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1. Introduction

Quite generally, when one is confronted with a nonlinear object or phenomenon it is often

useful to reduce the problem to a linear problem, at the cost of restricting the domain of

applicability.

Lie groups are not linear – they are curved manifolds. If one chooses coordinates then

the group multiplication law is, in general, given by a complicated power series in the

coordinates.

Nevertheless, Lie’s theorem reduces many questions about Lie groups to questions

about Lie algebras. Questions about curved manifolds turn out to be equivalent to questions

about linear algebra. This is a profound simplification, and it leads to a very rich theory.

2. Geometrical approach to the Lie algebra associated to a Lie group

2.1 Lie’s approach

A good way to approach the subject is the way Sophus Lie did himself. A Lie group is a

group with continuous (or smooth) parameters. We convert the associativity of the group

law into a differential equation, and study the integrability of that differential equation.
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Suppose x1, . . . , xn are coordinates in a neighborhood U of 1G, where n = dimG. We

take x = 0 to correspond to 1G. Thus, we have a smooth parametrization of group elements

g(x). The product of two group elements near the identity will be another group element

near the identity. Thus, there is a neighborhood U ′ ⊂ U so that if g(x), g(y) ∈ U ′ then we

can write the group law as:

g(x)g(y) = g(φ(x, y)) (2.1) eq:grplaw

for some smooth functions φi(x, y), i = 1, . . . n.

The group laws can be expressed in terms of φ:

1. Associativity:

φ(x, φ(y, z)) = φ(φ(x, y), z) (2.2) eq:associa

2. Identity: φ(0, x) = φ(x, 0) = x

3. Inverse: φ(x, x0) = φ(x0, x) = 0 is solvable for a unique x in terms of x0.

Now, let us differentiate the associativity condition (2.2) with respect to the zk:

∂φi(x, φ(y, z))

∂φj(y, z)

∂φj(y, z)

∂zk
=
∂φi

∂zk
(φ(x, y), z) (2.3) eq:slieone

where repeated indices are summed.

Now define an n× n matrix function of one variable:

uik(x) :=
∂φi(x, y)

∂yk

∣∣∣∣
y=0

(2.4) eq:defnsu

Then, setting z = 0 in (2.3) gives

∂φi(x, y)

∂yj
ujk(y) = uik(φ(x, y)) (2.5) eq:lieseq

Note that (2.5) is equivalent to the equality of first order differential operators:

ujk(y)
∂

∂yj
= uik(φ(x, y))

∂

∂φi
(2.6) eq:livfone

Here we are holding x fixed and viewing yi → φi(x, y) as a nonlinear change of coor-

dinates. Nevertheless the equation is true for any x and hence we can write (2.6) as

ujk(y)
∂

∂yj
= uik(φ)

∂

∂φi
(2.7) eq:livfonep

Now, (2.7) is a remarkable equation because the LHS depends only on y and the RHS

depends only on φ. We will apply this observation in one moment.

A second observation is that if we denote

Ik(y) := ujk(y)
∂

∂yj
(2.8) eq:invtvf

then we can compute

– 3 –



[Ik(y), Im(y)] =
(
ujk∂ju

l
m − ujm∂jul k

) ∂
∂yl

=
(
ujk∂ju

l
m − ujm∂jul k

)
(utr,−1) p

l Ip(y)

:= fpkm(y)Ip(y)

(2.9) eq:commis

Now, by (2.7) Ik(y) = Ik(φ) so it follows that fpmk(y) = fpmk(φ), and since φ = φ(x, y)

with arbitrary x, it follows that fpmk(y) is constant ! Let us consider the finite-dimensional

vector space spanned by the first order differential operators) Ik(y) in (2.8). That is,

we consider the linear combinations of the Ik(y) with constant (real) coefficients. Note

that this vector space is closed under commutator. We denote this vector space L(G) or

sometimes g. Note that

dimG = dimL(G) (2.10)

On the LHS we have the dimension of a manifold, and on the RHS the dimension of a

vector space. Moreover, it follows from general properties of differential operators that if

X1, X2, X3 are any three vector fields in L(G) then

[[X1, X2], X3] + [[X3, X1], X2] + [[X2, X3], X1] = 0 (2.11) eq:jacobi

This crucial identity is known as the Jacobi identity.

These are the crucial properties which are abstracted into the general definition:

Definition : An abstract Lie algebra g over a field k is a vector space over k together

with a product (v1, v2)→ [v1, v2] ∈ g, such that for all v1, v2, v3,∈ g α, β ∈ k.

1.) [v1, v2] = −[v2, v1]

2.) [αv1 + βv2, v3] = α[v1, v3] + β[v2, v3]

3.) [[v1, v2], v3] + [[v3, v1], v2] + [[v2, v3], v1] = 0.

2.2 Left-invariant vector fields and the Lie algebra

We will now rephrase Lie’s argument in the language of modern differential geometry.

2.2.1 Review of some definitions from differential geometry

Tangent vectors are directional derivatives along paths. If we imagine M ⊂ RN then we

literally take a tangent plane. In general if p ∈ M let C1(p) be the functions defined in

some neighborhood of p ∈M , which are differentiable at p. A directional derivative along

a curve γ(t) such that γ(0) = p is a linear functional on this space defined by

γ̇(f) :=
d

dt
|t=0f(γ(t)) (2.12)

Then the space of tangent vectors at p, TpM , is the linear span of these linear functionals

C1(p)→ R. A vector field is a continuous system of tangent vectors.
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Now suppose that φ : M1 → M2 is a map between manifolds. Let us study how

geometric objects behave with respect to such maps.

First of all, functions are contravariant. That is we define the pullback on functions

φ∗ : Fun(M2)→ Fun(M1) (2.13)

by φ∗(f) = f ◦ φ. Here Fun(M) is the space of all (say, continuous) functions from M to

(say) the real numbers.

By contrast, vectorfields push forward :

φ∗ : TpM1 → Tφ(p)M2 (2.14)

the definition is that φ∗(γ̇) is the directional derivative along the curve φ(γ(t)).

Two facts we will need below are:

• The commutator of two first-order differential operators is a first order differential

operator. This defines the commutator of two vector fields:

[ξ1, ξ2] (2.15)

Thus, V ect(M) is a Lie algebra, for any manifold M . It is infinite-dimensional. It is not

difficult to show that

φ∗[ξ1, ξ2] = [φ∗(ξ1), φ∗(ξ2)] (2.16)

•
Vector fields act on functions to produce new functions. From the above definitions it

follows that:

φ∗(V )(f) = V (φ∗(f)) (2.17)

Exercise

In general, functions do not push forward. They only pull back. However, if φ is an

invertible map between manifolds show that it makes sense to define φ∗(f) = f ◦φ−1. This

is used when pushing forward the product of a function and a vector field, fV in the next

section.

2.2.2 The geometrical definition of a Lie algebra

Definition. A left translation, or right translation by an element g ∈ G is the diffeomor-

phism:

Lg : G→ G h 7→ g · h
Rg : G→ G h 7→ h · g−1

(2.18) eq:leftrighttrns
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Exercise

Show that Lg, Rg define injections of groups G ↪→ Diff(G).

Now we introduce the important idea of left and right invariance: A left-invariant

function satisfies:

L∗g(f) = f (2.19) eq:lftinvfun

for all g ∈ G. Of course, this just means that f is constant, because if we evaluate

(2.19) at g = 1 then

L∗g(f)|h=1 = f |h=1 ⇒ f(g · 1) = f(1) (2.20) eq:lftinvfunp

However, the notion of left- or right- invariant tensors still leaves room for very inter-

esting examples.

Definition. A vector field ξ ∈ V ect(G) is left (or right) invariant if

(Lg0)∗(ξg) = ξg0·g

(Rg0)∗(ξg) = ξgg−1
0

(2.21) eq:livr

is satisfied for all g, g0 ∈ G, respectively.

The picture is: For a general vector field ξg is the directional derivative at g to some

curve γg(t) going through g, while ξg0g is the directional derivative of some -a priori unre-

lated - curve γ̃g0g(t) going through g0g. Then the condition of left-invariance:

(Lg)∗(ξg) = ξg0g (2.22)

means γ̃g0g(t) has the same directional derivative at t = 0 as the curve g0 · γg(t).
We now recognize our first order operators Ik(y) defined in (2.8) as vector fields on the

group G. The equation (2.7) is the statement that these are left-invariant vector fields.

Now, let us return to the general situation. Note that if ξ1, ξ2 are two LIVF’s then

(Lg)∗[ξ1, ξ2] = [(Lg)∗(ξ1), (Lg)∗(ξ2)] = [ξ1, ξ2] (2.23)

This leads to the

Geometric definition of the Lie algebra: We define the Lie algebra L(G) of a Lie

group G to be the Lie algebra of left invariant vector fields on G.

Examples

• G = U(1). The general vector field on U(1) is

ξ = f(θ)
d

dθ
(2.24)
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Left invariant (and right-invariant) vector fields satisfy f(θ + θ0) = f(θ) for all θ0. That

is, f(θ) must be constant.

• G = GL(n, k), k = R,C. We can choose as global coordinates on the manifold

the matrix elements gij of g ∈ G. Introduce an n × n matrix of vector fields ∂
∂g whose

components are: ( ∂
∂g

)
ij

:=
∂

∂gij
(2.25)

( ∂
∂gij

)g0 is the directional derivative along the curve g0 + teij where eij is a matrix unit.

Note that if g0 is invertible then this curve is indeed in GL(n, k) for sufficiently small |t|.
One computes

(Lg0)∗(
∂

∂g
) = gtr0 ·

∂

∂g
(2.26)

where matrix multiplication on the RHS is understood. To do this, let fkl(g) = gkl be the

function which picks out a matrix element. Then

(Lg0)∗(
∂

∂gij
)(fkl) =

∂

∂gij
fkl ◦ Lg0 =

∂

∂gij

∑
s

(g0)ksfsl = (g0)kiδj,l (2.27)

Therefore,

(Lg0)∗(
∂

∂gij
|g) =

∑
k

(g0)ki
∂

∂gkj
|g0g (2.28)

Therefore

ξij := (gtr
∂

∂g
)ij =

∑
k

gki
( ∂
∂g

)
kj

(2.29)

is a matrix of left-invariant vector fields on GL(n). Proof:

(Lg0)∗(g
tr ∂

∂g
) = (g−1

0 g)trgtr0 ·
∂

∂g

= gtr · ∂
∂g

(2.30)

The n2 vector fields ξij are linearly independent (simply consider their values at g0 = 1)

and form a basis for all LIVF’s on GL(n), by an argument given below. Finally, note that

by direct computation we find

[ξij , ξkl] = δjkξil − δliξkj (2.31) eq:glsc

and the structure constants are indeed constant.

Returning to the general case, let us now suppose ξ is a LIVF. Then ξg = (Lg)∗(ξ1),

so a LIVF is completely determined by its value at g = 1, and hence we can identify L(G)

with the tangent space at g = 1: L(G) ∼= T1(G), at least, as a vector space. Conversely,

given a tangent vector X ∈ T1(G). Then to X ∈ T1(G) we can associate a curve γX(t)

through g = 1 whose tangent vector at g = 1 is X. (As we will see below for a matrix group

we can take γX(t) to be the curve exp[tX] where we literally exponentiate the matrix. ) If
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G is a Lie group, then the right action of G on itself defines a global system of left-invariant

vector fields on G as follows: If X ∈ T1(G) is the directional derivative along a curve γX(t)

passing through g = 1 then then the curves γX,g(t) := gγX(t) through g have directional

derivatives defining a vector field ξ(X) ∈ TgG. This vector field is left-invariant, and in

this way we define the map from T1G to the left-invariant vector fields on G.

The left-invariant vector fields ξ(X) are called the fundamental vector fields on G.

Every LIVF of G is of the form ξ(X) for some unique X (indeed X = ξ1) so we can define

[X,Y ] ∈ T1G by

[ξ(X), ξ(Y )] = ξ([X,Y ]) (2.32) eq:LieTone

This defines T1G as a Lie algebra, and then ξ defines a homomorphism of Lie algebras

T1(G)→ V ect(G).

To get a better feel for these vector fields consider again the example of G = GL(n,F).

The Lie algebra is g = Matn(F). Let eij be the matrix unit with a 1 in the ith row and jth

column, and zero in all other matrix elements. Then one easily computes the vector field

by considering the curve gexp[teij ]:

ξ(eij) =
n∑
k=1

gki
∂

∂gkj
(2.33) eq:vertcli

where we are regarding the matrix elements gij as coordinates on the group. Thus the

fundamental vector fields on G are just the vector fields ξij we examined above.

Then, combining (2.31) and (2.32) we have

ξ
(
[eij , ei′j′ ]

)
= [ξ(eij), ξ(ei′j′)] = δji′ξ(eij′)− δij′ξ(ei′j) (2.34)

and we conclude that [eij , ei′j′ ] coincides with matrix commutator, as it should.

If G ⊂ GL(n,F) is a subgroup of a matrix group then the matrix elements gij are not

all independent, so some vectors ∂
∂gkj

will be expressed in terms of others. Put differently,

a path such at 1 + teij will not be a path within the matrix subgroup in general. These

linear dependences are most easily computed using the dual cotangent space T ∗1G and the

Maurer-Cartan form, as discussed below.

Exercise

Write out the right-invariant vector fields on GL(n,F).

3. The exponential map

We have discussed in chapter 2 how to exponentiate matrices. We would now like to

generalize this notion to define a map

exp : L(G)→ G (3.1)
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Since not all Lie groups are matrix groups it will be a little more abstract.

Consider a homomorphism f : R→ GL(n,R). Such a map must satisfy

d

dt
f(t) = lim

h→0
h−1[f(t+ h)− f(t)]

= lim
h→0

h−1[f(h)− 1]f(t)

= Af(t)

(3.2)

so f(t) is the unique solution to this differential equation with f(0) = 1. We write

f(t) = etA (3.3)

Recall that for A ∈Mn(k) k = R or C, we defined

expA :=
∑
j≥0

Aj

j!
∈Mn(k) (3.4)

defines the exponential of a matrix. In general any function defined by a power series can

be evaluated for matrix arguments, as above.

In a sufficiently small neighborhood U of 0 the map exp : Mn(R) → GL(n,R) is

invertible with

logg = −
∞∑
k=1

(1− g)k/k (3.5)

as its unique inverse.

As we have said, not all Lie groups are matrix groups. So we define exp more generally

(and more intrinisically) as follows:

Theorem: If G is a Lie group there is a 1-1 correspondence between the tangent space

T1G and group homomorphisms f : R→ G (aka “1-parameter subgroups”).

Proof : A homomorphism clearly determines a tangent vector X ∈ T1G. Conversely,

given a tangent vector X ∈ T1G we consider the left-invariant vector field ξ(X). We study

the tangent curves to ξ(X): these are curves γX(t) such that

γ̇X(t) = ξ(X)|γX(t). (3.6) eq:tangentcurve

We would like to show that the tangent curve through g = 1 defines a group homo-

morphism of R into G.

We can take the tangent curve to satisfy γX(0) = 1G. Equation (3.6) is just an

ODE. By the theory of ODE’s we know that we can find γX(t) on a sufficiently small

neighborhood t ∈ (−ε, ε). Now consider a t0 in this interval. Similarly, we can study this

differential equation near γX(t0). Now γX(t+ t0) and γX(t0)γX(t) are both solutions, since

ξ(X) is left-invariant. By the uniqueness of solutions to ODE’s

γX(t+ t0) = γX(t0)γX(t) (3.7)
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for t, t0, t+ t0 in the interval, so γX(t) is a local homomorphism. To extend the definition

of γX(t) to large values of t we take

γX(t) := (γX(t/n))n (3.8) eq:largetee

for sufficiently large n. (Exercise: Show that it doesn’t matter what n you pick.) ♠
Evaluation of γX(t) at t = 1 defines the map

exp : T1G→ G (3.9)

whose derivative at 1G is the identity. In this way we define exp, even if G is not a matrix

group.

Remarks:

• exp : R→ U(1) given by x→ e2πix shows that exp is in general not 1-1.

•
A Lie group can be given the structure of a Riemannian manifold in a canonical

way. The geodesics through 1G are precisely the 1-parameter subgroups. For a compact

Lie group, we get a complete Riemannian manifold, and a general theorem of differential

geometry shows that any two points on a complete Riemannian manifold can be joined by

a geodesic. Therefore, for a compact Lie group, exp is onto.

• For a noncompact Lie group exp need not be onto. We will give counterexamples

when we survey the Lie algebras of matrix groups below.

• As we will see, finite dimensional Lie algebras can be exponentiated to form Lie

groups. However, there exist examples of Lie algebras which cannot be “exponentiated”

to form Lie groups.

Exercise

Show that the choice of n does not matter in (3.8).

Exercise Exponentials and inverses

a.) Show that for the abstract exp map we have:

eAe−A = 1 (3.10)

for any A ∈ g.

b.) Define Ad(G) on g ..... *** NEED SOME DETAILS *** Show that

exp[BAB−1] = Bexp(A)B−1 (3.11)
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4. Baker-Campbell-Hausdorff formula
sec:sBCH

The exponential map is neither one-one nor onto in general. However, for a finite dimen-

sional Lie group, in a sufficiently small neighborhood of the identity 1G ∈ U2 ⊂ G and

0 ∈ U1 ⊂ T1G, exp : U1 → U2 is 1-1 and onto.

It is therefore natural to ask what the full group law looks like in terms of the linear

space g := T1G. Thus we would like to express

C(A,B) = logeAeB (4.1)

in terms of A,B.

If we imagine A,B are sufficiently small (we will say they are “order one”) then we

can expand in Taylor series

C(A,B) = A+B +
1

2
b(A,B) + · · · (4.2)

where b(A,B) ∈ g are the terms of order 2 and · · · are the terms of order ≥ 3. The factor

of 1
2 is for later convenience. 1

Since C(A, 0) = A and C(0, B) = B, b(A,B) has no terms of order A2 or B2 and hence

is a bilinear map:

b : g× g→ g (4.3)

Moreover, since exp(−A) = (exp(A))−1 we have C(−B,−A) = −C(A,B) and therefore

b(A,B) = −b(B,A), that is, b is skew-symmetric. Thus, working infinitesimally, we derive

the Lie product on T1G.

Now, the amazing thing about Lie groups is that

the entire Taylor series C(A,B) can be expressed solely in terms of b.

The formula that does this is known as the BCH formula, and we will now derive it

for the case of matrix groups in the next section.

4.1 Statement and derivation

The BCH formula allows us to understand the Lie group operation in terms of the matrices

in the exponential. It also provides a convenient way to understand the relationship between

Lie groups and Lie algebras. 2

The problem we want to solve in this section is:

Let A,B be n× n matrices. Find a matrix C such that eC = eAeB where C is expressed as a (possibly infinite) series in A,B.

1To be more precise, we can introduce parameters t1, t2 which are real and small and consider the

multiplication of exp[t1A]exp[t2B]. The “degree” is the total degree of t1 and t2 in the Taylor expansion.
2The proof in this section follows Miller, Symmetry Groups and their applications.

– 11 –



The series we will obtain is convergent for “small” matrices. We can make this precise

by, for example defining ‖ A ‖= max|aij | and demanding that ‖ A ‖, ‖ B ‖ be sufficiently

small. We comment on the radius of convergence below.

Lemma 1: Let A be a constant matrix in t. Then

d

dt
etA = AetA = etAA (4.4)

Proof: Series expansion. ♠
To state the next lemma we introduce some notation:

Definition 4.1: For A ∈ Mn(k) we denote by Ad(A) the linear transformation Mn(k)→
Mn(k) defined by

Ad(A) : B 7→ [A,B] (4.5)

We also denote:

(Ad(A))mB =

m times︷ ︸︸ ︷
[A, [A, · · · [A,B] · · · ] (4.6)

where there are m commutators on the RHS.

Lemma 2:

eABe−A = eAdA(B) = Σ
(AdA)j

j!
B

= B + [A,B] +
1

2
[A, [A,B]] + · · ·

(4.7)

Proof : Let B(t) = etABe−tA.

Note B(0) = B

Ḃ(t) = AetABe−tA − etABe−tAA = (AdA)(B(t))

Now, by induction

(
d

dt
)jB(t) = (AdA)jB(t) (4.8)

B(t) is analytic in t, so we can write the Taylor series around zero. ♠

Now we come to the much more nontrivial: Lemma 3: Let

f(z) =
ez − 1

z
= 1 +

z

2!
+
z2

3!
+ · · · (4.9)

Then

−
( d
dt
eA(t)

)
e−A(t) = eA(t) d

dt
e−A(t) = −f(Ad(A(t))) · Ȧ(t) (4.10)

where A(t) is any differentiable matrix function of t.
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Proof :

This is nontrivial because Ȧ(t) does not commute with A(t) in general!

B(s, t) ≡ esA(t) d

dt
e−sA(t)

∂B

∂s
= A(t)esA(t) d

dt
e−sA(t) − esA(t) d

dt

[
e−sA(t)A(t)

]
= Ad(A(t))B(s, t)− Ȧ(t)

∂jB

∂sj
= (Ad(A(t)))jB(s, t)− (AdA(t))j−1Ȧ(t)

(4.11)

B(0, t) = 0 therefore again by Taylor:

1

j!

∂j

∂sj
B(s, t) |s=0= −Ad(A(t))j−1Ȧ(t) j ≥ 1 (4.12)

So

esA(t) d

dt
(e−sA(t)) = −

∞∑
j=1

sj(Ad(A(t)))j−1

j!
Ȧ(t) (4.13)

Now set s=1. ♠
Note: you can rewrite this lemma as the statement:

d

dt
e−A(t) = −

∫ 1

0
e−(1−s)A(t)Ȧ(t)e−sA(t)ds (4.14) eq:intfrm

because:

d

dt
e−A(t) = −

∫ 1

0
e−(1−s)A(t)Ȧ(t)e−sA(t)ds

= −e−A(t)

∫ 1

0
esAd(A(t))dsȦ(t)

= −e−A(t)

(
eAd(A(t)) − 1

Ad(A(t))

)
Ȧ(t)

(4.15) eq:intfrmi

Note that (4.14) is an intuitively appealing formula. For a finite product we have:

d

dt

[
M1(t)M2(t)M3(t) · · ·Mn(t)

]
= (

d

dt
M1(t))M2(t)M3(t) · · ·

+ (M1(t))(
d

dt
M2(t))M3(t) · · ·

+ (M1(t))(M2(t))(
d

dt
M3(t)) · · ·

+ · · ·+M1(t)M2(t) · · · ( d
dt
Mn(t))

(4.16)
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Now regard

eA(t) =
N∏
i=1

[eA(t)∆s] (4.17)

where ∆s = 1/N . Now take N →∞.

Now we are finally ready to state the main theorem:

Theorem: (Baker-Campbell-Hausdorff formula)

Let:

g(z) =
logz

z − 1
=
∞∑
j=0

(1− z)j

j + 1
(4.18)

be a power series about 1. Then when A,B are n×n matrices with ‖ A ‖, ‖ B ‖ sufficiently

small, the matrix C given by the expansion:

C = B +

∫ 1

0
g(etAdAeAdB)(A)dt (4.19)

satisfies C = log(eAeB).

Explicitly the first few terms are: 3

C = A+B +
1

2
[A,B] +

1

12
[A, [A,B]] +

1

12
[B, [B,A]] +

1

24
[A, [B, [A,B]]] + · · · (4.20)

where the next terms are order ε5 if we scale A,B by ε.4

Proof :

Introduce:

eC(t) = etAeB (4.21) eq:defcee

C(0) = B, and C(1) is the matrix we want. We derive a differential equation for C(t).

By Lemma 4 we have:

eC(t) d

dt
e−C(t) = −f(AdC(t))Ċ(t) (4.22)

with

f(z) =
ez − 1

z
(4.23)

On the other hand, plugging in the definition (4.21),

eC(t) d

dt
e−C(t) = etA

d

dt
e−tA = −A (4.24)

3It is useful to note that [A, [B, [A,B]]] = −[B, [A, [B,A]]] = B2A2 −A2B2

4One can find an algorithm for generating the higher order terms in Varadarajan’s book on group theory.
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by using Lemma 2. Therefore:

f(AdC(t))Ċ(t) = A (4.25)

Now, f is a power series about 1 so it immediately follows that

Ċ(t) = f(Ad(C(t)))−1A (4.26) eq:invtser

Let us make this more explicit.

Introduce the power series about 1

g(w) =
logw

w − 1
=
∞∑
j=0

(1− w)j

j + 1
(4.27)

which satisfies the equation:

f(z)g(ez) =
ez − 1

z
· z

ez − 1
= 1 (4.28)

regarded as an identity of power series in z. Now we can substitute for z any operator O,

and use

g(eO) = f(O)−1, (4.29) eq:invrl

and therefore we can solve for Ċ:

Ċ(t) = f(Ad(C(t)))−1 ·A
= g(exp(Ad(C(t))) ·A

(4.30) eq:first

where we applied (4.29) with O = (Ad(C(t)). This hardly seems useful, since we still

don’t know C(t), but now since we have power series we can say

eO = eAd(C(t)) = eAd(tA)eAd(B) (4.31) eq:formeff

Proof of claim:

Note that for all H:

eAdC(t)H = eC(t)He−C(t) by lemma 2

= etAeBHe−Be−tA def.ofC

= eAd(tA)eAd(B)H by lemma 2

⇒ eAd(C(t)) = eAd(tA)eAd(B)

(4.32)

Therefore:

Ċ(t) = g(eAd(tA)eAd(B)) ·A (4.33) eq:dffq
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Now we integrate equation (4.33)

C(t) = C(0) +

∫ t

0
g(eAd(sA)eAd(B))Ads (4.34)

but C(0) = B, so

C = C(1) = log(eAeB) = B +

∫ 1

0
g(eAd(s A)eAd(B))A ds (4.35)

which is what we wanted to show. ♠.

Remarks For suitable operators A,B on Hilbert space the BCH formula continues to

hold.

Exercise

Use the BCH theorem to show that if

g1 = et1A1 , g2 = et2A2 (4.36)

the group commutator, g1g2g
−1
1 g−1

2 corresponds to the Lie algebra commutator:

g1 · g2 · g−1
1 · g

−1
2 = 1 + t1t2[A1, A2] +O(t21, t

2
2) (4.37)

Thus we say a Lie algebra is “abelian” if [A1, A2] = 0 for all A1, A2 ∈ g. Otherwise it

is “nonabelian.”

Moreover, if Ai = d
dt |0gi(t) then [A1, A2] is the Lie algebra element associated to the

curve

g12(t) = g1(
√
t) · g2(

√
t) · g−1

1 (
√
t) · g−1

2 (
√
t) (4.38)

Exercise

Work out the BCH series to order 5 in A,B.

Exercise

Show that we can also write:

C = log(eAeB) = A+

∫ 1

0
g(e−Ad(s B)e−Ad(A))B ds (4.39)
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4.2 Two Important Special Cases

4.2.1 The Heisenberg algebra

Suppose [A,B] = z · 1 where z is a scalar. Then all higher commutators vanish and

eAeB = eA+B+ 1
2
z·1 (4.40)

hence:

eAeB = ez · eB · eA (4.41)

One very common application of this formua is in quantum mechanics. For example,

if we consider the quantum mechanics of a single particle on a line then A,B can be scalar

multiples of q̂, p̂, respectively where

[p̂, q̂] = −i~1 (4.42)

The above formula says:

eαp̂eβq̂ = e−i~αβeβq̂eαp̂ (4.43) eq:heisgroup

More generally,

eα1p̂+β1q̂eα2p̂+β2q̂ = e−
i
2

(α1β2−α2β1)e(α1+α2)p̂+(β1+β2)q̂ (4.44) eq:heisgroupi

Exercise The magnetic translation group

Consider the problem of an electron confined to a two-dimensional plane x1, x2 Usually

in quantum mechanics translations in x1, x2 by a1, a2 are represented by

U1 = eia
1p1 U2 = eia

2p2 (4.45) eq:transl

with U1U2 = U2U1, because [p1, p2] = 0.

Now suppose that there is a constant magnetic field B perpendicular to the x1, x2

space, as in the quantum Hall effect.

The Hamiltonian for a free electron in the presence of the magnetic field is:

H =
1

2m

(
(p1 − eA1)2 + (p2 − eA2)2

)
(4.46) eq:hamil

In a uniform magnetic field we can choose a gauge so that this can be put in the form:

H =
1

2m

(
(p1 −

eBx2

2
)2 + (p2 +

eBx1

2
)2

)
(4.47) eq:hamila

Now p1, p2 do not commute with H. This is hardly surprising since H is no longer transla-

tion invariant. Moreover the gauge invariant momenta p̃i := pi− eAi also do not commute

with the Hamiltonian.
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a.) Show that [p̃i, H] 6= 0.

b.) Show that if we define the magnetic translation operators:

π1 := p1 +
eBx2

2
π2 := p2 −

eBx1

2
(4.48) eq:pies

then these satisfy [πi, H] = 0. In fact, [πi, p̃j ] = 0.

c.) The price we pay is that:

[π1, π2] = i~eB (4.49) eq:picomm

The “magnetic translation group” is the obtained from the operators

U1 = exp[ia1π1]

U2 = exp[ia2π2]
(4.50)

d.) Show that U1, U2 satisfy the relations:

U1U2 = exp[−i~eBa1a2]U2U1 (4.51) eq:heisgrp

***************

Comment on the “noncommutative plane”

****************

4.2.2 All orders in B, first order in A

Consider the following problem: Find eAeB = eC , when A = ε is infinitesimal, to all orders

in B but to first order in ε.

BCH ⇒ C = B +

∫ 1

0
g(etAdεeAdB)(ε)dt

= B +

∫ 1

0
g
(
eAdB

)
(ε)dt+O(ε2)

= B +
AdB

eAdB − 1
(ε)

= B + ε− 1

2
[B, ε] +

1

12
[B, [B, ε]]

− 1

720
[B, [B, [B, [B, ε]]]] + · · ·

(4.52)

Note:

x

ex − 1
= 1− 1

2
x+

1

12
x2 − x4

720
+

x6

30240
− x8

1209600
+

x10

47900160

− 691

1307674368000
x12 + · · ·

≡
∞∑
n=0

Bnx
n

n!

(4.53) eq:bernnum
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is an important expansion in classical function theory -the numbers Bn are known as

the Bernoulli numbers

There are many applications of this formula. One in particle physics is to spontaneous

symmetry breaking where the formula above gives the chiral transformation law of the pion

field. Here B = π(x) is the pion field and ε is the chiral transformation parameter.

Exercise

Show that eC = eAeε is given to first order in ε by

C = A− Ad(A)

e−Ad(A) − 1
ε (4.54)

4.3 Region of convergence

The BCH formula has a finite radius of convergence. This is clear from the finite radius

of convergence of the series expansion for logz around z = 1. Therefore it suffices to check

that etAdAeAdB has characteristic values sufficiently close to 1.

In general, if A is diagonalizable with eigenvalues λi, then the eigenvalues of AdA are

λi − λj .

Exercise

a.) Let B be an n × n matrix with distinct eigenvalues λ1, . . . , λn. Show that Ad(B)

acting on the space of all n×n complex matrices has the n2 eigenvalues λi−λj 1 ≤ i, j ≤ n.

b.) Show that the Baker-Campbell-Hausdorff series can fail to converge if the eigen-

values of A differ by 2πiZ.

5. Abstract Lie Algebras

5.1 Basic Definitions
subsec:ssGenDef

Our discussion of vector fields on Lie groups led to the general notion of a Lie algebra. We

repeat the definition:

Definition 5.1.1: An abstract Lie algebra g over k is a vector space over k together with

a product (v1, v2)→ [v1, v2] ∈ g, such that for all v1, v2, v3,∈ g α, β ∈ k.

1.) [v1, v2] = −[v2, v1]

2.) [αv1 + βv2, v3] = α[v1, v3] + β[v2, v3]

3.) [[v1, v2], v3] + [[v3, v1], v2] + [[v2, v3], v1] = 0.

Remarks
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• You might be tempted to write

[v1, v2]
?
=v1 · v2 − v2 · v1 (5.1) eq:tempted

but in the abstract definition (and in some examples) there is no sense in which we

have defined a second product v1 ·v2 on g. Of course, this is true in some examples as in the

Lie algebra Mn(R) of all n× n matrices, but is certainly not true in general. For example,

as we will see, the Lie algebra of U(n) is the real vector space of n × n antihermitian

matrcies. However, the product of antihermitian matrices is not antihermitian. Mn(R) has

more structure. Another example is the Lie algebra of vector fields. The product of vector

fields is a second order differential operator, and is certainly not a vector field.

•
Any set of matrices that is closed under commutator satisfies the Jacobi identity:

[[X1, X2], X3] + [[X3, X1], X2] + [[X2, X3], X1] = 0 (5.2)

Simply because the product X1X2 is defined for matrices. More generally, any associative

algebra has a Lie algebra product by [a1, a2] = a1a2 − a2a1. Note that associativity is

crucial. Moreover, if A is an associative algebra then the matrix commutator defines a Lie

algebra structure on Mn(A).

Exercise

Verify the statement of Remark 2.

Exercise

Considering Lie algebras from the viewpoint of algebras in general show that

a.) Lie algebras are nonassociative. Indeed, show that the associator is

[x1, x2, x3] = [x2, [x3, x1]] (5.3)

b.) If a Lie algebra has a unit then it is trivial (over a field of characteristic 6= 2).

Just as for groups we can define a notion of homomorphism or isomorphism of Lie

algebras, etc.

Definition 1 A homomorphism of two Lie algebras µ : g
1
→ g

2
is

1.) a linear transformation (remember the g
i

are vector spaces)

2.) which preserves the Lie bracket:

µ([X,Y ]) = [µ(X), µ(Y )] (5.4)
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A one-one onto homomorphism is an isomorphism.

Some of the operations of linear algebra generalize nicely to Lie algebras. For example,

a sub-Lie algebra h ⊂ g is a vector subspace such that

[X,Y ] ∈ h (5.5)

for all X,Y ∈ h. Furthermore, a direct sum of two Lie algebras g1 and g2, written g1 ⊕ g2,

is the direct sum as a vector space, but also has the property that

[X1, X2] = 0 (5.6) eq:dirctsum

for all X1 ∈ g1 and X2 ∈ g2.

We can also make a semidirect sum of Lie algebras, analogous to the semidirect product

of Lie groups. In the exercise below we introduce the notion of a derivation of an algebra.

If there is a homomorphism of Lie algebras from g to the Lie algebra of derivations of h,

say Y ∈ g → DY ∈ Der(h), (note that DY need not be an inner derivation), then we can

define a Lie bracket on h⊕ g by:

[(X1, Y1), (X2, Y2)] = ([X1, X2] +DY1(X2)−DY2(X1), [Y1, Y2]) (5.7) eq:semidrctsum

In the exercises you check that this indeed defines a Lie algebra structure.

In general, if h ⊂ g is a sub-Lie algebra it is not true that the vector space quotient

g/h is another Lie algebra. However, if h is an ideal, then g/h can be given the structure

of a Lie algebra.

Definition 2 An ideal, or, invariant subalgebra in g is a sub Lie algebra h such that for

all X ∈ h, and all Y ∈ g,

[X,Y ] ∈ h (5.8)

Note that there is no distinction between left- and right-ideals in a Lie algebra.

Some of the operations of linear algebra do not generalize to Lie algebras. For example,

the tensor product of Lie algebras g1⊗g2 makes sense as a vector space, but does not have

any natural Lie bracket.

Finally, suppose µ : g1 → g2 is a Lie-algebra homomorphism. Then it is easy to show

that kerµ ⊂ g1 is not only a Lie subalgebra but an ideal and, just as for groups, if µ is

surjective then

g1/kerµ ∼= g2 (5.9)

Exercise Ideals

Show that if h ⊂ g is an ideal then g/h is a well-defined Lie algebra.

Give a counterexample when h is not an ideal.
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Exercise Tensor products

Is the tensor product of two Lie algebras a Lie algebra?

Exercise Derivations

A derivation of an algebra A over a field k is a k-linear map D : A → A which satisfies

the “Leibniz rule”

D(ab) = D(a)b+ aD(b) (5.10) eq:leibniz

a.) Show that if D1, D2 are two derivations of A then

[D1, D2] = D1D2 −D2D1 (5.11)

is a derivation (although D1D2 is not a derivation). Conclude that the set of derivations

Der(A) itself forms a Lie algebra.

b.) If a ∈ A and A is associative, then the inner derivation Da defined by

Da(b) := ab− ba (5.12)

is indeed a derivation, and that

[Da1 , Da2 ] = D[a1,a2] (5.13)

c.) If A is a Lie algebra then show that the inner derivation

Dy(x) := [y, x] (5.14)

is indeed a derivation:

Dy([x1, x2]) = [Dy(x1), x2] + [x1, Dy(x2)] (5.15)

and moreover

[Dy1 , Dy2 ] = D[y1,y2] (5.16)

d.) Show that if D is any derivation then

[D,Da] = DD(a) (5.17)

and conclude that the inner derivations form an ideal in the Lie algebra of derivations.

Exercise Semidirect sums
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a.) Show that (5.7) is a valid Lie bracket: It is antisymmetric and satisfies the Jacobi

relation.

b.) Going back to chapter one, let us consider the semidirect product H n G of Lie

groups where α : G → Aut(H) is a continuous homomorphism. Show that if we write

α1+εY+··· = 1 + εDY + · · · then the Lie algebra of H nG is indeed the semidirect sum

h⊕̃g (5.18)

5.2 Examples: Lie algebras of dimensions 1, 2, 3

1.) One dimensional real Lie algebras = R. Let ~e1 be the a basis vector. Then [~e1, ~e1] = 0.

The corresponding Lie group is (R∗,×) ∼= (R,+).

2.) Two dimensional real Lie algebras are g = R2, as vector spaces. Let ~e1, ~e2 be basis

vectors. We can define:

a.) The abelian Lie algebra:

[~e1, ~e2] = 0. (5.19)

The corresponding Lie group is R∗ × R∗.
b.) The nonabelian Lie algebra:

[~e1, ~e2] = ~e1 (5.20)

Proposition. Any 2-dimensional Lie algebra is isomorphic to (a) or (b), and these

are not isomorphic.

Proof : (We follow Talman and Wigner):

Suppose g = 2-dimensional nonabelian Lie algebra. Let ~a,~b ∈ g be linearly independent

vectors. Then [~a,~b] = ~e1 6= 0. Any two vectors in g can be written

~w1 = α1~a+ β1
~b (5.21)

~w2 = α2~a+ β2
~b (5.22)

[~w1, ~w2] = (α1β2 − β1α2)~e1. (5.23)

Choose a new basis ~e1,~k where ~k is linearly independent of ~e1.

[~e1,~k] = c~e1 c 6= 0 (5.24)

put ~k = c~e2 then [~e1, ~e2] = ~e1. ♠

Exercise
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Consider the Lie algebra spanned by: {

(
0 0

0 1

)
,

(
0 1

0 0

)
}.

Show

~e1 7→

(
0 1

0 0

)
(5.25)

~e2 7→

(
0 0

0 1

)
(5.26)

is a Lie algebra isomorphism with the Lie algebra in example 2b above.

Describe the corresponding Lie group.

Example 3 The three-dimensional Lie algebras. By similar arguments one can list the 6

inequivalent 3D real Lie Algebras.

a.) [~e1, ~e2] = [~e1, ~e3] = [~e2, ~e3] = 0 b.) [~e1, ~e2] = [~e1, ~e3] = 0 [~e2, ~e3] = ~e1 c.)

[~e1, ~e2] = 0 [~e1, ~e3] = ~e1 [~e2, ~e3] = λ~e2 d.) [~e1, ~e2] = 0 [~e1, ~e3] = ~e1 [~e2, ~e3] =

~e1 + ~e2 e.) [~e1, ~e2] = 0 [~e1, ~e3] = λ~e1 − ~e2 [~e2, ~e3] = ~e1 + λ~e2

f.) [~e1, ~e2] = ~e3 [~e2, ~e3] = ~e1 [~e3, ~e1] = ~e2

Remarks

• The examples c,e exhibit an interesting phenomenon. Note that there is a continuous

parameter λ so there are infinitely many inequivalent 3d Lie algebras, parametrized by

λ. Parameter spaces labelling inequivalent mathematical objects are often called moduli

spaces.

• (b) is called the Heisenberg algebra

• (f) is the Lie algebra of sl(2), or of su(2) depending on whether we work over C or

over R.

For a proof of the above classification, together with matrix representations, see the

book of Wigner and Talman.

Exercise

Show that the matrices e13, e23 and −(e11 + λe22) give a matrix representation of the

Lie algebra of type (c) above.
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5.3 Structure constants

Suppose we choose a basis {~ei} for g as a vector space. Then there exist constants

[~ei, ~ej ] =
∑
k

fkij~ek (5.27) eq:structureconst

Definition fkij are called the structure constants of g wrt the basis {~ei}.

Remark: It sometimes happens that Lie algebras are defined in terms of a special basis

together with relations (5.27). One must always be sure to check that such a presentation

in fact satisfies the Jacobi identity. There have been cases where someone proposes a new

Lie algebra, but the Jacobi identity fails (and hence no such Lie algebra exists).

Exercise Properties of structure constants

Show that

(a) f ijk = −f ikj
(b) ∑

`

[
f `ijf

m
`k + f `jkf

m
`i + f `kif

m
`j

]
= 0 ∀i, j, k,m (5.28)

In (a) there is in general no symmetry property relating i to j, k. (b) is equivalent to

the “Jacobi identity.”

Exercise

A symmetric bilinear form h : g× g→ k is said to be an invariant form if

h(Ad(X)Y, Z) + h(Y,Ad(X)Z) = 0 (5.29)

for all X,Y, Z.

Choosing a basis ei for g let hij = h(ei, ej) and define

fijk := hi`f
`
jk (5.30)

Show that if h is an invariant form then fijk is totally antisymmetric on all three

indices.
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5.4 Representations of Lie algebras and Ado’s Theorem

In order to discuss the main theorem of this chapter, Lie’s theorem, we need a few definitions

and an auxiliary result, Ado’s theorem.

The space End(V ) of endomorphisms of a vector space V is a Lie algebra. Thus we

can define:

Definition: A representation of a Lie algebra g with representation space V is a Lie

algebra homomorphism

T : g→ End(V ) (5.31)

where End(V ) is the space of all linear transformations on V . We also say V is a g-module.

A matrix representation is a homomorphism T : g→Mn(k) for some n.

Put differently, we have a vector space V together with a multiplication

g× V → V

(X, v)→ X · v
(5.32)

which is bilinear in X, v and such that

[X,Y ] · v = X · (Y · v)− Y · (X · v) (5.33)

Upon choosing a basis for V a g-module provides a matrix representation of g.

Two representations

Ti : g→ End(Vi) (5.34)

are said to be equivalent if there is an isomorphism S : V1 → V2 such that S−1T2(X)S =

T1(X) for all X ∈ g. If the representation defines an isomorphism of g with its image, i.e.

if kerT = {0}, then the representation is said to be faithful.

Remarks

• Given any matrix representation of a Lie group G we automatically get a matrix

representation of the Lie algebra L(G): If X = d
dtg(t)|0 ∈ g then

T (X) :=
d

dt
T (g(t))|0 (5.35) eq:diffgrp

Exercise

Show that (5.35) defines a Lie algebra representation T ([X,Y ]) = [T (X), T (Y )] by

using the BCH formula.

• Any Lie algebra has a canonical representation: V = g,

X ∈ g→ T (X) = Ad(X) ∈ End(g) (5.36)

where

Ad(X) : g→ g (5.37)
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is the linear operator:

Ad(X)(Y ) := [X,Y ] (5.38) eq:adrep

This is called the adjoint representation.

Exercise The adjoint representation

a.) Show that (5.38) is a representation. To do this you must show:

[Ad(X), Ad(Y )] = Ad([X,Y ]) (5.39) eq:adrepii

b.) Show that the matrix elements of the adjoint representation wrt a basis Xi for g

are the given by the structure constants relative to that basis:

(Ad(Xi))
k
j = fkij (5.40) eq:strccnt

c.) Show that the kernel of the homomorphism X → Ad(X) is the center of the Lie

algebra:

Z(g) := {X|Ad(X)Y = 0 ∀Y ∈ g} (5.41)

Thus the adjoint representation is in general not a faithful representation of g.

d.) Suppose g is abelian. Describe the adjoint representation.

e.) Define the symmetric bilinear form

h(X,Y ) = TrgAd(X)Ad(Y ) (5.42)

Show that h(X,Y ) is an invariant bilinear form. This is known as the Cartan-Killing

metric, and is very important in determining the structure of semisimple Lie algebras.

Evidently, although every Lie algebra has a canonical representation - the adjoint

representation - this need not be a faithful representation.

Theorem[Ado’s Theorem]. Every finite dimensional Lie algebra has a faithful matrix

representation.

Proof : The proof is somewhat involved. See Jacobsen, Lie Algebras, p. 202. The main

idea is this: The kernel of the adjoint representation is the center Z(g). Therefore, if one

can find some representation V of g which is faithful on Z(g) then we can take a direct

sum with the adjoint representation: V ⊕ g to produce a faithful representation of g.

One begins by constructing a faithful representation of Z(g). If it is c-dimensional then

in a c + 1-dimensional vector space we choose a nilpotent operator N such that N c 6= 0.

Then Z(g) is represented by the commutative Lie algebra generated by N,N2, . . . , N c.

Indeed, we can choose any basis for Z(g) and map the basis elements to the powers of N .

Such a representation is faithful.
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Thus we have produced a faithful representation, V ⊕ g , of Z(g) ⊕ (g/Z(g)). Next,

one needs to upgrade this into a representation of g itself. For the details, see Jacobsen. ♠
************ should there be a discussion of irreps and schur’s lemma here? *************

6. Lie’s theorem

We have now seen how Lie algebras emerge from Lie groups. What about going the other

way, i.e. from Lie algebras to Lie groups?

Consider the case of matrix Lie algebras. If commutators are closed under some

property then exponentiating matrices will (locally) form a group, by the BCH formula.

For example, if A is anti-hermitian, A = −A†, then U = exp(A) is unitary:

UU † = (eA)(eA
†
) = eAe−A = 1 (6.1)

Conversely, consider the collection of unitary matrices of the form

Ũ(N) = {eA : A† = −A} (6.2)

Claim: Ũ(N) is locally closed under multiplication, i.e., it is closed as long as the BCH

formula converges. The main thing we must check is that if we write

eAeB = eC (6.3)

with C given by the BCH formula then C is antihermitian. Suppose A,B antihermitian

A† = −A,B† = −B. Then

[A,B]† = −[A,B] (6.4)

is antihermitian. Now, for the same reason, all the terms in the BCH series are antihermi-

tian since the expansion coefficients in the Taylor series expansion are real. Thus, just using

BCH we would be tempted to conclude that Ũ(N) forms a group. However, we should

worry about three problems: The BCH series does not always converge, the exponential

map can fail to be surjective, and the exponential map is generally not 1-1. In fact, it turns

out that the exponential map for U(N) is actually surjective, and hence Ũ(N) above is a

group after all, but we need extra information to reach this conclusion, and our discussion

would also fail for certain noncompact groups.

Thus, for the general case we are going to have to work harder.

The central theorem of the subject, Lie’s theorem, is the following: 5

Theorem:

a.) Every finite dimensional Lie algebra g arises from a unique (up to isomorphism)

connected and simply connected Lie group G.

b.) Under this correspondence, Lie group homomorphisms f : G1 → G2 are in 1 − 1

correspondence with Lie algebra homomorphisms µ : T1G1 → T1G2.

5We follow closely G. Segal’s elegant exposition in Lectures on Lie Groups and Lie Algebras, by R.

Carter, G. Segal, and I. MacDonald.
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Remarks

• Locally isomorphic groups have the same Lie algebra, so we need to use the simply

connected cover to get a 1-1 correspondence.

•Warning: It follows from the theorem that if h is a sub Lie algebra of g = T1G then

there is a Lie group H such that h ∼= T1H, and moreover there is a group homomorphism

H → G. However, H need not be homomorphic to any topological subgroup of G. For

example, take G = SU(n), n > 2 and consider a U(1)× U(1) subgroup K of the maximal

torus, say

Diag{λ, µ, (λµ)−1, 1, . . . , 1} λ, µ ∈ U(1) (6.5) eq:embedding

The group K has as Lie algebra the abelian Lie algebra R⊕R. The corresponding Lie

algebra homomorphism is

ν : (x, y)→ Diag{2πix, 2πiy,−2πi(x+ y), 0, . . . , 0} (6.6)

Now, for h take the abelian Lie algebra R. Its corresponding connected and simply con-

nected Lie group is (R,+). Choose the homomorphism µ to be obtained by embedding R
into R ⊕ R via 1 → (1, α) ∈ R ⊕ R. Considering R ⊕ R to be a subalgebra of L(SU(n))

using ν we have

µ : x→ Diag{2πix, 2πiαx,−2πi(1 + α)x, 0, . . . , 0} (6.7)

The corresponding Lie group homomorphism (R,+)→ SU(n) guaranteed by the theorem

takes

x→ Diag{e2πix, e2πiαx, e−2πi(1+α)x, 1, . . . , 1} (6.8)

If α is rational, the image is a topological subgroup of SU(n). Now consider the case where

α is irrational. The image is a copy of the Lie group R embedded in SU(n), but this image

is not a topological subgroup of SU(n) since it is not a submanifold. Indeed, it densely

fills the U(1)× U(1) subgroup K.

• Lie’s theorem has an elegant and concise statement in the mathematical language

of categories. There is a category C1 whose objects are finite dimensional connected and

simply connected Lie groups, and whose morphisms are group homomorphisms. There is a

category C2 whose objects are finite dimensional Lie algebras, and whose morphisms are Lie

algebra homomorphisms. In categorical language, Lie’s theorem is simply the statement

that the functor G→ L(G) is an equivalence of the categories C1 and C2. Indeed, the point

of the theorem is to construct the functor L(G)→ G such that the composition of the two

functors is the identity. 6

Proof: Let us now sketch the proof of Lie’s theorem.

The hard part is showing that you can always exponentiate a finite dimensional Lie

algebra to form a Lie group.

6In general to prove an equivalence of categories one only needs a natural transformation of FG and GF

to the identity.
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We use Ado’s theorem to assume that g ⊂ Mn(R) is a sub Lie-algebra of Mn(R) for

some n. 7

Our Lie group will be built by thinking about the (infinite dimensional!) space of

smooth paths

γ : [0, 1]→ g (6.9)

with γ(0) = γ(1) = 0. To such a path we can associate a group element gγ ∈ GL(n,R) by

the “holonomy”

gγ = P exp

∫ 1

0
γ(t′)dt′ (6.10)

This can be defined using the path ordered product or as the solution gγ(1) to the first

order ODE:

d

dt
gγ(t) = γ(t)gγ(t) (6.11) eq:dffqa

For bounded paths the path ordered exponential always converges, so gγ(1) is well-

defined.

Figure 1: A closed loop in the Lie algebra maps to an open path in GL(n,R). fig:looplie

We would like the set of elements gγ to form a subgroup. To do this we can add the

technical condition that all derivatives dn

dtnγ, n ≥ 1, vanish at t = 0, 1.

Define concatenation of paths:

γ1 ∗ γ2 =

{
2γ2(2t), 0 ≤ t ≤ 1

2

2γ1(2t− 1), 1
2 ≤ t ≤ 1

(6.12) eq:compone

The solution of (4.33) for this concatenation is

gγ1∗γ2(t) =

{
gγ2(2t), 0 ≤ t ≤ 1

2

gγ1(2t− 1)gγ2(1), 1
2 ≤ t ≤ 1

(6.13) eq:componea

and hence:

gγ1∗γ2 = gγ1gγ2 (6.14) eq:comptwo

7This can be dispensed with, but the proof is harder. See below.
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Thus, group elements of the form gγ are closed under multiplication. Define G′ ⊂
GL(n,R) to be the set of matrices gγ corresponding to paths of the above type. From

(6.14) we see that G′ is closed under group multiplication. Moreover, running γ backwards

gives the inverse element, so G′ is indeed a subgroup of GL(n,R). Unfortunately, G′ is not

quite the group we are after, because it might not be a topological subgroup of GL(n,R),

as the above example with irrational α shows. Therefore, we cannot conclude it is a Lie

group.

To take care of this we define P to be the space of all closed paths γ : [0, 1]→ g with

all derivatives vanishing at t = 0, 1:

P = {γ : [0, 1]→ g|
(
d

dt

)n
γ|t=0,1 = 0, n ≥ 0} (6.15) eq:curlype

This is an infinite-dimensional manifold. To compute the tangent space consider a

path of elements in P going through some γ∗(t). That is, a path of paths γ(s, t) with

γ(0, t) = γ∗(t). Differentiating a path of such paths gives

Tγ∗(t)P ∼= P (6.16) eq:curlypea

Moreover P has a multiplication γ1 ∗ γ2. But it is not quite an infinite-dimensional

Lie group - there is no identity or inverse. The natural identity would be the zero path

γ0(t) = 0, but γ0∗γ is only homotopic to γ. (P is in fact an infinite-dimensional homotopy-

Lie group.)

Now, equation (6.14) shows that P has a map to G′ preserving multiplication. The

group we are after is obtained from P by imposing an equivalence relation:

γ1 ∼ γ2 ⇔ gγ1 = gγ2 (6.17) eq:equivrel

We claim that G := P/ ∼ is a finite dimensional manifold, locally modeled on g, and

moreover it is a Lie group. We will compute its tangent space and Lie algebra in a moment.

Note that the quotient relation allows us to show that G really is a group. Moreover, it is

clearly connected and simply-connected, because we can shrink paths.

Thus, G will be a nice smooth Lie group, although its image G′ ⊂ GL(n,R) might be

very bad.

Now we would like to compute the tangent space to G, that is, the Lie algebra of G.

We work in the neighborhood of the zero path γ0(t) = 0 in P.

Recall that there is a neighborhood U of the identity in GL(n,R) so that log is well-

defined. By definition of the topology of P, there is an open neighborhood Ũ of the zero

path in P obtained by considering those paths so that gγ(t) lies in U for all t and hence

loggγ(t) is well-defined. Define ηγ(t) for such a path by

gγ(t) = eηγ(t). (6.18) eq:defeta

At this point we only know that ηγ : [0, 1] → Mn(R). Note that although γ(t) are

closed paths in g, ηγ(t) in general will be an open path. We can take ηγ(0) = 0, but in

general gγ 6= 1 and in this case ηγ(1) cannot vanish.
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Now we show that ηγ(t) is in fact valued in g, not just Mn(R). To do this, note that

γ(t) = (
d

dt
gγ(t))gγ(t)−1 =

eAd(ηγ(t)) − 1

Ad(ηγ(t))
(η̇γ(t)) (6.19) eq:diffleta

Now suppose γ(t) is scaled by ε. Then there a solution to (6.19) given by a power series in

ε: ηεγ(t) = εη1(t) + ε2η2(t) + · · · where we solve

η̇1 = γ(t)

η̇2 +
1

2
[η1, η̇1] = 0

η̇3 +
1

2
[η1, η̇2] +

1

2
[η2, η̇1] +

1

6
[η1, [η1, η̇1]] = 0

· · · = 0

(6.20)

By induction we see that ηγ(t) ∈ g for all t.

Now we remark that by (6.18) and the fact that exp is 1 − 1 in our neighborhood,

the equivalence relation (6.17) is the same as ηγ1(1) = ηγ2(1). The local neighborhood

K = π(Ũ) of the identity in G is precisely

K ∼= {η : [0, 1]→ g|η(0) = 0}/ ∼ (6.21) eq:newlocnb

where

η1 ∼ η2 ⇔ η1(1) = η2(1) (6.22)

But this means that an equivalence class is uniquely parametrized by the element of g

given by the endpoint of the path. Moreover, the space P is trivially a Lie algebra: The

Lie bracket is just

[η1, η2](t) := [η1(t), η2(t)] (6.23) eq:liebrckt

and this Lie bracket descends to the equivalence relation. Thus, the space (6.21) is

isomorphic to g as a Lie algebra.

This establishes part (a) of the theorem.

To show part (b), first note that a homomorphism of Lie groups easily determines a

homomorphism of Lie algebras by considering one-parameter subgroups through 1. Now for

the converse, suppose we are given µ : g1 → g2. Using part (a) we can identify g1
∼= T1G1

and g2
∼= T1G2 where G1, G2 are connected and simply connected.

We would like to define f(g) by writing g = eX and taking

f(eX) := eµ(X) (6.24) eq:triy

Certainly, by BCH, if (6.24) makes sense then given that µ is a homomorphism of Lie

algebras, f is a homomorphism of Lie groups. The problem is that X need not exist, and

even if it does, it need not be unique. So, if eX = eX
′

then it might not be true that

µ(X) = µ(X ′) and hence the attempt to define f by (6.24) in fact fails.
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Instead we define f(g) as follows. To begin, we choose a path g(t), now in G1, not g1,

with g(0) = 1 and g(1) = g. We get a corresponding path in g1:

γ(t) := ġ(t)g−1(t). (6.25)

Let γ̃(t) := µ(γ(t)) be the corresponding path in g2. We can solve

d

dt
g̃(t) = γ̃(t)g̃(t) (6.26)

with boundary condition g̃(0) = 1G2 , and attempt to define

f(g) := g̃(1). (6.27) eq:trydefii

Note that if we have two group elements g1, g2 then, as we have seen g1 ·g2 corresponds

to γ1 ∗ γ2, hence to γ̃1 ∗ γ̃2 hence to g̃1g̃2, so we do get a homomorphism.

The problem is, we need to show that f(g) in (6.27) is well-defined since we made a

choice of path g(t) to define it. It is exactly at this point we make use of the fact that G1

is simply connected. Suppose that g0(t), g1(t) are two paths with g0(1) = g1(1). Since G1

is simply connected we can write a homotopy g(s, t) between these two paths.

That is, there is a smooth map g(s, t) mapping I × I → G such that g(0, t) = g0(t),

g(1, t) = g1(t), g(s, 0) = 1 and g(s, 1) = g:

Then we define:

γ(s, t) :=
∂

∂t
g(s, t)g(s, t)−1

η(s, t) :=
∂

∂s
g(s, t)g(s, t)−1

(6.28) eq:twodervs

Note that these satisfy the Maurer-Cartan equation

∂

∂s
γ − ∂

∂t
η = [η, γ] (6.29) eq:mceq

An important point is that the converse also holds. Namely, (6.29) is the integrability

condition for the existence of a solution g(s, t) to (6.28) for a given γ, η.

Therefore, we apply the Lie algebra homomorphism µ to (6.29) to get

∂

∂s
γ̃ − ∂

∂t
η̃ = [η̃, γ̃] (6.30) eq:mceqa
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and, using the converse result, this is the integrability condition for the existence of a

solution g̃(s, t) to

∂

∂t
g̃(s, t) := γ̃(s, t)g̃(s, t)

∂

∂s
g̃(s, t) := η̃(s, t)g̃(s, t)

(6.31) eq:twodervsa

Now, g(s, 1) = g is independent of s. Therefore η(s, 1) = 0. Therefore η̃(s, 1) = 0.

Therefore ∂
∂s g̃(s, 1) = 0, so (6.27) is well-defined. ♠

Remarks

• As we mentioned, it is possible to avoid Ado’s theorem, and proceed directly from

g to the definition of the simply connected Lie group. To do this, we return to P, but

now we introduce a more subtle equivalence relation. Now we say that γ0 ∼ γ1 if there

exists a homotopy γ(s, t) of paths in P such that there is a partner η(s, t) satisfying the

Maurer-Cartan equation:
∂

∂s
γ − ∂

∂t
η = [η, γ] (6.32)

for some η(s, t) ∈ g. Then we claim that P/ ∼:= G is the desired Lie group. The hard

part is to show that the Lie algebra of G is indeed g. To do this we solve

f(Adηγ(t))η̇γ(t) = γ(t) (6.33)

and show that γ1 ∼ γ2 iff ηγ1(1) = ηγ2(1). Then

L(G) = {η : [0, 1]→ g}/ ∼ (6.34)

is isomorphic to g.

•We are really using here the theory of flat connections. The Maurer-Cartan equation

is the statement that the gauge field A = γdt+ ηds is a flat gauge field: F = dA+A2 = 0.

• One of the advantages of the above presentation is that it can be generalized to

infinite-dimensional Lie groups. See

J. Milnor, “Remarks On Infinite Dimensional Lie Groups,” In *Les Houches 1983,

Proceedings, Relativity, Groups and Topology, Ii*, 1007-1057

7. Lie Algebras for the Classical Groups

Now we can review the Lie algebras of some matrix groups, including the classical groups.

As we have seen, if G is a matrix group, that is, a Lie subgroup of GL(n, k) then the Lie

algebra associated to the Lie group G is:

L(G) ≡ {A =
d

dt

∣∣∣∣
0

g(t) : g(t) = any curve g(t) with g(0) = 1} (7.1)

One way to think about Lie algebras related to the classical groups is as “infinitesimal

group elements.” Since Lie groups are manifolds we can consider a neighborhood of the
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identity element 1G. In this neighborhood the manifold looks like a linear space, namely,

the tangent space T1G. We now want to get a better understanding of how the structure

of the group translates into an algebraic structure on T1G in the classical matrix groups.

For example, if G is a matrix group then matrices g ∈ G close to the identity can be

written as

g ∼= 1 + εA (7.2)

where ε is small. Thus infinitesimal group elements defines a matrix A in the Lie algebra.

Thus, for example, if A is anti-hermitian then 1 + εA is unitary to order ε2:

(1 + εA)(1 + εA)† = 1 +O(ε2) (7.3)

We will now list the relevant properties for the classical matrix groups. Our discussion

will parallel the survey we did of the matrix groups:

1. Definition and dimension.

2. Properties of the exponential map.

3. A natural choice of a Cartan subalgebra t ⊂ g. By definition, a Cartan subalgebra is

a maximal abelian subalgebra of g. It is of supreme importance in the theory of roots and

weights and representations. A Cartan subalgebra is the Lie algebra of a corresponding

Cartan torus.

7.1 A useful identity

The following identity is extremely useful: Given any n × n matrix A ∈ Mn(k), the

determinant and the trace may be related as follows:

det(exp(A)) = exp(TrA) (7.4) eq:trcelog

This is sometimes written

logdetC = TrlogC (7.5)

but the latter identity only makes sense when the log is well-defined.

We have already proven (7.4) above as an application of Jordan canonical form.

7.2 GL(n, k) and SL(n, k)

The Lie algebra of GL(n, k) is just the Lie algebra of all n× n matrices:

gl(n, k) ≡ L(GL(n, k)) = Mn(k) (7.6)

Let us check this by producing a one-parameter family. Let A ∈ Mn(k) and consider

g(t) := exp(tA). These matrices are all invertible, and

d

dt
|t=0g(t) = A (7.7)

Thus we get the full Lie algebra of n× n matrices.

Again by deteA = exp(Tr(A)) we get

sl(n, k) ≡ L(SL(n, k)) = {A ∈Mn(k) | trA = 0} (7.8)
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We have a direct sum of Lie algebras:

gl(n, k) = k ⊕ sl(n, k) (7.9)

A natural choice of Cartan subalgebra is the subalgebra of diagonal matrices.

Remarks

• The exponential map is not onto for SL(n,R). Let us consider SL(2,R). If g = eA

then g lies on some one-parameter subgroup g(t) = etA. Any such can be conjugated into

a maximal abelian subgroup. From our classification of the conjugacy classes of SL(2,R)

it follows from hgh−1 = ehAh
−1

that A can be conjugated to one of three possible forms:

A = x

(
1 0

0 −1

)
(7.10) eq:hyperbol

A = x

(
0 −1

1 0

)
(7.11) eq:elliptic

A = x

(
0 1

0 0

)
(7.12) eq:parabol

It is easy to check that the trace of eA for A conjugate to (7.10)(7.11)(7.12) is ≥ −2,

and the trace is = −2 only for g = −1 = exp[iπσ2]. In particular The parabolic conjugacy

classes with Tr(g) = −2 and the hyperbolic conjugacy classes with Tr(g) < −2 are not in

the image of the exponential map.

Exercise Structure constants for GL(n, k).

The Lie algebra has a natural basis given by the matrix units: ekj = The matrix with

zero entries except = 1 at (kj)th matrix element.

Calculate the structure constants

[eij , ekl] = δjkeil − δilekj (7.13)

Exercise Structure constants for sl(2,C) and sl(2,R)

Show that we may choose a basis

H =

(
1 0

0 −1

)
E+ =

(
0 1

0 0

)
E− =

(
0 0

1 0

)
(7.14) eq:spc

with structure constants
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[E+, E−] = H

[H,E±] = ±2E±
(7.15) eq:sltwo

We will see a lot more of this later.

Exercise The exponential map is onto for GL(n,C)

Show that

exp : gl(n,C)→ GL(n,C) (7.16) eq:expmapon

is surjective.

Answer : It suffices to check this statement for Jordan form. Therefore, try to write

λ+N , where N = e12 + e23 + · · · is a d× d Jordan block in the image of the exponential

map. Recall Nd = 0 but Nd−1 6= 0. Note that

exp[x1 + α1N + α2N
2 + · · ·+ αd−1N

d−1] = (7.17)

= ex

(
1 + α1N + (α2 +

1

2
α2

1)N2 + · · ·+ (αd−1 + · · ·+ αd−1
1

(d− 1)!
Nd−1

)
(7.18)

and note that we can set ex = λ and then solve the upper-triangular system of equations

for the αi.

Exercise

a.) Show that matrices of the form(
−x 0

0 −1/x

)
(7.19)

for x > 0 are in SL(2,R), are in the image of the exponential map for SL(2,C), but not

in the image of the exponential map for SL(2,R).

b.) Show that (
−1 1

0 −1

)
(7.20)

is in SL(2,C), is in the image of the exponential map for GL(2,C), but not for SL(2,C).
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7.3 O(n, k)

Suppose g(t) = etA is a family of orthogonal matrices. Then

g(t)g(t)tr = 1 (7.21) eq:orthone

since they are orthogonal for each t. Differentiate (7.21) wrt t to get:

d

dt
|t=0e

tAetA
tr

= A+Atr = 0 (7.22) eq:orthlie

and we can conclude from (7.22) that the Lie algebra of O(n, k) is the Lie algebra of

n× n skew matrices:

o(n, k) ≡ L(O(n, k)) = {A ∈Mn(k) | Atr = −A} (7.23)

Note that o(n, k) = so(n, k) because the groups O(n, k) and SO(n, k) have the same

neighborhood of the identity. In general locally isomorphic Lie groups have the same Lie

algebra.

Note that the exponential map is not one to one. For example:

exp[2π

(
0 1

−1 0

)
] = 1 (7.24)

Let us give a basis for the Lie algebra. Introduce the matrices:

Tij := eij − eji (7.25)

so that Tij = −Tji. Then Tij for 1 ≤ i < j ≤ n form a basis for o(n, k). We compute the

structure constants:

[Tij , Tkl] = δjkTil − δliTkj − δikTjl + δljTki (7.26) eq:soscs

N.B. Tij are elements of a Lie algebra - they are NOT matrix elements!

For o(2r, k), or o(2r + 1, k), a natural basis for a Cartan subalgebra is

T1,2, T3,4, . . . , T2r−1,2r. (7.27)

7.4 More general orthogonal groups

Recall that for any symmetric bilinear form D we can define an orthogonal group O(D).

If we choose a basis and represent D as a symmetric matrix Dij then O(D) becomes the

set of matrices with

gDgtr = D (7.28)

Following the procedure above we find the Lie algebra is the set of matrices A such that

AD +DAtr = 0. (7.29)
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In particular, specializing to D = η = ((+1)p, (−1)q) we can rewrite this condition as:

(ηA)tr = −(ηA) (7.30)

Thus, the matrices are skew-symmetric after multiplication by η. Thus we could choose

a basis T̂ij ≡ ηTij , for o(p, q) where Tij are a basis for o(p + q). Thus a basis for the Lie

algebra is:

T̂ij = ηiieij − ηjjeji, 1 ≤ i < j ≤ n (7.31)

We can read off immediately the structure constants for o(p, q):

[T̂ij , T̂kl] = ηjkT̂il − ηliT̂kj − ηikT̂jl + ηljT̂ki (7.32) eq:soscsp

Again, we caution that the subcripts do not label matrix elements but elements in a

basis for the Lie algebra. In particular it is always true that:

T̂ij = −T̂ji. (7.33)

However, note that if ηii = ηjj then T̂ij is an antisymmetric matrix, but if ηii = −ηjj then

T̂ij is a symmetric matrix.

Exercise

Compute the structure constants for the Lorentz group

7.4.1 Lie algebra of SO∗(2n)

There is one other “real form” of SO(2n,C) given by matrices of the type:(
A+ + iA− B+ + iB−
−B+ + iB− A+ − iA−

)
(7.34)

where A±, B± are real n× n matrices with

(A±)tr = −A± (B±)tr = ±B± (7.35)

For more discussion about this consult Gilmore, p.343.

7.5 U(n)

Proceeding to unitary matrices g(t) = etA is unitary if:

etA
†
etA = 1 (7.36)

Differentiating at t = 0 we conclude that:

A† = −A (7.37)
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So:

u(n) = L(U(n)) = {A ∈Mn(C) | A† = −A}
su(n) = L(SU(n)) = {A ∈ L(U(n)) : trA = 0}

u(n) = R⊕ su(n)

(7.38)

A Cartan subalgebra is generated by matrices ieaa, a = 1, . . . n for u(n), but for su(n)

we need to have traceless matrices. One choice of basis is i(eaa − ea+1,a+1), 1 ≤ a ≤ n− 1.

Remarks

• Physicists usually separate out a factor of i =
√
−1 and write

U = eiH (7.39)

where H is hermitian.

•
Note that the condition A† = −A is only preserved by multiplication of A by real

numbers so we must consider these as Lie algebras over R.

Exercise

Let us consider SU(2) in particular. Show that the Lie algebra can be thought of as

the real span of three anti-hermitian matrices (iJk), k = 1, 2, 3, with Jk Hermitian, such

that

[Ji, Jj ] = iεijkJk (7.40)

where εijk is the antisymmetric tensor on three indices. Take Ji = +1
2σi.

Note that the structure constants −εijk of this Lie algebra are real if we use the real

basis i
2σ

i.

Exercise Relating o(4) and su(2)

We saw in the previous lecture that at the level of groups:

SO(4) =
SU(2)× SU(2)

Z2
(7.41) eq:sutwotwo

This must be reflected in the structure of the Lie algebras.

The Lie algebra version of (7.41) is that

o(4) ∼= su(2)⊕ su(2) (7.42)

Do this by defining

Ãµν :=
1

2
εµνλρAλρ (7.43)
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for any antisymmetric tensor Aµν = −Aνµ. In particular, for the generators of so(4) we

can define:

T̃µν ≡
1

2
εµνλρTλρ (7.44)

Now form the “self-dual” and “anti-self-dual” combinations of generators:

A±µν =
1

2
[Tµν ± T̃µν ] (7.45)

a.) Show that

Ã±µν = ±A±µν (7.46)

b.) Show that [A+, A−] = 0 and that

J1 → J+
1 := A+

23 = A+
14 =

1

2
(T23 + T14)

J2 → J+
2 := A+

31 = A+
24 =

1

2
(T31 + T24)

J3 → J+
3 := A+

12 = −A+
34 =

1

2
(T12 + T34)

(7.47)

defines an isomorphism of the Lie subalgebra of the A+
µν and su(2). Show that the corre-

sponding statement for the A−µν is

J1 → J−1 :=
1

2
(T23 − T14)

J2 → J−2 :=
1

2
(T31 − T24)

J3 → J−3 :=
1

2
(T12 − T34)

(7.48)

Exercise The ’t Hooft symbols

When working in Euclidean 4-dimensional physics the ’t Hooft symbol is often of great

use. This is defined by

α±,iµν :=
1

2
(±δiµδν4 ∓ δiνδµ4 + εiµν) (7.49) eq:thooft

where 1 ≤ µ, ν ≤ 4, 1 ≤ i ≤ 3 and it is understood that εiµν is zero unless 1 ≤ µ, ν ≤ 3.

a.) Show that in the previous exercise we can take:

J±,i =
1

2
α±,iµν Tµν (7.50)

b.) Show that if we regard α±,i as 4× 4 matrices with matrix elements α±,iµν then

[α±,i, α±,j ] = −εijkα±,k (7.51) eq:tfhti
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[α±,i, α∓,j ] = 0 (7.52) eq:tfhtii

{α±,i, α±,j} = −1

2
δij (7.53) eq:tfhtiia

See Belitsky, VanDoren, VanNieuwenhuizen, hep-th/0004186, for many more identities

of this nature. A closely related tensor are the so-called “’t Hooft symbols” ηaµν . Definitions

differ, but roughly η = 2α.

Exercise Spinor indices and ’t Hooft symbols

7.5.1 U(p, q)

The discussion here parallels that for O(p, q). Introduce η as before. Now a one-parameter

subgroup through 1 in U(p, q) satisfies

etA
†
ηetA = η (7.54)

for A ∈ u(p, q). Thus,

(ηA)† = −(ηA) (7.55)

and ηA is antihermitian.

Etc.

7.5.2 Lie algebra of SU∗(2n)

7.6 Sp(2n)

Following the same procedure as before we take a family of symplectic matrices g(t) = etA.

They must satisfy:

etA
tr
JetA = J (7.56)

Differentiating at t = 0 gives:

AtrJ + JA = 0 (7.57) eq:sympcond

Conversely, (7.57) and J2 = −1 imply:

−JeAtrJ = e−JA
trJ = e−A ⇒ eA

tr
J = Je−A ⇒ eA ∈ Sp(2n, k) (7.58)

by pulling J to left and using (7.57) successively. so:

sp(2n, k) ≡ L(Sp(2n, k)) = {A ∈M2n(k) | (JA)tr = +(JA)} (7.59)

Now we can easily count the dimension of Sp(2n,R). We need only take a real sym-

metric 2n× 2n matrix and identify it with JA. Thus the dimension is:
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dimRSp(2n,R) =
1

2
2n(2n+ 1) (7.60) eq:dimen

in accord with a direct analysis at the group level.

Recall that the Cartan torus of USp(2n) is given by diagonal matrices of the form(
Λ 0

0 Λ−1

)
(7.61)

where Λ is a diagonal matrix of phases. The corresponding Cartan subalgebra is spanned

by

i(eaa − ea+n,a+n) a = 1, . . . , n (7.62)

Exercise

Define a basis mαβ for the Lie algebra from

Jmαβ = −(eαβ + eβα) (7.63)

i.e.

mαβ = J(eαβ + eβα) (7.64)

Show that

[mαβ,mγδ] = Jβγmαδ + Jαγmβδ + Jβδmαγ + Jαδmβγ (7.65)

One way to remember this is that the result must be symmetric on (α, β) as well as (γ, δ)

and antisymmetric on (α, β)↔ (γ, δ).

Exercise

It is also worthwhile to examine the condition (7.57) in terms of the block decomposi-

tion. Represent the matrix A in block form:

A =

(
A11 A12

A21 A22

)
(7.66)

Show that (7.57) implies:

Atr11 = −A22 (7.67)

Atr12 = A12 Atr21 = A21 (7.68)

Recall that if g ∈ Sp(2n) then gtr ∈ Sp(2n). Prove this using the Lie algebra.
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Exercise su(1, 1) ∼= sl(2,R) ∼= sp(2,R)

a.) Show that a basis for the real Lie algebra su(1, 1) can be taken to be

E± =
1

2
(σ1 ∓ iσ3) (7.69)

H = σ2 (7.70)

and these satisfy the above standard commutation relations of sl(2,R).

b.) Note that sl(2,R) ∼= sp(2,R) trivially from the above characterization of block

diagonal form.

Exercise su(2) ∼= usp(2,R)

Exercise Solving the general quadratic Hamiltonian in quantum mechanics

Show that symplectic transformations allow us to solve the general quadratic Hamil-

tonian in quantum mechanics for a finite number of degrees of freedom:

Consider the general quadratic Hamiltonian for N degrees of freedom r = 1, . . . , N .

H = MrsPrPs +ArsPrXs +A∗rsXsPr +GrsXrXs (7.71) eq:ghen

where, after quantization [Pi, Qj ] = −iδij~, [Pi, Pj ] = [Xr, Xs] = 0. We restrict to

Hermitian Hamiltonians so that Mrs and Grs are real symmetric. Ars is an arbitrary

complex matrix.

a.) By adding a c-number we can assume that Ars is real.

b.) Write the Hamiltonian as

H =
(
Xr Pr

)
J

(
−Ars −Mrs

Grs Atrrs

)(
Xs

Ps

)
(7.72) eq:symphamil

and observe that it is of the form

H =
(
Xr Pr

)
Jh

(
Xs

Ps

)
(7.73) eq:sntne

where h ∈ sp(2N,R).
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Conclude that by a complex symplectic transformation(
Xs

Ps

)
→ g

(
Xs

Ps

)
(7.74)

we can bring h→ g−1hg into the Lie algebra of the Cartan torus. That is, we can bring it

to the form (
iω 0

0 −iω

)
(7.75)

where ω is diagonal and real. In this basis the Hamiltonian takes the form

H =

N∑
i=1

ωi{A†i , Ai} (7.76)

c.) Finding the relevant transformation explicitly can be hard. The Hamiltonian can

be simplified and the problem can be reduced to the diagonalization of an N×N Hermitian

matrix as follows:

By a symplectic transformation X → TX,P → T tr,−1P we can bring Mrs to the form

δrs. Then, by conjugating with exp[i1
2SnmXnXm] we can make Ars antisymmetric. Thus

we can bring H to the form

H = PrPr +Ars(PrXs +XsPr) +GrsXrXs = (Pr +ArsXs)
2 + (G+AtA)rsXrXs (7.77) eq:ghens

with Ars real antisymmetric. (This may be interpreted as charged particles in a con-

stant magnetic field in a quadratic potential.)

The Heisenberg equations of motion

−i~ ∂
∂t
O(t) = [H,O] (7.78)

become:

−i∂t

(
Xr

Pr

)
= K

(
Xs

Ps

)
(7.79) eq:heisenb

where

K = −2i

(
A 1

−G A

)
(7.80) eq:kay

1. K is in the symplectic Lie algebra sp(2N) and hence by a symplectic transformation

can be brought to the Cartan subalgebra:

U−1KU =

(
ω 0

0 −ω

)
(7.81) eq:cartfrm
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where ω is N ×N diagonal. This is the transformation to creation/annihilation oper-

ators.

To find U note that eigenvectors of K are of the form(
v1

v2

)
(7.82)

with

L(E)v1 =
E2

4
v1 v2 = −(A− i

2
E)v1 (7.83)

where L(E) = G + A2 − iEA. This is an Hermitian matrix and can be diagonalized with

eigenvalues fi(E). We then solve the quadratic equations fi(E) = E2/4.

8. Central extensions of Lie algebras and Lie algebra cohomology

The ideas here parallel those for central extensions of groups:

A central extension of a Lie algebra g by an abelian Lie algebra z is a Lie algebra g̃

such that we have an exact sequence of Lie algebras:

0→ z→ g̃→ g→ 0 (8.1)

with z mapping into the center of g̃. As a vector space (but not necessarily as a Lie algebra)

g̃ = z⊕ g so we can denote elements by (z,X) and the Lie bracket has the form

[(z1, X1), (z2, X2)] = (c(X1, X2), [X1, X2]) (8.2)

where c : Λ2g→ z is known as a two-cocycle on the Lie algebra. That is c(X,Y ) is bilinear,

it satisfies

c(X,Y ) = −c(Y,X) (8.3) eq:twococyci

and the Jacobi relation requires

c([X1, X2], X3) + c([X3, X1], X2) + c([X2, X3], X1) = 0. (8.4) eq:twococycia

Two different cocycles can define isomorphic Lie algebras. If there is a linear function

f : g→ z such that

c(X,Y ) = bf (X,Y ) = f([X,Y ]) (8.5) eq:cobodn

then the cocycle is said to be trivial, and the central extension is isomorphic to z⊕ g

as a Lie algebra. Indeed,

X → (f(X), X) (8.6)

is an explicit Lie algebra homomorphism splitting the sequence. (Check!)
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More generally, if two cocycles differ by a cocycle of the form bf then they define

isomorphic Lie algebras. Thus, again, classifying isomorphism classes of central extensions

is a cohomology problem, in this case, Lie algebra cohomology.

Remark: Suppose that G̃ is a Lie group central extension of a Lie group G. Then

a 2-cochain c(X,Y ) defines a left-invariant 2-form on G, and a 2-cocycle defines a closed

left-invariant two-form ω on G. A central extension of the Lie group, defined by the group

cocycle f(g1, g2), also defines a corresponding 2-cocycle on the Lie algebra by

c(X1, X2) =
1

2πi

d

dt1
|0
d

dt2
|0log

[
f(et1X1 , et2X2)

f(et2X2 , et1X1)

]
(8.7) eq:twoconscy

8.1 Example: The Heisenberg Lie algebra and the Lie group associated to a

symplectic vector space

In general, given any real vector space V and a skew bilinear form ω : V × V → R we can

view V as an abelian Lie algebra and use ω to define a central extension

0→ R→ heis(V, ω)→ V → 0 (8.8) eq:heisliealg

We simply use the cocycle c(v1, v2) = ω(v1, v2).

When ω is a symplectic form, i.e. ω is nondegenerate, then the corresponding Lie

algebra is called a Heisenberg Lie algebra.

The corresponding Lie group Heis(V, ω) is U(1)× V as a set with multiplication

(λ1, v1)(λ2, v2) = (λ1λ2e
iω(v1,v2), v1 + v2) (8.9)

Let us return to the corollary (4.44) of the BCH formula:

eα1p̂+β1q̂eα2p̂+β2q̂ = e−
i
2

(α1β2−α2β1)e(α1+α2)p̂+(β1+β2)q̂ (8.10) eq:heisgroupiii

We can take V = R2 = {(α, β)} and we recognize

ω((α1, β1), (α2, β2)) = −1

2
(α1β2 − α2β1) (8.11)

as the symplectic form in this case.

(Of course, we could take V = C2 and consider it as a 4-dimensional real vector space.

If we take α, β pure imaginary then the operators are unitary in the usual representation

on L2(R).)

Exercise

Check that eiω(v1,v2) is a 2-cocycle on the abelian group V .
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Exercise

Referring to the exercise in section **** on the magnetic translation group

Show that the magnetic translation group generated by the Ui for all ai ∈ R is a

Heisenberg group, extending the abelian group of translations in the plane. Show that the

skew bilinear form is

ω(~a,~b) = −eB(~a×~b) (8.12) eq:skewfrm

8.2 Lie algebra cohomology

The notion of a two-cocycle above fits into a more general theory of Lie algebra cohomology.

So to put it into proper context let us briefly consider the topic more generally.

We consider the simplest case of central extensions by a one-dimensional abelian Lie

algebra k, z = k.

We define a complex

d : Λkg∗ → Λk+1g∗ (8.13) eq:lacoh

by taking as differential:

dω(X1, . . . , Xk+1) :=
∑
i<j

(−1)i+jω([Xi, Xj ], . . . X̂i, . . . , X̂j . . . ) (8.14) eq:extderi

The resulting differential (8.13) may also be expressed by identifying Λ∗g∗ = Λ∗[θa]

where θa are of degree 1 and a runs over a basis for the Lie algebra. We then define the

differential to be:

dθa := −1

2
f a
bc θ

bθc (8.15) eq:lacohii

Exercise

Check that this is a differential, that is, that d2 = 0.

The cohomology of the complex (Λ∗g∗, d) is known as Lie algebra cohomology and

denoted H∗(g). Note that it can be formulated purely algebraically. The differential defined

by (8.14) or, equivalently, (8.15) is sometimes called the Chevalley-Eilenberg differential.

It is useful to translate this into the physicist’s language:

Suppose we have a Lie algebra g with basis Ta, a is an index running over the generators.

Let us introduce the Clifford algebra:

{ca, ca′} = 0

{ba, ba′} = 0

{ca, ba′} = δaa′

(8.16) eq:ghosti
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where ca, ba′ are referred to as ghosts and antighosts, respectively.

We can quantize the Clifford algebra by choosing a Clifford vacuum

ba′ |0〉 = 0 (8.17) eq:ghostii

and the resulting Hilbert space is spanned by |0〉, ca|0〉, ....
The Hilbert space is graded by the “ghost number operator” N =

∑
a c

aba, and we

have an isomorphism of the vector space of states of ghost number k with Λkg∗:

ω ↔ 1

k!
ωa1···akc

a1 · · · cak |0〉 (8.18) eq:ghostiii

Under the isomorphism (8.18) the Chevalley-Eilenberg differential becomes what is

known as the BRST operator :

Q := −1

2
f a1
a2a3

ca2ca3ba1 (8.19) eq:ghostiv

The BRST cohomology is the cohomology of Q, and is graded by ghost number.

BRST cohomology enters physics in the quantization of theories with local gauge sym-

metry. For the moment let us note a very natural generalization. Suppose we have a

representation ρ of the Lie algebra g. We can then consider the complex

Λ∗g∗ ⊗ V (8.20)

and introduce a differential

Q = cata −
1

2
f a1
a2a3

ca2ca3ba1 (8.21) eq:ghostv

where ta = ρ(Ta) are the representation matrices of the rep. V .

Geometrically, the cohomology H∗Q(Λ∗g∗ ⊗ V ) can be identified, for G compact and

connected, with the cohomology H∗DR(G;V) of a homogeneous vector bundle over the group

G.

Exercise

Check that Q2 = 0

Exercise

Compute the degree 2 Lie algebra cohomology of su(2) and show that it is trivial.
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9. Left-invariant differential forms

We introduced the Lie algebra of a Lie group by thinking about the left-invariant vector

fields on the group. It is quite useful to think about the dual picture of left-invariant

differential forms:

Definition: A differential form ω ∈ Ω∗(G) is left invariant if

(Lg)
∗(ω) = ω (9.1)

for all g ∈ G.

Suppose first that G = GL(n,F). Then we can construct an explicit basis of left-

invariant 1-forms as follows. The basis of one-forms dual to ξ(eij) is

Θi′j′ = (g−1)i′kdgkj′ (9.2) eq:dualbasis

One can check explicitly that Θi′j′ is a dual basis to ξ(eij) by computing the contrac-

tion:

ι(ξ(eij))(Θi′j′) = 〈Θi′j′ , ξ(eij)〉 = δii′δjj′ (9.3) eq:contraction

It is convenient to assemble the 1-forms Θij into a matrix of one-forms

Θ := Θijeij = g−1dg. (9.4) eq:maurercartan

Let us check the left-invariance directly in matrix notation:

(Lg0)∗(g−1dg) = (g0g)−1d(g0g) = g−1g−1
0 g0dg = g−1dg (9.5)

The matrix of 1-forms (9.4) is known as the Maurer-Cartan form. Note that, if X ∈
gl(n,F) then we have

ι(ξ(X))(Θ) = X (9.6) eq:contr

Suppose now that G ⊂ GL(n,F) is a Lie subgroup. Under restriction to G the matrix

elements gij are not all independent, but satisfy polynomial relations. Nevertheless, we

can pull back the expression Θ = g−1dg to G. Formally, we should introduce the inclusion

map j : G ↪→ GL(n,F) and speak of ΘG = j∗(Θ). But to avoid cluttered notation we drop

this.

Now, for g ∈ G, the matrix of 1-forms will be valued in the lie algebra g of G considered

as a subalgebra of Matn(F). Indeed, if

γX(t) = g0e
tX (9.7)

is a curve through g0 whose directional derivative is ξ(X) then

γ∗X(g−1dg) = e−tXg−1
0 d(g0e

tX) = Xdt. (9.8)
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This shows that

〈ξ(X),Θ〉 = X ∈ g (9.9)

In this way Θ = g−1dg defines the Maurer-Cartan forms on any Lie subgroup of a matrix

group.

Example G = SO(2) If

g =

(
cos θ sin θ

− sin θ cos θ

)
(9.10)

so

g−1dg =

(
0 1

−1 0

)
dθ (9.11)

so

〈 ∂
∂θ
, g−1dg〉 =

(
0 1

−1 0

)
(9.12)

10. The Maurer-Cartan equation

A very important property of the left-invariant 1-forms is the Maurer-Cartan equation.

Differentiating, using d2 = 0 and the Leibniz rule gives:

dΘ = −g−1dg ∧ g−1dg = −Θ ∧Θ (10.1) eq:derivmc

We thus have the Maurer-Cartan equation:

dΘ + Θ ∧Θ = 0 (10.2) eq:mcequations

Since in general the matrix product of two Lie algebra elements is not in the Lie

algebra, it might not be immediately obvious to the reader that Θ ∧ Θ is valued in g. To

make this obvious we proceed as follows:

It is often useful to choose a basis Ta for g. Then we can define structure constants:

[Ta, Tb] = f c
ab Tc (10.3)

Now, since g−1dg is valued in the Lie algebra g we can expand:

g−1dg = eaTa (10.4)

and this defines a system of 1-forms ea on G which span T ∗g (G) at any point g. Then we

compute

0 = deaTa + eaTa ∧ ebTb

= deaTa +
1

2
ea ∧ eb[Ta, Tb]

(10.5)

In terms of the structure constants we have:

dea +
1

2
f a
bc e

b ∧ ec = 0 (10.6) eq:structure
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If follows from the above that the dual basis of vectorfields ea is precisely the system of

fundamental vector fields described above

ea = ξ(Ta) (10.7) eq:funda

Remarks:

• Although we have taken a rather concrete approach. The equations (10.6) and (10.7)

hold for all Lie groups. (Not all finite dimensional Lie groups are matrix groups. Heisenberg

groups give a counterexample. However, by the Peter-Weyl theorem, all compact Lie groups

are subgroups of some unitary group, and hence are matrix groups.)

• Later on, we will interpret this as a zero-fieldstrength condition for a pure gauge

field.

• Note that we can write:

Θ ∧Θ =
1

2
[Θ,Θ] (10.8)

where it is useful to introduce the notation

[α, β] := α ∧ β − (−1)pqβ ∧ α (10.9) eq:gradcomm

when α is a matrix-valued p-form and β is a matrix-valued q-form. Thus, the ordinary

commutator would read ΘΘ−ΘΘ = 0, but since we are discussing matrices whose elements

are in a graded algebra the natural notion of commutator is the “graded commutative”

(10.9).

• For future use in our discussion of connections on principal bundles, note that (10.2)

implies

Lξ(X)Θ = (dι(X) + ι(X)d)Θ = −ι(X)Θ2 = −Ad(X)(Θ) (10.10) eq:liederv

where in the last equality we consider Θ to be a Lie-algebra valued one-form, valued

in the adjoint representation.

Exercise

One way of defining the exterior derivative of a differential k-form field is via the

formula:

dω(X1, . . . , Xk+1) :=
k+1∑
i=1

(−1)i+1Xi

(
ω(. . . , X̂i, . . . )

)
+
∑
i<j

(−1)i+jω([Xi, Xj ], . . . X̂i, . . . , X̂j . . . )

(10.11) eq:extderiv

where X̂ means that entry is deleted.

a.) Using this formula, show that the Maurer-Cartan equation is equivalent to the fact

that the left-invariant vector fields form a closed Lie algebra.
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b.) In particular, show that (10.6) is compatible with

[ea, eb] = +f cabec (10.12)

c.) Since left invariant forms are determined by their value at g = 1 we can identify

Ωk
L(G) ∼= Λkg∗, as vector spaces. This gives us a new perspective on Lie algebra cohomology

defined above.

(Hint: If ω is left-invariant andXi are left-invariant then ω(X1, . . . , Xk) is left-invariant,

and hence constant.)

Exercise Right-invariance

a.) Show that

Θ̃ = dgg−1 (10.13)

is a matrix of right-invariant 1-forms.

b.) Show that

dΘ̃− Θ̃ ∧ Θ̃ = 0 (10.14)

c.) Show that if we expand

Θ = ωaLTa (10.15)

Θ̃ = ωaRTa (10.16)

then

ωaL = (Ad(g))abω
b
R (10.17)

so the bases of left- and right-invariant forms are related by the adjoint representation.

11. Examples

11.1 SU(2)

Introduce angular coordinates:

g = e
i
2
σ3φe

i
2
σ2θe

i
2
σ3ψ

= ei
1
2
φσ3

(
cos θ/2 sin θ/2

− sin θ/2 cos θ/2

)
ei

1
2
ψσ3

0 ≤ θ ≤ π, φ ∼ φ+ 2π ψ ∼ ψ + 4π

(11.1) eq:angl

Then

Θ = g−1dg =
i

2
σaea (11.2)
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e1 = cosψ sin θdφ− sinψdθ

e2 = sinψ sin θdφ+ cosψdθ

e3 = dψ + cos θdφ

(11.3) eq:leftforms

which is conveniently written as

g−1dg =
i

2
σ3(dψ + cos θdφ) +

1

2

(
0 1

0 0

)
e−iψ(dθ + i sin θdφ)− 1

2

(
0 0

1 0

)
eiψ(dθ − i sin θdφ)

(11.4)

With the basis T a = i
2σ

a the structure constants are f c
ab = −εabc, and one easily verifies

the Maurer-Cartan equations directly:

de3 = e1 ∧ e2 + cyclic (11.5) eq:sutmc

The dual basis of vector fields is

e3 =
∂

∂ψ

e2 = cosψ
∂

∂θ
+

sinψ

sin θ

∂

∂φ
− sinψcotθ

∂

∂ψ

e1 = − sinψ
∂

∂θ
+

cosψ

sin θ

∂

∂φ
− cosψcotθ

∂

∂ψ

(11.6) eq:leftvfs

and one checks with an explicit computation that

[ea, eb] = −εabcec (11.7) eq:explicit

Remark: Note that dψ is not a globally well-defined form on SU(2), nor is cos θdφ.

However, the ea are globally well-defined. Similarly, the ea are globally well-defined vector

fields.

Exercise

It is often useful to introduce coordinates on C2:

z1 = rei(ψ+φ)/2 cos θ/2

z2 = rei(ψ−φ)/2 sin θ/2
(11.8)

which satisfy |z1|2 + |z2|2 = r2. Setting r = 1 gives a coordinate system the covers SU(2)

(but degenerates at the poles).

Write out the forms in terms of these variables.
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Exercise

Show that under g → g−1 we have

eaL(g) = −eaR(g−1) (11.9)

and that in coordinates this is φ↔ −ψ, θ → −θ
Deduce that

e1
R = − cosφ sin θdψ + sinφdθ

e2
R = sinφ sin θdψ + cosφdθ

e3
R = dφ+ cos θdψ

(11.10) eq:rightforms

with dual basis of vector fields

eR3 =
∂

∂φ

eR2 = cosφ
∂

∂θ
+

sinφ

sin θ

∂

∂ψ
− sinφcotθ

∂

∂φ

eR1 = − sinφ
∂

∂θ
− cosφ

sin θ

∂

∂ψ
+ cosφcotθ

∂

∂φ

(11.11) eq:leftvfsa

11.1.1 The Heisenberg group

An interesting example which is not a compact Lie group are the Heisenberg groups.

The three-dimensional Heisenberg group is the group of matrices

g =

1 x z

0 1 y

0 0 1

 (11.12)

with x, y, z ∈ R. The multiplication law is

(x, y, z) · (x′, y′z′) = (x+ x′, y + y′, z + z′ + xy′) (11.13)

(note it is not abelian.)

An easy computation shows that

g−1dg =

0 dx dz − xdy
0 0 dy

0 0 0

 (11.14)
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12. Metrics on Lie groups

A very natural class of metrics on Lie groups are those which are left or right invariant.

As with forms and vector fields (and indeed all tensors), invariant metrics are uniquely

determined by their value at g = 1, where they are bilinear forms on the Lie algebra. A

natural way to make such a metric is to choose a representation ρ of the Lie group and

define:

ds2 = Trρ(g
−1dg)⊗ (g−1dg)

= Trρ(dgg
−1)⊗ (dgg−1)

(12.1) eq:natmetric

Using equation (4.4)(??) above we see that this corresponds to the metric

(X1, X2) = Trρ(ρ(X1)ρ(X2)) (12.2) eq:natmetricii

on the Lie algebra.

Warning: While it is natural, the left-right invariant metric (12.1) might be zero. For

example, consider the group of upper triangular matrices with 1 on the diagonal. Similarly,

consider the Heisenberg group above. Also, for infinite-dimensional groups, the cyclicity of

the trace used in (12.1) might be invalid.

Metrics which are simultaneously left- and right- invariant correspond to Ad-invariant

metrics on the Lie algebra. Every Lie algebra has a canonical representation, namely, the

Adjoint representation. This defines the Ad-invariant Cartan-Killing metric:

gCK(X1, X2) := Trg(Ad(X1)Ad(X2)) (12.3) eq:cartkill

Example 1: O(n) has a basis for the Lie algebra Tij = eij − eji, 1 ≤ i, j ≤ n. Then

gCK(Tij , Tkl) = −2(n− 2)δi,kδj,l (12.4) eq:onck

Example 2: For SU(2), if we regard SU(2) = S3 as the unit sphere in Euclidean R4

then the metric is expressed in terms of the left-invariant forms is 1/2 of the metric in the

2-dimensional representation:

dΩ2
3 =

1

4

3∑
a=1

ea ⊗ ea

=
1

4

[
(dψ + cos θdφ)2 + (dθ)2 + sin2 θ(dφ)2

]
=

1

4

[
(dψ)2 + (dθ)2 + (dφ)2 + 2 cos θdψdφ

] (12.5) eq:sumtrc
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Exercise

Using the round metric of SU(2) compute the inner products of the left and right

invariant vector fields and show that

g(eLa , e
L
b ) = g(eRa , e

R
b ) = δab

g(eLa , e
R
b ) = Rab(ψ, θ, φ)

(12.6) eq:lrips

where Rab is the SO(3) rotation matrix associated with the Euler angles.

Exercise

Show that if we write the metric on a Lie algebra as

(Ta, Tb) := Iab (12.7)

then Ad-invariance is equivalent to:

f d
ac Idb = Iadf

d
cb (12.8)

Exercise

Show that if we choose a basis Ta for g then the metric components of gCK are given

by

(gCK)ab = f d
ac f

c
bd (12.9) eq:carkillii

Exercise

Compute the CK form for U(n), SU(n), USp(2n).

Exercise

Show that the volume of SU(N) in the metric

ds2 = −TrN [(g−1dg)⊗ (g−1dg)] (12.10) eq:metric
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is

vol (SU(N)) =

√
N

2π
(2π)

1
2
N(N+1) 1

1!2!3! · · · (N − 1)!
(12.11)

Hint:

Consider SU(N)/SU(N − 1) = S2N−1 and relate the local coordinates of S2N−1 and

SU(N) via

g = 1 + iyNDiag{ε, . . . , ε, 1}+
∑
i

(zieiN − z̄ieNi) + · · · (12.12) eq:localcoord

at g = 1. (Here ε = −1/(N − 1). ). Here we are thinking of S2N−1 as the solutions to∑N
i=1 |zi|2 = 1 and zN = xN + iyN . In these coordinates, the group metric (12.10) becomes

ds2 = 2
N−1∑
i=1

[(dxi)2 + (dyi)2] +
N

N − 1
(dy)2 (12.13) eq:metrspher

Volumes of G and G/K for compact symmetric spaces (in the Killing metric) were

computed in A. Kojun and Y. Ichiro, “Volumes of compact symmetric spaces,” Tokyo J.

Math. 20 1997)p.87.

12.1 Simple Lie groups and the index of a representation

If we define a simple Lie algebra as one which has no nontrivial invariant subalgebras then

we have the following key result:

Exercise Uniqueness of the Cartan-Killing form

a.) Show that the Ad-invariant bilinear forms on a finite-dimensional simple Lie algebra

are unique up to a constant.

b.) Show that if Ta is an ON basis in the CK form, then the most general invariant

metric on a simple Lie group is

ds2 = Ω2
dimG∑
a=1

ea ⊗ ea (12.14)

where Ω2 is a constant.

Given the uniqueness of the CK form up to scale, for any representation ρ of g set

gρ(X1, X2) = Trρ(ρ(X1)ρ(X2)) = `(ρ)gCK(X1, X2) (12.15) eq:liemetric

where `(ρ) is a constant called the index of the representation. This is often useful to

have handy when working with instanton effects in gauge theory.
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Example 1: For SU(2) we can easily compute the index of the irreducible represen-

tations by simply computing the norm-squared of J3. For the adjoint representation (spin

=1 ) we have

gCK(J3, J3) = 12 + 02 + (−1)2 = 2 (12.16) eq:cksut

and for spin j we have

gj(J3, J3) =

+j∑
m=−j

m2 =

2j∑
`=0

(−j + `)2 =
1

3
j(j + 1)(2j + 1) (12.17) eq:cksutii

and therefore,

f(j) =
1

6
j(j + 1)(2j + 1) (12.18)

Example 2 For SU(N), g = su(N) is the algebra of N ×N traceless antihermitian

matrices.

Tradj = 2NTrN (12.19) eq:indxemb

Remarks

• Tables of in the indexes of representations are given in books by Patera.

Exercise

Show that
`(ρ1)

`(ρ2)
=

dimρ1 · C2(ρ1)

dimρ2 · C2(ρ2)
(12.20)

where C2(ρ) is the value of the Casimir in the representation ρ.

Exercise

Suppose that the decomposition of a tensor product of representations is given by

ρ1 ⊗ ρ2 =
∑
λ

Nλρλ (12.21)

Show that

`(ρ1)D(ρ2) + `(ρ2)D(ρ1) =
∑
λ

Nλ`(ρλ) (12.22) eq:relateindx

where D(ρ) is the dimension of ρ.
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Exercise

Show that for a semisimple Lie algebra the degree two Lie algebra cohomology vanishes:

There are no nontrivial central extensions.

12.2 Metrics on abelian groups

In contrast to the simple groups, where the invariant metrics are unique up to an overall

constant, the metrics on abelian groups are far from unique. Indeed, the torus U(1)n has

a moduli space of invariant metrics GL(n,R)/O(n).

12.3 Geodesics

Geodesics through the origin are of the form γ(t) = exp[tX] for X ∈ g.

********** EXPLAIN WHY **************

12.4 Compact and noncompact real forms: The signature of the CK metric

For a good discussion on this topic see Gilmore’s book.

By the KAN decomposition (Gram-Schmidt decomposition) we see that every con-

nected Lie group is (topologically) a product of its maximal compact subgroup and a

Euclidean space.

A general result identifies the compact subalgebra with the negative definite generators

and the noncompact generators with the positive definite subspace.

Key example: Compact generator

X =

(
0 1

−1 0

)
⊕ 0⊕ 0⊕ · · · (12.23)

This is compact in the sense that its 1-parameter subgroup forms a compact orbit:

exp[tX] =

(
cos t sin t

− sin t cos t

)
⊕ 1⊕ 1⊕ · · · (12.24)

Note that:

Tr(X)2 = −2 (12.25)

while a noncompact generator

X =

(
0 1

1 0

)
⊕ 0⊕ 0⊕ · · · (12.26)

has

exp[tX] =

(
cosh t sinh t

sinh t cosh t

)
⊕ 1⊕ 1⊕ · · · (12.27)

and

Tr(X)2 = +2 (12.28)
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12.5 Example: SL(2, R)

The Lie algebra sl(2,R) is the Lie algebra of traces 2× 2 real matrices.

One natural basis of the Lie algebra has commutation relations:

[K0,K±] = ±K±, [K+,K−] = −2K0 . (12.29) eq:sucom

In the 2-dimensional representation we could take, for example:

K0 =
1

2

(
1 0

0 −1

)
K+ =

(
0 1

0 0

)
K− =

(
0 0

−1 0

)
(12.30)

Maurer-Cartan forms:

U := eC+K+eC0K0eC−K−

dUU−1 = e−C0dC−K− + (dC0 − 2e−C0C+dC−)K0 + (dC+ + e−C0C2
+dC− − C+dC0)K+

U−1dU = dC+e
−C0K+ + (dC0 − 2C−e

−C0dC+)K0 + (dC− − C−dC0 + C2
−e
−C0dC+)K−

(12.31) eq:mcforms

The Killing metric is:

(aK0 + bK+ + cK−, aK0 + bK+ + cK−) = 2(a2 − 4bc) (12.32)

Note that this is a Lorentzian signature metric.

Casimir:

4K2
0 − 2(K+K− +K−K+) (12.33)

The compact generator is K+ +K− and the KAN decomposition is:

SO(2)

(
λ

λ−1

)(
1 x

0 1

)
(12.34)

Exercise

a.) Compute the Maurer-Cartan forms in the global coordinates of the KAN decom-

position.

b.) Suppose we write the Gauss decomposition:

g =

(
1 0

χ 0

)(
eφ 0

0 e−φ

)(
1 ψ

0 1

)
(12.35)

(warning: These are not globally valid coordinates on SL(2,R).) Show that

Tr(g−1dg)3 = 2e2φdφ ∧ dψ ∧ dχ (12.36)
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13. Some Remarks on Infinite Dimensional Lie Algebras

13.1 Generalities

The study of infinite dimensional Lie algebras and their representations is an active subject

in modern mathematical physics. Infinite dimensional Lie algebras arise in conformal

field theory, string theory, gauge theory of elementary particles, and gravitational theory

classical and quantum mechanical. They have also play a role in some field theoretical

applications of condensed matter physics such as the quantum Hall effect, and the Kondo

problem.

***************

Banach Lie groups. Comments from Milnor.

***************

13.2 Groups of operators on Hilbert space

A very important infinite-dimensional group is the group U(H) of unitary operators on

Hilbert space. The topology of this group depends strongly on how we define the group

precisely. The inductive limit limn→∞ U(n) has lots of topology (it is a classifying space

for K1).

On the other hand, there is a very deep and remarkable theorem, known as Kuiper’s

theorem U(H) which states that in the norm topology U(H) is contractible!

13.3 Gauge Groups

For another set of examples, consider a Lie group G, and a manifold M . The space of all

smooth maps M → G forms an infinite-dimensional group with Lie algebra the space of

all maps M → g. Except for the case where M is one-dimensional, very little is known

about these groups. The one-dimensional case is of central importance in string theory

and low-dimensional field theory.

13.3.1 Loop algebras

Suppose g is a finite dimensional simple Lie algebra. We can associate to it an infinite

dimensional Lie algebra whose elements are maps

f : S1 → g (13.1)

We will be vague about the precise class of maps - it should be some completion of the

space of Laurent polynomials in z = eiθ. The set of all such maps is itself a Lie algebra for
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we can define

[f1, f2](z) := [f1(z), f2(z)] (13.2)

This infinite dimensional Lie algebra is known as the loop algebra Lg.

It is often useful to choose a basis T a for g, for this induces an obvious basis for Lg:

T an := T azn (13.3)

with commutation relations

[T an , T
b
m] = fabc T

c
n+m (13.4)

Loop algebras admit a very interesting central extension: 8

0→ R→ L̃g→ Lg→ 0 (13.5)

Elements of L̃g are pairs (f, ξ) where f is a map, and ξ ∈ C. The bracket of the central

extension is

[(f1, ξ1), (f2, ξ2)] := ([f1, f2], ω(f1, f2)) (13.6)

where

ω(f1, f2) :=
1

2πi

∮
(f ′1(z), f2(z))gdz (13.7)

where in the integral we use an ad-invariant bilinear form (·, ·)g, such as the Cartan-Killing

form on g. (Recall that for G simple all such forms are the same up to scale, consistent

with the uniqueness of the central extension.)

Again, it is useful to write this out in terms of a basis. Using the bilinear form on g

we define

(T a, T b)g = gab (13.8)

and we define K := (0, 1) ∈ L̃g. Then

[T an , T
b
m] = fabc T

c
n+m + ngabδn+m,0K

[K,T an ] = 0
(13.9) eq:kmalg

This is the way the algebras are often written in the physics literature.

13.4 Diffeomorphism Groups

A nice example is given by the space of vector fields on a manifold and the related group

of diffeomorphisms of a manifold.

Already, the simplest special case is highly nontrivial. Consider the group diffeomor-

phisms of the circle.

A natural basis of vector fields on the circle is given by Fourier decomposition:

`n = ieinθ
d

dθ
(13.10)

8It is an easy result that, up to isomorphism, this is the unique nontrivial central extension when g is

simple.
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They satisfy the Lie algebra:

[`n, `m] = (n−m)`n+m (13.11)

One can show that there is a one-dimensional cohomology space and a representative

cocycle is

ω(`n, `m) = δn+m,0n
3 (13.12) eq:repcocycl

Note this is cohomologous to

ω(`n, `m) = δn+m,0(n3 − n) (13.13) eq:repcocycla

The unique central extension of the Lie algebra of vector fields on S1 is known as the

Virasoro algebra.

The Virasoro algebra can be defined in terms of a basis Ln, n ∈ Z and a central element

c, with structure constants:

[c, c] = 0

[c, Ln] = 0

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0

(13.14) eq:virasoro

The normalization of the central element c is convenient in physical applications. The

choice of cocycle is made so that the Lie algebra generated by L±1, L0 forms a copy of sl(2)

and is not extended.

Exercise

a.) Check the Jacobi relations of the Virasoro algebra.

b.) Show that ω(`n, `m) = nδn+m,0 is a coboundary.

c.) Show that the Lie algebra cohomology of the conformal group is one-dimensional

and hence show that the above is the most general central extension.

13.4.1 Gravity in 1+1 dimensions

Consider quantum gravity in 1 + 1 dimensions. If space is compact and connected it must

be S1, we are therefore interested in invariant states under G = Diff+(S1). A natural

basis for the corresponding (complexified) Lie algebra is given by `n = einθ ddθ , n ∈ Z.

Actually, because this is an infinite-dimensional group we should allow for anomalies and

work with a central extension. The corresponding Lie algebra is the Virasoro algebra given

above. Let us see how the central extension comes about physically.

Let us consider the BRST operator. We introduce (diffeomorphism) ghosts and antighosts

cn, bn, n ∈ Z with {cn, bm} = δn+m,0.
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Because we are working with an infinite-dimensional Clifford algebra there are many

inequivalent quantizations. The one relevant to radial quantization in the complex plane

of string theory is 9

cn|0〉 = 0 n > 1

bn|0〉 = 0 n > −2
(13.15) eq:ghostvac

The idea here is that the “Dirac sea” is filled by c2 ∧ c3 ∧ c4 ∧ · · · . For this reason,

elements of the ghost Hilbert space are referred to as “semi-infinite differential forms” in

the math literature.

Following the formula (8.19) above we have in this case:

Qghost = −1

2

∑
m,n∈Z

(m− n) : c−mc−nbm+n : (13.16) eq:virq

The normal ordering is necessary so that Q has a well-defined action on the ghost

Hilbert space.

Now one finds a big surprise: Q2 6= 0 due to the need to regularize the infinite sums!

Using ζ-function regularization one computes

Q2
ghost =

∑
m,n

(m− 13m3)

12
δm+n,0cmcn (13.17) eq:virqiii

If we consider the Lie algebra cohomology in a nontrivial Virasoro module with central

charge ρ(c) then the BRST operator is:

Q =
∑

cnρ(Ln)− 1

2

∑
m,n∈Z

(m− n) : c−mc−nbm+n : −ac0 (13.18) eq:virqiv

where we have allowed for a normal-ordering shift ρ(L0)→ ρ(L0)− a. Then

Q2 =
1

2

∑
m,n∈Z

[
[ρ(Ln), ρ(Lm)]− (n−m)ρ(Ln+m) +

((1 + 12a)m− 13m3)

6
δm+n,0

]
cmcn

(13.19) eq:virqiiia

so we get Q2 = 0 for a = 1 and ρ(c) = 26.

In the worldsheet approach to string theory we work with 1 + 1 dimensional quantum

gravity coupled to matter and this is one way of understanding the restriction to matter

with c = 26. Only in this case is there a well-defined spectrum of string states from BRST

cohomology.

9In general, a primary field of dimension ∆ has an expansion Φ =
∑
n Φnz

−n−∆ and hence Φn|0〉 = 0

for n > −∆, so that limz→0 Φ(z)|0〉 is well-defined. The ghost field c(z) has ∆ = −1 and the antighost b(z)

has dimension ∆ = +2.
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13.4.2 The exponential map for Diff(S1)

• For Diff(S1) the Exp map is neither 1-1 nor onto, even in an arbitrarily small neigh-

borhood of the origin!

• For V irC there is no corresponding Lie group.

For a discussion of (1) above see Pressley+Segal, Loop Groups, Sections 3.3.1 and the

article by Milnor. Briefly, to show exp is not 1− 1 consider rotation R2π/n. Consider the

centralizer Z(R2π/n). This consists of diffeomorhisms which are periodic in the sense that

φ(θ + 2π/n) = φ(θ) + 2π/nmod2π. Now for any φ in the centralizer, φSO(2)φ−1 is a one

parameter subgroup of Diff(S1) consisting of elements {φRθφ−1|θ ∈ R}. However, R2π/n

lies on all these one-parameter subgroups! Thus, the exponential map is not 1-1. Note

that we can make n arbitrarily large, so this failure of injectivity holds arbitrarily close to

the identity.

Regarding (2) consider the following diffeomorphism

f(θ) = θ + π/n+ ε sin2(nθ) (13.20)

where 0 < ε < 1/n. One can prove that this diffeomorphism has precisely one periodic

orbit of length 2n: 0 → π/n → 2π/n → · · · → 2π(n − 1)/n → 0. Indeed, if 0 < θ0 < π/n

then defining θj+1 = f(θj) one can check with a little calculus that

θ0 < θ1 − π/n < θ2 − 2π/n < · · · < π/n (13.21)

so no θj is ever equal to θ0 modulo 2π. Thus, our diffeomorphism has precisely one periodic

orbit, and it is of length 2n. It is remarkable that it has only one orbit with an even number

of elements in the orbit. Why?

Consider a diffeomorphism F of any manifold. It is useful to compare the periodic

orbits of F with those of F ◦ F . If F has an odd periodic orbit then, F ◦ F has the same

odd periodic orbit, essentially because the order of the orbit and 2 are relatively prime.

(Draw the case of n = 3, 5.) On the other hand, if F has an even periodic orbit of order

n = 2m, then the periodic orbits of F ◦F split up into two distinct periodic orbits of length

m. (Check the cases n = 4, 6.)

Now, we apply this remark to note that f(θ) above cannot be of the form F ◦F for any

diffeomorphism F , since the number of periodic orbits of even period must be even, but

f(θ) has a single periodic orbit of even period. But this in turn means that f(θ) cannot

be on any one-parameter subgroup Ft(θ) since if we had Ft∗(θ) = f(θ) then we would have

had f = F ◦ F with F = F 1
2
t∗

.

For a discussion of point (2) above see section 3.3.2 of Pressley-Segal. ♣Need to explain

why. Helpful

remarks in

Graeme’s email

from November 19,

2009 on this. ♣
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