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1.

Introduction

Historically, group theory began in the early 19th century. In part it grew out of the

problem of finding explicit formulae for roots of polynomials. . Later it was realized that

groups were crucial in transformation laws of tensors and in describing and constructing

geometries with symmetries. This became a major theme in mathematics near the end of

the 19th century. In part this was due to Felix Klein’s very influential Erlangen program

that seeks to define interesting geometries using group theory. Very generally, group theory

'For a romantic description, see the chapter “Genius and Stupidity” in E.T. Bell’s Men of Mathematics.

For what is likely a more realistic account see chapter 6 of T. Rothman’s Science a la Mode. For a scholarly

account of the early history of group theory see The Genesis of the Abstract Group Concept by H. Wussig.



can be described as the mathematical expression of symmetry. For a very elegant general
discussion of this, see Herman Weyl’s book, Symmetry.

In the 20th century group theory came to play a major role in physics. Einstein’s 1905
theory of special relativity is based on the symmetries of Maxwell’s equations. The general
theory of relativity is deeply involved with the groups of diffeomorphism symmetries of
manifolds. With the advent of quantum mechanics the representation theory of groups on
linear spaces and in particular Hilbert spaces came to play an important role in atomic
physics. In this paradigmatic example of the expression of symmetries in quantum systems
the groups SU(2) and SO(3) play a central role. This paradigmatic example is just one
example of the general theory of symmetry in quantum mechanics discussed in section
Kk

Since the 1950’s group theory has played an extremely important role in particle theory.
Groups help organize the zoo of subatomic particles. A particularly important example of
that is the 8-fold way proposed by Gell-Mann and Ne’eman in 1961 for organizing strongly
interacting particles. Moreover, the theory of forces in nature is formulated in terms of
gauge theories. In order to formulate the Hamiltonian, Action, or Lagrangian of a gauge
theory one must have some understanding of the theory of Lie algebras, Lie groups, and
their representations.

In the late 20th and early 21st century group theory has been essential in many areas
of physics including atomic, nuclear, particle, and condensed matter physics. However,
the beautiful and deep relation between group theory, geometry, and physics is manifested
perhaps most magnificently in the areas of mathematical physics concerned with gauge
theories (especially supersymmetric gauge theories), quantum gravity, and string theory.
These considerations have been central in the choices of topics covered in the following
chapters.

Our discussion in these notes will be unabashedly mathematical. There has always
been some resistance to increased mathematical sophistication in physics. To quote just
one example, the application of the representation theory of SU(2) and SO(3) to atomic
physics was referred to by Niels Bohr as “die Gruppenpest.” The philosophical background
for the choice of topics in these notes is explained more fully in the author’s essay “Physical
Mathematics and the Future,” available on his home page.

Finally, a personal note from the author: I would like to make two requests of the
reader: First, much of what follows is standard textbook material, and will be presented in
similar ways in many other books, lecture notes, and articles available on the internet. But
some is nonstandard. If you make use of any of the nonstandard material in something you
write, please give proper acknowledgement to these notes. Second, if you find any mistakes
in these notes please do not hesitate to send me an email. (But please, first do check
carefully it really is a mistake.) These notes are a work in progress and are continually
being updated. Thank you - Gregory Moore.

2. Equivalence Relations

The following ideas are very elementary, but very basic and will be used repeatedly through-



out these notes. A good reference for this elementary material is I.N. Herstein, Topics in
Algebra, sec. 1.1.
Quite generally, if X and Y are any two sets, we say that a relation R is a subset of
the Cartesian product X x Y:
RC X xY (2.1)

The idea here is that if an ordered pair (z,y) € X x Y isin R, i.e. (z,y) € R then we say
that “x is related to y by R.” For example, if f: X — Y is a function, then the graph of
the function R = {(z, f(z)) 1z € X} C X x Y, is a relation. But there are other relations
where, for example, there might be many points y € Y that are related to a given z € X.

If Y = X there is a special kind of relation known as an equivalence relation. By
definition, an equivalence relation is a binary relation R satisfying the following three
conditions:

1. For all x € X we have (z,z) € R.
2. Symmetry: 2 If (z,y) € R then (y,2) € R.

3. Transitivity: If (z,y) € R and (y, z) € R then (z,2) € R.

We often denote an equivalence relation by ~. Thus z ~ y means the same thing as
(z,y) € R. Written in this notation we can say that a binary relation ~ is an equivalence
relation if, Va,b,c € X:

l.a~a
2.a~b=b~a

3.a~bandb~c=a~c

Examples:

Example 2.1 : The notion of equality satisfies these axioms of an equivalence relation.
So a ~ biff a = bis an equivalence relation. The main point, however, is that an equivalence
relation is a more flexible notion than equality, and yet captures many of the important
aspects of equality.

Example 2.2 : X =7, a~bif a — b is even.

Example 2.3 : More generally, let X = 7Z, and choose a positive integer N. We can
define an equivalence relation by saying that a ~ b iff a — b is divisible by N.

Example 2.4 : At the other extreme from equality we could say that every element
of the set X is equivalent to every other element.

Definition 2.2: Let ~ be an equivalence relation on X.

2This is the first of many, many, many uses of the word “symmetry” that will appear in these notes.”



a.) An equivalence class in X is a subset O C X such that for any x € O, if z ~ y
then y € O and, moreover, every pair of elements in O are related.

b.) If O C X is an equivalence class of an equivalence relation then any element z € O
is called a representative of the class O.

c.) The equivalence class associated to an element x € X is the subset

[z] ={ye X:z~y}C X (2.2)

Important Remark: In general there will be several different elements in an equivalence
class. So, in general, if [z] = [2/] is does not follow that 2z = 2’! For any equivalence class O
we can find some representative and present it as O = [z], but it is a very common fallacy
to conclude that just because an equivalence class is presented as O = [z] the equivalence
class itself uniquely determines the element z. In other words, given an equivalence class,
in general there is no way to uniquely determine a particular element z € X. We will be
coming back to this elementary point several times in these notes.

In the above two examples we have

Example 2.1’ : If our equivalence relation is just equality then the equivalence class
of every element has only one element: [a] = {a}. The set of equivalence classes is in
bijective correspondence with the original set.

Example 2.2’ : [n] is the set of all integers with the same parity as n. For example,

[1] = {n :n is an odd integer}

[4] = {n : n is an even integer}.

Example 2.3’ : Consider the equivalence relation a ~ b iff a — b is divisible by V.
Recall that if n is an integer then we can write n = r + Nq in a unique way where the
quotient ¢ is integral and the remainder or residue modulo N is an integer r € {0,1,..., N—
1}. Thus there is a bijective correspondence between the set of equivalence classes and the
set {0,1,..., N —1}. The equivalence class of an integer n will sometimes be written as 7.
One way to write it is

n:=n+NZ:={..,n—2N,n—N,n,n+ N,n+2N,...} (2.3)

Example 2.4’ : If R = X x X, so that every z is related to every y then then there
is only one equivalence class, namely the full set X itself.
Here is a simple, but basic, principle:

The distinct equivalence classes of an equivalence relation on X decompose X into
a union of mutually disjoint subsets. Conversely, given a disjoint decomposition

X =1IX; we can define an equivalence relation by saying a ~ b if a,b € X;.

A disjoint decomposition of a set X is sometimes called a partition of X. Thus we
are claiming that there is a one-one correspondence between partitions of a set X and
equivalence relations on X.



We leave the easy proof of the above principle to the reader. As an example, the integers
are the disjoint union of the even and odd integers, and the corresponding equivalence
relation is the one mentioned above: a ~ b iff a — b is even.

Exercise Due Diligence

Prove that there is a one-one correspondence between partitions of a set X and equiv-
alence relations on X. This exercise is easy but very important. If you get stuck see
Herstein’s book.

Exercise Fxamples
In each of the examples above describe the partition of the set X.

Exercise Fquivalence Relations Which Are Graphs
Show that if an equivalence relation R is the graph of a function then that equivalence
relation is just that of equality. 3

Exercise Another Characterization Of FEquivalence Classes

Suppose we view an equivalence relation as subset R C X x X. Let m : X x X — X
be the projection to the first factor and m : X x X — X be the projection on the second
factor. Show that the equivalence classes in X are just the sets which can be written as
(x)) for some z € X.

mi(m;

Exercise Equivalence Relations And Fibers Of Maps

In general, given a map 7 : X — Y we say that the fiber above y € Y or preimage of
y is the subset 7~ 1(y) C X of elements in X that map to y under 7.

a.) Let p: X — Y be a surjective map. Show that

R(p) = {(z,2")Ip(x) = p(2')} C X x X (2.4)

is an equivalence relation.

3 Answer: If R is the graph of f : X — X then (z,z) € R implies that f(z) = x.



b.) Given an equivalence relation R on X denote the set of equivalence classes by
X/R. Show that there is a map pr : X — X/R and

R(pr) =R (2.5)

Exercise Comparison Of Equivalence Relations

We say that a partition X = [1,Y, refines a partition X = II;X; if each Y, is a subset
of some X; and each X; is itself partitioned into a collection of sets from the collection of
Y,.

Suppose ~1 is associated to X = II,Y, and ~9 is associated to X = II;X;. We say

> and “~9 is coarser than ~q.”

that “~q is finer than ~9’
a.) Show that if ~q is finer than ~y then z ~1 y implies that = ~o y.
b.) Show that the finest equivalence relation is equality.
c.) Show that the coarsest equivalence relation has = ~ y for all z,y € X.
As an example: The equivalence relation defined by equality modulo /N7 refines that
defined by equality modulo Ns if Ny divides No. For example, equivalence modulo 4 refines

equivalence modulo 2.

3. Groups: Basic Definitions And Examples

We begin with the abstract definition of a group.
Definition 3.1: A group is a quartet (G, m, I, e) where

1. G is a set.
2. m: G x G — (G is a map, called the group multiplication map.
3. I:G — G is a map, called the inverse map

4. e € (G is a distinguished element of G called the identity element.
These data (G,m,I, e) are required to satisfy the following conditions:
1. m is associative: For all g1, g2, g3 € G we have

m(m(g1, g2), 93) = m(g1, m(gz, g3)) (3.1)

Vg € G m(g,e) =m(e,g) =g (3.2)

~10 -



Vge G m(I(g),9) =m(g,1(g)) = e (3.3)

The above notation is unduly heavy, and we will use it sparingly. We will use it when
comparing different group multiplication laws on the same set, or when a multiplication
on X induces another one on a different set. Thus, we give the definition again, but more
informally:

Ya,b € G there exists a unique element in G, called the product, and denoted a-b € G

in other words, we streamline notation by writing a - b := m(a,b). Eventually, we will
drop the - and just write ab for the group product of two elements a, b in a group.
The product is required to satisfy 3 axioms:

1. Associativity: (a-b)-c=a-(b-c)
2. Existence of an identity element: Je € GG such that:
Vae G a-e=e-a=a (3.4)

3. Existence of inverses: Again, we streamline notation by writing a~! := I(a). so that

a-at=al-a=c¢e

Often one speaks of a “group G” leaving the extra data of the multiplication, inverse,
and identity implicit.

Remarks

1. We will often denote e by 1, or, when discussing more than one group at a time, we
denote the identity in a particular group G by 1. The identity element is also often
called the unit element. If the set in question has more than one binary operation
in play, e.g. in a ring, one needs to be careful when speaking of “the identity” or a
“unit” to specify which operation is being referred to.

2. We can drop some axioms and still have objects of mathematical interest. For exam-
ple, if we drop the existence of inverses the above properties define a monoid. That is,
a monoid is a set M with a multiplication map m : M x M — M which is associative
such that there is an element e € M which functions as the identity for this mul-
tiplication. One can drop other combinations of the group axioms and define other
mathematical objects, but in these cases the terminology is not very consistent in the
literature. When proceeding from monoids to groups the further assumption of the
existence of inverses turns the monoid into a group. The definition of a group seems
to be in the Goldilocks region of having just enough data and conditions to allow a
deep theory, but not having too many constraints to allow only a few examples. It
is just right to have a deep and rich mathematical theory, together with a dazzling
universe of examples.

- 11 -



3. We can also put further mathematical structures on the data (G,m,I, e) (and still
have a rich theory) to define important special classes of groups. For example, a
topological group is a group (G, m, I, e) such that G is a topological space and m and
I are both continuous maps of topological spaces. Similarly, a Lie group is a group
(G,m, I, e) such that G is a manifold and m and I are real analytic in real analytic

local coordinates. *

Exercise Inverses And Identities In Groups Are Unique

a.) Show that e unique. °

1

b.) Given a is a~! unique? ¢

c.) Show that axioms 2,3 above are slightly redundant: For example, just assuming

1

a-e=aand a-a”* = e show that e - a = a follows as a consequence.

Given two groups (G1,mi, I, e;) and (Gg2, ma, I, e9) it turns out that, in some cases,
there can be many ways to use this data to define a group multiplication on the Cartesian
product G; x Ga. But there is always one canonical way this can be done:

Definition 3.4 Let G1, G2 be two groups. The direct product of Gy, G> is the set G X Go
with product:

me, xa, ((91,92), (91, 95)) = (ma, (91, 91), M, (92, 95)) (3.5)

and inverse:

I, xa, ((91792)) = (IG1 (91)71G2 (92)) (36)

Exercise Due Diligence: Direct Product Of Groups
a.) Check the group axioms.

4We will be informal about our treatment of manifolds until we study Lie groups in a separate chapter.
A nice example (from mathstackexchange) of a topological group which is not a Lie group is the rational
numbers with the induced topology from R. This is a topological group: Addition and inversion of rational
numbers is continuous in the induced topology from R. But it is not a Lie group because, in the induced
topology, the neighborhood of any point is not homomeomorphic to R™ for any n, so it is not a manifold.
Other examples are matrix groups over p-adic numbers.

5 Answer: Suppose that two elements e1,es € G behave as units. Consider the product e; - es. Using
e1 as a unit we can say this is ea. On the other hand, using e2 as a unit we can say this is e;. Therefore
€1 = €.

6Suppose a-by =eand a-by =e. Then a-by = e implies by - a = e. Therefore by - (a-b2) = b1 - e = b;.
But b1 - (a-b2) = (b1 -a) - by = e- bz = ba. Therefore by = bo.

- 12 —



b.) Generalize this to arbitrary products: Given a map G from a set I to the set of all
groups define the product over I as a group.

Remark: We will explore other ways of defining group structures on the Cartesian
product G1 X G2 of sets in great detail in sections **** below.

Example 2.1: As a set, G =Z,R, or C. The group operation is ordinary addition:
m(a,b) :=a+b (3.7)

The reader should check all the axioms.

Example 3.2: Now with the above example we can make new groups by considering
the direct product of groups. For example, we could take n-tuples for a positive integer
n: G = Z",R",C", with the operation being vector addition, so if # = (z1,...,z,) and
¥ = (y1,...,yn) then

m(Z,y) = (1 + Y1, Tn + Yn) (3.8)
Example 3.3: G = R* := R—{0} or G = C* := C—{0} Now if z, y € G then m(z,y) := zy
is ordinary multiplication of complex numbers. Check the axioms.

Definition 3.2: Suppose (G,m,I, e) is a group and H C G is a subset so that m and I
preserve H, that is, the restriction of m takes H x H — H and the restriction of I maps
H — H. (It then follows that e € H.) In this case we say that (H,m, I, e) is a subgroup of
(G,m,ILe).

Exercise Subgroups

a.) Z C R C C with operation +, define subgroups.

b.) Is Z — {0} a monoid (with m given by standard multiplication) ?

c.) Is Z — {0} C R* a subgroup?

d.) Let R%,; and R%, denote the positive and negative real numbers, respectively.
Using ordinary multiplication of real numbers, which of these are subgroups of R*?

e.) Consider the negative real numbers Ry with the multiplication rule:

m(z,y) = —xy (3.9)

Show that this defines a group law on R.q, but that (R, m,...) is not a subgroup of R*.
7

" Answer: The point is that the multiplication of (3.9) is not the restriction of the multiplication on R*
to the negative reals. Indeed, note that the identity element is the real number —1.

~13 -



Exercise Intersections And Unions Of Subgroups

Suppose H; C G and Hs C G are two subgroups.

a.) Show that Hy N Hy is a subgroup of G.

b.) Is it always true that Hy U Hs is a subgroup of G 7

c.) For an integer ¢ let {Z C 7 be the subset of integer multiples of ¢. Show that ¢Z is
a subgroup.

d.) What is 2ZN3Z ? 8

e.) Is 27 U 3Z a subgroup ? ?

Definition 3.3: The order of a group G, denoted |G|, is the cardinality of G as a set.
Roughly speaking this is the same as the “number of elements in G.” A group G is called
a finite group if |G| < oo, and is called an infinite group otherwise.

Note that the direct product of two finite groups is finite. Already, with the simple
concepts we have just introduced, we can ask nontrivial questions. For example:

Does every infinite group necessarily have proper subgroups of infinite order?

This is of course true of the examples we have just discussed. It is actually not easy to
think of counterexamples, but in fact there are infinite groups all of whose proper subgroups
are finite. 10

Let us continue with an overview of examples of groups:
The groups in Examples 1,2,3 above are of infinite order. Here are examples of finite
groups:

Example 2.4: The group of N** roots of unity. Choose a natural number N. ' We
let pn be the set of complex numbers z such that 2V = 1. Thus we could write

py ={lw,..., 0N 1} (3.10)

where w = exp[27i/N]. This is a finite group with N elements, as is easily checked.

8 Answer 67Z.

9 Answer: No. For example 2 + 3 = 5 is not in the union, so the union is not closed under the group
operation.

00ne example are the Priifer groups. These are subgroups of the group of roots of unity. They are
defined by choosing a prime number p and taking the subgroup of roots of unity of order p™ for some
natural number n. Even wilder examples are the “Tarski Monster groups” (not to be confused with the
Monster group, which we will discuss later). These are infinite groups all of whose subgroups are isomorphic
to the cyclic group of order p.

HThe natural numbers are the same as the positive integers.
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Exercise

a.) Show, more generally, that uy N puyy1 = {1}.

b.) Show that if N is even then the group of N/2!" roots of unity is a subgroup of .
c.) When is vy Nvys a nontrivial group (i.e. a group with more than one element)?

Example 3.5: The residue classes modulo N, also called “The cyclic group of
order N.” Let N be a positive integer. Recall that we can put an equivalence relation
on Z defined by a ~ b iff a — b is divisible by N, and we denoted the class of an integer n
by n. (As mentioned above, the equivalence classes are in bijective equivalence with the
elements of the set {0,1,..., N — 1}.) We take G to be the set of equivalence classes of
integers modulo N. We need to define m(7,72). To do this we choose a representative r,
ro from each equivalence class and take

m(7q,72) := (r1 +72) (3.11)

The main thing to check here is that the equation is well-defined, since we chose represen-
tatives for each equivalence class. This group, which appears frequently in the following,
will be denoted as Zy or, better, Z/NZ. For example, telling railroad/military time in
hours is arithmetic in Zg4. The reader should note that Zy “resembles” closely the group
pn. We will make that precise in the next section.

Exercise
a.) Show that, if IV is even then the subset of equivalence classes 7 with representatives
r which are even forms a subgroup of Zy.

b.) What can you say about the subgroups of Zy when N is odd? !2

So far, all the examples we have discussed have the property that for any two elements
a,be G

m(a,b) =m(b,a) . (3.12)

Definition 3.5: When equation (3.12) holds for two elements a,b € G we say “a and
b commute.” If a and b commute for every pair (a,b) € G X G then we say that G is an
Abelian group:

If a,b commute for all a,b € G we say “G is Abelian.”

Note: Note that our abbreviated notation a - b for the group multiplication m(a,b) would
actually be quite confusing when working with Zy. The reason is that it is also possible to
define a ring structure (see Chapter 2) where one multiplies r; and ry as integers and then

12For the answer, see the section on Lagrange’s theorem below.
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takes the residue. This is NOT the same as m(rq,r2) !! For example, if we take N = 5 then
m(2,3) = 0 in Zs because 2 + 3 = 5 is congruent to 0 modulo 5. Of course, multiplying
as integers 2 x 3 = 6 and 6 is congruent to 1 mod 5. Therefore, when considering Abelian
groups we often prefer to use the “additive” notation

a+b:=m(a,b) (3.13)

When we use this additive notation for Abelian groups we will write the identity element
as 0 so that a + 0 =0+ a = a. (Writing “a + 1 = a” would look extremely weird.) Note
that we will not always use additive notation for Abelian groups! For example, for uy the
multiplicative notation is quite natural. When using multiplicative notation we will not
use 0 for the identity because writing “0 - a = a” would also look extremely wierd.

Since we defined a notion of “Abelian group” we are implicitly suggesting there are
examples of groups which are not Abelian. If one tries to use the group axioms to prove
that m(g1,g2) = m(g2, g1) one will fail. The only way we can know conclusively that one
will fail is to provide a counterexample. The next set of examples are important classes of
nonabelian groups:

Example 3.6: The General Linear Group

Let Kk = R or Kk = C.  Define M, (k) to be the set of all n x n matrices whose
matrix elements lie in k. Note that this is a unital monoid under matrix multiplication:
i.e. matrix multiplication is associative. But M, (k) is not a group, because some matrices
are not invertible. Therefore we define:

GL(n,k) := {A|A = n x n invertible matix over k} C M, (k) (3.14)

When £ = R or K = C GL(n, k) is a group of infinite order. It is Abelian if n = 1 and
nonabelian if n > 1.

Remark: There are some important generalizations of this example: '3 We could let &
be any field. If  is a finite field then GL(n, k) is a finite group. More generally, if R is a
ring GL(n, R) is the subset of n x n matrices with entries in R with an inverse in M, (R).
This set forms a group. For example, GL(n,Z) is the set of n x n matrices of integers such
that the inverse matrix is also a n x n matrix of integers. This is the same set as the set
of n x n matrices with integer entries whose determinant is 1. ' This set of matrices
forms an infinite nonabelian group under matrix multiplication.

Definition 3.5: The center Z(G) of a group G is the set of elements z € G that commute
with all elements of G:

Z(G):={z€ Glzg = gz Vg € G} (3.15)

13See Chapter 2 for some discussion of the mathematical notions of fields and rings used in this paragraph.
"Tn general GL(R) can be characterized as the n x n matrices with matrix elements in R whose deter-
minant is a unit in R.
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Exercise Due Diligence: The Center :
a.) Show that for any group G, Z(G) is an Abelian subgroup of G.
b.) Show that the center of GL(n, ) is the subgroup of matrices proportional to the

unit matrix with scalar factor in x*. 1°

Example 3.7: Some Standard Matriz Groups

A matriz group is a subgroup of GL(n,k). There are several interesting examples
which we will study in great detail later. Some examples include:

The special linear group:

SL(n,k) ={A € GL(n,k) : detA = 1} (3.16)

The orthogonal and special orthogonal groups:

O(n, k) :== {A € GL(n,k) : AA"™ =1}

(3.17)
SO(n,k) :={A € O0(n,k) : detA =1}
Another natural class are the unitary and special unitary groups:
U(n) == {A € GL(n,C) : AAT =1} (3.18)
SU(n):={AeU(n):detA=1}. (3.19)

Remarks:

1. As an exercise you should show from the definition above that the most general
element of SO(2,R) must be of the form

Ty

24yt =1 (3.20)

15 Answer: It is obvious that matrices of the form zl,xn with 2 € kK* are in the center. What is not
immediately obvious is that there are no other elements of the center. Here is a careful proof that this is
indeed the case: Consider the matriz units: e;;. The matrix e;; has a 1 in the i*" row and j*" column and
zeroes elsewhere. Note that for any matrix A we have e;; Ae;; = Ajje;; with no sum on 4, j here: on the RHS
A;j is a matrix element, not a matrix. Now let z be in the center. Check that for any pair ij the matrix
1+ e;; is invertible. Therefore, if z is in the center then z must commute with 1 + e;; and hence z must
commute with e;; for all 7, j. Now, as we observed above, e;;ze;; = z;5e;; holds for any matrix, but since z
is also central ejizej; = eiiejjz = dijejjz. So z is diagonal. But for any diagonal matrix z = ), zrexr we
have (zA):; = z;As; and (Az);; = Aijz;. As long as there are matrices with A;; # 0 and invertible we can
conclude that z; = z;.
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where the matrix elements xz,y are real. Thus we recognize that group elements in
SO(2,R) are in 1-1 correspondence with points on the unit circle in the plane. We
can even go further and parametrize x = cos ¢ and y = sin¢ and ¢ is a coordinate
provided we identify ¢ ~ ¢ + 27 so the general element of SO(2,R) is of the form:

R(¢) == ( o Siw) (3.21)

—sin ¢ cos ¢

This is familiar from the implementation of rotations of the Euclidean plane in Carte-
sian coordinates. Note that the group multiplication law is

R(¢1)R(¢2) = R(d1 + ¢2) (3.22)

S0, in ¢ “coordinates” the group multiplication law is continuous, differentiable, even
(real) analytic. Similarly, in these coordinates the inverse map is ¢ — —¢, a real
analytic transformation.

. Let us consider the group U(1): This is simply the group of 1 x 1 unitary matrices.
They are not hard to diagonalize. The general matrix can be written as z(¢) = €'
with multiplication 2(¢1)2(¢2) = 2(¢1 + ¢2) where ¢ ~ ¢ + 27 yield identical group
elements. Again, as with uy and Zy the groups look like they are “the same”
although strictly speaking they are different sets and therefore have different m’s.
We will make this idea precise in the next section.

. One of the most important groups in both mathematics and physics is SU(2). Sup-
pose we have a pair of complex numbers (z,w) € C? such that

|2)? + |w]? =1 (3.23)
Then one easily checks that

g= (Z _:f*> € SU(2) (3.24)

We claim that, conversely, every element of SU(2) can be written in this way. One

can prove this by studying the 4 equations for the matrix elements in the identity
g9’ = 1. Another way to proceed makes use of some concepts from the linear algebra
chapter below and goes as follows: Since g is unitary it follows that the basis

0o e

Should be orthonormal. Therefore, if we write

g= (Z ";) (3.26)
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it must be that <Z> is orthogonal to (u) and hence v = —Aw* and v = Az*
w v

for some complex number A. Moreover, since norms are preserved we know that
|22 + |w|?> = 1 and |u|? + |w|?> = 1 and hence |A|? = 1, so A is a phase. So the general
unitary matrix must be of the form

z —Aw*
— 3.27
g <w Az* ) ( )

for some phase A. But now if we impose detg = 1 we discover that A = 1.

Comment: The Classical Matrix Groups Are Examples Of Lie Groups We have
noted that SO(2) and U(1) can be identified with the circle S'. Similarly, we have shown
there is a 1-1 correspondence between elements of SU(2) and pairs of complex numbers
(z,w) with |z|2 + |w|? = 1. If we decompose z,w into real and imaginary parts:

z=x1+V—1xo
w=x3+vV—1lxry

then the equation |z|? + |w|? = 1 is equivalent to the equation

(3.28)

4
D (zn)?=1 (3.29)
pn=1

which we can recognize as defining the unit three-dimensional sphere S® in R*. Later on,
we will give various coordinate systems for S? making clear that the group multiplication
and inverse operations are real analytic. So SU(2) is a Lie group. In view of these two
examples one might wonder if other Lie groups are spheres and if other spheres are Lie
groups. It is not obvious, but in fact, no other spheres are groups (except for Zs which
could be considered the 0-dimensional sphere). This is a deep result of topology. So we
should not think of Lie groups as spheres. It turns out that all the classical matrix groups
we have mentioned above are examples of Lie groups. To prove they are manifolds one
views the defining equations such as A" A = 1 as a set of equations on the matrix elements
and shows that the solutions to these equations in M, (k) = k™ is a smooth manifold. In
coordinates obtained from the matrix elements the group multiplication and inverse are
real analytic functions.

Lie groups have vast applications in physics. For example, G = SU(3) is the gauge
group of a Yang-Mills theory that describes the interactions of quarks and gluons, while G =
SU(3) x SU(2) x U(1) is related to the standard model that describes all known elementary
particles and their interactions. The general theory of Lie groups will be discussed in
Chapter 8(?7) below, although we will meet many many examples before then.

Example 3.8: Some Groups Defined By Bilinear Forms It is interesting to try to gen-
eralize the definition A A = 1 of the orthogonal groups as follows: Suppose b is an n x n
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matrix and we consider the set of matrices satisfying A”bA = b. Since we want this equa-
tion to imply that A is invertible it is wise to restrict to b’s which are invertible. Taking
the transpose of this equation suggests that we should also take b = \b, where \ € & is a
scalar. Then consistency forces A2 = 1 so A = £1. So we are naturally led to symmetric or
antisymmetric “bilinear forms” !0 In either case, when b is invertible and either symmetric

or antisymmetric the “automorphism group of the bilinear form”
Aut(b) := {A € M, (k)|A"bA = b} (3.30)

is a group. We will justify the notation on the LHS in our discussion of group actions
below.
If b is symmetric we can diagonalize it. (See Chapter 2). One particularly nice case is

-1 0
b=1n= 3.31
U (0 lm> (3.31)

In this case the set of matrices O(1,n) := {A|A"nA = n} is known as the Lorentz group
of Minkowski spacetime in 1 + n dimensions and it plays an important role in relativistic

-1
b= ( o 10 ) (3.32)
axq

then Aut(b) is denoted O(p,q). If we work with complex matrices and replace A" by Af

physics. More generally, if

then we define the groups U (p, q).
If b is antisymmetric it can be put into the standard form (again, see ‘Linear Algebra
Users Manual” ):

nxn 0

J = (_10 1”*”) € M, (R) (3.33)

which is sometimes called the standard symplectic form on R?”. Note that the matrix J

satisfies the properties:
J=J =-J"=-Jg! (3.34)

Definition A symplectic matriz is a matrix A such that
AT JA =T (3.35)
We define the symplectic groups:
Sp(2n, k) = {A € GL(2n,k)|A"JA = J} (3.36)

The unitary symplectic groups are USp(2n) := U(2n) N Sp(2n, C).

Example 3.9 Function spaces as groups.

16See Chapter 2, “Linear Algebra Users Manual” for the precise definition of “bilinear form.”

~90 —



Suppose G is a group. Suppose X is any set. Consider the set of all functions from X
to G:
F ={f:fis afunction from X — G} (3.37)

If we want to stress the role of X and/or G we write F[X — G] for F. We claim that F is
also a group. The main step to show this is simply giving a definition of the group multi-
plication and the inversion operation. The product mx(fi, f2) of two functions fi, fo € F
must be another function in F. We define this function by giving a formula for the values
of the function mz(f1, f2) at all values of z € X:

mz(f1, f2)(z) == mg(fi(2), f2(x)) (3.38)

It is the only sensible thing we could write given the data at hand. In less cumbersome
notation:

(f1- f2)(2) == fi(2) - falx) (3.39)
Similarly inverse of f is the function that maps z — f(x)~!, where f(z)~! € G is the
group element in G inverse to f(z) € G. In formal notation

Ir(f)(z) = Ig(f(z)) VzeX. (3.40)

If both X and G have finite cardinality then F[X — G] is a finite group. If X or G has
an infinite set of points then this is an infinite order group. If X is a positive dimensional
manifold and G is a Lie group this is an infinite-dimensional space.

In the special case of the space of maps from the circle into the group:

LG = F[S' = @] (3.41)

we have the famous “loop group” whose representation theory has many wonderful prop-
erties, closely related to the subjects of 2d conformal field theory and string theory. More
recently, they have even begun to play important roles in investigations into three- and
four-dimensional supersymmetric quantum field theories.

Example 3.10 Group Of Gauge Transformations.

In some cases if X is a manifold and G is a Lie group then, taking a subgroup defined
by suitable continuity and differerentiability properties, we get the group of gauge trans-
formations of Yang-Mills theory. As a simple example, you are probably familiar with the
gauge transformation in Maxwell theory:

Ay — A, + e (3.42)

where A, is the vector potential so that F), = 9,4, — 9, A, is the fieldstrength tensor
encoding electric and magnetic fields. Indeed, taking p € {0,1,2,3} with g = 0 the time
direction and a standard orientation on R we can write (in units with ¢ = 1):

0 E Fy E;
—F7 0 Bs —Bs
—Fy, —B3; 0 B
—F3 By —B; 0

F, = (3.43)
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Here € : M3 — R is a function on 143 dimensional Minkowski space. (In a more careful
account one would put restrictions on the allowed functions - they should be differentiable
and satisfy suitable boundary conditions - etc.) The more canonical object is

frae @ (3.44)

and this is a function from spacetime, M'3 to U(1), so f € F[M" — U(1)]. This is
a better point of view because it generalizes in interesting ways to other spacetimes: if
the spacetime X has nontrivial topology (e.g. is not simply connected) then for some
f: X — U(1) it might not be possible to define globally a continuous function € : X — R
so that f(z) = ¢“(¥) | So it is desirable to express the gauge transformation law in a way
that only makes reference to f, and not to e. One way this can be done is to introduce the
first order operators (—id, + A,) which have the gauge transformation law:

(—i0u + A)) = [ (=10, + AW f (3.45)

For many reasons this is a conceptually superior way to write it. 17

Example 3.10: Permutation Groups.

Let X be any set. A permutation of X is a one-one invertible transformation ¢ : X —
X. The composition ¢q0¢9 of two permutations is a permutation. The identity permutation
leaves every element unchanged. The inverse of a permutation is a permutation. Thus,
composition defines a group operation on the permutations of any set. This group is
designated Sx. It is an extremely important group and we will be studying it a lot. In the
case where X = M is a manifold we can also ask that our permutations ¢ : M — M be
continuous or even differentiable. If ¢ and ¢! are differentiable then ¢ is a diffeomorphism.
The composition of diffeomorphisms is a diffeomorphism by the chain rule, so the set of
diffeomorphisms Diff (M) is a subgroup of the set of all permutations of M. The group
Diff (M) is the group of gauge symmetries in General Relativity. Except in the case where
M = S' is the circle, remarkably little is known about the diffeomorphism groups of
manifolds. One can ask simple questions about them whose answers are unknown.

Example 3.11: Power Sets As Groups.
Let X be any set and let P(X) be the power set of X. It is, by definition, the set of all
subsets of X. If Y7,Y5 € P(X) are two subsets of X then define the symmetric difference:

i+Y:=Y1 -Y2)U(Ye—Y1) (3.46)

This defines an abelian group structure on P(X). The identity element 0 is the empty set
() and the inverse of Y is Y itself: That is, in this group

2Y =Y +Y =0=0 (3.47)

70On general spacetimes X one can typically only define A, locally but the 1-form valued first order
differential operator dz*(—id, + A,), suitably interpreted, is globally defined. For more about this look up
“connection on a vector bundle.”
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Exercise Centers Of Direct Products
Show that the center of a direct product of groups is the direct product of the centers:

Z(Gl X GQ) = Z(Gl) X Z(Gz) (348)

And so on.

Exercise Classical Matriz Groups: Due Diligence

a.) Check that each of the above sets (3.16),(3.17),(3.18), (3.36), are indeed subgroups
of the general linear group.

b.) Check that, if b is invertible and either symmetric or antisymmetric then (3.30) is
a matrix group.

Exercise Apparent Asymmetry In The Definitions

In (3.17) we used AA" = 1 but we could have used A”A = 1. Similarly, in (3.18)
we used AAT = 1 rather than ATA = 1. Finally, in (3.36) we could, instead, have defined
Sp(2n, k) to be matrices in Ma, (k) such that AJA" = J. In all three cases, writing things
the other way defines the same group: Why?

(Careful: Just taking the transpose or hermitian conjugate of these equations does not
help.) 18

Exercise O(2,R) vs. SO(2,R)
a.) Show from the definition above of O(2,R) that the most general element of this
group is the form of (3.20) above, OR, of the form

(m Y ) 2yt =1 (3.49)

Yy —x

G0 () -

b.) Show that no matrix in O(2,R) is simultaneously of the form (3.20) and (3.49).
Conclude that, as a manifold, O(2,R) is a disjoint union of two circles.

btw: Note that

18 Apswer: Hint: Remember that in a group the inverse matrix is in the group. Consider replacing

g — ¢~ ' in the definition.
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Exercise Symplectic groups and canonical transformations
Let ¢*,p; i = 1,...n be coordinates and momenta for a classical mechanical system.
The Poisson bracket of two functions f(q',...¢",p1,...pn), 9(q*,...q" D1, ... pn) is

defined to be
“~(0f 0g Of Og
= — 7 _ 51

a.) Show that
{¢". ¢} ={pi,p;} =0  {¢'.pj} =0 (3.52)
Suppose we define new coordinates and momenta Q?, P; to be linear combinations of
the old:

Q' q'
o air - a12n N
= Do N (3.53)
Py D1
. az2n,1 " A2n2n .
P, DPn

where A = (aj;) is a constant 2n x 2n matrix.
b.) Show that

{Q.Qy={P, P} =0 {Q.F}= (3.54)
if and only if A is a symplectic matrix.

c.) Show that J € Sp(2n,R). Note that it exchanges momenta and coordinates.
d.) What are the conditions on the n x n matrix B so that

1B
{<01>} (3.55)

e.) What are the conditions on the n x n matrix C' so that

{(é?)} (3.56)

10 1B\ _
<C1>:J<o 1)J1 (3.57)

19 Apswer: B must be a symmetric matrix

is a subgroup.

is a subgroup. 2°
f.) Show that

20 Apswer: C must be a symmetric matrix
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for C = —B.
g.) Show that a matrix of the form

AB
( - D) (3.58)

is symplectic iff

(AtrC)tr — AtrC
(B"D)'" = B"D (3.59)
A"D - C"B =1

h.) Show that if M is symplectic then M is symplectic.

Exercise Bogoliubov Transformations
Suppose there is a collection of operators on a Hilbert space satisfying

lai,a;] = [a', @] = 0 [ai,a’] = 6, (3.60)

with 1 <+¢,7 < N. That is, we have a collection of harmonic oscillators.
Show that a new collection of operators

b; = Aijaj + Bij(_lj

. . S (3.61)
b'=C"a; + D";a
satisfies the algebra ‘
[bi,bj] = [b', 0] = [b;, 0] = 0, (3.62)
iff
A B
M = 2N .
(C D) € Sp(2N,C) (3.63)

Exercise The “2 Out Of 8 Property”

A real 2n x 2n matrix is said to be:

a.) Symplectic if A" JA = J.

b.) Complex if A=LJA =J

c.) Orthogonal if A" = A~L

Show that these three conditions are not equivalent, but any two of them implies the
third. This turns out to be an important fact in “Kéhler geometry” a special subfield of
differential geometry.
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Exercise The Quaternion Group And The Pauli Group
When working with spin-1/2 particles it is very convenient to introduce the standard

ol = <(1] (1)> (3.64)
0% = (? Bi> (3.65)
o3 = ((1) 01> (3.66)

a.) Show that they satisfy the identity, valid for all 1 <i,j < 3:

Pauli matrices:

laiaj = 0¥ 4 ieijkak‘ (3.67)

b.) Show that the set of matrices
Q = {£1, tic!, +io?, +ic?} (3.68)

forms a subgroup of order 8 of SU(2) C GL(2,C). It is known as the quaternion group.
c.) Show that the set of matrices

P = {£1, +i, 40!, £0%, 03, +ic!, +ic?, +ic®} (3.69)
forms a subgroup of U(2) C GL(2,C) of order 16. It is known as the Pauli group.

Remark: 2! The Pauli group is often used in quantum information theory. If we think
of the quantum Hilbert space of a spin 1/2 particle (isomorphic to C? with standard inner
product) then there is a natural basis of up and down spins: v; = | 1) and vy = | ).
Thinking of these as quantum analogs |0) and |1) of classical information bits 0,1 we see
that X = o' acts as a “bit flip,” while Z = o3 acts as a “phase-flip.” Y = io? flips
both bits and phases. These are then quantum error operators. Subgroups of the N*"
direct product of P are used to construct certain quantum error-correcting codes known
as stabilizer codes.

d.) Consider the direct product PV as a set of operators in End(#), where H = (C?)®V
is the Hilbert space of N Qbits. Show that every pair of elements in PV either commutes
or anticommutes. This property is quite crucial in the theory of stabilizer codes.

e.) Let #,% € R3. Show that

[T 0,7 0] =2(Fx7Y)- -0 (3.70)

2'Many terms used here will be more fully explained in Chapter 2.
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(Z-0)y-0Z-0=2(Z YT -0 —TFY-0 (3.71)

Exercise Function Groups
Interpret the direct product G™ of a group with itself n times as a group of the form
F[X — G] for some X.

Exercise Associative Multiplication Laws That Are Not Group Laws
a.) Consider the candidate group law on the power set P(X):

Y+ Y :=Y1NY, (3.72)

Why is this not a group law? 22
b.) Consider the candidate group law on the power set P(X):

Vi+Ys =Y, UYs (3.73)

Why is this not a group law? 23

c.) Consider the candidate group law on Z given by

0 + n9 = 0 mod2
m(ni,ng) = e o (3.74)
1 ni1+n9=1mod2

Why is this not a group law? 24

4. Homomorphism And Isomorphism
Definition 4.1: Let (G,m,I,e) and (G',m’, T, ¢’) be two groups,

1. A homomorphism from (G,m,1,e) to (G',m’, T’ ¢') is a mapping that preserves the
group law. That is, it is a map of sets ¢ : G — G’ such that, for all g1, g2 € G we
have:

p(m(g1,g2)) = m'(¢(g1), v(g2)) (4.1)

2. If p(g) = 1¢ implies that g = 1 then ¢ is said to be injective or into.

22 Answer: The identity would have to be e = X. But then there is no inverse.
2 Answer: The identity would now be () but there is no inverse.
24 Answer: What is the identity element?
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3. If, for any ¢’ € G’ there exists some g € G such that ¢(g) = ¢ then ¢ is said to be
surjective or onto.

4. If ¢ is both into and onto, i.e. if it is both injective and surjective, then ¢ is called
an isomorphism.

5. One often uses the term automorphism of G when ¢ is an isomorphism and G = G/,
that is G and G’ are literally the same set with the same multiplication law.
Remarks

1. We will henceforward be more informal and simply say that ¢ : G — G’ is a homo-
morphism of groups if, for all g1, g2 € G:

product in G’
( ) = ¢(91)¢(g2) (4.2)
¥ 9192 = »\91)P 92 .

product in G

2. A common slogan is: “isomorphic groups are the same.”

Example 0: The stupid homomorphism. Given any two groups G, G’ there is always at
least one homomorphism ¢ : G — G’, namely, ¢(g) = 1o for all g € G. Tt is an easy
exercise to check this is a homomorphism.

Example 1: uy is isomorphic to Zy: Let N be a positive integer. Then we can define
a homomorphism
QLN = BN (4.3)

as follows. We want to define ¢(7). Recall that ¥ = r + NZ is an equivalence class. We
choose any representative r" € r + NZ. Then we set:

/

@() == exp <27Ti§v> (4.4)

There is a crucial thing to check here: We need to check that the map is actually well-
defined. We know that any two representatives rj and r) for # must have the property
that 7§ —r5 = 0 modN, that is r] — 5 = ¢N for some integer N and now by standard
properties of complex numbers we see that indeed exp (2771%) = exp (27Ti%).
Next we check that
p(T1 4+ 72) = (1) p(T2) (4.5)

If you unwind the definitions you should find this follows from a standard property of the
exponential map.
Equation (4.5) implies that (4.3) is a homomorphism. In fact one easily checks:
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a.) If p(7) = 1 then ¥ = 0. Thus ¢ is injective.

b.) Every element of uy is of the form ¢(7) for some 7. Thus, ¢ is surjective. Note that
this is equivalent to saying that every element in uy is of the form w’ where w = €2™/N.
Thus, ¢ is in fact an isomorphism. As we mentioned above, the two groups appeared

to be “the same.” We have now given precise meaning to that idea.

Example 2: A family of homomorphisms py — pn: For each integer k we can define
the k" power map

Pk P UN — UN (4.6)

by
pi(z) = 2F (4.7)
where z is any N root of unity. Note that z* is also an N root of unity. Moreover
(z120)F = zfzg by elementary properties of complex numbers, so pg is a homomorphism.

Note that it is not always injective or surjective. For example, if k is a multiple of N it is
the stupid homomorphism. In fact pgrny = p.

Example 3: A family of homomorphisms Zy — Zy:

For any integer k we can define the “k*® multiplication map”
mp :ZN—>ZN (4.8)
by the equation:
my(7) = kr (4.9)

where on the right hand side kr is defined by choosing a representative r for the class 7
and then using ordinary multiplication of integers k x r (e.g. 2 x 3 = 6) and then reducing
modulo N. Again, one needs to check the equation is well-defined. Note that my,ny = mx.

Example 4: Relating the homomorphisms in the previous three examples: Since
Zy and ppy are isomorphic, one should expect that homomorphisms Zy — Zy and py —
pn should be related. Moreover, one should have the intuition that p; and mj somehow
have the “same effect.” Indeed, note that

Pr() = () = Wik, (4.10)
is the essential identity. More formally, one easily checks that
Qomy =ppoy (4.11)

Or, since ¢ is invertible,

pr=pompop . (4.12)
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In mathematics one often uses commutative diagrams to express identities such as
(4.11). In this case the diagram looks like

In —2s T (4.13)

.k

KN — UN

We say a diagram commutes if the following condition holds: The diagram describes a
graph with sets associated to vertices and maps associated with oriented edges. Consider
following the arrows around any two paths on the graph with the same beginning and
final points. We compose the maps associated with those arrows to get two maps from the
initial set to the final set. The diagram commutes iff any pair of maps obtained this way
are equal.

Remark We will discuss in detail later on that when & is an integer relatively prime
to N the map pi is an automorphism of uy and my is an automorphism of Zy. For
example in Z/37Z = {0, 1,2} if we take k = 2, or any even integer not divisible by 3, then
my, exchanges 1 and 2. (Check that such an exchange is indeed a homomorphism!) We
will discuss this kind of example in greater detail in Section §13 below.

Example 5: GL(V) and GL(n,k): ?° Let V be a finite dimensional vector space over
a field k. (For example, take k = R or kK = C.) We can define a group GL(V) to be the
group of invertible linear transformations from V to itself. The group law is composition.
Let b = {v1,...,v,} be an ordered basis for V. Given b we define a homomorphism

vp : GL(V) — GL(n, k) (4.14)
as follows. Given T' € GL(V') we have
T(vi) =Y (Ap(T))jiv; (4.15)
J

The n x n matrix with matrix Ay(7T"), with matrix elements (Ay(7T"));; defines a matrix
associated with 7" in such a way that

Ap(Ty 0 Tz) = Ap(T1) Ap(T3) (4.16)

where on the RHS we have ordinary matrix multiplication. The subscript b stresses the
dependence of the matrix on the ordered basis b. It follows that A,(7T) is invertible if T" is
and that

vp : GL(V) = GL(n, k) (4.17)

defined by ¢p(T") := Ap(T) is a homomorphism of groups. An easy exercise below asks you
to show that it is an isomorphism of groups.

25See Chapter 2 for definitions of the linear algebra terms
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One kind of homomomorphism is especially important:

Definition 4.2:

a.) Let G be a group, then a (finite dimensional) representation of G is a finite-
dimensional vector space V' together with a group homomorphism ¢ : G — GL(V'). Some-
times V is referred to as the carrier space.

b.) A matriz representation of a group G is a homomorphism

¢:G— GL(n,k) (4.18)
for some positive integer n and field k.
Remarks

1. One can also have matrix representations in GL(n, R) where R is a ring.

2. It follows from our definitions that if ¢ : G — GL(V) is a representation of G
and we have an ordered basis b of V' then we can produce a corresponding matrix
representation ¢y o ¢ of G.

3. In later discussions of representation we will usually denote the homomorphism from
G to GL(V) by T : G — GL(V). We did not use the notation here because it would
clash with the previous example. We often refer to “the representation (7,V') of
G” or sometimes “the representation (V,T') of G” etc. We won’t be ultra-fastidious
about the notation.

4. Important Remark: Looking ahead, the basic idea of the expression of symmetry
in quantum mechanics is that a group G, the “symmetry group,” is linearly (and
unitarily) represented on the “Hilbert space H of physical states” of a physical system.
This statement, while quite common, is both inaccurate and incomplete. But it is a

good start.

Exercise Preservation Of Structure
Show that, for any group homomorphism ¢ we always have:

e(le) =1 (4.19)

wlg™") = ulg)™! (4.20)

Exercise The Stupid Homomorphism
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Consider the map p : G — G’ defined by u(g) = 1¢r. Show that this is a homomor-
phism.

Exercise Some Simple Isomorphisms

a.) Show that the exponential map z — e® defines an isomorphism between the
additive group (R, +) and the multiplicative group (R, X).

b. ) Show that SO(2) and U(1) are isomorphic groups.

c.) Show that z — 27!
automorphism of SO(2)?

is an automorphism of U(1) — U(1). What is the corresponding

Exercise A group “with one free generator”

Consider a group with a nontrivial element gy such that every element in the group if
a power of gy or gal and gy = g¢' iff n = m in the integers.

Show that this group is isomorphic to Z.

Remark: This is an example of what we will call below a group freely generated by
one element.

Exercise Sometimes diagrams don’t commute
Show that the diagram

mkl
Iy —=7TnN (4.21)
l@ i@
Dhy
[N ——= [N

commutes iff k1 = ko modNN.

Exercise The Quaternion Group
Construct a homomorphism

M Q — ZQ X ZQ (422)

where @ is the Quaternion group (3.68).
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Exercise

Let So be any set with two elements

a.) Show that there are exactly two possible group structures on Sz, and in each case
construct an isomorphism of Sy with s =2 Zo. 26

b.) Consider the matrix group of two elements:

§ = {(3 (1’) , <(1’ ;)} (4.23)

with multiplication being matrix multiplication. Construct an isomorphism with Sy. 27

Exercise Due Diligence
Show that if V is a finite dimensional vector space of dimension n and b is an ordered
basis for V' then
vp: GL(V) — GL(n, k) (4.25)

is an isomorphism of groups. 2%

Exercise Some Simple Representations Of un
Let w = e2™/N

a.) Show that for any integer k the k" power map
pr(w’) = wik (4.26)

defines a representation of pn by 1 x 1 matrices.
b.) Show that

] 23 sin(25
1wl 3(2%) - (f:fé(]zv;}) COS((%].))) (4.27)

defines a two-dimensional matrix representation of Zy.

26 Answer: We need to choose which element of the set is the identity. Call it e. Call the other element
0. Then we must have o2 = e.
27 Answer: Write S = {e, o} with e the identity and o = e. Define p: So — So

n(e) = <(1) ‘f)
(o) = <‘j é)

28 Answer: Suppose ©b(T) = lpxn. Then T'(v;) = v; and since b is a basis T is the identity. Moreover,

(4.24)

given a basis, any invertible matrix defines an invertible linear transformation.

— 33 —



c.) Let P be the N x N “shift matrix” all of whose matrix elements are zero except

for 1’s just below the diagonal and P; y = 1. See equation (7.133) below. Show that
p(w?) = P (4.28)

is an NV x N dimensional representation of .

Exercise Two Characterizations Of Abelian Groups

Let G be a group.

2

a.) Consider the map: p : G — G given by squaring: u(g) = g°. Show that p is a

group homomorphism iff G is Abelian.
b.) Consider the map:
GxG—G (4.29)

defined by group multiplication: u(g1,¢92) = m(g1,92) = gi1g2. Show that u is a group
homomorphism iff G is Abelian.

c.) As a generalization of (b) suppose H C G is a subgroup. Show that the map
H x G — G defined by group multiplication is a homomorphism iff H is a subgroup of the
center of G. %°

Exercise Commutative Diagrams

Suppose X, Y, Z, W are arbitrary sets and we have a map f: X — Y and 1 — 1 maps
g: X = Zand h:Y — W. Show that there is a unique map f : Z — W such that the
diagram:

X -oy (4.30)

g h
Z—f>W

commutes.

Exercise Isomorphisms And Preservation Of Structure

a.) Suppose ¢ : G1 — G5 is an isomorphism. Show that ¢!

is an isomorphism.
b.) Suppose that ¢ : Gy — G2 is an isomorphism, and ¢’ : G| — G} is an iso-

morphism. Suppose also that v; : G; — G} is a homomorphism (not necessarily an

2 Answers: (a): p(g1g2) = u(g1)u(g2) implies 9395 = (g192)? = g19291g2. Now cancel the g1 on the left
and the g2 on the right. (b): ETC.
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isomorphism). Show that there is a unique homomorphism v, : Go — GY so that we have
the commmutative diagram:

G 2= (4.31)

125 /
Gy 25 G,

Exercise Inverse Image Of Subgroups Under Homomorphism Are Subgroups
Suppose ¢ : G; = G4 is a homomorphism and Hy C G2 is a subgroup.
Show that ¢~ !(Hz) C Gy is a subgroup. 3°

Exercise Fiber Products
Given groups GG; and G, and homomorphisms 1 : G — H and 19 : Go — H one
can define a subset of G; x G2 known as a fiber product:

G1 Xy, G2 7= {91, 92)|¥1(91) = Y2(g2)} - (4.32)

Show that the fiber product is in fact a subgroup of GG; X G, where G1 X G has the direct
product group structure.

Exercise Structure Of The Power Set Group

In equation (3.46) above we noted that for any set X, the power set P(X) has the
structure of an Abelian group. Show that this group is isomorphic to a direct product of
Zo factors, each factor being generated by the singleton elements {z} C X for each z € X.

4.1 Kernel And Image

Given an arbitrary homomorphism

0:G =G (4.33)

there is automatically a “God-given” subgroup of both G and G:
Definition 7.4.1:

30 Answer: Suppose h,h' € ¢ '(Hz) then p(h),o(h') € Ha, but since Ha C G2 is a subgroup we know
that ¢(h)@(h') € Ha but this means p(hh') € Ho. Therefore hh' € o' (Hz).
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a.) The kernel of ¢ is
K =kerp :={g € Glo(g) = 1o’} (4.34)

b.) The image of ¢ is
imp = o(G) C G’ (4.35)

Exercise Due Diligence
b.) Check that o(G) C G’ is indeed a subgroup.
a.) Check that ker(¢) C G is indeed a subgroup. 3!

Example 1: Consider mg : Z4 — Z4. Then
ker(mg) = im(mg) = {0,2} = Zs (4.36)

Example 2: In the previous example ker(ms) = im(mg) but this is a very exceptional
case. Consider mqg : Z15 — Z15. The reader should check that

ker(mi2) = {0,5,10} = Z3 (4.37)

Example 3: More generally, consider my, : Zy — Zy for positive integers N, k. We can
write them as N = gs and k = gt where s,t, g are relatively prime and g is the greatest
common divisor of N and k, denoted g = (N, k). Then (see the section on elementary
number theory below) it is not hard to see that

ker(my) = {0,5,25,...,(g — 1)§} 2 Z, (4.38)
while (using Bezout’s theorem):

im(my) = {0,9,2g,...,(s —1)g} £ Zs . (4.39)

Example 4: Consider the homomorphism
e:U(1) — SU(2) (4.40)

defined by
N0
p(z) = ( 0 _N> (4.41)

3t Answer: If ki, ke € K then @(kik2) = @(k1)p(ks) = 1g/. So K is closed under multiplication. The
group properties of K now follow.
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Then
ker(¢) = un (4.42)

while the image is the subgroup of diagonal matrices in SU(2).

Exercise Kernel Of Projection Map In A Fiber Product

Let m1 : G1 X G2 — G be the projection map 71 : (g1, 92) — g1.

a.) Show that 7 restricted to any subgroup of G; x G2 is a homomorphism.

b.) Show that the kernel of m restricted to the fiber product of (4.32) is isomorphic
to ker(t2).

5. Group Actions On Sets

5.1 Group Actions On Sets

Recall that we said that if X is any set then a permutation of X is a 1-1 and onto mapping
X — X. The set Sy of all permutations forms a group under composition.

We now define the notion of an action of a group on a set. This is a very important
notion, and we will return to it extensively when discussing examples. If the following
discussion seems too abstract the reader should consult section 8 for a number of concrete
examples beyond the ones we are about to give. There is further material related to group
actions in Chapter 3.

There are three ways to think about a group action on a set:

First Way: A transformation group on X is a subgroup of Sx.

Second Way: We define a left G-action on a set X to be amap ¢ : Gx X — X compatible
with the group multiplication law as follows:

?(g1, 892, %)) = ¢(9192, ) (5.1)
We would also like z — ¢(1g, x) to be the identity map. Now, equation (5.1) implies that
o(la, 9(le, 2)) = ¢(la, x) (5:2)

which is compatible with, but does not quite imply that ¢(1g,2) = x. Thus in defining a
group action we must also impose the condition:

o(lg,z) =x Vo e X. (5.3)

Exercise
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Give an example of a map ¢ : G x X — X that satisfies (5.1) but not (5.3). 32

The above two ideas are connected to each other by the

Third Way: Yet another way to say this is the following. First, for a fixed g € G define
amap ¢(g,-) : X — X that takes = — ¢(g, ). Then using both axioms for a group action
one proves that ¢(g,-) € Sx. Call this map ®(g) € Sxy. Now define a map ® : G — Sx
that takes g — ®(g). Again using the axioms for a group action one easily checks that
®(g1) 0o P(g2) = P(g192) Therefore, to say we have a group action of G on X is to say that
® is a homomorphism of GG into the permutation group Sx.

Definition: If X has a group action by a group G we say that X is a G-set.

Notation: Again, our notation is overly cumbersome because we want to stress the con-
cept. Usually one writes a left G-action as

g-z:=¢(g,x) (5-4)
The key axioms become

91 (92 2) = (9192) - @

5.5
lg-x==x (5:5)

We can think of ®(g) as the map that sends z — g - x.

Definition/Discussion: Orbits: If G acts on a set X then we can define an equivalence
relation on X by saying that two elements z1,x9 € X are equivalent, x1 ~ x9 if there is
some g € G with ¢(g,z1) = x2. The reader should check that this is indeed an equivalence
relation. The equivalence class [x] with this equivalence relation is known as the orbit of
G through a point x. So, concretely it is the set of points y € X which can be reached by
the action of G:

Og(x) ={y:3g suchthat y=g- -z} (5.6)
The notion of orbits is very important in geometry, gauge theory and many other subjects.

The set of orbits is denoted X/G. We will discuss many examples below of this extremely
important concept.

Remark: If X, G are topological spaces, with the G action on X continuous then X/G
carries a natural topology. It has the largest number of open sets so that the map p : X —
X/G taking x € X to the equivalent class [x] € X/G is continuous. So a subset U C X/G
is open iff p~1(U) C X is open.

Examples

32 Answer: As the simplest example, choose any element o € X and define ¢(g,z) = xo for all g, 2. For
a slightly less trivial example consider G = Sz and let ¢(e,z) = ¢(o,z) = f(z). Then if fo f(z) = f(z)
the condition (5.1) will be satisfied, but there certainly exist functions with f o f = f which are not the
identity map.
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. Consider rotations around the origin of R?. They act on the points of R? as a G-
action. The distinct orbits are circles centered on the origin. The origin is also an
orbit by itself.

. Consider rotations around the origin by multiples of 27 /3. Check that this group is
isomorphic to Zs. Consider an equilateral triangle centered on the origin. Then the
rotations act on the triangle preserving it. Thus, Zs acts as a group of symmetries
of the equilateral triangle. Intuitively, group theory is the theory of symmetry. We
have just illustrated how that idea can be formalized through the notion of group
action on a set.

. A group representation of G on a vector space V is the same thing as a G-action on
V where ®(g) are linear transformations.

. Dynamical Systems As Group Actions: Action Of Z on any set X. Recall that we
noted below that if there is an element gy € G so that every element in G is uniquely
of the form g for n € Z (where negative integers are powers of g, 1 and the group
law is just gigi = gyt then such a group is isomorphic to Z. 33 The action of such
a group on any set X is of the following form: There is an invertible map f: X — X
and can define a group action on X by

fo-of(x)  n>0
—_—
n  times
go - r =47 n= (5.7)

floofia) n<0
—

[n|  times

Any Z-action must be of this form since we can define f(x) := go - . Thus the orbit
of a point z € X is the set of all images of successive actions of f and f~!. This is
known as a discrete dynamical system. The map f defines evolution by discrete time
steps.

. A simple example of the induced topology on the set of orbits X/G. Consider the
action of Z on R where n : x +— x + n. The orbit of a real number r is » + Z. Note
that the value of the function p(x) := €*>™% uniquely determines an orbit. So we can
identify the space of orbits X/G = R/Z, with this action of Z, with the points on
the circle. Moreover, with the quotient topology defined above it is the circle with

its usual topology.

. Let G = GL(n,k) and X = k", the n-dimensional vector space over k. Then the
usual linear action on vectors defines a group action of G on X. One can check that
there are only two orbits: The zero vector gives one orbit. This will be an important
observation in our discussion of projective space in section 5.2.

33 As we will soon see, G is the free group on one generator.
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7. If G = Zy acts linearly on R"™! (i.e. V = R""! is a representation of Zs) then we

10.

can choose coordinates so that the nontrivial element o € G acts by
o- (', 2" = (2. 2P, —aPT o —aPT) (5.8)

where p + ¢ = n + 1. Note that this action preserves the equation of the sphere
()% —1 = 0 and hence descends to a Zs-action on the sphere S™. The case
p=0,g=n+1is the antipodal map. This also descends to a group action on RPV
for N=p+q—1.

Now consider a set of integers (qi1,...,q,) € Z"™. Then for each such set of integers
there is a C*-action on CP"~! defined by

o [ X XM = [ X e XY (5.9)
for € C*. (Check it is well-defined!)

The group G = SL(2,R) acts on the complex upper half plane:

H = {7|Im7 > 0} (5.10)
via
at +b
ST = 11
g7 ct+d (5.11)
where

g= (Z Z) (5.12)

The reader should check that indeed:

91 (92-7) =(9192) " 7 (5.13)
and moreover, for g € SL(2,R) we have

Im(7)

g 7) = (g

(5.14)

so that the G action preserves the upper half plane. Note this would not be true if
g€ SL(2,C).

The Space Of Gauge Inequivalent Fields In Mazwell Theory. Let MY be (d +
1)-dimensional Minkowski space and consider the first order differential operators
(—i0, + A,), which parametrize the data of the electromagnetic gauge potential.
Then the group G = Map[M"? — U(1)] is a group which acts on the set A of all
gauge potentials by A, — A, —if _18M f. The space of orbits A/G parametrizes
gauge-inequivalent field configurations.

40 —



Exercise G Actions And Equivalence Relations
a.) Suppose G acts on a set X. Then G acts on the Cartesian product X x X via

g (r1,22) := (g - 21,9 - w2). Suppose R C X x X is an equivalence relation which is
preserved by the G-action. That is, (z1,22) € R implies (g - x1,9 - 2) € R. Show that G
34

acts on the set of equivalence classes.
b.) Suppose that G; and G2 act on X so that their group actions commute. Show
that G1 acts on the set of orbits X/G2 and vice versa.

Exercise G-actions And Homomorphisms
Suppose Go acts on a set X via ¢g : Go x X — X.
Suppose ¢ : G1 — G5 is a homomorphism.

Show that ¢1 : G1 x X — X defined by

$1(91,2) := ¢2(p(91), v) (5.15)

is a G'i-action on X.

5.2 Projective Spaces

Let kK = R or k = C. The multiplicative group x* acts on X = k™ by scaling all the
coordinates. Note that scaling a nonzero vector by a nonzero scalar gives a nonzero vector
so G = k* also restricts to act on X = ™ — {0}. The set of orbits in the two cases differs
only by the addition of one point: The orbit of the zero vector. However, the induced
topology on X/G is quite different in the two cases. With the quotient topology k"/k*
is not a Hausdorff. To see this, consider what would constitute an open set containing
the orbit of the zero vector. It would have to be a set U C k"/k* so that p~1(U) is an
open set of the origin in k™. But, being the inverse image of p, that set would have to be
invariant under scaling by all elements in x*. But this means that p~!(/) = ", and hence
U = X/G. In other words, the only open set in x™/k* containing [0] is all of X/G. But
this means we cannot find open sets separating [6] from [v] for any nonzero vector v and
hence k™ /k* is not Hausdorff.

The situation is very different if we discard the problematic zero vector. Then it is not
hard to show that (k™ — {0})/x* is a nice Hausdorff space, and in fact a smooth manifold.
This important manifold is often denoted RP"~! for x = R and CP"! for k = C. When
k = C it is even a complex manifold, meaning that the transition functions on patches are
holomorphic functions. See Chapter 3 for more discussion. We will often denote elements
of kP! by [X!:---: X"] where the X’ cannot all be zero and they are complex, or real,

31 Answer. Define g - [z] := [g - 2] and check this definition is well-defined.
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depending on whether kK = C or k = R. This stands for the equivalence class of a vector
(X1,..., X" € k" —{0}.

Examples

1. RP! is the moduli space of lines through the origin in R?. EXPLAIN IN DETAIL.

2. More generally, RP" or CP" is the moduli space of one-dimensional subspaces of R?+1
or C"*1, respectively.

3. It is natural to identify CP! with the extended complex plane C and hence also with
the unit sphere S? ¢ R3. We can map

7w o 2] {21/22 270 (5.16)

00 29 =10

and this gives a 1 — 1 correspondence between points in CP' and points on the
extended complex plane. Another way to say the same thing is as follows: We cover
CP! with two open sets

CP' = Uy UlUs (5.17)

where Uy are the points [z; : z9] with z9 # 0 and Ug are the points with z; # 0. Now
consider the map:

¢N :UN — C ¢N([21 : ZQ]) = ZN = Zl/ZQ (5.18)

This defines a coordinate system in Uy . Note that if we tried to extend the domain of
¢n to include the point [1 : 0] the image would be the “point at infinity.” Similarly,
on the set Ug where z; # 0 we can define a map

og:Us — C ds([z1 1 22]) = 25 := 2z9/21 (5.19)

Note that the point [0 : 1] corresponds to a “point at infinity” in this mapping. Also
note that Uy NUs is all of CP! except for two points, [1 : 0] and [0 : 1]. On this

intersection it makes sense to compare coordinates and we always have:
zgzn =1 (5.20)

We have thus described CP! as a manifold.

Now, it is also true that C =~ S2 via stereographic projection. The stereographic
projection from the north pole is the mapping:

A~ 1 . /\2

T +1T
= — 5.21
=210 (5.21)

The stereographic projection from the south pole is the mapping:

~1 )

T —iz
28 = ————= 5.22
ST 14 (5:22)
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Once again

zszn =1 (5.23)
so we are describing the same manifold. So one can identify the three manifolds CP!,
C, and S2.
Remarks
1. Quantum Mechanics Is Projective. Projective spaces play an important role in

quantum mechanics. The of pure quantum states in a quantum system with an n-
dimensional Hilbert space is a copy of CP"~!. The pure state is a one-dimensional
projection operator onto a line, and CP"~! is the moduli space of lines. Often people
speak of “the state ¢ € H” where H is a Hilbert space. But the only meaningful
thing is the equivalence class of 1) under multiplication by C*. If we normalize ¢ then
this ambiguity becomes multiplication by a phase and people speak - misleadingly -
or a “ray in Hilbert space.” The only physical information is in the density matrix,
which in this case is a rank one projection operator onto the line through the origin
and :
A (OXC

B =00 T W 0=

where we have given both math and physics notation, respectively. Note that ¢’ = a1

where « ((‘, i anda o1 " 1 — 1 /. Ile la“k one |().e l‘]()“ O elal()ls ale.“ 1—1 &Much more
explanation needed

correspondence with the one-dimensional subspaces of Hilbert space and these are in  nere. &
1-1 correspondence with the points of CP" if the Hilbert space is (n+ 1) dimensional.

These remarks generalize to infinite-dimensional Hilbert space.

2. Coordinate Systems For Projective Spaces. Consider RP"”. For each 1 < i < n +1
define a subset U; C RP" to be the set of points [z! : - - : "] with 2 # 0. If 2' # 0
then there is a unique representative vector in R"*! of the form (y',...,y" ') with

y® = 1. Then the remaining coordinates 3/ define a point in R” and are coordinates
defined on the patch ;. For example, on U;, each point [z : --- : 2""1] has a
unique representative of the form (1,%2,...,y"*!). Then (y?,...,y""!) is a set of
coordinates on this patch. Now consider points on the overlap U; NU; for i # j.
Then a point [#! : --- : 2"*1] in the intersection has both x' and 7 nonzero. The

same point has a unique representative (y!,...,y"*!) such that * = 1 and a second

unique representative (w!,...,w"!) such that w’ = 1. Therefore we have

n 1 n
@' = S (5.25)

and also
1

+1y _ 1
") =
so that w* = y*/y7 for all 1 < k < n+1 and similarly y* = w”* /w'. The reader should
check that these two equations are compatible. This gives the change of coordinates

(y' -y Cw™t (5.26)

on patch overlaps U; NU;.
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5.3 Equivariant Maps

Definition Let X, X’ be two G-spaces. We say that f : X — X' is an equivariant map,

(a.k.a. a morphism of G-spaces) if for all z € X, and g € G we have

flg-z)=g-f(z) (5.27)
or more formally:
f(d(g,2)) = ¢ (g, f(2)) (5.28)
or, equivalently, the diagram
x 1o x (5.29)
‘P(g)l l@(g)
xtox

commutes. 3°

Examples

1. Consider the Zsg action on R™*! in equation (5.8) above. Any linear equivariant map

from R™t! to itself for this action is of the form

(05)

where A € M,(R) and D € My(R).

(5.30)

. Let H be the upper half complex plane and H the lower complex half-plane. Then
z — Z is an equivariant map for the SL(2,R) action discussed above.

. The projection map from RY¥*! — {0} — RP¥ is equivariant for the group action
defined in (5.8).

. The group G = SL(2,C) acts on CP* via

<Z Z) [21 1 29] := [az1 + b2g : c29 + dzg] (5.31)

and the group G = SL(2,C) also acts on C via

ab az+b
S zi= .32
<cd> N cz+d (5-32)

Note that, unless ¢ = 0, one must use C and not C because the Mobius transformation
takes z = —d/c to co. One can check that the map 7 : CP! — C is equivariant for
these actions of SL(2,C).

35We could actually generalize this to a pair of maps F : X — X’ and a homomorphism ¢ : G — G’

such that F(g-x) = ¢(g) - F(x). This generalization is quite natural in the context of category theory. See

section 17 below.
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Exercise Fquivariant Maps For The Action Of Z On R By Translation

Consider the action of Z on R by translation: ¢, : x — z +n, for x € R and n € Z.
Show that the only equivariant analytic map f : R — R for this action are the translations
f(z) =z + a for some a € R.

Exercise FEquivariant Maps For The Fundamental Representation Of SU(2)
Consider the linear action of SU(2) on the Qbit space C2. Show that any linear
equivariant map T : C? — C? must be of the form T'(?) = «Z for some complex number «.

5.4 Some Special Relations Of 2 x 2 Matrix Groups And Symmetries Of Space-
time
In low dimensions there are some very beautiful special relations between natural actions

of 2 x 2 matrix groups on 2 x 2 matrices and rotation/Lorentz symmetries of natural
spacetimes.

5.4.1 An Important Homomorphism From SU(2) To SO(3)

Let H9 be the vector space of 2 x 2 complex matrices which are both Hermitian and
traceless. It is not hard to see that this is a real vector space and it is isomorphic to R3

with isomorphism

h:R3 — H (5.33)

D
hZ) =2 -0 = 5.34
(#)=3-0 <x1 +ir? a3 > ( )

We now define a group action of SU(2) on HY. For u € SU(2) and m € H9 we define:
d(u,m) == umu~" (5.35)

For a fixed u let C, : H3 — H3 be defined by:
Cyu(m) == umu™' . (5.36)

Note that Cy,(m) is traceless if m is. Moreover since u~! = uf, C,(m) is Hermitian if m is.
Therefore C,, maps HJ to HJ. Moreover, note that C,, is a linear transformation on H9.

Since h is an isomorphism of vector spaces we can defining a corresponding linear
transformation R(u) : R® — R3 by

R3 L Rs (5.37)

HQT%Q
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Since h and C,, are invertible maps R(u) is an invertible linear map, i.e. R(u) € GL(3,R).
The association u — R(u) is a map

R:SU(2) —» GL(3,R) . (5.38)
It has the property that, for all # € R? we have:
uf - du! = (R(u)T) - & (5.39)

Put differently, since Z is real, the 2 x 2 matrix uZ - Fu~! is hermitian, and traceless, and
hence has to be of the form i - &, where i € R3. We call that vector ¥ = R(u)Z. It should
be clear from the definition that R(uju2) = R(uj)R(u2), so that R: SU(2) — GL(3,R) is
a homomorphism of groups.

In fact, we claim that R is a homomorphism from SU(2) into the subgroup SO(3) C
GL(3,R). To see this we note that the Euclidean norm on R? is nicely expressed in terms
of HJ. Note that (see exercise below)

I o (10
(& 5) = 2 (O 1> (5.40)

Alternatively, (see exercise below)
det? - & = —72 (5.41)

Therefore, if we write u® - u~! = - & for some ¥ then it follows from either (5.40) or
(5.41) that % = 2. We therefore conclude that ¢ = R(u)¥ with R(u) € O(3) C GL(3,R).
In fact, R maps SU(2) into the subgroup SO(3) C O(3). To see this note that from
the definition:
uo'u™t = R(u)jio? . (5.42)
(Repeated indices are summed on the RHS.) Now note that
21 =tr (010203)
=tr (ualu_luJQU_luagu_l)
= R(u)j, 1 R(u)jy 2R(u) jy 3tr (07 07207%) (5.43)
= 2iej1j2j3R(u)j1,1R(u)j272R(u)j373
— 2idetR(u)
and hence detR(u) = 1. Alternatively, if you know about Lie groups, you can use the fact
that R is continuous, and SU(2) is a connected manifold.

Remarks

1. We will return to this important homomorphism at several points below. We are
going to show that
a.) KGT‘(R) = {:|:12><2} = ZQ
b.) R is surjective to SO(3).
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2. Note that we have just constructed a three-dimensional representation of SU(2). It
is a very special representation known as the adjoint representation.

Exercise Simple Identities For & -7

a.) Prove (5.40)

b.) Prove (5.41)

c.) Show that both these formulae imply that if Z- & = ¢/ - & then

8y
I

Exercise A Formula For The Angle Between Vectors In Terms Of Spherical Angles
a.) Show that if v is the angle between ¥ and 7 then that

To(Z - 5)(7 - &) = 2|7||7] cos v (5.44)

b.) Now parametrize Z and Z’ in terms of standard polar angles:

z! = rsinfcos¢

2% = rsinfsin ¢ (5.45)

2% =rcosf

Show that the angle v between ¥ and &’ is given by

cosy = cosf cos @ + cos(¢p — ¢') sin O sin (5.46)

5.4.2 SL(2,R) And Lorentz Transformations In 2 + 1 Dimensions

We now consider traceless and real matrices M3(R). This is a three-real dimensional
vector space. In analogy to the previous section we can parametrize it as:

S x y—t S
= (t,z,y) e R® & =M 5.47
Z = (t,z,y) <y+t _x> (@) (5.47)

Now the group G = SL(2,R) acts on MY(R) via
(A, m) := AmA~" (5.48)

for A € SL(2,R) and m € MY(R). Simply note that AmA~! is real and traceless, if m is.
Now, as before, we can use the identification of M (R) with R3 to define a homomor-
phism A : SL(2,R) — GL(3,R) via

AM(Z)A™' = M(A(A)Z) (5.49)
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Now note that
detMz = t? — 22 — y% = det M. (5.50)

and therefore, A(A) is a Lorentz transformation. Moreover
A:AeSL(2,R) — A(A) € O(1,2) (5.51)
is a homomorphism.
Remarks
1. Once again it will turn out that

kerA = Zs image(A) = SOp(1,2) (5.52)

2. Once again, we are discussing the adjoint representation of SL(2,R) on its Lie algebra.

Exercise

For A > 0, n € R and a real angle 6 consider the matrix:

cosf sind A0 1n
A= . . .
(— sin 6 cos 9) <0 )\1> (() 1) (5.53)

a.) Show that A € SL(2,R).

Note: It turns out that the general element of SL(2,R) can always be uniquely written
in this form. That is a special case of a general parametrization of Lie groups known as the
K AN decomposition. For SL(2,R) (and indeed for SL(n,R) for any n) it follows simply
from the Gram-Schmidt procedure. This shows that as a manifold SL(2,R) is isomorphic
to S x R? and provides a global system of coordinates on SL(2,R).

b.) What kind of Lorentz transformations are described by the parameters 6, A, n in
the global parametrization (5.53)7 Show that

f: rotation in x,y plane

X: boost along y axis of rapidity log\?

n: Defines a “null boost,” best expressed in light cone coordinates:

t+y—t+vy
r—x+nt+y) (5.54)
t—y—t—y+2nc+nt+y)
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5.4.3 SL(2,C) And O(1,3)

We now consider an analogous construction using Hs, the vector space of all 2 x 2 Hermitian
matrices. This is a four-dimensional real vector space and it can naturally be identified with
four-dimensional Minkowski space M!3. To see that we denote for x = (2%, 2!, 22, 23) €

M1,3
2

20423 2l —ix 0 oL
M(x) := (azl g2 0 g3 | = loxo +2-0 (5.55)
There is a group action of SL(2,C) on Hz defined by

p(A, M) = AMAT (5.56)

for A € SL(2,C) and M € Hy. In close analogy to the previous example, this defines a
linear action of SL(2,C) on Hs which is equivalent to a linear action on M and hence

we get a group homomorphism

A:SL(2,C) - GL(4,R) (5.57)
defined by
AM (x)AT = M(A(A)x) . (5.58)
Now note that
detM(x) = (2°)% — (21)? — (2%)? — (27)? (5.59)

and since det AM A" = detM we conclude that in fact we have a homomorphism:

A:SL(2,C) — O(1,3) (5.60)

Remarks:

1. We will show that ker(A) = {£1ax2} = Zs. It will turn out that A is NOT surjective,
but it is surjective onto the connected component of the identity, denoted SOy(1, 3).
See below for more about that.

2. The Celestial Sphere And Mobius Transformations. Consider a point p on a light-ray
in M!3 that begins at the origin z# = 0. Assume this point is in the forward light
cone so the coordinates x#(p) have 2°(p) > 0. Then we know that

detM(z*(p)) =0 (5.61)

So long as M # 0 this means that there exist vectors v,w € C? so that M is the
outer-product of the vectors. In terms of matrix elements

M(z"(p)) ap = vawp (5.62)

where A € {1,2} and B € {1,2}. The dot over the B has a definite meaning in
terms of “spinor index notation,” but we are not going to explain that here. Since
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M is Hermitian we know that w = v*. Now note that two points p,p’ are on the
same light-ray in the forward light cone iff there is a positive real number A > 0
so that z#(p') = Az#(p). Next, we claim that two matrices M’ and M of the form
(5.62) are related by scaling with a positive real number iff v/ = v for some nonzero
complex number £. In this way we see that there is a 1-1 correspondence between the
light-rays emanating from the origin or M and points of CP'. It goes as follows:

Given a light-ray ¢ C M from the origin in the forward light-cone we choose a point
- any point - p € £. Then there exists a vector v (it is not unique) with components
va so that M(a#(p)) 45 = vavy. The vector v defines a point [v; : va] € CP!.

There are a lot of choices here, and you should convince yourself that nevertheless
there is a 1-1 correspondence between a light-ray ¢ and a point in CP'. We can say
this a bit more formally as follows: Let

Ly ={zaxl'z, =0 and 2% > 0} (5.63)
denote the forward lightcone in M3 and

HI9 — (M € HyldetM =0  and M # 0} (5.64)

then there is a one-one map f1 : L, — ”ngg . On the other hand there is a map

fo:C?2—{0} — ngg given by

2 *
oo () o (o 555
Vo vive |v2|

and f3 = f| Lo fy is equivariant for the C* action, where C* acts on £, via its
homomorphic image R~¢. (See equation (5.15) above. The homomorphism is ¢(z) :=
|z]2.) Looking at the space of orbits one can check there is a one-one map f3 : CP! —
L, = L,/Rsg. Here L, is the moduli space of light rays in the forward cone

emanating from the origin.

On the other hand we can also define 1-1 maps
1. p: CP' — C defined by p([v1 : v2]) := v1/va
2.5:82 5 C by stereographic projection

3. t: L, — S? by the point on the celestial sphere pierced by a light-ray in the

forward light cone.

We have the commutative diagram giving us four ways to think about the celestial
sphere:

cp Loz, (5.66)

Pl

@ésgo
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The SL(2,C) action on C? — {0} and that by its homomorphic image under A on
L commutes with the C* action above. (Again we make use of equation (5.15).) It
commutes with the C* action and hence descends to an action on the four spaces in
(5.66). The action of SL(2,C) on the space of matrices with detM = 0is M — AM AT
and, as we have discussed is equivalent to the action of the Lorentz group O(1,3) on
L. From (5.62) this action is equivalent to v — Av. But under the identification
CP' = C given by p the action of SL(2,C) becomes the Mobius action of SL(2,C)
on C. In this sense, the action of the Lorentz group on the celestial sphere equivalent
to the Mobius action of SL(2,C) on C.

Pursuing these ideas leads to the idea of the “twistor correspondence” which relates
aspects of wave equations in (complex) Minkowski space to projective geometry

Exercise Fzxplicit Lorentz transformations
a.) Show that the natural SU(2) subgroup SU(2) C SL(2,C) acts as rotations in
z!, 22, 23, leaving 20 invariant.

b.) Show that

(3 A01> recr (5.67)

acts as a boost along the z3 axis of rapidity log|A|* and a rotation of angle arg(A*/)) in
the 22?2 plane.
c.) Find a physical interpretation of the Lorentz transformation associated to

1n
A= (0 1) neC (5.68)

d.) Find a representation for the matrix A;; in terms of the components of the boost
velocity v;.

Exercise 3-dimensional Fuclidean hyperbolic space

We can now understand more clearly the isometries of 3-dimensional hyperbolic space
mentioned above.

Euclidean AdS5 can be defined as the space of matrices.

X_ X +iX,
X = 5.69
<X1 —iX, X, ) (569)

where X, X1, X5 are real and:

detX = X X, — | X1 +iXo> = 1. (5.70)
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This defines a hyperboloid in R'3.
Poincare coordinates: X, = 1/y, X_ =y + |2|?/y, X1 +iX2 = z/y are introduced by
the Gauss decomposition, which now covers the manifold:

12\ (y 0 (10
X= (0 1) <0 1/y> (z 1) (5.71)

From this, one easily computes the metric is (dy? + |dz|?)/y>.
Now, isometries are plainly Lorentz transformations:

ab ac
X — (C d) X (5 J) (5.72)

with ad — bc = 1. Acting on the Gauss decomposition one easily shows this is:

(5.73)

(2 y) = (az + b)(cz + d) + acy? ylad — bel
’ lez +d|?2 + |c]Py? ez +d)? + |c]?y?

Note that one example of such a hyperbolic space is the mass shell of a massive particle
in 3 + 1 dimensions. If we interpret R'"3 as momentum space with

P. P +iP
p_ R (5.74)
P —iP, Py

Then
detP = M? (5.75)

is the mass-shell hyperboloid. We now see that this is a copy of 3-dimensional hyperbolic
space.

5.4.4 SU(2) x SU(2) and Rotations in 4 Euclidean Dimensions

Finally, we identify 4-dimensional Euclidean space with 2 x 2 complex matrices of the form

Mo xt +ixd it + a2
T = 1 2 .4 3

Tt — " —ix
(5.76)
= at'7,
=x4l +1i%-0
We will denote this space of matrices with real x* by H. Actually, this will only be
a provisional definition of the quaternions, as it is really a matrix representation of the
quaternions, which will be properly defined below. Another way to think about it is:

H = {zt7, : 2" e R} = {M € M>(C) : M* = 09Mos} (5.77)

Now
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detM, = +a? (5.78)

is the Euclidean metric in 4 dimensions. Just as above, there is a left-action of SU(2) x
SU(2) on H

M — ug Muy! (5.79)

The reader should check that this really is a map of H to H. Morever, the transformation

considered as a linear transformation on R* preserves the metric thanks to (5.78).
Thus, in the same way as above we define a homomorphism

R:SU(2) x SU(2) — SO(4) (5.80)

Now the kernel of R is again a copy of Zy with the nontrivial element being (—1,—1) €
SU(2) x SU(2)

Exercise
a.) Show that the set of matrices M satisfying (5.76) may be identified with the set
of matrices M satisfying:

M* = O'QMO'Q (5.81)

b.) Check that every matrix in SU(2) satisfies (5.81).

5.4.5 SL(2,R) x SL(2,R) and symmetries of Anti-DeSitter space

Finally, let us consider signature (2,2). The space of 2 x 2 real matrices My(R) can be
identified with R?? with the metric being identified with the determinant, as we saw above.
Identifying z = (Ty, Ty, X1, X2) € R?? with such a matrix via

T+ X1 Xo+ T
M, = 5.82
‘ <X2 -1 T — X1> (5.82)

we have a left-action of SL(2,R) x SL(2,R):
M, — AiM, A" = My, (5.83)

for (A1, As) € SL(2,R) x SL(2,R).
The considerations analogous to the above show that we have an exact sequence:

1 — Zy — SL(2,R) x SL(2,R) — SOo(2,2R) — 1 (5.84)

where Zs in the quotient is embedded diagonally.

The subspace of matrices detM, = 1 is a copy of SL(2,R) itself. ***** EXPLAIN
MORE **** Since the equation detM, =1 is SL(2,R) x SL(2,R) invariant we learn that
SL(2,R) x SL(2,R) is also the group of isometries of SL(2,R). Therefore the same holds
for the universal cover - three-dimensional anti-deSitter space.
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5.5 Group Actions On Sets Induce Group Actions On Associated Function
Spaces

The following general abstract idea is of great importance in both mathematics and physics:
Suppose X and Y are any two sets and F[X — Y] is the set of functions from X to Y. Now
suppose that there is a left G-action on X defined by ¢ : G x X — X. Then, automatically,
there is also a G action ¢ on F[X — Y]. To define it, suppose F' € F[X — Y] and g € G.
Then we need to define ¢(g, F) € F[X — Y]. We do this by setting ¢(g, F') to be that
specific function whose values are defined by:

$(g, F)(x) := F(o(g~",x)). (5.85)
Note the inverse of g on the RHS. It is there so that the group law works out:

é(g1,8(g2, F))(z) = d(g2, F)(d(g7 ", x))

F(¢(gy " dlgr @)

= F(¢(g3 91", 2)) (5.86)
F(¢((g192)"",x))

d(9192, F)(x)

and hence (%(gl,gz;(gg,F)) = qg(glgg,F) as required for a group action. It should also be
clear that ¢(1¢g, F) = F.

In less cumbersome notation we would simply write
(9-F)(z):=F(g~" ) (5.87)

In the above discussion we could impose various conditions, on the functions in F[X —
Y]. For example, if X and Y are manifolds we could ask our maps to be continuous,
differentiable, etc. The above discussion would be unchanged.

As just one (important) example of this general idea: In field theory if we have fields
on a spacetime, and a group of symmetries acting on that spacetime, such as the ones we
studied in the previous section, then that group also acts on the space of fields.

Exercise When Y Is A G-Set
Suppose there is a left G-action on a set Y and X is any set. Show that there is a
natural left G-action on F[X — Y.

6. The Symmetric Group.

The symmetric group is an important example of a finite group. As we shall soon see, all
finite groups are isomorphic to subgroups of the symmetric group.
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Recall from section 3 above that for any set X we can define a group Sx of all permu-
tations of the set X. If n is a positive integer the symmetric group on n elements, denoted
Sh, is defined as the group of permutations of the set X = {1,2,...,n}.

In group theory, as in politics, there are leftists and rightists and we can actually define
two group operations:

(01 L ¢2)(i) = p2(91(i))
(01 R $2)(1) := P1(d2(4))

That is, with -7, we read the operations from left to right and first apply the permutation

(6.1)

¢1, and then the next permutation to the right, namely ¢2. With -p it is the other way
around: We apply the maps in the order of reading from right to left. Each convention
has its own advantages and both are frequently used. For example, if we think of the
permutation action as an arrow taking 7 to some 4’ then the subsequent composition of
arrows is most naturally represented using -;. However, if we think of a permutation as a
function then - is more natural because we are composition functions.

In these notes we will adopt the - convention and henceforth simply write ¢1¢o for the product. It is

We can write a permutation symbolically as

1 2 ... n
¢ = ( > (6.2)
P1 P2 " Pn
meaning: ¢(1) = p1,P(2) = pa,...,0(n) = p,. Note that we could equally well write the
same permutation as:

a a ... a
¢ _ 1 2 n (63)
pal pag e pan
where aq,...,a, is any permutation of 1,...,n. With this understood, suppose we want
to compute ¢1 -1, ¢2. We should first see what ¢1 does to the ordered elements 1,...,n,

and then see what ¢ does to the ordered output from ¢;. So, if we write:
1 .- n
b= ( )
q1 - dn
L
P1 " Pn

¢1'L¢2:<1‘“ n) (6.5)
P1 - Pn

On the other hand, to compute ¢; -r ¢2 we should first see what ¢o does to 1,...,n and
then see what ¢; does to that output. We could write represent this as:

Then
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¢2 - / /
q1 C 4y
(6.6)
@
¢1 - / /
Y41 © Pn
and then
1 n
¢1rRO2=1| , , (6.7)
1 © Pn
Exercise

a.) Show that the order of the group is |S,| = n!l.
Show that if n; < ny then we can consider S,, as a subgroup of Sy, .

b.)
c.) In how many ways can you consider S to be a subgroup of S3? 36
d.) In how many ways can you consider S,, to be a subgroup of S,, when n; < ng ?
37
Exercise Show that the inverse of (6.2) is the permutation:
P1 P2 Pn
= 6.8
o= .. (6.8)
&SHOW THE
. . . . . . . . PERMUTATIONS
It is often useful to visualize a permutation in terms of “time evolution” (going up) as ;¢ MORE
. CLEARLY IN THE
shown in 1. PICTURE &

Exercise Left versus right

a.) Show that in the pictorial interpretation the inverse is obtained by running arrows
backwards in time.

b.) Show that the left- and right- group operation conventions are related by

b10 P2 = (7" mRpy )" (6.9)

36 Answer: There are three subgroups of Sz isomorphic to Sz. They are the subgroups that leave one
element unchanged. That is the permutations that leave 1,2 or 3 unchanged.
37 Answer: for any subset 7" C {1,...,n2} of cardinality no—n1 we can consider the subset of permutations

that leave all elements of 7" unchanged. This subset of permutations will be a subgroup isomorphic to Sy, .
n2

So there are (m

) distinct subgroups isomorphic to Sy, .
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Figure 1: A pictorial view of the composition of two permutations ¢1, ¢o in Sg. Thus1 — 3,2 = 7
etc. for the group product ¢s - ¢1.

c.) Interpret (6.9) as the simple statement that ¢1 -r ¢2 puts ¢ in the past while
@1 -1, P2 puts ¢1 in the past.

The next two exercises assume some familiarity with concepts from linear algebra. See
Chapter 2 below if they are not familiar.

Exercise The Canonical Permutation Representation Of Sy,

Consider the standard Euclidean vector space R™ (or C" or x") with basis vectors
é1,...,&, where & has component 1 in the i*" position and zero else. Note that the
symmetric group permutes these vectors in an obvious way:

T(¢) : € = €y » (6.10)

and now extend by linearity so that

T((;s) : inei — Z$i6¢(i) = Z:cqﬁq(i)ei (6.11)
=1 =1 =1

Thus to any permutation ¢ € S,, we can associate a linear transformation 7'(¢) on k™.
a.) Show that

T(p1) o T(p2) =T(¢10 ¢2) =T(¢1 R ¢2) (6.12)

This means we have a linear representation of the group 5,.
b.) The matrix A(¢) of T'(¢) defined by T'(¢) and the ordered basis {e1,...,e,} is
defined by:

T(9)& =) Al9)ji€ (6.13)
j=1
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b.) Show that
A(91)A(¢2) = A(¢1 0 ¢2) (6.14)

and in particular that A(¢~1) = A(¢)~!. Thus, ¢ — A(¢) is a matrix representation of
Sh.

c.) Write out A(¢) for small values of n and some simple permutations ¢.

d.) Write a general formula for the matrix elements of A(¢). 38

e.) The matrices A(¢) are called permutation matrices. In each row and column there
is only one nonzero matrix element, and that nonzero element is 1. If B is any other n x n

matrix show that

(A(0) ' BA(9)), ; = Bo(i) (i) (6.15)

In general, if we have a representation of a group 7' : G — GL(V) and a nontrivial
subspace W C V such that T'(g) takes vectors in W to vectors in W for all g € G, we say
that the representation is reducible. See section 11.7 for more information.

f.) Show that the natural permutation representation of S,, on R” is reducible. 37

Exercise Signed Permutation Matrices

Define signed permutation matrices to be invertible matrices such that in each row and
column there is only one nonzero matrix element, and the nonzero matrix element can be
either +1 or —1. Finally, require the matrix to be invertible.

a.) Show that the set of n x n signed permutation matrices form a group. We will call
it W(By,) for reasons that will not be obvious for a while.

b.) Define a group homomorphism W(B,,) — Sp.

6.1 Cayley’s Theorem

As a nice illustration of some of the concepts we have introduced we now prove Cayley’s
theorem. This theorem states that any finite group is isomorphic to a subgroup of a
permutation group Sy for some N.

Recall the notion of a group action of a group G on a set X. In this case we take
X = G and G is acting on itself by left-multiplication, defined as follows:
For h € G, define the map L(h) : G — G by the rule:

L(h):g—h-g Vg € G. (6.16)

3 Answer: A(¢)i; = 6i.6j) = 0p—10:),5-
39 Answer: Show that the linear subspace spanned by the “all ones vector” vg = €1 + - - - + ey, is preserved
under the action of T'(¢) for all ¢ € Sn: T(¢)(Avo) = Avo, for all A € R.
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This map is one-one and invertible so L(h) € Sg, the group of permutations of the set G.
Now note that
L(hl) e} L(hg) = L(hl . hg) (617)

so the map £ defined by £ : h — L(h) is a homomorphism
L:G— Sg (6.18)

L is the quantity denoted by ® above in our general discussion of group actions. Further-
more, if L(h1) = L(h2) then h; = hy. Therefore £ is an isomorphism of G with its image
in Sq.

The above remarks apply to any group. However, now consider any finite group G
with N = |G| then Sg¢ is isomorphic to Sy. Therefore, any finite group is isomorphic to
a subgroup of a symmetric group Sy for some N. This is Cayley’s theorem. Note that
which subgroup of Sy we obtain depends on how we choose to order GG, that is, it depends
on the choice of isomorphism Sg = Sy. To produce an isomorphism we need to choose a
total ordering on GG, but in general there is no natural ordering on a finite group G.

Exercise Concrete Example
By Cayley’s theorem the cyclic group Z,, of order n is isomorphic to a subgroup of a
permutation group. Exhibit such an isomorphic subgoup. 4°

Exercise Right Action
There are other ways G can act on itself. For example we can define

R(h):g—g-h (6.19)

a.) Show that R(h) permutes the elements of G.

b.) Show that R(hi) o R(h2) = R(hah1). Thus, h — R(h) is not a homomorphism of
G into the group S¢ of permutations of G.

c.) Show that h + R(h™!) is a homomorphism of G into Sg.

6.2 Cyclic Permutations And Cycle Decomposition

A very important class of permutations are the cyclic permutations of length £. Choose £
distinct numbers, a1, ..., ay between 1 and n and permute:

ap — ag = - = ag — ap (6.20)

40 Answer: Choose any cyclic permutation of length n (Cyclic permutations are defined in Section 6.2
below.) Then it generates a subgroup of Sy of length n for any N > n.
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holding all other n — ¢ elements fixed. Such a permutation is called a cycle of length £. We
will denote such permutations as:

¢ = (a1az...ap). (6.21)

Bear in mind that with this notation the same permutation can be written in ¢ different

ways:
(arag...ap) = (agas...apa1) = (a3 ...apa1a2) = -+ = (apaiag ... ap—1) (6.22)

Let us write out the elements of the first few symmetric groups in this notation:

Sy = {1,(12)} (6.23)

Sy = {1, (12), (13), (23), (123), (132)} (6.24)

Remarks

1. S5 is abelian.

2. S3is NOT ABELIAN #!
(6.25)

and therefore so is S,, for n > 2.

It is not true that all permutations are just cyclic permutations, as we first see by

considering Sy:

Sy ={1,(12), (13), (14),(23), (24), (34), (12)(34), (13)(24), (14)(23),
(123), (132), (124), (142),(134), (143), (234), (243) (6.26)
(1234),(1243), (1324), (1342), (1423), (1432)}

Now a key observation is:
Any permutation o € Sy, can be uniquely written as a product of disjoint cycles. This
is called the cycle decomposition of o.
For example
o = (12)(34)(10,11)(56789) (6.27)

is a cycle decomposition in S1;. There are 3 cycles of length 2 and 1 of length 5.
The decomposition into products of disjoint cycles is known as the cycle decomposition.

“INote that (12) -1 (13) = (123). But we use the -r convention.

— 60 —



Exercise Decomposition as a product of disjoint cyclic permutations

Prove the above claim: every permutation above is a product of cyclic permutations

on disjoint sets of integers. 42

Exercise

a.) Let ¢ be a cyclic permutation of order ¢. Suppose we compose ¢ with itself N
times. Show that the result is the identity transformation iff ¢ divides N.

b.) Suppose ¢ has a cycle decomposition with cycles of length ki, ..., ks. What is the
smallest number N so that if we compose ¢ with itself ¢ o--- 0 ¢ for N times that we get
the identity transformation?

6.3 Transpositions

A transposition is a permutation of the form: (ij). These satisfy some nice properties:
Suppose t, j, k are distinct. You can check as an exercise that transpositions obey the
following identities:

i ik) - (if) - (jk)
(i5)°
(i5) - (ki) = (KI) - (if) {i,i}n{k,1} =0

The first identity is illustrated in Figure 2. Draw the other two.

(6.28)

(23) - (Gk) - (i) = (ik) = (j
1
(

We observed above that there is a cycle decomposition of permutations. Now note
that

Any cycle (ay,- -+ ,ar) can be written as a product of transpositions.

The explicit formula is (nota bene: all the a; are distinct!):

(alv ak)(a].)ak—l) e ((11,(12) — (CL]_, az,as, . .. 7a’k) (629)

Therefore, every element of S, can be written as a product of transpositions, gener-
alizing (6.25). We say that the transpositions generate the permutation group. Taking
products of various transpositions — what we might call a “word” whose “letters” are the
transpositions — we can produce any element of the symmetric group. We will return to
this notion in §10 below.

Of course, a given permutation can be written as a product of transpositions in many
ways. This clearly follows because of the identities (6.28). A nontrivial fact is that the

42 Apswer: Use induction: Consider any element, say @ € {1,...,n} and let ¢ be a permutation. Consider
the elements z, ¢(z), p(p(x)), .. .. This must be a finite set C', so we get a cyclic permutation of the elements
in C. Then ¢ must permute all the elements in {1,...,n} — C. But this has cardinality strictly smaller
than n. So, use the inductive hypothesis.
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X
@l

Figure 2: Pictorial illustration of equation (4.21) line one for transpositions where ¢ < j < k. Note
that the identity is suggested by “moving the time lines” holding the endpoints fixed. Reading time
from bottom to top corresponds to reading the composition from left to right in the - convention.

=~

transpositions together with the above relations generate precisely the symmetric group. 3

It therefore follows that all possible nontrivial identities made out of transpositions follow
from repeated use of these identities.

Although permutations can be written as products of transpositions in different ways,
the number of transpositions in a word modulo 2 is always the same, because the identities
(6.28) have the same number of transpositions, modulo two, on the LHS and RHS. Thus
we can define even, resp. odd, permutations to be products of even, resp. odd numbers of

transpositions.

Definition: The alternating group A, C S, is the subgroup of S, of even permuta-

tions.

Exercise

a.) What is the order of 4,, ? 4

b.) Write out As, A3, and Ay4. Show that Ajs is isomorphic to Zsz. 4°
c.) Az is Abelian. Is A4 Abelian? 46

43This follows once one has shown that the Coxeter presentation given below gives precisely the symmetric
group, and not some larger group (requiring the imposition of further relations) since the above relations
all follow from the Coxeter relations.

“Answer: in! for n > 1. To prove this note that the transformation ¢ — ¢ o (12) is an invertible
transformation S, — S, that squares to the identity. On the other hand, it exchanges even and odd
permutations.

1 Answer: Ay = {1}. Az = {1,(123), (132)}.

Aq = {1,(123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}.

46 Answer: No. Just multiply a few elements to find a counterexample. For example (123)(134) = (234)
but (134)(123) = (124).
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Exercise Alternative Proof Of (6.29)
Give an alternative proof of (6.29) along the following lines:
a.) First show that

(17 k)(lv k — 1) T (134)(13 3)(1a 2) = (17 2,3,4,..., k) (630)
b.) Now, consider a permutation that takes
1—a, 2—a, 3—az,-,k—a (6.31)

For our purposes, it won'’t really matter what it does to the other integers greater than k.
Choose any such permutation and call it ¢. Note that

¢po(12 -+ k)ogp ' =(aiaz -~ ap) (6.32)

c.) Now multiply the above identity by ¢ on the left and ¢~! on the right to get:

S(L K)o~ (1 k= 1)¢~" - 6(1,4)0~ ' ¢(1,3)'6(1,2)¢™" = (a1, a2,...,ax) ~ (6.33)

but ¢(1,5)¢' = (a1,a;). So we get a decomposition of (a; az --- aj) as a product of
transpositions.

In general, a group element of the form ghg~! is called a conjugate of h. See Section
7.2 below.

Exercise

When do two cyclic permutations commute? Illustrate the answer with pictures, as
above.

Exercise A Smaller Set Of Generators
Show that from the transpositions o; := (i,i + 1), 1 < < n — 1 we can generate all
other transpositions in S,,. These are sometimes called the elementary generators.

Exercise An Even Smaller Set Of Generators
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Show that, in fact, S,, can be generated by just two elements: (12) and (12 --- n). 47

Exercise Center of Sy,
What is the center of S,,? 48

Exercise Decomposing the reverse shuffle

Consider the permutation which takes 1,2,...,nton,n—1,...,1.

a.) Write the cycle decomposition.

b.) Write a decomposition of this permutation in terms of the elementary generators

;. 49

Example 4.2 The sign homomorphism.
This is a very important example of a homomorphism:

€:8, = 7o (6.34)

where we identify Zo as the multiplicative group {£1} of square roots of 1. The rule is:
€:0 — +1if ¢ is a product of an even number of transpositions.

€:0 — —1if ¢ is a product of an odd number of transpositions.

Put differently, we could define €(ij) = —1 for any transposition. This is compatible
with the words defining the relations on transpositions. Since the transpositions generate
the group the homomorphism is well-defined and completely determined.

In physics one often encounters the sign homomorphism in the guise of the “epsilon
tensor” denoted:

Its value is:
1. €yoi, = +1if
192 ...
e " (6.36)
Z]_ Z2 “ . /Ln

is an even permutation.

4T Answer: Conjugate (12) by the n-cycle to get (23). Then conjugate again to get (34) and so forth.
Now we have the set of generators of the previous exercise.

48 Answer: If n = 2 then S, is Abelian and the center is all of S5. If n > 2 then the center is the trivial
group. To prove this suppose z € Z(Sy). If z is not the trivial element then it moves some i to some j.
WLOG we can say it moves 1 to ¢ # 1. Then z(i) # 4. If z(i) = 1 then z is the transposition (1,7). If n > 2
there will be some other j # 1,4 and z will not commute with (1, 7). If z(¢) = j with j # 1, then ¢ = (1,4)
does not commute with z because z¢ takes 1 — 7 and ¢z takes 1 — 1.

49 Hint: Use the pictorial interpretation mentioned above.
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2. €y, = —11if
19 ...
(. . .") (6.37)
11 12 =+ 1In

3. €iy.i, = 0 if two indices are repeated. (This goes a bit beyond what we said above

is an odd permutation.

since in that case we are not discussing a permutation.)

So, e.g. among the 27 entries of €5, 1 <4, j,k < 3 we have

€123 = 1
€130 = —1
192 (6.38)
€231 = +1
€221 =0
and so forth.
Exercise
Show that
E’i1i2---in€j1j2---jn == Z 6(0)6i1jg(1)5i2jg(2) cee 5inja(n) (639)
oESy

This formula is often useful when proving identities involving determinants. An im-
portant special case occurs for n = 3 where it is equivalent to the rule for the cross-product
of 3 vectors in R3:

Ax (BxC)=B(A-C)-C(A-B) (6.40)

6.4 Diversion and Example: Card shuflling

One way we commonly encounter permutation groups is in shuffling a deck of cards.

A deck of cards is equivalent to an ordered set of 52 elements. Some aspects of card
shuffling and card tricks can be understood nicely in terms of group theory.

Mathematicians often use the perfect shuffle or the Faro shuffle. Suppose we have a
deck of 2n cards, so n = 26 is the usual case. There are actually two kinds of perfect
shuffles: the In-shuffle and the Out-shuffle.

In either case we begin by splitting the deck into two equal parts, and then we interleave
the two parts perfectly.

Let us call the top half of the deck the left half-deck and the bottom half of the deck
the right half-deck. Then, to define the Out-shuffle we put the top card of the left deck on
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top, followed by the top card of the right deck underneath, and then proceed to interleave
them perfectly. The bottom and top cards stay the same.

If we number the cards 0,1,...,2n — 1 from top to bottom then the top (i.e. left) half-
deck consists of the cards numbered 0, 1,...,n — 1 while the bottom (i.e. right) half-deck
consists of the cards n,n + 1,...,2n — 1. Then the Out-shuffle gives the cards in the new
order

0,n,1,n+1,2,n+2,....n+2,2n—2,n—1,2n—1 (6.41)

Another way to express this is that the Out-shuffle defines a permutation of {0, 1, ..., 2n—
1}. If we let Cy, 0 < & < 2n—1 denote the cards in the original order then the new ordered
set of cards C!, are related to the old ones by:

where

O(z) = (6.43)

2x r<n-—1
2r—(2n—1) n<zx<2n-1

Note that this already leads to a card trick: Modulo (2n — 1) the operation is just
x — 2z, so if k is the smallest number with 2¥ = 1mod(2n — 1) then k& Out-shuffles will
restore the deck perfectly.

For example: For a standard deck of 52 cards, 28 = 5 x 51+ 1 so 8 perfect Out-shuffles
restores the deck!

We can also see this by working out the cycle presentation of the Out-shuffle:

O = (0)(1,2,4,8,16,32,13,26)(3,6, 12, 24, 48, 45, 39, 27)
(5,10, 20,40, 29, 7,14, 28)(9, 18, 36, 21, 42, 33, 15, 30) (6.44)
(11,22,44, 37,23, 46,41, 31)(17,34)(19, 38, 25, 50, 49, 47, 43, 35)(51)

Clearly, the 8" power gives the identity permutation.

Now, to define the In-shuffle we put the top card of the right half-deck on top, then
the top card of the left half-deck underneath, and then proceed to interleave them.

Now observe that if we have a deck with 2n cards D(2n) := {0,1,...,2n — 1} and we
embed it in a Deck with 2n + 2 cards

D(2n) — D(2n + 2) (6.45)

by the map x — = + 1 then the Out-shuffle on the deck D(2n + 2) permutes the cards
1,...,2n amongst themselves and acts as an In-shuffle on these cards! &Explain this some

Therefore, applying our formula for the Out-shuffle we find that the In-shuffle is given Mivstraiing with o
pack of 6 cards. &

by the formula

2 +1)—1 +1<
T() = 2@ =T (6.46)
2 +1)—(2n+1)—1 n<z<2n-1
One can check that this is given by the uniform formula
Z(z) = 2z + 1) mod(2n + 1) (6.47)
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for x € D(2n).
For 2n = 52 this turns out to be one big cycle!

(0,1,3,7,15,31,10,21,43, 34,16, 33, 14, 29, 6, 13, 27, 2, 5,
11,23,47,42, 32,12, 25,51, 50,48, 44, 36, 20, 41, 30, 8, 17, (6.48)
35,18, 37,22, 45, 38, 24,49, 46, 40, 28, 4,9, 19, 26)

so it takes 52 consecutive perfect In-shuffles to restore the deck.

One can do further magic tricks with In- and Out-shuffles. As one example there is
a simple prescription for bringing the top card to any desired position, say, position ¢ by
doing In- and Out-shuffles.

To do this we write ¢ in its binary expansion:

(=24 ap 12514+ a2t 4 ag (6.49)

where a; € {0,1}. Interpret the coefficients 1 as In-shuffles and the coefficients 0 as Out-
shuffles. Then, reading from left to right, perform the sequence of shuffles given by the
binary expression: lag_ja;_2---aiagp.

To see why this is true consider iterating the functions o(z) = 2z and i(z) = 2z + 1.
Notice that the sequence of operations given by the binary expansion of ¢ are

0—1
—)2'1—|—ak_1
—2-(2-14+ax—1)+ax—2 :22+2ak_1+ak_2

6.50
— 2 (2% + 201 + ap—2) + ap—3 = 2° + 2251 + 202 + ar_3 (6.50)

H2k+ak_12k_1+---+a121+a0:€

For an even ordered set we can define a notion of permutations preserving central
symmetry. For x € Da, let £ = 2n — 1 — x. Then we define the group W(B,,) C Sa, to be
the subgroup of permutations which permutes the pairs {z, z} amongst themselves.

Note that there is clearly a homomorphism

¢ W(Bpn) = Sy, (6.51)

Moreover, both O and Z are elements of W(B,,). Therefore the shuffle group, the group
generated by these is a subgroup of W (B,,). Using this one can say some nice things about
the structure of the group generated by the in-shuffle and the out-shuffle. It was completely
determined in a beautiful paper (the source of the above material):

“The mathematics of perfect shuffles,” P. Diaconis, R.L. Graham, W.M. Kantor, Adv.
Appl. Math. 4 pp. 175-193 (1983)

It turns out that shuffles of decks of 12 and 24 cards have some special properties. In
particular, special shuffles of a deck of 12 cards can be used to generate a very interesting
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group known as the Mathieu group Mis. It was, historically, the first “sporadic” finite
simple group. See section §16.4 below.

To describe Mio we need to introduce a Mongean shuffle. Here we take the deck of
cards put the top card on the right. Then from the deck on the left alternatively put cards
on the top or the bottom. So the second card from of the deck on the left goes on top of
the first card, the third card from the deck on the left goes under the first card, and so on.
If we label our deck as cards 1,2,...,2n then the Mongean shuffle is:

m:{1,2,...,2n} —> {2n,2n —2,...,4,2,1,3,5,...,2n — 3,2n — 1} (6.52)
In formulae, acting on D(2n)
m(z) = Min[2z,2n 4+ 1 — 2z] (6.53)
In particular for 2n = 12 we have
{1,2,3,4,5,6,7,8,9,10,11, 12} — {12,10,8,6,4,2,1,3,5,7,9, 11} (6.54)
which has cycle decomposition (check!)
(38)-(1121195462107) (6.55)

Now consider the reverse shuffie that simply orders the cards backwards. In general
for a deck D(2n) with n = 2mod4 Diaconis et. al. show that r and m generate the entire
symmetric group. However, for a pack of 12 cards » and m generate the Mathieu group
M. It turns out to have order

|Myp| =2%-3%.5.11 = 95040 (6.56)
Compare this with the order of Syo:
12! =219.35.52. 7. 11 = 479001600 (6.57)

So with the uniform probability distribution on Si2, the probability of finding a Mathieu
permutation is ﬁ ~2x 1074
We mention some final loosely related facts:

1. There are indications that the Mathieu groups have some intriguing relations to string
theory, conformal field theory, and K3 surfaces.

2. In the theory of L, algebras and associated topics, which are closely related to string
field theory one encounters the concept of the k-shuffle...

FILL IN.

Exercise Cycle structure for the Mongean shuffie
Write the cycle structure for the Mongean shuffle of a deck with 52 cards. How many
Mongean shuffles of such a deck will restore the original order?
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7. Cosets and conjugacy

7.1 Lagrange Theorem

The reader should refresh her/his memory about equivalence relations and group actions

above.

Definition 7.1.1: Let H C G be a subgroup. The set
gH ={ghlhe H} C G

is called a left-coset of H.

Example 1: G =7Z, H = 27. There are two cosets: H and H + 1.

Example 2: G =S5, H = {1,(12)} = S5. Cosets:

H={1,(12)}
H={(12),1}={1,(12)} = H
- H = {(13),(123)}

H = {(23), (132)}

H = {( 13)} = {(13), (123)}
H = {( 23)} = {(23), (132)}

)
)

= {(123), (

= {(132), (23

Remarks

(7.1)

1. Two left cosets are either identical or disjoint. Moreover, every element g € G lies

in some coset. That is, the cosets define an equivalence relation by saying g1 ~ go if
there is an h € H such that g; = goh. The reader should give a direct proof of this.

It is a very important exercise.

2. Cosets have a natural interpretation in terms of group actions. If H C G is a subgroup

then there is a left H-action on G defined by

¢(h7 g) = gh_l

(7.3)

The orbits of this action are precisely the left H-cosets gH. As we have seen: Orbits of

a group action are the equivalence classes of an equivalence relation: This is another

way to verify the claim in the previous remark.

Exercise Left Cosets Define An Equivalence Relation
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Show that the relation g1 ~ g if there is an h € H such that go = g1h is an equivalence

relation. 59

The basic principle above leads to a fundamental theorem:
Theorem 7.1.1 (Lagrange) If H is a subgroup of a finite group G then the order of
H divides the order of G:
GI/|H| € 2, (7.4)

Proof : If G is finite G = H"g; H for some set of g;, leading to distinct cosets. Now
note that the order of any coset is the order of H, because the invertible action of left-
multiplication by ¢ sets up a 1-1 correspondence between the elements of H and those of
gH. Therefore

lgiH| = |H] (7.5)

So |G|/|H| = m, where m is the number of distinct cosets. #
This theorem is simple, but powerful, as we will see.

Definition: Thus far we have repeatedly spoken of the “order of a group G” and of various
subsets of GG, meaning simply the cardinality of the various sets. In addition a common
terminology is to say that an element g € G has order n if n is the smallest natural number
such that g = 1. If there is no such integer n then ¢ is said to be of “infinite order.”

Note carefully that if g has order n and k is a natural number then (¢g")* = g"F =1
and hence if ¢ = 1 for some natural number m it does not necessarily follow that g has
order m. However, as an application of Lagrange’s theorem we can say the following: If
G is a finite group then the order of g must divide |G|, and in particular gl = 1. The
proof is simple: Consider the subgroup generated by g, i.e. {1,9,¢% ...}. The order of
this subgroup is the same as the order of g.

Using the same idea we can establish the following beautiful

Corollary: Any finite group of prime order p is isomorphic to p, = Z,. Moreover, such
groups have exactly two subgroups: The trivial group and itself.

Proof: Choose a nonidentity element g € G and consider the subgroup generated by g i.e,

{1,g,g2,g3,...} (7.6)

The order of this group must divide |G| so if |G| = p is prime it must be the entire group.
)

50 Answer First, ¢ is in gH, so every element is in some coset. Second, suppose g € g1 H N g2H. Then
g = g1h1 and g = g2hs for some hi, he € H. This implies g1 = gg(hghfl) S0 g1 = g2h for an element h € H.
(Indeed h = haohy!, but the detailed form is not important.) Now note that, as sets, hH = H. Indeed, as
we saw in the proof of Cayley’s theorem, left-multiplication by h € H just leads to a permutation of the
set H. Therefore g1 H = g2 H.
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Definition 7.1.2: If G is any group and H any subgroup then the set of left cosets of H
in G is denoted G/H. It is the set of orbits under left H action on G defined in (7.3). A
set of the form G/H is an important example of the concept of a homogeneous space. The
cardinality of G/H set is the index of H in G, and denoted [G : H].

Example 1: If G = S5, H = {1,(12)} = Sy, then G/H = {H,(13) - H,(23) - H}, and
G: H|=3.

Example 2: Let G = {1,w,w?,...,w?YN ™1} = pony where w is a primitive (2N)*" root of
1. Let H={1,w? w* ..., w?" "2} = uy. Then [G: H] =2 and G/H = {H,wH}.

Example 3: Let G = A4 and H = {1, (12)(34)} = Zs. Then [G : H] = 6 and

G/H = {H, (13)(24) - H,(123) - H,(132) - H,(124) - H,(142) - H} (7.7)

Remark Note welll If H C G is a subgroup and g1 H = goH it does not follow that
g1 = g2. All you can conclude is that there is some h € H with g1 = goh.

Exercise Subgroups of Zn
a.) Show that the subgroups of Zy are isomorphic to the groups Zjys for M|N.
b.) For N = 8, M = 4 write out H.

Exercise Is there a converse to Lagrange’s theorem?
Suppose n||G], does there then exist a subgroup of G of order n? Not necessarily! Find
a counterexample. That is, find a group G and an n such that n divides |G|, but G has no

subgroup of order n. !

Nevertheless, there is a very powerful theorem in group theory known as

Theorem 7.1.2: (Sylow’s (first) theorem). Suppose p is prime and p* divides |G| for a
nonnegative integer k. Then there is a subgroup H C G of order p”.

51 Answer: One possible example is A4, which has order 12, but no subgroup of order 6. By examining the
table of groups below we can see that this is the example with the smallest value of |G|. Sylow’s theorem
(discussed below) states that if a prime power p* divides |G| then there is in fact a subgroup of order p*.
This fails for composite numbers - products of more than one prime. Indeed, the smallest composite number
is 6 = 2-3. Thus, in regard to a hypothetical converse to Lagrange’s theorem, as soon as things can go
wrong, they do go wrong.

71—



Herstein’s book, sec. 2.12, waxes poetic on the Sylow theorems and gives three proofs.
We'll give a proof as an application of the class equation in section 9 below. Actually,
Sylow has a bit more to say. We will explain some more about this in the next section.

Exercise Subgroups of Ay
Write down all the subgroups of A4. Draw a diagram indicating how these are sub-
groups of each other.

Exercise Orders of group elements in infinite groups

a.) Give an example of an infinite group in which all elements, other than the identity,

have infinite order. (This should be quite easy for you.) 52

b.) Give an example of an infinite group where some group elements have finite order
and some have infinite order. ®3

c.) Give an example of an infinite group where all elements have finite order. 5

Exercise

Suppose a finite group G has subgroups H;, i = 1,...,s of order h;. Show that the
least common multiple of the h; divides |G|. In particular if the h; are relatively prime
then [, h; divides |G|.

7.2 Conjugacy

Now introduce a notion generalizing the idea of similarity of matrices:
Definition 7.2.1 :

a.) A group element h is conjugate to h' if 3g € G h' = ghg™!.

b.) Conjugacy defines an equivalence relation and the conjugacy class of h is the
equivalence class under this relation:

C(h) :={ghg ' : g€ G} (7.8)

52 One possible answer: Take Z or Z" or ....

%3 One possible answer: Z x Zy. A more interesting example is G = U(1). The roots of unity have finite
order while elements of the form exp[27ia] with « an irrational real number have infinite order.

4 One possible answer: Regard U(1) as the group of complex numbers of modulus one. Let G be the
subgroup of complex numbers so that z™ = 1 for some integer N. This is the group of all roots of unity of
any order. It is clearly an infinite group, and by its very definition every element has finite order. Using
the notation of the next section, this group is isomorphic to Q/Z.

79 -



c.) Let H C G,K C G be two subgroups. We say “H is conjugate to K” if 3g € G
such that we have an equality of sets:

K=gHg':={ghg ':he H} (7.9)

Remark: In a similar manner to the case of left-cosets we can understand conjugacy
classes in terms of a group action. In this case, the group G acts on the set X = G via

0(9,9") :==g9'g"" (7.10)

The reader should check this is a well-defined group action. The orbits of this group action
are the conjugacy classes.

Example 7.2.1 : We showed above that all cyclic permutations in S,, are conjugate: The
conjugacy class of any cyclic permutation of length ¢ is the set of all cyclic permutations
of length /.

Example 7.2.2 : For G = GL(n, k), the notion of conjugacy is equivalent to similarity of
matrices: g1,92 € GL(n, k) are conjugate if there is an s € GL(n, k) so that go = sg1s~*
are similar matrices. The next few examples examine conjugacy for some matrix subgroups

of GL(n, k):

Example 7.2.3 : Consider G = U(N). Then conjugacy within U(N) is the same as
unitary equivalence: uj,up € U(N) are conjugate in U(N) if there is a ¢ € U(N) with
us = guig’ = guig™".

An important theorem known as the Spectral theorem tells us about the conjugacy
classes of elements of the unitary group. The spectral theorem for U(N) is proven by
induction on N in section 17 of the Linear Algebra User’s Manuel. The statement of the
theorem is that for every u € U(N) there is a g € U(N) with gug~' = Diag{z1,...,2n}
where |z;| = 1. One might think that the spectral theorem implies that the conjugacy
classes are in one-one correspondence with U(1)"V: Indeed, given u we diagonalize it using

unitary matrices so there is g € U(N) with

gug~t = Diag{z1,...,2n} (7.11)

with phases z;. We might be tempted conclude that the conjugacy class is parametrized by
(21,...,2n5) € U(1)N. Be careful here: This is not quite correct! We need to consider the
possibility that we can still conjugate Diag{z1,...,zn} preserving the diagonal structure.
In other words, we should consider the possibility that we could diagonalize u to two
different diagonal matrices. This is indeed possible.
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Consider, for example, the permutation matrix A(¢) for ¢ € Sy defined by the per-
mutation representation of Sy on RY. It is not hard to show that A(¢) is in U(N), and,
by (6.15) above:

A(¢)_1Diag{zl, ., 2N FA(9) = Diag{z¢(1), o ,z¢(N)} (7.12)

So if g diagonalizes u then so does A(¢)'g for any permutation ¢.

However, once we have taken this into account we are done: Up to conjugacy, a unitary
matrix is completely characterized by its unordered set of eigenvalues. The set of conjugacy
classes in U(N) can be naturally identified with set of unordered N -tuples of phases..

Put differently, the symmetric group acts on the subgroup D C U(N) of diagonal
matrices by conjugation by A(¢). Then since D = U(1)" the set of conjugacy classes is
therefore a space of orbits U(1)" /Sy.

Remark: The mazximal torus. Now suppose we have two commuting unitary matrices.
Again, basic linear algebra (explained in LAUM) shows that they can be simultaneously
diagonalized. That is, if uj,us € U(NN) and [u1, us] = 1 (group commutator) then there is
a single g € U(NV) with

guig~' = D; (7.13)

with D, diagonal. To prove this diagonalize u; so that it has blocks corresponding to the
distinct eigenvalues:

gu1g™" = 211k xky B - D Zelkyxk, (7.14)

Then since the z; are distinct and wuy, we know that us must also be block diagonal.
But then we can use unitary matrices in the different blocks to diagonalize us. This
argument generalizes to show that any Abelian subgroup of U(N) can be simultaneously
diagonalized. In particular, any maximal Abelian subgroup will be conjugate to D, the
subgroup of diagonal unitary matrices.

The statements above for U(N) generalize to all compact connected Lie groups in the
following sense. We note that in U (V) the subgroup D of diagonal matrices is isomorphic
to U(1)N. Since U(1) is the circle, as a manifold, the product U(1)"¥ can be viewed as
an N-dimensional torus, as a manifold. In general, for any compact Lie group G on can
consider Abelian subgroups isomorphic to U(1)™ for some n. Such subgroups are called
torus subgroups. In general they will not be subgroups of diagonal matrices. We can
consider subgroups of this form which are maximal: They are not contained in any torus
subgroup of larger dimension. One can prove that maximal tori are all conjugate to each
other and hence all isomorphic to U(1)" for an integer r known as the rank of the group
G. By a slight abuse of language one often finds such a maximal torus subgroup referred
to as “the” mazimal torus.

Note that a maximal torus might not be conjugate to a subgroup of diagonal matrices.
Consider, for example, the group G = SO(3). The subgroup of diagonal matrices is
isomorphic to Zg x Zy. (This is an easy exercise!) A maximal torus of SO(3) is isomorphic
to SO(2). One possible choice of maximal torus for SO(3) is the subgroup of elements of
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the form

R(¢) 0
( . 1) (7.15)

and any subgroup conjugate to this is also a maximal torus. Note that the maximal Abelian
subgroup of diagonal matrices cannot be conjugated into a maximal torus.

Example 7.2.4 : Characterizing conjugacy classes in GL(n, k) is more complicated, be-
cause in these cases not all elements are diagonalizable. For definiteness let us consider the
case G = GL(n,C).

When discussing conjugacy classes it is very useful to introduce the tool of the charac-
teristic polynomial. For any matrix A € M, (C) we can define its characteristic polynomial

pa(x) := det(zl — A) (7.16)
Note that p4 only depends on the conjugacy class of A:

Pgag-1(z) = pa(x) (7.17)

If r is a root of the polynomial of A then the matrix 1 — A has zero determinant, so it
has a nontrivial kernel (see Chapter 2) and therefore there is an eigenvector v of A with
eigenvalue r:

Av =rv (7.18)

Conversely, any eigenvalue of A must be a root of the polynomial equation p4(xz) = 0.
Now, if we are working over the complex numbers then the polynomial p4(x) has at least
one root. Therefore, over the complex numbers, every matrix A € M, (C) has at least one
eigenvalue and one eigenvector.

It is very important to note that the eigenvectors of a complex matrix A might not
form a basis,. Here is a simple and basic example:

01
A— (0 o) (7.19)

Then one easily checks pa(x) = z2. The only possible value for an eigenvalue of A is a root
of 22 = 0, that is, the only possible value of an eigenvalue is 0. So an eigenvector would

satisfy Av = 0, and indeed
1
= 7.20
= (3) (720

is a nontrivial eigenvector of eigenvalue 0. However, if there were a full basis of eigenvectors
then since the only eigenvalue is zero we would have A = 0, which is a contradiction. It is
not difficult to show that any matrix A € Ms(C) is either diagonalizable or is conjugate to

Al
o) o
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The generalization of the previous example to arbitrary elements of A € M, (C) for
arbitrary n states that any complex matrix is conjugate to its Jordan canonical form. See
section 10.4 of LAUM for more extensive discussion. Here is an abbreviated discussion:

A Jordan canonical form is a block diagonal matrix where the blocks on the diagonals
are Jordan blocks. A Jordan block is a matrix characterized by a complex number A and
a positive integer k. J)(\k) for k =1 is the 1 x 1 matrix (A). For k > 1 we define the Jordan
block with eigenvalue A to be:

I = A1+ N® (7.22)
where
N(k) =e2texs3+ - F+er_1k (7.23)
Choosing the standard ordered basis {e1,...,e;} for k¥ the matrix corresponds to the
linear transformation taking
e —>€p_1—-—>ey—ep —0 (7.24)

is a matrix with all matrix elements zero, except for 1’s just above the diagonal. Thus
1

N@ — (Y (7.25)
00

N® =001 (7.26)
000

and so on. We argued above that N cannot be diagonalized and a similar argument
applies to N*) for all k > 1. Note that pyw (x) = . So the eigenvalues would have to
be zero, but N*) is not the zero matrix. Also note that (N)+=1 =£ 0 but (N*))k =0,
Let A be any complex N x N matrix and pa(z) = [[_,(z — A\;)* where )\; are the
distinct roots of multiplicity k; where k; is a positive integer. Then A is conjugate to a

block form
SAS™ = Ay, @@ Ay, (7.27)

where each Ay, is a k; x k; matrix so that det(z1 — Ay,) = (x — \;)¥. Moreover we can
conjugate each A, itself into a block diagonal matrix of Jordan blocks of sizes n, ;

Ay = @l ) (7.28)
where

t;
Z Nai = ki (7.29)
a=1

The ordering of the blocks is not canonical and can be changed by the action of permu-
tation matrices. Thus, the conjugacy class is characterized by the unordered set of pairs
{(M\i,{nq,i})} where \; are distinct complex numbers and for each \; we have a collection
of positive integers such that

D nai=n (7.30)
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To get the conjugacy classes in GL(n,C) we require that all the \; are nonzero. Note that
a matrix is diagonalizable iff all its Jordan blocks are 1 x 1.

Remark /Definitions: We say that two homomorphisms ¢; : G; — G2 are conjugate if
there is an element gy € G5 such that

02(g1) = g201(91)95 " (7.31)

for all g1 € G1. Recall that a matrix representation of a group G is a homomorphism
¢:G— GL(n,k) (7.32)

We say two matrix representations are equivalent representations if the two homomorphisms
are conjugate.

Put differently, two representations 71 : G — GL(V1) and Ty : G — GL(V3) are said
to be equivalent if there is an equivariant map S : V4 — V5 which is an isomorphism. See
the discussion of “intertwiners” in the section on representation theory below.

Definition: A class function on a group is a function f on G (it can be valued in any
set) such that f takes the same values on conjugate group elements:

flg909™") = f(90) (7.33)

for all gg, g € G. Note particularly that if ¢ is a matrix representation then

Xe(9) = Trp(g) (7.34)

is an example of a class function. This function is called the character of the representation.
Note that two equivalent representations must have the same character. Another, closely

related class function on matrix groups is the characteristic polynomial A — p4(x). (The
“function” is valued in the set of degree n polynomials.)

Exercise Conjugacy Is An Equivalence Relation
a.) Show that conjugacy is an equivalence relation
b.) Prove that if H is a subgroup of G then gHg~! is also a subgroup of G. %

Exercise Rotations In SO(3) . Consider a subgroup of SO(3) defined by rotations
around some axis in R3. Show that all such subgroups are conjugate subgroups.

% Answer: Note that (ghig™")(ghag™") = g(h1h2)g™".
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Exercise Conjugacy Classes In SU(2)

a.) Using the spectral theorem show that the conjugacy class of a matrix u € SU(2)
is uniquely determined by its trace. 56

b.) Show that the set of conjugacy classes in SU(2) can be identified with S'/Zy =
[0, 7].

c.) Show that the most general continuous homomorphism ¢ : U(1) — SU(2) looks
like
a2z +|8P=" 0Bz - 2)
e - (7.35)
<a Br(= = 2) Jaf2=! + |82

where (o, 3) € C? satisfy |a|? + |8]> = 1 and z € U(1). (Hint: Show that all continuous
homomorphisms ¢ : U(1) — SU(2) are conjugate.)

Exercise Conjugacy Classes Of Hermitian Matrices

There is a version of the spectral theorem for finite-dimensional Hermitian matrices.
(For a proof see LAUM.) Every n x n Hermitian matrix is unitarily conjugate to a diagonal
matrix of real numbers.

Consider the conjugation action of U(n) on the set H,, of n x n Hermitian matrices.
Show that the orbits are in 1-1 correspondence with unordered n-tuples of real numbers.

Exercise Jordan Form

a.) Check that (N®)k=1 o£ 0 but (N*))k = 0.

b.) Given the existence of Jordan canonical form show that if all the roots of the char-
acteristic polynomial p4(z) are distinct then A is diagonalizable. Give a counterexample
to the converse statement.

c.) Show that the conjugacy class of a matrix A € My(C) is not uniquely determined
by the values of Tr(A*), but it is if A is diagonalizable. (k = 1,2 will suffice.)

56 Apswer: By the spectral theorem u is conjugate to

e’ 0
0 e-if

Of course 6 ~ 6 + 27, so we can parametrize the diagonal matrices uniquely by choosing 6 € [—7, 7], with
+7 identified. However conjugation by ic’ takes § — —6. So, up to conjugacy we can take 6 € [0, 7). But
the value of T'r(u) = 2 cos 6 determines a unique 6 in the interval [0, 7].
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Exercise Nilpotent Cone
Show that the most general traceless 2 x 2 complex matrix with nontrivial Jordan form
is of the form

Z X
7.36

with
XY +2%2=0 (7.37)

and X #0or Y # 0.

Exercise Characterizing A Conjugacy Class By Traces

a.) Show that the conjugacy class of a unitary N x N matrix is u uniquely characterized
by the set of traces Tr(u/) for 1 < j < N.

b.) Consider A € GL(N,C). Is the conjugacy class of A uniquely determined by the
set of traces Tr(A7), j € Zy ?

Exercise The Complex Conjugate Representation

a.) Consider the two 2-dimensional representations of U(2) where 1 is the identity
and @o(u) = u*. Are these representations equivalent or inequivalent? 57

b.) Consider the two 2-dimensional representations of SU(2) where ¢ is the identity
and po(u) = u*. Are these representations equivalent or inequivalent? 58
c.) Now take N > 2 and consider the N dimensional representation of SU(N) given

by ¢1(u) = u and pa(u) = u*. Are these representations equivalent or inequivalent? 59

Exercise An Example Of Inequivalent Representations

5T Answer: They are inequivalent. By the spectral theorem u € U(2) can be conjugated to a diagonal
matrix Diag{z1, 22} with 21,22 € U(1).
x2(u) = 271 4 25 1. For general elements of U(2) these are different so the character functions are different.

The character of ¢1 is x1(u) = 21 + 2z2. The character of s is

%8 Answer: Specializing from the previous characters to SU(2) we must take z; = z; . So the characters
of p1 and 9 are now the same. A priori, more work is needed to see if the representations are actually
equivalent. In fact they are: Conjugation by io? is equivalent to complex conjugation in SU (2):

(i0®)u(ic®) ™ = u* . (7.38)

%They are inequivalent, as is easily seen by computing the character of diagonal SU (N) matrices.
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(To do this exercise you need to understand a little bit about tensor products. See
Chapter 2, section 5.3.)
Consider the following four-dimensional representations of SU(2):

o1 (u) = g 2 (7.39)

Pa(u) =u®u (7.40)

Are these representations equivalent or inequivalent? 0

Exercise Characters Of A Permutation Representation
Consider the n-dimensional representation of S, given by T'(0) : e; > e,(;) where e; is
the standard basis of R™. Show that the character of this representation is

x(0) = N(0) = [{i : o(i) = i} (7.41)

Below we define the notion of fixed points of a group action. In this case i is a fixed point
of the permutation o if o(i) = ¢. So the character is the number of fixed points of o.

7.3 Normal Subgroups And Quotient Groups
Groups which are self-conjugate are very special:

Definition 7.2.2: A subgroup N C G is called a normal subgroup, or an invariant
subgroup if

gNg'=N VYgeG (7.42)

Sometimes this is denoted as N < G.
Warning! Equation (7.42) does not mean that gng=! =n foralln € N !

There is a beautiful theorem associated with normal subgroups. In general the set of

cosets of a subgroup H in G, denoted G/ H, does not have any natural group structure. %!

However, if H is normal something special happens:

50 Apswer: They are inequivalent. One can show this by computing characters of the two representations.
If v is in the conjugacy class with T'(u) = 2cos 0 then xi(u) = 4 cos 6 while y2(u) = 4(cos 0).

5'Note that it might have many unnatural group structures. For example, if G/H is a finite set with n
elements then we could choose a group G with exactly n elements. We can always do this, because for every
positive integer n there exists a finite group with n elements. Then, having chosen a G we could choose
some one-one correspondence between elements of G/ H and elements of G to define a group law on G/H.
We hope the reader can appreciate how incredibly tasteless such a procedure would be. Technically, it is
unnatural because it makes use of an arbitrary choice of group G, since in general there are many groups
with a given order, and then it relies on the further extraneous choice of one-one correspondence between
the elements of G//H and the elements of G.
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Theorem 7.2.1. If N C G is a normal subgroup then the set of left cosets G/N =
{gN|g € G} has a natural group structure with group multiplication defined by:

(g1N) - (2IN) :== (g1 - g2)N (7.43)

Proof- left as an important exercise - see below.
Remarks:

1. All subgroups N of Abelian groups A are normal, and moreover the quotient group

A/N is Abelian.

2. Groups of the form G/N are known as quotient groups. A very common source of
error and confusion is to mix up quotient groups and subgroups. They are very
different!

3. As an illustration of the previous remark note that if 7' : G — GL(n, k) is a matrix
representation of G and if H C G is a subgroup then we can also restrict T to H
to get an n-dimensional representation of H. However, if @) is a quotient of G it is
not true in general that a representation of G' naturally determines a representation
of Q. Using the data of T the only natural definition of a representation 7' on Q
would be T(gN) := T(g). The problem with such a definition is that it might not
be well-defined. Recall that gN = ¢’N only implies that there is some n € N with
g = gn. But T(¢') and T(g) will be different unless T'(n) = 1. Therefore the above
definition of T only makes sense if T'(n) = 1 for every n € N.

Example 7.2.1 Cyclic Groups Since Z is Abelian nZ C Z is normal, and the quotient
group is Z/nZ. This is isomorphic to the cyclic group we have previously denoted as pu,
or Zy,. So T is the equivalence class of an integer r € Z:

rT=r-+nZ (7.44)

T+§=(r+s)+nZ (7.45)
Example 7.2.2 Quotients of Z?. Let’s try to find a higher-dimensional generalization
of cyclic groups. So we replace G = Z by G = Z® for d > 1. For what follows it might help
to think of G as a subgroup of R?, but this is not strictly speaking necessary. let e; be a

standard basis, with 1 in the i row and zeroes elsewhere. How can we describe possible
subgroups H? Let A;; be a d x d matrix of integers and consider the elements:

d
fi = ZAijej (7.46)
j=1
Consider the subgroup H C G of all integral linear combinations of f;:

d
H = {Z nlfz\n, S Z} (7.47)
=1
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H is clearly a subgroup of G, so we can form the quotient group G/H. If detA # 0 then
in fact G/H is a finite group. One way to see this easily is to consider G as a subgroup of

Q%, so that we can write
ei = A f; (7.48)

with A7! € GL(d,Q). Recall that A~! = (detA)"'Cof(A) where the cofactor matrix
Cof(A) is a matrix of minors, and therefore is a matrix of integers. Therefore (detA)e; € H
and hence detAle;] = 0 in the quotient group so every element of G/H has a representative
of the form [, z;e;] with |z;| < |detA].

Actually, if we invoke a nontrivial theorem we can say much more: The matrix A
can be put into Smith normal form. This means that there are matrices S, T € GL(d,Z),
representing change of generators (i.e. change of basis of the Z-module ) of H and G so
that

SAT = Dz’ag{al, ceey ad} (749)

with «; = d;/d;—1 where dy = 1 and d; for i > 0 is the g.c.d. of the ¢ x i minors. Then
G/H =T, % -+ Lo, (7.50)

Note that it has order |G/H| = detA. Here is a good example of the difference between a
quotient group and a subgroup: No nontrivial finite group will be a subgroup of Z<.

Note that we set out to find higher-dimensional generalizations of cyclic groups, and
we did not really find anything new, but in the process we encountered a very important
technical fact: The existence of Smith Normal Form.

Digression On Smith Normal Form. We indicate the general idea behind one proof
of Smith Normal Form.

First of all recall that row and column operations are invertible transformations: Let
Oij(a) = 1+ ae;j. Then left-multiplication by O;j(a) adds « times the j** row to the
it" row and right-multiplication by O;;(a) adds a times the " column to the j** column.
Note that it is important here that we only use a’s which are integral.

Now consider a 2 x 2 matrix of integers:

ab
) -

Note that if a = +1 or d = £1 then by row and column operations we can easily transform
the off diagonal terms to zero. Of course we can also permute rows and columns by
conjugation by permutation matrices. What do we do if |a| > 1 and |d| > 17

By multiplying by a diagonal matrix with +1 on the diagonal we can make a and ¢
both nonnegative. Using Bezout’s theorem (see the Number Theory section **** below)
there are relatively prime integers x,y so that

ar +cy = e (7.52)
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where e; = ged(a, c). Note that 0 < e; < a. Then there are relatively prime integers u, v
so that xv — uy = 1 so we can multiply

ry\[fab) e1 b1
(u v) (c d> B <(au+ cv) d1> (7.53)

But note that au + cv is divisible by e; so by a row operation (which is left multiplication
by an invertible integer matrix) we can bring the RHS to

€1 bl
(o) .

Now we repeat this on the right: Let ea = ged(eq, b1) so there are integers xie1 +y1b; = e9
with z1u; — y1v1 = 1 and multiply

er i fz1 o) _ [ e2 (ervr +biu) (7.55)
0da) \y1 w1 dai ds

But now a column operation brings this to the form

€9 0
(CQ d3> (7.56)

Now es divides e; divides a. Again using diagonal matrices with £1 we can make eg
nonnegative. In this was we get an alternating series of upper and lower triangular matrices
with

a>e >eg>--->0 (7.57)

A strictly decreasing sequence
a>e; >ey>--->0 (7.58)

must eventually terminate. So at some point e, 1 = €,. When this happens then either a
row or column operation allows us to cancel the off-diagonal term in the upper (or lower)
triangular matrix, leaving a diagonal matrix.

By a very similar procedure we can use elementary operations to convert an N x N
matrix of integers to the form

a  Opv-1
7.59
<O(N1)><1 A (7.59)

and then we can apply an inductive argument to reduce A’.

1. The statement is much more general: It applies to £ X n matrices over an arbitrary
principal ideal domain.

2. Moreover, there is an explicit algorithm for successively using row and column oper-
ations to reduce to SNF. See the Wikipedia article on Smith Normal Form.
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3. And in fact computer algebra programs like Maple and GAP will automatically reduce
matrices over the integers to SNF.

Example 7.2.3 Discriminant Group. Now consider an embedded lattice in R% equipped
with Euclidean inner product. This is the integral span of a collection {v;} of vectors. For
simplicity we will assume it is full rank, that is, the {v;} form a basis for R over R. We

denote it by A, so
d

A:={) nviln; € Z} CRY (7.60)
i=1
We define the dual lattice (closely related to the “reciprocal lattice” in solid state physics)
as the set of vectors w € R? such that w-v € Z for all v € A:

A ={weRIVweA v-welZ} (7.61)

Now assume that A is an integral lattice. This means that the matrix of inner products
Gij = v;-vj is a d x d matrix of integers. (Note it is symmetric and of nonzero determinant.)
Then it follows that A C AV is a sublattice. The discriminant group of A is the finite group

D:=A"/A (7.62)

Note that AY has a basis f; with v; = G;; f; so one can work out D as a product of cyclic
groups using the Smith normal form of G;;.

Remark: Discriminant groups play a central role in the theory of integral lattices, which
in turn show up in many contexts in physics from condensed matter to Chern-Simons
theory to string theory compactification. Related to this, they are important in the theory
of theta functions associated to integral lattices. In the context of Abelian Chern-Simons
theory with action ~ ﬁ | KrjArdAy the level Ky is a symmetric matrix of integers and
defines an integral lattice. The discriminant group is the fusion group of Abelian anyons.

Example 7.2.4. Let us now consider some nonabelian examples.
Az ={1,(123),(132)} C S3 (7.63)
is normal. Note that conjugation by any transposition preserves
(ij)As(ij) " = A3 (7.64)
although the conjugation does induce a nontrivial permutation of the set As. For example
(12)(123)(12)~! = (132) (7.65)

The group S3/As3 has order 2 and hence must be isomorphic to Zs.
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Example 7.2.5. Of course, in any group G the subgroup {1} and G itself are normal
subgroups. These are the trivial normal subgroups. It can happen that these are the only
normal subgroups of G:

Definition . A group with no nontrivial normal subgroups is called a simple group.
Remarks

1. Note that a nonabelian simple group cannot have a nontrivial center.

2. The term “simple group” is a bit of a misnomer: Some “simple groups” are pretty
darn complicated. What it means is that there is no means of simplifying it using
something called the Jordan-Holder decomposition - discussed below. Simple groups
are extremely important in the structure theory of finite groups. One example of
simple groups are the cyclic groups Z/pZ for p prime. Can you think of others?

3. Sylow’s theorems again. Recall that Sylow’s first theorem says that if p* divides |G|
then G has a subgroup of order p*. If we take the largest prime power dividing |G|,
that is, if |G| = p*m with m relatively prime to p then a subgroup of order p” is called
a p-Sylow subgroup. Sylow’s second theorem states that all the p-Sylow subgroups
are conjugate. (If we do not take the maximal power of p the statement is easily seen
to be false. Just consider the product of cyclic groups with many factors of order
p®.) The third Sylow theorem says something about how many p-Sylow subgroups
there are.

4. WARNING!: In the theory of Lie groups you will find the term “simple Lie group.”
A simple Lie group is NOT a simple group in the sense we defined above !! For
example SU(2) is a simple Lie group. But it has a nontrivial center namely the two
diagonal SU(2) matrices {£1ax2}.

Example 7.2.6. Recall that SL(n,x) C GL(n,k), SO(n,x) C O(n,k), and SU(n) C
U(n) are all subgroups defined by the condition detA = 1 on a matrix. Note that, since
det(gAg~!) = detA for any invertible matrix g these are in fact normal subgroups. The
quotient groups are

GL(n,k)/SL(n,k) = Kk*
O(n,R)/SO(n,R) = Zy (7.66)
U(n)/SU(n) = U(1)

Lines 1 and 3 follow since every element in GL(n, ) can be written as zA with z € g*
and A € SL(n, k). For line 2 take P to be any reflection in any hyperplane orthogonal to
some vector v, then O(n,R) = SO(n,R) II PSO(n,R) because detP = —1. Recall that
P,, P,, is a rotation in the plane spanned by v1, v2, so it doesn’t matter which hyperplane swmaterial reordered

so this proof is in

we choose. the future... &
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Example 7.2.7. In contrast to the previous example we can consider what happens
when we quotient by the center G/Z(G). This always makes sense since Z(G) is always a
normal subgroup. As an interesting special case, the center of U(N) consists of matrices
proportional to the unit matrix. See the exercise below. Elements in the center of SU (V)
must also be diagonal. However, now if z1yxy is to be in SU(N) then 2V = 1 (why?)
so Z(SU(N)) = un = Zy. Since this subgroup is normal we can take a quotient and get
another group. It is known as

PSU(N) := SU(N)/Zx (7.67)

One can show that PSU(N) = U(N)/Z(U(N)) = U(N)/U(1). These groups illustrate
well the distinction between quotient group and subgroup: There are representations of
SU(N) that are not representations of PSU(N) so here is another example where PSU(N)
cannot be considered as a subgroup of SU(N) in any sense.

Example 7.2.8. Let G be a topological group. Let Gy be the (path-) connected component
of the identity element 15 € G. It is not difficult to show that Gy is a subgroup of G.
(Exercise below.) We claim that Gg is in fact a normal subgroup: If gy € Gq there is a
continuous path of group elements ~ : [0,1] — G with v(0) = 1¢ and (1) = go. Then if

1is a continuous path connecting 1¢ to ggog~".

g € G is any other group element gy(t)g~
The quotient group G/Gy is the group of components, sometimes denoted my(G), because,
as a set, it is in 1-1 correspondence with the set of connected components of G. In general
for a topological space X, the set of connected components is denoted by my(X), but, for
general topological spaces X, the set mo(X) carries no natural group structure (unlike the
higher homotopy groups).

For some examples:

1. G = R* under multiplication. The identity element is 1 and clearly RY; is the
connected component of the identity. The quotient group is isomorphic to Z,.

2. The determinant map defines a homomorphism det : GL(n,R) — R*. Clearly there
is no path of GL(n,R) matrices that connects elements with detA < 0 to detA > 0.
(Why?) In fact, the subgroup of GL(n,R) of matrices with positive determinant is
connected: The sign of the determinant is the only obstruction to deformation to the
identity. 62

3. Very similar considerations hold for O(n,R). One can show that SO(n,R) is the
connected component of the identity and 7y = Zy. For example, consider O(2). In
an exercise above you showed that as a manifold it has two components, each of which

52The theory of fiber bundles shows that if H is a Lie subgroup of G so that G/H is a topological space
then if H is connected the set of components of G' can be identified with the set of components of G/H.
We will see later from the stabilizer orbit theorem that SO(n + 1)/SO(n) = S™, so we can prove SO(n)
is connected by induction on n. By Gram-Schmidt procedure SL(n,R) is a product of SO(n) and upper
triangular matrices with unit diagonal - and this space is connected. So SL(n,R) is connected. Then the
set of components of GL(n,R) is that of R*, and this is measured by the determinant.
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can be identified with a circle. The connected component of the identity is SO(2).
We have O(2) = SO(2) I1 SO(2) P where P is any O(2) matrix of determinant = —1.
So m(0(2)) = Zs. Similarly, mo(O(n)) = Zs.

4. One can show that 7o (Dif f(T?)) = GL(2,Z). Indeed there is a subgroup of Dif f(T?)
isomorphic to GL(2,Z) of diffeomorphisms

0'1 a O'1
(@)= ()

which projects isomorphically to the quotient group.

5. If G is a finite group then m(G) = G.

Example 7.2.9. In nonabelian gauge theory on a noncompact manifold the group of all
gauge transformations is sometimes defined by the function group G = Map[X — G| so
that g : X — G goes to a constant “at infinity.” The group of local gauge transformations
Go is the subgroup so that g(z) — 1. We have Gy < G. The quotient group is then to be
thought of as the group of “global gauge transformations.” In fact, G/Gy = G.

Exercise Due Diligence
a.) Check the details of the proof of Theorem 7.2.1 ! 63
b.) Consider the right cosets. Show that N\G is a group.

Exercise A Cancellation Theorem

Suppose that we have a chain of normal subgroups
KaN<«G (7.69)

and moreover K < G.
a.) Show that 4
N/K<G/K (7.70)

53 Answer: The main thing to check is that the product law defined by (7.43) is actually well defined.
Namely, you must check that if g1 N = ¢{N and gaN = g5N then g1goN = g1 g5N. To show this note that
gl = gin1 and gh = ganso for some n1,m2 € N. Now note that gigh = ginigens = g1g2(g5 "n1g2)na. But,
since N is normal (g;1n1gz) € N and hence (g;lnlgz)nz € N and hence indeed g1goN = gigsN. Once
we see that (7.43) is well-defined the remaining checks are straightforward. Essentially all the basic axioms
are inherited from the group law for multiplying g1 and g2. Associativity should be obvious. The identity
is 1cN = N and the inverse of gN is g 'N. etc. &

54 Answer: (gK)(nK)(gK)™" = (gng™")K but gng™' = n’ for some n’ € N since N < G, but then
n'K € N/K.
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b.) Show that there is an isomorphism of groups %

G/N = (G/K)/(N/K) (7.71)

Exercise Fven Permutations

Example 7.2.2 has a nice generalization. Recall that a permutation is called even if it
can be written as a product of an even number of transpositions.

a.) Show that the even permutations, A,, form a normal subgoup of S,,.

b.) What is S, /A,,7

Exercise Subgroups Of Index Two

a.) Suppose that H C G is of index two: [G : H| = 2. Show that H is normal in G.
What is the group G/H in this case? 56

b.) Using (a) give another proof that A, < .S, is a normal subgroup.

c.) As we will discuss later, the groups A, for n > 5 are simple groups. Accepting
this for the moment give an infinite set of counterexamples to the converse of Lagrange’s

theorem. 67

Exercise
Look at the 3 examples of homogeneous spaces G/H in section 7.1. Decide which of
the subgroups H is normal and what the group G/H would be.

5 Answer: Define ¢ : (G/K)/(N/K) — G/N by ¢)(gK - (N/K)) — gN. The main thing we need to check
is that this is well defined. But if gK - (N/K) = ¢'K - (N/K) then ¢’ K = (¢K)(nK) = (gn)K so ¢’ = gnk
for some n, K but nk € N so ¢ N = gN. Now compute the kernel of 1: If gN = N then g € N but then
(9K) - (N/K) = N/K.

56 Answer: Suppose G = H II goH. Then take any h € H. The element gohga1 must be in H or goH.
But if it were in goH then there would be an k' € H such that gohgy ' = goh’ but this would imply go is
in H, which is false. Therefore, for all h € H, gghgo_1 € H, and hence H is a normal subgroup. Therefore
G/H = 7.

%7 Answer: Note that the order of |Ay,| is even and hence 1|A,| is a divisor of |A,|. However, a subgroup
of order |A,|/2 would have to be a normal subgroup, and hence does not exist, since A,, is simple. More
generally, a high-powered theorem, known as the Feit-Thompson theorem states that a finite simple non-
abelian group has even order. Therefore if GG is a finite simple nonabelian group there is no subgroup of
order |G|, even though this is a divisor.
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Exercise
Show that if the center Z(G) is such that G/Z(G) is cyclic then G is Abelian. %

Exercise Sylow subgroups of Ay
Write down the 2-Sylow and 3-Sylow subgroups of Aj.

Exercise Commutator Subgroups And Abelianization
If g1, g2 are elements of a group G then the group commutator is defined to be the
element

91, 92] := 919297 '95 " - (7.72)

If G is any group the commutator subgroup usually denoted [G, G] (sometimes denoted G’)
is the smallest subgroup of G containing all the group commutators.

a.) Show that [G,G] is a normal subgroup of G.

b.) Show that G/[G,G] is abelian. This is called the abelianization of G. ™

Exercise A Less Than Perfect Group

a.) Recall that a simple group is a group with no nontrivial normal subgroups. A
perfect group is a group which is equal to its commutator subgroup. Show that a nonabelian
simple group must be perfect.

b.) Show that S, is not a perfect group. What is the commutator subgroup? ™

Exercise Signed Permutations Again
Recall our discussion of a natural matrix representation of S,, and the group W (B,,)
of signed permutations from *** above.

58 Answer: Every element of G would be of the form g}z with z € Z. But then it is easy to check:
90290" 2 = g2’ gb 2 so G is Abelian. So G = Z(G), and in fact the cyclic subgoup must be trivial.

59 Answer: Note that go[g1, g2]g5 " = [94, gb] where g} = gogigy '

0 Answer: Let G’ = [G,G] then g1G'g2G’ = (9192)G’ = 9291 (97 *95 1 9192)G’ = 921G

"'The commutator subgroup is clearly a subgroup of A,. In fact A, is generated by products of two
transpositions and hence is generated by (abc). But note that (ab)(ac)(ab)(ac) = (abc). Therefore the
commutator subgroup of S, is just A,.
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a.) Show that the subgroup of W (B,) of diagonal matrices is a normal subgroup
isomorphic to Zj.

b.) Show that every signed permutation matrix can be written in the form D -II where
D is a diagonal matrix of +1’s and II is a permutation matrix.

c.) Conclude that the quotient of W (B,,) by the normal subgroup of diagonal matrices
is isomorphic to .5,.

d.) Show that every signed permutation can also be written as I' - D’. How is this
decomposition related to writing it as D - II.

Exercise Products Of Stmple Groups
Let G1 and G2 be simple groups.
a.) What are the normal subgroups of the Cartesian product G1 x Go? ™

b.) Suppose G;, i € I is a set of simple groups. What are the subgroups of [[;.; G;?

Exercise The Center Of U(N)

Show that the center of U(N) consists of the subgroup of matrices proportional to the

unit matrix and is therefore isomorphic to U(1). ™

Exercise Subgroups Which Are Not So Normal
a.) Consider O(n,R) C GL(n,R). Is this a normal subgroup?
b.) Consider the subgroup of diagonal matrices in SU(N). Is this a normal subgroup?

™ Answer: Only {1}, G1 x {1lg,} , {lg,} x G2 and G1 x Ga.
™ Answer: There are many proofs but one nice one is to use induction on N. First establish the result for
U(2) - here the matrix multiplication is easy and this can be done by hand. Now suppose that ¢ € U(N +1)
is in the center. Decompose it as follows
Aw

where A € M2(C), v € Maxn—-1(C), w € Mn_1x2(C), and D € Mn_1x~n-1(C). Now insist that it commute

with
u 0
01

with « € U(2) to show that uAdu™' = A, uv = v and wu™" = w for all u € U(2). These equations imply A
is diagonal and v, w = 0.
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Exercise The Normalizer Subgroup
If H C G is a subgroup then we define the normalizer of H within G to be the largest
subgroup N of G such that H is a normal subgroup of N. Note that H is normal inside

itself so such subgroups exist. If Ny, No C G are subgroups and H is normal in both then
they generate a subgroup in which H is normal. So the maximal subgroup exists.
Define:
Ng(H) :={g € GlgHg ' = H} (7.73)

a.) Show that (7.73) is a subgroup of G and H is a normal subgroup of Ng(H).

b.) Show that Ng(H) is the largest subgroup of G which contains H as a normal
subgroup, so (7.73) is a formula for the normalizer subgroup of H within G.

Note that there is no claim that Ng(H) is a normal subgroup of G. In general, it is

not.

Exercise The Weyl Groups Of SU(2)
a.) Let D C SU(2) be the subgroup of diagonal matrices. Note that D = U(1).
Compute
Nsuray(D) (7.74)

explicitly. ™

b.) Compute the quotient group Ngp2)(D)/D. ™

c.) Show that conjugation by elements of the normalizer act by a permutation of the
diagonal elements and the permutation only depends on the projection to the quotient. 76

d.) Show that there is no subgroup of Ngg(2)(D) which is isomorphic to Sp = Zy and
whose conjugation action on D induces the permutation action.

Exercise Weyl Group Of SU(N)
Every element of SU(N) can be conjugated into the set T Of diagonal matrices.

™ Answer: The normalizer is the subgroup of SU(2) that is the union of matrices of the form

6:")
L)

"6The conjugation by the diagonal matrices in Nsu(2)(D) on D acts as the identity. The conjugation by

or of the form

where z is a phase.
™ Answer The quotient is isomorphic to Zs.

the off-diagonal matrices in Ngy(2)(D) on D acts as permutation of the diagonal elements.

~ 9] —



a.) Show that the normalizer N(T") of T' within SU(N) is larger than T' by considering
SU(N) matrices: (Here i # j):

U(i,7) :=1— (e + ej;) +i(ei; +ej) € SUN) (7.75)

The reader should carefully show that U(3, j) is indeed in SU(N).

b.) Show that the conjugation action by U(i, j) on the subgroup of diagonal matrices
permutes the i¢ and jj diagonal elements leaving all the others fixed.

c.) Show that the homomorphism N(T') — Sy must be surjective.

Remark: We remarked above that in a compact simple Lie group G a maximal dimension
torus subgroup will be unique - up to conjugation. Such a subgroup is known (with some
abuse of language) “the” maximal torus. An example of a maximal torus for SU(n) would
be the diagonal subgroup. In general the Weyl group of G is by definition

W(G) := Ng(T)/T (7.76)

For example, in SU(n) any maximal torus is conjugate to the subgroup D C SU(n) of
diagonal matrices. In this case, conjugation by Ngpy(,) (D) acts on D by permutation of
the diagonal elements and in fact

W(SU(n)) = Ny (D)/D = S, (7.77)

Note that the Weyl group is defined as a quotient of a subgroup of G. (Often this is
abbreviated to “subquotient of G.”) In general there is no subgroup of G that is isomorphic
to W(G) and whose conjugation action induces the Weyl group action on 7. (It is a common
mistake to confuse W(G) with a subgroup of G.)

Exercise Representations Of SU(N) That Are Not Representations Of PSU(N)
Give an example of a representation of SU(N) that is not a representation of the
quotient PSU(N). 77

Exercise Homomorphic Images And Normal Subgroups

Suppose N <G, and suppose that ¢ : G — G is a homomorphism to some other group
G. Then o(N) C G is a subgroup. Is it a normal subgroup?

a.) If not, give a counterexample.

b.) Under what conditions is ¢(N) a normal subgroup? ™

""The defining representation is not, because the center of SU(N) acts nontrivially.

"8 Answer: In general it is not a normal subgroup. A simple counterexample is to take and inclusion
homomorphism ¢ : S3 — Sy and let N = Az. However, if ¢ is surjective then it is easy to see that it is a
normal subgroup.
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Exercise The Connected Component Of The Identity Is A Subgroup
Show that the path-connected component of the identity of a topological group is a
subgroup. ™

v

—R=P+0Q

Figure 3: In a suitable range of real values of f,g the real points on the elliptic curve have the
above form. Then the elliptic curve group law is easily pictured as shown.

7.3.1 A Very Interesting Quotient Group: Elliptic Curves

Consider the Abelian group C of complex numbers with normal addition as the group
operation. If 7 is a complex number with nonzero imaginary part then Z + 7Z is the
subgroup of complex numbers of the form n; + 7no where n; and ngy are integers. Since C
is Abelian we can form the Abelian group C/Z + 77Z. Note that A := Z + 77 is a rank two
lattice in the plane so that this quotient space can be thought of as a torus. As an Abelian
group this group is isomorphic to U(1) x U(1). The explicit isomorphism is

(01 + 709) + A > (2701 2mio2) (7.79)

Note that the identity element is [0] = A and the inverse of [2] is [—z].

™ Answer: Suppose there are continuous paths «; : [0,1] — G with v;(0) = 1¢ and v;(1) = g;. Consider
the path

o) m {%(Qt) 0<t<1/2 778)

g -2t—1) 1/2<t<1
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A remarkable fact is that this torus (minus one point) can be thought of as the space
of solutions of the algebraic equation

y=2"+ fr+g (7.80)

where (z,y) € C?> and f,g € C. 8

The mapping between [z] € C/(Z + 7Z) and (z,y) and between f, g and the complex
number 7 involves very interesting functions known as elliptic and modular functions. The
solution set to (7.80) in C? is known as an “elliptic curve.” It is not difficult to describe the
mapping. One introduces a holomorphic function of z known as the Weierstrass function:

p(2|T) == = + WGAZ{O} ( oF :2> (7.81)

where w = n1 —|— not € A :=Z+77Z and z ¢ A Note that for large values of w the summand

behaves hke
general results in complex analysis the function is holomorphlc for z € C— A. Note that it
is also doubly-periodic:

oz +m+m/7t|T) = p(z|7) (7.82)
for all m,m’ € Z. So it descends to a function on the quotient to define a meromorphic
function on a complex manifold.

For [z] = 0 the function has a second order pole. Put differently, the Weierstrass
function has a double pole at every point z € A. Indeed we can expand p(z|7) around
z=0:

1 oo
p(Z’T) = 2*2 +Z Qk-i— 1 G2k+22’ 2k
k=1 (7.83)

1
:Z—2+3G4z2+5G6z4+---

where

1
G2k+2 = Z m (7.84)
(n1,n2)€Z2—-{(0,0)}
are absolutely convergent and hence holomorphic functions of 7 for k > 1 when Im7 # 0.
They are famous functions known as FEisenstein functions and are basic examples of a
fascinating set of functions known as modular forms. In order to produce equation (7.80)
we will take x = p(z|7) and define

y = —p(z|7)
_35 (7.85)
= — +6G4z +20Ge2" + - -

80We can restore the point at infinity using projective geometry. The equation ZY? = X3 + fX 7%+ ¢Z3
makes sense for a point [X : Y : Z] € CP?. Indeed note that the equivalence relation says that [X : Y :
Z] = [AX : XY : AZ] and the equation is homogeneous and of degree three. The equation (7.80) is the
equation we get in the patch Z # 0 where we can fix the scaling degree of freedom by choosing A so that
Z =1. We then define z,y by [z:y:1] =[X:Y : Z] = [X/Z :Y/Z : 1] which makes sense when Z # 0.
The point at infinity has Z = 0. Therefore, by the equation X = 0, and since we have a point in CP? we
must have Y # 0, which can therefore be scaled to y = 1. So, the point at infinity is [0 : 1 : 0] € CP2.
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Now a small amount of algebra shows that we have the series expansion
y? — 423 4+ 600G,z = —140Gs + O(2?) (7.86)

The expression on the left is double-periodic. But the pole at z = 0 has cancelled. So
the pole at all values of w € A have cancelled! So the combination 3% — 423 + 60Gx
is entire. Moreover, because it is doubly-periodic all the values are taken on the closed
rectangle given by a fundamental domain. So it is a bounded entire function. Therefore,
by Liouville’s theorem it must be constant! Thus all the higher terms in the series vanish!
Thus we have the exact formula:

y? = 42 — 60G 4z — 140G (7.87)
which can be transformed to the expression (7.80) by rescaling

y =277y x =~ (7.88)

for any nonzero v € C*.

The very simple Abelian group law
[21] + [22] = [21 + 22] (7.89)

expressed in terms of (x,y) is rather nontrivial and closely related to some deep topics in
number theory. We will describe it below, but some simple aspects are easily motivated by
the isomorphism to C/A. First of all, the identity element must correspond to the point
at infinity, (x = oo,y = oo) which can be given precise meaning in projective space as the
point [0 : 1 : 0]. Second, because p(z|T) is even in z the inversion in the Abelian group
must be I(z,y) = (z, —y).

Now, if one considers f, g to be real and studies the real solutions then the group law
can be visualized as in Figure 3. (We are following the Wikipedia article here, which is
quite clear.) One first defines the inverse —P of a point P on the curve with coordinates
P = (z,y) to be —P := (x,—y). As we have seen this is compatible with I([z]) = [—z].
Then, for generic points P and ) we can define P + () by saying that

P+Q+R=0 (7.90)

if they are three collinear points on the elliptic curve. Since we know how to invert that
means we can take the definition of P + ) to be —R. Note that with these rules the
statement P + (—P) = 0 shows that 0 must correspond to the point at infinity.

We can express the group law on (zp,yp) + (29, yq) = (zr, —yr) in explicit formulae
as follows: We write the line between P, Q) as

with
Pl N <w3—y@):yQ_xQ (yp—ycz) (7.92)
rp —xQ Tp —IQ Tp —XQ
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Now the intersection of this line with the cubic equation has x coordinates given by
(st +d)? =2+ fz+g (7.93)
and by simple rearrangement we can rewrite (7.93) as
23— 2% + (f —2sd)z + (g —d*) =0 (7.94)
On the other hand, this equation must be of the form
(x —zp)(x —2g)(x —2R) =0 (7.95)
Expanding out (7.94) and equating the coefficient of x? we obtain
TR =58> —xp—1Q (7.96)

so we have zp explicitly as a function of xp,zq,yp,yg. Now the point (zg,yr) must lie
on the line y = sx + d so we can also say that

Yyr =yp + s(zgr — zp) (7.97)

expressing yr and hence the coordinates of R = (x g, —yr) as rational functions of xp, zg, yp, yg-
It is not at all obvious that the above group law really satisfies the associativity constraint.
The law also corresponds to a nontrivial identity on Weierstrass functions.

The above formulae hold for generic points. When points coincide or the line is tangent
to the elliptic curve one must carefully degenerate the above expressions.

When f,g are real but not in the range to give a figure like Figure 3 the algebraic
equations above still define a group law. Indeed, these equations make sense over any field,
such as Q, or over finite fields, even though we do not have the corresponding torus C/A
as an isomorphic model. These generalizations are of great importance in number theory
and cryptography.

Exercise Modular Transformations
a.) Show that the transformation

ab z at +b
: _ 7.98
<c d) (z,7) = (c7'+d’c¢+d> (7.98)
defines a group action of SL(2,Z) on pairs C x H.
b.) Show that

z ar+b\ 9
v <c7’—|—d|c7'—|—d> = (em +d)"p(z]7) (7.99)
c.) Show that
ar +b, ok B
(=) = (T + ) Cap(r) k=234, (7.100)
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d.) Using Fourier analysis prove that for z ¢ Z we have

Z( Lo (7.101)

o (z+ n)?  sin?(mz)

and conclude that for Imz > 0

1 27“ 2k—1,2mil
TILZ 1 2
%(z—&—n)% 2k—1‘2£ (7.102)

From this derive that

(2mi)%F &

> oan-1(n)g" (7.103)
=1

G%@qzzqng+2@k_1ﬂn

where 0., (1) = Y4 divides n @™ and ¢ := e*™7. Furthermore show that

G (1) = 2(2k) Eoi(7) (7.104)

Ak > Qkflqn

Bop(r) =1 —~
2 (7) By 2= 1— g

(7.105)

Here By are the Bernoulli numbers defined by the series expansion around ¢ = 0:

t ~=~DBn, 1 — Boj, o
p— _nz:on!t =1- 2t+; (%)!t (7.106)

The functional equation for the Riemann zeta function leads to the identity:

Bop = (— 1)k+1(22(72rl;) C(2k) k>1 (7.107)

Remark: Holomorphic functions on the upper half-plane that transform like

z at +b

N+ @ orvd

)= (et +d)f(7) (7.108)

for an integer w are called “modular forms of weight w.” One can show that if one imposes a
boundedness condition (essentially that there are no negative Fourier modes in the Fourier
expansion) then modular forms only exist for even weights > 2. Defining My to be the
vector space of such forms of weight 2k one key theorem in the subject says that

@Br>1 Mo = C[Ey, Eg] (7.109)

where the RHS is the polynomial ring generated by E4 and Fg. There are many many
variations on the above ideas.
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Exercise FElliptic Integrals

Show that if z is in a small neighborhood of zg within a fundamnetal domain for the
Z + 77 action on C and t,tg are in a small neighborhood that does not “surround” any of
the roots of 423 — 60G4z — 140G then

@ dt
zo \/4t3 — 60G4(T)t — 140G (T)

(7.110)

zZ— 20 =

where
x = p(z|7) xo = p(20|7) (7.111)
Evidentally, if we consider the integral (7.110) and analytically continue in ¢ then it
will be double valued and will depend on the choice of contour connecting xg to x.

Remark: In general an integral with a rational expression involving a square root of a
cubic or quartic polynomial will be expressed in terms of elliptic functions. By contrast,
integrals with square roots of quadratic functions can be expressed in terms of trigonometric

_ ! cos™! <—b il 2ax> (7.112)
Vat?+bt+c¢  V—a VD '

where D = b? — 4ac is the discriminant. Note that analytic continuation in = will lead to a

functions:

multiple valued function, in harmony with the multiple possible values taken by the inverse
cosine. Elliptic integrals generalize this expression by replacing the quadratic polynomial
at? 4+ bt + ¢ by cubic and quartic polynomials. Elliptic functions show up in many exact
results in physics. Perhaps the simplest example is the exact formula for the period of a
pendulum of length ¢ with maximal angle 6,,, from the vertical:

—t [~ 7.113
b2 L= /9 0089 \/cos @ — cos O, ( )

The integral can be converted to (set sinu = Slin; 91 2/2 and k = sin6,,,/2):

to —t1 = (7.114)
U 1—k281n U

which in turn is an integral with a square root of a quartic polynomial, via s = sinu

1 [0 [* ds
ty — 1 = 2\/;/8l N T (7.115)

7.4 Quotient Groups And Short Exact Sequences

In mathematics one often encounters the notion of an ezract sequence: Suppose we have
three groups and two homomorphisms fi, fo

aBaB3a, (7.116)

— 98 —

&Explain more
about how elliptic
integrals give exact
solution to the
motion of a
pendulum &



We say the sequence is exact at Go if imf; = ker fo.

This generalizes to sequences of several groups and homomorphisms

...GFIBGiLGiHﬁ_ﬁ... (7.117)
The sequence can be as long as you like. It is said to be exact at G; if im(f;—1) = ker(f;).
A short exact sequence is a sequence of the form

1% G I gy B g B (7.118)

which is exact at G1, G2, and G3. Here 1 refers to the trivial group with one element.
(When we work with Abelian groups and work additively we will denote the trivial group
by 0.) Note that the homomorphism fj is unique: fy(e) = 1, where e is the identity (and
only) element of the trivial group 1. Henceforth we will not write fy explicitly. Similarly
the homomorphism f3 is also unique: It takes every element of G5 to the identity(and only)
element of the trivial group 1. Henceforth we will not write f3 explicitly.

Thus, the statement that (7.118) is a short exact sequence is the statement that the
following is true:

1. Exactness at G;: The kernel of f; is the image of fy, but that image is plainly 1¢,.

It is an easy exercise to show that if a homomorphism has a trivial kernel then it is
an injection of G into Gs.

2. Exactness at Ga: imf; = ker fs.

3. Exactness at GG3: The kernel of f3 is all of G3. Exactness at G3 means that this kernel

is the image of the homomorphism f5, and hence fs is a surjective homomorphism,
i.e. fo maps Go onto all of G.

In particular, note that if u : G — G’ is any group homomorphism then we automati-
cally have a short exact sequence:

15 K—=G5imu) —1 (7.119)

where K is the kernel of pu.
When we have a short exact sequence of groups there is an important relation between
them, as we now explain.

Theorem 7.4.1: Let K C G be the kernel of a homomorphism (4.33). Then K is a normal
subgroup of G.
Proof: pu(gkg™") = p(g)p(k)u(g™") = m(g)lau(g)™" = 1er = K is normal. #

Exercise Is the image of a homomorphism a normal subgroup?
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If u: G — G is a group homomorphism is x(G) a normal subgroup of G'?
Answer the question with a proof or a counterexample. 3!

It follows by Theorem 7.2.1, that G/K has a group structure. Note that p(G) is also
naturally a group.

These two groups are closely related because

ulg) =ulg) &  gK=gK (7.120)

Thus we have

Theorem 7.4.2:

1(G) = G/Ker(p) | (7.121)

Proof: We associate the coset gK to the element u(g) in G'.

¥ gK = pu(g) (7.122)

Claim: 1 is an isomorphism. You have to show three things:

1. ¢ is a well defined map:

9K =¢g'K = 3k € K,g' = gk = pu(g) = p(gk) = p(g)u(k) = pu(g) (7.123)
2. 1 is in fact a homomorphism of groups

V(@1 K - 92K) = (1K) - (g2 K) (7.124)

where on the LHS we have the product in the group G/K and on the RHS we have

the product in G’. We leave this as an exercise for the reader.

3. 1 is one-one, i.e. 1 is onto and invertible. The surjectivity should be clear. To prove
injectivity note that:

wg)=pwg)=plgld)=1=3keK,gd=gk=¢dK=9gK & (7.125)

Remarks:

81 Answer: Definitely not! Any subgroup H C G is the image of the inclusion homomorphism. In general,
subgroups are not normal subgroups.
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1. If we have a short exact sequence
1-N—-G—-Q—1 (7.126)

then it automatically follows that N is isomorphic to a normal subgroup of G (because
the image of NV under an injective homomorphism is the kernel of a homomorphism
G — Q). By some abuse of notation we sometimes write G/N instead of G/f(N)
where f is the injective homomorphism. With this understood, @ is isomorphic to
G/N. For this reason we call Q the quotient group. A frequently used terminology is
that “G is an extension of Q by N.” Some authors %2 will use the terminology that
“G is an extension of N by Q).” So it is best simply to speak of a group extension
with kernel N and quotient ().

2. VERY IMPORTANT: In quantum mechanics physical states are actually repre-
sented by “rays” in Hilbert space, or better, by one-dimensional subspaces of Hilbert

space, or, even better, by orthogonal projection operators of rank one. (This is
for “pure states.” More generally, “states” are described mathematically by den-
sity matrices.) When comparing symmetries of quantum systems with their classical
counterparts, group extensions play an important role so we will discuss them rather
thoroughly in §15 below.

Here are three nice examples of commonly encountered short exact sequences:

Example 0: Note that any direct product group G1 x G» fits into two short exact se-
quences:
1—)G1—)G1XG2—>G2—>1 (7127)

1—>G2—>G1XG2—>G1—>1 (7.128)

The reader should write out the homomorphisms in these two cases. We will call such
short exact sequences “trivial.” Importantly, there exist nontrivial short exact sequences.
We will see many examples below.

Example 1: Consider the group of fourth roots of unity, 4 and the homomorphism
71 pg — po given by m(g) = g?. The kernel is {41} = po and so we have:

1 =79 =7y —7Zog—1 (7.129)

As an exercise the reader should also describe this extension thinking of Z, additively as
Z./AZ. Note that Z4 is NOT isomorphic to Zg X Zs.

This example generalizes in a nice way as follows. Let n be any integer and consider
the roots of unity: p,2. There is a homomorphism ¢ : p,2 — u, given by p(z) = 2™.

82notably, S. MacLane, one of the inventors of group cohomology,
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Clearly, the kernel is py,, the n* roots of unity. It is not hard to see the image is all of p,
SO
1= Zp — Zpp — Ly — 1 (7.130)

Example 2: Consider the homomorphism
rN:Z — Z/NZ (7.131)

given by reduction modulo N. (Or, if you prefer to think multiplicatively, ry(n) = w"
where w is a primitive N** root of 1.) The kernel is K = NZ C Z. As a group this kernel
is isomorphic to Z and so we have

02 ™ 72 X Z/NZ—0 (7.132)
where my(z) = Nz is simply multiplication by N.

Example 3: Finite Heisenberg Groups: Let P, be N x N “clock” and “shift” matrices.
To define these introduce an N** root of unity, say w = exp[2mi/N]. Then

P;j = 0i=j11modN (7.133)

Qi,j = 52',]'(,0] (7.134)

Note that PV = Q¥ =1 and no smaller power is equal to 1. Further note that 83

QP =wPQ (7.135)
For N = 4 the matrices look like
0001 w0 00
1000 0w? 00
P— - 7.136
0101 @ 00 w30 ( )
0010 00 01

with w = e2mi/4

of GL(N,C).
It is obvious that QY = 1. Note that, in a standard ordered basis {e;}X, for CV the
operator corresponding to the matrix P above takes

. The group of matrices generated by P, Q and wlyxy is a finite subgroup

615623 £>eN£>el (7.137)

from which it is obvious that P = 1. Thanks to the relation QP = wPQ the general
group element can be written in the form

wPPQ° (7.138)

83The fastest way to check that - and thereby to check that you have your conventions under control - is
to compute QPQ ™! because (Q ' PQ)i; = QiiPij (Qj;)”" = wPyj.

-102 -



where a, b, ¢ are integers and the group element only depends on the residue class of a, b, ¢
modulo N. The group multiplication law is:

(W™ PQ) - (w2 P?Q%) = w* PP (7.139)
where

az = a1 + ag + c1bo
b3 = b1 + by (7.140)

c3=c1+tc

This group, as an abstract group is called a finite Heisenberg group and denoted Heisy. It
is an extension
1 = Zy — Heisy SZn x Zn — 1 (7.141)

where 7(w?P?Q°) = (bmodN,cmodN) is a surjective homomorphism. The finite Heisen-
berg group has many many pretty applications to physics and we will return to this group
several times below. See, for example section 11.17.2 below for a physical interpretation.

Exercise A,
Use Theorem 7.1 to show that A,, is a normal subgroup of .S,,.

Exercise Phases And Norms
a.) Show that z — |z| is a homomorphism C* — R+.
b.) Show that C*/U(1) = Rx.

Exercise The Exponential Map And Short Exact Sequences
Show that the exponential map p(z) = €*™% defines short exact sequences

0-Z—-C—-C"—1 (7.142)

0—-Z—-R->U(1l)—1 (7.143)

These are very important in topology and in the theory of covering spaces.

Exercise A Nontrivial Short Ezact Sequence
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Show that (7.129) is a nontrivial short exact sequence by showing that Z, is not
isomorphic to Zs x Zy. %4

Exercise Induced Maps On Quotient Groups

We will use the following result in §12.3: Suppose u : G — G4 is a homomorphism
and Hy C G9 is a subgroup. Recall that p~(Hy) C G is a subgroup.

a.) If Hy C pu~'(Hsy) is a subgroup show that there is an induced map f : G1/H; —
GQ/HQ. 85

b.) Show that if H; and Hjy are normal subgroups then fi is a homomorphism.

c.) In this case there is an exact sequence

1— p~ ' (Hy)/Hy — G1/Hy — Gy /Hy (7.144)

Exercise Induced Maps On Quotients Of Abelian Groups

Let A, B be abelian groups and A; C A and By C B subgroups, and suppose ¢ : A — B
is a homomorphism such that ¢ takes A; into By. That is A1 C ¢~ 1(By).

It follows from the previous exercise that there is a homomorphism:

¢:AJA] — B/B (7.145)

Show that if ¢ : Ay — By is surjective then

- ker{¢: A — B}
ki tA/A B/By} = .14
Exercise
Let n be a natural number and let
Y : Z/nZ — (Z/nZ)? (7.147)

be given by the diagonal map ¢¥(w) = (w,- -+ ,w).
Find a set of generators and relations for G/¢(H).

84 Answer: One answer is to note that every element in Zg X Zg is order two, but Z4 has elements of order
four. Under isomorphism, the order of a group element is preserved.
85 Answer: Show that (g1 H1) := p(g1)Hz is a well-defined map.
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Exercise

Let G = Z x Zy. Let K be the subgroup generated by (2,w?) where we are writing Z,
as the multiplicative group of 4*" roots of 1. Note (2,w?) is of infinite order so that K = Z.
Show that G/K = Zs.

Exercise The Finite Heisenberg Groups
a.) Using the matrices of (7.133) and (7.134) show that the word

PrQm preQma ... Pk () (7.148)

where n;,m; € Z can be written as EP*QY where z,y € Z and £ is an N root of unity.

Express z,y, ¢ in terms of n;, m;. 8

b.) Find a presentation of Heisy in terms of generators and relations. &Generators and
. . ]7 relations have been
c.) What is the order of Heisy ? moved to later.
Move this exercise.
&

Exercise Centrally symmetric shuffles

Let us consider again the permutation group of the set {0,1,...,2n—1}. Recall we let
W (B,,) denote the subgroup of Sy, of centrally symmetric permutations which permutes
the pairs x + & = 2n — 1 amongst themselves.

Show that there is an exact sequence

1—7Z5 - W(By) — S, —1 (7.149)

and therefore |W(B,,)| = 2"nl.

Exercise The Weyl Group Of SU(N)
Show that there is an exact sequence

1-T—-N(T)—Syv—1 (7.150)

S Answer: x =3 ni, y =3, mi, £ =w’ withc= )
87 Answer N3

i<jmmj.
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7.5 Conjugacy Classes In S,

Above we discussed the cycle decomposition of elements of S,,. Now let us study how the
cycles change under conjugation.
When showing that transpositions generate S, we noted the following fact:

1

If (iviz - - - iy) is a cycle of length k then, for any g € Sy, g(iria---ix)g™" is also a cycle

of length k. It is the cycle where we replace i1, 492, ... by their images under g. That is, if
g(ia) = jas a =1,...,k, then g(iria---ig)g™" = (j1j2 - jk)-

It therefore follows that:

Any two cycles of length k are conjugate.

Example In S3 there are two cycles of length 3 and they are indeed conjugate:

(12)(123)(12)~! = (213) = (132) (7.151)

Now recall that any element in S, can be written as a product of disjoint cycles. We
can characterize a cycle decomposition by giving the number ¢; of cycles of length j, where
j ranges from 1 to n.

Examples:
1. The following two permutations in Si2 are conjugate:
(1,2)(3,4)(5,6)(7,8,9)(10, 11, 12) (7.152)
(4,10)(7,8)(9, 11)(1,12,6)(2,5,3) (7.153)
This has ¢1 =0, o =3, {3 =2, {; =0 for j > 3.
2. In Sy there are 3 elements with cycle decomposition of type (ab)(cd):

(12)(34),  (13)(24),  (14)(23) (7.154)

Note that these can be conjugated into each other by suitable transpositions. So this
conjugacy class is determined by

G=0 =2 l3=0 (£,=0 (7.155)

Associated to a cycle decomposition is a sequence of integers ¢;. We can summarize
this data with the notation:
(D)(2)= - (n) (7.156)

- 106 —



Then, since we must account for all n letters being permuted we must have:

n=1+--+1+42++2+4 - Fn+--;
N——

~~

f1 times {5 times £, times

=> i
=1

But the cycles are disjoint, and any two cycles can be conjugated into each other:

Therefore, the conjugacy classes in Sy, are labeled by specifying for each j such that
1 < j < n, a nonnegative integer, denoted {; such that

> jti=n (7.158)
j=1

Here {; encodes the number of distinct cycles of length j in the cycle decomposition of any
element o in the conjugacy class C(o).

Definition A decomposition of a positive integer n into a sum of nonnegative integers is
called a partition of n.

Therefore:

The conjugacy classes of S, are in 1-1 correspondence with the partitions of n.

Definition The number of distinct partitions of n is called the partition function of n,
and denoted p(n). 88

Example For n = 4,5 p(4) = 5 and p(5) = 7 and the conjugacy classes of Sy and S5 are:

Partition Cycle decomposition | Typical g | |C(g)| | Order of g
4=1+1+4+1+1 (1)4 1 1 1
4=1+1+2 (1)2(2) (ab) () =6 2
4=1+3 (D(3) (abc) | 2-4=38 3
4=2+2 (2)? (ab)(cd) | 3(5) =3 2
4=14 (4) (abed) 6 4

88 This is a term in number theory. It is not to be confused with the “partition function” of a field theory!
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Partition Cycle decomposition |C(9)] Typical g | Order of g
5=1+1+1+1+1 (1)5 1 1 1
B=1+1+1+2 (1)%2) (5) =10 (ab) 2
5=1+1+3 (1)2(3) 2-(3) =20 (abc) 3
5=1+4 (1)(4) 6-(3) =30 | (abed) 4
5=1+1+2+2 (1)(2)? 5-2(3) =15 (ab)(cd) 2
5=2+3 (2)(3) 2-(5) =20 | (ab)(cde) 6
5=5 (5) 41 =24 (abede) 5

&Add table for Sg .

We will show below, twice, that the order of the conjugacy class of type (7.156) is *

n!

C(g = T=n 7.,
C6) = Fr

(7.159)

Exercise Sign of the conjugacy class
Let € : Sp, — {1} be the sign homomorphism. Show that e(g) = (—=1)"*23% if ¢ is
in the conjugacy class (7.156).

7.5.1 Conjugacy Classes In S,, And Harmonic Oscillators

There is a beautiful relation of conjugacy classes of the symmetric group with special
collections of harmonic oscillators. We’'ll give a taste of how that happens here.

Let’s review briefly some facts about the quantum mechanical harmonic oscillator:
The classical harmonic oscillator is described by a phase space with coordinate g € R (the
displacement of the oscillator) and momentum p € R with Hamiltonian

1
H= 5(p2 + w?¢?) (7.160)

(we have scaled away the mass). In our considerations we will assume that w > 0 is a
positive real number. The classical Poisson bracket {p,q} = 1 is quantized by postulating
there are operators p, ¢ with

[p, 4] = —ih (7.161)
and there is a Hilbert space representing this operator algebra. Ome forms the linear
combinations:

(i +ip)
a:= wq +1ip

21hw (7.162)
a:= wq — ip

2hw( q—1ip)
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so that
[a,a] =1 (7.163)

Remarks:

1. The operators a,a generate an algebra A (see Chapter 2 for the general notion of
an algebra) known as a * algebra. What this means is that there is an involutive C-
antilinear map O — O* so that (0102)* = O507;. We define it by ¢* = ¢ and p* = p
and then extend by to linear combinations by demanding that * is C-antilinear. Then

a = a*. In a *-representation of a x-algebra on a Hilbert space * becomes Hermitian
adjoint.

2. If we just consider the operator algebra without considering H then there are a
number of different ways to represent it. We could postulate there is a vector |0)
with a|0) = 0. Then the Hilbert space is spanned by a™|0) and @ = a. But note that

we could make a linear transformation to

b= aa+ fa

- (7.164)
b=~a+da

As we saw in the exercise containing equation (3.60) et. seq., this will preserve the
commutation relations: [b,b] = 1, if ad — By = 1. If we furthermore wish to preserve
the * structure so that b = b* then § = o* and v = 3*. The group of such matrices:

(;‘ f) (7.165)

SU(1,1) := {A € My(C)|ATnA = n} (7.166)

with |a|? — |B]? = 1 forms the group

We can define a “different;” representation of the Heisenberg algebra starting with
b|0), = 0. For a finite number of oscillators the representations will be equivalent by
a Bogoliubov transformation. If H, is the representation generated by a vector with
al0), = 0 and H, is the representation generated by a vector with b/0), = 0 then
there is a unitary map U : Hp — H, implementing (7.164). We will show in exercise
(7.234) et. seq. below that in fact:

U(|0)s) = N (coshr)/2e~ 2?0y, (7.167)
where we parametrize
a B coshr —e “®sinhr
= . 7.168
<B* a*) (—614) sinhr  coshr ) ( )
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and in terms of these parameters I' = ¢'? tanh(r). The parameter r has an interpre-
tation in terms of the expected number of “b quanta” in the “a-vacuum”:

2(0[676]0)q = sinh? r (7.169)

Such Bogoliubov transformations play an important role in the theory of superfluids
and superconductivity and in the theory of particle creation by time-varying electro-
magnetic and gravitational fields. Although the oscillator representations generated
by |0), and |0); are equivalent, in the case of an infinite number of oscillators the
representations can be inequivalent.

3. This choice of quantization based on |0), is preferred when we consider the oscillator
Hamiltonian: The quantum Hamiltonian is H = w(a’a + 3). The states a”|0) are
eigenstates of H with eigenvalue w(n+3). Assuming |0) has unit norm the normalized
eigenstates ﬁd"m) form a complete ON basis for the Hilbert space.

In quantum statistical mechanics a very important quantity is the (physics) partition
function defined to be
—18u 1

—eH _ €2 7.170
1—eBv  2ginh %ﬁw (7.170)

Try e

single h.o.
Here 8 has the physical interpretation of 1/(kT) where k is Boltzmann’s constant and T
is the temperature above absolute zero. Using the (physics) partition function one derives
thermodynamic quantities when the oscillator is connected to a heat bath.

Now, suppose we have a system which is described by an infinite collection of harmonic
oscillators:

laj,ar) =0 [a},aT] =0 [aj,a,t] =0,k Jk=1,... (7.171)

Suppose they have frequencies which are all a multiple of a basic harmonic which we’ll de-
note wyp, so the frequencies associated with the oscillators a1, as, as, ... are wg, 2wq, 3wo, ....
The motivation for choosing all frequencies to be multiples of a basic frequency comes from
the theory of strings, as we will explain below.

If we write the standard sum of harmonic oscillator Hamiltonians we get, formally,

0
1
Hformal — ijo(a;aj 4 5) (7172)
j=1

This is formal, because of the infinite sum.
We represent the operator algebra by a “highest weight representation” starting with
a vector (more precisely, a line - a one-dimensional vector space) annihilated by the a;:

a0y =0  j=1,2,3,... (7.173)

and then consider the span of all states made by acting with a;- and then completing. The
result is a Hilbert space
Hiot = Hay @ Hay @ -+ (7.174)
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Now the formal Hamiltonian does not make sense as an operator on Hiox because the
groundstate energy is infinite. This is typical of the divergences of quantum field theory
89 An infinite number of degrees of freedom typically leads to divergences in physical
quantities.

One way to make sense of the infinite ground state energy is via a procedure known as
(-function regularization, and a corresponding renormalization. The infinite ground state
energy is

Z‘;wz L‘;‘)le (7.175)

We regularize the sum ) iJ by introducing the Riemann zeta function:

=1
=> - (7.176)
=17

This series converges absolutely to an analytic function of s in the half-plane Re(s) > 1.
One can show that it admits an analytic continuation in s to the entire complex plane with
a simple pole at s = 1. With this analytic continuation one finds ¢(—1) = —1/12. % In
this way we can define the renormalized ground state energy to be

Z‘; =— wo (1) =— ;Z (7.177)

Equation (7.177) can be justified much more rigorously using the appearance of a
ground state energy in a Euclidean path integral and (-function definition of determinants,
as described below. In any case, things work out very nicely if we take the Hamiltonian to
be:

o
. wo
H= Z;jwoa}aj - (7.178)
A natural basis for H given by states of the form:

(a])(ab)’2 - (al)t 0) (7.179)

89The quantum field theory in question is that of a massless scalar field in a spacetime of 1+ 1 dimensions.
See a few paragraphs below.

990ne way to see that ¢(—1) = —1/12 is to use the functional equation for the Riemann zeta function.
It is straightforward to see that 27~ °/2T'(s/2)¢ = [ /29 — 1)dx where 9(iz) = >, -, e g
the Riemann theta function. The integral on the RHS has an analytlc continuation in s and the functional
equation I'(x 4+ 1) = 2I'(z) defines the analytic continuation of the I' function so this integral representation
defines an analytic continuation of the Riemann zeta function. Now the theta function satisfies a nice mod-
ular property relating ¥(iz) to ¥(i/z). This can be proven by a straightforward application of the Poisson
summation formula. See also section *** below for a physical derivation of the modular transformation
law of the theta function. Defining &(s) = %Trfsms(s — 1)I'(5)¢(s) one proves the remarkable functional
equation: &(s) = £(1 — s) by breaking the integral up into an interval [0,1] and an interval [1,00) and
making the change of variable x — 1/z. Now, we evaluate the functional equation at s = 2. Using the
identity T'(z)T'(1 — «) = 7/sin 7z one can evaluate I'(1/2) = /7 and therefore T'(—1/2) = —2v/2. On the
other hand ¢(2) = 772/6, as can be proven in many ways using elementary calculus.
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This state has energy
n
. w
wo > gl — 272 (7.180)
=1

It follows that the space of states with energy nwy above the ground state has dimension
p(n) and the above vectors are a natural basis in 1-1 correspondence with the conjugacy
classes of S,. This turns out to be significant in the boson-fermion correspondence in
141 dimensional quantum field theory: There is an equivalent formulation in terms of
fermionic oscillators. It follows that the quantum statistical mechanical partition function
of this infinite collection of oscillators is

Z%(B) = Trpgy,e P = e~ o0/ (1 + Zp(n)e‘ﬁnw°> =g/ (1 + Zp(n)q”)
n=1

n=1
(7.181)
where ¢ = e #«0,
On the other hand, since Hiot = Ha, ® Hq, ® - -+ we have

Z°¢(B) = Ty e

oo
_ 675w0/24 H TI",'-,{a ‘ 6fﬁjwoa;aj
J
j=1
_ 1
e [T;2,(1 - ¢)

We therefore have derived an infinite product representation of a generating function for

(7.182)

the mathematical partition function p(n) using the physical statmech partition function.
The coincidence of names is, so far as I know, completely fortuitous.

The infinite product identity for the partition function can also be derived in a straight-
forward mathematical way as follows: Let ¢ be a complex number with |¢| < 1. Notice
that:

=L {1+ > )" (7.183)

Expanding out (7.183) gives the first few values of p(n):

14+ q+2¢> 4+ 3¢ +5¢* + 7¢° + 11¢° 4 15¢" 4 22¢° + 304"+

7.184
+42¢"° + 56¢' + 77¢"2 + 101¢" + 135¢" + - - - ( )

and one can easily generate the first few 100 values using Maple or Mathematica or Sage
or ...
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The quantum statistical mechanical partition function of this collection of oscillators
has a truly remarkable “modular transformation property” that relates Z(3) to Z(1/p).
The precise statement is:

5_1/4ZOSC(B) — 5—1/42030(3) (7.185)
2
85 = (ZZ) (7.186)

Equations (7.185) and (7.186) should be viewed as a high-low temperature “duality.” As
an exercise the reader should show that the high temperature limit of Z°(3) diverges
like:

2
Z°%(B8)  ~g50 i—cjr()exp (6;&10) (7.187)

The property (7.185) and (7.186) is proven in textbooks on analytic number theory.
In this context one often uses the variable

=i (7.188)

2miT\ T
n(T) := exp < 51 > H(l —q") (7.189)
and prove the crucial identity:

n(=1/7) = (—=ir)"?n(7). (7.190)

This equation is equivalent to the identity in equations (7.185) and (7.186). In fact, (7.189)
admits an analytic continuation to the entire upper half plane Im(7) > 0 as a holomorphic
function. It follows that Z°¢() admits an analytic continuation to the Re(/3) > 0. How-
ever, one must be careful about interpreting the analytic continuation in terms of physics.
See below for the physical discussion.

An Interpretation From Physics

It turns out that (7.185) and (7.186), or equivalently, (7.190) has a beautiful inter-
pretation from physics. Consider a circular string with coordinate ¢ ~ o + 27 and the
displacement of the string X (o, t) is a real number depending on position and time. X (o,t)
represents the displacement of the string from some equilibrium position. It therefore has
units of length. The action is:

1 2w
=—— [dt | d X)? - 0,X)? 191
S 4Mg/ /0 o ((0X)* — 0,X)?) (7.191)
where {5 has units of length, or inverse mass, and we have temporarily set h = ¢ = 1 by

choice of units. If one derives this action from the theory of elasticity then it becomes clear
that T = £;? is the tension of the string. Note that we could absorb /, into the field X
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to make a dimensionless field X (t,0) = X(t,0)/fs. We will henceforth do this (and drop
the tilde on X). Then the general solution of the classical equation of motion (the wave
equation) (92 — 92)X =0 is:

( W in(t+a) . Gn ein(t—a>> (7.192)
n n

X(t,0) = Xo —I—pt+i\22
n#0
with complex numbers «,, = (a_,)* and &, = (&—p)* and Xy, p are real.
We can think of this as a 1 4+ 1 dimensional field theory. Then spacetime is a cylinder
S1 x R with Lorentzian metric. The «,, are the amplitudes of waves moving at the speed
of light to the left, while the &, are the amplitudes of waves moving at the speed of light
to the right.
The Hamiltonian computed from the action is

1 2
=1 / do ((.X)? + 0,X)°) (7.193)
47 0
and evaluating H on the general solution of the equation of motion gives:
1 1 o
H = §p2 + 5 ; (O‘fnan + Oéanén) (7194)
n

When quantizing this system we find that [Xg, p] = ik and
[, Qom ] = N0 4m,0 [Gn s o] = NOpm 0 [, ] =0 (7.195)

If we represent the Heisenberg algebras with vacua so that a,|0) = &,|0) = 0 for n > 0
then we get standard Harmonic oscillators by defining a, = o //n and al = a_, /\/n for
n > 0, and similarly for the right-moving modes &,,. Therefore, the Hamiltonian becomes:

(o]
2
S n (aLan + aLan) - 24] (7.196)

n=1

1

H:
Pt

We thus recognize wg = 1 as our basic frequency.

Remark: In equation (7.196) we have used the trick (7.177). This trick indeed gives the
correct Casimir energy for a massless scalar field on an interval. The actions above are
much the same except that now o € [0, 7] and we must impose boundary conditions at
o = 0,7. Making the simple choice X (t,0)|s—0r = 0 we find the general solution:

On int .
X — o ) .
(t,o) Z ( e sin(no) (7.197)
n#0
so we only have one set of oscillators. If we make the interval of length L then we scale
o by L. Then 0;X and 0,X scale by 1/L while the integration in the formula for the
Hamiltonian goes from 0 to wL. The resulting the ground state energy - with (-function

definition is:
efinition is . he

E ground —
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where in the second equation we restored i and ¢ which had been set to 1. Of course, unless
the system is coupled to gravity, the zero of energy is arbitrary. Here the zero of energy
is defined by saying the massless scalar field on the real line has zero groundstate energy.
Then the above formula for the Casimir energy is meaningful because we are comparing
two energies. Put differently what is meaningful, and physical, and independent of the
choice of regularization and renormalization of the naively infinite ground state energy is

the Casimir force _OE%Y%M‘ In analogous situations with the free electromagnetic field in
1 + 3 dimensions the Casimir force has been experimentally measured. Beginning with 9!

. The experiments have since been refined and agree with theory to within a percent.

Returning to the closed string, with both left-movers and right-movers we now study
the quantum statmech partition function for this string:

2(8)i=Tre 1 = () (2mi) 2 (2o ((5)? (7.199)

s

There is one subtlety: It is infinite, because of the infinite volume of the target space. The
zeromodes have a phase space density dXdp and

/ dXdpe™ 257" ~ ( / dx)g /2 (7.200)

We therefore make the range of X periodic: We make the target space a periodic “box”
- in this case, just a circle of radius R. It is possible to evaluate the finite R corrections
exactly and in the large R limit the contribution of the zeromodes is

R+\/27/B (7.201)

as expected. ?2 Recall the radius here is expressed in string units. If we restore /5 we
replace R — R/{s. Now, accounting for left- and right-moving oscillators we have:

Z(B) := Tre P = R\/21/B(Z°°¢((B))* (7.203)

We have written this for § real and positive. In the limit R — oo it is the partition function
per unit volume that has a finite limit.

Moreover, it is a standard and important result that for real 8 the partition function
Tre PH can be written as a path integral with periodic Euclidean time of period 8. The
chain of logic is that the partition function is of the form

Tre P = "(thnle P |4n) (7.204)
Un,

918 K. Lamoreaux, “Demonstration of the Casimir Force in the 0.6 to 6 ym Range,” PRL 78 (1997)pp.
5-8; U. Mohideen and Anushree Roy, “Precision Measurement of the Casimir Force from 0.1 to 0.9 pm,”
PRL 81 (1998) 4549-4552 arXiv:physics/9805038.

92Technically, the exact partition function for finite radius R target space is ©r/(n)?> where Or is a

Siegel-Narain theta function. The exact formula - in our present case - is

On = (Ze—ﬁ”2/<m2>> <Z e‘ﬁw232/2) (7.202)

n w

The large R asymptotics is evaluated with the help of the modular transformation law.
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where 1, is a basis of the space of states. But now (11|e™?|¢)5) is an analytic contin-
uation of the transition amplitude (i1]e " |¢)5) to imaginary time. On the other hand
(¢1]eH |ahy) can be written as a path integral with initial and final conditions 9,1,
respectively. If we set 1)1 = 19 and sum over a complete basis then the domain of the path
integral becomes that of all field configurations on the circle of Euclidean time. For more
on this, see the classic book by Feynman and Hibbs.

If we apply the above principle to the case of our 1+ 1 dimensional QFT, the quantum
field X at fixed time is a map from the circle to the real line so altogether we have a path
integral on a torus S' x S with one factor for space and one factor for Euclidean time.
Comparing with the Euclidean action of the string we see the metric on the torus is:

2
ds® = (do)? + f*(do?)? = (2)? [(dal)2 + (f) (d02)2] (7.205)
T
where we have chosen a dimensionless coordinate 02 ~ ¢2+1 in the Euclidean time direction
and rescaled o = 270! so that ol ~ ol + 1.

Note that, if we exchange the Euclidean time circle for the spatial circle then we
exchange o! <+ 0. 93 Up to an overall normalization of the metric this effectively changes
B to B where

BB = (2m)? (7.206)

which we recognize as the rule (7.186) for the modular transformation law! One can argue
that the path integral is invariant under this change of coordinates and this will lead to a
derivation of the modular transformation law from the physical path integral. But before
doing that it is useful to generalize to complex f.

Now, in statistical physics it is natural to consider the analytic continuation of Z (/)
to the subset of the complex -plane with positive real part. However, in this case, simply
analytically continuing 8 to be complex does not fit quite well with the interpretation in
terms of the path integral on a torus. Put differently, if we simply took 8 to be complex
then the metric (7.205) would be complex. It turns out it is better to split the contributions
of left-movers and right-movers in the following way:

We introduce separate Hamiltonians for the left- and right-moving degrees of freedom:

Hp = %(H—i— P)
i (7.207)
Hp = 5(H — P)

where P is the total momentum of the field ~ fo% 0:X0,X. Note that H = Hy, + Hp.

931f we wish to preserve orientation we should exchange o! <+ —o2.
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Explicitly, one finds: %4

1
Hp = ~0p° + ;1

oo
S naban — —
w24

4 =1
" (7.208)
1 o5 i 1
Hgi = ZﬁspQ + 01 Zna};an - 24]
n=1
Now we can generalize the statmech partition function to be
Z(Br, Br) = Trye e~ Friln (7.209)
where we can again continue to Re(fr) > 0 and Re(8r) > 0. If we choose
Br=pB=58g (7.210)
then the partition function can be written as:
Z(B) = Trye Fe®H —ImB)F (7.211)

One of the virtues of (7.211) is that it still has a nice interpretation in terms of a path
integral on a torus: After we propagate in Euclidean time by Re(fw) we shift in the o
coordinate by Im(Sw) before gluing, because P is the generator of translations in the o
direction. The net result is that we can identify Z () with the pathintegral on a torus with

metric:
ds® = (277)2|al0'1 + 7'(17/cr2|2 = (271)2|alz|2 (7.212)
where 8 P
Pwo .
=17 = 21
! 27 127T€s (7.213)

We can identify the torus with our friend: E, := C/(Z +7Z) with a flat metric ds? = |dz|?
where 7 is a complex number in the upper half-plane.

Now we can evaluate the partition function in two ways. First, we can evaluate the
trace directly, along the lines we did above and we obtain:

Z(B) = (R/ts) - (lmr)~V/?| 2%(5) (7.214)

where again (R/{;) is the regularization of the volume divergence.
On the other hand we also have a representation as a Euclidean path integral:

Zpath () — / [AX (o, 02)]e=5" (7.215)
X:E-—R

To obtain the action Sg we first return to the original action and restore the 1+ 1 dimen-

sional Minkowskian metric:

1
S=——" d%o+/|detn|n®?0, X 05X 7.216
o L, a0, X, (7.216)

94The splitting of the zeromode between left- and right-movers is a very subtle point we have elided here.
To do this properly one needs to work out the quantization of a self-dual field.
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we choose 1y = —1. The generalization to an arbitrary metric hagdaadaﬁ on the “world-
sheet” S x R is clear:

1
S=—— / d*o+/|deth|h*? 9, X 05 X (7.217)
47T£§ SIxR

This is the standard minimal coupling in general relativity. It is possible to “Wick ro-
tate” the time coordinate to imaginary time and consider the path integral with e=52 and
Euclidean signature two-dimensional space time with:

1

p =  4Aml2

/ d*0V/dethh®? 9, X 95X (7.218)
S1xR

where now h,g has Euclidean signature. In (7.215) we use the metric (7.212). Now (7.215)
is really just a Gaussian integral.
Recall that in finite dimensions we have
n/2

/ [ dele =@ = \;TTQ (7.219)
=1

where Re(Q) > 0.

At least formally we can take this formula over to definite the infinite-dimensional
Gaussian integrals that appear in QFT. Once again the constant mode where X (o', 0?)
is constant and the action is zero gives us some trouble. Once again, we regularize it by
putting the field X in a periodic box of length R. Once this is done we get:

= E mT _1/2—1
2) = () tmr) 2 (7.220)

The determinant of the Laplacian Ag_ on scalars is then defined by (-function regulariza-
tion.

In general, if O is an operator with a discrete spectrum bounded below and growing
sufficiently fast then we can define the zeta function of the operator

Co(s) =Y DA™ (7.221)
A

where D()) is the degeneracy of the A eigenspace. For a good spectrum, like that described
above this will converge at large Re(s) and admit an analytic continuation, analytic in the
neighborhood of zero. Then we define the determinant of the operator O to be

d
detO := exp[—£go]5:0] (7.222)

a formula which, one easily checks, is valid in finite dimensions.
In the case of the Laplacian on the torus with the above metric the spectrum of minus

the Laplacian on scalars is {(Im7) ™! |ny +no7|*}( 72 and all the eigenspaces are singly

ni,n2)€
degenerate. The (-function can be evaluated explicitly (this is a nice exercise in complex

analysis) and the resulting determinant is:
R _ _
2(8) = (1) (twr) 2t (7.22)

S
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where

n(r) =g [ —qm), (7.224)
n=1

In agreement with (7.214).

Now the path integral is invariant under “large” diffeomorphisms of the torus, that is,
on diffeomorphisms which are not deformable to the identity. Such diffeomorphisms will
act nontrivially on 7 (T?). If we take z = 2 + 7y with x,y real and x,y identified modulo
one, then we can make the diffeomorphism that rotates by 90 degrees in the x,y plane.
Note that this exchanges A- and B-cycles: We are exchanging the spatial circle with the
(Euclidean) time circle. The transformation also takes the torus to a torus with 7 — —1/7
and the flat metric rescaled by a constant factor: If ds? = |dz|> with z = x + iy then the
pull-back is ds? = |7)?|d2’ + 7'dy’|* with 2/ =y and v/ = —2’ and 7/ = —1/7.

What about the overall factor of |7|? in front of the metric? The massless scalar
field above has a beautiful property known as conformal invariance that is, the action is
invariant under conformal transformations

hap — QPhags (7.225)

One has to be very careful about the quantum theory: In this case the partition function
is not quite invariant but rather scales by an overall functional of €2 known as the Liouville
action. But for a flat metric and constant €0, the overall scaling factor is just one.

We finally conclude that (Im7)~'/2|n(7)|~2 is invariant under 7 — —1/7 and since
n(7) is holomorphic one can deduce

n(=1/7) = ®(~ir)'/*n(r) (7.226)

where ® is a phase independent. Because it is a phase and because the other factors are
(locally) holomorphic it must be a constant independent of 7. Substituting 7 = i we see
the phase ® = 1. In this way we have derived the very important result (7.190) above.
Actually, we have found much more: If

N = (a Z) € SL(2,7) (7.227)
c
then our reasoning shows that
ar +b )
n(y-m) =0l ——) = () (=i(er +d)*n(7) (7.228)

where ®(+y) is a phase. Because the modular group is generated by 7 — 7+1and 7 — —1/7
it follows that ®(v) is in fact a 24" root of unity which depends on . There is a (subtle)
explicit expression for this phase to be found in textbooks on analytic number theory.

As an interesting application of (7.190), when combined with the method of stationary
phase, one can derive the Hardy-Ramanujan formula giving an asymptotic formula for large
values of n:
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p(n) ~ \2 (?14)3/ “nlexp <27r\/§> (7.229)

Note that this grows much more slowly than the order of the group, n!. So we conclude
that some conjugacy classes must be very large! (See discussion in the next section on the
class equation if this is not obvious.)

Analogs of equation (7.229) for a class of functions known as modular forms plays
an important role in modern discussions of the entropy of supersymmetric (and extreme)
black hole solutions of supergravity.

Exercise Change Of Form Of Hamiltonian Under Bogoliubov Transformation
Show that the standard harmonic oscillator Hamiltonian

1
Hy, = w(bfb+ 3) (7.230)

when b, b are related to a, a’ by a Bogoliubov transformation (7.164)
b = cosh(r)a — e ¥ sinh(r)a' (7.231)

becomes
Hy,=Qa'a + A(a")? + A*a® +T (7.232)

with
2 = (cosh(2r))w
1 .
— _ —pTio g
A= 5¢ sinh(2r) (7.233)
I'= %cosh(%)w

Remark: In the Bogoliubov-deGennes effective Hamiltonian description of supercon-
ductivity A is the value of the Cooper pair condensate.

Exercise Vacuum After Bogoliubov Transformation
a.) If we represent p, ¢ on the Hilbert space L?(R) with

(G- ¥)(z) = 2ip(z)

7.234
(5 9)(w) = —ihi(z) e

then the groundstate with a|0), = 0 corresponds - up to a phase - to a vector ¢ € L?(R)
defined by the differential equation:

UJ.ZQ

(ip + wq)yp =0 = P(x) =Ce 2n (7.235)
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b.) Show that a normalized wavefunction annihilated by b defined by

b = cosh(r)a — e sinh(r)a' (7.236)
is - up to a phase -
1 1
z|0) = 714 exp(—=Az? 7.237
([0} \/cosh(r) + €1 sinh(r) p( 2 ) ( )
where _
A cosh(r) — e sinh(r) (7.238)

~ cosh(r) + €'? sinh(r)

Exercise Deriving the Hardy-Ramanujan formula
The function Z°°¢() has a nice analytic continuation into the right half complex plane

where Re(f3) > 0. Note that ¢'/2*Z°%¢(3) is periodic under imaginary shifts 8 — 3 + %
Write .
Bo+ 22t
p(n) = / e gt/ 7o%(3) (7.239)
Bo

and use the above transformation formula, together with the stationary phase method to
derive (7.229). %

7.5.2 Conjugacy Classes In S, And Partitions

Above, we defined a partition of n for a positive integer n as a way of writing it as a sum
of positive integers. There is another viewpoint based on a very closely related concept
called, simply, a partition.

By definition, a partition is a sequence of nonnegative integers A := {A1, A2, A3,... } so
that

a.) A; are nonincreasing: A; > A;y1.

b.) The \; eventually become zero.

The nonzero \; are called the parts of the partition.

Given a partition, we define |A| := > . A\;. If n = |\;| then we get a partition of n
from:

We say we have a partition of n with k parts.

95 Hint: Convert by = 0 to a differential equation by substituting for a,a in terms of p and §.

9 Answer: Write p(n) = fj{j;fﬁ e~ 2minT g1/24

horizontal line. One argues that, as 5 — 0" the dominant terms in the integral come from the region near

n(t)~'dr where 7 = x + i and the contour is along a

2 2 0. (This is a rather subtle step to do correctly.) Then, using the modular transformation law one writes
n(r)~* = (—ir)?n(=1/7)"" and for Im(—1/7) — oo one approximates n(—1/7)~" 2 exp[2wi/(247)]. Now
one applies the standard stationary phase technique. When this procedure is carried out more systematically
one is led to the famous Rademacher expansion for coefficients of certain modular functions.
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Figure 4: Young diagrams corresponding to the 5 different partitions of 4.

Partitions can be very effectively visualized by a diagram known as a Young diagram
(a.k.a. a Young frame or a Ferrers diagram). This is a diagram with \; boxes in the first
row, Ao boxes in the second row and so forth. The boxes are arranged to make, roughly
speaking, an upside-down L-shape. See Figure 4 for some examples. We will denote the
diagram as Y (A). We will talk much more about these when discussing representations of
the symmetric group and representations of SU(n).

One way to associate a conjugacy class in S, with a partition is as follows. We let
m;(A) denote the number of rows in Y (A) with ¢ boxes. One can write a formula for it as

a function of \:
ma) 1= 141y = i} (7.241)

The quantity m;(A) is called the multiplicity of i in A\. We can then assign a conjugacy
class in S, with n = |A] :

C) == (1)™(2)m2 . .. (7.242)

One of the beauties of the diagrammatic representation is that a certain kind of duality
symmetry emerges which is not so obvious from the equations alone. It is worth noting that
there is another associated partition and conjugacy class known as the conjugate partition.
We let )" denote the partition conjugate to A. It can be defined by saying that Y()\') is
obtained from Y (\) by flipping on the main diagonal, i.e. we exchange rows and columns.
So, the number of boxes in the i row of Y'(\'), A, is exactly the number boxes in the 7"
column of Y'(A). Because the diagram Y'(\) has an inverted L-shape so does the conjugate
diagram Y ()\'), in other words:

N> Xy > (7.243)
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so X = {\|,A},...} is another partition. Clearly the total number of boxes is unchanges
so |N| = n. Note that \" = \.
A little thought makes it clear that we have the relation:

Xi = [{i1A; = i} (7.244)

For example, \] is the number of boxes in the first column of Y (\). This is clearly the
number of rows, and to have a nontrivial row we must have \; > 1. Now, to get a box in
the second column we must have rows with A\; > 2, and so on.

It follows from (7.244) that

mi(A) = Aj — Niy (7.245)
So in terms of A" our conjugacy class (7.242) above becomes
O(N) = MNP . () (7.246)
But then it is clear that we could also assign a conjugacy class
C'(N) = (M2 (2% () (7.247)

It is perhaps less obvious that (??) defines a conjugacy class in S,,. One way to check
this is to note the identity:

T+ AL = (AL =AY 2N = A5) +3(N =)+ -+ (n—1) (N, _; —\,)+nX, (7.248)

assures us the total number of boxes is still n.

For any n we can consider the set of all partitions. It is a finite set and we can consider
it as a probability space giving equal weight to all partitions. When n is large we can
ask what the “typical” partition is in this measure space. That is, what are the “typical”
conjugacy classes in S;, when n is large? This is an imprecise, and rather subtle question.
To get some sense of an answer it is useful to consider the number pg(n) of partitions of n
into precisely k parts (as in (7.240)). The generating function is (see exercise below)

) k
" x
;pk(n)w = jl;[l T (7.249)

One natural guess, then, is that the “typical” partition has k& = /n with “most of the
parts” on the order of y/n. This naive picture can be considerably improved using the
statistical theory of partitions. %7 Without going into a lot of complicated asymptotic
formulae, the main upshot is that, for large n, as a function of k, px(n) indeed is sharply
peaked with a maximum around

k(n) := ;/fﬂlogn (7.250)

971t is a large subject. See P Erdos and J. Lehner, “The distribution of the number of summands in the
partition of a positive integer,” Duke Math. Journal 8(1941)335-345 or M. Szalay and P. Turdn, “On some
problems of the statistical theory of partitions with application to characters of the symmetric group. 1,”
Acta Math. Acad. Scient. Hungaricae, Vol. 29 (1977), pp. 361-379.
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See Figure 5 for a numerical illustration. Moreover, and again speaking very roughly, the
number of terms in the partition \; with \; = ‘Q/—E\/ﬁ is order v/6n/m.

Remarks:

1. Recall that in our discussion of a string, or equivalently of a massless scalar field on
the circle, there are p(n) states in the energy eigenspace with energy F = (n — 2—14)w.
Thus we can interpret the above result as a kind of equipartition theorem: The most
likely state is the one where the energy is shared equally by the different oscillators.

2. A Young tableau is a Young diagram with n boxes where the boxes have been filled
in with integers drawn from {1,...,n} so that no integer is repeated. Note that
the symmetric group S, acts on Young tableau. For a given tableau 7 we can
define two subgroups of the symmetric group: R(7) are the permutations that only
move numbers around within the rows and C(7) are the permutations that only
move numbers around within the columns. Using these subgroups one can construct
projection operators that are used in constructing the irreducible representations of
the symmetric group. To do this we note that if V' is any vector space then there
is a canonical representation ¢ of S, on V®" by permuting factors. Given a Young
tableau 7 we define

Ri= > o) (7.251)

reR(T)

Ci= > el)plo) (7.252)

ceC(T)
and P = RC is proportional to a projection operator onto a subrepresentation of the
symmetric group. Indeed note that, rather trivially: ¢(r)RC = RC for r € R(T) and
RC¢(c) = €(c)RC. Somewhat less trivially, any operator of the form ) s n(o)p(o)
that satisfies this property must be proportional to RC. Since (RC)? clearly satisfies
the property, it must be proportional to RC. See section **** below for more details.

Exercise Conjugate Partition
Show that if
A=1{5,4,3,2,2,2,1,1} (7.253)

then
N =1{8,6,3,2,1} (7.254)

Exercise Young tableau
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a.) For a Young tableau 7 show that
R(T) = S>\1 X S>\2 Xowe (7.255)

Note that the isomorphism class only depends on the partition A and not on the particular
choice of tableau for that partition.
b.) Show that R(7)NC(T) = {1}.

Exercise Generating Function For py(n)
Prove equation (7.249). 98

8. More About Group Actions And Orbits

&NOTE BENE!

. . . . . . THE MATERIAL
In Section 5.1 above we introduced the notion of a group action on a set. In this section |y 15 spoTioN

. . . . IS IDENTICAL TO
we develop this important idea a bit further. SECTION 2 OF

CHAPTER 3 &

8.1 Left And Right Group Actions

Let X be any set (possibly infinite). Recall the definition we gave in Section 5.1.

A permutation of X is a 1-1 and onto mapping X — X. The set Sx of all permutations
forms a group under composition. A transformation group on X is a subgroup of Sx.

Equivalently, a G-action on a set X is a map ¢ : G x X — X compatible with the
group multiplication law as follows:

A left-action satisfies:

¢(917¢(927$)) - (25(9192,1') (81)

A right-action satisfies

P91, 9(g2, 7)) = ¢(g291, ) (8.2)

In addition in both cases we require that

o(lg,z) =x (8.3)

98 Answer: A partition of n into exactly k-parts means that Az > 1. So now write
n—k= (/\17A2)+2()\27/\;5)+"'+(k*1)()\k—1 7Ak)+k()‘k’71)

This is a partition of n — k as a sum of integers drawn from {1,...,k}. Enumerating those is clearly given
by [Tj_, (1 —27)~".
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1.5810"7 F

1.0610"7

5.0H10"6 1

Figure 5: Showing the distribution of pi(n) as a function of k for n = 400 and 1 < k < 120. Note
that the Erdés-Lehner mean value of k is k = 2—‘/5201055(20) = 46.7153 is a very good approximation
to where the distribution has its sharp peak. The actual maximum is at k = 45.

forall x € X.

Remarks:
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1. If ¢ is a left-action then it is natural to write g - x for ¢(g,x). In that case we have

91 (92-2) = (9192) - . (8.4)

Similarly, if ¢ is a right-action then it is better to use the notation ¢(g,z) =z - g so
that

(x-92) - g1 =z (g201)- (8.5)

2. If ¢ is a left-action then g?)(g,x) := ¢(g~1,z) is a right-action, and vice versa. Thus
there is no essential difference between a left- and right-action. However, in com-
putations with nonabelian groups it is extremely important to be consistent and
careful about which choice one makes. A common source of error is a confusion of a
left-action with a right-action.

3. If G is an Abelian group then any left-action is simultaneously a right-action.

4. A given set X can admit more than one action by the same group G. If one is working
simultaneously with several different G actions on the same set then the notation g-x
is ambiguous and one should write, for example, ¢4(x) = ¢(g, ) or speak of ¢4, etc.
A good example of a set X with several natural G actions is the case of X = G
itself. Then there are the actions of left-multiplication, right-multiplication, and
conjugation. The action of g on the group element ¢ is:

L(g,9') = g9

L(g,g)=g7'¢

R(9,9)=4d'g (8.6)
R(g.¢)=g¢'g* '
Clg,9)=9""'dg

C(9.9") =g9g'g™"

where on the RHS of these equations we use group multiplication. The reader should
work out which actions are left actions and which actions are right actions.

Exercise A Funny Transformation
Consider the map ¢ : G x G — G defined by

e9,9) =9 "gg7" (8.7)

Is this a right-action or a left-action of G on X = G ? 9
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8.1.1 More About Induced Group Actions On Function Spaces

Let us return to the considerations of section 5.5.

Let X be a G-set and let Y be any set. There are natural left- and right- actions on
the function space Map(X,Y). Given ¥ € Map(X,Y) and g € G we need to produce a
new function ¢(g, ¥) € Map(X,Y'). The rules are as follows:

1. If G is a left-action on X then

6(g, V) (x) := V(g x) right action on Map(X,Y) (8.8)

2. If G is a left-action on X then

#(g, ¥)(z) == V(g7 ' ) left action on Map(X,Y) (8.9)

3. If G is a right-action on X then

d(g,9)(x) :=V(x-g) left action on Map(X,Y) (8.10)

4. If GG is a right-action on X then

(g, V) (x) ;= V(z- gt right action on Map(X,Y) (8.11)

Example: Consider a spacetime §. With suitable analytic restrictions the space of scalar
fields on § is Map(S, k), where kK = R or C for real or complex scalar fields. If a group
G acts on the spacetime, there is automatically an induced action on the space of scalar
fields. To be even specific, suppose X = M54~ is d-dimensional Minkowski space time, G
is the Poincaré group, and Y = R. Given one scalar field ¥ and a Poincaré transformation
g7l 2= Ax+v we have (g ¥)(z) = U(Az + v).

Similarly, suppose that X is any set, but now Y is a G-set. Then again there is a
G-action on Map(X,Y):
(9 )() == g- V() or U(r) g (8.12)

according to whether the G action on Y is a left- or a right-action, respectively. These are
left- or right-actions, respectively.

We can now combine these two observations and get the general statement: We assume
that both X is a Gi-set and Y is a Ga-set. We can assume, without loss of generality, that

99 Answer: In general it satisfies neither the left-action condition nor the right-action condition, so it is
neither. But if G is Abelian it defines a left action and a right-action.
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we have left-actions on both X and Y. Then there is a natural G x Gs-action on Map(X,Y)
defined by:

#((91,92), 0) () := g2 - (¥(g7 " - @) (8.13)
note that if one writes instead g2- (¥ (g; -x)) on the RHS then we do not have a well-defined

G x Ga-action (if G; and Gg are both nonabelian). In most applications X and Y both
have a G action for a single group and we write

$(g,¥)(z) =g~ (¥(g™" - 2)) (8.14)

This is a special case of the general action (8.13), with G; = G2 = G and specialized to
the diagonal A C G x G.

Example: Again let X = M5 4=1 be a Minkowski space time. Take G; = G and let
G = A C G x G be the diagonal subgroup, and take G to be the Poincaré group. Now
let Y =V be a finite-dimensional representation of the Poincaré group. Let us denote the
action of g € G on V by p(g). Then a field ¥ € Map(X,Y’) has an action of the Poincaré
group defined by

g-V(x) = p(g)¥ (g w) (8.15)

This is the standard way that fields with nonzero “spin” transform under the Poincaré
group in field theory. As a very concrete related example, consider the transformation of
electron wavefunctions in nonrelativistic quantum mechanics. The electron wavefunction
is governed by a two-component function on R3:

(7)) = @*E?) (8.16)

Then, suppose G = SU(2). We use, once again, the surjective homomorphism 7 : G —
SO(3) defined by 7(u) = R where

uf-du~! = (RZ) - & (8.17)

Then the (double-cover) of the rotation group acts to define the transformed electron

V(D) = Y (RT)
(u- W)(Z) : (1/1—(3‘1&?)) (8.18)

In particular, © = —1 acts trivially on & but nontrivially on the wavefunction.

wavefunction u - ¥ by

8.2 Some Definitions And Terminology Associated With Group Actions

There is some important terminology one should master when working with G-actions.
First here are some terms used when describing a G-action on a set X:

Definitions:
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1. A group action is effective or faithful if for any g # 1 there is some x such that

g - x # x. Equivalently, the only g € G such that ¢, is the identity transformation
is g = 1g. A group action is ineffective if there is some g € G with g # 1 so that
g-x =z for all x € X. Note that the set of g € G that act ineffectively is a normal
subgroup of G.

2. A group action is transitive if for any pair z,y € X there is some g with y =g - .

3. A group action is free if for any g # 1 then for every x, we have g -z # x.

In summary:

[

. Effective: Yg # 1,3x s.t. g-x # x.
2. Ineffective: 4g # 1,s.t. Vo g -z = x.

3. Transitive: Vx,y € X,3g st. y=g-x.

S

. Free: Vg #1,Vx,g-z #x

In addition there are some further important definitions:

1. Given a point x € X the set of group elements:
Stabg(z) :={9eG:g-x =2} CG (8.19)

is called the isotropy group at x. It is also called the stabilizer group of z. It is often
denoted G”®. The reader should show that G* is in fact a subgroup of G. Note that a
group action is free iff for every x € X the stabilizer group G* is the trivial subgroup
{1g}. Another notation one will find is Aut(x), because in the category formed from
a group action on X this is the automorphism group of the object .

2. A point z € X is a fized point of the G-action if there exists some element g € G
with g # 1 such that g-x = x. So, a point € X is a fixed point of G iff Stabg(z) is
not the trivial group. Some caution is needed here because if an author says “z is a
fixed point of G” the author might mean that Stabg(z) = G. The definition we just
gave above does not have that implication.

3. Given a group element g € G the fixed point set of g is the set
Fixx(9) ={reX:g-z=2}C X (8.20)

The fixed point set of g is often denoted by X9. Note that if the group action is free
then for every g # 1 the set Fixx(g) is the empty set.

kokskk

4. We repeat the definition from section above. The orbit of G through a point x

is the set of points y € X which can be reached by the action of G:

Og(z) ={y:3g suchthat y=g-2} C X (8.21)
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5. A homogeneous space is a set X with a transitive group action. As we have mentioned
a few times, the set of cosets of a subgroup G/ H are examples of homogeneous spaces.

Remarks:

1. If we have a G-action on X then we can define an equivalence relation on X by defining
x ~ gy if there is a g € G such that y = g - x. (Check this is an equivalence relation!)
The orbits of G are then exactly the equivalence classes of under this equivalence
relation. Therefore, X is partitioned into a disjoint union of all the G-orbits.

2. The group action restricts to a transitive group action on any orbit.

3. If z,y are in the same orbit then the isotropy groups G* and GY are conjugate
subgroups in G. Therefore, to a given orbit, we can assign a definite conjugacy class
of subgroups.

4. We can now explain the notation Aut(b) used in equation (3.30). We consider the
set of symmetric or antisymmetric bilinear forms

B* = {be M,(x) : b'" = &b} (8.22)

where £ = 4 for symmetric and £ = — for antisymmetric bilinear forms. The left
G = GL(n, k) action on B¢ is
¢(g,b) := gbg" . (8.23)

The group Aut(b) is the stabilizer group of a given form. It is the group of “auto-
morphisms” of that form.

5. Stabilizer Groups And Quantum Information Theory. Recall the definition of the
Pauli group P above. Note that if we have a chain of N spin 1/2 particles, then the
N direct product

PN=Px...xP (8.24)

—_——
N times

acts naturally on this chain of particles in the sense that it acts on the Hilbert space
H = (C?)®N associated with a chain of N Qbits. This group is useful in quantum
information theory. For example if S ¢ PV is a subgroup then we can study the
subset of Hilbert space H® = {¢|gvp = ¢, Vg € S}. This is the common fixed
point set for the entire group. Since the group acts linearly it is a sub-Hilbert space:
HS € H = (C?)®N. For astutely chosen subgroups these are useful quantum code
subspaces, known as stabilizer codes. Note that if the subgroup S contains an operator
of the form z1®" with z # 1 then H° = {0} so the space is rather trivial. For the
Pauli group P the only operators proportional to the identity are of the form 4i1®¥
and —1®V. Of course if +i1®"N € S then its square —1®V € S. Therefore if we want

a nonzero subspace we should require that —1%V is not in S.
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In quantum information theory coded states are in code subspaces such as H®. If
{E;} are a set of unitary gates considered as “error operators” then the error can be
corrected - i.e. there is a quantum channel that undoes the error and restores the
state to the code subspace if

PE|EyP = aj,P (8.25)

for an Hermitian matrix o of scalars, where P is the orthogonal projector P : H —
245 100

For stabilizer codes this condition can be expressed group theoretically: If the errors
E; come from the Pauli group then E;Ek should not be in N(S)—S where N(5) is the
normalizer subgroup of S in PV. The reason is clear: If E;Ek € S then PEJTEk.P = P.
But if E]E; € PV — N(S) and —1 is not in § then E]E, € PV — Z(S). But in
the Pauli group every pair of group elements either commutes or anticommutes. So
there is some element sy € S with E]T-Ekso = —sOEJTEk. Since —1 is not in S, we
have 5(2) = 1 The projection operator is proportional to > g5 = %Zses(s + $80)-
But now it is easy to show that

Z(s + 550) EJTE;,C Z(s +ss0) | =0 (8.29)
ses ses

For more information on the above remarks see the textbook: Nielsen and Chuang,
Quantum Computation and Quantum Information, chapter 10, especially Theorem
10.1 and section 10.5.

Point 3 above motivates the

Definition If G acts on X a stratum is a set of G-orbits such that the conjugacy class of
the stabilizer groups is the same. The set of strata is sometimes denoted X || G.

1007 amplify on this: Since o i is unitarily diagonalizable the algebra of operators generated by Ej; is
the same as an algebra generated by operators Fj; such that PFJTF;CP = dpd;rP. So WLOG we assume
o5, = didj i, is diagonal. The error in sending a message is the quantum channel

pr E(p) =) EBloEy (8.26)

Now note the polar decomposition: E;P = /d;U; P where Uj is unitary. One then defines the Hermitian
projection operators P; := U; PU jT and it follows from the fact that «; i is diagonal that P; Py = §;P; are
orthogonal projection operators. The recovery operation is the quantum channel

prR(p) = Ul PupPiUy (8.27)
k

This is a recovery because, as is easily shown, if PpP = p, i.e. if the initial state is in the code subspace
then

R(E(p) = (D di)p (8.28)
k

The overall normalization of the density matrix does not affect physical measurements.
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Exercise Group actions of G on G
Referring to equation (8.6). Which actions are left-actions and which actions are right-
actions? 101

Exercise Effectivity Of Group Actions

Suppose X is a G-set.

Recall that a group action of G on X can be viewed as a homomorphism ¢ : G — Sx.

a.) Show that the action is effective iff the homomorphism is injective.

b.) Show that the subset of group elements that act ineffectively is a normal subgroup
H«G.

c.) Show that there is an effective action of the group G/H on X.

Exercise

Let G act on a set X.

a.) Show that the stabilizer group at z, denoted G* above, is in fact, a subgroup of G.

b.) Show that the G action is free iff the stabilizer group at every = € X is the trivial
subgroup {15}.

c.) Suppose that y = g - x. Show that GY and G* are conjugate subgroups in G. 192

Exercise Derangements
A permutation in S,, which acts on {1,...,n} without fixed points is called a derange-
ment. Show that the number of derangements in S,, is given by

e (DR
Dn—n!z o
k=0

(8.30)

Exercise Normalizers And Centralizers In The Pauli Group
Let S € PV be a subgroup such that —1 is not in S. Then the normalizer is the same
as the centralizer: N(S) = Z(S). 103

101 Answer: L, R, C are left-actions, while I:J, R, C are right-actions.

Y92 Answer: 1f y = go -« and g - x = x then (goggy ') -y =y 50 goG gy " = G9% = GY.

103 Answer: Every pair of elements of the Pauli group either commutes or anti-commutes. If g € N(S)

and s € S then gsg~' = +s. If ¢ is not in the centralizer then gsg~' = —s but then gs¢g !s ! =—-1€ 5, a

contradiction.
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Exercise Simple Stabilizer Codes
In quantum information theory the Pauli operators - thought of as quantum gates -
are usually denoted:
X =o' Y =o? Z=a (8.31)
a.) Consider the stabilizer code on a system of N Qbits generated by Z;, i =1,..., N.
Show that H* is a one-dimensional line through |0)®V.
b.) Consider the subgroup of P3:

S = {1,Z122, ZQZg, 21Z3} = ZQ X ZQ (832)

Show that #° is two-dimensional and generated by [000) and |[111).

Exercise Fquivariant Maps As Fized Points

Suppose that X and Y are G-sets. As we have seen Map(X,Y) is a G-set under the
action (8.14). Show that the fixed points for this G-action on Map(X,Y") are precisely the
G-equivariant maps from X to Y.

8.3 The Stabilizer-Orbit Theorem

There is a beautiful relation between orbits and isotropy groups: Note that for any x € X,
the orbit Orbg(z) has a transitive left-G-action. On the other hand, the set of cosets G/G*
also has a transitive left G-action. They are both G-sets, and in fact they are isomorphic
as G-sets. This is the:

Theorem [Stabilizer-Orbit Theorem]|: There is a natural isomorphism of G-sets
¢ : Orbg(z) — G/G* (8.33)

Put differently: The points in the G-orbit of x are in natural 1 — 1 correspondence with
the left cosets of Stabg(z) in a way compatible with the left G-action on these sets.

Proof: Suppose y is in a G-orbit of x. Then dg such that y = ¢g - x. Define
Y(y) =g -G". (8.34)
The first thing we need to do is check that 1 is well-defined . This is easily checked:

y=g - — Jh e G* d=gqg-h — JG* = ghG® = ¢G* (8.35)
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Now let us check that 1 is one-one. Given a coset g - G* we may define

v gGY) =gz (8.36)

Again, we must check that this is well-defined, and again this is easily checked. Since
it inverts v, 1 is 1-1. Moreover, the action is compatible with the G-action: For all
y € Orbg(z) and g € G:

Y(g-y)=g-v(y) yeOrbg(x) (8.37)

so 1 is a G-equivariant, (recall the definition (5.27)) and one-one. That is it is an isomor-
phism of G-sets &

Corollary: If G acts transitively on a set X then the isotropy groups G* for all the
points © € X are conjugate subgroups of G, and any choice of a point x € X sets
up a 1 — 1 correspondence between points of X and elements of the set of cosets
G/G*®. Put differently: If H C G is an isotropy subgroup G* for some z € X then
we can identify X with the set of left-cosets G/H.

Remarks:

1. Sets of the type G/H are examples of homogeneous spaces. This theorem is the
beginning of an important connection between the algebraic notions of subgroups and
cosets to the geometric notions of orbits and fixed points. Below we will show that
if G, H are topological groups then, in some cases, G/H are beautifully symmetric
topological spaces, and if G, H are Lie groups then, in some cases, G/ H are beautifully
symmetric manifolds.

2. Homogeneous Spaces And Spontaneous Symmetry Breaking One way homogeneous
spaces arise field theory is via the description of classical vacua of a scalar field
theory with a global symmetry. Suppose ¢ is a (real) scalar field on d-dimensional
Minkowski space, M4~1 So it is valued in some real vector space V which is a
carrier space of a finite dimensional representation of a global symmetry group G.
Suppose that U(¢) is a G-invariant potential energy. This means that

Ulg)=Ulg-¢) Vge@ (8.38)

Typically it is an invariant polynomial in ¢. Suppose we have a G-invariant metric,
i.e. a symmetric bilinear form

b: VeV >R (8.39)

which is G-invariant:

b(g-v1,9-v2) = b(vy1,v2) Vge G Vv, v €V (8.40)
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Our action will be

5S¢l z/Ml’d_1 [;n“yb(auqﬁ,ayqﬁ)—U(gﬁ) dx (8.41)

where we have chosen a signature which is mostly minus. For a physically reasonable
theory we should choose b to be positive definite and U : V' — R to be bounded
below.

If we choose a basis {es} for V then ¢(z) = >, es¢®(2) is a description in terms of a

collection of n scalar fields ¢°, s = 1,...,n where n is the real dimension of V. Then
bst = b(es, et) (842)
and .
S[Qﬂ = / [nuybstauﬁbsaud)t - U(¢):| d'z (843)
MLd—1 | 2
Then conjugate momentum is
IT, = by 0o’ (8.44)
and the Hamiltonian is
1 st 1 s t d
H = b1l + =bs 0;0°0; 0" + U(¢) d%x (8.45)
Rd-1 2 2

where II is the canonical conjugate momentum to ¢ and b* is the inverse of the
matrix bg;. The energy will be bounded below if b is positive semidefinite and U is
bounded below. For a good kinetic term we assume that b is nondegenerate.

Then, in classical field theory we minimize the energy by setting II = 0 and 0;¢ = 0
so the field ¢(z) is constant on the spatial slice R¢~!. Therefore, we can consider it
to be a single vector ¢ € V. Moreover, the constant value of ¢ minimizes U(¢). Call
the minimum value Uy. Of course if ¢ € V minimizes U then so does g - ¢ for any
g € G, by G-invariance. The set of classical vacua M is defined to be the set of
field configurations minimizing the energy:

M :=A{¢(x) = ¢ € V|U(¢) = U} (8.46)

Because U is G-invariant M is a G-space. It therefore decomposes as a union of
G-orbits. In some important cases the G-action is transitive and we can identify the
space of classical vacua as a homogeneous space.

Here is a simple example: Suppose ¢ € R™ is a real-valued vector and G = SO(n)
and the invariant metric b is the standard Euclidean metric on R™. Then take

U(9) = Mo~ ¢ —v*)?, (8.47)

where the coupling constant A > 0 so that the energy is bounded below and v is some
nonzero real constant so that v2 > 0. Then the set of classical vacua is

M={peR"¢ ¢ =0’} (8.48)
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which is manifestly an (n — 1) dimensional sphere of radius |v|, and by the stabilizer-
orbit theorem this can be identified with the homogeneous space M =2 §"—1 =
SO(n)/SO(n —1). In this case the stabilizer of any classical vacuum ¢ € M is non-
trivial and isomorphic to SO(n — 1). The symmetry group of the field configuration
¢ = 0is all of SO(n), and the symmetry group of the action is SO(n). But the choice
of vacuum has reduced the “unbroken” symmetry. This is an example of spontaneous

symmetry breaking.

More generally, when we choose a classical vacuum in M whose isotropy group H is
a proper subgroup of G we say that there has been spontaneous symmetry breaking
and that the vacuum has “broken” the symmetry from G to H. The “spontaneous”
refers to the fact that a physical system is built by excitations around some choice of
the vacuum.

Note that, if G and H are Lie groups and H is a proper subgroup then G/H is a
positive dimensional manifold. Consider field configurations of the form

¢('T7 t) = g(x, t) 9 (8'49)

where g(x,t) is a map from spacetime to the Lie group G. The in other words,
we only consider the smaller space of maps to the manifold of classical vacua - the
homogeneous space. The action, when restricted to these field configurations is, up
to a constant that does not affect the dynamics,

1
s= [ |56 0 0000 00| (5.50)
R

Working out the dispersion relation for slowly varying functions g(x,t) shows that
there are massless modes of the field describing slow variation of the field along the
orbits G/H in the space of classical vacua. These the particles associated with these
field modes are known as Goldstone bosons.

ook skt okook ok ko ok sk ok ook
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Exercise Isomorphic Homogeneous spaces
Suppose G acts on X. Suppose that x,y are in the same G-orbit. Construct an

isomorphism of G-spaces 104

UGG — GIGY (8.51)

104 gAnswer: Choose go € G such that y = gox. Check that ¥ : ¢G* — (goggo_l)Gy is well-defined and
defines an isomorphism of G-spaces.
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Remark: Note that there is no canonical isomorphism. This is why we cannot say
that G = G/H x H as topological spaces. Rather 7 : G — G/H is a nontrivial H-bundle
(in general). We will explicate this remark below.

Exercise Orbits Of Z, For Prime p

Let p be a prime and suppose the cycle group Z, acts on a space X. Show that any

orbit consists of either a single point, or of p distinct points. 0%

Exercise The Lemma that is not Burnside’s

Suppose a finite group G acts on a finite set X as a transformation group. A common
notation for the set of points fixed by ¢ is X9. Show that the number of distinct orbits is
the averaged number of fixed points:

. 1 g
[{orbits}| = @l zgj | X9| (8.52)

For the answer see. 106

Exercise Jordan’s theorem
Suppose G is finite and acts transitively on a finite set X with more than one point.
Show that there is an element g € G with no fixed points on X. 107

105 Answer: By the stabilizer-orbit theorem the orbits are, as G-spaces, just Zp/H where H is a subgroup
of Zp. But the only subgroups are the trivial group and the entire group.
106 Answer: Write

YoIX = Hg)lg-z=a} =) |G| (8.53)
geaG zeX
Now use the stabilizer-orbit theorem to write |G*| = |G|/|Og(x)|. Now in the sum
1
(8.54)
2 0]

the contribution of each distinct orbit is exactly 1.
107 Answer: Apply the Burnside lemma. Since the action is transitive the LHS is 1. Break up the sum on
the RHS into contributions from g = 1 and g # 1. The RHS becomes

RHS = ﬁ EEDPE (8.55)
g#1

Suppose that every g € G has at least one fixed point. Then X9 is nonempty for all g and hence RHS >
ﬁ (1X|+ (Gl -1)) =1+ ﬁ (|X|—1). This is 1 + positive and cannot be equal to 1.
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Exercise Orders Of The Conjugacy Classes In S,

Prove equation (7.159) above. 108

Any two points are
SO(3)-related

Figure 6: Transitive action of SO(3,R) on the sphere.

Figure 7: Orbits of SO(2,R) on the two sphere.

8.4 Practice With Group Action Terminology

The concept of a G-action on a set is an extremely important concept, so let us consider a

number of examples:

Examples

1. Let G be any group and consider the group action defined by ¢(g,z) = x for all

g € G. This is as ineffective as a group action can be: For every x, the istropy group

is all of G, and for all g € G, Fix(g) = X. In particular, this situation will arise if

X consists of a single point. This example is not quite as stupid as might at first

appear, once one takes the categorical viewpoint, for pt// G is a very rich category

indeed. See section 17 below on category theory.

108 Answer: Consider the G = S, action on a particular conjugacy class by conjugation. This is clearly

transitive. Now consider a particularly convenient permutation like:

(1)(2) - () (br + 1,60 +2) -+ (br + 20 — 1,01 +205) - -

and compute the stabilizer. The answer for the stabilizer is in equation (14.67) below. (You don’t need to

know the exact structure to compute the order.)
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this orbit is a circle

Figure 8: Notice not all orbits have the same dimensionality. There are two qualitatively different
kinds of orbits of SO(2,R).

2. Let X = {1,---n}, so there is a left action of Sx = S,, as we have discussed many
times.

a.) The action is effective: Every nontrivial permutation changes some number be-
tween 1 and n.

b.) The action is transitive: For example, i,j are mapped to each other by the
permutation (ij). (And many other permutations.)

c.) The action is not free: The fixed point of any j € X is just the group of
permutations S% that don’t change j: S% = S,_1. Note that different j have
different stabilizer subgroups isomorphic to S, _1, but they are all conjugate.

3. GL(n,R) acts on R™ by matrix multiplication. If we act with a matrix on a column
vector we get a left action. If we act on a row vector we get a right action. The
action is:

a.) Effective: If g # 1 some vector Z is moved.
b.) Not transitive: If # # 0 it cannot be mapped to 0
c.) Not free: 0 is a fixed point of the entire group.

d.) There are two orbits.

e.) The isotropy group of the vector e is (under the left-action) the subgroup of
matrices of the form

1w

StabGL(n,R) (61) = {<0 B) |U € Matlx(n—l) (R)v B e GL(’/L - 17R)} (856)

The stabilizer group for all other nonzero vectors will be conjugate to this one. The
stabilizer group of the origin is the entire group GL(n,R).
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4. If we restrict from GL(n,R) to SO(n,R) the picture changes completely. For sim-
plicity consider the case n = 2 acting on R?. The left- action is:

[T cos¢ sin¢ 1
R(9): <x2> - <— sin ¢ Cosqb> (@) (8.57)

The group action is effective. It is not free, and it is not transitive. There are now
infinitely many orbits of SO(2), and they are all distinguished by the invariant value
of 22 +y? on the orbit. From the viewpoint of topology, there are two distinct “kinds”
of orbits acting on R2. One has trivial isotropy group and one has isotropy group
SO(2). See Figure 8. These give two strata.

5. Orbits of O(2) acting on R?. We have seen that O(2) can be written as a disjoint
union:

0(2) = SO(2) 1 P - SO(2) (8.58)

where P is not canonical and can be taken to be reflection in any line through the
origin. The orbits of SO(2) and O(2) are the same. We will find a very different
picture when we consider the orbits of the Lorentz group.

6. Now consider a fixed SO(2,R) subgroup of SO(3,R), say, the subgroup defined by
rotations around the z-axis, and consider the action of this group on a sphere in R?
of fixed radius. The action is not transitive. The G-orbits are shown in Figure 7. It
is also not free: The north and south poles are fixed points.

7. Now consider the action of SO(3,R) on a sphere of positive fixed radius in R3.
(WLOG take it to be of radius one.) The action is then transitive on the sphere.
Now the isotropy subgroup Stabgosy(7) C SO(3) of any unit vector 7 € S? s
isomorphic to SO(2):

Stabgo(s)(7) = SO(2) (8.59)

But, for different choices of 1 we get different subgroups of SO(3). For example, with
usual conventions, if 7 = es is on the z>-axis then the subgroup is the subgroup of
matrices of the form
cos¢ sing 0
Ria(¢) = | —sin¢ cosp 0 (8.60)
0 0 1

but if 72 = e; is on the z'-axis the subgroup is the subgroup of matrices of the form

1 0 0
Ro3(¢) = | 0 cos¢ sing (8.61)
0 —sin¢ cos ¢

and if 7 = ey is on the 2?2 axis the isotropy subgroup is the group of matrices of the
form
cos¢ 0 sing
Ri3(¢) = 0 1 0 (8.62)
—sing 0 cos¢
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and so on. For any 7 € S?% let SO(2); C SO(3) denote the subgroup, isomorphic
to SO(2), which stabilizes n. According to the stabilizer-orbit theorem there is a

natural one-one correspondence

5% = 50(3)/50(2); (8.63)
Therefore, fixing any 7 € S? there is a map

T4 SO(3,R) — S2 (8.64)
Put simply, 7(R) rotates n € S% to R-n € S%:

mi(R):=R-n €S2 (8.65)
Therefore, the inverse image of any other vector ke S%

71 (k) := {R|Rh = k} € SO(3) (8.66)

is the set of rotations which can be (noncanonically!) put in 1-1 correspondence with
elements of SO(2). That is because if k = Ry and k = Rof then Rl_lRQ’fL = and
therefore Ry = R1 Ry where Ry € Stabgo(s)(n) = SO(2).

So, for each point k € S? we can associate a copy of SO(2) inside SO(3), which is
topologically a circle, and clearly every element of SO(3) will be captured this way
as k ranges over S?. One might think that this means that, as manifolds, SO(3) is
diffeomorphic to S? x SO(2) = S? x S!, but this turns out to be quite false. For
example the homotopy groups of SO(3) and S? x S! are completely different.

Nevertheless, we can try to parametrize the general rotation by using this idea: We
choose 1 = e3 to be the basepoint. Then the standard polar angles of a point on the

sphere are defined by 09
0 sin fsin ¢
Ri2(¢)Ras3(0) [ 0| = | sinfcos ¢ (8.68)
1 cos 6

But this does NOT mean every rotation matrix is of the form Rja(¢)Re3(0) ! It
only gives us a parametrization of the cosets SO(3)/SO(2)e,. We now get the a
parametrization of the general element of SO(3) by including a factor on the right
by a general element of the stabilizer group of n = es:

R = Ri2(¢)Ra3(0)R12(v) (8.69)

1090ne usually defines the polar angle ¢ so that = sinfcos¢. To get the standard parametrization of

(z,y,z) by polar angles replace
™

Ri2(¢) = Raa( 5

?) . (8.67)
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and if we want a generic element to have a unique set of “coordinates” (¢, 0,1) we
should choose the range:

¢~ ¢+2m
P~ Y+ 21 (8.70)
0<<nw

These are the famous Euler angles. Although every SO(3) matrix has an Euler angle

presentation, and generic SO(3) matrices have a unique such parametrization, there
are some matrices for which the parametrization is not unique. For example, if we
put # = 0 then the parametrization collapses to Ria(¢ + ¢). If (¢,0,1) were truly
good coordinates we could set # = 0 and get a two-dimensional subspace of SO(3).
But in fact we only get one-dimensional subspace because only the combination ¢+
appears. This explains why the generic matrix has a unique Euler angle presentation,
but the manifold SO(3) is not the same as the manifold S? x S!.

. SU(2) = 83 From Stabilizer-Orbit Theorem. First we reprove the result - already
seen in Example 2.7 above - that, as a manifold, SU(2) can be identified with the
unit three-dimensional sphere. We will give another proof using the Stabilizer-Orbit
theorem. Consider the unit sphere in R* as the space of unit vectors in a two-
dimensional complex Hilbert space (the space of states of “one Qbit”):

S~ {77z =1} c C? (8.71)

7= (Zl) (8.72)
)

and decomposing 21, z2 into their real and imaginary parts. Next, we note that SU(2)

This is easily seen by writing

has a transitive action on the unit sphere:
Gy 2 Z > uZ (8.73)

The action is transitive because, given any unit vector we can find another orthogonal
unit vector. But any two ON bases are related by some unitary transformation. By
changing the phase of the second vector we can arrange that they are related by a
special unitary transformation.

Therefore, we should invoke the stabilizer-orbit theorem and compute the stabilizer

%= (é) . (8.74)

These are the upper triangular SU(2) matrices with one on the diagonal: The stabi-

of, say

lizer is trivial. So

SU(2) = 53 (8.75)
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In particular, a general SU(2) element must have the form

zZ1 S
uw= <22 t) (8.76)

with |21|24]22]2 = 1 and s, t to be determined. These can be determined by imposing
the condition:
w =l (8.77)

we solve for the other two matrix elements and recover the result from Example 2.7
that every SU(2) element is of the form

u= (_O‘ﬁ i) (8.78)

o + 187 =1. (8.79)

where

. GL(2,C) And SU(2) Act On CP!. We continue to develop ideas from Section ****
5.3, example 4 **** Recall that CP! can be identified with equivalence classes of
points (z1,22) € C? — {0} with equivalence relation (z],2}) ~ (Az1, Az2). We denote
equivalence classes by [z1 : 22].

Note that CP! can also be thought of as the space of states of a single Qbit: [z : 29]
always has a representative with |21|2 + |22]? = 1 and the representative is unique up
to multiplication by a phase. We can use such a normalized representative to define
a vector in a Hilbert space corresponding to a Qbit state:

W= (?) (8.80)

There is a well-defined action of GL(2;C) on CP*:

b
(Z d) : (211 20] > [az1 + bza 1 ez + dzg) (8.81)

(The reader should carefully check that this is a well-defined group action. Since the
GL(2,C) action on C? — {0} is transitive, the action on CP" is transitive. Therefore

choosing a point p € CP! we have an identification of CP! as a homogeneous space:
GL(2,C)/B=CP' B =Stabgrec)(p) - (8.82)

For example, if we take B to be the stabilizer of [1 : 0] we compute

B:{(S Z) la,d € C*  beC} (8.83)
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As we have just discussed, the SU(2) action on normalized vectors is transitive. But
thanks to the equivalence [z1 : z9] = [Az1 : Az3] we can always find a representative
so that (21, z2) is a unit vector in the Hilbert space C2. Therefore, the restriction of
the GL(2,C) action on CP! to SU(2) is still transitive. Now the stabilizer of [1 : 0]
is the subgroup of diagonal SU(2) matrices and is isomorphic to U(1). Therefore,
there is also an identification

CP' = SU(2)/U(1) (8.84)

Thus CP' as a homogeneous space can be presented both as a homogeneous space
of compact Lie groups (hence it is compact) and as a homogeneous space of complex
Lie groups. Hence CP! is a compact complex manifold.

Moreover, as always with homogeneous spaces there is a natural map

7:SU(2) — SU(2)/U(1) = CP* (8.85)

Since $% 22 SU(2) we have a natural continuous map:
78— 82 (8.86)

whose fibers are copies of S'. This is a famous map in mathematics and physics
known as the Hopf map and has many beautiful properties. It appears in the physics
of magnetic monopoles and in several other related contexts. It is very closely related
to the map 7 : SO(3) — S? defined above.

Note well that S is not homeomorphic to S? x S*. This is easily seen by considering
fundamental groups.

Another way of thinking about CP! is that it is the space of lines through the origin
in C2. This leads to the idea of Grassmannians described below.

Exercise Zy Actions On The Sphere
Consider the action of Zs on the sphere defined by (5.8):

o-(zt,. 2" = (2t 2P, 2P g PT) (8.87)

a.) For which values of p, ¢ is the action effective?

b.) For which values of p, ¢ is the action transitive?

c.) Compute the fixed point set of the nontrivial element o € Zs.
d.)

For which values of p, ¢ is the action free?
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Exercise C* Actions On CP"~!

Consider the action of G = C* on CP"! defined by (5.9).

a.) For which values of (q1,...,qy) is the action effective?

b.) For which values of (¢1,...,¢,) is the action transitive?

c.) What are the fixed points of the C* action?

d.) What are the stabilizers at the fixed points of the C* action?

Exercise SL(2,R) Action On The Upper Half-Plane

a.) Show that (5.11) above defines a left-action of SL(2,R) on the complex upper
half-plane. 10
b.) Is the action effective?
c.) Is the action transitive?
d.) Which group elements have fixed points?
e.) What is the isotropy group of 7 =1 ? 11
Conclude that

H =~ SL(2,R)/SO(2) (8.88)

Exercise
Using GL(2,C)/B = CP' show that GL(2,C) has a natural action on the Riemann

sphere given by )
az +

cz+d

(8.89)

Exercise

Since there is a left-action of G x G on X = G there is a left-action of the diagonal
subgroup A C G x G where A = {(g,9)|g € G} is a subgroup isomorphic to G.

a.) Show that this action is given by a +— I(a), where I(a) is the conjugation by a.

b.) Show that the orbits of A are the conjugacy classes of G.

c.) What is the stabilizer subgroup of an element gy € G?

"OFint: Show that Im(g - 7) = 12T

T Jer+d|? )
""!The isotropy group is the subgroup SO(2,R) C SL(2,R). To see this set 22 =i and conclude that
a=d and b = —c. Then since ad — bc = 1 we have a? 4+ b?> = 1 but this implies that the group element is
in SO(2,R).
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Exercise Spheres As Homogeneous Spaces

a.) Show that there is a transitive action of SO(n + 1) on S™, considered as a sphere
of fixed radius in R"*!,

b.) Show that S™ = SO(n +1)/SO(n).

c.) Give an inductive proof that SO(n) is a connected manifold for n > 2.

8.4.1 More About The Relation Of SU(2) And SO(3)

Let us now return to the basic homomorphism

R:SU((2) — SO(3) . (8.90)
defined in section 5.4.1. Recall the key equation (5.39):

u® - du! = (R(u)T) - & (8.91)

Note that it is immediate from the definition that R(—u) = R(u) and hence the kernel of
R must at least contain the subgroup of matrices proportional to the identity: {£1}.
We will now prove that:

1. ker(R) = {£1ax2} = Z(SU(2)).

2. Every proper rotation comes from some u € SU(2), i.e. the homomorphism R is
surjective

Thus we have the extremely important extension:

157, 4 SU@) & s03)—1 (8.92)

Thus, SU(2) is a two-fold cover of SO(3) and in fact
SO(3,R) = SU(2)/Zs (8.93)

where the Zs we quotient by is the center {£1ay2}. This is arguably the most important
exact sequence in physics.

To prove the above two claims we will need to get to know SU(2) a bit better.

There are many ways to parametrize S3. One is to introduce a polar angle and stratify
S3 by two-dimensional spheres. Viewed this way, we can write the general SU(2) element
as

u=cosy +isinxn-c (8.94)

where 0 < y <7 and 77 € R3 with -7 = 1, so 71 € S2.

Now suppose that u € ker(R). Then u must commute with o® for & = 1,2,3. But
from (8.94) it is easy to check that u commutes with ¢* only if siny = 0 so cosx = +1.
From this we conclude

ker(R) = {£1lax2} = Z(SU(2)) (8.95)
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Now to prove surjectivity we return to the parametrization (8.94). We claim that if u
is parametrized as in that equation then

uf-dut =174 -d (8.96)

where 1/ is obtained from Z by rotation by angle —2y around the 7 axis. See the exercise
below for the demonstration. Since every element of SO(3) can be expressed as a rotation
around some axis, this shows that R is surjective. We have now completed the proof of
equation (8.92).

Remarks:

1. Once again note that, although SU(2) is a 2-fold cover of SO(3) it is not true that
SU(2) = SO(3) x Zg, neither as manifolds (since both SU(2) and SO(3) are con-
nected), nor as groups.

2. The short exact sequence (8.92) can be generalized in two ways. First, SU(2) is
isomorphic to a “spin group” Spin(3). By definition, Spin(3) is the group of matrices
obtained by even products of the form

N1 0Ng -0+ Nop_1 0Nk O (8.97)

Note that
N1 -0Ng =Ny - Noloxs + 1M1 X Ny - O (8.98)

is of the form (8.94) where y is the angle between n; and ny. The generalization to
Spin(n) involves considering the Clifford algebra in n-dimensions (See Chapter ***)
and considering the group of even products of elements of the form v - v, where v is
a unit vector. Then one has the exact sequence

1 — Zs — Spin(n) — SO(n) — 1 (8.99)
A second generalization is
1 — Z(SU(n)) = SU(n) - PSU(n) — 1 (8.100)

since PSU(2) = SO(3).

We can put the above equation (8.92) to good use and show how the Euler angles give
a nice parametrization of SU(2).

Recall that the exponential of any matrix A (or any endomorphism of a vector space)
is defined by the usual series:

1
emA:1+A+§ﬁ+~- (8.101)
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Note that (77 - 7)? = lax2 and hence
u=cosy +isinx7i - = exp(ix7 - &) (8.102)

So, for any 7 € S? and x € R
R (exp(ix7 - ©)) (8.103)

is a rotation around the 77 axis by angle —2y.
As a nice check consider the restriction of the homomorphism R to the subgroup of

£ 0
8.104
(0 5—1 ( )
with |£] = 1. These act on - & by

§ 0 3 mp—ime\ (710 T3 £2(z1 — img)
(0 51) (IEl +izy  —w3 ) ( 0 §> a (52(3«“1 +iz2) —T3 ) (8.105)

If we write

diagonal matrices D of the form:

£ =e 92 (8.106)

for some angle ¢ then 7 maps the diagonal matrix to R € SO(3) that is a rotation around
the 23 axis. It is a counterclockwise rotation by ¢ in the (2!, 2?) plane with the orientation
dxz' A dx®. Moreover, it is useful to note that

% _ (g 5&) (8.107)

where the exponential of a matrix is defined by the usual series expansion. So, we conclude
that

R(e27") = Ris(¢) (8.108)

Nota Bene: If we only know ¢ modulo 27 (as opposed to ¢/2 modulo 7) then e 127"
but since R(—u) = R(u) equation (8.108) is meaningful.

In a similar way the above result implies
R (e—i%ffl) — Ros(0) (8.109)
Note that in the Euler angle parametrization we could also have used rotation in the
13 plane. In this case we would use the SO(2) subgroup of SU(2) consisting of the real
unitary matrices. We parametrize the group by

~ [cos(8/2) —sin(0/2)) ~i8,2
w(/2) = <sin(0/2) cos(6/2) ) — (8.110)

+i0/2

Of course, the eigenvalues are e and indeed

9 0 3

Se 307 g1 = ¢7i50 (8.111)
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where
S = \1[(1 —ict) € SU(2) (8.112)

(all you have to check is So2S~! = 3. ) We find that

\V)

s cos(0/2) 0 sin(6/2)
m(e™27) = Ri3(0) := 0 1 0 (8.113)
—sin(0/2) 0 cos(0/2)

is rotation by 6 around the z? axis.
We can parametrize all SU(2) elements by

u =TI VT (8.114)

where .

T = —%ai 1<i<3 (8.115)
The range of Euler angles that covers SO(3) once is 0 < § < 7 with ¢ and v identified
modulo 2. Because SU(2) is a double cover we should extend the range of ¢ or i) by a

factor of 2 if we want to cover the group SU(2) once. For example, taking:

0<o<nr
¢~ ¢+2m (8.116)
P ~p+Am

Then for generic SU(2) elements we will have a unique representation

U= 8¢T369T26¢T3 = exp[—%(ﬁoﬁ]exp[—%QJQ]eXp[—%1/}0’3] — (_aﬁ i) (8117)

with
a = e 12(61Y) cos(6/2) B = —eiz(®—¥) sin(0/2) (8.118)

The Euler angle coordinates on SU(2) break down at § = 0, 7. At 6 = 0 the product only
depends on (¢ + 1) even though we have a three-dimensional manifold Similarly at § = 7
the product only depends on (¢ — v).

Remark: As we will discuss later, a good parametrization near the identity would be

u = exp[*TF] (8.119)

where we are exponentiating the general element of the Lie algebra su(2)

Exercise Polar Angle Decomposition Of SU(2)
a.) Prove that every element of SU(2) can be written in the form of (8.94).
b.) Express «, 8 in terms of x and 7.
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c.) The coordinates x,n cover a product of an interval and a two-dimensional sphere.
Prove that [0, 7] x S? is not topologically the same as SU(2). Where does the x, 7 coordinate

system go bad?

Exercise Polar Angle Parametrization Of SU(2) And Rotations

a.) Show that if u is parametrized as in (8.94) then
uf-dut =4 & (8.120)
where 7/ is obtained from Z by rotation by angle 2y around the 7 axis. ''?
b.) Show that
Vg geT VT =y o (8.122)
(8.123)

with
y =cos(2¢)(n X (x x n)) +sin(2Y)n X x + (n-z)n

Exercise A Basis For The Lie Algebra su(2)
a.) Show that every traceless anti-Hermitian 2 x 2 matrix is a real linear combination

of the three matrices 7% defined in (8.115).
b.) Show that the matrix commutators satisfy
[T, T7) = IFTk (8.124)

with the convention €123 = +1.

Exercise
Show that in the Euler angle parametrization the shift
(8.125)

P =Y+ 27

takes ©u — —u.

12 Answer: To show this note that if & is parallel to 7 then & - & and # - & commute then # = 7. Now

suppose that 7 is perpendicular to 1. Then
(8.121)

u@-ou” =i (T F)
= (cos(2x) + isin(2x)n - 6)(Z - &)
= cos(2x) (& - &) —sin(2x) (R AZ) - o

where in the last line we used that n -7 = 0.
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Figure 9: The distinct kinds of orbits of SOp(1,1,R) are shown in different colors. If we enlarge
the group to include transformations that reverse the orientation of time and/or space then orbits
of the larger group will be made out of these orbits by reflection in the space or time axis.

8.4.2 Extended Example: The Case Of 1 + 1 Dimensions

Consider 14 1-dimensional Minkowski space with coordinates z = (2°, #') and metric given
by
-10
= 8.126
U ( 0 1) (8.126)
i.e. the quadratic form is (z,7) = —(2°)% + (2')2. The two-dimensional Lorentz group is
defined by

O(1,1) = {A|A""nA = n} (8.127)

This group acts on Mb! preserving the Minkowski metric.
The connected component of the identity is the group of Lorentz boosts of rapidity 0:

2% — cosh 6 20 4 sinh 6 2! (8.128)
z' — sinh 6 2° 4 cosh 6 2! (8.129)
that is:
cosh @ sinh 6
SOy(1,1;R) ={B(#) = — 0 8.130
oL, LiR) = {B(6) (sinh& cosh@)’ 00 < < oo} ( )

In the notation the S indicates we look at the determinant one subgroup and the subscript
0 means we look at the connected component of 1. This is a group since

B(@l)B(Gg) = B(91 + 92) (8.131)
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so SOy(1,1) 2 R as groups. Indeed, note that

01
B(8) = exp [9 (1 0)] (8.132)

It is often useful to define light cone coordinates: '3

ot =%+ 4! (8.133)
and the group action in these coordinates is simply:
ot - ettt (8.134)

so it is obvious that z 72~ = —(z, z) is invariant.

It follows that the orbits of the Lorentz group are, in general, hyperbolas. They are
separated by different values of the Lorentz invariant 2~ = X, but this is not a complete
invariant, since the sign (or vanishing) of 1 and of x~ is also Lorentz invariant. For a real
number r define

+1 r>0
sign(r) :=<0 r=0 (8.135)
-1 r<0

Then (), sign(z™),sign(x 7)) is a complete invariant of the orbits. That is, given this triple
of data there is a unique orbit with these properties.

It is now easy to see what the different types of orbits there are. They are shown in
Figure 9: They are:

1. hyperbolas in the forward/backward lightcone and the left /right of the lightcone
2. 4 disjoint lightrays.
3. the origin: 2T =2~ = 0.
It is now interesting to consider the orbits of the full Lorentz group O(1,1) and its

relation to the massless wave equations. But there are clearly elements of O(1,1) not
continuously connected to the identity such as:

P:<10> T:(‘“ﬁ (8.136)
0 -1 01

In an exercise below you show that the Lorentz group O(1,1) has four connected
components

O(la 1) = H(Ul,ag)euzxugo(la 1)(01,02) (8137)

13Some authors will define these with a 1/2 or 1/4/2. One should exercise care with this choice of
convention.
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where the connected component O(1,1)(,, ,) consists of group elements of the form

ab
) s

with sign(a) = o1 and sign(d) = o2. We can write (noncanonically),
O(1,1) = SOy(1,1) 1L P - SOy(1,1) L1 T - SOy(1,1) Il PT - SOy(1, 1) (8.139)

The P and T operations map various orbits of SOy(1,1) into each other: P is a

reflection in the time axis, i.e., a reflection of the spatial coordinate, while T is a reflection

in the space axis, i.e. a reflection of the time coordinate. Thus the orbits of the groups
SO(1,1), SOp(1,1) I PT - SOp(1,1), and O(1,1) all differ slightly from each other. &Should give more
etails here, or form

As an example of a physical manifestation of orbits let us consider the energy-momentum an exercise. &
dispersion relation of a particle of mass m with energy-momentum (E,p) € RbL.

1. Massive particles: m? > 0 have (E,p) along an orbit in the upper quadrant:

OT(m) = {(mcoshf,msinh )]0 € R} (8.140)

2. Massless particles move at the speed of light. In 1+1 dimensions there is an interesting
refinement of the massless orbits: Left-moving particles with positive energy have
support on 4 p, = %(E +p)=0and p_ = %(E —p) # 0. Right-moving particles
with positive energy have support on p~ = 0 and p™ # 0. In d + 1 dimensions
with d > 1 the orbits of SOy(1, d) consisting of the forward and backward lightcones
(minus the origin) are connected.

3. Tachyons have E? —p? = m? < 0 and have their support on the left or right quadrant.
If we try to expand a solution to the wave-equation with eilkor®+kiz!) then kg =
k%2 +m? and so if the spatial momentum k; is sufficiently small then ko is pure
imaginary and the wave grows exponentially, signaling and instability. This tells us

our theory is out of control and some important new physical input is needed.

4. A massless “particle” of zero energy and momentum.

H4Note the factors of two: We have

zt = xo + xl
_ o L (8.141)
T =r —=x
but
1
p+ = 5 (po+p1)
(8.142)

1
p- = §(p0 —p1)

so that #%po + z'p1 = T py + « p_. This is an example of the tricky factors of two one encounters when
working with light-cone coordinates.
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Exercise Components Of The 1 + 1-Dimensional Lorentz Group
a.) Prove equation (8.137). 119
b.) Show that the group of components of the Lorentz group is O(1,1)/S0p(1,1) =

ZQ XZQ

8.4.3 Orbits Of The Lorentz Group In d > 2 Dimensions As Homogeneous
Spaces

We define d-dimensional Minkowski space M1 with d > 2 to be the vector space R%
with quadratic form
n = Diag{—1,+14-1} (8.146)

and
O(1,d —1) = {A|A"nA =n} (8.147)

There is a continuous surjective homomorphism
w:0(1,d—1) = g X po (8.148)

given by ¢(A) = (k1,k2). Here k1 = sign(detA) while ko is more subtle. It is +1 if A
preserves separately the two connected components of the light cones (minus the origin)
and minus one if they are exchanged. Therefore, there is an exact sequence:

1—50¢(1,d—1) = 0(1,d—1) = pa X pug — 1 (8.149)

We will show below, when analyzing O(p, q) that as a manifold O(1,d — 1) has four con-
nected components. So the kernel of ¢ is the connected component of the identity. By

ab
(C d) (8.143)

2 2

a”—c =1

- =1 (8.144)
ab = cd

15 Answer: The general matrix

isin O(1,1) iff

The most general solution of the first two equations is

a = K1 cosh 6

¢ =sinh 6
) (8.145)
d = Ko cosh 6
b=sinh@’
where k; € {£1} and 0,0" € R. Now impose the third equation. The solutions split into two cases: If
k1/ke = 1 then 0 = §'. This gives two components. If Ki/k2 = —1 then 0 = —’, giving the other two
components.
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Figure 10: Illustrating orbits of the connected component of the identity in O(1,3). In (a) the top
and bottom hyperboloids are separate orbits, and if we include time-reversing transformations the
orbits are unions of the two hyperboloids. In (b) there are three orbits shown with 2% > 0 20 < 0
(the future and past, or forward and backward light cones), and the orbit consisting of the single
point. In (c), once 22 has been specified, there is just one orbit, for d > 2.

making (noncanonical) choices of T and P we can write:

O(1,d—1) = SOy(1,d—1)IIP-SOy(1,d—1)-T-SO¢(1,d—1) - PT-SOy(1,d—1) (8.150)

where T reverses time orientation and P reverses space orientation.

The nature of the orbits of SOg(1,d — 1) and O(1,d — 1) is slightly different from the
1 4 1 dimensional case because of the zero-dimensional sphere S° is disconnected but the
higher dimensional spheres are connected.

1. For A € R* we can define the orbit of timelike vectors:
Otimetike(A) = {z](2")? = (2)* =X & sign(a”) =sign(\)} (8.151)
By the stabilizer-orbit theorem we can identify this with
Otimelike(A) = S00(1,d —1)/50(d — 1) (8.152)
by considering the isotropy group at (2 = A, Z = 0). See Figure 10(a).
2. For p? > 0 we can define
Ogpacetice (1) = {z|(2°)? — () = —p?} (8.153)
By the stabilizer-orbit theorem we can identify this with

Ospacelike(ﬂz) = SOO(L d— 1)/800(1, d— 2) (8154)
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by considering the isotropy group at x = (2° = 0,2' =0, ... ,ad72 = 0,247 = 1).
Unlike 1 + 1 dimensions, the sign of u does not distinguish different orbits for d > 2
because the sphere S92 is connected. See Figure 10(c).

O:t

null —

{z|z? =0 & sign(z?) = +1} (8.155)

Vectors in this orbit are of the form (29, |2%|7) where 7 € S?%~2 C R?! and the
sign of x¥ is invariant under the action of the identity component of O(1,3). (Show
this!). We can think of 7 € S92 as parametrizing the directions of light-rays. That
is, the point where the light ray hits the celestial sphere. As mentioned above, for
d = 2 the sphere S° has two disconnected components, leading to an SOg(1,d — 1)-
invariant distinction between left- and right-movers. In one spatial dimension, a light
ray either moves left or right, and this is a boost-invariant concept. In d —1 > 1
spatial dimensions, we can rotate any direction of light ray into any other. See Figure

10(b). One can show that these orbits too are homogeneous spaces: 16

OF = 80¢(1,d—1)/T (8.156)

4. The final orbit is of course {x = 0}.

Remarks

1. Discrete Symmetries In Nature. One can show, in a relativistic quantum theory that
if a theory is invariant under infinitesimal Lorentz symmetries, then it is invariant
under the connected component of the identity SOp(d—1, 1), because if the Lie algebra
is represented by well-defined anti-unitary operators then so are the one-parameter
subgroups generated by elements of the Lie algebra.

However, it turns out that relativistic QF'T’s that have SOg(d — 1, 1) symmetry can
nevertheless fail to be invariant under the disconnected components of O(d — 1, 1).

An example of a physical theory that IS invariant under all four components of O(3, 1)
is electromagnetism. Consider the classical equations in vacuum:

dF =0

(8.157)
d«F =0

"6The isotropy group of a light ray is T = ISO(d — 2), where ISO(d — 2) is the Euclidean group
on R?2. The easiest way to show this is to use the Lie algebra of so(1,d — 1) and work with light-cone
coordinates. Choosing a direction of the light ray along the 2¢~! axis and introducing light-cone coordinates
2t = 2% £ 297!, and transverse coordinates z*, i = 1,...,d — 2 if the lightray satisfies = = 0 then we

have unbroken generators M % and M%.
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the equations are invariant under arbitrary isometries of the Lorentz metric. Written
in terms of electric and magnetic fields in 3 4+ 1 dimensions these equations become:

V-B=0
10B
¢ ot (8.158)
V-E=0
VxB—la—E:O
c Ot

invariance under P means that if (E(x,t), B(x,t)) is a solution of the equations then
so is (—E(—=x,t), B(—z,t)). Invariance under 7" means that (E(z,—t),—B(z, —t))
is a solution. This is enough to show that the classical theory is invariant in the &micky point here
absence of sources. It can be generalized to include sources. With some further work Z?;i::g}fﬁi?fmy

these arguments extend to the full quantum theory and in fact to QED (quantum e formations.

The physical F'

electrodynamics). See, for example, S. Weinberg, The Quantum Theory Of Fields, tanstorms as a

. . . . . twisted diff tial
vol. 1 for a careful discussion of discrete symmetries in QFT. o

time-reversing

Parity invariance means that, if you watch a video of a physical process, then you symmetries. &
cannot tell whether you are looking at that process in a mirror, or not. For a long
time it was assumed that parity is a symmetry not only of the electromagnetic and
gravitational force but also of the nuclear forces, including the weak force responsible
for nuclear beta decay where a neutron decays (possibly within a nucleus) according
to the beta decay process:

n—pt+e +,. (8.159)

However, in 1956 T.D. Lee and C.N. Yang carefully reviewed the evidence for parity
conservation in nature and pointed out that there was - at the time - no experimental
test demonstrating that the weak interactions are parity invariant. Lee and Yang
proposed some experimental tests of parity invariance of the weak nuclear force.
Shortly thereafter C.S. Wu and her collaborators demonstrated experimentally in
1956 that parity is indeed violated by the weak nuclear force. For this remarkable

117

achievement Lee and Yang were awarded the 1957 Nobel prize in physics.

The basic idea of the Lee-Yang-Wu experiment is that the neutron has spin - which is
invariant under parity - but in the beta decay process (8.159) electrons are preferen-
tially emitted in one direction relative to the spin. (As it turns out, in our universe,
they are preferentially emitted in the direction opposite to the spin vector of the neu-
tron.) It was not practical to observe the process (8.159) directly with free neutrons
so the Wu experiment looked at the decay of an unstable isotope of cobalt $2Co to
an excited state of nickel $9Ni*, which subsequently decays electromagnetically to the
stable isotope ggNi by emitting two photons. The cobalt can be put in a definite spin
state with a magnetic field (at low temperature) and then, since electromagnetism is
parity invariant the photons will not be preferentially emitted along or against the

"7but not C.S. Wu. Many physicists, including the author, consider this an outrage.

— 158 —



spin axis. One can then compare the photons with the electrons. It was found that
the electrons are preferentially emitted in one direction.

Parity nonconservation leads to nontrivial role for chirality in the standard model
and is a profound and fundamental aspect of nature.

Given the violation of parity by the weak nuclear force one naturally wonders about
time reversal invariance. The question of time reversal invariance of a physical system
can be phrased as follows: If you run a movie of a physical process backwards, is the
resulting process physically possible. This is again true of classical electrodynamics
and gravitation, as well as of QED. It is important here to distinguish between events
that are extremely unlikely from those which are physically impossible. According to
the laws of electromagnetism and gravity, the perfume in a room could collect itself
into a small bottle. If you watched a movie of such an event you could say that -
with high probability - the movie was run backwards. But, just based on the laws
of QED and gravity, you could not say this with absolute and total certainty. In
1964 V. Fitch and J. Cronin discovered that in certain very rare processes in nature
known as the decay of neutral Kaons, the decays actually do violate time-reversal
invariance. That is a good thing, because, as noted by A. Sakharov, if there were no
time-reversal invariance in the laws of physics it would be impossible to understand
why there is matter/anti-matter asymmetry in the context of the big bang theory.

/72@,@:
1(-20)

Figure 11: The picture shows Ogimelike(A) for A > 0. Stereographic projection involves finding the
point with 29 = 0 on the line between a point on the orbit and the point (=X, 0). This projects the
orbit to the ball 4?2 < A? in d — 1 dimensions .

8.4.4 Lorentzian And Euclidean (anti)-deSitter Spaces As Homogeneous Spaces

There are four important solutions of the Einstein equations that are related to homoge-
neous spaces involving Lorentz groups.
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Spheres a.k.a. Euclidean deSitter Space
The sphere of radius R in R"*! admits a transitive action of SO(n+ 1), and the stabi-
lizer group of any point is isomorphic to SO(n). So, as G-spaces we have an isomorphism

S"=S50(n+1)/S0O(n) (8.160)
But more is true: S™ inherits a metric from the Euclidean metric of the ambient Euclidean
spaces
ds’ = dXp,, + ) dX} (8.161)
i=1

The “pullback” to the solution set of
X2 +> X =R (8.162)
i=1

Gives the round metric on S™ of radius R. It is a solution of the Einstein equations and
can be considered to be a “Wick rotation of deSitter space.”

Hyperbolic Space a.k.a. Fuclidean Anti-deSitter Space.
The orbit O1(R) above is the component of the solution space of the equation

XG4+ XP=-N (8.163)
=1

with Xo > 0. It inherits a Euclidean signature metric from the ambient metric

n
ds® = —dXg + > dX} (8.164)
i=1
This gives one of many models of hyperbolic space, often known in physics as “Euclidean
anti-deSitter space.” The restriction of the metric to the orbit gives one model of the
hyperbolic metric. We parametrize

2% = Acosh @
. ) 4 (8.165)
" = A\sinh 6n’
where n' is a vector on the unit sphere S92 € R4 and the metric becomes
ds* = d6? + sinh®(0)ds%a o (8.166)

where ds%d_2 is the metric on the unit (d—2)-dimensional sphere induced from the Euclidean
metric in R41,

There are other very useful models for hyperbolic space. One proceeds by using stere-
ographic projection. See Figure 11. A point (2°,2%) € Ogimelike()) is projected to the point
(0,%) in R4 with

2

L=\ 8.167
4 A+ 20 ( )
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Simple algebra shows that

0

_,2_ QIE _>\_ 2 . 2)\ 2
F=Xg L= <1 x0+>\><>\ (8.168)

So the hyperbola projects to the interior of the (d —1)-dimensional ball (aka disk) of radius
A. The inverse transformation from the ball to the hyperbola is

1 —) 2
20— + 57/
1—i2/\2

_ 2 i
1o

(8.169)

%

We can now pull back the metric —(dz?)? + Zf-l;ll (dz*)? to the hyperbola, which in this
case amounts to substitution of the above formulae and taking derivatives to produce

(dg)°

2
P
R 0

(8.170)

This is known as the Poincaré disk model for hyperbolic space. The “boundary sphere”
72 = A\? is at infinite distance.

There is a second method of projection from a point at infinity. Select one of the
coordinates z* as special. We will take 24!, and denote the remaining “spatial” coordinates

as z% with a =1,...,d — 2. (We are working with the case d > 2 here.) Set

(67

x
Sa:AW a:1,7d—2
1 (8.171)
=N >0
FEA0 a1
The inverse transformation is:
(03
A i a=1,...,d—2
z
2
20— gl =X (8.172)
z
20+ 24 = Gk
z
Now pulling back the Lorentz metric gives the formula
d 2 ds® 2
ds® = )\QM (8.173)

22

This is known as the Poincaré upper half plane model of hyperbolic space. The R%~2 plane
at infinity z = 0 is mapped to the sphere S%2 at infinity when transforming from the
plane to the disk.

Lorentzian Anti-deSitter Space
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Consider the orbit of O(2,n) on the hyperbola
~X§ - Xp g+ XP =N’ (8.174)
i=1

with A real. Such an orbit will be a homogeneous space O(2,1n)/O(1,n) and the induced
metric from

—dX§ —dX7,, + ) dX] (8.175)
i=1
will be the Lorentz-signature AdS metric.

Lorentzian deSitter Space
Consider the orbit of O(2,n) on the hyperbola

X3+ X7 =-A (8.176)
=1

with A real. Such an orbit will be a homogeneous space O(1,n)/O(1,n — 1) and the
induced metric from

—dX§ + ) dX} (8.177)
=1

will be the Lorentz-signature deSitter metric.
ko ks skook sk sk skoskosk sk sk skeosk skookoskeosk skoskosk sk skokok skokoskok skokosk sk skokok sk

MORE DETAILS HERE. SEE GMP 2002, Ch. 3, Section 6

Kk sk sk ok okok ok sk ok kok ok ok sk skok sk sk sk skok sk ok skoskokosk sk kokok skokokokok sk

8.4.5 Grassmannians

A very nice application of the Stabilizer-Orbit theorem is to the description of Grassman-
nians of a vector space as homogeneous spaces.

Let us recall some facts about complex projective space CP™. It can be described in
several different ways.

1. Tt is the space of orbits (C™*! — {0})/C*. Hence it is the space of equivalence classes
[21 1t zng1] = [Az1 -+ 2 Az with (21,...,2p41) # 0 and A € C*.

2. It is the moduli space of one-dimensional subspaces of C"*1.

3. It is the space of one-dimensional orthogonal projection operators

4. Tt is the space of pure states in a Hilbert space C*+1.

5. It is a homogeneous space GL(n + 1,C)/P and SU(n +1)/(SU(n) x U(1).

We will begin by generalizing the second point of view above.
Consider a finite dimensional vector space V, say of dimension n and let 0 < k < n be
an integer and define Gri (V') to be the set of all k-dimensional linear subspaces of V. It is
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not hard to see that GL(V') acts transitively on this space: If W C V is a k-dimensional
subspace and T' € GL(V') then T(W) = {T'(w)|w € W} is a k-dimensional subspace. It is
an easy fact of linear algebra that for any two k-dimensional subspaces Wy, Wy C V there
is a T with T (W7) = Wh, i.e. the action is transitive. Therefore, by the stabilizer orbit
theorem there is an isomorphism of G-sets:

Grk(V) = GL(V)/StabGL(V)(W0> (8.178)

for any k-dimensional subspace Wy C V.
To compute the stabilizer of some vector space W choose an ordered basis v, ..., vk
for Wy and any complementary basis for V' so that

Vlyevey Uky ULy oy Up_k (8.179)

is an ordered basis for V. Now, what is the subgroup of T so that T'(Wy) = Wy ? By
definition:

T(Ui) = Ajz"l)j + Cuittn

(8.180)
T(ua) = Bjoﬂ)j + Dgau5

The condition T'(Wy) = Wy is then the condition that C' = 0 for the matrix of T relative
to such a basis. So the stabilizer group is isomorphic to the subgroup P of GL(n, ) with
C = 0. That is:

A B

PWO = StabGL(V)(WO) =2 P.= {g = <O D

) € GL(n,k)} (8.181)
So we can identity
Gri(V) =2 GL(n,k)/P (8.182)

as GL(V)-spaces. The basepoint P on the RHS corresponds to the subspace Wj.

In fact, the Grassmannian is a manifold and the representation in terms of homo-
geneous coordinates helps us to find local coordinates. The basic idea for finding local
coordinates is that we try to find a unique representative gy in the coset gP. That is gg
will satisfy some special conditions so that if gy and g(, both satisfy those conditions then

goP = gyP (8.183)

is sufficient to imply that go = g{. One such condition is that gy should be of the form:

I 0 (8.184)
Vin—k)xk Ln—k)x(n—k)

for some matrix v(,_gyxi € Mat(,_)xr (k). Note that if we right multiply by an element

of P and ask that
10 A B 10
= 8.185
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Then B=0and A=1and D =1 and hence v = .

Remark: When trying to represent cosets gP by group elements g we can view g — gp
with p € P as a “gauge transformation.” So, what we are doing here is trying to “fix the
gauge” by choosing a condition such as (8.184) for the representative. There are many
other ways of fixing a gauge freedom. We just made one choice above. In the quotient
topology on GL(V')/P the coordinates 7 are continuous. One could go further and produce
an atlas and charts. Then they would be smooth coordinates.

We can try to impose the gauge freedom for cosets gP where gP is “not too far” from
the identity P. “Not to far” means more precisely: that there is a representative gP such

a
g= <7 5) (8.186)

then a and § — ya~ '3 are invertible. These are precisely the conditions so that we can

AB 10
= 8.187
for some 7 € Mat (i) xi (k).

Indeed, equation (8.187) implies that

that if ¢ in block diagonal form

solve the equation

aA=1

A=45

7 K (8.188)
aB+ D=0
yB+40D =1

These should be regarded as equations for A, B, D,# given «, 3,7,9. If g is “not too far”
from the identity in the above sense then the solution is:

A=at
B=-a"'B(6—~a 1B~
D=(—~a'8)"!

7=nat

(8.189)

The conclusion we can draw from this is that a neighborhood of P in GL(n, k)/P consists
of cosets gP where any representative has « and § — ya~! 3 invertible. Coordinates in this
neighborhood are then given by

Y S Mat(n,k)xk(li) (8190)

Under the isomorphism Gri(V) = GL(n,k)/P defined by a choice of W, we get a set of
coordinates in the neighborhood of Wy € Gry (V).
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Remark: It is possible to push this idea further and produce explicit coordinate charts
and transition functions. Let {e1,...,e,} denote a basis for V" and let J stand for a subset
of k integers between 1 and n with ¢; < --- < ;. Then the coordinate charts described
above form an atlas if we consider just the charts around the subspaces W; spanned by
{€iy,... e }. The matrix groups Py, will be related to each other by conjugation by

permutation matrices.
SRRk KR KK KRR ok

MORE: GROUP ACTION ON RECTANGULAR MATRICES TO GET HOMOGE-
NEOUS SPACE. COMPACT HOMOGENEOUS SPACE WITH ON BASES.

Sk(N) =2 U(N)/U(N — k): k-dimensional subspaces with ordered ON basis

Gri(N) =2 U(N)/(U(N — k) x U(k)). In particular, it is compact and connected.

stoksk ok ok ok ok ok ok ok ok ok
8.4.6 The Grassmannian Of Positive Definite Subspaces
There is an important generalization of the Grassmanian. We consider R"™ with n =p + ¢

equipped with an indefinite metric of the form:

dsy = (dz')’ + - (da?)* — (dy')* — -+ (dy?)” (8.191)

2V

The vector space together with this quadratic form is denoted RP+4. This metric is invariant
under the generalization of the Lorentz group:

O(p,¢;R) := {A € GL(p+ ¢;R)|A"d, ;A = dp 4} (8.192)
where
1 0
dy,:= | P 8.193
o ( 0 1qu> ( )

This group generalizes the rotation-reflection groups O(n), the Lorentz groups O(1,n) and
the conformal groups O(2,n).
We now let Gr;: o denote the space of all p-dimensional subspaces W C RP? so that
the restriction of the metric dsiq is positive on W. This means that for any vector w € W
we have
whd, w >0 (8.194)

with equality only for w = 0.

Example: Consider p = ¢ = 1. Then the positive definite subspaces are the spacelike lines
through the origin. The space of such lines is naturally identified with the arc between the
lightcones. Note that it is contractible.

Let us now consider the general case. One obvious positive subspace is:

R0 = {(Z,0) € RPI|Z € R} (8.195)

Note that
RP? = RPO g RO (8.196)
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is an orthogonal decomposition into a positive definite and negative definite subspace. In
a similar way, if W C Gr;f’q then the orthogonal space defined by

Wt ={uecRPiu"d,,w=0 VYwecW} (8.197)
is such that
RPI =W @ Wt (8.198)

and a consequence of the computation we are about to do is that W is negative definite.

Now, we can give a very nice parametrization of points in Gr]‘; q as follows. If W C
RP4 is a positive definite p-dimensional subspace then it must be the graph of a linear
transformation: C' : RP — R?%:

W = {(z,Cx)|z € RP} (8.199)

We can think of C' € Mat,x,(R). The reason is that if (z,y) and (z,y’) are two vectors in
W then (0,y — 4) would have to be in W, but then if y — ¢ # 0 the vector would have
negative definite square norm. So y = 3/ so there is a unique vector y for each x, and since
W is a linear subspace it must be the graph of a linear function.

Now, since W is positive definite it must be that if x # 0 then

Il = Il Cx llg>0 = Iz 5>l Cx [lg= (x,C*" Ca), (8.200)

We call such a linear transformation contractive.

Note that O C is real and symmetric and hence diagonalizable, and has an ON basis of
eigenvectors v; with eigenvalues 0 < A; < 1. It follows that we can define an unambiguous
square root (1 — C'C)~'/2? and now we can check that

v = {((1 — Ot o)V 20, 0(1 - ctrcrl/%i) i=1,...,p} (8.201)

is an ON basis for W:
Vid, Vi =6ij . (8.202)

The nonzero eigenvalues of C*"C are the same as those of CC'". Therefore if we choose
an ON basis w,, a = 1,..., q of eigenvectors of the symmetric ¢ x ¢ real symmetric matrix
CC" we can similarly form the vectors:

Wq = {(C““(1 — Oy 2, (1 - Cc““)*l/%o la=1,...,q} (8.203)

We can now compute:
vid,  We =0 (8.204)

and hence w, form a basis for W+. Moreover, we can also compute
Wi d, Wp = —0a (8.205)

Therefore W is a negative definite subspace, as asserted above.
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As we have just seen, (vi,...,Vp, Wi,...,Wg) is an ON basis for R”? and hence the
matrix that relates it to the standard ON basis of RPY @ R%¢ must be in O(p, ¢). That is

= ( (1 _ Ctrc)fl/Q Ctr(l _ Cctr)71/2
C =

C(1— CrC)~Y2 (1 — cotry—1/2 ) € O(p,q) (8.206)

and moreover H¢ takes the standard decomposition (8.196) to (8.198). Thus the action of
O(p, q) is transitive and the Grassmannian of positive definite subspaces is a homogeneous

space:
Gy, = O(p,q)/(O(p) x O(q)) (8.207)

Let H, 4 be the set of matrices Hc for contractive linear maps C' : R? — RY. We can also
identity #, , with the Grassmannian. On the other hand, the stabilizer of (8.196) within
O(p, q) is clearly O(p) x O(q). We conclude that

O(p.q) = Hpq - (O(p) x O(q)) (8.208)

Since the space of contractive linear transformations is a contractible space we see that
O(p, q) contracts onto O(p) x O(q), which therefore has four components, so long as both
p>0and q > 0.

Example For O(1,1) C is v/c of the Lorentz boost. “Contractive” means that all
speeds are less than the speed of light. More generally, for O(n,1), C' : R — R" may
be identified with the velocity vector in units of the speed of light: ; = v;/c. Note that
cio = 52, while CCT = BB is a rank one n x n matrix. Define a projection operator
onto the “boost direction” by II = BB” where BZ is the unit vector in R” parallel to 3.
This makes it easy to compute

1
(1—cch=172 = exp|— 7 log(1 - ccoh)

= expl—log(1- || 8 )11 (5.209)
1

=(1-I) 4 —II
et 1—[| B2

Denoting the rapidity by 6 we thus have

cosh 6 sinh 93”’
H~ = « A n A n 8.210
¢ <sinh 93 (1 — BB + cosh Hﬂﬂtr> ( )

Exercise Ho As A Matriz Generalization Of A Boost
Suppose that p < ¢ and that C' is of the form

C = Diag{p1, -, tp} D Opx(g—p) (8.211)
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where 0 < |p;| < 1. Put p; = tanh6;.
Show that C' is of the form

cosh @; sinh 6,
[ i i i It 212
c ( (¢-p)x(q—p) D <@ <sinh0i cosh91>>> * )

where II is a permutation matrix.

Exercise U(p, q)
Define CP4 to be the (p + ¢)-dimensional complex vector space with sesquilinear form
(21, 22) = zidpng. Let U(p,q) be the automorphism group of this form. In equations:

Ulp,q) := {A € GL(p + q,C)|ATd, A = d, ;} (8.213)

Give an analog of the above discussion for this and in particular show that the Grass-
mannian of positive definite p-dimensional subspaces is isomorphic to the homogeneous
space

Ulp,a)/(U(p) x U(q)) (8.214)

Exercise Fxponential Parametrization Of The Grassmannian
Suppose that m € Matyy (,—k)(k), with £ = R, C. Show that:

07\, cosh(Vrrt) ﬁ% Q915
eXp[ 7_(_1— 0 - TSinh(‘/ﬂ'ﬂ'T) \/T ( . )
= cosh(Vrim)

7T7TT

and that this is of the form H¢ for

C=nl <M) (8.216)

7'['77T

8.5 Torsors And Principal Bundles

Definition A torsor or principal homogeneous space for a group G is a G-set X on which
the action is transitive and free.

Note that since the action is free Stabg(x) = {1} for every element of X. Therefore,
by the stabilizer-orbit theorem, given a choice of x € X we can set up an isomorphism of
G-spaces:

X=2GH{lg}=d (8.217)
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Figure 12: The torsors Z + z, plotted in the y direction are the points above a point x on the
horizontal axis. We construct the set by taking the line y = = and then translating by integral
shifts in the y-direction. The resulting set is also invariant under translation in the z-direction by
integers. If we quotient by integer translation in the z-direction we can picture the quotient as an
infinite spiral on a cylinder. The projection to the quotient of the x-axis becomes the projection
R — S! given by the exponential map. As a generalization consider the family of lines y = kz
translated in the x direction by integer shifts. This gives the principal Z bundles P below for
k #£ 0. If instead we consider the union of lines y = n for n € Z and quotient by integer translations
in the z-direction we obtain the trivial Z bundle over S*.

That is, we can set up a 1-1 correspondence between a torsor and elements of GG, but in
general there is no natural correspondence between X and G because to set up the 1-1
correspondence we needed to choose a point x € X. A torsor has no distinguished element
we can call the identity. Let us illustrate this idea with some examples:

1. Let x € R be a real number. Consider the subset X = Z+ 2 C R. This set is a torsor
for Z. But there is no natural zero in X. Indeed, let x vary continuously, then any
purported natural zero would vary continuously to any other number.

2. Imagine that the surface of the earth is flat and of infinite extent. Is this a copy of
R?? Yes and no. We can identify it with R?, but not in any natural way: R? is a
vector space with a distinguished vector 0. Where should we put the origin? Rome?
Beijing? Moscow? London? New York? Piscataway? Wuhan? Kiev? If the UN tried
to assign an origin there would be endless disputes. However, there would never be
any dispute about the vector in R? needed to translate from New York to London.
So, the difference of London minus New York is well-defined, but the sum is not. If
London and New York represented vectors in a vector space then one could both add
and subtract these vectors.

The infinite flat earth is an example of two-dimensional affine Euclidean space E2.
More formally: An affine space E* modeled on R? is a space of points with an action
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of R? that translates the points so that nonzero vectors always move points and one
can get from one point to any other by the action of a vector. But there is no natural
choice of origin. In equations:

(a) If v € R? and p € E? then there is a point p + v € E? so that (p +v) + ¢’ =
p+ (v+0).
(b) If p4 v = p then v = 0.

(c) If p,p’ € E? there is a (unique) vector v € R? so that p’ = p +v. We can
therefore say p’ — p = v.

If we do choose an origin (this choice is arbitrary) then we can identify E¢ = R,
Indeed, it follows from the above statements that for any p € E?, every p/ € E? is
of the form p’ = p + v for a unique v € R% So we map v, : E¢ — R? by taking
U, : p’ — v. In this language we can say that affine Euclidean space E< is a principal
homogeneous space for the Abelian group R%. 118

3. Let V be a finite-dimensional vector space over a field k. The set X = B(V) of
all ordered bases for V' is a GL(n, k) torsor: ¢ - {vi,...,vn} = {¥1,...,0,} where
U; = gjv;. Any two such bases are related by some g, but, if we are just given an
abstract vector space, there is no natural basis. In the case k = R the torsor B(V')
has two connected components. A choice of connected component is known as an
orientation of V.

4. Of course, G is has a transitive free left (or right) action by left- (or right-) multi-
plication on itself. So, a group G is a G-torsor. When speaking of a torsor it is not
necessarily true that there is no choice of origin or identity! Also note that G does
have a left (or right) action on itself by conjugation, but with this choice of group
action (G is not a torsor.

5. For a nice post on torsors with other examples see https://math.ucr.edu/home/baez/torsors.html

118 Affine Euclidean space still has a notion of distance: We do not need a choice of origin to speak of the
distance between two points. If p" — p = v then the distance is:

dist(p,p') =] v | (8.218)

Now we can study the group of isometries of E%. This is the group of transformations T : E¢ — E? (not
necessarily linear!) that preserves these distances:

dist(T(p), T(p")) = dist(p,p') (8.219)

We denote it as Euc(d) and refer to it as the Fuclidean group. We have defined d-dimensional Minkowski
space M1 as a vector space, but we can equally well consider an affine Minkowskian space to be a torsor
for M*4~! equipped with quadratic form on p’ — p = v given by

v-v = v'nvY (8.220)

so the “distance squared” between two points is now dist(p,p’)? = v - v. Considered as an affine space we
define the Poincaré group as the group of transformations T : MY 9=t — pMbd—! (not necessarily linear)
preserving the quantity v - v.
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Now that we have some examples of torsors it is quite interesting to consider continuous families

of torsors. We will illustrate this with several examples

1. Consider the exponential map
m:R— St (8.221)

m(z) := e2™? (8.222)

where we consider S! to be the set of complex numbers of modulus one. The fiber
over z € S' is defined to be the pre-image:

7 2) := {z € R|e¥® = 2} (8.223)

For z € 77 1(2) we can write
1

T = :
27

logz (8.224)

but there are many branches of the log so this expression is ambiguous. A choice of
a point in the fiber determines a choice of branch in the log. Suppose z is given and
let zg be some a solution to the equation

2T — 4 (8.225)

Then any other solution to the equation is of the form x¢+n for n € Z and conversely
every solution lies in the Z-torsor xo + Z. Now, in a way we will make precise below,
the torsor varies continuously as z varies continuously. Note that, locally, if we vary
z along a small continuous path in the circle then we can make a continuous path of
real numbers xg in the fiber. So, locally, there is a neighborhood U of zy and in that
neighborhood we can write a homeomorphism

o1 U) - UXT (8.226)

However, we cannot identify R globally with S x Z. Note that R is connected while
S x Z is not.

2. Here is another way of thinking of the previous example, together with a generaliza-
tion. Let

P:={(z,y)ly € (Z+2)} CR? (8.227)

This subset of R? is denoted in Figure 12. We have an obvious projection map

7 : P — R with #(z,y) = x. The fiber of this map is the Z-torsor Z + x, by
definition.

Now note that P is invariant under translation by integers in the Z direction

¢(n, (,y)) = (x +n,y) (8.228)

If we quotient by this Z-action we get a spiral in the cylinder with periodic coordinate
x. We can identify the spiral with R (for example, by projection to the y-axis). We

can identify [z] € R/Z with the circle. With these identifications p(y) = [x] where
627riy — 627Ti$‘
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3. The previous picture can be generalized by considering the line y = kx for & # 0
and all its translates under by integer shifts of z. The resulting space P, can be
quotiented by the same action as (8.228) to give again a spiral Py in a cylinder with
slope k. The fiber of w : P, — S' is the Z-torsor « + kZ where the Z action is by
translation by integer multiplets of k. Again the spiral can be identified with R by
projection to y. Again the quotient of the z-axis by integer translation is R/Z = S?.
Now p(y) = [x] with €™ = ™% For k = 0 the analog of P, is the union of
translates in the y-direction by integer shifts of the z-axis. The quotient by integer
shifts in the z-direction is the product S* x Z.

4. Let us return to our example 7 : SO(3) — S2. Referring to our discussion above we
saw that for each k € S? the fiber

7t (k) (8.229)

is a principal homogeneous space for SO(2): It is the set of rotations that take n

to k. But there is no canonical identification of this torsor with the group elements

SO(2) that varies continuously with k and includes k = +n.

5. Generalizing the previous example, let H be a subgroup of any group G. Consider
the projection from G to the set of left H-cosets:

m:G—G/H (8.230)
defined by 7(g) := gH. Note that the fibers of a coset gH are:
Y gH) = gH (8.231)

Note: On the LHS of (8.231) gH is best thought of as a point in the homogeneous
space G/H. On the other hand, on the RHS, gH is the fiber of the map 7, more
naturally thought of as a subset of G. The subset gH C G can be put into 1-1
correspondence with H, but not in any natural way. While it is identified with H

as a set, it is not identified as a group because there is no natural element in gH to
identify with the unit in H.

The above examples are special cases of an extremely important idea in mathematics
- that of a principal fiber bundle. In the language of this section, a principal G-bundle is a
continuous family of G-torsors. Before giving the formal definition we look at one important
special case: Let X be any topological space. Consider the product space P = X X G.
This has two properties which will be key to the generalization:

1. There is a free right G-action: (z,g) - go := (2, 990)-

2. There is a surjective continuous map 7 : P — X given by projection on the first
factor such that

m(p - go) = m(p) (8.232)

so that the G-action is transitive and free on the fibers.
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In a principal G bundle we generalize so that the above is the correct model locally but
globally the situation can be twisted.
Here is the formal definition:

Definition: Let G be a topological group. A principal G-bundle is a continuous surjective
map of topological spaces 7 : P — X, where P is called the total space and X is called the
base space such that

1. There is a continuous and free right G action on P with

m(p-g) =n(p) (8.233)

so that the G action is transitive on the fibers of 7, namely, on the sets 7—1(z) for

r € X. In other words, the fibers 7—1(x) are G-torsors. !9

2. m: P — X satisfies “local triviality”

The “local triviality” condition means, intuitively, that for any point in the base z € X
there is a neighborhood that “looks like” the direct product example discussed above. This
is the technical way of implementing the idea that the torsors “vary continuously.”

Technically, we require that for all x € X there is a neighborhood U, C X with a
homeomorphism ¢y, : 771 (U,) — U, x G such that

T Uy) 2esu, x @ (8.234)

commutes, where 7’ is the canonical projection map onto the first factor. Moreover, we
require that ¢y, is a G-equivariant map where we use the natural right G-action on the
Cartesion product U, x G: Namely, go acts by (y,g) — (y,990) for y € U,. Thus, the
G-equivariance requirement states that if p € 7= (i) and ¢y, (p) = (v, g) then

bu, (p - 90) = (¥,9 90) - (8.235)

If we impose some mild topological conditions on X then we can replace the set of
“local trivializations” {(Usz, ¢z)}zex by an more manageable set given by an atlas {U,} of
open covers of X. That is we have a collection {(Uy, ¢a)} Where U, are open sets covering
X and

bo i T N Uy) = Uy x G (8.236)

are G-equivariant homeomorphisms and « ranges over some indexing set. If X is compact
it can be taken to be a finite indexing set.

19T herefore, if X has more than one point the G-action is not transitive on all of P.
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Given a collection of local trivializations {(Uy, ¢q)} it is interesting to consider how
they compare on patch overlaps U,z := U, NUg. We have the diagram

—1

b
Ung % G —L o 1 Ung) ~ 22 Upg x G (8.237)

ST

where here gzﬁ[;l should, strictly speaking, be written as (dg| -1, ﬁ))_l and ¢, should,
strictly speaking, be written as ¢a|ﬂ_1(ua 5)- We define the transition function

Gap :Uapg X G = Upp x G (8.238)
to be the map

bap = (Balr-1(1p) © (D8lr-10405) " (8.239)

Note that ¢,z is a G-equivariant map. We will now use G-equivariance to cast ¢,z in a
useful form.
For any set X consider a G-equivariant map

F:XxG—XxG (8.240)
such that
XxG-Lt-XxG (8.241)
\X

that is, such that n(F(x,g)) = n(z,g) := x. Therefore F(z,g) = (z, f(z,g)) where f :
X x G — G is a map and the G-equivariance of F' means that f(z,gg0) = f(z,g9)go. But
this implies that f(x,g) = h(x)g where h : X — G is just some map. (Set h(z) = f(x,1).
In other words F' must be of the form F(x,g) = (z,h(z)g). If F' is continuous, smooth, ...
then A will be continuous, smooth, ...

Now, applying the previous paragraph we see that ¢,3 must have the form:

bag : (x,9) = (2, gap(x)g) x € Uap (8.242)

for some continuous function

Jap - uag — G (8.243)

The G-valued functions g.p are called clutching functions.

It follows from the definition (8.239) of the transition functions that g,s(z) = gga(z) ™

and that on triple overlaps U,gy := Uy NUg N U,

9a8(2)98(2)gya(z) = 1 x € Unpy (8.244)

a condition called the cocycle condition.
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One virtue of using the data of an atlas {U,} and a set of continuous clutching maps
9ap : Uap — G satistying gns = ggi and the cocycle condition on triple overlaps is that one
can construct a principal G bundle by a gluing construction. One begins with the disjoint
union I, (U, x G) and then takes P = Il,(U, x G)/ ~ where the equivalence relation
identifies, for each x € Uyp a point (x,g) € Uy x G with (x, gag(2)g) € Us X G.

We now give a number of examples of principal bundles

Examples:

1. Let X be any topological space and G any topological group. Then P = X x G with
7 : (x,g9) — x is a principal bundle. A bundle of this form is known as the trivial
bundle.

2. Let H C G be a Lie subgroup of a Lie group G. Then 7 : G — G/H is a principal H
bundle over the homogeneous space X = G/H. (Note the free right H-action that
commutes with 7 is g — ¢ - h so that 7(g) = gH = w(gh).

3. Returning to our discussion of the SO(3) action on S?, 75 : SO(3) — S? defines a
principal SO(2) bundle over S?

4. Similarly, recalling the action of SU(2) on CP! and choosing some base point on CP*
we get a map 7 : SU(2) — CP! defining a principal U(1) bundle over CP! = §2,

5. The previous example has a nice generalization. Consider the finite-dimensional
Hilbert space # = C™*! and consider the unit sphere in H,

S(H) ={¢ e H[{¢,¢) =1} (8.245)

This is the set of normalized vectors. In quantum mechanics with a finite dimen-
sional Hilbert space one might try to represent physical states by such a unit vec-
tor ©. Writing out the components of ¢ in real and imaginary parts shows that
S(H) = §?+1 ¢ R?"*2. Now, in quantum mechanics we are instructed to identify
statevectors that differ by a phase 1) ~ z4 for |z] = 1. The quotient of S(#) by this
U(1) action is just CP". One can check the local triviality so that

w:S(H) — CP" (8.246)
is a principal U(1) bundle.

6. Principal G-bundles Over The Clircle. Let G be a discrete group. Then R x G is
the trivial principal G- bundle over R. We can make a more interesting bundle by
considering the left Z-action defined by choosing an element gg € G and defining for
n e Z:

¢ (n, (z,9)) = (x +n, g5 9) (8.247)

so equivalence classes satisfy: [(z,g)] = [(z + n,g{g)]. The quotient P = (R x G)/Z
by this action is the total space of a principal G-bundle over S'. The projection map
is

w([(z,9)]) = ¥ € S (8.248)
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and the right G-action is
[(z,9)] - g = [(z, 99)] (8.249)

Note well that even if GG is nonabelian this is well-defined because the equivalence
relation defining [(x, ¢)] is defined by a commuting left G-action.

Another way to describe Py, is to consider the trivial bundle [0,1] x G and divide

by an equivalence relation where (0, g) is identified with (1, gog). We will say more

about these bundles below. &Elaborate more on
this. A figure would

help. &
7. Our examples above of spirals in cylinders projecting to the circle are principal G = Z-

bundles of the form P, where go =k € Z.

8. Another important special case of the general construction of the principal G bundles
P,, over the circle concerns the case where G = py. Again, we view S! as the set
of complex numbers of unit norm and let gy = exp[—27i/N]. We can then define a
one-one map:

©: Py — S (8.250)
via
2riz/N
e([(z,Q)]) = ¢/ (8.251)
As z ranges from 0 to 1 the complex number e2mz/N - covers only an arc of angle

2 /N in the circle. But then the N** roots of unity ¢ € py fill out the rest of the

circle, so the map ¢ is in fact both surjective and injective. It can also be shown to

be continuous. We now have a commutative diagram:

@
Py, — 5
Sl

where mo(w) = w. So the fiber 7, !(2) is the set of N** roots of z. Similarly, our

(8.252)

example with G = Z and k = 1 is the geometry behind choosing a branch of the
logarithm.

A map of G-torsors, or, more properly, a morphism of G-torsors is a map that preserves
the mathematical structure of being a G-torsor. So, if X} and &X» are two G-torsors then a
morphism of G-torsors is a map

P X — Xy (8.253)
such that
V(-9)=vY) g (8.254)

for all y € Xy. In other words, v is equivariant.
A bundle map between two principal G-bundles, or, more properly a morphism of G-
bundles is a continuous map that preserves fibers and restricts on fibers to a be a morphism
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of G-torsors. In diagrams, if ¢ is a bundle map between two principal G-bundles P; and
P, then ¢ : P| — P» is a map so that it preserves fibers, meaning that:

Py i>P2
X

commutes. That is m2(¢(p1)) = mi(p1) for all py € P. Moreover, the map must be G

(8.255)

equivariant, or a morphism of torsors on the fibers, so that 120

Y(p1-g) =)y (8.256)

If there are bundle maps 1 : P, — P, and 9 : P» — P; whose composition is the
identity then the bundles are said to be isomorphic bundles. As an exercise below you
prove that morphisms of principal bundles are always isomorphisms.

Remarks:

1. If a principal G-bundle 7 : P — X is isomorphic to the trivial bundle then it is said
to be trivializable. Note that two different trivializations 1, and 19 of a trivializable
bundle will differ by a continuous G-equivariant map F': X x G — X x G. We have
a diagram very similar to (8.237):

2 xxa (8.257)

so that 11 = ¥ o F. As we have seen above F(z,g) = (z,h(z)g) is governed by
a continuous map h : X — G. It can very well happen that the continuous maps
Map(X,G) has nontrivial topology, so that there can be topologically inequivalent
trivializations of a trivializable bundle. For example, we can consider a U(1) bundle
over the cylinder and if a “vortex” is located in the cylinder the trivialization of the
principal U(1) bundle over the two ends of the cylinder will differ by a trivialization
differing by some nontrivial element of (U (1)) = Z. Similarly, considering SU(2)
bundles over S x [0, 1] if an “instanton” is located in interior then the SU(2) bundles
on the boundary copies of S3 will be trivializable but the trivializations will differ
by a nontrivial element of 73(SU(2)) = Z. This is one reason why it is actually
important to distinguish a trivial bundle from a trivializable bundle.

2. For other examples of how the distinction between trivializable and trivial can have

physical implications in condensed matter physics see 12! .

120The reader familiar with the general theory of fiber bundles will note that (8.255) alone serves as the
definition of a bundle map for a fiber bundle. But a principal bundle has more structure, and for a morphism
of principal bundles we require the additional condition (8.256).

121gee G. Moore, “A Comment On Berry Connections,” e-Print arXiv:1706.01149 for some examples.

- 177 —



3. Omne can show that the principal U(1) (8.246) is a nontrivial bundle. A consequence
(from a theorem we prove below) is that one cannot continuously choose a phase of
a statevector for the entire family of pure states on a Hilbert space.

Let us return to our example of 7 : Py, — S1. Denote the equivalence classes
[(z,9)]g0 = [(x+n,909)]g, Wwhere we added a subscript g to emphasize the dependence on
go- Note that the following diagram commutes for all n € Z: commutes:

RxG-Y>RxG (8.258)

¢5Lgo>l l(ﬁ%hgohl)
Rx G ﬂ)R x G

where ¢y, : (z,9) — (z,hg) and ¢(9) is the Z-action defined in equation (8.247) above.
This implies that ¢, descends to a well-defined bundle map Py, — Pgp-1:

wh : [(xvg)]go = [(l':hg)]hgoh*l (8'259)

Clearly v;,-1 defines the inverse bundle map.

Therefore, the isomorphism classes of principal G bundles over the circle are labeled
by conjugacy classes of elements of G. That is, Py, and Ppg -1 are isomorphic principal
G-bundles over S'.

Associated Bundles

Finally, let 7 : P — X be a principal G' bundle and let Y be any G-space with a left
G-action. Then we can define a GG action on P X Y:

dg(py) = (p-g " 9-y) (8.260)

Notice this is a left G-action. The quotient space, usually denoted P x5Y has a well-defined
continuous map

F:PxgY = X (8.261)

defined by 7([p,y]) = m(p). The fibers of 7 can be identified with the space Y. One way to
understand this is to use the local trivialization on the principal bundle to reduce to the
case where P =U x G is a trivial bundle. Then the equivalence class of ((x,g),y) always
has a unique representative of the form ((z,1),%’). Therefore we can identify

UXG)xqgY (8.262)

with U x Y. An answer to an exercise below has another viewpoint.
Note that the fibers of 7 are not G-torsors but more general G-spaces. The map

FiPxgY = X (8.263)

defines what is called an associated bundle to the principal bundle w: P — X by the G-set
Y. Note that P X Y in general does not have a right action by G.
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We can also describe the associated bundle in terms of gluing if we are given an atlas
{U,} and a set of clutching functions gng : Usp — G for P. Then the associated bundle is
obtained by gluing together sets of the form U, x Y on overlaps U,z via:

éaﬁ : (l',y) — (xagaﬁ(x) ' y) (8'264)

where x € Uyp.
Examples

1. If the G-action on Y is trivial then P xg Y =2 X X Y in a natural way.

2. Let G = g, and 7 : P_; — S! be the nontrivial principal G-bundle associated with
taking the square root. Let Y = [—1,1] be the G-space where the nontrivial element
of uo takes y — —y. Then the associated bundle

(P-1 xY)/p2 (8.265)

is easily seen to be the Mobius band.

3. Associated Vector Bundles An important special case of the associated bundle con-
struction is the case where Y = V is a vector space which is the carrier space of a
linear representation of G. Then we speak of “the vector bundle associated to P via
the representation (T,V).” If T : G — GL(V) is the homomorphism of the represen-
tation then the gluing maps for gluing U, x V to Uz x V over the intersection U,g
are:

(@, 0) ~ (2, T(gap(2))(v)) (8.266)

for x € Uyp and v € V.

4. The Magnetic Monopole Line Bundles. Consider the principal U(1) bundle 7 :
SU(2) — SU(2)/U(1) = CP! = §2 viewed as a principal U(1) bundle over S2.
Consider Vi the one-dimensional representations of U(1) associated to the funda-
mental and its complex conjugate. The associated bundles

,Ci =P XU(I) Vi (8267)

are complex line bundles. For a very nice alternative description of these line bundles
in terms of the eigenlines of the family of Hermitian operators 5-& with 5 € R? — {0}
see the exercise below. These bundles play a huge role in physics. One frequently
occurring instance stems from the following fact. Consider a continous family of
Hermitian Hamiltonians Hy parametrized by some manifold of control parameters
s € 8. 22 Suppose there is a level crossing at some point s,. Generically the level
crossing will involve two simple eigenlines. Then one can study the crossing behavior
locally near s, focussing on the two-dimensional space spanned by these eigenlines.

122F6r more on this see LAUM.
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One can show that the family of Hamiltonians on the two-level system is of the form
5. & with 5 € R3 with the level crossing happening at 5= 0. Restricting to a sphere
surrounding § = 0 the bundle of +1 eigenlines are isomorphic to the line bundles L.
See the exercise below.

Sections Of Bundles

If 7 : E — X is a principal bundle, or an associated bundle to a principal bundle (or
any fiber bundle, if you know what that means) then we define a section of w to be a map

s: X = F (8.268)
which is a right-inverse to m. That is
mos(z) ==z Ve e X (8.269)

Note that s(z) is always an element of E which is in the fiber of 7 : E — X above z. One
must be careful with this terminology because often in bundle theory when one speaks of
a section it is implicitly assumed that one is discussing a continuous section. In this case
s : X — FE must be a continuous map.

Because of local triviality, continuous sections always exist locally. That is, near any

x € X there will be continuous sections of the bundle 7= (/) — U for some neighborhood
U of x. It is less obvious what happens globally. In fact, we have

Theorem A principal G-bundle 7 : P — X is isomorphic to the trivial bundle 7 : X x G —
X iff there is a globally defined continuous section.

Proof: Suppose there is a globally defined section s : X — P. Then let
Yv: X xG—P (8.270)

be defined by ¥ (x, g) := s(x)g. One checks this is a bundle morphism. Conversely, suppose
there is a bundle morphism ¢ : P — G x X. Then for each € X there is a unique s(x) € P
so that ¢(s(x)) = (z,1g). So: A continuous section can be viewed as a continuous choice
of basepoint to identify the G-torsor with the group G. #

If we apply the above theorem to the bundles 7 : Py, — § ! for a discrete group we
find that they are trivializable only when gg = 1¢.

The situation is rather different for associated bundles. For example if Y = V' is a linear
space then the space of sections is always nonempty and in fact is an infinite dimensional
vector space. One way to see that it is nonempty is simply to take the s(x) = [(p,0)] where
p is any point in 771 (z). In general, if gos : Uapg — G are the transition functions for P
and Y = (T,V) is the representation space of G with T': G — GL(V') then

(,va) ~ (z,T(gap(z))vp) x € Uap (8.271)
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defines the gluing rules for gluing U, x V to Ug x V. (See the exercise below.) A section
of a vector bundle can thus be identified with a collection of continuous maps s, : Uy, — V
such that for x € U,z we have

sa(x) = T(gap(x))sp(x) (8.272)

Using partitions of unity it is easy to construct infinitely many sections.
Remarks:

1. Going back to the line bundles £+ — S? discussed above, these bundles first entered
physics in an important way in P.A.M. Dirac’s magnificent 1931 paper that observed
that the wave function of an electron in the presence of a magnetic monopole of
magnetic charge +1 must be a section of £1. They have played an important role
ever since.

2. Going back to the bundles S(#) — CP"™. Since the case n = 1 is nontrivial, all these
bundles must be nontrivial. Now, a section of such a principal U(1) bundle would
be, physically, an identification of a normalized wavevector ¢ for each pure state p.
The nontriviality of the principal U(1) bundle means there is no continuous way to
do this for all pure states.

Finally, we state a very nontrivial fact about how principal bundles can be classified.
It uses two preliminary remarks.

The first remark is that if f : X — X’ is a continuous map and 7’ : P’ — X' is a
principal G bundle then we can form a principal G-bundle 7 : P — X by declaring P to
be the set of pairs (p/,z) € P’ x X such that f(z) = #/(p’). For such a pair we define
7(p/,x) :== x. It is not hard to see that the fiber of 7 is naturally identified with the
G-torsor (7')~1(f(x)) and that the local triviality condition holds. The bundle 7 : P — X
is called the pullback of ©’ : P' — X' via f and is sometimes denoted f*(P’).

As another preliminary remark, let Hy, Ho be two commuting subgroups of G. Then
there is a right Hs action on G/H; and we have an Hj-bundle

W:G/H1—>G/(H1 XHQ) (8273)

Classification Of Isomorphism Classes Of Bundles. We commented above that the projec-

tions to homogeneous spaces 7 : G — G/H give examples of principal H-bundles. and
if Hy,Hy commute then we can generalize to give principal Hy bundles = : G/H; —
G/(Hy x Hy). There is a sense in which all principal G bundles are related to such ex-
amples. We consider for simplicity the principal U(k) bundles. One can generalize the
Grassmannian of k-planes Gry(CY) to the Grassmannian of k-planes in a separable Hilbert
space Gry(H). There is, in fact, a sense in which this is a limit of Grj(CY) for N — oo.
Recall that we can model Gry(CY) as the homogeneous space U(N)/(U(k) x U(N — k)
so we can talk about the principal U(k) bundle U(N)/U(N — k) — Grp(CV). The quo-
tient U(N)/U(N — k) can be interpreted as the space of k-dimensional subspaces of CV
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equipped with an ordered ON basis. Therefore, there is an analogous space Ey(H) of
k-dimensional subspaces of H with an ordered ON basis, and a principal U(k) bundle
7 Ep(H) — Gri(H). One can show that isomorphism classes of U(k) bundles over X are
in 1-1 correspondence with homotopy classes of maps X — Gry(H).

Exercise Bundle Maps For Trivial Bundles
Show that the most general bundle map from the trivial bundle 7 : X x G — X to
itself is of the form:
¥ (x,9) = (x,h(z)g) (8.274)

for some continuous map h: X — G.

Exercise Morphisms Of Principal G-Bundles Are Isomorphisms

a.) Show that any morphism of G-torsors is an isomorphism of G-torsors.

b.) Extend this to show that any morphism of principal G-bundles is an isomorphism
of principal G-bundles.

Exercise Fibers Of An Associated Bundle
Show that the fibers of the associated bundle 7 : P x5 Y — X described above are in
1-1 correspondence with the space Y. 123

Exercise The Monopole And Anti-Monopole Line Bundles
a.) Show that if we consider the associated line bundle to the U(1) principal bundle
7:SU(2) — SU(2)/U(1) = S? with equivalence relation

-1
(0, 2))4 = [(u (CO 2) SN (5.275)

128 Answer: Let us define a map f : #'(z) — Y. To do this we must choose an element po € 7 *(z).
Then if [p,y] € #7'(z) it follows that m(p) = x and hence p = po - go for some go. Then we define
flo, vl = g0 1. 4. The reader needs to check that this map is well-defined. Since we can choose any y € Y’
the map is clearly surjective. Finally note that [p1,y1] = [p1, y2] implies that y; = y2 since the G-action on
P is free. Therefore the map is also injective. Note that the map does depend on a choice of py for each x,
so there is no canonical identification of the fibers with Y.
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with v € SU(2) and z € C, and the U(1) action is shown for ( € U(1). Parametrizing, as

usual, SU(2) elements as
_[a B
u= (—ﬁ a) (8.276)

we have a well defined map from SU(2) xy 1y C to C? given by

[(u, 2)]4 — (f‘;z> (8.277)

Therefore, there is a well-defined map
¥ : SU(2) xpay C — S x C? (8.278)
given by

For a fixed value of 7(u) the image will be a complex line in C2. It is the complex line
through
oz
- 8.280
() (32:0)

b.) Similarly, show that if we consider the associated line bundle with equivalence

Wt ([, 2)4) = (w(w), < “ )) (8.279)

for any choice of z € C*.

relation

B ¢cto)
[(u, 2)]- = [(u< 0 C) (1)) (8.281)

we also get a map

az

o ([, 2)4) = (m(w), (ﬁ'z)) (8.282)

Again, the image of this map, for fixed 7(u) will be a complex line in C2.
c.) Show that if # € S? then P(%) := 3 - & has eigenvalues +1.
d.)Now, using the usual spherical coordinates in R3:

z! = sinf cos ¢ z? = sinfsin ¢ 23 = cos (8.283)
show that
cos sinfe”?
PG = , 8.284
v (sin 0el¢ —cosf ) ( )

and that the eigenline defined by
P(&)y =1 (8.285)

cosf/2
(eid’ sin 9/2) (8.286)

is the line in C? proportional to
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e.) Similarly, show that the eigenline defined by

P(2)) = —1p (8.287)

—sinf/2
<ei¢ cos 9/2) (8.288)

f.) Using the parametrization of SU(2) by Euler angles

is the line in C? proportional to

u= exp[—%q§a3]exp[—%902]exp[—%1/}03] (8.289)

Thus, the lines (8.277) and (8.286) are the same and the lines (8.282) and (8.288) are
the same. We can thereby view the fibers of the associated line bundles to 7 : SU(2) — S?
associated via the charge £1 representations of U(1) with the eigenlines of P(%).

Exercise Transition Functions For Associated Vector Bundles

a.) Suppose that a principal G-bundle 7 : P — X has a chart with transition func-
tions (8.242). Show that we can define natural local trivializations of an associated vector
bundle associated to the representation 7' : G — GL(V') for a vector space V. Thus the
trivializations are maps

bo i T Uy) = Uy XV (8.290)
They are defined by declaring that if ¢, (p) = (x,g) then
$a(((p,0))) = (2, T(g)v) (8.291)
b.) Show that on chart overlaps x € U,z we have
Ga 0 05" (2,v8) = (2, T(gap(x))vp) = (2, va) (8.292)

c.) Conclude that a globally well-defined continuous section of the associated bundle
is equivalent to a set of continuous maps s, : U, — V such that for x € Uyp

Sa(r) = T(gap(2)) (8.293)

9. Centralizer Subgroups And Counting Conjugacy Classes

Definition 9.1: Let g € G, the centralizer subgroup of g, (also known as the normalizer
subgroup ), denoted, Z(g), is defined to be:

Z(g) := {h € Glhg = gh} = {h € G|hgh™' = g} (9.1)
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Exercise Due Diligence
a.) Check that Z(g) C G is a subgroup.
b.) Show that ¢g" € Z(g) for any integer n.
c.) If g1 = gogagy " show that Z(g1) = goZ(g92)g5 -
d.) Show that
2(G) = NyecZ(9) (9.2)

Exercise Is Z(g) always an Abelian group?
a.) Show that Z(1) = G. Answer the above question.
b.) Show that the centralizer of the transposition (12) in S,, for n < 3 is isomorphic to So.
c.) Show that the centralizer of the transposition (12) in S, for n > 4 is isomorphic to
52 X Sn_g.

Recall that C(g) denotes the conjugacy class of g. Using the Stabilizer-Orbit theorem
we can establish a 1-1 correspondence between C(g) and the cosets of G/Z(g). As in the
proof of that theorem we have a map ¢ : G/Z(g) — C(g) by

¥ g:Z(9) = gig9; ' € C(9) (9.3)

It is 1-1 and onto.

Since conjugacy is an equivalence relation G decomposes as a disjoint union of the
orbits, which in this case are the conjugacy classes. When G is a finite group this decom-
position leads to some useful theorems based on simple counting ideas. When |G| is finite
we can usefully write:

Gl= 3 o) (9.4)
conj. classes
The sum is over distinct conjugacy classes. What is ¢ in this formula? For each class we
may choose any representative element from that class.
Now, if G is finite, then by the above 1-1 correspondence we may write:

_ g
=z

which allows us to write the above decomposition of |G| in a useful form sometimes called

(9.5)

the class equation:

Gl= > ’Z|?9)| (9.6)

conj. classes
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Again, we sum over a complete set of distinct non-conjugate elements g. Which g we choose
from each conjugacy class does not matter since if g1 = hgoh ™! then Z(g1) = hZ(go)h™*
are conjugate groups, and hence have the same order. So, for each distinct conjugacy class
we just choose any element we like.

9.1 0 + 1-Dimensional Gauge Theory

Recall the definition above of a morphism of bundles, and an isomorphism of bundles. An
automorphism of a principal G-bundle 7 : P — X is an isomorphism of the principal bundle
with itself. Since the composition of automorphisms is an automorphism, and automor-
phisms are invertible, and the identity is an automorphism the set of automorphisms form
a group under composition, called the group of automorphisms of the bundle m : P — X.
Recall the bundles P, — S1 determined by the group element gyg. As we showed above,
the invertible bundle maps are of the form vy, : Py, — Pp,g 1. Therefore, the isomorphism
classes of G-bundles over the circle are in 1-1 correspondence with the conjugacy classes in
G, and the group of automorphisms of Py, is precisely the centralizer group Z(go).

A gauge theory is a physical theory where physical quantities are defined by summing
over principal G-bundles with connection. We haven’t defined the term “connection,” but
for principal G-bundles with discrete group there is a unique connection so we can discuss
those here. ?* In the case of 0 4+ 1 dimensional gauge theory a basic quantity of interest
is the “partition function” on a one-dimensional manifold. The only closed connected
one-dimensional manifold is the circle. So we have

Z(8') = F(Py) (9.7)

where the sum is over isomorphism classes of principal G bundles over the circle. and F

is a function on the set of such bundles, or equivalently, a function on all the principal
G-bundles that only depends on the isomorphism class. We call this a gauge invariant
Boltzman factor. The standard physical Boltzman factors involve curvature and holonomy.
In this setting there is no curvature, so F' should be proportional to a character of g in
some representation.

In gauge theory we must also divide by the “volume” of the group of automorphisms
of the bundle so

(9)

280 = X ifa)

for some character x,. We will see later from the orthogonality relations for characters

(9.8)

that the sum is zero unless p contains some copies of the trivial representation, so we might
as well take x,(g) = 1.

Now, with the choice F'(g) = 1 we can use the stabilizer-orbit theorem to rewrite our
partition function as:

1 1
Z(SY) = Z 7]~ !G\g;l (9.9)

124566 section 18 below for a discussion of gauge theory that uses minimal prerequisites and is sufficient
to understand this remark.
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We can interpret the second sum as a sum over all the G-bundles P, weighted by 1 and
divided by the full “volume” |G| of the gauge group. So

Z(5Y) = ‘1G|Z 1 (9.10)
Pg

Of course, by the counting formula above we see that Z(S!) = 1. The Hilbert space of
this theory is one-dimensional. These results might seem to be unexciting, but some of the
conceptual ideas we have just used are very powerful and do produce exciting results in
richer contexts.

9.2 Three Mathematical Applications Of The Counting Principle
In this section let p be a prime number.

Application 1:
Theorem: If |G| = p" then the center is nontrivial, i.e., Z(G) # {1}.

Proof: Observe that an element g is central if and only if C(g) = {g} has order 1. Now
let us use the class equation. We can usefully split up the sum over conjugacy classes as a
sum over the center and the rest:

G| = |Z(G)| +)_Icil (9.11)
i
where the sum over ¢ is a sum over the distinct conjugacy classes more than one
element. As we noted above, by the stabilizer orbit theorem

|G|
1Z(g:)]

where g; is any element of the conjugacy class C;. But, for these conjugacy classes |Z(g;)| <

|Ci| =

(9.12)

|G| and by Lagrange’s theorem, and the assumption that p is prime, |Z(g;)| = p"~™ for
some n; < n. Therefore, the second term on the RHS of (9.11) is divisible by p and hence
PlIZ(G)] &

Application 2: Cauchy’s theorem:
In a similar style, we can prove the very useful:

Theorem: If p divides |G| then there is an element g € G, g # 1 with order p.

&Proof 1 is not
really an
application of the
class equation,
rather it is an

X = {(917 st 7gp)‘gl o 'gp = 1} - Gp (913) application of

stabilizer-orbit. &

Proof 1: This is a nice application of the stabilizer-orbit theorem. Consider the set

Note that the cyclic group 7Z, acts on this set with the standard generator acting by

w'(glv"'vgp) = (gpvghg?a”'vgp—l) (914)
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A fixed point of the Z,-action corresponds to an element of the form (g, ..., g) such that
gP = 1. If g # 1 then this corresponds to an element of order p. Now, by the stabilizer-orbit
theorem, the orbits of any Z, action (on any set) have cardinality either 1 or p. Let Ny be
the number of orbits of length one and let IV, be the number of orbits of length p. Note
that the order of X is just |G|P~! since one can always solve for g, in terms of g1, ..., gp—1.
Then, by the counting principle we have:

IGIP~! = N1 + pN, (9.15)

It follows that p divides Ny. Also Nj > 0 because (1, ..., 1) is a fixed point of the Z, action.
Therefore N1 = kp > 1 and hence there are other fixed points, i.e. there are group elements
of order p. In fact, there must be at least (p — 1) of them. &

Proof 2: We can also prove Cauchy’s theorem using induction on the order of G, dividing
the proof into two cases: First we consider the case where GG is Abelian and then the case
where it is nonabelian.

Case 1: G is Abelian:
If |G| = p then G is cyclic and the statement is obvious: Any generator has order p.

More generally, note that if G is a cyclic group Z/NZ with N > p and p divides N then
W € Z/NZ has order p. This establishes the result for cyclic groups.

Now suppose our Abelian group has order |G| > p. Choose an element gy # 1 and
suppose that gy does not have order p. Let H = (go). If H = G then G would be cyclic
but then as we just saw, it would have an element of order p. So now assume H is a proper
subgroup of G. If p divides |H| then H (and hence G) has an element of order p by the
inductive hypothesis. If p does not divide |H| then we consider the group G/H. But this
has order strictly less than |G| and p divides the order of G/H. So there is an element aH
of order p meaning a? = gg for some x. If g5 = 1 we are done. If not then there is some
smallest positive integer y so that g3¥ = 1 but then a¥ has order p. We have now proved
Cauchy’s theorem for abelian groups.

Case 2: G is non-Abelian: By the class equation we can write

G|
1Z(9:)]

If p divides the order of the centralizer Z(G) then we can apply our previous result about

Gl =12+ (9.16)

Cauchy’s theorem for Abelian groups. If p does not divide Z(G) then there must be some g;
so that p does not divide % but this means p divides |Z(g;)|, but now by the inductive

hypothesis Z(g;), and hence G has an element of order p. This completes the proof. &

Application 3: Sylow’s theorem:
Finally, as a third application we give a simple proof of Sylow’s first theorem: If p is
prime and p* divides |G| then G has a subgroup of order p*.

— 188 —

&Proof 1 is not
really an
application of the
class equation,
rather it is an
application of
stabilizer-orbit. &



Proof 1: The first proof is again an application of the stabilizer-orbit theorem. 2> Suppose

|G| = p**"u with ged(u,p) =1 and r > 0 and k > 0. We will show that G has a subgroup

of order p*. Consider the power set P(G), namely the set of all subsets of G, and consider

the subset of P(G) of all subsets (not subgroups!) of G of cardinality p*. Call this set of
subsets P(G,p"*). The cardinality of P(G,p"*) is clearly:

k+ru pr—1 k+7“u i1

N P R | (0.17

Jj=1

In the product we have a ratio of rational numbers of the form p**"u/j—1 (the denominator
is a special case of this form). Any rational number r can be expressed as a product of
5 prime 7%7(") where the vs(r) € Z is known as the valuation of r at p
and the product runs over all primes p. Now, given a specific prime p, note that if a,b are

prime powers r = []

relatively prime to p then

(9.18)

and hence for such rational numbers 7 the integer v,(r) = 0 for the prime p. It follows that
p" divides P(G, p¥) and that it is the maximal power which does so.
Now note that G acts on P(G,p") via:

¢g: S g-S:={ghlh €S} (9.19)

where we are denoting an element of P(G, p*) by S. Consider the stabilizer subgroup GS
of any S € P(G, p¥). Note that if h € S then every element g-h € S for g € G5. (Why?
Because g-S = S if g € G°.) But this means that G° - h is a subset of S. Since the left-G
action is free

G5 =|G%-af < |S] =p* (9.20)

We now aim to show that some stabilizer group G° has order exactly p¥. This will be

our subgroup predicted by Sylow’s theorem. Suppose, on the contrary that no stabilizer
group has order p*. Then every stabilizer group satisfies \GS | < p*, and therefore it is
divisible at most by p*~!. Now, by the stabilizer-orbit theorem

Gl =1G%| - |O()] (9.21)

where O(S) is the G-orbit through S. Now pF*" divides |G| and if G¥ is divisible by at
most p*~! then p* divides |O(S9)]| for s > r. But now

PG = Y o) (9-22)
distinct orbits
If all the orbits on the RHS were divisible by p® with s > r then |O(S;)| would be divisible
by p® with s > r. But this is not true. Therefore, some orbit is divisible by p” and no
higher power. Therefore some |G| is divisible by p*, therefore |G°| = p¥. Since G° is a
stabilizer group it is a subgroup of G. #

125We are following the nice article on Wikipedia here.
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Proof 2: The more conventional proof is similar to that of Cauchy’s theorem. We work by
induction on |G|, and divide the proof into two cases:

Case 1: p divides the order of Z(G).: By Cauchy’s theorem Z(G) has an element of order
p and hence a subgroup N C Z(G) of order p. N is clearly a normal subgroup of G

(being a subgroup of the center of G) so G/N is a group. It is clearly of order p¥~!m.
So, by the inductive hypothesis there is a subgroup H C G/N of order p*~'. Now let
H = {g € G|gN € H}. Tt is not hard to show that H is a a subgroup of G containing N
and in fact H/N = H. Therefore |H| = p¥, so H is a p-Sylow subgroup of G.

Case 2: p does not divide the order of Z(G).: In this case, by the class equation p must

not divide |C(g)| = |G|/|Z(g)| for some nontrivial conjugacy class C(g). But that means
that for such an element g we must have that p* divides |Z(g)| < |G|. So Z(g) has a
p-Sylow subgroup which can serve as a p-Sylow subgroup of G. &

Exercise

If p* divides |G| with k > 1 does it follow that there is an element of order p¥? 126

Exercise Groups Whose Order Is A Square Of A Prime Number
If |G| = p? where p is a prime then show that

1. G is abelian

2. G=EZy X Ly or L.

Exercise
Write out the class equation for the groups S4 and Sj.

Exercise
Find the centralizer Z(g) C Sy, of g = (12...n) in S,.

Exercise

126 Apswer: NO! Z’; is a counterexample: It has order p* and every element has order p.
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Prove that if |G| = 15 then G = Z/15Z.

Exercise Groups whose order is a product of two primes

Suppose that G has order pg where p and ¢ are distinct primes. We assume WLOG
that p < gq. We now also assume that and p does not divide g — 1.

a.) Show that G is isomorphic to Z,.

Warning!! This is hard. 27

b.) Why is it important to say that p does not divide ¢ — 1?7 28

c.) Show that this result implies that if a nonabelian group has odd order then the
order must be > 21. (And in fact, there does exist a nonabelian group of order 21.)

10. Generators And Relations

The presentation (6.28) of the symmetric group is an example of presenting a group by
generators and relations.

Definition 10.1 A subset S C G is a generating set for a group if every element g € G

[4

can be written as a “word” or product of elements of S. That is any element g € G can

127 Answer. By Cauchy’s theorem we know there is an element a of order p and an element b of order q.
We can easily reduce to the case the center of G is trivial. In general the subgroup Z(G) must have order
pq,p,q, or 1. If Z(G) has order pg then a and b commute and G = Z;, X Zq = Zpq. 1f |Z(G)| has order p
or ¢ then G/Z(G) must be cyclic of order g or p, respectively. Hence by an easy exercise above G is cyclic.
This leaves us with the hard case where Z(G) = {1} is the trivial subgroup. Let us consider the conjugacy
classes of the powers of a, C(a), C(a?),.... Since Z(a) has order at least p and its order must divide pq and
it can’t be the whole group (since Z(G) = {1}) it must be that Z(a) = {1,a,...,a?~*} and hence C(a) has
order q. Indeed, for any element g € G that is not the identity it must be that Z(g) has order p or ¢ and
C(g) has order g or p. Now note that Z(a) D Z(a?) D ---. So, as long as a” is not one, it must be that
Z(a") = Z(a) and C(a") has order q. Now we claim that the different conjugacy classes C(a), C(a?),...,
C(aP™") are all distinct. The statement that these are distinct can be reduced to the statement that it is
not possible to have bab~! = a” for any x, so now we verify this latter statement. If it were the case that
bab~! = x then since the general element of the conjugacy class is b’ ab™/ the conjugacy class would have
to be {a,a”,a*",..., a(qfl)w}. But that set must be the set C(a) = {a,a?,--- ,a”" '} of p elements. Since
g > p it must be that b/lab™t = b2ab™72 where 1 < j1,j2 < (g — 1) and j1 # j2. So we have to have
bab™? = a for some 1 < j < (¢ —1). But then b’ # 1. But then such an element b’ would be in Z(a). This
is impossible. So we can never have bab™! = a” and hence C(a), C(a?),..., C(a?~') are all distinct. Now
the class equation says that

pg=1+(p-1)g+X

where X accounts for all the other conjugacy classes. As we have remarked these must have order p or ¢
and hence X = rp + sq for nonnegative integers r, s. But now

qg—1=rp+ sq

But this is impossible: If s > 1 the RHS is too large. So s = 0 but then p would have to divide ¢ — 1.
128 Answer: Consider p = 2 and g = 3 and note that Ss is not isomorphic to Z.
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be written in the form
g = Si - Si, (10.1)

where, for each 1 <k <r we have s;, € S.

Every group G has at least one generating set, namely G itself, but this is rarely useful.
A group is said to be finitely generated if there exists a generating set S that is finite. That
is, there is a finite list of elements {si,...s,} so that all elements of the group can be
obtained by taking products — “words” — in the “letters” drawn from S. For example, we
have shown above that the symmetric group is finitely generated by the transpositions.
Typical Lie groups such as SU(n) or SO(n, k) (over k = R, C) are not finitely generated.

A group is said to be presented by generators and relations if there is a generating
set § and a set of words R, in those generators - known as the relations - so that, in the
group R, = 1 and, moreover, all the identities of the form “word in the generators = 1"
are consequences of the relations R, = 1. That is, equalities between different words in
the generators can always be proven by repeated use of the identities R, = 1. '??
In general if we have a finitely generated group we write

G:<gl7"'7gn|R17"'RT> (102)

where R; are words in the letters of S which will be set to 1. ALL other relations,
that is, all other identities of the form W = 1 are supposed to be consequences of these
relations.

Remark: It is convenient to exclude the unit 1 from S so that we can reduce some
obvious redundancies in our words. Also we need to be careful about what we mean by
a word in the generators with letters drawn from S. Some people intend that such words
contain any integer power s” of any generator s € S, where s° = 1 and, if n < 0, this means
(s~HI"l. So if two consecutive letters are s"s™ we understand this as s"*™ for any integers
n, m. Alternatively, we can, for each generator s introduce another generator ¢, which will
play the role of s and then impose another relation st = ts = 1. A generating set that
contains such an element ¢ for every generator s is said to be symmetric.

Example 3.1: If S consists of one element a then F(S) = Z. The isomorphism is given
by mapping n € Z to the word a".

Example 3.2: The most general group with one generator and one relation must be of
the form:
(ala™ =1) (10.3)

1

where N is an integer and by replacing a — @~ we can assume it is a positive integer. As

an exercise, prove that this group is isomorphic to Zy and .

129Gee Jacobsen, Basic Algebra I, sec. 1.11 for a more precise definition. Note that if R, = 1 then also
gRog™' =1 and we can then insert g~'g between all the letters in R. to get another identity. And then
we can take products of expressions like gRog ' to produce new identities. Technically - using concepts we
will explain below - one considers the free group on the generating set. Then within that free group consider
the normal closure: The smallest normal subgroup of the free group containing all the words R,. Then the
group defined by generators and relations is the quotient of the free group by this normal subgroup.
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Example 3.3: Free groups. If we impose no relations on the generating set S then we
obtain what is known as the free group on S, denoted F(S). If S consists of one element
then we just get Z, as above. However, things are completely different if S consists of more
than one element. For example, suppose we have two elements a,b. Then F(S) is very
complicated. A typical element looks like one of

aMpm L g
LSS LN N2
e m N (10.4)
prigme ... gk
priig™m L Tk

where n;, m; are nonzero integers (positive or negative). Three nice general results on free
groups are:

1. Two free groups F(S1) and F(Sz) are isomorphic iff they have the same cardinality.
2. Nielsen-Shreier theorem: Any subgroup of a free group is free.

3. Every group has a presentation in terms of generators and relations. For the group
G we can consider the free group F(G) with S = G as a set. There is then a
natural homomorphism ¢ : F(G) — G where we take a word in elements of G and
map concatenation of letters to group multiplication in G. As we will see in Section
% below, the kernel of the homomorphism is a normal subgroup K(G) so that
G = F(G)/K(G) and K(G) are the relations in this presentation. This presentation
can be incredibly inefficient and useless. (Think, for example, of Lie groups.)

Combinatorial group theorists use the notion of a Cayley graph to illustrate groups
presented by generators and relations. Assuming that 1 ¢ S the Cayley graph is a graph
whose vertices correspond to all group elements in G and the oriented edges are drawn
between g; and go if there is an s € S with go = g1s. We label the edge by s. (If S is
symmetric we can identify this edge with the edge from g3 to g1 labeled by s~1.) For the
free group on two elements this generates the graph shown in Figure 13.

Example 3.4: Coxeter groups: Let m;; by an n X n symmetric matrix whose entries are
positive integers or oo, such that m; = 1, 1 <7 < n, and m;; > 2 or m;; = oo for i # j.
Then a Coxeter group is the group with generators and relations:

(515, 8n|Vi, 7 ¢ (s485)™9 =1) (10.5)

where, if m;; = oo we interpret this to mean there is no relation.
Note that since m;; = 1 we have
s2=1 (10.6)

7

Quite generally, a group element that squares to 1 is called an involution. So all the
generators of a Coxeter group are involutions. It then follows that if m;; = 2 then s; and
s; commute. If m;; = 3 then the relation can also be written:

S5i85jS; = S;55iSj (107)
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From Wikipedia, the free encyclopedia
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Figure 13: The Cayley graph for the free group on 2 generators a and b.

A theorem of Coxeter’s from the 1930’s gives a classification of the finite Coxeter
groups. 3% Coxeter found it useful to describe these groups by a diagrammatic notation:
We draw a graph whose vertices correspond to the generators s;. We draw an edge between
vertices 7 and j if m;; > 3. By convention the edges are labeled by m;; and if m;; = 3 then
the standard convention is to omit the label.

It turns out that the finite Coxeter groups can be classified. The corresponding Coxeter
diagrams are shown in Figure 14.

From Wikipedia, the free encyclopedia

Figure 14: Coxeter’s list of finite Coxeter groups. They are finite groups of reflections in some
Euclidean space.

The finite Coxeter groups turn out to be isomorphic to concrete groups of reflections
in some Euclidean space. That is, finite subgroups of O(N) for some N. That is, there is

130 or a quick summary see the expository note by D. Allcock at
https://web.ma.utexas.edu/users/allcock/expos/reflec-classification.pdf.
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some vector space RV and collection of vectors v; € RY with inner products

) (10.8)

(TS —2cos(m' :
1/7]

so that the group generated by reflections in the plane orthogonal to the vectors v;:

2v - v;

P, v uv— v; (10.9)

Vi - U5
is a finite group isomorphic to the Coxeter group with matrix m; ;. (Note that since
m;; = 1 we have v? = 2 and P,,(v) = v — (v - v;)v;.)

Note that, if P, is the Euclidean reflection in the plane orthogonal to v then P, o P,
is just rotation in the plane spanned by wvi,ve by an angle 20 where the angle between
vy and vy is . To prove this, note that P, o P,, clearly leaves all vectors in the plane
orthogonal to v1,vs fixed. Now represent vectors in a 2-dimensional Fuclidean plane by
complex numbers, but view C as a real vector space. WLOG take v = ¢'?. Then P, is the
transformation:

P,z —eMz (10.10)

Note that this is a linear transformation of real vector spaces: P,(a121+agz2) = a1 Py(z1)+
as Py (%) if a1,as € R. To check this formula note that if z = ' then P,(z) = —z and if
i6

z = ie" is in the orthogonal hyperplane to v then P,(z) = 2.

Now if v, = €%, a =1,2, it is an easy matter to compute:

z k — 2027
Doy _ o201 (Z2it27) (10.11)

_ Q2i(01-0)

So: The product of reflections in the hyper-planes orthogonal to two vectors at an angle
0 is a rotation by an angle 20 in the plane spanned by the two vectors.

We will meet some of these groups again later as Weyl groups of simple Lie groups.
We have, in fact, already met two of these groups! The case A,, turns out to be isomorphic
to the symmetric group S,,41. '*' In this case we have seen that the elementary generators
o; = (1,1 + 1), 1 <i <n indeed satisfy the Coxeter relations:

012 =1
(0i041)° =1 1<i<n-—1 (10.12)
2
=1

(0i0;) i —j] > 1
Now consider the standard basis e; for R®™1, 1 <4 < n 4 1 and consider the vectors:

Oy = €5 — €441 (10.13)

131The notation here is standard but exceedingly unfortunate and confusing!!! Here A,, does NOT refer to
the alternating group! It refers to Cartan’s classification of simple Lie groups and the Coxeter group with
this label is in fact isomorphic to Sy41.
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which have the inner products: a? = 2 and «; - a;+1 = —1 (so they are at angle 2/3) and
all other inner products vanish. This is summarized in the matrix:

(673N Oéj = Cij = 251"]' — 5i,j+1 — 51’,]'71 (10.14)

Then the map s; — F,, is an isomorphism of the Coxeter group A, with a subgroup of
O(n + 1). Moreover, one computes that

e  jAiLiI+]
Po,(ej) = e J=i (10.15)
€; _] =71+1

So, referring to equation (6.10) we see that this is just the permutation action of o; on
the standard basis of R"*!. This makes clear that the Coxeter group is isomorphic to the
symmetric group Sp41.-

Remarks

1. One very practical use of having a group presented in terms of generators and relations
is in the construction of homomorphisms. If one is constructing a homomorphism
¢ : G1 — Go, then it suffices to say what elements the generators map to. That is, if
gi are generators of G; we can fully specify a homomorphism by choosing elements
gi € G2 (not necessarily generators) and declaring

o(9i) = g; - (10.16)

However, we cannot choose the g/ arbitrarily. Rather, the ¢, must satisfy the same
relations as the g;. This puts useful constraints on what homomorphisms you can
write down. For example, using this idea you can prove that there is no nontrivial
homomorphism ¢ : Zy — Z.

2. In general it is hard to say much about a group given a presentation in terms of
generators and relations. For example, it is not even obvious, in general, if the
group is the trivial group! This is part of the famous “word problem for groups.”
There are finitely presented groups where the problem of saying whether two words
represent the same element is undecidable! '3? However, for many important finitely
presented groups the word problem can be solved. Indeed, the word problem was first
formulated by Max Dehn in 1911 and solved by him for the surface groups discussed
below.

3. Nevertheless, there are four Tietze transformations (adding/removing a relation,
adding/removing a generator) which can transform one presentation of a group to a
different presentation of an isomorphic group. It is a theorem [REF!] that any two
presentations can be related by a finite sequence of Tietze transformations. How is

132The Wikipedia article on “Word problem for groups,” is useful.
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this compatible with the previous remark? The point is that the number f(n) of
such transformations needed to transform a presentation of the trivial group with n
relations into the trivial presentation grows faster than any recursive function of n.

4. Tt turns out that the case of Coxeter groups B, = C, are isomorphic to the group
of symmetric permutations WB,, C Sa, discussed in card-shuffling. The Coxeter
diagrams are very similar to the Dynkin diagrams that are used to label finite di-
mensional simple Lie algebras over the complex numbers except that H,, and Iz(n)
for n > 7 are not Weyl groups of Lie algebras.

Exercise Homomorphisms involving Zy and Z

a.) Write a nontrivial homomorphism p: Z — Zy.

b.) Show that there is no nontrivial homomorphism p : Zy — Z. 133
c.) Find the most general homomorphism pu : Z — Z.
d.)

Find the most general homomorphism y : Zy — Zy.

Exercise One generator and many relations

Suppose a group has a single generator g but many relations. Describe this group. 134

Exercise Abelianizations
Consider the free group on 2 generators. What is the abelianization? 3%

Exercise The Regular n-gon
Consider the symmetry group of the regular n-gon in the plane. Show that this is
isomorphic to the Coxeter group with matrix

mi; = (711 T) (10.17)

133 Answer: Since Zy can be generated by one element, say 1, it suffices to say what the value of ¢(I)

is. The trivial homomorphism takes the generator to zero: ¢(1) = 0 € Z and hence takes every element
to zero. On the other hand, if ¢(1) = k is a nonzero integer, then Nk = N¢(1) = ¢(N1) = ¢(0) = 0, a
contradiction. So there is no nontrivial homomorphism.

134 Answer: Let the generator be g. The relations must be of the form ¢* = 1,...,¢** = 1 for some
integers ki,...,k,, and WLOG we can assume they are positive. Then it is not hard to see, using the
Chinese remainder theorem (see below) that the group is isomorphic to Zy where N = ged(ki, ..., kn).

N
135 Answer: Z2.
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Exercise Simple Roots Of SU(n + 1)

a.) Verify equation (10.14). The matrix Cj; is known as a Cartan matriz of SU(n+1).

b.) Show that the vectors a; are all orthogonal to the all-one vector: v = (1,...,1)
and that they span the orthogonal complement of v.

c.) Show that the permutation representation of S,, 11 separately preserves v and the
orthogonal complement of v. Thus, R"*! gives what is known as a reducible representation
of Sn—l—l-

d.) Compute the action of P,, on «;. Give the matrix representation relative to the
ordered basis {ay,...,a,}. 3¢

Exercise Show that
(a,bla® = 1,b* = 1,abab = 1) (10.18)

is a presentation of S5

Exercise

Consider the group with presentation:
(T,S|(ST)* =1,5% =1) (10.19)

Is this group finite or infinite?

This group plays a very important role in string theory.

Exercise Bounds on the minimal number of generators of a finite group

Suppose we have a set of finite groups G, Go, G3, ... with a minimal set of generators
S1 C S C -+ of cardinality |Sk| = k. Show that 2|Gj| < |Gi4+1| and hence as k — oo the
order |G| must grow at least as fast as 2.

136 Answer The matrix is a diagonal matrix of 1’s except on the 3x 3 block for rows and columns i—1,4, i+1
where it looks like
100
111
001
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Remark: Denote the smallest cardinality of a set of generators of G by d(G). If G is
a finite and transitive permutation subgroup of S, (meaning it acts transitively on some
set X') then there is a constant C' such that

n
vlogn

and if G is a primitive permutation group, meaning that it acts on a set X such that it

dG) < C (10.20)

does not preserve any nontrivial disjoint decomposition of X, then there is a constant C
so that if n > 3:

logn
dG) L (———
(@) < vloglogn

Moreover, these results are asymptotically the best possible. For a review of such results
137

(10.21)

see.

Exercise Generators And Relations For Products Of Groups
Suppose you are given groups G and G2 in terms of generators and relations. Write
a set of generators and relations for the product group Gy x Go. 38

10.1 Example Of Generators And Relations: Fundamental Groups In Topology

Presentations in terms of generators and relations is very common when discussing the
fundamental group of a topological space X.

This subsection assumes some knowledge of topological spaces and the idea of a ho-
motopy. Without trying to be too precise we choose a basepoint xy € X and let m1 (X, z¢)
be the set of closed paths in X, beginning and ending at xy where we identify two paths if
they can be continuously deformed into each other. We can define a group multiplication
by concatenation of paths. Inverses exist since we can run paths backwards. The following
subsubsection contains more precise definitions.

10.1.1 The Fundamental Group Of A Topological Space

Choose a point xy € X. The fundamental group 7 (X, x¢) based at ¢ is, as a set, the set
of homotopy classes of closed curves.
That is we consider continuous maps:

f : ([07 1]7 {07 1}) - (X7 {.%'0}) (10'22)

These define paths in X with beginning and ending point fixed at xy. The path must be
traveled in time 1.

13TF. Menegazzo, “The Number of Generators of a Finite Group,” Irish Math. Soc. Bulletin 50 (2003)
pp. 117-128
138 Answer: If G1 = (gi|R;) and G2 = (hq|S.) then G1 x G2 = (gi, ha|Ri, Sa, gihag;y "hat = 1).
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q Pao

—t

Figure 15: Two loops f, g with basepoint at xg.

fey

p

Figure 16: The concatenation of the looops fxg. Note that the “later” loop is written on the right.
This is generally a more convenient convention when working with homotopy and monodromy. In
order for f x g to be a map from [0, 1] into X we should run each of the individual loops at “twice
the speed” so that at time ¢ = 1/2 the loop returns to zo. However, in homotoping f % g there is
no reason why the point at ¢ = 1/2 has to stay at xp.

We say that two such paths fy, f1 are homotopic if there is a continuous map
F:[0,1] x[0,1] - X (10.23)
such that
1. F(0,t) = fo(t) and F(1,t) = fi(t)
2. F(s,0) = F(s,1) =z

If we define f4(t) := F(s,t) and consider fs(t) as a path in ¢ at fixed s then, as we vary
s we are describing a path of paths.

Now, homotopy of paths in X is an equivalence relation. '3 We denote by [f] the
equivalence class of a path f and we denote the set of such equivalence class by 7 (X, xg).
We will see that this set has a natural and beautiful group structure.

139Gee section 2 above for this notion.
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Figure 17: The homotopy demonstrating that loop concatenation is an associative multiplication
on homotopy equivalence classes of closed loops. The blue line is s = 4t — 1 and the red line is
s =4t — 2.

Figure 18: The homotopy demonstrating that the loop g(t) = f(1 — t) provides a representative
for the inverse of [f(t)].

We can define a group structure on 71 (X, z¢) by concatenating curves as in Figure 16
and rescaling the time variable so that it runs from 0 to 1. In equations we have

f1(2t)

0 1
2 (10.24)
f2t—1) i<t<1

fix fo(t) == {

Remarks

1. Note that we are composing successive paths on the right. This is slightly nonstandard
but a nice convention when working with monodromy and path ordered expontentials
of gauge fields - one of the main physical applications.

2. Note well that (f1 x f2) * f3 is NOT the same path as fi = (f2 x f3). This observation
ultimately leads to the notion of A, spaces.
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3. For the moment we simply notice that if we mod out by homotopy then we have a
well-defined product on homotopy classes in 1 (X, zo)

A1) - [fol := [f1 % fol (10.25)

and the virtue of passing to homotopy classes is that now the product (10.25) is in
fact associative. The proof is in Figure 17. Written out in excruciating detail the
homotopy is

A1) 0<t< st
F(s,t) =< foldt — (s +1)) =H<p<st2 (10.26)
fala(t—32) H2<i<1

4. Since we have an associative product on (X, zp) we are now ready to define a
group structure. The identity element is clearly given by the (homotopy class of the)
constant loop: f(t) = xo. If a homotopy class is represented by a loop f(t) then
the inverse is represented by running the loop backwards: ¢(¢) := f(1 —t). The two
are joined at ¢ = 1/2, and since this is in the open interval (0,1) the image can be
deformed away from zg. See Figure 18. In equations, there is a homotopy of f x g
with the constant loop given by

fr <A
F(s,t) =4 f(1—s) LE<t< s (10.27)
fe-2t) BE<t<1

Thus, with the group operation defined by concatenation in the sense of
(10.25) the set of homotopy classes m1(X,zg) is a group. It is known as the
fundamental group based at xg.

5. A connected space such that m (X, x) is the trivial group is called simply connected.

A Basic Example: The Fundamental Group Of The Circle:
The first and most basic example of a nontrivial fundamental group is the fundamental
group of the circle. It should be intuitively clear that

T (S, o) 2 Z (10.28)

which just measures the number of times the path winds around the circle. The sign of
the integer takes into account winding clockwise vs. counterclockwise.

Let us amplify a little on how one proves this basic fact. We will just give the main
idea. For a thorough and careful proof see A. Hatcher’s book on Algebraic Topology, or
Section 13.2 of
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http://www.physics.rutgers.edu/~gmoore/511Fall2014 /Physics511-2014-Ch2-Topology.pdf

We have a standard map
p:R— St (10.29)

given by p(x) = €?™*. Note that the inverse image of any phase ¢*™¢ with s € R is the
set of real numbers s + Z. So p is the map that identifies the orbits of the Z-action by
translation on R with S!. That is S = R/Z. Now, suppose we have a map f : [0,1] — S*.
We claim that there is a map f : [0,1] — R so that f “factors through p,” meaning that

there is a map f : [0,1] — R such that:

f=pof (10.30)

The problem of finding such a map f is nicely expressed in terms of diagrams. One is
trying to complete the following diagram to make it a commutative diagram by finding a
suitable map f to use on the dashed line in:

R .

B (10.31)
f - l

y p

s
0,1] L~ st

In other words, given f one is trying to find a map f : [0,1] — R so that

2@ = f(z) (10.32)
So, f(z) is a logarithm, but a logarithm is not single-valued. Nevertheless, in sufficiently
small open sets of [0, 1] (small enough that the image of f(z) does not “wrap” around the
circle) one can choose an unambiguous logarithm. Let us fix (WLOG) £(0) = 1. Then f(0)
can be any integer, ng. Once we choose that integer the branch of the logarithm is fixed in
some small open set [0,€). Now we continue choosing open sets along the interval so that
we can choose an unambiguous logarithm and we fix branches successively as we move from
one open set to the next along the positive direction. The net result is an unambiguous
map f : [0,1] — R satisfying (10.32). Now if f(1) = 1, then f(1) = ny, with n; € Z. The
integer n; — ng only depends on f, and not on the particular choice ng, and is the winding
number of the map. Moroever, the winding number is continuous as a function of f and
hence only depends on the homotopy class.

1. It is not hard to prove that
(X X Y, (20, y0)) = m1(X, z0) X 71 (Y, y0) (10.33)

So the fundamental group of the n-dimensional torus is isomorphic to the n-dimensional
lattice Z".

2. If F': X — Z is a continuous map of topological spaces and takes xg € X to zp € Z
then we can define Fj : m1 (X, z9) — m1(Z, 29) simply by Fi[f] := [F o f]. This can be
shown to be a group homomorphism. In particular, if F'is a homotopy equivalence,
then it is a group isomorphism.
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Figure 19: Illustrating the Seifert-VanKampen theorem. The green curve has a homotopy class
in Ut~ that is one of the generators of 7 (4*~). Now it must separately be a word W, in the

generators of 71 (") and W,™ in the generators of 7y (/™) so in w1 (X) there must be a relation of

the form Wi+ =W,

3. In algebraic topology books a major result which is proved is the Seifert-van Kam-
pen theorem. This is an excellent illustration of defining groups by generators and
relations. The theorem can be useful because it allows one to compute (X, xg) by
breaking up X into simpler pieces. Specifically, suppose that X = UT UU™ is a
union of two open path-connected subsets and that Ut~ := Ut N U™ is also path-
connected and contains xg. See Figure 19. Now suppose we know presentations of the
fundamental groups of the pieces U™, U, U™~ in terms of generators and relations:

m(UT, zg) = <gf’,...,g:+|Rf,...,R;+>
m (U™, 20) = (g1 ,---»9,- IRy ,...,R__) (10.34)
(U 20) 2 (g g BRI

Then the recipe for computing 71 (X, xg) is this: Denote the injection t* : Ut~ — U™
and ¢+~ : UT~ — U~. Then the generators of m1(U*~, () push forward to words in
gi"' or g, , respectively:

gt ) =wrt i=1,...,n"" (10.35)
(Y — L +- :
L (g ) =W, i=1,...,n
Finally, we have the presentation:
(X, w0) = {gf .9 591, 9,-|Ra) (10.36)
where the relations R, include the old relations
Rf,...,R" ., ,R,....R _ (10.37)
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and a set of new relations:
Wi (W)™ W (W, )™ (10.38)

It is obvious that these are relations on the generators. What is not obvious is that
these are the only ones. Note that in the final presentation the generators gj ~ and
the relations Rj_ have dropped out of the description.

Figure 20: The house that Bing built. Taken from M. Freedman and T. Tam Nguyen-Pham,
“Non-Separating Immersions Of Spheres and Bing Houses,” which describes nice mathematical
properties of this house.

Exercise
Show that if X = 5™ with n > 1 then m (X, o) is the trivial group.

Exercise
Does the fundamental group depend on a choice of basepoint xq ?

Exercise
What is the fundamental group of Serin Physics Laboratory?
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Exercise The house that Bing built

Show that the house in Figure 20 can be shrink-wrapped with a single balloon so that
the complement of the balloon in R? is connected and simply connected.

B
B -
b

Figure 21: Right: Cutting a torus along the A and B cycles the surface falls apart into a rectangle,
shown on the left. Conversely, gluing the sides of the rectangle together produces a torus with

distinguished closed curves A, B.

()

Figure 22: Illustrating the Seifert-VanKampen theorem for the torus: The “tubular neighborhood”
- the green region - of the cutting curves, shown in (b) is homotopy equivalent to a one-point union
of two circles. The latter space has a m; which is a free group on two generators. The boundary
of the green region contracts into the remainder of the surface - which can be deformed to a disk.
Therefore the group commutator [a,b] = 1.
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Figure 23: A collection of closed paths at xy which generate the fundamental group of a two-
dimensional surface with two handles and three (green) holes.

10.1.2 Surface Groups: Compact Two-Dimensional Surfaces

The fundamental groups of two-dimensional surfaces, known as surface groups and braid
groups turn out to provide a very rich set of examples of groups defined by generators and
relations.

The simplest example of a nontrivial surface group is the torus. Let a,b denote the
homotopy classes of the cycles A, B shown in Figure 21. One can convince oneself that
these generate the fundamental group: Every closed curve based at xy can be homotoped
to a word in a*! and b*!. Now, if we cut the torus along the cycles the surface falls apart
into a rectangle as shown in Figure 21. The edge of the rectangle represents the class
aba=1b~!. A slightly different way of thinking about this is described in Figure 22.

Definition: In general, in group theory an expression of the form g;g29; ! oy 1is known as
a group commutator and is sometimes denoted [g1, g2]. It should not be confused with the
commutator of matrices [A1, Ag] = A1 As — AsA;.

Returning to the fundamental group of the torus, the group commutator [a,b] it can
be contracted inside the rectangle to a point. Therefore, the generators a,b satisfy the
relation:

aba bt =1 (10.39)
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so this means
ab = ba (10.40)

In fact, this is the only relation and therefore:

1 (T% 20) 2 Z & 7. (10.41)

Figure 24: Ilustrating the Seifert-VanKampen theorem for a genus two surface: The “tubular
neighborhood” - the green region - of the cutting curves, shown in (b) is homotopy equivalent to
a one-point union of 4 circles. The latter space has a m; which is a free group on four generators
which we can call aq,b1,a2,b2. The boundary of the green region is a single circle homotopic to
[a1, b1][ag, ba]. But it contracts into the remainder of the surface - which can be deformed to a disk.
Therefore by the Seifert-van Kampen theorem the presentation of m; of the genus two surface has
a single relation [ay, b1][az, ba] = 1.

The above ideas generalize nicely. Let us consider the case of a genus 2, or 2-handled,
surface shown in Figure 24. The fundamental group can be presented as a group with four
generators ai, b1, as, bs and one relation:

[CLl, bl][ag, bg] =1 (10.42)

Now let us consider a more complicated surface, perhaps with punctures as shown in
Figure 25. By cutting along the paths shown there the surface unfolds to a presentation
by gluing as in Figure 26:

From these kinds of constructions one can prove 49 that the fundamental group of an
orientable surface with ¢ handles and p punctures will be

P

771(57 ‘TO) = <aiabi705’H[ai7bi] Hcs = 1> (10.43)
=1

s=1

140Gee, for example, W. Massey, Introduction to Algebraic Topology, Springer GTM
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Figure 25: A collection of closed paths at xy which generate the fundamental group of a two-
dimensional surface with two handles and three (green) holes.

There is only one relation so this is very close to a free group! In fact, for p > 1 we can
solve for one generator ¢, in terms of the rest so the group is just a free group on 2g+p—1
generators. When there are no punctures the group is not a free group. Groups of the
form (10.43) are sometimes called surface groups.

As mentioned above, a flat connection amounts to a representation of this group - so
one is searching for matrices A;, B;, Cs such that

[[aiBA ' B, ) [ C=1 (10.44)

)

Exercise The First Homology Group

Recall the exercise on commutator subgroups and abelianization. See equation (7.72)
above.

Consider a surface group of the type given in (10.43). The abelianization of this group
is isomorphic to the first homology group H;(S) where S is the punctured surface. Compute
this group. 4!

'410ne can define higher homology groups H(X) of a topological space X but these in general are not
Abelianiations of the higher homotopy groups (X ), even though both groups are Abelian. Homology and
homotopy groups measure different aspects of the topology of a space.
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Figure 26: When the directed edges are identified according to their labels the above surface
reproduces the genus two surface with three punctures. Since the disk is simply connected we
derive one relation on the curves shown here.

Exercise Fundamental group of the Klein bottle
A very interesting unorientable surface is the Klein bottle. Its fundamental group has
two natural presentations in terms of generators and relations. One is

(a,bla® = b?) (10.45)

and the other is
(91, 02|919201 95+ = 1) (10.46)

Show that these two presentations are equivalent.
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Exercise

Use the Seifert-van Kampen theorem to relate the fundamental group of a torus to
that of a torus with a disk cut out.

Figure 27: Pictorial illustration of the generator o; of the braid group B,.

: 2+ ) 1 2l 42

Figure 28: Pictorial illustration of the Yang-Baxter relation.
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10.1.3 Braid Groups And Anyons

Let us modify Figure 2 and Figure 1 to include an under-crossing and overcrossing of the
strands. So now we are including more information - the topological configuration of the
strands in three dimensions. In an intuitive sense, which we will not make precise here we
obtain a group called the n'* braid group. It is generated by the overcrossing &; of strings
(i,i+ 1), for 1 < i < n —1 and may be pictured as in Figure 27. Note that 5;1 is the
undercrossing.

Now one verifies the relations

5i5; = 6,6, i — 4] >2 (10.47)

and

&i&i—i—l&i = &i+1&i&i+1 (10.48)

where the relation (10.48) is illustrated in Figure 28.
The braid group B,, may be defined as the group generated by &; subject to the relations
(10.47)(10.48):

By :=(61,...,00116:6;6; '6; " =1,]i = j| > 2;6i6i416: = 6i415:5i11) (10.49)

The braid group B, may also be defined as the fundamental group of the space of
configurations of n unordered points on the disk D. We first consider the set:

{(z1,...,2n)|zi € D xFx; i#J} (10.50)

Then we observe that there is a group action of S, on this set. Note that this set is not
simply connected: For example if we let x1 loop around zs holding all other x; fixed it
should be intuitively clear that the loop cannot be deformed to the trivial loop. That is
even more clear if you view the looping process as taking place in time on particles in a
plane.

Now we consider the space of orbits under this group action:

Cn:={(z1,...,2p)|x; € D ri #x; 1# 7}/ (10.51)

There are new nontrivial loops here where, for example, z; and z; exchange places, all #since we must
. quotient by S, this
Othel" Tk Staylng ﬁXed needs to be moved
to the section on

Note that the “only” difference from the presentation of the symmetric group is that group actions on

we do not put any relation like (5;)? = 1. Indeed, By, is of infinite order because 57 keeps spaces. &

getting more and more twisted as n — oo.

Exercise Homomorphisms Between Braid And Symmetric Groups
a.) Define a homomorphism u : B, — S,,.
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b.) Can you define a homomorphism s : S, — B, so that p o s is the identity
transformation?

Remarks

1. In the theory of integrable systems the relation (10.48) is closely related to the “Yang-
Baxter relation.” It plays a fundamental role in integrable models of 2D statistical
mechanics and field theory.

2. One interesting application of permutation groups to physics is in the quantum the-
ory of identical particles. It was a major step in the development of quantum theory
when Einstein and Bose realized that a system of n identical kinds of particles (pho-
tons, for example, or atomic Nuclei of the same isotope) are in fact indistinguishable.
142 Tn mathematical terms, there is a group action of S,, on a set of n indistinguish-
able particles leaving the physical system “the same.” In quantum mechanics this
translates into the statement that the Hilbert space of a system of n indistinguishable
particles should be a representation of (a central extension of) S,,. There are many
different representations of S, (we have already encountered three different ones).
Most of them are higher dimensional. Particles transforming in higher-dimensional
representations are said to satisfy “parastatistics.” (This idea goes back to B. Green
in the 1950’s and Messiah and Greenberg in the 1960’s.) However, remarkably, in
relativistically invariant theories in spacetimes of dimension larger than 3 particles
are either bosons or fermions. This is related to the classification of the projective rep-
resentations of SO(d, 1), where d is the number of spatial dimensions, for relativistic
systems and to representations of SO(d) for nonrelativistic systems. (We will discuss
projective representations in section **** below.) Now, when discussing projective
representations the fundamental group of SO(d, 1) and SO(d) becomes important.
In fact m1(SO(d, 1)) = m1(SO(d)) for d > 2. However, there is a fundam