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Chapter 10:: Clifford algebras

Abstract: NOTE: THESE NOTES, FROM 2009, MOSTLY TREAT CLIFFORD ALGE-

BRAS AS UNGRADED ALGEBRAS OVER R OR C. A CONCEPTUALLY SUPERIOR

VIEWPOINT IS TO TREAT THEM AS Z2-GRADED ALGEBRAS. SEE REFERENCES

IN THE INTRODUCTION WHERE THIS SUPERIOR VIEWPOINT IS PRESENTED.

April 3, 2018



Contents-TOC-

1. Introduction 1

2. Clifford algebras 1

3. The Clifford algebras over R 3

3.1 The real Clifford algebras in low dimension 4

3.1.1 C`(1−) 4

3.1.2 C`(1+) 5

3.1.3 Two dimensions 6

3.2 Tensor products of Clifford algebras and periodicity 7

3.2.1 Special isomorphisms 9

3.2.2 The periodicity theorem 10

4. The Clifford algebras over C 14

5. Representations of the Clifford algebras 15

5.1 Representations and Periodicity: Relating Γ-matrices in consecutive even

and odd dimensions 18

6. Comments on a connection to topology 20

7. Free fermion Fock space 21

7.1 Left regular representation of the Clifford algebra 21

7.2 The Exterior Algebra as a Clifford Module 22

7.3 Representations from maximal isotropic subspaces 22

7.4 Splitting using a complex structure 24

7.5 Explicit matrices and intertwiners in the Fock representations 26

8. Bogoliubov Transformations and the Choice of Clifford vacuum 27

9. Comments on Infinite-Dimensional Clifford Algebras 28

10. Properties of Γ-matrices under conjugation and transpose: Intertwiners 30

10.1 Definitions of the intertwiners 31

10.2 The charge conjugation matrix for Lorentzian signature 31

10.3 General Intertwiners for d = r + s even 32

10.3.1 Unitarity properties 32

10.3.2 General properties of the unitary intertwiners 33

10.3.3 Intertwiners for d = r + s odd 35

10.4 Constructing Explicit Intertwiners from the Free Fermion Rep 35

10.5 Majorana and Symplectic-Majorana Constraints 36

– 1 –



10.5.1 Reality, or Majorana Conditions 36

10.5.2 Quaternionic, or Symplectic-Majorana Conditions 37

10.5.3 Chirality Conditions 38

11. Z2 graded algebras and modules 39

11.1 Z2 grading on the algebra 39

11.2 The even subalgebra C`0(r+, r−) 40

11.3 Z2 graded tensor product of Clifford algebras 41

11.4 Z2 graded modules 42

11.5 K-theory over a point 46

11.6 Graded tensor product of modules and the ring structure 46

11.6.1 The Grothendieck group 46

12. Clifford algebras and the division algebras 46

13. Some sources 47

1. Introduction

***********************************

Note added April 3, 2018: For the reader willing to invest some time first learning

some Z2-graded- , or super- linear algebra a much better treatment of this material can be

found in:

http://www.physics.rutgers.edu/∼gmoore/695Fall2013/CHAPTER1-QUANTUMSYMMETRY-

OCT5.pdf (Chapter 13)

http://www.physics.rutgers.edu/∼gmoore/PiTP-LecturesA.pdf (Section 2.3)

************************************

Clifford algebras and spinor representations of orthogonal groups naturally arise in

theories with fermions. They also play an important role in supersymmetry and super-

gravity. They are used quite frequently in the various connections of physics to geometry.

It also turns out that they are central to modern topology.

While the details that follow can get rather intricate, it is worth the investment it

takes to learn them.

It is important to have a clear understanding about the meaning of a complex structure

and a quaternionic structure on a real vector space, what realification means etc. See

chapter two for these linear algebra basics.
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2. Clifford algebras

Definition. Let V be a vector space over a field F and let Q be a quadratic form on V

valued in F . The Clifford algebra C`(Q) is the algebra over F generated by V and defined

by the relations:

v1v2 + v2v1 = 2Q(v1, v2) · 1 (2.1)

where 1 is the unit, considered to be the multiplicative unit in the ground field F .

Remarks

• One can give a much more formal definition by taking the quotient of the tensor

algebra T (V ) by the 2-sided ideal generated by v1 ⊗ v2 + v2 ⊗ v1 − 2Q(v1, v2)1. Unlike

the tensor algebra the Clifford algebra is not Z-graded, since two vectors can multiply to

a scalar. Nevertheless it is Z2-graded, and this Z2-grading is important. We can define an

algebra automorphism λ on C`(Q) by taking λ(v) = −v for v ∈ V and extending this to

be an algebra automorphism. The even and odd parts of the Z2 grading are the λ = ±1

subspaces. We will use this grading later in this chapter and in the next.

• Since the relation is quadratic the embedding V → C`(Q) has no kernel. To lighten

the notation we will usually not distinguish between a vector v ∈ V and its image in C`(Q),

trusting to context to resolve the ambiguity.

• If Q = 0 the resulting algebra is called a Grassmann algebra and is isomorphic to the

exterior algebra on V . (See more on this below). Usually, when people speak of a “Clifford

algebra” it is understood that Q is nondegenerate.

To write a vector space basis of C`(Q) let {eµ|µ = 1, . . . d} be a basis of V . Then

the eµ generate the algebra. The quadratic form in this basis will be Qµν . Since it is

nondegenerate we can define an inverse Qµν so that QµνQ
νλ = δ λ

µ . We will also use the

notation eµ = Qµνe
ν .

For simplicity, let us choose a basis in which Q is diagonal 1

When we multiply eµ1 · · · eµp we can use the relations to move vectors with the same

index next to each other and then “annihilate them” (i.e., use the relation) to get scalars.

Define

eµ1···µp := eµ1 · · · eµp (2.2) eq:multiindx

when the indices are all different. Note that this expression is completely antisymmetric

on µ1, . . . , µp.

Clearly the eµ1···µp for µ1 < µ2 < · · · < µp are all linearly independent and moreover

form a vector space basis over F for C`(Q). In particular we find

dimFC`(Q) = 2d =
d∑
p=0

(
d

p

)
(2.3)

1We can also speak of Clifford modules over a ring. In this case we might not be able to diagonalize Q.

This might happen, for example, if we considered Clifford rings over Z.

– 3 –



Note that using this basis we can define an isomorphism of C`(Q) with Λ∗(V ) as vector

spaces:

1

p!
ωµ1...µpe

µ1···µp → 1

p!
ωµ1...µpe

µ1 ∧ · · · ∧ eµp (2.4) eq:isomf

where ωµ1...µp is a totally antisymmetric tensor.

Even though Λ∗(V ) is an algebra, (2.4) does not define an algebra isomorphism since

(eµ)2 6= 0 in the Clifford algebra (when Q is diagonal) while eµ ∧ eµ = 0 in Λ∗(V ). Indeed,

Λ∗(V ) is isomorphic to the Grassmann algebra, as an algebra.

Remarks

• An important anti-automorphism, the transpose is defined as follows: 1t = 1 and

vt = v for v ∈ V . Now we extend this to be an anti-automorphism so that (φ1φ2)
t = φt2φ

t
1.

In particular:

(eµ1eµ2 · · · eµk)t = eµkeµk−1 · · · eµ2eµ1 (2.5)

A little computation shows that

(eµ1···µk)t = eµk···µ1 = (−1)
1
2
k(k−1)eµ1···µk (2.6)

• The functions f(k) = (−1)
1
2
k(k−1) and g(k) = (−1)

1
2
k(k+1) appear frequently in the

following. Note that f(k) and g(k) only depend on kmod4, f(k) = g(−k) and

(−1)
1
2
k(k−1) =

{
+1 k = 0, 1mod4

−1 k = 2, 3mod4
(2.7) eq:qnfen

(−1)
1
2
k(k+1) =

{
+1 k = 0, 3mod4

−1 k = 1, 2mod4
(2.8) eq:qnfena

3. The Clifford algebras over R

In quantum mechanics we work over the complex numbers. Nevertheless, in theories of

fermions it is often important to take into account reality constraints, and hence the prop-

erties of the Clifford algebras over R is quite relevant to physics, particularly when we

discuss supersymmetric field theories and string theories in various spacetime dimensions.

Moreover, in the physics-geometry interaction the beautiful structure of the Clifford alge-

bras over R plays an important role. It is thus well worth the extra effort to understand

the structures here.

By Sylvester’s theorem, when working over R it suffices to consider

Q(eµ, eν) = ηµν (3.1)

where ηµν is diagonal with ±1 entries. Since there are different conventions in the literature,

we will denote the Clifford algebra with

(e1)2 = · · · = (er+)2 = +1

(er++1)2 = · · · = (er++s−)2 = −1
(3.2)
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by C`(r+, s−). The Clifford algebra is thus specified by a pair of nonnegative integers

labelling the number of +1 and −1 eigenvalues. If the form is definite we simply denote

C`(r+) or C`(s−). 2

Exercise

Let pµ be a vector on the pseudo-sphere

pµpνη
µν = R2. (3.3)

Show that (pµe
µ)2 = R2 · 1.

Exercise The Clifford volume element

a.) There is a basic anti-automorphism, the transpose automorphism that acts as

(φ1φ2)
t = φt2φ

t
1. Show that:

eµ1···µk = (−1)
1
2
k(k−1)eµk···µ1 (3.4)

b.) Show that the volume element in C`(r+, s−)

ω = e1e2 · · · ed (3.5)

d = r+ + s−, satisfies

ω2 = (−1)
1
2
(s−−r+)(s−−r++1) =

{
+1 for(s− − r+) = 0, 3mod4

−1 for(s− − r+) = 1, 2mod4
(3.6)

[Answer: The easiest way to compute is to write

ω · ω = (−1)
1
2
d(d−1)ωωt = (−1)

1
2
d(d−1)+s = (−1)

1
2
(s−r)(s−r+1)] (3.7)

c.) Show that under a change of basis eµ → fµ =
∑
gνµeν where g ∈ O(η) we have

ω′ = detgω, so that ω indeed transforms as the volume element.

d.) ωeµ = (−1)d+1eµω. Thus ω is central for d odd and is not central for d even.

Note:

1. dT = s− − r+ generalizes the number of dimensions transverse to the light cone in

Lorentzian geometry.

2. ω2 = 1 and ω is central only for dT = s− r = 3mod4.

2I find it impossible to remember whether the first or second entry should be the number of positive or

negative signs. Therefore, I will explicitly put a subscript ± to indicate the signature. Lawson-Michelsohn

take C`(r, s) = C`(r−, s+).
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3.1 The real Clifford algebras in low dimension

In 0 dimensions C`(0) = R.

3.1.1 C`(1−)

To see this note that the general element in C`(1−) is a+be1. But we have a faithful matrix

representation e1 →
√
−1. (Note that in fact we have two inequivalent representations,

depending on the sign of the squareroot). Thus a + be1 → a + ib defines an isomorphism

to C, regarded as an algebra over R. Thus

C`(1−) ∼= C (3.8)

There is only one real irreducible representation up to equivalence: V ∼= R2 and

ρ(a+ be1) =

(
a b

−b a

)
(3.9)

Note that

ρ′(a+ be1) =

(
a −b
b a

)
(3.10)

defines an equivalent representation.

Over C these matrices can be diagonalized, leading to two inequivalent complex repre-

sentations of C`(1). Applying the rule for the complexification of a real vector space with

complex structure we have C⊗R C ∼= C⊕ C so the inequivalent representations are:

ρ+(a+ be1) = a+ bi (3.11) eq:inqa

and

ρ−(a+ be1) = a− bi (3.12) eq:inqb

3.1.2 C`(1+)

The multiplication law of elements a+ be1 is simply

(a+ be1) · (a′ + b′e1) = (aa′ + bb′) + (ab′ + a′b)e1 (3.13)

In this dimension we can introduce central projection operators

P± =
1

2
(1± e1) (3.14)

Then P+C`(1+) and P−C`(1+) are subalgebras and we can write a direct sum of algebras:

C`(1+) = P+C`(1+)⊕ P−C`(1+) (3.15)

In this case each of the subalgebras is one-dimensional:

a+ be1 = (a+ b)(
1 + e1

2
) + (a− b)(1− e1

2
) (3.16)
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We have

C`(1+) = R⊕ R (3.17)

This algebra is also known as the “double numbers.”

There are two inequivalent real representations:

ρ+(a+ be1) = a+ b (3.18)

ρ−(a+ be1) = a− b (3.19)

These representations are not faithful. We have a faithful matrix rep:

a+ be1 →

(
a b

b a

)
(3.20) eq:doublnumone

Of course the representation (3.20) is in fact reducible. it is equivalent to matrices of

the form (
a+ b 0

0 a− b

)
(3.21) eq:doublenumii

However, one needs both diagonal entries to get a faithful representation. Later we

will talk about Z2 graded representations. The minimal Z2 graded representation is 2-

dimensional and given by (3.20).

Finally, over C, i.e. for C`1 we could also have taken (e1)2 = +1 and

ρ+(a+ be1) = a+ b (3.22) eq:inqc

and

ρ−(a+ be1) = a− b (3.23) eq:inqd

with a, b ∈ C reflecting the complexification of the two representations of C`(1+). Thus

C`(1) ∼= C⊕ C (3.24) eq:cclxone

3.1.3 Two dimensions

Let us introduce the very useful notation

K(n) := Matn×n(K) (3.25) eq:kayenn

where K = R,C,H. This is an algebra over R of real dimension n2, 2n2, 4n2, respec-

tively.

In two dimensions we have
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C`(2+) = R(2)

C`(1+, 1−) = R(2)

C`(2−) = H
(3.26) eq:tdclff

To see this consider first C`(2+): Give a faithful matrix rep:

e1 → σ1 e2 → σ3 (3.27)

then

e1e2 = −iσ2 =

(
0 −1

1 0

)
(3.28)

Now we can write an arbitrary 2× 2 real matrix as a linear combination of 1, σ1, σ3,−iσ2:

ρ(a+ be1 + ce2 + de1e2) =

(
a+ c b− d
b+ d a− c

)
(3.29)

Next for C`(2−). Map to the imaginary unit quaternions:

e1 → i

e2 → j

e1e2 → k

(3.30)

Finally C`(1, 1). Again we can provide a faithful matrix rep:

e1 → σ1 e2 → iσ2 (3.31)

thus

ρ(a+ be1 + ce2 + de1e2) =

(
a+ d b+ c

b− c a− d

)
(3.32)

and the algebra is that of R(2). ♠

Remarks

•When we complexify there is no distinction between the signatures. Any of the above

three algebras can be used to show that

C`(2) ∼= C(2) (3.33) eq:ccxclff

• The representation matrices are always denoted as Γ matrices in the physics litera-

ture. Thus, for example, what we are saying above is that in 1 + 1 dimensions we could

choose an irreducible real representation

Γ0 =

(
0 1

−1 0

)
Γ1 =

(
0 1

1 0

)
(3.34)

Exercise

We have now obtained two algebra structures on the vector space R4: R(2) and H.

Are they isomorphic? (Hint: Is R(2) a division algebra?)
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3.2 Tensor products of Clifford algebras and periodicity

We will now examine how the Clifford algebras in different dimensions are related to each

other. This will enable us to express the Clifford algebra in terms of matrix algebras for

all (r+, s−). These relations are also very useful in physics in dimensional reduction.

There are two kinds of tensor products one could define, the graded and ungraded ten-

sor product. For now we will focus on the ungraded tensor product. 3 The tensor product

is then the standard tensor product of vector spaces. We define a Clifford multiplication

on the tensor product by the rule:

(φ1 ⊗ ψ1) · (φ2 ⊗ ψ2) := φ1 · φ2 ⊗ ψ1 · ψ2 (3.35)

This is the standard tensor product on two algebras. In section *** below we will discuss

the graded tensor product which differs by some important sign conventions.

Lemma:

• C`(r+, s−)⊗ C`(2+) ∼= C`((s+ 2)+, r−)

• C`(r+, s−)⊗ C`(1+, 1−) ∼= C`((r + 1)+, (s+ 1)−)

• C`(r+, s−)⊗ C`(2−) ∼= C`(s+, (r + 2)−)

Proofs:

• Let eµ be generators of C`(r+, s−), fα, α = 1, 2 be generators of C`(2+). Note that

the obvious set of generators eµ ⊗ 1 and 1⊗ fα, do not satisfy the relations of the Clifford

algebra, because they do not anticommute. On the other hand if we take

ẽµ := eµ ⊗ f12 ẽd+α := 1⊗ fα (3.36)

where f12 = f1f2, then ẽM , M = 1 . . . , d+ 2 satisfy the Clifford algebra relations and also

generate the tensor product. Now note that (f12)
2 = −1 and hence:

(eµ ⊗ f12)2 = −(eµ)2 (3.37)

(no sum on µ). The same proof works for item 3 above.

•Once again we can take generators as above, now we need only notice that in signature

(1+, 1−) we have (f12)
2 = +1 and hence:

(eµ ⊗ f12)2 = +(eµ)2 (3.38)

(no sum on µ). ♠

Remarks These isomorphisms, and the consequences below are very useful because they

relate Clifford algebras and spinors in different dimensions. Notice in particular, item 2,

which relates the Clifford algebra in a spacetime to that on the transverse space to the

lightcone.

3In section *** below we discuss the graded tensor product.
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Exercise

Show that C`((s+ 1)+, r−) ∼= C`((r + 1)+, s−).

Exercise

Show C`(r+, s−) ∼= R(2r) when r = s. This is always a matrix algebra over the reals.

Further understanding of why this is so comes from the model for Clifford algebras in terms

of contraction and wedge product of differential forms (and free fermions) described below.

In general, two algebras related by A ∼= B⊗Matn(R) for some n are said to be Morita

equivalent.

3.2.1 Special isomorphisms

For K = R,C,H let K(n) denote the algebra over R of all n × n matrices with entries in

K. We have the following special isomorphisms of matrix algebras over R,C,H:

R(n)⊗R R(m) ∼= R(nm) (3.39) eq:specisoma

R(n)⊗R K ∼= K(n) (3.40) eq:specisomb

C⊗R C ∼= C⊕ C (3.41) eq:specisomc

C⊗R H ∼= C(2) (3.42) eq:specisomd

H⊗R H ∼= R(4) (3.43) eq:specisome

To prove (3.41) note that the tensor product is generated (over R ) by 1 ⊗ 1, 1 ⊗ i,
i⊗ 1, i⊗ i. Now we have an explicit isomorphism

(1, 0)→ 1

2
(1⊗ 1 + i⊗ i)

(i, 0)→ 1

2
(i⊗ 1− 1⊗ i)

(0, 1)→ 1

2
(1⊗ 1− i⊗ i)

(0, i)→ 1

2
(i⊗ 1 + 1⊗ i)

(3.44)

This should be compared with the isomorphism

C⊗C C ∼= C (3.45)
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The isomorphism (3.42) follows from the familiar representation of quaternions in terms

of complex 2× 2 matrices that gives us the quaternions as xµτµ. If we now take xµ to be

complex then we get all 2× 2 complex matrices.

For isomorphism (3.43) we identify H ∼= R4 and note that to an q1 ⊗ q2 ∈ H⊗R H we

can associate a linear map R4 → R4 given by

x→ q1xq̄2 (3.46)

Extending by linearity this defines an algebra homomorphism H⊗R H→ End(R4) = R(4).

We claim the map is an isomorphism. To see this let us try to compute the kernel. This

would be an element
∑

µν aµντµ ⊗ τ̄ν ∈ H⊗R H so that for all x ∈ H

∑
µν

aµντµxτ̄ν = 0 (3.47) eq:allsnx

By conjugation, if aµν satisfies (3.47) so does its transpose, so we can separate the

equations into aµν symmetric and antisymmetric. Now note that the equation is SO(4)×
SO(4) covariant, if (3.47) is satisfied then for any four unit quaternions q1, q2, p1, p2 we

have

∑
µν

aµνq1τµq̄2xp1τ̄ν p̄2 = 0 (3.48) eq:allsnxi

and hence if aµν satisfies (3.47) so does R1aR2 where R1, R2 ∈ SO(4). Thus for the

symmetric case we can diagonalize a so that (3.47) becomes∑
µ

λµτµxτ̄µ = 0 ∀x ∈ H (3.49)

Substituting x = 1, i, j,k gives four linear equations which easily imply λµ = 0. Similarly

if aµν is anti-symmetric it can be skew-diagonalized and then it is easy to show that the

skew eigenvalues vanish. Thus the kernel of the map H ⊗R H → End(R4) = R(4) is zero

and since both domain and range have dimension 16 the map is an isomorphism.

Exercise

Show that

C`(3+) = C`(1−)⊗ C`(2+) ∼= C(2) (3.50) eq:clthrp

C`(3−) = C`(1+)⊗ C`(2−) ∼= H⊕H (3.51) eq:clthrm
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3.2.2 The periodicity theorem

Now we combine the above isomorphisms to produce some useful relations between the

Clifford algebras:

On the one hand we can say

C`(r+, s−)⊗ C`(2+)⊗ C`(2−) ∼= C`((s+ 2)+, r−)⊗ C`(2−) ∼= C`(r+, (s+ 4)−) (3.52) eq:pera

On the other hand we can say

C`(r+, s−)⊗ C`(2−)⊗ C`(2+) ∼= C`(s+, (r + 2)−)⊗ C`(2+) ∼= C`((r + 4)+, s−) (3.53) eq:perb

Finally we note that

C`(2+)⊗ C`(2−) = R(2)⊗H ∼= H(2) (3.54) eq:perc

Summarizing:

C`((r + 4)+, s−) ∼= C`(r+, (s+ 4)−) ∼= C`(r+, s−)⊗H(2) (3.55) eq:perd

Thus, if we wish to understand the structure of C`(r+, s−) we can use tensor product

with C`(1+, 1−) to reduce the algebra to the (Morita equivalent) form C`(n+) or C`(n−),

depending on whether r− s ≥ 0 or r− s ≤ 0, respectively. Then we can use (3.55) to bring

0 ≤ n± ≤ 3. On the other hand, we have explicitly determined the algebras in this range

using the above computations. In this way we can list the full set of algebras.

The mod-four periodicity under ⊗RH(2) can be iterated to produce a basic mod-

eight periodicity which is a little easier to think about. Note that since H(2) ⊗ H(2) ∼=
H⊗H⊗ R(4) ∼= R(16) the identities (3.55) immediately imply:

C`(r+, (s+ 8)−) ∼= C`(r+, s−)⊗ R(16)

C`((r + 8)+, s−) ∼= C`(r+, s−)⊗ R(16)
(3.56)

Thus, combining the computation of the first four algebras with (3.55) we produce the

following table:

r = 1 2 3 4 5 6 7 8

C`(r+) R⊕ R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16)

C`(r−) C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)
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Thus, implementing the above procedure we have the following result:

1. If r ≥ s and r − s = α+ 8k, 0 ≤ α ≤ 7, k ≥ 0, then

C`(r+, s−) ∼= C`(α+)⊗ R(2
1
2
(d−α)) (3.57) eq:perioa

2. If s ≥ r, and s− r = β + 8k, 0 ≤ β ≤ 7, k ≥ 0, then

C`(r+, s−) ∼= C`(β−)⊗ R(2
1
2
(d−β)) (3.58) eq:periob

(Note that d− α and d− β are both even.)

Now, we can unify the two results (3.57) and (3.58) by defining the type of the Clifford

algebra to be R,R⊕R,C,H,H⊕H. That is, these are the basic Morita equivalence classes

which appear.

Define the “transverse dimension” to be

dT := s− r (3.59) eq:transversedim

for C`(r+, s−). Observe from the above table that the Morita equivalence class only

depends on dTmod8! For example C`(1+) with dT = −1 is of the same type as C`(7−)

with dT = +7.

Figure 1: The Clifford stop sign. fig:clffstp

We can now list the real Clifford algebras C`(r+, s−) in a unified way. The type of the

algebra follows the basic pattern for dT = 0, 1, 2, . . . of

R,C,H,H⊕H,H,C,R,R⊕ R,R,C,H,H⊕H,H, . . . (3.60)

and can be visualized as in 1. The first three entries are easy to remember since you

are adding squareroots of −1. If you remember the general pattern then you can easily

reconstruct the type. Next you can construct the algebra since the total dimension over R
is just 2d where d = r + s is the dimension.

To summarize. Define ` ≡ [d/2]. Then:

– 13 –



(s− r)mod8 C`(r+, s−)

0 R(2`)

1 C(2`)

2 H(2`−1)

3 H(2`−1)⊕H(2`−1)

4 H(2`−1)

5 C(2`)

6 R(2`)

7 R(2`)⊕ R(2`)

8 R(2`)

(3.61) eq:cliffalgs

Remarks

• A useful table of the Lorentzian signature Clifford algebras is

d = s+ 1 C`(s+, 1−) C`(1+, s−)

0+1 C R⊕ R
1 +1 R(2) R(2)

2 +1 R(2)⊕ R(2) C(2)

3 +1 R(4) H(2)

4 +1 C(4) H(2)⊕H(2)

5 +1 H(4) H(4)

6 +1 H(4)⊕H(4) C(8)

7 +1 H(8) R(16)

8 +1 C(16) R(16)⊕ R(16)

9 +1 R(32) R(32)

10 +1 R(32)⊕ R(32) C(32)

11 +1 R(64) H(32)

– 14 –



•
Note in particular:

C`(1+, 3−) = H(2) C`(3+, 1−) = R(4)

C`(0, 4−) = H(2) C`(4+, 0) = H(2)
(3.62)

Exercise

It appears that the convention of whether we assign time to directions of positive or

negative norm leads to different Clifford algebras.

Why is this convention irrelevant when working with fermions in physics?

Exercise Clifford algebras appearing in supergravity theories

Verify the following isomorphisms:

C`(1+, 3−) = H(2)

C`(0, 4) = H(2)

C`(1, 4) = H(2)⊕H(2)

C`(1−, 5+) = H(2)⊗ R(2) ∼= H(4)

C`(1+, 5−) = H(2)

C`(0, 6) = R(8)

C`(1+, 9−) = R(32)

C`(9+, 1−) = R(32)

C`(1+, 10−) = C(16)

C`(10+, 1−) = R(32)⊕ R(32)

C`(11+) = C(32)

C`(11−) = H(16)⊕H(16)

(3.63) eq:clff

Exercise

Prove the isomorphisms:

C`(r+, s−) ∼= C`((r + 4)+, (s− 4)−) (3.64)

C`((r + 1)+, s−) ∼= C`((s+ 1)+, r−) (3.65)
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4. The Clifford algebras over C

When we change the ground field from R to C the structure of the Clifford algebras sim-

plifies considerably.

Now there is no need to take account of the signature. We can take eiej + ejei = 2δij .

Or we could instead take eiej + ejei = −2δij . Both conventions lead to equivalent results.

Since we are working over the complex numbers we could also send ei →
√
−1ei.

We have already shown that in low dimensions:

C`(0) = C
C`(1) ∼= C⊕ C
C`(2) ∼= C(2)

(4.1)

Next, the periodicity is simplified considerably. We now have:

C`(d+ 2) ∼= C`(d)⊗C C`(2) ∼= C`(d)⊗C C(2) (4.2)

from which we obtain the basic result:

d = 0mod2:

C`(d) = C(2[d/2]) = C(2d/2) (4.3) eq:cplxev

d = 1mod2:

C`(d) = C(2[d/2])⊕ C(2[d/2]) = C(2(d−1)/2)⊕ C(2(d−1)/2) (4.4) eq:cplxodd

Recall that we defined the Clifford volume form to be ω := e1e2 · · · ed, and showed

moreover that

ω2 = (−1)
1
2
d(d−1) =

{
+1 d = 0, 1mod4

−1 d = 2, 3mod4
(4.5)

(If we had taken eiej + ejei = −2δij then we would have gotten (−1)
1
2
d(d+1). ) When

working over C we can always find a scalar ξ so that ωc := ξω satisfies (ωc)
2 = 1. Explicitly

ωc =

{
ω d = 0, 1mod 4

iω d = 2, 3mod 4
(4.6)

Then we can form projection operators

P± =
1

2
(1± ωc) (4.7)

When d is odd these projection operators are central - they commute with everything in

the algebra - and this gives a decomposition of the algebra into a direct sum of subalgebras

as in (4.4). That is elements of the form P+φ form a subalgebra, not just a vector subspace,

because P+ is central. This subalgebra is isomorphic to C`(2[d/2]) and similarly for the

subalgebra of elements of the form P−φ.
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5. Representations of the Clifford algebras

Let us now consider representations of the Clifford algebras. This assigns φ ∈ C` →
ρ(φ), where ρ(φ) is a linear transformation such that ρ(φ1)ρ(φ2) = ρ(φ1φ2). The matrix

representations of the generators ρ(eµ) = Γµ are called Γ-matrices in the physics literature.

We have seen how to write all the Clifford algebras in terms of matrix algebras over

the division algebras. That is, they are all of the form K(n) or K(n)⊕K(n).

Now we only need a standard result of algebra which says that K(n) is a simple

algebra (it has no nontrivial two-sided ideals) and hence has a unique representation (up

to isomorphism) when K is a division algebra. To justify this recall

************

FIX FOLLOWING: DID WE NOT COVER THIS IN AN EARLIER CHAPTER

WITH ALGEBRAS?

*************

If V is an irreducible representation then we have a homomorphism A → End(V ).

Since V is irreducible the image cannot commute with any nontrivial projection operators

and hence must be the full algebra End(V ). On the other hand, the kernel would be a

two-sided ideal in A. Now, if A = Mn(D), where D is a division algebra then it is simple.

To prove this: Consider any ideal I ⊂Mn(D). If X = xijeij is in I with some xkl 6= 0 then

ekkXell ∈ I, but this means ekl ∈ I but now the ideal generated by ekl is all of Mn(D).

The nature of the representation depends very much on the fields we are working over.

Let us consider first the complex Clifford algebras, C`(d). These are of the form C(n)

or C(n)⊕C(n). The unique irrep of C(n) is just the defining representation space V = Cn.

Thus, C`(d) has a unique irrep for d even, V = Cn with

n = 2d/2 d even (5.1)

While for d odd C`(d) has two inequivalent irreps V±. As vector spaces V± ∼= Cn with

n = 2(d−1)/2 d odd (5.2)

where ρ(φ1 ⊕ φ2) = φ1 on V+ and ρ(φ1 ⊕ φ2) = φ2 on V−. Another way to characterize

these is to consider ωc, with (ωc)
2 = 1. Then

ρ+(ωc) = +1 on V+ (5.3)

ρ−(ωc) = −1 on V− (5.4)

Now let us consider the Clifford algebras C`(r+, s−) over R. These are all of the form

K(n) or K(n) ⊕ K(n). Now, one can form an K-linear representation of K(n) by having

the matrices act on Kn. Here K = R,C,H. Note that for the quaternions we must take

care that if the matrix multiplication acts from the left on a column vector then the scalar

multiplication by H acts on the right. Again K(n) is a simple algebra and the unique irrep

up to isomorphism is Kn.

Of course, we can consider Kn to be a real vector space of real dimension n, 2n, 4n for

K = R,C,H.
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Conversely, a real vector space V is said to have a complex structure if there is a linear

transformation I ∈ EndR(V ) which satisfies I2 = −1. With a choice of I, V can be made

into a complex vector space of dimension 1
2dimR(V ).

Similarly, a real vector space V is said to have a quaternionic structure if there are

linear transformations I, J,K with

I2 = J2 = K2 = IJK = −1 (5.5)

A choice of I, J,K makes V have a multiplication by quaternions, and defines an isomor-

phism to Hd with d = 1
4dimR(V ). For example on Hn the linear operators I, J,K would

be right-multiplication by i, j,k, respectively.

We say that the real representation V of C`(r+, s−) has a complex structure I if

[ρ(φ), I] = 0. Similarly, we say that it has a quaternionic structure if

[ρ(φ), I] = [ρ(φ), J ] = [ρ(φ),K] = 0 (5.6)

We can now trivially read off the basic properties of Clifford algebra representations

from the above tables. Recall that ` := [d/2].

• If dT = s − r 6= 3mod4 then C`(r+, s−) is a simple algebra and there is a unique

irrep. It is K(N) acting on KN where N = 2` or N = 2`−1.

• If dT = s − r = 3mod4 then C`(r+, s−) is a sum of simple algebras and there are

two inequivalent irreps ρ±. Note that this is the case where the volume element satisfies

ω2 = 1 and ω is central. So we can characterize the representations as ρ±(ω) = ±1. Since

ω is central these rep’s cannot be equivalent.

• For dT = 6, 7, 8mod8, dimRV = 2`. For dT = 6, 7, 8mod8 we can represent Γµ by

2` × 2` real matrices. In physics this is called a Majorana representation of the Clifford

algebra.

• Multiplying Γ matrices by a factor of i changes the signature. Therefore for dT =

0, 1, 2mod8 we can represent Γµ by 2` × 2` pure imaginary matrices. In physics this is

called a Pseudo-Majorana representation.

• For dT = 1, 5mod8 (i.e. dT = 1mod4) dimCV = 2` and hence dimRV = 2`+1, and

V carries a complex structure commuting with the Clifford action. But if we use 2` × 2`

matrices they must be complex.

• For dT = 2, 3, 4mod8, dimHV = 2`−1, so dimCV = 2`, and hence dimRV = 2`+1, and

V carries a quaternionic structure commuting with the Clifford action. Thus we can write

a reresentation by 2`−1×2`−1 quaternionic matrices. If we choose to write the quaternions

as 2×2 complex matrices A such that A∗ = σ2Aσ2 then we can represent the Γµ by 2`×2`

complex matrices such that

Γµ,∗ = JΓµJ−1 (5.7)

with J = iσ2 ⊕ · · · ⊕ iσ2. Note that JJ∗ = J2 = −1 and J tr = −J .

************
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confusions:

2. Traubenberg has a notion of Pseudo-Symplectic Majorana. Does this make sense?

**************

Thus the pattern of representations is the following: ν= number of irreps of the algebra,

d= real dimension of the irrep,

s C`(s−) ν(s) d(s) Structure K dimC(Irreps of C`(s))
1 C 1 2 C Z 1

2 H 1 4 H Z 2

3 H⊕H 2 4 H Z⊕ Z 2

4 H(2) 1 8 H Z 4

5 C(4) 1 8 C Z 4

6 R(8) 1 8 R Z 8

7 R(8)⊕ R(8) 2 8 R Z⊕ Z 8

8 R(16) 1 16 R Z 16

9 C(16) 1 32 C Z 16

10 H(16) 1 64 H Z 32

11 H(16)⊕H(16) 2 64 H Z⊕ Z 32

12 H(32) 1 128 H Z 64

d = s+ 1 C`(s+, 1−) ν(s) d(s) Structure K

0+1 C 1 2 C Z
1 +1 R(2) 1 2 R Z
2 +1 R(2)⊕ R(2) 2 2 R Z⊕ Z
3 +1 R(4) 1 4 R Z
4 +1 C(4) 1 8 C Z
5 +1 H(4) 1 16 H Z
6 +1 H(4)⊕H(4) 2 16 H Z⊕ Z
7 +1 H(8) 1 32 H Z
8 +1 C(16) 1 32 C Z
9 +1 R(32) 1 32 R Z
10 +1 R(32)⊕ R(32) 2 32 R Z⊕ Z
11 +1 R(64) 1 64 R Z
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Note that for C`(s−), d(s+ 8k) = 16kd(s).

5.1 Representations and Periodicity: Relating Γ-matrices in consecutive even

and odd dimensions

The mod-two periodicity of the Clifford algebras over C is reflected in the representation

theory as follows:

If γi is an irrep of C`(2n− 1), and hence γ1 · · · γ2n−1 is a scalar, then we get irreps of

C`(2n) and C`(2n+ 1) by defining new representation matrices:

Γi = γi ⊗ σ1 =

(
0 γi

γi 0

)
i = 1, . . . , 2n− 1

Γ2n = 12n−1 ⊗ σ2 =

(
0 −i
i 0

)

Γ2n+1 = 12n−1 ⊗ σ3 =

(
1 0

0 −1

) (5.8) eq:evenodd

Iterating this procedure gives an explicit matrix representation of C`(d) in terms of

2[d/2] × 2[d/2] complex matrices. Note that if we start with C`(1) with γ1 = 1 then the

matrices we generate will be both Hermitian and unitary, satisfying {Γµ,Γν} = 2δµν .

Of course, this by no means a unique way of relating representations in dimensions

d, d+ 1, d+ 2. In our discussion of the relation to oscillators below we will see another one.

Similarly, working over R, if γµ is an irrep of C`(r+, s−) then

γµ ⊗

(
1 0

0 −1

)

1⊗

(
0 1

−1 0

)

1⊗

(
0 1

1 0

) (5.9) eq:oneoneclf

gives an irrep of C`((r + 1)+, (s+ 1)−).

**************

See Van Proeyen, Tools for susy ; Or Trubenberger for explicit formulae of this type.

**************

Remarks

• A representation of the form (5.8) with off-diagonal Γ matrices and diagonal volume

element is known as a chiral basis of complex gamma matrices. When we study the spin

representations the generators of spin are block diagonal and Γ1, . . . ,Γ2n exchange chirality.

• If γ1 · · · γ2n−1 = ξ2n−1 then

Γ1 · · ·Γ2n+1 = iξ2n−1 (5.10)
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• There are two distinct irreps of C`(2n+ 1). We can get the other one by switching

the sign of an odd number of Γ matrices above.

6. Comments on a connection to topology

****************

THIS SECTION IS OUT OF PLACE - You should go directly to the description of

representations in terms of free fermions.

This section is actually more allied with the Z2-graded structure section and should

go before or after.

***************

Consider a representation of C`(d) by anti-Hermitian gamma matrices Γµ such that

{Γµ,Γν} = −2δµν , where µ = 1, . . . , d.

Suppose x0, xµ, µ = 1, . . . , d are coordinates on the unit sphere Sd embedded in Rd+1.

Consider the function

T (x) := x01 + xµΓµ (6.1) eq:tachfld

Note that

T (x)T (x)† = 1 (6.2)

and therefore T (x) is a unitary matrix for every x ∈ Sd−1. We can view T (x) as describing

a map T : Sd → U(2[d/2]). Now, sometimes this map is topologically trivial and sometimes

it is topologically nontrivial. By nontrivial we mean that it represents a nontrivial element

of the homotopy group πd(U(2[d/2])).

For example: If d = 1 then one of the two irreducible representations is Γ = i. If

x20 + x21 = 1 then

T (x) = x0 + ix1 (6.3)

is a map S1 → U(1) of winding number 1. If d = 3 then we may choose Γi =
√
−1σi and

T (x) = x0 + xiτi (6.4)

is our representation of SU(2). Thus the map T : S3 → SU(2) is the identity map. It has

winding number one and generates π3(SU(2)) = Z.

Here is one easy criterion for triviality: Suppose we can introduce another anti-

Hermitian 2[d/2] × 2[d/2] gamma matrix, Γ so that (Γ)2 = −1 and {Γ,Γµ} = 0. Now

consider the unit sphere

Sd+1 = {(x0, xµ, y)|x20 +

d∑
µ=1

xµxµ + y2 = 1} ⊂ Rd+2 (6.5)

Then we can define

T̃ (x, y) = x0 + xµΓµ + yΓ (6.6)
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Figure 2: The map on the equator extends to the northern hemisphere, and is therefore homo-

topically trivial. fig:clffstpa

When restricted to Sd+1 ⊂ Rd+2, T̃ is also unitary and maps Sd+1 → U(2[d/2]). Moreover

T̃ (x, 0) = T (x) while T̃ (0, 1) = Γ. Thus T̃ (x, y) provides an explicit homotopy of T (x) to

the constant map.

Thus, we can see that if the irreducible representation of C`(d) is the restriction of an

irreducible representation of C`(d+ 1) to C`(d) then T (x) is topologically trivial.

Amazingly, it turns out that the converse is also true. If the irrep cannot be extended,

then T (x) is homotopically nontrivial. In fact, it represents a generator of πd−1(U(2[d/2])).

Now, let us look at the Clifford representation theory. When d = 2p + 1 is odd there

are two irreps of complex dimension 2p. Restricting to the action of C`2p on either irrep

gives the 2p-dimensional representation. On the other hand, if d = 2p is even, then C`2p−1
has irreps of complex dimension 2p−1. Thus, the action of C`2p−1 on the complex 2p-

dimensional irrep of C`2p does not give an irrep. Or, put differently, the 2p−1-dimensional

irrep of C`2p−1 does not extend to an irrep of C`2p.
These facts are compatible with the statement in topology that

π2p−1(U(N)) = Z N ≥ p (6.7) eq:piodd

π2p(U(N)) = 0 N > p (6.8) eq:pieven

Note that these equations say that for N sufficiently large, the homotopy groups do

not depend on N . These are called the stable homotopy groups of the unitary groups and

can be denoted πk(U). The mod two periodicity of πk(U) as a function of k is known as

Bott periodicity.

Similarly, there are stable homotopy groups πk(O) and πk(Sp) which are mod-8 peri-

odic in k.

**********

Explain about vector fields on spheres

*********

References:

1. Atiyah, Bott, and Shapiro,

2. Lawson and Michelson, Spin Geometry
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7. Free fermion Fock space

7.1 Left regular representation of the Clifford algebra

The Clifford algebra acts on itself, say, from the left. On the other hand, it is a vector

space. Thus, as with any algebra, it provides a representation of itself, called the left-regular

representation.

Note that this representation is 2d dimensional, and hence rather larger than the

∼ 2[d/2] dimensional irreducible representations. Hence it is highly reducible. In order to

find irreps we should “take a squareroot” of this representation.

We will now describe some ways in which one can take such a “squareroot.”

7.2 The Exterior Algebra as a Clifford Module

We have noted that

C`(r+, s−) ∼= Λ∗Rd (7.1) eq:vspi

as a vector spaces. Also, while the exterior algebra Λ∗Rd is an algebra we stressed that

(7.1) is not an algebra isomorphism.

Nevertheless, since (7.1) is a vector space isomorphism this means that Λ∗(Rd) must be

a Clifford module, that is, a representation space of the Clifford algebra. We now describe

this representation.

If v ∈ Rr,s then we can define the contraction operator by

ι(v)(vi1 ∧ · · · ∧ vik) :=
k∑
s=1

(−1)s−1Q(v, vis)vi1 ∧ · · · ∧ v̂is ∧ · · · ∧ vik (7.2) eq:contract

where the hat superscript means we omit that factor. Similarly, we can define the

wedge operator by

w(v)(vi1 ∧ · · · ∧ vik) := v ∧ vi1 ∧ · · · ∧ vik (7.3) eq:wedgeoper

These operators are easily shown to satisfy the algebra:

{ι(v1), ι(v2)} = 0

{w(v1), w(v2)} = 0

{ι(v1), w(v2)} = Q(v1, v2)

(7.4) eq:rccrs

Using these relations we see that we can represent Clifford multiplication by v by the

operator:

ρ(v) = ι(v) + w(v) (7.5)

Since the v ∈ V generate the Clifford algebra we can then extend this to a representation

of the entire Clifford algebra by taking ρ(φ1 · φ2) = ρ(φ1)ρ(φ2).
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7.3 Representations from maximal isotropic subspaces

We still need to take a “squareroot” of our representation. One example where this can be

done is the following.

Let W be a real vector space and consider V = W ⊕ W ∗. Note that V admits a

natural nondegenerate quadratic form of signature (+1n,−1n) where we take W,W ∗ to be

isotropic and use the pairing W ×W ∗ → R. That is, if we choose a basis wi for W and a

dual basis ŵi for W ∗ then with respect to this basis

Q =

(
0 1

1 0

)
(7.6)

The resulting Clifford algebra is C`(n+, n−) ∼= R(2n) where n = dimW .

One way to construct the irrep of dimension 2n is by taking the representation space

to be Λ∗W ∗.

Now ρ(ŵ) for ŵ ∈W ∗ is defined by wedge product, ŵ∧ and ρ(w) for w ∈W is defined

by ρ(w) = ι(w) where ι(w) is the contraction operator:

ι(w)(ŵi1 ∧ · · · ∧ ŵin) =

n∑
j=1

(−1)j−1〈w, ŵij 〉ŵi1 ∧ · · · ∧ ŵij−1 ∧ ŵij+1 ∧ · · · ∧ ŵin (7.7) eq:contracta

A simple computation shows that

{ρ(w), ρ(w′)} = 0

{ρ(ŵ), ρ(ŵ′)} = 0

{ρ(w), ρ(ŵ′)} = 〈w, ŵ′〉
(7.8) eq:sensf

and thus the Clifford relations are satisfied.

Example: For example, if M is a manifold we can consider TM ⊕ T ∗M which has

a natural quadratic form of signature (n, n) since TM and T ∗M are dual spaces. Note

that W = TM a maximal isotropic subspace, and a natural choice of complementary

isotropic subspace is U = T ∗M . Then the Clifford algebra acts on the DeRham complex

Λ∗T ∗M . ρ(vi) = dxi∧ acts by wedge product, and ρ(wi) = ι( ∂
∂xi

) acts by contraction.

These represent the Clifford algebra:

{vi, vj} = 0

{vi, wj} = δij

{wi, wj} = 0

(7.9) eq:tensors

The above construction can be generalized as follows:

Suppose V is 2n-dimensional with a nondegenerate metric of signature (n, n). Thus

C`(n+, n−) ∼= R(2n) and we wish to construct the 2n-dimensional irrep. Suppose we have
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a decomposition of V into two maximal isotropic subspaces V = W ⊕ U where W,U are

maximal isotropic. That is, with respect to this decomposition we have

Q =

(
0 q

q† 0

)
(7.10)

where q : U →W is an isomorphism.

Note that there is a family of such decompositions, parametrized by some kind of

Grassmannian.

Then, we claim, the exterior algebra Λ∗(V/W ) is naturally a 2n dimensional represen-

tation of the Clifford algebra on V .

u ∈ U acts on Λ∗(V/W ) by wedge product: Note that V/W acts via wedge product.

Since U is a subspace of V it descends to a subspace of V/W and hence it acts by wedge

product. On the other hand, w ∈W acts by contraction

ι(w)([vi1 ]∧ · · · ∧ [vin ]) =

n∑
j=1

(−1)j−1Q(w, vij )[vi1 ]∧ · · · ∧ [vij−1 ]∧ [vij+1 ]∧ · · · ∧ [vin ] (7.11) eq:contractaa

Note that the expression Q(w, vij ) is unambiguous because W is isotropic.

There is an alternative description of the same representation since one can show that

V/W ∼= W ∗. To see this note that given v, `v : w 7→ (v, w) is an element of W ∗ and

`v = `v+w for w ∈ W (since W is isotropic). Thus we could also have represented the

Clifford algebra on Λ∗W ∗. Elements of W act by contraction and elements of U act by

wedge product (where one needs to use the isomorphism V/W ∼= W ∗.)

Remarks

• The above construction appears to depend on a choice of decomposition of a vector

space into a sum of isotropic subspaces. In finite dimensions all these representations are

equivalent. But this is not so in infinite dimensions.

•
The choice of W is a choice of “Dirac sea.” Different choices are related by “Bogoliubov

transformation.”

Exercise

Describe the analogous representation on Λ∗TM .

7.4 Splitting using a complex structure

Another way we can split the space V into half-dimensional spaces is by using a complex

structure. Our goal in this section is to construct a representation of C`(d) for d = 2n

using the ideas of the previous two sections.
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For definiteness, let us take V = R2n with Euclidean signature:

Q(ei, ej) = +δij (7.12)

and choose a complex structure compatible with the metric:

Given a choice of complex structure compatible with the metric there exists a basis ei,

i = 1, . . . , 2n of V such that

Ie2j−1 = −e2j

Ie2j = e2j−1 j = 1, . . . , n
(7.13)

That is, in this basis:

I =

(
0 1

−1 0

)
⊕ · · · ⊕

(
0 1

−1 0

)
(7.14)

(with n summands).

By extending scalars to C we can diagonalize I. Put differently, V ⊗R C ∼= W ⊕ W̄ :

Ivj = ivj

Iwj = −iwj j = 1, . . . , n
(7.15)

where vj = 1
2(e2j−1 + ie2j), wj = 1

2(e2j−1 − ie2j).
Moreover, if we extend the metric C-linearly then it becomes:

Q(vj , vk) = 0

Q(wj , wk) = 0

Q(vj , wk) = δjk j, k = 1, . . . , n

(7.16) eq:nnmetr

so that on the complex vector space we have a metric of signature (n, n).

Thus, the Clifford algebra elements corresponding to vj , wk satisfy the canonical com-

mutation relations of fermionic oscillators. That is, if we define:

āj = vj =
1

2
(e2j−1 + ie2j)

aj = wj =
1

2
(e2j−1 − ie2j)

(7.17)

Then the above relations are the standard fermion CCR’s:

{aj , ak} = 0

{āj , āk} = 0

{aj , āk} = δjk

(7.18)

We will now use the above insight about the importance of isotropic subspaces to

construct representations of the Clifford algebras over C. For example we could take

the representation space to be Λ∗W̄ with āj acting by wedge product and aj acting by

contraction.
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Our construction can be related to the standard construction by identifying the “vac-

uum state” |0〉 with 1 ∈ Λ∗W̄ . Then

aj |0〉 = 0 (7.19) eq:vacchoice

The vacuum state is also known as a Dirac sea or a Clifford vacuum. We can build

a representation of the Clifford algebra by acting on the Clifford vacuum with creation

operators āj . In this way we obtain a natural basis for the representation of the Clifford

algebra by creating fermionic states:

āj1 · · · ājs |0〉 (7.20)

Thus, the representation is isomorphic to Λ∗W̄ ∼= C2n , and hence is an irrep of C`2n.

We can put a Hermitian structure on the representation space and then āj = (aj)
†.

Remarks

Repeat for other signatures –

7.5 Explicit matrices and intertwiners in the Fock representations

Let us use the oscillator approach to form an explicit basis for the irreducible representa-

tions of C`(d).

Then

a†j =
1

2
(e2j−1 + ie2j)

aj =
1

2
(e2j−1 − ie2j) j = 1, . . . , n

(7.21)

so {aj , a†k} = δjk.

Consider first the case n = 1. we use the representation

|0〉 := | − 1

2
〉 a†|0〉 := |+ 1

2
〉 (7.22)

This labelling will be useful later for representations of the spin group.

Now taking

x1|+〉+ x2|−〉 →

(
x1
x2

)
(7.23)

we have the representation

ρ(e1) =

(
0 1

1 0

)
ρ(e2) =

(
0 −i

+i 0

)
(7.24)

Now, with n oscillator pairs we choose a basis for a 2n dimensional vector space

(a†n)sn+
1
2 (a†n−1)

sn−1+
1
2 · · · (a†1)

s1+
1
2 |0〉 (7.25)
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where si = ±1
2 . We identify these states with the basis for the tensor product of represen-

tations

|sn, sn−1, . . . , s1〉 = |sn〉 ⊗ |sn−1〉 ⊗ · · · ⊗ |s1〉 (7.26)

(The vector (sn, . . . , s1) is what is called a spinor weight. In the theory of representations

of semi-simple Lie algebras the space is graded by the action of the Cartan subalgebra

and the grading is called the weight. The vectors (sn, . . . , s1) are the weights of the spinor

representations of so(2n;C). See Chapter *** below.)

Let Γj(n−1) be the 2n−1 × 2n−1 representation matrices of ej for a collection of (n− 1)

oscillators. Then when we add the nth oscillator pair we get

ρn(ej) = Γj(n) =

(
−1 0

0 +1

)
⊗ Γj(n−1) j = 1, . . . , 2n− 2

ρn(e2n−1) = Γ2n−1
(n) =

(
0 1

1 0

)
⊗ 12n−1

ρn(e2n) = Γ2n
(n) =

(
0 −i
i 0

)
⊗ 12n−1

(7.27)

We take the complex volume form to be

Γω = (−i)nΓ1 · · ·Γ2n =

(
1 0

0 −1

)
⊗

(
1 0

0 −1

)
⊗ · · · ⊗

(
1 0

0 −1

)
(7.28) eq:cplxvol

where there are n factors.

For d = 2n+ 1 we still take n pairs of oscillators and set Γ2n+1 = Γω.

8. Bogoliubov Transformations and the Choice of Clifford vacuum

It is important to note that our decomposition into creation and annihilation operators

depends on a choice of complex structure.

On R2n we can produce other complex structures from I ′ = RIR−1 withR ∈ GL(2n,R).

The complex structure will be compatible with the Euclidean metric if R ∈ O(2n).

If we use I ′ rather than I then the new oscillators bj , b̄j will be related to the old ones

by a Bogoliubov transformation:

b̄i = Aij āj +Bijaj

bi = Cij āj +Dijaj
(8.1) eq:bogoliub

For a general complex linear combination (8.1) the CCR’s are preserved iff the matrix

g =

(
A B

C D

)
(8.2)
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satisfies

g

(
0 1

1 0

)
gtr =

(
0 1

1 0

)
(8.3)

That is, iff

ADtr +BCtr = 1

BAtr +ABtr = 0

CDtr +DCtr = 0

(8.4)

That is, g ∈ O(n, n;C).

*****************

SO: WHAT IS THE POINT? HOW IS g RELATED TO R ?

*****************

The new Clifford vacuum is of course the same if g amounts to a complex transforma-

tion of the aj to the bj and the āj to the b̄j . Thus, B = C = 0 and ADtr = 1. Thus, the

space of Dirac vacua is O(n, n;C)/GL(n,C), a homogeneous space of complex dimension

n(n− 1).

Remark: Note O(n, n;C) ∼= O(2n;C). Indeed it is useful to make this isomorphism

explicit. Let

T =
1√
2

(
1 i

1 −i

)
(8.5)

then (
0 1

1 0

)
= TT tr (8.6)

so that ĝ = T−1gT is in O(2n;C), i.e. ĝĝtr = 1.

If we impose a conjugation operation aj → āj which is preserved by the Bogoliubov

transformation then A = D∗ and B = C∗ and we get ABtr is antisymmetric and AA† +

BB† = 1. Note that in this case g is a unitary transformation g ∈ U(2n). Now, the

matrix T defined above is also unitary so in this case ĝ ∈ U(2n) ∩ O(2n;C) ∼= O(2n;R).

Moreover, the group preserving the Clifford vacuum is the subgroup with B = 0 is indeed

isomorphic to U(n). Thus, the space of Clifford vacua obtained by unitary transformations

is O(2n;R)/U(n), as space of real dimension n(n − 1). This is the space of complex

structures on R2n compatible with the Euclidean metric.

We will discuss this further after we have introduced the Spin group.

******************************

To add:

1. More Discussion of polarization. see Pressley and Segal, Loop Groups, Oxford, p.

233. Segal’s Stanford notes.

2. J. Strathdee, Int. J. Mod. Phys. A2 273 (1987)
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9. Comments on Infinite-Dimensional Clifford Algebras

In quantum field theories of fermions we encounter infinite-dimensional Clifford algebras.

The construction of the irreducible representations are a little different from the finite-

dimensional case explained above.

Here we follow some notes of G. Segal. (“Stanford Lectures”)

The typical situation is that we have a vector space of one-particle wavefunctions of

fermions on a spatial slice. Call this E. It could be, for example, the L2-spinors on a

spatial slice. Canonical quantization calls for a representation of the infinite-dimensional

Clifford algebra C`(E⊕E∗). It turns out to be physically wrong to consider Λ∗E or Λ∗E∗.

Rather, the physically correct construction is more subtle.

Typically, there is a self-adjoint operator D on E with spectrum of eigenvalues λk
which goes to ±∞ for k → ±∞. (In the physical applications, D would be the spatial

Dirac operator.) Now one wants to consider a “Dirac sea.” This is a formal element of

Λ∗E given by taking the wedge-product with all the negative energy levels. Let ek be an

ON basis of eigenvectors of D. Let us assume that λ = 0 is not in the spectrum, and let

us label the eigenvectors so that ek has λk > 0 for k > 0 and λk < 0 for k < 0.

Now we try to define the “Fock vacuum.”

Ω = e0 ∧ e−1 ∧ e−2 ∧ · · · (9.1)

This is a “semi-infinite form” The Fock space will then be spanned by elements e~k where
~k = {k0, k−1, k−2, · · · } is a strictly decreasing series of integers k0 > k−1 > k−2 > · · · which

only differs from {0,−1,−2, · · · } by a finite number of elements. The resulting space is

even a Hilbert space and is acted on by C`(E ⊕ E∗) in the way we have described above.

However, there is a problem problem with this definition. The problem is that the

resulting vector space is only well-defined as a projective space. The reason is that we

could choose a different eigenbasis ẽk = ukek, with |uk| = 1. In general
∏
uk is not well

defined.

Now, this becomes a real problem when we consider families of operators D. For

example, we could consider families of metrics on our space(time), or we could consider

the Dirac operator coupled to a gauge field and consider the family parametrized by the

gauge field. We will find in such situations that there is no unambiguous way to choose a

well-defined Fock vacuum throughout the entire family.

One mathematical approach to making the construction well-defined is the following.

We first introduce the notion of a polarization on a vector space. This is a family of

decompositions E = E+ ⊕ E− where E± are – very roughly speaking – half of E and

different decompositions in the family are “close” to one another. We certainly want to

consider two decompositions E = E+⊕E− and E = Ẽ+⊕Ẽ− to be in the same polarization

if they differ by finite-dimensional spaces.

Definition: A coarse polarization, denoted J , of E is a class of operators P : E → E

such that

1. P 2 = 1 modulo compact operators.
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2. For any two elements P, P ′ ∈ J , P ′ − P is compact.

3. J does not contain ±1.

**********

COMPACT OR HILBERT-SCHMIDT ?

*********

Given a polarization, one defines the restricted Grassmannian Gr(E) to be the set of

spaces E− which arise in the decompositions allowed by the polarization.

In our example of spinors on spacetime, an operator such as D above defines a po-

larization by considering the projection onto positive and negative eigenvalues of D to be

in J . If Y is the boundary of some spacetime Y = ∂X then the boundary values of so-

lutions of the Dirac equation on X will define an element of the corresponding restricted

Grassmannian. As we vary, say, the metric on X we will obtain a family of vector spaces

in Gr(E).

Now, the polarization defined by D let E = E+ ⊕ E− be an allowed decomposition.

Then we can make the above Dirac sea precise by considering the Fock space

FE−(E) := Λ∗((E−)∗)⊗ Λ∗(E/E−) (9.2)

where now C`(E ⊕ E∗) acts as follows: e ∈ E can be decomposed as e = e− ⊕ e+ and it

acts by

ρ(e) = 1⊗ (e+∧) + ι(e−)⊗ 1 (9.3)

while ê ∈ E∗ has a decomposition ê− ⊕ ê+ and it acts as

ρ(ê) = (ê−∧)⊗ 1 + 1⊗ ι(ê+) (9.4)

Now the vector space FE−(E) has a canonically defined vacuum, namely, 1, just as in

finite dimensions. However, the price we pay is that for different elements E−1 and E−2 in

the Grassmannian the isomorphism

FE−1 (E)→ FE−2 (E) (9.5)

is only defined up to a scalar. The line bundle of Fock vacua will be nontrivial.

*******************

Explain the last two statements.

******************

In finite dimensions there is a unique irrep of C`(E ⊕E∗). Indeed, we constructed an

isomorphism between different representations constructed using different complex struc-

tures, or using different maximal isotropic subspaces using a Bogoliubov transformations.

But in infinite dimensions different polarizations can lead to inequivalent representations

of C`(E ⊕ E∗).

10. Properties of Γ-matrices under conjugation and transpose: Intertwin-

ers

In physical applications of Clifford algebras it is often important to have a good under-

standing of the Hermiticity, unitarity, (anti-)symmetry and complex conjugation properties

of the gamma matrices.
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The reason we care about this apparently dull question is that these properties are

very important for:

1. Imposing reality conditions on fermions - needed to get proper numbers of degrees

of freedom in various theories, especially supersymmetric theories.

2. Forming action principles for theories of fermions.

3. Constructing supersymmetry algebras.

4. Group theory manipulations such as decomposition of tensor products of spinor

representations. This is crucial for understanding what super-Poincare and superconformal

algebras one can construct.

10.1 Definitions of the intertwiners

A useful ref. for this section is Kugo-Townsend pp. 360-375

Given a representation provided by gamma matrices Γµ we always have another rep-

resentations:

Γµ → −Γµ (10.1)

Moreover, we can take the transpose

Γµ → (Γµ)tr (10.2)

For representations by matrices over the complex numbers or over the quaternions we

can take the conjugation:

Γµ → (Γµ)∗ (10.3)

Finally, we can combine these operations. For example

±(Γµ)† (10.4)

is another representation.

These representations might, or might not be equivalent, depending on dimension and

signature.

When the the representations are equivalent (and this is guaranteed when there is a

unique irrep, and hence when d = r + s is even) Schur’s lemma guarantees that we can

define intertwiners:

−Γµ = ΓΓµΓ−1

ξ(Γµ)† = AξΓ
µA−1ξ

ξ(Γµ)∗ = BξΓ
µB−1ξ

ξ(Γµ)tr = CξΓ
µC−1ξ

(10.5)

where ξ = ±1. Here Γ = ρ(ω) = Γ1 · · ·Γd is the volume element. These equations define

A,B,C only up to a nonzero scalar multiple. If we know two of the intertwiners we can

easily obtain a third, e.g. we could take A+ = C∗ξBξ etc.
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The Γµ can be chosen to be unitary. If this is done then...

********************

Be more systematic about the relations between the interwiners.

********************

10.2 The charge conjugation matrix for Lorentzian signature

As a simple example of why we wish to know about symmetry properties of the transpose

let us consider the special case of C`(s+, 1−) appropriate to Lorentzian signature spacetime.

As we will see we can (????? NOT FOR ALL ODD DIMENSIONS! ??? ) define the

charge conjugation matrix C with

−(Γµ)tr = CΓµC−1 (10.6) eq:chargeconj

It follows from explicit constructions above that we can, and will, choose a basis such

that Γ0 is anti-hermitian and Γi are Hermitian, where 0 denotes the negative signature

direction. For real gamma matrices we have:

(Γ0)tr = −Γ0 (Γi)tr = +Γi (10.7) eq:cconja

where 0 denotes the direction with η00 = −1 and i = 1, . . . , s. Now, using the properties

of the Clifford algebra we can take C = Γ0 Note that C−1 = −C, Ctr = −C.

Moreover, we have

(CΓµ)tr = +(CΓµ) (10.8) eq:cconjb

That is, the symmetric product of the real representation of the Clifford algebra con-

tains the vector. This is important: It means that when we work with real fields we can

make a real action: ∫
volΨtrCΓµ∂µΨ + · · · (10.9)

Note that it is important that Ψ is anti-commuting. If CΓµ were anti-symmetric with

anti-commuting Ψ, or if CΓµ were symmetric, with commuting Ψ then the action density

would be a total derivative.

The symmetry of CΓµ also allows the definition of supersymmetry algebras:

{Qα, Qβ} = (CΓµ)αβPµ + · · · (10.10)

Exercise

Show that in this situation

CΓµ1···µk =

{
Symmetric fork = 1, 2mod 4

Antisymmetric fork = 3, 4mod 4
(10.11)
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10.3 General Intertwiners for d = r + s even

10.3.1 Unitarity properties

When representing C`(r+, s−) by complex matrices we can always choose Γµ to be uni-

tary. To prove this, note that we constructed such representations for C`(1±), C`(2±) and

C`(1+, 1−) and C`(3±). Then it follows from the tensor product construction.

The Clifford relations imply (Γµ)−1 = ηµµΓµ, and hence if we choose our matrices to

be unitary then

(Γµ)† = ηµµΓµ =

{
+Γµ µ = 1, . . . , r

−Γµ µ = r + 1, . . . , r + s
(10.12) eq:herm

with no sum on µ. Thus, as opposed to representations of C`(d), we are not free to choose

the Hermiticity properties.

Exercise

Define

U+ = Γ1 . . .Γr (10.13)

U− = Γr+1 . . .Γr+s (10.14)

Show that

(Γµ)† =

{
U+ΓµU−1+ r = 1mod2

U−ΓµU−1− s = 0mod2
(10.15)

−(Γµ)† =

{
U+ΓµU−1+ r = 0mod2

U−ΓµU−1− s = 1mod2
(10.16)

The U± are used to construct intertwiners for complex conjugation and transpose

below.

10.3.2 General properties of the unitary intertwiners

We will write some explicit intertwiners using our oscillator representation betlow. In this

section we derive some general properties of the intertwiners.

First, by taking the Hermitian conjugate of the defining relations and applying Schur’s

lemma we see that A†A,B†B,C†C must be proportional to the unit matrix. Moreover that

scalar must be positive and therefore, WLOG we can always take A,B,C to be unitary.

Second, by iterating the equations for B and C we can see that

Now, again by Schur,

C−1ξ Ctrξ = ε1 (10.17) eq:ceexirel

and
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B∗ξBξ = ε′1 (10.18) eq:beexirel

for some scalars ε and ε′. Note, moreover that consistency of (10.17) means ε = ±1

and, if we also use unitarity of Bξ then ε′ = ±1. Moreover, if we make a definite choice of

A+ and use this to relate Cξ and Bξ then ε and ε′ are not independent.

It turns out that ε cannot be chosen arbitrarily, but is determined by the dimension

dmod8 and ξ.

Using the definition of Cξ we get:

(CξΓ
µ1···µk)tr = ξk(−1)

1
2
k(k−1)CξΓ

µ1···µkC−1ξ Ctrξ (10.19) eq:symmetry

It follows that all the matrices

CξΓ
µ1···µk (10.20)

are either symmetric or antisymmetric:

(CξΓ
µ1···µk)tr = εξk(−1)

1
2
k(k−1)CξΓ

µ1···µk (10.21) eq:sympar

Now, we are working with Clifford matrices over C and so the Clifford algebra is just

C(2d/2). That algebra contains:

• 2d−1 + 2
d
2
−1 symmetric matrices

• 2d−1 − 2
d
2
−1 antisymmetric matrices

On the other hand, we can enumerate the number of symmetric or antisymmetric

matrices combining (10.21) with the sums:

∑
k=0(4)

(
d

k

)
= 2d−2 + 2

1
2
d−1 cos(

πd

4
)

∑
k=1(4)

(
d

k

)
= 2d−2 + 2

1
2
d−1 sin(

πd

4
)

∑
k=2(4)

(
d

k

)
= 2d−2 − 2

1
2
d−1 cos(

πd

4
)

∑
k=3(4)

(
d

k

)
= 2d−2 − 2

1
2
d−1 sin(

πd

4
)

(10.22)

(This can be proved by applying the binomial expansion to (1+ζ)d for the four distinct

fourth roots of 1. It holds for d even or odd. )

The result is:

ξ = +1, ε = +1: d = 0, 2mod8

ξ = +1, ε = −1: d = 4, 6mod8

ξ = −1, ε = +1: d = 0, 6mod8

ξ = −1, ε = −1: d = 2, 4mod8
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For examples, if we want ξ = +1, ε = +1 then we can get the number of symmetric

matrices by summing on k = 0, 1mod4, this will correctly give the number of symmetric

matrices if

cos(
πd

4
) + sin(

πd

4
) = 1 (10.23)

which is the case for d = 0, 2mod8 but not for d = 4, 6mod8.

***********

GIVE CONDITIONS ON ε′

***********

10.3.3 Intertwiners for d = r + s odd

In this case there are two distinct irreducible representations of the same dimension. Now

Γµ and −Γµ are not equivalent.

Similarly, the other intertwiners only exist in certain dimensions modulo 8:

1. Since Γ1 · · ·Γd is represented as a scalar ξ(Γµ)tr can only be equivalent if ξd(−1)
1
2
d(d−1) =

1 That is:

ξ = +1 and d = 1mod4

ξ = −1 and d = 3mod4

**************

CONTINUE

*************

10.4 Constructing Explicit Intertwiners from the Free Fermion Rep

Let us return to the Free fermion representation constructed in equations **** and ****

above.

In our explicit basis Γi are real and symmetric for i odd, and imaginary (= i× real)

and antisymmetric for i even. Our explicit intertwiners are

AΓiA−1 = (Γi)†

B±ΓiB−1± = ±(Γi)∗

C±ΓiC−1± = ±(Γi)tr

(10.24)

We can take A = 1. Note that in this basis we can take B± = C±.

Let U := Γ2Γ4 · · ·Γ2n. Then we have

C+ = B+ =

{
U neven

ΓωU nodd
(10.25) eq:plusinter

C− = B− =

{
ΓωU neven

U nodd
(10.26) eq:plusintera

To see this note that

UΓ2jU−1 = (−1)n−1Γ2j = (−1)n(Γ2j)∗

UΓ2j−1U−1 = (−1)nΓ2j−1 = (−1)n(Γ2j−1)∗
(10.27)
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It is now straightforward to compute

UU∗ = U∗U =

{
+1 n = 0, 3 mod4

−1 n = 1, 2 mod4
(10.28)

(ΓωU)(ΓωU)∗ = (ΓωU)∗(ΓωU) =

{
+1 n = 0, 1 mod4

−1 n = 2, 3 mod4
(10.29)

Recall that for d = 2n+ 1 we take Γ2n+1 = Γω. Then

UΓ2n+1U−1 = (−1)nΓ2n+1 = (−1)n(Γ2n+1)∗ (10.30)

and also

(ΓωU)Γ2n+1(ΓωU)−1 = (−1)nΓ2n+1 = (−1)n(Γ2n+1)∗ (10.31)

Now, if n is even we must use B+, while if n is odd we must use B−.

That is:

• For the Dirac representation the intertwiner B+ exists for d = 0, 1, 2mod4, but not

for d = 3mod4.

• For the Dirac representation the intertwiner B− exists for d = 0, 2, 3mod4, but not

for d = 1mod4.

• The sign of BξB
∗
ξ , computed above, depends on dmod8. In this way we compute:

dmod8 B∗+B+ B∗−B−

0 +1 +1

1 +1 *

2 +1 −1

3 * −1

4 −1 −1

5 −1 *

6 −1 +1

7 * +1

The * is in the entry where the matrix does not exist.

10.5 Majorana and Symplectic-Majorana Constraints

The above representations are complex. However, we know that the irreducible representa-

tions are sometimes real. How do we see that using intertwiners in the Dirac representation?

10.5.1 Reality, or Majorana Conditions

We attempt to define a real vector subspace invariant under the Clifford action defined

above. The real subspace will be defined to be the vectors satisfying the constraint

ψ∗ = Bψ (10.32) eq:majorana
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Notice that this equation is only consistent if B∗B = 1.

Mathematically, we are trying to introduce a real structure. That is, a C-anti -linear

operator C such that C2 = 1. We would define C : ψ 7→ Bψ∗ and the real subspace is the

+1 eigenspace of C.
The subspace C = 1 defined by (10.32) is a real vector space. Next, to get a real

representation of the Clifford algebra we need to know that it is preserved by the Clifford

action. Thus we need to check that if ψ satisfies (10.32) then

(Γiψ)∗
?
=BΓiψ (10.33)

Equivalently, we want the Clifford action to commute with C. This will only be the case if

we choose B+.

A glance at the table for C`(r+) confirms that we only expect such representations for

d = 0, 1, 2mod8.

This can be confirmed using the explicit free fermion representation. Consistency of

(10.32), or equivalently, C2 = 1 can be checked by computing the following:

B∗+B+ =

{
+1 d = 0, 1, 2 mod8

−1 d = 4, 5, 6 mod8
(10.34) eq:majcond

B∗−B− =

{
+1 d = 6, 7, 8 mod8

−1 d = 2, 3, 4 mod8
(10.35) eq:majcondi

As shown in table *** above. (THIS IS REDUNDANT!)

10.5.2 Quaternionic, or Symplectic-Majorana Conditions

In the case of dT = 3, 4, 5mod8 we have a representation by quaternionic matrices. We can

always represent a quaternion as a 2× 2 complex matrix A such that A∗ = σ2Aσ2.

In this way we convert 2N×2N quaternionic matrices to 2N+1×2N+1 complex matrices

such that

Γµ,∗ = JΓµJ−1 (10.36)

with J = iσ2⊕· · ·⊕iσ2. Thus, the complex conjugate representation matrices are equivalent

to conjugation with J . This is the case of ξ = +1 and B∗ξBξ = −1.

Now, vectors in the irreducible representation are N -component vectors of quaternions

where N = 2`−1. Therefore, when we write in terms of complex vectors we have

 q1
...

qN

→


z1 w1

−w̄1 z̄1
...

...

zN wN
−w̄N z̄N

 (10.37)

Thus, we get a pair of complex spinors of dimension 2N+1 from the two columns. Moreover,

denoting these two columns by ψ1 and ψ2 we see they are related by

ψ∗1 = Jψ2 (10.38)
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We can introduce a spinor-index notation for the SU(2) subgroup of the quaternions

with a, b running over 1, 2 and then we can write our condition as

(ψi,a)
∗ = εabJijψjb (10.39) eq:sympmajorana

where ε12 = +1. Note that J = J∗, and JJ∗ = J2 = −1, as is required by consistency

with (10.39).

Conversely, when there is an intertwiner BξB
∗
ξ = −1 we can introduce a “symplec-

tic Majorana” spinor by taking a pair of spinors ψa, a = 1, 2, and imposing the reality

condition:

(ψ∗)a := (ψa)
∗ = εabBξψb (10.40) eq:sympmajii

Consistency of this equation requires BξB
∗
ξ = −1. Again, the subspace defined by

(10.40) will only be preserved by Γµ, that is

(Γµψa)
∗ = εabBξΓ

µψb, (10.41)

if we choose ξ = +1. As we see from (10.39) above, this is the same as saying that the

representation is quaternionic.

Remark: More generally, in the physics literature if Ωab, a, b = 1, . . . , u is an anti-

symmetric symplectic matrix, so Ω2 = −1 we can impose a condition:

(ψ∗)a := (ψa)
∗ = ΩabBψb (10.42)

and these are also referred to as symplectic Majorana spinors. This is useful in 6d super-

symmetry for reasons connected with the tensor product of spin reps we come to next.

10.5.3 Chirality Conditions

When we come to representations of the Spin group we will see that we want to represent

just the even Clifford algebra. Then we might wish to impose both a Majorana and a Weyl

condition. This is only possible if d = 2n is even. In this case we have

P± =
1

2
(1± Γω) (10.43)

and we compute

BP±B
−1 =

{
P± d = 0 mod4

P∓ d = 2 mod4
(10.44) eq:bonjc

Combining with (10.34)(10.35) we see that we can impose Majorana and Weyl for

d = 0mod8, that is, the chiral representation is self-conjugate.

If d = 2, 6mod8 then complex conjugation switches the chirality.
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As we have explained above, when working with field theories of fermions one also

needs to know the transpose properties because it is sometimes important to know the

(anti)symmetry of C±Γµ1···µk . These are easily obtained from

U tr = (−1)
1
2
n(n+1)U (10.45)

(ΓωU)tr = (−1)
1
2
n(n−1)ΓωU (10.46)

Note that the signs depend on nmod4 and hence on dmod8.

Exercise

Repeat this exercise for Lorentzian signature.

11. Z2 graded algebras and modules

11.1 Z2 grading on the algebra

As we mentioned at the beginning of this chapter, there is a natural Z2 grading defined on

generators by λ : eµ → −eµ, and then extending λ so that it is an algebra homomorphism.

This makes the Clifford algebra a Z2-graded algebra (i.e. a superalgebra):

C`(Q) ∼= C`0(Q)⊕ C`1(Q) (11.1)

where C`0(Q) is the subalgebra generated by products of even numbers of eµ’s

Let us stress that for d odd the decomposition

C`(d) ∼= C(2[d/2])⊕ C(2[d/2]) (11.2) eq:dirsumalg

is not compatible with the Z2-grading, that is, with the decomposition

C`(d) ∼= (C`(d))0 ⊕ (C`(d))1 (11.3) eq:dirsumgrad

The volume form ωc is odd, and therefore P± do not commute with the grading.

Using the form (11.2) of the Clifford algebra we can consider to be the subalgebra of

C(2N) where N = 2[d/2] of matrices of the form(
a 0

0 b

)
(11.4)

where a, b ∈ C(N). In this block decomposition we have

ωc =

(
1 0

0 −1

)
(11.5)
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Since ωc is odd, we see this block decomposition is not (11.3). In the block decomposition

(11.2) the grading operator is given by conjugation with(
0 1N

1N 0

)
(11.6)

and hence the even subalgebra consists of matrices with a = b and the odd subspace

consists of matrices of the form a = −b.
Sometimes we prefer to use the block decomposition (11.3). In this decomposition the

Clifford algebra consists of matrices of the form(
A B

B A

)
(11.7) eq:gradcd

with A = 1
2(a + b) ∈ C(N) and B = 1

2(a − b) ∈ C(N). Note that the set of matrices

(11.7) is indeed a subalgebra of C(2N):(
A B

B A

)(
A′ B′

B′ A′

)
=

(
AA′ +BB′ AB′ +BA′

BA′ +AB′ AA′ +BB′

)
(11.8)

The even subalgebra corresponds to the matrices of the type(
A 0

0 A

)
(11.9)

and is indeed isomorphic to C(N).

In the block decomposition (11.3) the volume form ωc is odd and we can take it to be

ωc =

(
0 1N

1N 0

)
(11.10)

where N = 2[d/2], While the grading operator is conjugation with Π = (−1)deg where

Π =

(
1 0

0 −1

)
(11.11)

We now explore some consequences of this Z2-grading.

11.2 The even subalgebra C`0(r+, r−)

The first important remark to make is that the even subalgebra is isomorphic to another

Clifford algebra. To see this, choose any basis element eµ0 and consider the algebra gener-

ated by

ẽν = eµ0ν ν 6= µ0 (11.12)

Note that

ẽν ẽρ + ẽρẽν = −2ηµ0µ0ηνρ ν, ρ 6= µ0 (11.13)
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and therefore 4

C`0(r+, s−) ∼= C`(r+, (s− 1)−) s ≥ 1

C`0(r+, s−) ∼= C`(s+, (r − 1)−) r ≥ 1
(11.14) eq:twoevens

Over the complex numbers we have C`0(d) ∼= C`(d− 1).

Example: The even subalgebra of C`(2, 0) is the algebra of matrices:(
a −b
b a

)
(11.15)

and is isomorphic to C.

Remarks

• This observation is useful when discussing Z2-graded representations and when we

discuss representations of the Spin group.

•

Exercise

Show that when both r ≥ 1 and s ≥ 1 then the two equations in (11.14) are compatible.

Exercise

Show that

(C`(r+, s−))0 ∼= (C`(s+, r−))0 (11.16)

11.3 Z2 graded tensor product of Clifford algebras

Since the Clifford algebra is Z2 graded we can also define a graded tensor product. Of

course

(C`(Q1)⊗̂C`(Q2))
0 ∼= (C`(Q1))

0 ⊗ (C`(Q2))
0 ⊕ (C`(Q1))

1 ⊗ (C`(Q2))
1 (11.17)

as vector spaces (with a similar formula for the odd part).

4Note that this implies that we must have C`((r + 1)+, s−) ∼= C`((s + 1)+, r−) for all r, s ≥ 0. One can

indeed prove this is so using the periodicity isomorphisms and the observation that C`(2+) ∼= C`(1+, 1−) ∼=
R(2). Nevertheless, at first site this might seem to be very unlikely since the transverse dimensions are

r−s−1 and s−r−1 and in general are not equal modulo 8. Note that the sum of the transverse dimensions

is −2 = 6mod8. Thus, we have the pairs (0, 6), (1, 5), (2, 4), and (3, 3). One can check from the table that

these all do in fact have the same Morita type! Of course, the dimensions are the same, so they must in

fact be isomorphic.
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The important new point is the sign rule in the Clifford multiplication on the graded

tensor product. We define the graded Clifford multiplication to be:

(φ⊗̂ξ) · (φ′⊗̂ξ′) := (−1)deg ξ·deg φ
′
φφ′⊗̂ξξ′ (11.18) eq:gradedcliffmult

Quite generally, if V = V1 ⊕ V2 and Q = Q1 ⊕Q2 then

C`(Q) = C`(Q1)⊗̂C`(Q2) (11.19) eq:grdedtensprd

It follows that

C`(r+, s−) = C`(1+)⊗̂r⊗̂C`(1−)⊗̂s (11.20)

Note that (11.19) is not true for the ungraded tensor product.

The graded tensor product is not as useful for constructing representations because

when one takes a tensor product of matrices one normally uses the ordinary tensor product.

This is why we used the ordinary tensor product to construct the structure of the algebras

and discuss their representations above.

11.4 Z2 graded modules

A Z2-graded module M for the Clifford algebra is a representation which itself a Z2-graded

vector space

M = M0 ⊕M1 (11.21)

such that the Clifford action respects the Z2 grading. Thus,

C`(Q)A ·MB ⊂MA+Bmod2 (11.22)

A Z2-graded module said to be of graded-dimension (dimM0|dimM1).

One useful way to think about a grading is the following: A Z2 grading means we

have an operator Π on M with Π2 = 1 such that Π anti-commutes with all the Clifford

generators γi. So, Π can be considered to be another gamma-matrix!

Let us now examine the Z2-graded modules of the Clifford algebras. We begin with

the complex Clifford algebras for simplicity.

It is very useful to speak of the free abelian group generated by Clifford modules. The

direct sum of modules is a module so we can let

nM := M⊕n (11.23)

for n > 0. Then we introduce formally an additive inverse so that we can write

nM + n′M = (n+ n′)M (11.24)

for all integers n, n′ ∈ Z.

Let Mc
k denote the free abelian group of graded C`k modules and N c

k denote the free

abelian group of ungraded C`k modules

Before giving the general construction let us look at some low-dimensional examples.

It will also be interesting to consider the following problem: We can consider C`ck to be
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a subalgebra of C`ck+1 by identifying the first k generators of the latter algebra to be the

generators e1, . . . , ek of the former. Therefore, every C`ck+1 module can be considered to be

a C`ck module, and hence we have a group homomorphism ι∗ :Mc
k+1 →Mc

k. The problem

– of great utility in topology - is to determine the abelian group

Mc
k/ι
∗(Mc

k+1) (11.25)

(For some idea of why this might be so, see section *** above and section *** below.)

We begin with zero dimensions. C`(0) = C has one (irreducible) ungraded module, C.

We will refer to it as N0 below. However, C`(0) has two irreducible graded modules M0,+

of dimension (1|0) and M0,− of dimension (0|1). Thus,

N0
∼= Z

M0
∼= Z⊕ Z

(11.26)

Now consider C`(1) ∼= C⊕C. Choosing the generator so e1e1 = −1 the two subalgebras

are obtained by the projection operators P± = 1
2(1±ie). Thus note that neither subalgebra

has homogeneous grading.

Now, C`(1) has two inequivalent ungraded modules, denotedN1,± depending on whether

we represent e by ∓i. That is N1,± = P±C`
c
1. Each module N1,± is a one-dimensional

complex vector space. On the other hand, C`(1) has only one irreducible graded module.

We will denote it M1. An even vector must be mapped by e1 to an odd vector, and vice

versa. Thus M1 has dimension (1|1) and is C⊕C as a vectorspace with e1 represented by

ρ(e1) =

(
0 −1

1 0

)
(11.27)

Now the even subalgebra (C`(1))0 is just C, and is generated by the scalars.

It is useful to note that we could define M1 by the formula

M1 = C`(1)⊗(C`(1))0 N0 (11.28)

A vector space basis is v1 = 1 ⊗ 1 generating the even subspace (M1)
0 and v2 = e ⊗ 1,

generating the odd subspace (M1)
1, and it is clear that in this basis

e→

(
0 −1

+1 0

)
(11.29)

Note that, as is required, e is an odd operator - it is off-diagonal. Thus,

N1
∼= Z⊕ Z

M1
∼= Z

(11.30)

We can also determine the homomorphism ι∗ : M1 → M0. Since the generator M1

has dimension (1|1) the map Z→ Z⊕ Z is just n→ (n, n).

Now let us turn to C`(2) ∼= C(2). Clearly, there is only one irreducible ungraded

module N2
∼= C2. However, there are two inequivalent Z2 graded modules: M±2 . To see
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this first note that the even subalgebra is (C`(2))0 ∼= C ⊕ C the isomorphism being given

by P± = 1
2(1∓ ie1e2). But there are two inequivalent ungraded modules for (C`(2))0 and

these induce inequivalent graded modules via

M±2 = C`(2)⊗(C`(2))0 N1,± (11.31)

As a vector space M±2
∼= C2. We can choose a vector space basis v1 = 1 ⊗ 1, generating

the even part (M±2 )0 and v2 = e1 ⊗ 1, generating the odd part (M±2 )1. Note e2 ⊗ 1 is not

a linearly independent vector because

e2 ⊗ 1 = −e1(e1e2)⊗ 1

= −e1 ⊗ e1 · 1 definition of tensor product

= e1 ⊗∓i
= ∓ie1 ⊗ 1

(11.32)

A small computation shows that in this basis

e1 →

(
0 −1

1 0

)
e2 →

(
0 ∓i
∓i 0

)
(11.33) eq:cliffacttwo

If we normalize the volume form so it squares to 1, ω = ie1e2, then, although both

the graded and ungraded modules are C2 as vector spaces, the two inequivalent graded

modules are distinguished by the sign of ω acting on the ungraded component (M±2 )0.

Thus

N2
∼= Z

M2
∼= Z⊕ Z

(11.34)

Moreover, we can determine ι∗ :M2 →M1 easily since (11.33) gives the action of e1, on

M2,± which is identical to that of C`c1 on M1. Thus the map is (1, 0)→ 1 and (0, 1)→ 1.

Finally, let us look at C`(3) ∼= C(2) ⊕ C(2), with projectors P = 1
2(1 ∓ e1e2e3). The

even subalgebra (C`(3))0 ∼= C(2) is generated by, say, ê1 = e1e2 and ê2 = e2e3. Clearly

C`(3) has two ungraded modules, isomorphic to C2 as vector spaces. We can call these

N3,±. Explicitly, they are represented by ej → ±iσj where σj are Pauli matrices. The two

different modules differ by the sign of the volume element. On the other hand, there is

only one graded module, which we can again take to be

M3 = C`(3)⊗(C`(3))0 N2 (11.35)

M3 is C4 as a vector space. to be explicit we can choose a basis v1, v2 for N2 as above,

then we have a representation of ê1 = e1e2, ê2 = e2e3, as above. Then we choose

w1 = 1⊗ v1, w2 = 1⊗ v2, w3 = e1 ⊗ v1, w4 = e1 ⊗ v2 (11.36)

Note that

e2 ⊗ v1 = −e1e1e2 ⊗ v1 = −e1 ⊗ (e1e2)v1 = −e1 ⊗ v2 (11.37)
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and in a similar fashion we get

e2 ⊗ v2 = e1 ⊗ v1
e3 ⊗ v1 = −ie1 ⊗ v1
e3 ⊗ v2 = −ie1 ⊗ v2

(11.38)

so we compute

e1 : w1 → w3

w2 → w4

w3 → −w1

w4 → −w2

(11.39)

etc.

Exercise

Show that restriction of M3 as a graded C`(2) module is

ι∗(M3) = M2,+ ⊕M2,− (11.40)

Now we turn to the general story:

C`(2n) ∼= C(2n) has

1. Unique ungraded irrep N2n, ∼= C2n as a vector space.

2. Two inequivalent graded irreps M2n,±, ∼= C2n+1
as vector spaces. [??? Aug. 28,

2011: Dimension seems wrong. ???].

while C`(2n+ 1) = C(2n)⊕ C(2n) has

1. Two inequivalent ungraded irreps N2n+1,±, ∼= C2n as vector spaces.

2. A unique graded irrep M2n+1, ∼= C2n+1
as a vector space.

That is:

N2k
∼= Z

N2k+1
∼= Z⊕ Z

(11.41)

M2k
∼= Z⊕ Z

M2k+1
∼= Z

(11.42)

Moreover, if ι : C`(n)→ C`(n+ 1) then we examine ι∗(M) or ι∗(N), the restriction of

the module to the Clifford subalgebra, and we have

ι∗(M2n+1) = M2n,+ ⊕M2n,− (11.43)

ι∗(M2n,±) = M2n−1 (11.44)
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If M is a graded module for C`(k+ 1) then M0 is a graded module for (C`(k+ 1))0 ∼=
C`(k). The inverse relation is that if N is an ungraded module for C`(k) then we can

produce a graded module for C`(k + 1) by

M = C`(k + 1)⊗(C`(k+1))0 N (11.45)

Remarks

• To make contact with our discussion of representations in section ****, note the

following: For d odd, ωc is central and there are two inequivalent representations of C`(d)

depending on the sign of ωc. For d even, there is only one inequivalent representation.

These are the ungraded representations. For the graded representations we can look at the

even subalgebra acting on the even space M0. Now for d even, the even subalgebra has a

volume form ω0
c which is central in the even subalgebra and hence acting on the even part

of the module, M0, has ωc is represented by a scalar ±1. This defines the two kinds of

inequivalent graded modules. For d odd the even subalgebra has no such central term and

there is only one inequivalent graded irreducible graded module.

• There is an analogous, but more intricate, discussion for the modules of the real

Clifford algebra.

11.5 K-theory over a point

***************

Explain about brane/antibrane and how invertible tachyon fields produce annihilation.

***************

One can thus consider Z2-graded C`cn-modules with an odd anti-hermitian operator.

Need to mod out by invertible operators, and homotopy relation....

Thus we consider the space

K−j(pt) =Mj/ι
∗(Mj+1) (11.46)

So M2n,+ ∼ −M2n,− in K-theory

From the above

K−j(pt) =

{
Z j = 0mod2

0 j = 1mod2
(11.47)

11.6 Graded tensor product of modules and the ring structure

and M2n,+
∼= (M2,+)⊗n as tensor products of Z2-graded modules. So M2,+ is the Bott

element ±u−1.
Moreover, as we have seen C`0((r + 1)+) ∼= C`(r+). Thus we can list the free abelian

groups generated by irreducible Z2 graded modules as:

11.6.1 The Grothendieck group

Now describe Z2-graded modules modulo those which extend to Z2 graded modules one

dimension higher.

Tensor product of Z2-graded modules. Ring structure of the Grothendieck group.
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12. Clifford algebras and the division algebras

There is an intimate relation between Clifford algebras and the division algebras. See

Kugo-Townsend. Also see

A. Sudbury, “Division algebras, (pseudo)orthogonal groups and spinors,” J. Phys. A

Math. Gen. 17 (1984) 939.

Interesting constructions of the Clifford algebras for Spin(7) and Spin(8) using the

mutliplication table of the octonions can be found in:

M. Gunaydin and F. Gursey, J. Math. Phys. 14 (1973)1651

R. Dundarer, F. Gursey, and C.H. Tze, J. Math. Phys. 25 (1984)1496
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Mathematicians

3. One of the best treatments is in Atiyah, Bott, and Shapiro, “Clifford Modules”

4. A textbook version of the ABS paper can be found in Lawson and Michelson, Spin

Geometry, ch.1

5. Freund, Introduction to Supersymmetry

6. M. Sohnius, “Introducing Supersymmetry” Phys. Rept.

7. T. Kugo and P. Townsend, “Supersymmetry and the division algebras,” Nuc. Phys.

B221 (1983)357.

8. M. Rausch de Traubenberg, “Clifford Algebras in Physics,” arXiv:hep-th/0506011.
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