have T ∼= U(1)r for some integer r known as the rank of G.

2. If ρ : G→ U(V ) is a unitary representation of G on a complex vector space V then,

restricted to T the representation must decompose as a sum of one-dimensional rep-

resentations of T , V ∼= ⊕Lµ where µ ∈ Hom(T,U(1)) are characters on T . (Unitary

irreps of T are in one-one correspondence with such characters.)

3. The set of homomorphisms Hom(T,U(1)) is a lattice because if µ1 and µ2 are char-

acters then so is µn1
1 µ

n2
2 for any integers n1, n2 ∈ Z. This lattice is known as the

weight lattice of G and characters in this lattice are referred to as weights in this

context. The characters µ which appear in the decomposition V ∼= ⊕Lµ of a unitary

representation V of G are known as the weights of the representation.

4. It is often useful to use the exponential map to view the weight lattice as a subspace

of Hom(t,R), where t is the Lie algebra of T . One can choose a basis for t of simple

roots (see below) with corresponding simple coroots Hi so that T is the set of group

elements t = exp[
∑r

s=1 θsHs] where θs ∼ θs + 2π. Then the most general weight is

of the form

µ(t) =
∏

s

einsθs (18.222)

for integers ns and the corresponding element of Hom(t,R) maps

∑

s

θ̃sHs 7→
∑

s

θ̃sns (18.223)

where θ̃s ∈ R. We freely will pass between the multiplicative and additive interpre-

tation of weights below. ♣DON’T DO

THAT! ♣

5. The nonzero weights of the adjoint representation gc = g⊗C play a special role and

are called roots. Now henceforth assume thatG is simple. A key step in representation

theory is to show that for each root there is a canonically associated subalgebra of

gc which is isomorphic to sl(2,C). We denote it sl(2,C)α ⊂ gc. Its intersection

with t is generated by a canonically normalized generator Hα known as a coroot.

The normalization conditions is (viewing weights additively) α(Hα) = 2, and indeed

β(Hα) = 2(β,α)
(α,α) where (·, ·) is the Killing form. 49 Then sl(2,C)α has canonical

generators E±α and Hα with

[Eα, E−α] = Hα [Hα, E±α] = ±2E±α (18.224)

6. One can prove that if α is a root then so is −α. A choice of positive roots is a

maximal set of roots not containing the pair {α,−α}. If α, β are roots α + β might

49Note that the expression is linear in β but not in α. It is true that H−α = −Hα.
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(or might not) be a root but α − β, if nonzero, is never a root. Therefore, given a

set of positive roots there is a canonically defined set of simple roots αi which cannot

be decomposed as sums of other positive roots. The Hi above are the corresponding

simple coroots.

7. Given a choice of positive roots a dominant weight λ is a weight such that (considered

additively) λ(Hα) ≥ 0 for all α > 0 and an anti-dominant weight λ is one such that−λ
is dominant. Given a choice of positive roots there is a 1-1 correspondence between

irreducible representations V ofG and dominant (or anti-dominant) weights. Roughly

speaking, the representation Vλ corresponding to a dominant weight λ has a unique

highest weight vector which is annihilated by Eα for all α > 0. One can then build the

representation by acting on this vector with lowering operators E−α for α > 0. If λ ∈
Hom(t,R) is suitably quantized (which is guaranteed if it exponentiates to a character

in Hom(T,U(1))) and we mod out by null vectors the resulting representation Vλ is

finite dimensional.

8. If λ is dominant then V ∨
λ has lowest weight vector with weight −λ. ♣check! ♣

Now, to bring in holomorphic geometry we summarize a few more facts. The com-

plexification Gc of G is a holomorphic manifold. Roughly speaking, we exponentiate the

generators of the Lie algebra g of G with complex coefficients. Put differently, we expo-

nentiate the complex Lie algebra gc and complete to form a group. Now, given a choice

of Cartan subgroup T together with a choice of positive roots there is a canonically de-

termined “upper triangular” subgroup B+ ⊂ Gc given by exponentiating Hα and Eα for

α > 0. A good example to bear in mind is the group U(n) with T the subgroup of diagonal

matrices. Then with respect to a standard choice of positive roots B+ is just the subgroup

of GL(n,C) of upper triangular matrices.

Now, if χ : T → U(1) is a unitary character then it has a holomorphic extension to a

multiplicative character χ : B+ → C∗. Therefore, we can define an associated holomorphic

line bundle over Gc/B
+

Lχ = Gc ×B+ C = {[g, z]| [gb, z] = [g, χ(b)z] ∀b ∈ B+, g ∈ G, z ∈ C} (18.225)

Notice that there is a well-defined projection π : Lχ → Gc/B
+ given by π : [g, z] 7→ gB+.

Now, a crucial point is that

The vector space of (C∞, holomorphic) sections of the bundle π : Lχ → Gc/B
+ is naturally

isomorphic to the vector space of (C∞, holomorphic) B+-equivariant functions f : Gc → C.

The phrase “B+-equivariant” just means that f(gb) = χ(b−1)f(g). The equivalence is

established as follows: Suppose first we have a section s of π : Lχ → Gc/B
+. Now, choose

g ∈ Gc. Form the coset gB+. Then the section s(gB+) gives us an equivalence class [h, z].

Since it is in the fiber above gB+ we have hB+ = gB+. In particular, that equivalence

class must have a representative (g, zg) where the first entry is exactly g. We use that
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representative to define f(g) := zg. The resulting function is clearly equivariant. Proof: We

have s(gB+) = s(gbB+) and so [g, zg ] = [gb, zgb] but, by definition, [gb, zgb] = [g, χ(b)zgb].

Putting these two equations together we see that f(g) = χ(b)f(gb). Conversely, given

such an equivariant function we can define a section: s : gB+ 7→ [g, f(g)]. (Because f is

equivariant this formula for s is well-defined.)

Moreover, the vector space of (C∞, holomorphic) B+-equivariant functions f : Gc → C.

is naturally a representation of Gc. Indeed, given an equivariant function f and g0 ∈ Gc
we can define a new equivariant function L(g0) · f whose values are

(L(g0) · f)(g) := f(g−1
0 g) (18.226)

The reason for the annoying inverse in g−1
0 on the RHS is that this way we get a represen-

tation L(g0)L(g
′
0) = L(g0g

′
0). Note that since the multiplication by g−1

0 is on the left the

equivariance property is not spoiled, even for G nonabelian. The representation we produce

this way depends on the character χ and is known as an induced representation. If we take

C∞ sections then it is infinite dimensional and has no reason to be irreducible. However,

if we take holomorphic sections then, it can be shown, Γ(Lχ, Gc/B+) is finite dimensional

and irreducible. This representation is the holomorphically induced representation.

The finite-dimensionality follows once one realizes that Gc/B
+ ∼= G/T is compact

and we are essentially solving a Cauchy-Riemann like equation ∂̄s = 0. The irreducibility

follows from a basic decomposition theorem of matrices known as the Bruhat decomposition.

Let N− be the group generated by exponentiating E−α for α > 0. For Gc = GL(n,C) this

would be the lower triangular matrices with 1 on the diagonal. The orbits of N− on Gc/B
+

are cells of dimensions related to properties of the Weyl group. There is one open dense

orbit of maximal dimension. Now, if Γ(Gc/B
+;Lχ) were reducible there would be two

linearly independent lowest weight vectors s1 and s2. But these are invariant under N−.

Therefore, therefore s1/s2 is constant on theN− orbit of 1·B+. But this is a function, which

if constant off of a codimension one subspace must be constant everywhere, contradicting

linear independence of s1 and s2.

Now, conversely suppose G is a compact simple Lie group, and suppose it has an

irreducible representation on a complex finite-dimensional vector space V and we choose

positive roots so we can identify V = Vλ where λ is a dominant weight. Then the represen-

tation extends to a holomorphic representation of the complexification ρc : Gc → GL(V ),

and there is a multiplicative holomorphic character χλ : B+ → C∗. The dual representation

V ∨
λ has a lowest weight vector v and the action ρ∨(B+) on v is via the character χ−1

λ . The

lowest weight vector generates a line vC ⊂ V ∨
λ . Now ρ∨c (g) acts on the projective space

P(V ∨
λ ) since a linear transformation takes lines to lines. It is a transitive action and the

stabilizer of vC is just B+. Therefore, we get a map

fλ : Gc/B
+ → P(V ∨

λ ) (18.227)

From our Construction 1 above we automatically get a holomorphic line bundle Lfλ →
Gc/B

+. Tracing through the definitions one can show that this line is exactly the associated

line bundle discussed above: Lfλ = Lχλ. Moreover, thanks to (18.208) we get an injective
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map

Ψfλ : Vλ → Γ(L∨
χλ
) (18.228)

Again, following through definitions one can check that this map is Gc-equivariant. There- ♣more detail. ♣

fore, this is an isomorphism of representations, thus giving a beautiful geometrical inter-

pretation to the irreducible representations of G.

The result of all the above is the very beautiful Borel-Weil-Bott theorem:

Theorem : Let G be a simple Lie group. Choose a system of positive roots, thus deter-

mining a Borel subgroup B+ ⊂ Gc. For any weight λ let Lχλ → Gc/B
+ be the induced

holomorphic line bundle from the character on T .

a.) Lχλ has no holomorphic sections unless λ is anti-dominant.

b.) If λ is dominant then Γ(Gc/B
+,L∨

χλ
) is a representation of Gc which is isomorphic

to the representation Vλ. ♣We didn’t explain

(a). ♣

Example 1: Representations of SU(2). We take T to be the subgroup of SU(2) of diagonal

matrices. It is isomorphic to U(1) and hence the characters are labeled by λ ∈ Z:

χλ :

(
eiθ 0

0 e−iθ

)
7→ eiλθ (18.229)

We choose positive roots so that B+ is the group of upper triangular matrices

b =

(
b11 b12
0 b22

)
(18.230)

with b11b22 = 1. With this choice of positive roots we have

Eα =

(
0 1

0 0

)
E−α =

(
0 0

1 0

)
Hα =

(
1 0

0 −1

)
(18.231)

The holomorphic extension of χλ is χλ(b) = bλ11. A holomorphic section of Lχλ is

equivalent to an equivariant holomorphic function

f : SL(2,C) → C (18.232)

such that

f(gb) = χλ(b
−1)f(g) (18.233)

Let us unpack what this means:

Equivariance with respect to matrices of the form
(
1 x

0 1

)
∈ B+ x ∈ C (18.234)

implies

f(

(
r s

t u

)
) = f(

(
r rx+ s

t tx+ u

)
)

(
r s

t u

)
∈ SL(2,C) (18.235)
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which implies that f is only a function of (r, t). 50 Next, invariance with respect to diagonal

matrices (
x 0

0 x−1

)
∈ B+ x ∈ C∗ (18.236)

implies

f(

(
rx sx−1

tx ux−1

)
) = x−λf(

(
r s

t u

)
)

(
r s

t u

)
∈ SL(2,C) (18.237)

Therefore, f(r, t) is homogeneous of degree −λ. If λ > 0 there are no holomorphic functions,

as promised by the above theorem. If λ ≤ 0 then f(r, t) is a homogeneous polynomial of

degree d := |λ|. The space Vd(C2) is well-known to be a standard presentation of the

irreducible spin j = d/2 representation of SU(2) of dimension d+ 1. Indeed, if

g−1
0 =

(
r0 s0
t0 u0

)
∈ SU(2) (18.238)

and if we choose a basis for Vd(C2) of the form fn(r, t) := rntd−n, 0 ≤ n ≤ d, then we can

compute the matrix elements of the representation. By definition:

(L(g0) · fn)(r, t) = fn(r0r + s0t, t0r + u0t) (18.239)

and hence

L(g0) · fn =
∑

n′

D(d)
n′n(g0)fn′ (18.240)

D(d)
n′n(g0) =

∑

p+q=n′

(
n

p

)(
d− n

q

)
rp0t

q
0s
n−p
0 td−n−q0 (18.241)

The functions D(d)
n′n(g0) on SL(2,C) are - up to normalization - known as Wigner functions ♣CHECK! ♣

and special cases include standard functions such as Legendre, associated Legendre, and

spherical harmonics.

Example 2: Antisymmetric tensors of U(n). We now consider the geometrical interpre-

tation of the kth antisymmetric representation of U(n). Consider the Grassmannian of

k-planes in an n-dimensional complex vector space V :

Grk(V ) := {W ⊂ V |dimCW = k} (18.242)

This is a complex manifold. Then there is a natural holomorphic line bundle DET →
Grk(V ). The fiber above a subspace W ∈ Grk(V ) is Λk(W ). It corresponds to a holomor-

phic map fDET : Grk(V ) → P(ΛkV ) defined by mapping the subspace W to the complex

line ΛkW which is a line in the
(n
k

)
-dimensional vector space ΛkV .

50If rt 6= 0 then we can always choose one x to set rx+ s = 0 and another to set tx+ u = 0, so f cannot

be a function of s or u. If r = 0 then st = −1. In particular s is not independent of t and we can choose

an x to set tx+ u = 0. If t = 0 then ru = 1 and a similar argument applies.
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For dimCV = n we claim that, as representations of U(n), Λk(V ) is isomoprhic to

Γ(Grk(V ),DET∨). According to our general principle (18.208) above we have a map

Λk(V )∨ → Γ(Grk(V ),DET∨) (18.243)

In our case it can be defined directly as follows: First Λk(V )∨ ∼= Λk(V ∨). It suffices to

define the map for elements α ∈ ΛkV ∨ of the form α = α1∧· · ·∧αk with αi ∈ V ∨ and then

extend by linearity. The corresponding section sα is a holomorphic map DET → C which

is linear on the fibers. An element of DET in the fiber above W is of the form w1∧· · ·∧wk
for some vectors wi ∈W . We then define

sα(w1 ∧ · · · ∧ wk) := det(αi(wj)) (18.244)

The map (18.243) is clearly injective. Some algebraic geometry allows one to show that

it is surjective, so we get an isomorphism. (Grk(V ) is smooth compact and Kähler.) It

is clearly equivariant. Thus DET∨ has holomorphic sections and therefore DET has no

holomorphic sections. This is in accord with our discussion of holomorphic line bundles

over CPN = Gr1(CN+1).

Remark: The map fDET is very important in algebraic geometry. It is known as the

Plücker embedding. Let us describe it a bit more explicitly. If we choose a basis for V then,

given a basis for W we associate a k × n complex matrix whose rows are the components

of the basis elements of W . Therefore, the space of k-dimensional subspaces together with

ordered basis can be identified with the subspace of the matrices Mk×n(C) which have rank

k. Call this subspace M0
k×n(C). Left action by GL(k,C) corresponds to a change of basis

for W and hence we can identify

Grk(V ) ∼= GL(k,C)\M0
k×n(C). (18.245)

To give the Plücker coordinates of a point in the Grassmannian we start with W , choose

a basis for W and therefore a matrix Λ ∈M0
k×n(C) and associate to it the vector of k × k

minors of Λ. The map descends to a map from the quotient GL(k,C)\M0
k×n(C) to the

projective space P(ΛkV ) ∼= CP (
n
k). To see that the map is an embedding note that for

[ω] ∈ P(ΛkV ) we can define a subspace Vω ⊂ V as the set of vectors such that v ∧ ω = 0.

If [ω] is in the image of the Plücker map applied to W then clearly W ⊂ Vω. On the other

hand, if w1, . . . , wk is a basis forW then we can extend it to a basis for V to show that in fact

Vω = W . (Indeed, simple considerations of linear algebra show that for any [ω] ∈ P(ΛkV )

the map v 7→ v ∧ ω has kernel of dimension ≤ k.) Therefore, we can reconstruct W from

the equation v ∧ ω = 0 and hence the Plücker map is an embedding. ♣Should have

discussion of

decomposable and

indecomposable

elements. ♣

One can show that these Plücker coordinates satisfy a set of quadratic relations which

in fact define the image of the Grassmannian under the Plücker embedding. This exhibits

the Grassmannian as an explicit algebraic variety, indeed as an intersection of quadrics.

See [24]. ♣Should give an

example and/or a

simple explanation.

♣

♣Plucker relations

have a nice

interpretation in

terms of

bosonization of

fermions. Explain?

♣
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Let us now apply these ideas to the Spin group to get a nice geometric insight into one

sense in which the Spin representation is a “squareroot.” (We are again following Pressley

and Segal, chapter 12.)

We apply the above correspondence between maps to projective space and holomorphic

line bundles. In our context of fermions note that given a point in the Grassmannian

G(V,Q) of maximal complex isotropic subspaces of V we automatically have a Fock space

and in particular a vacuum line. That is, the quantum vacuum defines a map

fvac : G(V,Q) → P(Λ∗W ) = P(Sc) (18.246)

To define this more precisely, choose a decomposition V = W ⊕ W̄ . Then fvac maps

W̄ ′ ∈ G(V,Q) to the line in Λ∗W annihilated by W̄ ′. The corresponding line bundle is called

the vacuum line bundle Vac → G(V,Q). (Pressley and Segal call this the Pfaffian bundle

PF → G(V,Q) for reasons explained below.) We then have a BWB-type interpretation of

the spin representation:

Theorem The pin representation of Pin−(2n) can be identified with the holomorphic

sections Γ(Vac∨).

This is the geometical interpretation of the spin representation we wanted to find. Now

we have two geometrical results which beautifully reflect representation-theory facts.

Let

Gr(W̄ ) = ∐nk=0Grk(W̄ ) (18.247)

be the complete Grassmann variety of W̄ . There is a natural embedding of Gr(W̄ ) into

G(V,Q). If W̄1 ⊂ W̄ then we can define W̄ ′ := W⊥
1 ⊕ W̄1 ∈ G(V,Q). Here W⊥

1 ⊂ W

is the orthogonal complement in the Hilbert space inner product h. The space W̄ ′ is

maximal isotropic in V . The map ι1 which takes W̄1 7→ W̄ ′ embeds the Grassmannian of

the n-dimensional complex vector space W̄ into the isotropic Grassmannian of (V,Q).

We thus have the diagram

Gr(W )
ι1 //

fDET

��

G(V,Q)
ι2 //

fvac
��

Grn(V )

fDET

��
P(Λ∗W ) P(Λ∗W ) P(Λ∗V )

(18.248)

where fDET is the Plücker embedding.

To check that the square on the left is commutative note that we can interpretW⊥
1 ⊕W̄1

as a space of annihilation operators of the form:

bi = āi +

n∑

j=k+1

Rijaj 1 ≤ i ≤ k

bi = ai i = k + 1, . . . , n

(18.249)

by choosing āi, i = 1, . . . , k to be a basis for W⊥
1 and ai, i = k + 1, . . . , n to be a basis

for W̄1. Then the line annihilated by the {bi}ni=1 is generated by ā1 · · · āk|0〉. Since the ♣Check. This is not

quite right. ♣
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square commutes we have

ι∗1(Vac) ∼= DET(W ) (18.250)

This is related to the fact that U(n) (or rather, a double cover) acts on the spaces ΛkW

as the kth anti-symmetric power of the fundamental.

Secondly

ι∗2(DET(V )) ∼= (Vac)2 (18.251)

reflecting the fact that the spin representation is a squareroot of the left regular represen-

tation Λ∗V of the Clifford algebra.

Remarks

1. The beautiful story of the Borel-Weil-Bott theorem goes further. One can show that

G/T ∼= Gc/B
+ as manifolds, and indeed with a choice of positive roots G/T can be

given a complex structure so that these are isomorphic as complex manifolds. G/T

is obviously compact and Gc/B
+ is obviously holomorphic.

One can also define natural symplectic forms on G/T so that, if G is compact, it has

finite symplectic volume. These forms are compatible with the complex structures

and make G/T into a Kähler manifold with left-invariant metric.

The Lie algebra g has a natural adjoint action of the group. For matrix groups

Ad(g) : X 7→ gXg−1. The dual representation will be represented by the transpose

inverse. To be precise we define the coadjoint action on g∗ as follows: If v ∈ g∗ and

g ∈ G then

〈Ad∗(g)v, x〉 := 〈v,Ad(g−1)x〉 ∀x ∈ g (18.252)

We can therefore study the orbits of G acting on g∗. By definition, the orbit O(v0)

through v0 ∈ g∗ is isomorphic as a manifold to G/K where K is the stabilizer of v0
under Ad∗. The Kirillov-Kostant-Souriau theorem states that these orbits are in fact

naturally symplectic manifolds: To see this define an antisymmetric form on g by:

ωv0(X,Y ) := v0([X,Y ]) (18.253)

The annihilator of this form is, almost by definition, the Lie algebra of K. Now,

antisymmetric forms on g are two-forms on g∗ (since cotangent vectors on g∗ can be

identified with elements of g). The 2-form on g∗ can be pulled back to O(v0). Since

the annihilator is Lie(K) the 2-form is nondegenerate. Moreover, it is easily seen to

be left-invariant, and hence it defines a symplectic form on O(v0).

It we introduce a Killing form B(X,Y ) = Tr(XY ) on g then we can identify g

with g∗ and define a symplectic form on the G-orbits in g of the form ωv0(X,Y ) =

Tr(v0[X,Y ]) ♣Also explain by

using the structure

constants to define

g as a Poisson

manifold. ♣

If we choose a Cartan subalgebra in g then without loss of generality we can take

v0 to be in t∗. It turns out that if v0 = λ ∈ Λwt then the orbit O(λ) has integral

symplectic volume. We can therefore expect to quantize this symplectic manifold.
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The resulting Hilbert space will be a representation of G and its dimension will be

finite: Up to quantum corrections it will be the symplectic volume.

**** DO EXAMPLE OF SU(2) ****

Viewed as a quantum system the action
∫
(pdq −Hdt) is

∫
(Tr[Λ0(g

−1ġ)]−H)dt (18.254)

If H(t) = Tr[Λ0h(t)] for a Lie-algebra valued function h(t) then the partition function

on the circle will just be

TrRP exp−
∫
h(t)dt (18.255)

♣This all needs a

lot more

explanation to be

comprehensible... ♣
If we introduce a choice of positive roots then we can also take a holomorphic view-

point. The metric g(X,Y ) = ωλ(X, IY ) is a homogeneous Kähler metric for λ a

dominant weight. When it is integral ω is properly normalized for quantization of

the phase space. Now, in the Kähler quantization - also known as the coherent state

formalism - the wavefunctions are holomorphic sections of the holomorphic bundle

Lχ → G/T . The important property mentioned above that Γ(Lχλ) is finite dimen-

sional is now easily understood: On a compact phase space there should be a finite

dimensional space of quantum states.

Some references:

1. Kirillov, Elements of the theory of representations.

2. Perelomov book on coherent states.

3. Raoul Bott, “On induced representations,” in Mathematical Heritage of Hermann

Weyl, or Collected Papers 48 (1994): 402.

4. In the physics literature there are several papers interpreting these facts in terms

of quantum mechanical path integrals [2][5][6]. The holomorphic interpretation we

stressed above can be naturally incorporated by thinking about the supersymmetric

quantum mechanics on G/T using the Kähler structure. [ref to cite??]

2. Comment on infinite dimensions....

Exercise

Describe the line bundlesO(±d) over CPN in terms of patches and transition functions.

Use the natural patches Ui defined by the points with Xi 6= 0.
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18.4.8 The real story: spin representation of Spin(n, n)

Finally, we note a purely real analog of the above construction which is useful in geometry

and supersymmetric quantum mechanics.

We begin with an example:

Let W be a real vector space and consider of dimension n and consider V =W ⊕W∨.

Note that V admits a natural nondegenerate quadratic form of signature (+1n,−1n) where

we take W,W∨ to be isotropic and use the pairing W ×W∨ → R. That is, if we choose a

basis wi for W and a dual basis ŵi for W∨ then with respect to this basis

Q =

(
0 1

1 0

)
(18.256)

The resulting Clifford algebra is Cℓn,−n ∼= End(R2n−1|2n−1
).

We know there is a unique irrep up to isomorphism. One way to construct it is by

taking the representation space to be Λ∗W∨. In close analogy to the complex case we let

ρ(w̌) for w̌ ∈W∨ be defined by wedge product, w̌∧ and we let ρ(w) for w ∈W be defined

by ρ(w) = ι(w) where ι(w) is the contraction operator:

ι(w)(ŵi1 ∧ · · · ∧ ŵin) =
n∑

j=1

(−1)j−1〈w, ŵij 〉ŵi1 ∧ · · · ∧ ŵij−1 ∧ ŵij+1 ∧ · · · ∧ ŵin (18.257)

We then extend to V by linearity. A simple computation shows that

{ρ(w), ρ(w′)} = 0

{ρ(ŵ), ρ(ŵ′)} = 0

{ρ(w), ρ(ŵ′)} = 〈w, ŵ′〉
(18.258)

and thus the Clifford relations are satisfied.

An important example where this appears is in the quantization of fermions in super-

symmetric quantum mechanics. If M is a manifold we can consider TM ⊕T ∗M which has

a natural quadratic form of signature (n, n) since TM and T ∗M are dual spaces. Note that

W = TM a maximal isotropic subspace, and a natural choice of complementary isotropic

subspace is U = T ∗M . Then the Clifford algebra acts on the DeRham complex Λ∗T ∗M .

Now ψµ = ρ(dxµ) is the action by wedge product, and χµ = ρ(wµ) = ι( ∂
∂xµ ) acts by

contraction. Thus we realize the fermionic CCR’s

{ψµ, ψν} = 0

{χµ, χν} = 0

{ψµ, χν} = δµν

(18.259)

on a Hilbert space - the DeRham complex at a point φ ∈M given by the bosonic coordinate.

The above construction can be generalized as follows:

Suppose V is 2n-dimensional with a nondegenerate metric of signature (n, n). Thus

Cℓ(n+, n−) ∼= R(2n) and we wish to construct the 2n-dimensional irrep. Suppose we have
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a decomposition of V into two maximal isotropic subspaces V = W ⊕ U where W,U are

maximal isotropic. That is, with respect to this decomposition we have

Q =

(
0 q

q† 0

)
(18.260)

where q : U →W is an isomorphism.

Then, we claim, the exterior algebra Λ∗(V/W ) is naturally a 2n dimensional represen-

tation of the Clifford algebra on V .

u ∈ U acts on Λ∗(V/W ) by wedge product: Note that V/W acts via wedge product.

Since U is a subspace of V it descends to a subspace of V/W and hence it acts by wedge

product. On the other hand, w ∈W acts by contraction

ι(w)([vi1 ]∧· · ·∧ [vin ]) =

n∑

j=1

(−1)j−1Q(w, vij )[vi1 ]∧· · ·∧ [vij−1 ]∧ [vij+1 ]∧· · ·∧ [vin ] (18.261)

Note that the expression Q(w, vij ) is unambiguous because W is isotropic.

There is an alternative description of the same representation since one can show that

V/W ∼= W ∗. To see this note that given v, ℓv : w 7→ (v,w) is an element of W ∗ and

ℓv = ℓv+w for w ∈ W (since W is isotropic). Thus we could also have represented the

Clifford algebra on Λ∗W ∗. Elements of W act by contraction and elements of U act by

wedge product (where one needs to use the isomorphism V/W ∼=W ∗.)

As in the complex case there is a family of such decompositions, parametrized by a

Grassmannian of isotropic subspaces.

19. Free fermion dynamics and their symmetries

19.1 FDFS with symmetry

Finally, let us define formally what it means for a FDFS to have a symmetry.

Definition: Let (G,φ) be a Z2-graded group with φ : G → Z2. We will say that (G,φ)

acts as a group of symmetries of the FDFS if

1. There is a homomorphism ρ : G→ AutR(HF ) of Z2-graded groups. That is, HF is a

φ-rep of G. (See Section §8.1.)

2. There is a compatible automorphism α of the ∗-algebraA so thatA is a φ-representation

ofG. That is, α(g) is C-linear or anti-linear according to φ and ρ and α are compatible

in the sense that:

ρ(g)ρF (a)ρ(g)
−1 = ρF (α(g) · a) (19.1)

3. The automorphism preserves the real subspace M ⊂ A, and hence we have a group

homomorphism: α : G→ AutR(M, Q) = O(M, Q) ∼= O(N).
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Remarks:

1. Assuming ρF is faithful and surjective (as happens for example if N is even and we

choose an irreducible Clifford module for HF ) the map a 7→ a′ defined by

ρ(g)ρF (a)ρ(g)
−1 = ρF (a

′) (19.2)

defines the automorphism of A. When A is a central simple algebra it must be inner.

The condition (3) above puts a further restriction on what elements we can conjugate

by.

2. We put condition (3) because we want the symmetry to preserve the notion of a

fermionic field. The mode space M is the space of real fermionic fields. It should

then preserve Q because we want it to preserve the canonical commutation relations.

In terms of operators on HF :

ρ(g)ρF (ej)ρ(g)
−1 =

∑

m

SmjρF (em) (19.3)

where g 7→ S(g) ∈ O(N) is a representation of G by orthogonal matrices.

3. When constructing examples it is natural to start with a homomorphism α : G →
O(N). We then automatically have an extension to an automorphism of Cliff(M, Q).

There is no a priori extension to an automorphism of A. The data of the φ-

representation determines that extension because a 7→ ρF (a) is C-linear. It follows

that ρ(g) is conjugate linear iff α(g) is conjugate linear. This tells us how to extend

α to AutR(A).

Examples

1. By its very construction, the group G = Pin+(N) with φ = 1 is a symmetry group of

the FDFS generated by (M, Q) for M of dimension N . We can simply take ρ = ρF .

This forces us to take α = Ad. 51

2. What about G = Pin−(N)? In fact we can make G = Pinc(N) (which contains both

Pin±(N) as subgroups) act. We think of generators of Pinc(N) as ζei where |ζ| = 1

is in U(1). Then ρ(ζei) = ζρF (ei) and α(ζei) = Ad(ei). Again we take φ = 1 in this

example.

3. Now we can ask what Z2-gradings we can give, say, G = Pin+(N). Since we take

φ to be continuous φ = 1 on the connected component of the identity. Then if we

take φ(v) = −1 for some norm-one vector then if v′ is any other norm-one vector

vv′ ∈ Spin(N) and hence φ(vv′) = 1 so φ(v′) = −1. Therefore the only nontrivial Z2-

grading is given by the determinant representation described in (17.30) above. If we

use this then in general there is no consistent action of (G,φ) on the N -dimensional

FDFS. ♣Maybe when CℓN
has real reps it is

ok? ♣51Note that it is Ad and not Ãd. This leads to some important signs below.
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4. To give a very simple example with φ 6= 1 consider N = 2, hence a single oscillator

a, ā and let G = Z4 = 〈T |T 4 = 1〉. Then, in the explicit representation of 18.4.1 take

ρ(T )|+〉 = −|−〉
ρ(T )|−〉 = |+〉

(19.4)

and extend by linearity for φ(T ) = +1, and by anti-linearity for φ(T ) = −1, to define

ρ : G → AutR(HF ). In either case α(T ) · e1 = −e1, but a small computation shows

that

α(T ) · e2 =
{
e2 φ(T ) = +1

−e2 φ(T ) = −1
(19.5)

Note that

α(T ) · a = −ā
α(T ) · ā = −a

(19.6)

in both cases φ(T ) = ±1.

5. Inside the real Clifford algebra generated by ei is a group EN generated by ei. This

group is discrete, has 2N+1 elements and is a nonabelian extension of ZN2 with cocycle

determined from eieje
−1
i e−1

j = −1 for i 6= j. EN is known as an extraspecial group.

Suppose Ti, i = 1, . . . , k with 2k ≤ N generate an extraspecial group Ek of order 2k+1.

Thus, T 2
i = 1 and TiTjT

−1
i T−1

j = −1 for i 6= j. Then there are many Z2 gradings

φ of Ek because we can choose the sign of φ(Ti) independently for each generator.

For each such choice (Ek, φ) acts as a symmetry group of the N -dimensional FDFS.

Using the basis for the explicit representation of 18.4.1 we can take ρ(Ti) = ρF (e2i−1).

Since the latter matrix is real the operators ρ(Ti) can be consistently anti-linearly

extended in the basis of 18.4.1. A small computation shows that

α(Ti) · e2j =
{
−e2j φ(Ti) = +1

e2j φ(Ti) = −1
(19.7)

but

α(Ti) · āj =
{
ai j = i

−aj j 6= i
(19.8)

α(Ti) · aj =
{
āi j = i

−āj j 6= i
(19.9)

independent of the choice of φ.

♣Now comment on

possibilities for φ

and what the Dyson

classes would be.

♣

♣Put general

comments on

dynamics here? ♣– 227 –



19.2 Free fermion dynamics

In general, the Hamiltonian is a self-adjoint element of the operator ∗-algebra and thus

has the form (18.4). We will distinguish a ∗-invariant element h ∈ A from the Fock space

Hamiltonian H := ρF (h).

Usually, for reasons of rotational invariance, physicists restrict attention to Hamilto-

nians in the even part of the Clifford algebra, so then

h = h0 +
∑

k=0(2)

hi1...ikei1...ik (19.10)

with h0 ∈ R and h∗i1...ik = (−1)k/2hi1...ik . These elements generate a one-parameter group

of automorphisms Ad(u(t)) on A where u(t) = e−ith. Related to this is a one-parameter

group of unitary operators

U(t) = ρF (u(t)) = e−itH (19.11)

on HF representing time evolution in the Schrödinger picture.

In the Heisenberg picture Ad(u(t)) induces a one-parameter group of automorphisms

of the algebra of operators and in particular the fermions themselves evolve according to

u(t)−1eiu(t) = ei +
√
−1t

∑

I

hI [eI , ei] +O(t2) (19.12)

where we have denoted a multi-index I = {i1 < · · · < ik}. Terms with k > 2 will clearly

not preserve the subspace M in A.

By definition, a free fermion dynamics is generated by a Hamiltonian h such that

Ad(u(t)) preserves the subspace M. (Note well, when expressed in terms of harmonic

oscillators relative to some complex structure it might or might not commute with F .)

The most general Hamiltonian defining free fermion dynamics is a self-adjoint element of

A = Cliff(M, Q) ⊗ C which can be written with at most two generators. Therefore, the

general free fermion Hamiltonian is

h = h0 +

√
−1

4

∑

i,j

Ajkejek (19.13)

where Aij = −Aji is a real antisymmetric matrix.

Remarks

1. Note well that Aij is an element of the real Lie algebra so(N) and indeed

1

4

∑

j,k

Ajkejek (19.14)

is the corresponding element of spin(N) ∼= so(N).

2. As we remarked, there are two Hilbert spaces associated to the fermionic system. In

the Fock space HF we have Hamiltonian

H = h0 +

√
−1

4

∑

i,j

AjkρF (ejek) (19.15)
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and, up to a trivial evolution by e−ih0t, the free fermion dynamics is the action of a

one-parameter subgroup U(t) of Spin(2N) acting on the spin representation, in the

Schrödinger picture. In the Heisenberg picture the corresponding dynamical evolu-

tion preserves the real subspace M ⊂ A is given by the real vector representation:

Ãd(u(t)).

3. Upon choosing a complex structure we have a second Hilbert space, the Dirac-Nambu

Hilbert space HDN := V ∼=W ⊕ W̄ and, (only in the case of free fermion dynamics)

U(t) induces an action on V . This is simply Ãd(u(t)) on M extended C-linearly to

V = M ⊗ C. The “Dirac-Nambu Hamiltonian” is therefore just ρDN (h) := Ad(h)

acting on V , thought of as a subspace of Cliff(V,Q).

4. Any real antisymmetric matrix can be skew-diagonalized by an orthogonal transfor-

mation. That is, given Aij there is an orthogonal transformation R so that

RARtr =

(
0 λ1

−λ1 0

)
⊕ · · · ⊕

(
0 λn

−λn 0

)
(19.16)

The Bogoliubov transformation corresponding to R can be implemented unitarily and

hence if h0 is zero then the spectrum of Ĥ must be symmetric about zero. Therefore

this is a system in which it is possible to have symmetries with χ 6= 0. In this basis

we simply have (with h0 = 0)

h =
∑

λj ājaj −
1

2
(λ1 + · · ·+ λn) (19.17)

The spectrum of the Hamiltonian on HDN is {±λj} and on HF is {1
2

∑
i ǫiλi} where

ǫi ∈ {±1}.

Exercise

Compute the time evolution on M of the one-parameter subgroup generated by the

self-adjoint operator ei.
52

19.3 Symmetries of free fermion systems

Now suppose we have a Z2-graded group (G,φ) acting as a group of symmetries of a

finite dimensional fermion system. We therefore have the following data: (M, Q) together

with a ∗-representation of A = Cliff(V ;Q) on the Hilbert space HF together with the

homomorphisms α and ρ satisfying (19.1).

Suppose furthermore that we have a free fermionic system, hence a Hamiltonian of the

form (19.13).

52Answer : ej(t) = cos(2t)ej + i sin(2t)eiej for j 6= i and ei(t) = ei.
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Definition: We say that G is acting as a group of symmetries of the dynamics of the free

fermionic system if

ρ(g)U(s)ρ(g) = U(s)τ(g) (19.18)

for some homomorphism τ : G→ Z2. Here U(s) = exp[−isH/~] is the one-parameter time

evolution operator. If (19.18) holds then we declare g with τ(g) = −1 to be time-reversing

symmetries.

1. The above definition looks like a repeat of our previous definition of a symmetry

of the dynamics from Section §9. The data (M, Q,HF , G, φ, α, ρ,H) determine

ρ(g)Hρ(g)−1. With our logical setup here, a symmetry of the fermionic system is a

symmetry of the dynamics if there is some homomorphism χ : G→ Z2 so that

ρ(g)Hρ(g)−1 = χ(g)H (19.19)

Then because general quantum mechanics requires φτχ = 1, we will declare g to

be time-orientation preserving or reversing according to τ(g) := φ(g)χ(g). This

logic is reversed from our standard approach where we consider φ determined by

an a priori given homomorphism G → Autqtm(PH) together with an a priori given

homomorphism τ determined by an a priori action on spacetime.

2. There will be physical situations, e.g. a single electron moving in a crystal where

there is an a priori notion of what time-reversing symmetries should be and how

they should act on fermion fields.

3. Let us see what the above definition implies for the transformation of the oscillators

under Ãd. Choose an ON basis for (M, Q) satisfying (18.3). Then, in terms of

operators on HF : ♣Maybe Smj

should be α(g)mj .

♣ρ(g)ρF (ej)ρ(g)
−1 =

∑

m

SmjρF (em) (19.20)

Or, equivalently:

α(g) · ej =
∑

m

Smjem (19.21)

so

ρ(g)Hρ(g)−1 = h0 + φ(g)
i

4

∑

m,n

(SAStr)mnρF (emen)

= χ(g)H

(19.22)

This shows that

1. If χ(g) = −1 for any g ∈ G then h0 = 0.

2. The matrix A must satisfy

S(g)AS(g)tr = τ(g)A (19.23)
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for all g ∈ G, where τ(g) is either prescribed, or deduced from τ = φ · χ, depending
on what logical viewpoint we are taking.

The condition (19.23) can be expressed more invariantly: Given α : G → O(M, Q)

there is an induced action Adα(g) on o(M, Q), and we are requiring that

Adα(g)A = τ(g)A. (19.24)

19.4 The free fermion Dyson problem and the Altland-Zirnbauer classification

There is a natural analog of the Dyson problem suggested by the symmetries of free

fermionic systems:

Given a finite dimensional fermionic system (M, Q,HF , ρF ) and a Z2-graded group

(G,φ) acting as a symmetry on the FDFS via (α, ρ), what is the ensemble of free Hamil-

tonians for the FDFS such that (G,φ) is a symmetry of the dynamics?

Note well! We have changed the Dyson problem for the φ-rep HF of G in a crucial

way by restricting the ensemble to free fermion Hamiltonians.

Our analysis above which led to (19.23) above shows that the answer, at one level, is

immediate from (19.23): We have the subspace in o(Q;R) satisfying (19.23). Somewhat

surprisingly, this answer depends only on α and τ as is evident from (19.24). For a given

τ there can be more than one choice for φ and χ.

However, the answer can be organized in a very nice way as noticed by Altland and

Zirnbauer [4]: Such free fermion ensembles can be identified with the tangent space at the

origin of classical Cartan symmetric spaces. This result was proved more formally in a

subsequent paper of Heinzner, Huckleberry, and Zirnbauer [25]. In the next section we

explain the main idea.

19.4.1 Classification by compact classical symmetric spaces

Let us consider two subspaces of o(2n;R):

k := {A|Adα(g)(A) = A} (19.25)

p := {A|Adα(g)(A) = τ(g)A} (19.26)

p is of course the ensemble we want to understand. If τ = 1 it is identical to k but in

general, when τ 6= 1 it is not a Lie subalgebra of o(2n;R) because the Lie bracket of two

elements in p is in k. This motivates us to define a Lie algebra structure on

g = k⊕ p (19.27)

by

[k1 ⊕ p1, k2 ⊕ p2] := ([k1, k2] + [p1, p2])⊕ ([p1, k2] + [k1, p2]) (19.28)

One can check this satisfies the Jacobi relation.

Note that we have an automorphism of the Lie algebra which is +1 on k and −1 on p,

so this is a Cartan decomposition.
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Both k and g are classical Lie algebras: This means that they are Lie subalgebras of

matrix Lie algebras over R,C,H preserving a bilinear or sesquilinear form.

To prove this for k: Note that we have a representation of G on o(M;Q) ∼= o(2n;R).

If G is compact this representation must decompose into irreducible representations. The

group algebra is therefore a direct sum of algebras of the form nK(m) where K = R,C,H.

By the Weyl duality theorem (8.45),(8.46) the commutant is mK(n). Since k is, by def-

inition, the commutant, when restricted to each irreducible representation exp[k] must

generate a matrix algebra over R,C,H. Therefore, k is a classical Lie algebra.

A similar argument works to show that g is a classical Lie algebra. There is a Lie

algebra homomorphism

g → o(M, Q) ⊕ o(M, Q) (19.29)

given by

k ⊕ p→ (k + p)⊕ (k − p) (19.30)

Now, we can characterize g as the commutant of a representation of G on M⊕M given

by ♣Should α(g) be

denoted S(g)? ♣

g 7→
(
α(g) 0

0 α(g)

)
τ(g) = 1 (19.31)

g 7→
(

0 α(g)

α(g) 0

)
τ(g) = −1 (19.32)

We embed g into o(M) ⊕ o(M). The matrices in the commutant of the form x ⊗ 12 is

isomorphic to k and the matrices in the commutant of the image of G which are of the

form x⊗ σ3 is isomorphic to p. Hence k and g are both classical real Lie algebras. ♣explain why we

don’t need to worry

about other kinds of

matrices in the

commutant. ♣

Next, note that the Killing form of o(M;Q) restricts to a Killing form on k and on g.

It is therefore negative definite. Hence the real Lie algebras k and g are of compact type.

This proves the theorem of [25]:

Theorem: The ensemble p of free fermion Hamiltonians in Cliff(M, Q)⊗C compatible

with (α, τ) is the tangent space at the identity of a classical compact symmetric space G/K.

We have collected a few definitions and facts about symmetric spaces in Appendix C.

19.4.2 Examples of AZ classes

1. Let G = Spin(2). Choose an ON basis {ei} for M and consider G to be the subgroup

generated by 1
2e12 + · · · + 1

2e2n−1,2n. Then take ρ = ρF and α = Ãd. If we choose

the complex structure (18.33) then the group commutes with the Fermion number

operator F and the action of

Ad

(
exp[θ(

1

2
e12 + · · ·+ 1

2
e2n−1,2n)]

)
(19.33)

takes

ai → e2iθai āi → e−2iθāi (19.34)
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Since G = Spin(2) is connected we must take φ = χ = τ = 1. Therefore the free

fermion Hamiltonians which respect this symmetry have the form

h = h0 +

n∑

i,j=1

hij āiaj (19.35)

where hij is an Hermitian matrix. We easily compute that in this example k ∼= u(n)

and p ∼= u(n) (as a vector space) so that g = k⊕ p ∼= u(n)⊕ u(n) (as a Lie algebra),

where k is the diagonal and p is the antidiagonal. In this case

G/K = (U(n)× U(n))/U(n) (19.36)

2. Let G = Z2
∼= {1, T̄ } and choose τ(T̄ ) = −1 and let α(T̄ ) be

(
1ℓ 0

0 −1N−ℓ

)
(19.37)

in an ON basis for (M, Q). Then k ∼= o(ℓ)⊕ o(N − ℓ) is the Lie subalgebra of N ×N

of matrices of the form (
A 0

0 D

)
(19.38)

and p is the subspace of matrices of the form

(
0 B

−Btr 0

)
(19.39)

so the symmetric space is

G/K = O(N)/O(ℓ)×O(N − ℓ). (19.40)

Explicitly, this class of Hamiltonians is:

h =
i

2

ℓ∑

j=1

N∑

ℓ+1

Bjkejek (19.41)

where Bjk is a real ℓ× (N − ℓ) matrix. ♣Note we said

nothing about ρ, φ,

χ. ♣

3. Let G = Pinc(1). This has two components, consisting of ζ ∈ U(1) and ζT with

T 2 = 1 and τ(ζT ) = −1. We suppose N = 2n and for ζ = eiθ we let

ρ(ζ) = ρF

(
exp[θ(

1

2
e12 + · · · + 1

2
e2n−1,2n)]

)
(19.42)

and we take ρ(T ) so that α(T ) has the form (19.37) with ℓ = 2k. Then k ∼= u(k) ⊕
u(n− k) and p is the tangent space to

G/K = U(n)/(U(k) × U(n− k)). (19.43)
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4. Returning to G = Z2 suppose α(T̄ ) = I0 where I0 is given in (7.9) and τ(T̄ ) = −1.

Then k ∼= u(n). Writing I0 = 1n ⊗ ǫ we see that p consists of matrices of the form

b⊗ (x1σ
1 + x2σ

3) where b is real antisymmetric and x1, x2 are real. Thus, using the

oscillators suited to I0 the Hamiltonian is of the form

h =
1

2

n∑

i,j=1

(
βij āiāj + β∗ijajai

)
(19.44)

where βij is complex antisymmetric. In this case G/K = SO(2n)/U(n).

It is interesting to compare the AZ ensembles with the ensembles of Hamiltonians one

would meet in Dyson’s 3-fold way or in the 10-fold way in the above examples. In each

example there are two relevant Hilbert spaces to consider, namely HDN and HF .

In example 1 above, for example, HDN has isotypical decomposition:

HDN
∼= Cn ⊗ V2 ⊕ Cn ⊗ V−2 (19.45)

where Vq denotes the one-dimensional irrep of Spin(2) of charge q (normalized to be inte-

gral). The commutant for these irreps is D = C. The ensemble of commuting Hamiltonians

is therefore Hermn(C)×Hermn(C). Applied to the Fock space the isotypical decomposition

is

HF
∼= ⊕n

k=0C
(nk) ⊗ V2k−n (19.46)

and so Dyson’s ensemble is
∏
kHerm(nk)

(C).

In example 2 above we have a group with more than one component and hence, in order ♣Answers here are

a bit strange and

need to be

rechecked! ♣

even to begin discussing the 3-fold or the 10-fold way classification of ensembles on HDN

or HF we need to choose φ and χ. There are two possibilities: (φ(T̄ ) = +1, χ(T̄ ) = −1)

and (φ(T̄ ) = −1, χ(T̄ ) = +1). We discuss each of these in turn.

If (φ(T̄ ) = +1, χ(T̄ ) = −1) then a (φ, χ)-rep must be a graded rep of Z2 and there is

one irrep, which is up to isomorphism V ∼= C1|1 with ρ(T̄ ) = σ1. Now, in order to have

a “gapped Hamiltonian” with 0 not in the spectrum we must have 2ℓ = N . Then the

isotypical decomposition of the Dirac-Nambu space is

HDN
∼= Rℓ ⊗ V (19.47)

The supercommutant of V is generated over C by 1 and ǫ and is isomorphic to Cℓ1.

Therefore, the supercommutant in HDN is Matℓ(Cℓ1). Typical elements can be written as

A+ iBǫ where A,B are ℓ× ℓ complex matrices (and the factor of i in front of B is chosen

for convenience). When we impose the Hermiticity condition we see that A and B are

Hermitian and the ensemble is therefore Hermℓ(C)×Hermℓ(C). ♣Discuss HF . ♣

Now let us consider the possibility (φ(T̄ ) = −1, χ(T̄ ) = +1). In this case Z2-graded

group M2 has two irreducible φ-representations, namely V± ∼= C with ρ(T̄ ) acting by

z → ±z̄. Here the commutant is DV± = R for both irreps.

Now, for simplicity take ℓ = 2k and N = 2n. Given the action α(T̄ ) on the ej we

extend it to A using φ and get:

α(T̄ ) : āj ↔ aj j = 1, . . . , k

āj ↔ −aj j = k + 1, . . . , n
(19.48)
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Now the Dirac-Nambu Hilbert space has isotypical decomposition:

HDN
∼= Rk ⊗ (V+ ⊕ V−)⊕ Cn−k ⊗ (V+ ⊕ V−) (19.49)

and hence the Dyson ensemble is E = Hermn(R)×Hermn(R). Now consider the ensemble

for HF . When we make α(T ) : ā↔ −a compatible with ρF we find a surprise: There is no

consistent action! Rather, in harmony with the general principles described in Section 6

(see especially (6.12) ) only the φ-twisted extensionM−
2 acts on HF , which now must carry

a quaternionic structure, and the ensemble of commuting Hamiltonians is again different. ♣FINISH THIS! ♣

One lesson we learn is that the different choices of (φ, χ) for fixed τ lead to different

ensembles, so when discussing a “10-fold way” one must be very careful about the precise

physical question under consideration!

Exercise

Analyze the Dyson ensembles for bothHDN andHF for the remaining examples above.

19.4.3 Another 10-fold way

Remarks

1. Cartan classified the compact symmetric spaces. They are of the form G/K where G

and K are Lie groups. There are some exceptional cases and then there are several

infinite series analogous to the infinite series A,B,C,D of simple Lie algebras. These

can be naturally organized into a series of 10 distinct classical symmetric spaces.

Thus, the Altland-Zirnbauer argument provides a 10-fold classification of ensembles

of free fermionic Hamiltonians. This gives yet another 10-fold way! We will relate it

to the 10 Morita equivalence classes of Clifford algebras (and thereby implicitly to

the 10 real super-division algebras) below. That relation will involve K-theory.

2. Using the description of the 10 classes given in (C.7) - (C.17) one can give a description

of the 10 AZ classes along the following lines. Recalling (18.124) we can, with a

suitable choice of complex structure as basepoint write the free fermion hamiltonian

as

h =
∑

i,j

Wij āiaj +
1

2

∑

i,j

(
Zij āiāj + Z̄ijajai

)
(19.50)

where Wij is hermitian and Zij is a complex antisymmetric matrix. Then the 10

cases correspond to various restrictions on Wij and Zij. See Table 1 of [44]. ♣Should probably

reproduce that table

here and explain the

entries in detail. ♣19.5 Realizations in Nature and in Number Theory

1. For realizations of the various AZ classes in physical systems see the descriptions in

[43, 44].

2. For realizations of the various classes in Number Theory see the review by Conrey

[14]. ♣Find a more up to

date review. ♣
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20. Symmetric Spaces and Classifying Spaces

20.1 The Bott song and the 10 classical Cartan symmetric spaces

Now we will give an elegant description of how the 10 classical symmetric spaces arise

directly from the representations of Clifford algebras. This follows a treatment by Milnor

[31]. Then, thanks to a paper of Atiyah and Singer [9] we get a connection to the classifying

spaces of K-theory. Milnor’s construction was discussed in the context of topological

insulators by Stone et. al. in [38].

We begin by considering the complex Clifford algebra Cℓ2d and an irreducible repre-

sentation, which, as a graded representation is Sc = C2d−1|2d−1
. However, we will here

consider the Clifford algebra as an ungraded algebra and hence we forget the grading on

the representations. Give it the standard Hermitian structure. We can then take the rep- ♣Surely it would be

better to keep the

grading... ♣resentation of the generators Ji = ρ(ei) so that J2
i = 1, J†

i = Ji and hence Ji are unitary.

Then we define a sequence of groups

G0 ⊃ G1 ⊃ G2 ⊃ · · · (20.1)

We take G0 = U(2r) where we have denoted 2d = 2r and we define

Gk = {g ∈ G0|gJs = Jsg s = 1, . . . , k} (20.2)

We claim that G1
∼= U(r)×U(r). One way to see this is to note that Gk is the commutant

of the image of Cℓk in End(Sc). As an ungraded algebra Cℓ1 has two irreps and so we can

write Sc as a sum of ungraded irreps of Cℓ1 and it is easy to show (see below) that they

occur as:

Sc ∼= rN+
1 ⊕ rN−

1 (20.3)

and therefore the algebra ρ(Cℓ1) has Wedderburn type

rC⊕ rC (20.4)

so the commutant must have Wedderburn type

C(r)⊕ C(r) (20.5)

and the intersection with Aut(Sc), which gives precisely G1, must be

G1
∼= U(r)× U(r) (20.6)

As a check on this reasoning note that we could represent

ρ(e1) = J1 =

(
0 1r
1r 0

)
(20.7)

and hence the matrices which commute with it are of the form
(
A B

B A

)
(20.8)
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But such matrices are unitary iff (A±B) are unitary. So the group of such unitary matrices

is isomorphic to U(r) × U(r), as claimed. The more abstract argument will be useful in

the real case below.

Next for G2, Cℓ2 ∼= M2(C), so ρ(Cℓ2) has Wedderburn type rC(2) and hence the

commutant is 2C(r) so the group G2 is isomorphic to U(r). As r is a power of 2 we clearly

have periodicity so that our sequence of groups is isomorphic to

U(2r) ⊃ U(r)× U(r) ⊃ U(r) ⊃ · · · (20.9)

The successive quotients give the two kinds of symmetric spaces U(2r)/(U(r)×U(r)) and

(U(r)× U(r))/U(r). ♣Don’t get

Grassmannians

Grn,m with n 6= m.

♣

Now let us move on to the real Clifford algebra Cℓ−8d. We choose a real graded

irreducible representation, End(RN |N), with 2N = 24d. It is convenient to define an in-

teger r by 2N = 16r. Again, we will regard the Clifford algebras as ungraded and the

representation S ∼= R2N . Denote the representations of the generators Ji = ρ(ei), so of

course

JsJt + JtJs = −2δs,t. (20.10)

We can give S a Euclidean metric so that the representation of Pin−(8d) is orthogonal.

Therefore, J†
i = −Ji, so J tri = −Ji, and hence Ji ∈ o(2N). However, since J2

i = −1 we

have J tri = J−1
i and hence we also have Ji ∈ O(2N).

Now we define a sequence of groups

G0 ⊃ G1 ⊃ G2 ⊃ · · · (20.11)

These are defined by taking G0 := O(2N) and for k > 0 defining

Gk = {g ∈ G0|gJs = Jsg s = 1, . . . , k} (20.12)

Now, we claim that the series of groups is isomorphic to

O(16r) ⊃ U(8r) ⊃ Sp(4r) ⊃ Sp(2r)× Sp(2r) ⊃ Sp(2r) ⊃
⊃ U(2r) ⊃ O(2r) ⊃ O(r)×O(r) ⊃ O(r) ⊃ · · ·

(20.13)

We will show that this follows easily from the basic Bott genetic code:

R,C,H,H⊕H,H,C,R,R⊕ R,R, · · · (20.14)

The argument proceeds as follows. Note that Gk is in the commutant of the image of

the Clifford algebra Cℓ−k ⊂ Cℓ−8d. Now, we decompose S in terms of ungraded irreps of

Cℓ−k. For k 6= 3mod4 there is a unique irrep Nk up to isomorphism, and for k = 3mod4

there are two N±
k . Therefore, S ∼= N⊕sk

k for k 6= 3mod4 and S ∼= (N+
k )⊕sk ⊕ (N−

k )⊕sk

for k = 3mod4. The number of summands is the same N±
k for k = 3mod4 because the

decomposition is effected by the projection operator using the volume form P± = 1
2(1±ωk)

and TrS(ωk) = 0 for all k. Now, the image of the Clifford algebra in End(S) (as an

ungraded algebra) will have be isomorphic to skK(tk) for k 6= 3mod4 and skK(tk)⊕skK(tk)
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for k = 3mod4. Therefore, by the Weyl theorem the commutant Z(ρ(Cℓ−k)) will be

isomorphic to tkK(sk) for k 6= 3mod4 and tkK(sk) ⊕ tkK(sk) for k = 3mod4. When we

intersect Z(ρ(Cℓ−k)) with Aut(S) ∼= O(16r) we get the group Gk. In this way we determine

the following table

k Bott clock ρ(Cℓ−k) Z(ρ(Cℓ−k)) Gk
0 R 16rR R(16r) O(16r)

1 C 8rC C(8r) U(8r)

2 H 4rH Hopp(4r) Sp(4r)

3 H⊕H 2rH⊕ 2rH Hopp(2r)⊕Hopp(2r) Sp(2r)× Sp(2r)

4 H 2rH(2) 2Hopp(2r) Sp(2r)

5 C 2rC(4) 4C(2r) U(2r)

6 R 2rR(8) 8R(2r) O(2r)

7 R⊕ R rR(8)⊕ rR(8) 8R(r)⊕ 8R(r) O(r)×O(r)

8 R rR(16) 16R(r) O(r)

We should stress that the entries for ρ(Cℓ−k), Z(ρ(Cℓ−k)), and Gk just give the iso-

morphism type. Of course, r is some power of 2 and for large d we can repeat the periodic

sequence down many steps. ♣NEED TO DO

COMPLEX CASE

OF CARTAN

EMBEDDING ♣

The series of homogeneous spaces Gk/Gk+1 for k ≥ 0 provide examples of the Cartan

symmetric spaces (for ranks which are a power of two!). Note that the tangent space at

1 · Gk+1 has an elegant description. First define g0 := T1G0 = o(2N). Now for k > 0

define:

gk := T1Gk = {a ∈ o(2N)|aJs = Jsa s = 1, . . . , k}. (20.15)

Observe that, for k ≥ 0, the map θk(a) = Jk+1aJ
−1
k+1 acts as an involution on gk and that

the eigenspace with θk = +1 is just gk+1. Therefore we can identify

pk := TGk+1
Gk/Gk+1 = {a ∈ o(2N)|aJs = Jsa s = 1, . . . , k & aJk+1 = −Jk+1a}

(20.16)

so that

gk = gk+1 ⊕ pk (20.17)

20.2 Cartan embedding of the symmetric spaces

The involution θk described above extends to a global involution τk : Gk → Gk defined by

conjugation with Jk+1:

τk(g) = Jk+1gJ
−1
k+1 (20.18)

Of course, the fixed subgroup of τk inGk isGk+1 so the Cartan symmetric space isGk/Gk+1.

Moreover, the Cartan embedding of this symmetric space is just

Ok = {g ∈ Gk|τk(g) = g−1} ⊂ Gk ⊂ O(2N) k ≥ 0. (20.19)
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Let us unpack this definition: The condition τk(g) = g−1 is equivalent to the condition

(Jk+1g)
2 = −1. Therefore, writing g̃ = Jk+1g we can also write

Õk = {g̃ ∈ O(2N)|g̃2 = −1 {g̃, Js} = 0 s = 1, . . . , k} (20.20)

The map g 7→ g̃ = Jk+1g is a simple diffeomorphism so Õk
∼= Gk/Gk+1, and Õk is also

embedded in O(2N). This manifestation of the homogeneous space will be more convenient

to work with. Note that:

· · · ⊂ Õk+1 ⊂ Õk ⊂ · · · (20.21)

When we wish to emphasize the dependence on N we will write Õk(N).

Since g = ±1 is in Ok we have ±Jk+1 ∈ Õk, as is immediately verified from the

definition. (Note that ±1 are not elements of Õk.) Let us compute the tangent space to

Õk at Jk+1. A path through Jk+1 must be of the form Jk+1e
ta where a ∈ T1Ok = pk.

Therefore there is an isomorphism T1Ok ↔ TJk+1
Õk given simply by left-multiplication

by Jk+1. Now a ∈ T1Ok iff atr = −a, [a, Js] = 0 for s = 1, . . . , k and {a, Jk+1} = 0 and

therefore

p̃k := TJk+1
Õk = {ã ∈ o(2N)|{ã, Js} = 0, s = 1, . . . , k + 1} (20.22)

20.3 Application: Uniform realization of the Altland-Zirnbauer classes

The characterization (20.20) of p̃k is nicely suited to a realization of 8 of the 10 AZ classes

of free fermion Hamiltonians. We take a FDFS based on M = R2N with Q the Euclidean

metric. We take as our symmetry group G = Pin−(k + 1) with Clifford generators Ti.

We choose the nontrivial option for τ on G, thus τ(Ti) = −1 for i = 1, . . . , k + 1. For

α we choose the embedding of G into O(2N) using α(Ti) = Ad(ei) (not Ãd) acting on

M ⊂ Cℓ−8d. Comparing the definitions (19.25) and (19.26) we find that we have precisely

k = gk

p = p̃k
(20.23)

thus neatly exhibiting examples of 8 of the AZ 10 classes.

The remaining two AZ classes follow from completely analogous manipulations for the

series U(2r) ⊃ U(r)× U(r) ⊃ U(r) ⊃ · · · .
Remarks:

1. Note that our fermionic oscillators are a basis for the spin representation of Spin(8d).

So their Hilbert space will be a representation of the much larger group Spin(2N) of

dimension 2N = 22
8r

= 22
4d−1

.

2. This example can be extended to compute the 3- and 10-fold classes on HDN and HF .

Again there are two options (φ(Ti) = +1, χ(Ti) = −1) and (φ(Ti) = −1, χ(Ti) = +1).

Representing the Ji by real matrices on HF we can take ρ = ρF restricted to Cℓ−k−1.

♣Finish by

analyzing the

classes with this

choice. ♣
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20.4 Relation to Morse theory and loop spaces

The homogeneous spaces Õk have a further beautiful significance when we bring in some

ideas from Morse theory.

We consider the quantum mechanics of a particle moving on these manifolds using the

action

S[q] = −
∫
dtTr(q−1dq

dt
)2 (20.24)

where q(t) is a path in the orthogonal group or one of the Õk.

We begin with quantum mechanics on SO(2N). We choose boundary conditions and

define P0 to be the space of (continuously differentiable) paths q : [0, 1] → SO(2N) such

that q(0) = +12N and q(1) = −12N . We are particularly interested in the minimal action

paths. Such paths will be geodesics in the left-right-invariant metric. The geodesics are

well known to be of the form q(t) = exp[πtA] with A ∈ so(2N). We can always conjugate

A to the form (
0 a1

−a1 0

)
⊕ · · · ⊕

(
0 aN

−aN 0

)
(20.25)

where ai ∈ R. This has action 2π2
∑
a2i and the boundary conditions imply that ai are

odd integers. Therefore the minimal action paths have ai = ±1 and hence the space of

minimal action paths is precisely given by the conjugacy class of A ∈ o(2N) with A2 = −1.

Moreover, such paths have a very simple form:

q(t) = cos πt+A sinπt (20.26)

Now, notice a trivial but significant fact:

1. If g ∈ O(2N) is an orthogonal matrix and g2 = −1 then gtr = −g and hence

g ∈ o(2N) is also in the Lie algebra.

2. If A ∈ o(2N) is in the Lie algebra and A2 = −1 then Atr = A−1 and hence A ∈ O(2N)

is also in the Lie group.

Therefore, the space of minimal action paths in P0 is naturally identified with

Õ0 := {g ∈ O(2N)|g2 = −1} ⊂ O(2N). (20.27)

Of course Õ0 is J1O0 where O0 is the Cartan embedding of G0/G1 = O(2N)/U(N).

Now let us consider the quantum mechanics of a particle on the orbit Õ0, again with the

action (20.24). We choose boundary conditions so that P1 consists of maps q : [0, 1] → Õ0

such that q(0) = J1 and q(1) = −J1. The solutions to the equations of motion are of the

form 53 g(t) = J1exp[πtA] where now A ∈ p0 implies {A, J1} = 0, which guarantees that

the path indeed remains in Õ0. Again, the boundary conditions together with the minimal

action criterion implies that A2 = −1, so we can write:

g(t) = J1exp[πtA] = J1 cosπt+ (J1A) sinπt = J1 cos πt+ Ã sinπt (20.28)

53We use the fact that Õ0 is totally geodesic.
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Because A ∈ p0 both A and Ã = J1A are both antisymmetric and square to −1: A2 =

−1 = Ã2. We can therefore consider A and Ã to be in O(2N) and hence the minimal

action paths on Õ0 are parametrized by A, or better by Ã, and hence the space of minimal

actions paths is naturally identified, via the mapping g(t) 7→ Ã with Õ1 ⊂ O(2N).

This stunningly beautiful pattern continues: We take

Pk := {q : [0, 1] → Õk|q(0) = Jk+1 q(1) = −Jk+1} (20.29)

Since Õk is totally geodesic the solutions to the equations of motion are of the form

Jk+1exp[πAt] with A ∈ pk. The minimal action paths have A2 = −1 and hence they

are of the form

g(t) = Jk+1exp[πtA] = Jk+1 cosπt+ (Jk+1A) sin πt = Jk+1 cos πt+ Ã sinπt (20.30)

But now Ã2 = −1 and Ã ∈ Õk+1, so we can identify the space of minimal action paths in

Pk with Õk+1.

The space of minimal action paths in the set Pk of all smooth paths [0, 1] → Õk from Jk+1

to −Jk+1 is naturally identified with Õk+1 by equation (20.30).

c

Figure 16: The minimal length geodesics on SN from the north pole to the south pole are

parametrized by SN−1. Similarly, the geodesics in Õk from Jk+1 to −Jk+1 are parametrized by

Õk+1.

Remark: A good analogy to keep in mind is the length of a path on the N -dimensional

sphere. If we consider the paths on SN from the north pole N to the south pole S then

– 241 –



the minimal length paths are great circles and are hence parametrized by their intersection

with the equator SN−1. See Figure 16.

The great significance of this comes about through Morse theory. The action (20.24)

for the paths is a (degenerate) Morse function on Pk and the critical manifolds allow us to

describe the homotopy type of Pk. One considers a series of “approximations” to Pk by

looking at paths with bounded action:

Ps
k := {q ∈ Pk|S[q] ≤ s} (20.31)

As we have seen, the minimal action space is Psmin
k

∼= Õk(N) ⊂ O(2N). Now – it turns out

– that the solutions of the equations of motion which are non-minimal have many unstable

modes. The number of unstable modes is the “Morse index.” The number of unstable

modes is linear in N . The reason this is important is that in homotopy theory the way Ps
k

changes as s crosses a critical value is

Ps∗+ǫ
k ∼ (Ps∗−ǫ

k ×Dλ)/ ∼ (20.32)

where λ is the number of unstable modes at the critical value s∗ and Dλ is a ball of

dimension λ. This operation does not change the homotopy groups πj for j < λ. Therefore,

in this topological sense, Õk(N) gives a “good approximation” to Pk(N).

On the other hand, the spaces Pk have the same homotopy type as the based loop spaces

Ω∗Õk. Indeed, choosing any standard path from −Jk+1 to Jk+1 we can use it to convert

any path in Pk to a loop Ω∗Õk based, say, at Jk+1 by composition. Conversely, composing

the (inverse of) the standard path with any loop gives a path in Pk. The importance of

relating these spaces to loop spaces is that

1. We get a nice proof of Bott periodicity [31].

2. We thereby make a connection to generalized cohomology theory through the notion

of a spectrum. ♣Both of these

points require a lot

more explanation.

♣20.5 Relation to classifying spaces of K-theory

The fact that the Morse index for the space of paths Pk(N) (where the N -dependence

comes from the fact that the paths are in Õk(N) ⊂ O(2N) ) grows linearly in N suggests

that it will be interesting to take the N → ∞ limit. We can do this as follows:

We make a real Hilbert space by taking a countable direct sum of copies of simple

modules of the real Clifford algebra Cℓ−(k+1). Specifically we define, for k ≥ 0, 54

Hk
R :=

{
Nk+1 ⊗ ℓ2(R) k 6= 2(4)

(N+
k+1 ⊕N−

k+1)⊗ ℓ2(R) k = 2(4)
(20.33)

and for an integer n let Hk
R(n) be the sum of the first n representations Nk+1 or (N+

k+1 ⊕
N−
k+1). Now define a subspace of the space of orthogonal operators Ωk(n) ⊂ O(Hk

R). These

are operators which satisfy the following three conditions:

54Recall that Nk denote irreducible ungraded Clifford modules.
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1. They preserve separately Hk
R(n) and Hk

R(n)
⊥.

2. They are just given by A = Jk on Hk
R(n)

⊥

3. On Hk
R(n) they satisfy:

A2 = −1

{A, Ji} = 0 i = 1, . . . , k − 1
(20.34)

We recognize that Ωk(n) ∼= Õk−1(N) where N and n are linearly related. (We define

Õ−1(N) := O(2N) so this holds for k ≥ 0.) Now, from this description it is easy to see

that there are embeddings

Ωk(n) →֒ Ωk(n+ 1) (20.35)

and we can take a suitable “n→ ∞ limit” and norm closure to produce a set of operators

Ωk(∞) on Hk
R. In [9] Atiyah and Singer show that this set of operators is closely related

to a set of Fredholm operators on Hk
R.

Define F0 to be the set of all Fredholm operators on Hk
R, and let F1 ⊂ F0 denote the

subspace of skew-adjoint Fredholm operators: Atr = −A. (Formally, this is the Lie algebra

of O(Hk
R). ) Now for k ≥ 2 define Fk ⊂ F1 to be the subspace such that 55

TJi = −JiT i = 1, . . . , k − 1 (20.36)

Now, the space of Fredholm operators has a standard topology using the operator

norm topology. Using this topology Atiyah and Singer prove ♣You are changing

k’s here. Need to

clarify. ♣

1. Fk ∼ Ωk−1(∞) ∼= Õk−2(∞), k ≥ 1, where ∼ denotes homotopy equivalence.

2. Fk+1 ∼ ΩFk, and in fact, the homotopy equivalence is given by

A 7→ Jk+1 cos πt+A sinπt 0 ≤ t ≤ 1 (20.37)

which should of course be compared with (20.30).

The relation to Fredholm operators implies a relation to K-theory because one way of

defining the real KO-theory groups of a topological space X is via the set of homotopy

classes:

KO−k(X) := [X,Fk] k ≥ 0 (20.38)

We summarize with a table

55For k = 3mod4 the subspace of F1 satisfying (20.36) in fact has three connected components in the

norm topology. Two of these are contractible but one is topologically nontrivial and we take Fk to be that

component. In fact for T satisfying (20.36) one can show that ωk−1T is self-adjoint, where ωk−1 = J1 · · · Jk−1

is the volume form. The contractible components are those for which ωk−1T is positive or negative - up to

a compact operator.
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k Fk ∼ Gk−2/Gk−1 Cartan’s Label

0 (O/(O ×O))× Z BDI

1 O D

2 O/U DIII

3 U/Sp AII

4 (Sp/(Sp × Sp))× Z CII

5 Sp C

6 Sp/U CI

7 U/O AI

and the complex case is

k Fkc ∼ Gk−2/Gk−1 Cartan’s Label

0 (U/(U × U))× Z AIII

1 U A

where Fc is the space of Fredholm operators on a complex separable Hilbert space, and is

the classifying space for K0(X) and F1
c is the subspace of skew-adjoint Fredholm operators

and is the classifying space for K−1(X).

Remark: We indicate how this discussion of KO(X) is related to what we discussed

in Section §13.5 above. We take X = pt. Then, KO0(pt) ∼= Z. In terms of Fredholm

operators T the isomorphism is given by T 7→ Index(T ) := dimkerT − dimcokT . Thus,

“invertible part of T cancels out.” The idea that if T is invertible then it defines a trivial

class was the essential idea in the definition in Section §13.5. It is also worth noting the ♣Improve this

discussion by

rephrasing the AS

results in terms of

Z2-graded Hilbert

spaces. ♣

Fredholm interpretation of KO−1(pt) ∼= Z2 in this context. For a skew-adjoint Fredholm

operator ker(T ) = ker(T †) so the usual notion of index is just zero. However we can form

the “mod-two index,” which is defined to be dimkerTmod2. This is indeed continuous in

the norm topology and provides the required isomorphism.

***********************************************************

END OF COURSE. FALL 2013

***********************************************************

21. Analog for free bosons

Much of the material of Sections 18 and 19 have direct analogs for bosons. There are some

– 244 –



interesting and significant sign changes. Roughly speaking, orthogonal and symplectic

groups are exchanged. The physics is of course radically different.

21.1 Symplectic vector spaces and the Heisenberg algebra

We begin with a mode space M ∼= R2n now equipped with a nondegenerate anti-symmetric

form ω, i.e. a symplectic form. The automorphism group Aut(M, ω) will be isomorphic to

a real symplectic group. By definition a Darboux basis is an ordered basis {vi} for M in

which the matrix ω(vi, vj) is given by

J :=

(
0 1

−1 0

)
(21.1)

It is convention to write a basis of this form as Qi, P
i such that ♣Important

convention here! ♣

ω(Qi, Qj) = 0

ω(P i, P j) = 0

ω(Qi, P
j) = −ω(P j , Qi) = δi,j

(21.2)

Then

Aut(M, ω) ∼= Sp(2n;R) := {g ∈ GL(2n,R)|gJgtr = J} (21.3)

The conditions on the block-diagonal form

g =

(
A B

C D

)
(21.4)

are now

AtrD − CtrB = 1

AtrC = (AtrC)tr

BtrD = (BtrD)tr
(21.5)

or equivalently

ADtr − CDtr = 1

ABtr = (ABtr)tr

CDtr = (CDtr)tr
(21.6)

Note the sign changes from ***** above.

The analog of the real Clifford algebra is the Poisson algebra Poiss(M, ω) of real-

algebraic functions on M. It is infinite-dimensional and generated by functions pi, q
i which

can be thought of as a dual basis: pi(P
j) = δji , etc. If we regard ω as a 2-form on M, i.e.

ω ∈ Λ2M∗ then we have ω =
∑n

i=1 dp
i ∧ dqi ♣check sign! ♣

Quantization of the symplectic manifold (M, ω) means producing a complex Hilbert

space HF
56 and a ∗-representation ρF of a complex ∗-algebra A. In this case A which

56The subscript F is again for Fock
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is a deformation of the Poisson algebra Poiss(M, ω) ⊗ C. We can identify A with the

Heisenberg algebra

A = Heis(M, ω) := (T (M∗)⊗ C)/I (21.7)

where I is the ideal generated by vv′ − v′v −
√
−1ω(v, v′) · 1. In particular (dropping the

ρF ):

[qi, qj ] = 0

[pi, pj ] = 0

[qi, pj ] =
√
−1δi,j

(21.8)

♣Need several

comments on ~. ♣
There are two standard ways to produce irreducible ∗-representations of A.

21.2 Bargmann representation

The first way, which is most directly analogous to the method we used for fermions: We

complexify V := M⊗ C and extend ω C-linearly. Then we choose a compatible complex

structure I on V :

ω(Iv1, Iv2) = ω(v1, v2) (21.9)

♣Need to explain

positivity property

ω(Iv, v) > 0. ♣Now we decompose V = W ⊕ W̄ into I = i and I = −i eigenspaces and define a

representation of the Heisenberg algebra on

HF
∼= Sym(W ) (21.10)

which we can interpret as algebraic holomorphic functions on W̄ . Of course, unlike the ♣Need to define

Hilbert space

structure. ♣fermionic case, this is an infinite-dimensional vector space. Issues of functional analysis

now enter. For example, ρF (q
i) and ρF (pi) will be unbounded self-adjoint operators and

can only have a dense domain of definition. These kinds of subtleties are in general not

important for many standard physical considerations.

Let us choose a Darboux basis as above and take I = J itself, so that I : qi → pi and

I : pi → −qi. Then if we define

ai =
1√
2
(pi − iqi)

āi =
1√
2
(pi + iqi)

(21.11)

qi =
i√
2
(ai − āi)

pi =
1√
2
(ai + āi)

(21.12)

we have I : ai → −
√
−1ai and I : āi → +

√
−1āi. A small computation gives the standard

CCR’s for bosonic oscillators:

[ai, aj ] = [āi, āj ] = 0

[ai, ā
j ] = δ j

i

(21.13)
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A nice way to represent this is to consider HF = Hol(Cn) holomorphic functions

ψ(z̄1, . . . , z̄n) which are L2 with respect to the inner product

〈ψ1|ψ2〉 =
∫ ∏

i

dzi ∧ dz̄i
−2πi

e−
∑
ziz̄iψ1(z̄i)ψ2(z̄

i) (21.14)

Then āi is represented by multiplication by z̄i and ai is represented by ∂
∂z̄i

. The normalized

vacuum is ψ = 1 and with this Hilbert space product āi = (ai)
†.

****

1. discuss operator kernels etc.

2. relation to Kähler quantization. Interpret ψ as holomorphic sections of a trivialized

hermitian line bundle.

****

21.3 Real polarization

The second way is to form the finite-dimensional Heisenberg group. This is a central

extension of the additive group M (considered as an abelian group under vector addition)

1 → U(1) → Heis(M, ω) → M → 0 (21.15)

The cocycle is

c(v1, v2) = e−
i
2
ω(v1,v2) (21.16)

and hence the group law could be written as:

(z1, v1) · (z2, v2) := (z1z2e
− i

2
ω(v1,v2), v1 + v2) (21.17)

This formula will strike some readers as strange. Perhaps a more congenial way to write

it is to represent group elements at zev , with group multiplication

(z1e
v1) · (z2ev2) := z3e

v1+v2 (21.18)

z3 = z1z2e
− i

2
ω(v1,v2). (21.19)

The Heisenberg group is a finite-dimensional group. For example ifM = R2 it is isomorphic

to the group of 3× 3 real upper-triangular matrices.

By the Stone-von Neumann theorem Heis(M, ω) has a unique irreducible unitary rep-

resentation - up to isomorphism - where U(1) acts as scalars.

One way to exhibit the representation is to choose a Lagrangian decomposition of

M = Q ⊕ P, where Q,P are maximal Lagrangian subspaces and take HF = L2(Q, dµ)
where dµ is the Euclidean measure Q. Now Q and P are represented by multiplication ♣extra data? ♣

and translation operators, respectively:

[
ρF

(
eiαjq

j
)
ψ
]
(q) = eiαjq

j
ψ(q)

[
ρF

(
eiβ

jpj
)
ψ
]
(q) = ψ(q + β)

(21.20)
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Dropping the ρF ’s one can check that the Heisenberg group relations are indeed satisfied: ♣dual space

muddled up here ♣

expi
(
αjq

j + βjpj
)
expi

(
γjq

j + δjpj
)
= e−

i
2
ω(v1,v2)expi

(
(αj + γj)q

j + (βj + δj)pj
)

(21.21)

In this representation pi acts as a differential operator

ρF (pi) = −
√
−1

∂

∂qi
(21.22)

while ρF (q
i) is a multiplication operator. (We will henceforth drop the tedious ρF .) These

are unbounded operators with dense domains. The unitary groups they generate are defined

on the entire Hilbert space.

In this representation ai is the differential operator

ai = − i√
2

(
∂

∂qi
+ qi

)
(21.23)

so that the unique vacuum vector is proportional to Ψ0 = e−
1
2

∑
qiqi . This leads immediately

to the isomorphism with the Bargmann representation. ♣Explain more. ♣

21.4 Metaplectic group as the analog of the Spin group

From (21.3) we get that the Lie algebra sp(2n;κ) of the symplectic group is

sp(2n;κ) = {m ∈M2n(κ)|mtrJ + Jm = 0} (21.24)

Note well that m ∈ sp(2n;κ) iff mJ is a symmetric matrix.

As in the fermionic case we can write Lie algebra elements in the form

m =

(
α β

γ −αtr

)
∈Mat2n(C) (21.25)

where now β, γ are symmetric matrices over κ. Note that m is antihermitian iff α† = −α
and β† = −γ. Such antihermitian matrices exponentiate to elements of USp(2n) = U(2n)∩
Sp(2n;C) ∼= O(2n;R). ♣check ♣

For matrices (21.25) with m ∈ sp(2n;C) define a corresponding element of the Heisen-

berg algebra:

m̃ :=
n∑

i,j=1

(
αjiājai +

1

2
γijaiaj +

1

2
βij āiāj

)

=
1

2

n∑

i,j=1

(αji(ājai + aiāj) + γijaiaj + βij āiāj)−
1

2
Tr(α)1

(21.26)

Now by an argument completely parallel to the fermionic case we use the identity

[AB,CD] = A[B,C]D + [A,C]BD +CA[B,D] + C[A,D]B (21.27)
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to compute

[m̃1, m̃2] = ˜[m1,m2]−
1

2
Tr(β1γ2 − β2γ1)1 (21.28)

and again the cocycle is trivializable.

An important special case is sp(2;R) ∼= sl(2;R). The isomorphism is explicitly seen

by taking

e :=
i

2
p2 h :=

i

2
(qp+ pq) f :=

i

2
q2 (21.29)

and computing

[h, e] = −2e [e, f ] = h [h, f ] = +2f (21.30)

A basis of sl(2;R) satisfying these relations is

e =

(
0 1

0 0

)
h =

(
−1 0

0 1

)
f =

(
0 0

−1 0

)
(21.31)

(Note the signs carefully!)

Standard facts about the harmomic oscillator Hamiltonian now show that in the real

polarization with p = −i ddq acting on L2(R) the Lie algebra (21.29) exponentiates to a

double cover of Sp(2;R). Indeed, consider

e+ f =
i

2
(p2 + q2) = i(āa+

1

2
) (21.32)

This is well-known to have spectrum i(n+ 1
2), n = 0, 1, 2, . . . . Therefore, the one-parameter

subgroup exp[θ(e+ f)] has period θ ∼ θ+4π. Now compare with the representation above

generating SL(2;R). For this representation the one parameter group

exp[θ(e+ f)] = cos θ + sin θ

(
0 1

−1 0

)
(21.33)

has period θ ∼ θ + 2π.

Remark: For a very beautiful discussion of why the metaplectric group cannot be

a matrix group, and of the relation of the one parameter subgroup exp[θ(e + f)] to the

Fourier transform see Section 17 of [36].

Exercise

Write SU(1, 1) generators in terms of quadratic expressions in a and a†.

21.5 Bogoliubov transformations

We again consider the Bogoliubov transformations for bosonic oscillators, which have ex-

actly the same form as in the fermionic case:

b̄i = Ajiāj + Cjiaj

bi = Bjiāj +Djiaj 1 ≤ i, j ≤ n
(21.34)
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but now this gives an automorphism of the CCR’s iff A,B,C,D satisfy (21.5) (or equiva-

lently) (21.6) and hence g ∈ Sp(2n;C).

**********************

1. Bundle of Fock spaces over Sp(2n;R)/Gl(n;R) with A ∈ GL(n;R) embedded as
(
A 0

0 Atr,−1

)
(21.35)

Note that in contrast to the fermionic case this space is noncompact. Below we will relate

this to the fact that the bosonic Fock space is infinite-dimensional, in contrast with the

fermionic Fock space.

2. Holomorphic presentation Sp(2n;C)/LD.

************************

21.6 Squeezed states and the action of the metaplectic group

Define the squeezed state |S〉 to be the state which in the Bargmann representation is

ψS(z̄) = exp[−1
2Sij z̄

iz̄j]. At least formally we can take Sij to be any complex symmetric

matrix.

Then we can compute the Gaussian integral (again formally) to be

〈S|T 〉 = 1√
det(1− S̄T )

(21.36)

A quick and dirty way to get the answer is to do the Gaussian integral
∫ ∏ dzi ∧ dz̄i

−2πi
e−

1
2
S̄ijzizj−ziz̄i−

1
2
Tij z̄iz̄j (21.37)

by pretending that zi and z̄i are independent variables. One first does the Gaussian integral

on the zi giving a determinant (detS̄)−1/2 and we evaluate the action at the stationary point

zi = −S̄−1
ij z̄j . Then one does the Gaussian integral over z̄i to get (det(S̄−1 − T ))−1/2. ♣Explain why it

works and discuss

convergence. ♣Give action of metaplectic group on |S〉:

g̃|S〉 = 1√
det(CS +D)

|g · S〉 (21.38)

where precisely the same reasoning as in (18.142) (now with R,S symmetric matrices)

leads to

g · S = (AS −B)(CS −D)−1 (21.39)

♣check signs! ♣

************************

1. Again choice of square-root leads to action of the metaplectic group. Give a defini-

tion of that group analogous to the definition (18.186) of the spin group above.

1. Infinite dimensions and Shale’s theorem.

2. Coherent state (Bargmann) representation in fermionic case gives an easy derivation

of (18.152) above.

3. Compute “particle number creation”

4. Infinite dimensions and Shale’s theorem.

*****************************
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21.7 Induced representations

21.8 Free Hamiltonians

Up to a constant the general free boson Hamiltonian is an element of A of the form

h = hijvivj (21.40)

This should be ∗ invariant and hence hij must be a real symmetric matrix. Now, notice

that from (21.24) that we can therefore identify hJ with an element of the symplectic Lie

algebra. Thus,

The space of free boson Hamiltonians is naturally identified with sp(2n;R).

21.9 Analog of the AZ classification of free bosonic Hamiltonians

Now we define a symmetry of the bosonic dynamics to be a group G with ρ : G→ End(HF )

such that *****

An argument completely analogous to that for (19.23) applies. The symmetry opera-

tors act by

ρ(g)ρF (vj)ρ(g)
−1 =

∑

m

Smj(g)ρF (vm) (21.41)

where now S(g) ∈ Sp(2n;R). The result is that the symmetry condition is just that

A = hJ ∈ sp(2n;R) is in the space

p := {A ∈ sp(2n;R)|S(g)AS(g)−1 = χ(g)A} (21.42)

For bosons the Hamiltonian will have an infinite spectrum. It is natural to assume

that the Hamiltonian is bounded below, in which case χ = 1. From a purely mathematical

viewpoint one could certainly consider quadratic forms with Hamiltonian unbounded from

above or below. Consider, e.g., the upside down harmonic oscillator. Thus, one could still

contemplate systems with χ 6= 1, although they are a bit unphysical.

****

1. Same argument applies and p is now tangent to a noncompact symmetric space.

2. Most interesting case is where p can be considered as subalgebra of a symplectic

Lie algebra.

3. Again use involutions to classify etc. etc.

4. Bosons + fermions: Use osp(***) etc.

****

21.10 Physical Examples

21.10.1 Weakly interacting Bose gas

H =
∑

p

p2

2m
a†pap +

g

V

∑

k,p

a†ka
†
papak (21.43)
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In the groundstate all particles have p = 0. To get low-lying excitations ap → δp,0N + ap
in a BEC. In the low density approximation

H = H0 +
∑

p 6=0

p2

2m
a†pap +

κgN

V

∑

p

(a†pa
†
−p + apa−p + 2apa

†
p) (21.44)

ETC.

Reference: R.K. Pathria and P.D. Beale, Statistical Mechanics

21.10.2 Particle creation by gravitational fields

Ref: Birrell and Davies

21.10.3 Free bosonic fields on Riemann surfaces

Operator formalism. State associated to Riemann surface, point, and local coordinate.

Etc.

22. Reduced topological phases of a FDFS and twisted equivariant K-

theory of a point

23. Groupoids

24. Twisted equivariant K-theory of groupoids

25. Applications to topological band structure

A. Simple, Semisimple, and Central Algebras

A.1 Ungraded case

We review here some standard material from algebra which is not often covered in physics

courses. Some references include [12][17][1] Nevertheless, the results are very powerful and

worth knowing. They are used at several points in the main text.

We consider associative algebras over a field κ.

Definition An algebra A is central if its center Z(A) is precisely κ.

In general the center of an algebra can be larger than κ. For A = Mn(κ) the algebra

is indeed central. For the algebra B =Mn(κ)⊕Mm(κ) the center is the set of matrices

Z(B) = {x1n ⊕ y1m|x, y ∈ κ} (A.1)

and is isomorphic to κ⊕ κ, and hence B is not a central algebra.

In the literature one finds at least three different definitions of the notion of a simple

algebra:

1. A simple algebra is an algebra isomorphic to a matrix algebra over a division ring D

which contains κ in its center.
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2. A simple algebra is an algebra where the product is nonzero and there are no non-

trivial two-sided ideals.

3. A simple algebra is an algebra where the operator L(a) in the left regular represen-

tation are simple - i.e. diagonalizable. ♣Explain more

about this. ♣

Definition 2 is usually adopted for mathematical purity and then the equivalence with

Definition 1 is regarded as a theorem, where it is known as the Wedderburn theorem. In a

proper mathematical exposition we would stop here and prove that these three definitions

are in fact equivalent.

An algebra is semi simple if it is isomorphic to a direct sum of simple algebras. If there

is more than one nontrivial summand then it is not simple because the simple summands

define nontrivial two-sided ideals.

Examples

1. Division algebras themselves are simple algebras. This is trivial by definition one. In

terms of definition two, suppose that I ⊂ D is a nonzero ideal in a division algebra.

If a ∈ I is nonzero then on the one hand a has an inverse b (since D is a division

algebra) but then ab = 1 ∈ I, since I is an ideal. If an ideal contains 1 then then

I = D.

2. An example of algebras which are not semisimple are the Grassmann algebras κ[θ1, . . . , θn].

We refer to general elements as “superfields.” The Grassmann algebra is filtered by

the minimal number of θ’s in the expansion of the “superfield.” Let Fk be the sub-

space of linear combinations of elements with at least k θ’s, so Fk ⊃ Fk+1 ⊃ · · · . All
of the Fk are two-sided graded ideals.

3. The group algebra L2(G) of a finite group is a semisimple algebra. This follows

by decomposing it as a direct sum of matrix algebras according to the Peter-Weyl

theorem.

A semisimple algebra has the important property that, if (ρ, V ) is a representation and

W ⊂ V is a subrepresentation, then there is a complementary representation U so that

V ∼= W ⊕ U as a representation. For example, if there is an inner product on V which is

compatible with the algebra then U =W⊥. This is what happens with group algebras.

Some important facts about simple algebras are:

Proposition : The center of A is a field which contains κ.

Proof : It is obvious that the center of A is a commutative ring which contains κ. The

nontrivial fact is that if a ∈ Z(A) is nonzero then it is invertible. To see why, consider

kerL(a). This is an ideal in A, for if L(a)b = 0 then ab = 0 and then if c is any element

of A we have a(bc) = (ab)c = 0 and a(cb) = c(ab) = 0, because a is central. But if a is

nonzero then L(a)1 = a 6= 0, so kerL(a) 6= A and therefore kerL(a) = 0. But then the
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linear transformation L(a) must also be surjective. So L(a)b = 1 has a solution for some b

and therefore a is invertible. ♦
In a large number of places in these notes we use the following basic property of simple

algebras:

Theorem: A simple algebra over a field κ has a unique nonzero irreducible representation,

up to isomorphism, and all other representations are completely reducible and isomorphic

to direct sums of this unique irrep.

Proof : Let (ρ, V ) be any representation of Mn(D) for a division algebra D over a field κ.

Then V is a vector space over κ and

ρ :Mn(D) → Endκ(V ) (A.2)

is a homomorphism of algebras. Consider

ker(ρ) := {M |ρ(M) = 0} (A.3)

Then one checks that ker(ρ) is a two-sided ideal in Mn(D). Therefore, since Mn(D) is

simple, either ker(ρ) = Mn(D), in which case ρ = 0 or ker(ρ) = {0}. Since we assume

ρ 6= 0 it is has no kernel as a linear transformation of κ vector spaces. Therefore Pi = ρ(eii)

is nonzero for all i. Consider ρ(1) =
∑

i Pi. Clearly, ρ(1) is a central projection operator

in the image of ρ. Let W = ρ(1)V , and Wi = PiV . Then we claim that

W = ⊕Wi (A.4)

clearly, if w ∈ W then w =
∑

i Piw so the Wi span, but also PiPj = ρ(eiiejj) = 0 for

i 6= j and hence the spaces Wi are all linearly independent. Moreover, note that there are

canonical isomorphisms

ρ(eij) :Wj →Wi

ρ(eji) : Wi →Wj

(A.5)

since ρ(eij)ρ(eji) = Pi and ρ(eji)ρ(eij) = Pj.

Now suppose D = κ and choose an ordered basis w(α), α = 1, . . . , k for V1 and define

w
(α)
j := ρ(ej1)w

(α). Then {w(α)
j }α=1,...,k;j=1,...,n is a basis for W . (For a nice block-diagonal

matrix realization of the representation use lexicographic ordering: First order by j then

by α.) Let W
(α)
j denote the span of w

(α)
j . Note that we have

ρ(eij)w
(α)
k = ρ(eij)ρ(ek1)w

(α) = δj,kw
(α)
i (A.6)

Therefore, for any fixed α, W (α) := ⊕n
j=1W

(α)
j is clearly isomorphic to the defining repre-

sentation κ⊕n of Mn(κ) and

W ∼= ⊕k
α=1W

(α) (A.7)

is then a direct sum of copies of the defining representation. Then V = W ⊕ (1 − ρ(1))V

is a sum of these defining representations and the zero representation.
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For the general division algebra D over κ we use a similar argument to show first that

the general representation is of the form D⊕k and then note that each Vi must be an ♣Prove this. Then

let w(α) generate a

copy of D in V1. ♣isomorphic representation of D. ♦

An algebra A over a field κ is said to be central simple if it is simple and moreover

Z(A) ∼= κ, that is, it is also central. The matrix agebras Mn(κ) are central simple algebras

over κ. The complex numbers C can be regarded as a two-dimensional simple algebra over

R. However, C is not a central simple algebra over R because its center is C, and contains

the ground field R as a proper subfield. Of course, C is a central simple algebra over C!

When A is central simple there are some special nice properties:

1. If B is simple and A is central simple then any two embeddings of B into A are

conjugate. In particular, an automorphism of A is an embedding of A into itself and

therefore must be inner. This is known as the Skolem-Noether theorem.

2. If B is simple and A is central simple then A⊗κB is simple, and Z(A⊗κB) ∼= Z(B).

3. If B is a simple subalgebra of a central simple algebra A then C = Z(B), the central-

izer of B in A is itself simple, and Z(C) ∼= B. If B is central simple then A ∼= B⊗κC.

Example: ILLUSTRATE THESE CLAIMS WITH MATRIX ALGEBRAS. Mn(C).

There is always a map

LR : A⊗κ A
opp → Endκ(A) (A.8)

given by LR(a ⊗ b) : x 7→ axb. One can show ([17], Theorem 4.3.1) that this map is an

isomorphism iff A is central simple over κ.

Example 1: To see how this can fail when the algebra is not simple consider the

Grassmann algebra κ[θ1, . . . , θn]. In terms of the filtration Fk described above note that

any map of the form x 7→ axb with a, x, b in the Grassmann algebra must be nondecreasing

on the filtration. For example, we cannot produce linear transformations that take θi1 · · · θik
to superfields involving fewer than k θ’s.

Example 2: Consider the algebra A =Mn(κ) of n× n matrices over the field κ. The

general linear transformation in Endκ(A) can be expressed relative to a basis of matrix

units eij as

T : eij →
∑

k,l

Tkl,ijekl (A.9)

Then

T =
∑

i,j,k,l

Tkl,ijLR(eki ⊗ ejl) (A.10)

Exercise

Consider the map ρ : Mn(C) → M1(C) given by the determinant. Why can’t we use

this to define C as a left Mn(C) module?
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A.2 Generalization to superalgebras

Of course, a superalgebra over κ is graded-central, or super-central if Zs(A) ∼= κ.

In [?] Wall defines a graded ideal J ⊂ A to be an ideal such that J = J0 ⊕ J1. Thus,

the even and odd parts of elements of the ideal are “independent.” Not all ideals will be

of this form. For example, in Cℓ1 the subalgebra x(1 + e), x ∈ C is an ungraded ideal, but

not a graded ideal. Then Wall defines a super-algebra to be (super-) simple if there are no

nontrivial two-sided graded ideals.

Deligne in [16] instead takes the definition:

Definition A super-algebra over κ is central simple if, after extension of scalars to an

algebraic closure κ̄ it is isomorphic to a matrix super algebra End(V ) or to End(V )⊗̂D
where D is a superdivision algebra.

This is the definition one finds in Section 3.3 of Deligne’s Notes on Spinors. The super-

analog of the Wedderburn theorem shows the equivalence of these two definitions. It is

essentially proved in Wall’s paper [40].

Example: The Clifford algebras over κ = R,C are not always central simple in the

ungraded sense but are always central simple in the graded sense.

A.3 Morita equivalence

There is a very useful equivalence relation on (super)-algebras known as Morita equivalence.

♣This section needs

much improvement.

♣The basic idea of Morita equivalence is that, to algebras A1 and A2 are Morita equiv-

alent if their “representation theory is the same.” More technically, if we consider the

categories Ai −MOD of left Ai-modules then the categories are equivalent.

Example: A = C and B = Mn(C) = C(n) are Morita equivalent ungraded algebras.

The general representation of A is a sum of n copies of its irrep C. So the general left

A-module is isomorphic to

C⊕ · · · ⊕C︸ ︷︷ ︸
m times

(A.11)

for some positive integer m. On the other hand, the general representation of B

Cn ⊕ · · · ⊕Cn︸ ︷︷ ︸
m times

(A.12)

Thus, ifM is a general left A-module then Cn⊗AM gives the general left B-module (where

we are using the fact here that we can view Cn also as a right A-module). Conversely, given

a left B-module N we can view Cn as a right Bopp-module and recover a left A-module

from

M = HomB(C
n, N) (A.13)

♣Be more careful

about left- vs.

right-modules in

this discussion. ♣

The central theorem of the subject states that A and B are Morita equivalent if and

only iff there is a (projective57) A-module P so that

B ∼= EndA(P ) (A.14)

57meaning, it is the image of a projection operator acting on a free module
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and then the equivalence between representations is that to an A-module M we assign

F (A) = HomA(P,M) (A.15)

which is a B-module, for if α ∈ B then α : P → P commutes with a ∈ A so that if

β : P → M commutes with a ∈ A then β ◦ α commutes with a ∈ A. To go the other way

note that P is also a B-module so that if N is a B-module then G(N) = N ⊗B P is an

A-module.

This way of phrasing the theorem is common but oddly asymmetric. A more pleasing

way to say it is that there is an equivalence bimodule E which is a left A-module and a

right B-module. Then we can more easily say that

G(N) = E ⊗B N (A.16)

and

F (M) =M ⊗A E (A.17)

and then equivalence will result if E ⊗B Eopp is a matrix algebra over A, and similarly for

Eopp ⊗A E .
ExampleMn(κ) is Morita equivalent toMm(κ) by the bimodule E of all n×mmatrices

over κ.

Because the representation theory is “the same” many properties are preserved under

Morita equivalence. In particular, one approach to K-theory emphasizes algebras, and

K-theory is Morita-invariant. ♣Improve the

discussion of Morita

equivalence for

superalgebras. ♣

Two superalgebras A1 and A2 are said to be Morita equivalent if there is a matrix

superalgebra End(V ) such that

A1
∼= A2⊗̂End(V ) (A.18)

or the other way around. This is useful because End(V ) has essentially a unique rep-

resentation (actually V and ΠV ) and hence the representation theory of A1 and A2 are

essentially the same.

Tensor product induces a multiplication structure on Morita equivalence classes of

(super) algebras.

[A] · [B] := [A⊗κ B] (A.19)

If we take the algebra consisting of the ground field κ itself then we have an identity element

[κ] · [A] = [A] for all algebras over κ. If A is central simple then there is an isomorphism

A⊗̂Aopp ∼= Endκ(A) (A.20)

where on the RHS we mean the algebra of linear transformations of A as a κ vector space.

Since A is assumed finite dimensional this is isomorphic to a matrix algebra over κ and

hence Morita equivalent to κ itself. Therefore the above product defines a group operation

and not just a monoid. If we speak of ordinary algebras then this group is known as the

Brauer group of κ, and if we speak of superalgebras we get the graded Brauer group of κ.
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A.4 Wall’s theorem

The classification of real super-division algebras is based on Wall’s theorem [40], which we

quote here:

Theorem Is A is a central simple superalgbra over a field κ then:

1. As ungraded algebras, either A or A0 is central simple over κ, but not both. We

call these cases ǫ = +1 and ǫ = −1, respectively.

2. By Wedderurn’s theorem we can associate a division algebra over κ, denoted D by

A ∼=Mn(D) in case ǫ = +1 or A0 =Mn(D) in case ǫ = −1.

3. In case ǫ = +1, there exists an element ω ∈ A0, unique up to multiplication by

elements of κ∗, characterized by the condition that ω2 = a 6= 0 and the centralizer of A0

in A, as an ungraded algebra is κ⊕ κω and yω = −ωy for all y ∈ A1.

4. In case ǫ = −1, there exists an element ω ∈ A1, unique up to multiplication by

elements of κ∗, characterized by the condition that ω2 = a 6= 0, the center of A as an

ungraded algebra is κ+ κω and A1 = ωA0.

5. The triple of invariants ǫ ∈ {±1}, D, and a ∈ κ∗/(κ∗)2 characterize the central

simple superalgebra A up to Morita equivalence.

B. Summary of Lie algebra cohomology and central extensions

A central extension of a Lie algebra g by an abelian Lie algebra z is a Lie algebra g̃ such

that we have an exact sequence of Lie algebras:

0 → z → g̃ → g → 0

with z mapping into the center of g̃. As a vector space (but not necessarily as a Lie algebra)

g̃ = z⊕ g so we can denote elements by (z,X) and the Lie bracket has the form

[(z1,X1), (z2,X2)] = (c(X1,X2), [X1,X2])

where c : Λ2g → z is known as a two-cocycle on the Lie algebra. That is c(X,Y ) is bilinear,

it satisfies

c(X,Y ) = −c(Y,X) (B.1)

and the Jacobi relation requires

c([X1,X2],X3) + c([X3,X1],X2) + c([X2,X3],X1) = 0. (B.2)

Two different cocycles can define isomorphic Lie algebras. If there is a linear function

f : g → z such that

c(X,Y ) = df(X,Y ) := f([X,Y ]) (B.3)

then the cocycle is said to be trivial, and the central extension is isomorphic to z⊕ g as a

Lie algebra. Indeed,

ψ : X 7→ (f(X),X)
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defines an explicit Lie algebra homomorphism ψ : g → g̃ splitting the sequence. (Exercise!)

More generally, if two cocycles differ by a cocycle of the form df then they define isomor-

phic Lie algebras. Thus, again, classifying isomorphism classes of central extensions is a

cohomology problem, in this case, Lie algebra cohomology of degree two.

Finally, Suppose that G̃ is a Lie group central extension of a Lie group G. A cen-

tral extension of the Lie group, defined by the group cocycle cG(g1, g2), also defines a

corresponding 2-cocycle on the Lie algebra by

cg(X1,X2) =
1

2πi

d

dt1
|0
d

dt2
|0log

[
cG(e

t1X1 , et2X2)

cG(et2X2 , et1X1)

]
(B.4)

If cg is nontrivial then cG will be. However, the converse statement is not correct. Indeed,

the Spin representation discussed above provides a counterexample.

B.1 Lie algebra cohomology more generally

To put this into a broader context consider the the vector spaces Λkg∗ of k-forms on the

Lie algebra g. We can assemble them into a complex by introducing a differential

d : Λkg∗ → Λk+1g∗ (B.5)

defined by the equation

dω(X1, . . . ,Xk+1) :=
∑

i<j

(−1)i+jω([Xi,Xj ], . . . X̂i, . . . , X̂j . . . ). (B.6)

The resulting differential (B.5) may also be usefully expressed in terms of a Grassmann

algebra. To do this introduce a basis Ta for g (so a = 1, . . . ,dimg) and corresponding

structure constants

[Ta, Tb] = f c
ab Tc (B.7)

and let θa be the dual basis so θa(Tb) = δab. We can then identify Λ∗g∗ with the Grassmann

algebra Λ∗[θa] where θa are of degree 1. We then define the differential to be:

dθa := −1

2
f a
bc θ

bθc (B.8)

Exercise

Check that this is a differential, that is, that d2 = 0.

The cohomology of the complex (Λ∗g∗, d) is known as Lie algebra cohomology and

denotedH∗(g). Note that it can be formulated purely algebraically. The differential defined

by (B.6) or, equivalently, (B.8) is sometimes called the Chevalley-Eilenberg differential.

Remark: In the theory of the topology of Lie groups there is a theorem, the Hopf-

Samelson theorem, which states that if G is compact and connected then

H∗
DR(G)

∼= H∗(g) (B.9)
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The proof used both the connectedness and the compactness of G. To see that compactness

is essential consider the abelian Lie group Rn under addition. We have

Hj
DR(R

n) =

{
R j = 0

0 else
(B.10)

but the Lie algebra cohomology is:

H∗
Lie Algebra(R

n) = Λ∗[θ1, . . . , θn] (B.11)

since dθa = 0, since the structure constants vanish. The two are very different! For

a nice discussion of a theory that replaces this one in the noncompact case see Bott, “On

the continuous cohomology...”

B.2 The physicist’s approach to Lie algera cohomology

Suppose we have a Lie algebra g with basis Ta, a is an index running over the generators.

Let us introduce the Clifford algebra:

{ca, ba′} = δaa′ (B.12)

where ca, ba′ are referred to as ghosts and antighosts, respectively.

We can quantize the Clifford algebra by choosing a Clifford vacuum

ba′ |0〉 = 0 (B.13)

and the resulting Hilbert space is spanned by |0〉, ca|0〉, ....
The Hilbert space is graded by the “ghost number operator” N =

∑
a c

aba, and we

have an isomorphism of the vector space of states of ghost number k with Λkg∗:

ω ↔ 1

k!
ωa1···akc

a1 · · · cak |0〉 (B.14)

Under the isomorphism (B.14) the Chevalley-Eilenberg differential becomes what is

known as the BRST operator :

Q := −1

2
f a1
a2a3c

a2ca3ba1 (B.15)

Exercise

a.) Prove that the differential d of (B.8) maps to Q of (B.15) under the isomorphism

(B.14).

b.) Show directly that Q2 = 0.

The BRST cohomology is the cohomology of Q, and is graded by ghost number.
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BRST cohomology enters physics in the quantization of theories with local gauge sym-

metry. In this context it is important to use a very natural generalization. Suppose we

have a representation ρ of the Lie algebra g. We can then consider the complex

Λ∗g∗ ⊗ V (B.16)

and introduce a differential

Q = cata −
1

2
f a1
a2a3c

a2ca3ba1 (B.17)

where ta = ρ(Ta) are the representation matrices of the rep. V .

Geometrically, the cohomology H∗
Q(Λ

∗g∗ ⊗ V ) can be identified, for G compact and

connected, with the cohomology H∗
DR(G;V) of a homogeneous vector bundle over the group

G.

Exercise

Check that Q2 = 0

C. Background material: Cartan’s symmetric spaces

Definition: A symmetric space is a (pseudo) Riemannian manifold (M,g) such that every

point p is an isolated fixed point of an involutive isometry τp.

Near any point p, the involutive isometry τp can be expressed as the inversion of the

geodesics through p. That is, if (x1, . . . , xn) are normal coordinates in a neighborhood of p

with ~x = 0 the coordinate of p then τp(~x) = −~x. Importantly, τp extends to an involutive

isometry of the full Riemannian space (M,g)

One can show that the Riemannian curvature is covariantly constant, and hence there

are three families of examples where the scalar curvature (which is must be constant) is

positive, zero, or negative.

Cartan classified the symmetric spaces and found that they are always homogeneous

spaces of Lie groups. The positive curvature examples are of the form G/K where G is a

compact Lie group and K is a Lie subgroup.

Let us first examine G/K at the Lie algebra level. The tangent space of G at 1 is the

Lie algebra g and the tangent space of K at 1 is the Lie subalgebra k. If we write

g = k⊕ p (C.1)

then there is a natural identification of p with TK(G/K). The involutive isometry τp where

p = 1 ·K has a differential θ = dτp : p → p which in fact can be shown to be the restriction

of an involutive automorphism θ : g → g. That is, θ is a Lie algebra homomorphism

θ([X,Y ]) = [θ(X), θ(Y )] which is an isomorphism of vector spaces and θ2 = Id. The

+1 eigenspace is k and the −1 eigenspace is p. The property that it is a Lie algebra

automorphism implies that ♣subsets not

proper? ♣
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[k, k] ⊂ k

[k, p] ⊂ p

[p, p] ⊂ k

(C.2)

The decomposition (C.1) associated with θ is called a Cartan decomposition. 58

Now let us consider G/K at the global level. The reduction of the τp to a single

involutive automorphism θ of g has a global analog: There is an involutive automorphism

τ of the group. (That is, τ is a group automorphism and τ2 = Id) such that dτ = θ at the

identity. Given such an involutive automorphism τ we can define a subgroup K to be the

fixed points of τ :

K = {g ∈ G|τ(g) = g} (C.3)

Given such an involution we have a Cartan embedding by the “anti-fixed points”:

G/K →֒ O := {g ∈ G|τ(g) = g−1} (C.4)

gK 7→ τ(g)g−1. (C.5)

Note that this is well-defined and indeed τ(τ(g)g−1) = (τ(g)g−1)−1 because τ is an invo-

lution. One checks it is an embedding by looking at the neighborhood of g = 1. Then

we identify dτ1 = θ. To see it is surjective note that O admits a left G-action by twisted

adjoint action: If g0 ∈ G and g ∈ O then τ(g0)gg
−1
0 ∈ O, and the isotropy group of this

action at g = 1 is precisely K. The metric tensor is just the pullback of the usual left-

right-invariant metric −Tr(g−1dg) ⊗ (g−1dg). The inversion τg∗ through g∗ ∈ O required

by the definition is τg∗ : g 7→ g∗g
−1g∗. One easily checks that this takes O → O and is an

isometry of the metric. To see that g∗ is an isolated fixed point of τg∗ use the left G-action

to translate to g∗ = 1 and use the involution θ on g above. We see that infinitesimally it

is the exponential of elements of p which lie in O in the neighborhood of 1.

It is also worth noting that the Cartan embedding O of G/K is a totally geodesic

submanifold, as follows from the same reasoning used at the end of 2.3

Now that we have these definitions we give the 10 classes of compact classical symmetric

spaces:

Whenever G is a compact simple Lie group the homogeneous space (G × G)/Gdiag is

a symmetric space. Suppose the action of the diagonal subgroup is on the right, then we

have an isomorphism of manifolds:

(G×G)/Gdiag
∼= G (C.6)

where we take (g1, g2) 7→ g1g
−1
2 . Warning! This is not a group homomorphism. The

involution τ is just τ : (g1, g2) 7→ (g2, g1). In particular, if we take G = U(n,R) = O(n),

G = U(n,C) = U(n), or G = U(n,H) = Sp(n) then we get a series of 3 classical symmetric

spaces:

(O(n)×O(n))/O(n) (C.7)

58A Cartan involution of a Lie algebra is an involutive Lie algebra automorphism s such that B(X,sY ) is

positive definite. θ is related to a Cartan involution. ♣ Clarify some confusing terminology. See Helgason

III.7 for the straight story.♣
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c

Figure 17: K and G/K locally divide the group into a product.

(U(n)× U(n))/U(n) (C.8)

(Sp(n)× Sp(n))/Sp(n) (C.9)

Another natural series of classical symmetric spaces are the Grassmannians. These

arise from the involutive automorphism coming from conjugation

τ(g) = g0gg
−1
0 g0 =

(
1k 0

0 −1n−k

)
(C.10)

We can consider Grassmannians in real, complex, and quaternionic vector spaces to get

Grk(R
n) ∼= O(n)/(O(k)×O(n− k)) (C.11)

Grk(C
n) ∼= U(n)/(U(k) × U(n − k)) (C.12)

Grk(H
n) ∼= Sp(n)/(Sp(k)× Sp(n− k)) (C.13)

With a little charity (regarding cases with k 6= n− k as nonzero index analogs of the cases

with k = n− k) we can consider this to be three more series of classical symmetric spaces.

Finally, as discussed in Section §7, we can put real, complex, or quaternionic structures

on real, complex, or quaternionic spaces (when this makes sense). When these structures

are made compatible with standard Euclidean metrics we obtain moduli spaces of struc-

tures. This gives us:

Real structures on complex vector spaces: Rn →֒ Cn. Moduli space

U(n)/O(n) (C.14)
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This comes from τ(u) = u∗.

Complex structures on real vector spaces: R2n ∼= Cn. Moduli space:

O(2n)/U(n) (C.15)

This comes from τ(g) = I0gI
−1
0 where I0 is (7.9).

Complex structures on quaternionic vector spaces: Cn →֒ Hn. Moduli space:

Sp(n)/U(n) (C.16)

Viewing Sp(n) as unitary n×n matrices over the quaternions the involution is τ(g) = −igi,

i.e. conjugation by the unit matrix times i.

Quaternionic structures on complex vector spaces: C2n ∼= Hn. Moduli space:

U(2n)/Sp(n) (C.17)

Viewing Sp(n) as USp(2n) := U(2n) ∩ Sp(2n;C) we can use the involutive automorphism

τ(g) = I−1
0 g∗I0 on U(2n). The fixed points in U(2n) are the group elements with gI0g

tr =

I0, but this is the defining equation of Sp(2n,C).

When Cartan classified compact symmetric spaces he found the 10 series above (C.7)

- (C.17) together with a finite set of exceptional cases. 59
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