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1. Introduction

Historically, group theory began in the early 19th century. In part it grew out of the

problem of finding explicit formulae for roots of polynomials. 1. Later it was realized that

groups were crucial in transformation laws of tensors and in describing and constructing

geometries with symmetries. This became a major theme in mathematics near the end of

the 19th century. In part this was due to Felix Klein’s very influential Erlangen program.

In the 20th century group theory came to play a major role in physics. Einstein’s 1905

theory of special relativity is based on the symmetries of Maxwell’s equations. The general

theory of relativity is deeply involved with the groups of diffeomorphism symmetries of

manifolds. With the advent of quantum mechanics the representation theory of linear

groups, particularly SU(2) and SO(3) came to play an important role in atomic physics,

despite Niels Bohr’s complaints about “die Gruppenpest.” One basic reason for this is the

connection between group theory and symmetry, discussed in chapter ****. The theory of

symmetry in quantum mechanics is closely related to group representation theory.

Since the 1950’s group theory has played an extremely important role in particle theory.

Groups help organize the zoo of subatomic particles and, more deeply, are needed in the

very formulation of gauge theories. In order to formulate the Hamiltonian that governs

interactions of elementary particles one must have some understanding of the theory of Lie

algebras, Lie groups, and their representations.

Now, in the late 20th and early 21st century group theory is essential in many areas

of physics including atomic, nuclear, particle, and condensed matter physics. However,

1See the romantic stories of the life of Galois
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the beautiful and deep relation between group theory and geometry is manifested perhaps

most magnificently in the areas of mathematical physics concerned with gauge theories

(especially supersymmetric gauge theories), quantum gravity, and string theory. It is with

that in the background that I decided to cover the topics in the following chapters.

2. Basic Definitions

We begin with the abstract definition of a group.

Definition 2.1: A group G is a set with a multiplication:

∀a, b ∈ G there exists a unique element in G, called the product, and denoted a · b ∈ G

The product is required to satisfy 3 axioms:

1. Associativity: (a · b) · c = a · (b · c)

2. Existence of a unit: ∃e ∈ G such that:

∀a ∈ G a · e = e · a = a (2.1)

3. Existence of inverses: ∀a ∃a−1 ∈ G a · a−1 = a−1 · a = e

Remarks

1. We will often denote e by 1, or by 1G, when discussing more than one group at a

time. Also, we sometimes denote the productof a and b simply by ab.

2. We can drop some axioms and still have objects of mathematical interest. For ex-

ample, a monoid is defined by dropping the existence of inverses. Nevertheless, the

definition of a group seems to be in that Goldilocks region of being not too sparse to

give too little structure, but not too rigid to allow only limited examples. It is just

right to have a deep and rich mathematical theory.

Exercise

a.) Show that e unique.

b.) Given a is a−1 unique?

c.) Show that in axiom (2) above we need only say a · e = a, or e · a = a. It is not

necessary to postulate both equations.

Example 2.1: As a set, G = Z,R, or C. The group operation is ordinary addition, a+ b.

Check the axioms.
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Example 2.2: A simple generalization is to take n-tuples for a positive integer n: G =

Zn,Rn,Cn, with the operation being vector addition:

(x1, . . . , xn) · (y1, . . . , yn) ≡ (x1 + y1, . . . , xn + yn) (2.2)

Example 2.3: G = R∗ ≡ R− {0} or G = C∗ ≡ C− {0} operation = ×.

Definition 2.2: If G is a group, a subset H ⊆ G which is also a group is called, naturally

enough, a subgroup.

Exercise Subgroups

a.) Z ⊂ R ⊂ C with operation +, define subgroups.

b.) Is the subset Z− {0} ⊂ R∗ a subgroup?

c.) Let R∗
± denote the positive and negative real numbers, respectively. Which of these

are subgroups of R∗?

Definition 2.3: The order of a group G, denoted |G|, is the number of elements in G. A

group is G called a finite group if |G| <∞, and is called an infinite group otherwise.

The groups in Examples 1,2,3 above are of infinite order. Here are examples of finite

groups:

Example 2.4: The residue classes modulo N , also called “The cyclic group of

order N.”

Choose a natural number N . As a set we can take G = {0, 1, . . . , N − 1}. 2 If n is

an integer then we can write n = r +Nq in a unique way where the quotient q is integral

and the remainder or residue modulo N , r ∈ G. The group operation on G is that r1 · r2 is

defined to be the residue of (r1 + r2) modulo N . 3 This group, which appears frequently

in the following, will be denoted as Z/NZ or ZN . For example, telling time in hours is

arithmetic in Z12, or in Z24 in railroad/military time.

Exercise

Does Z137 have any nontrivial subgroups? 4

2It is conceptually better to think of G as the integers modulo N , using the notation of equivalence

relation of §6.2 below. Then we denote elements by 0̄, 1̄, 2̄, · · · . Thus, e.g. if N = 2 then 1̄ = 3̄. The group

operation is simply r1 + r2 := r1 + r2.
3It is also possible to define a ring structure where one multiplies r1 and r2 as integers and then takes

the residue. This is NOT what is meant here by r1 · r2 !!
4Answer : We will give an elegant answer below.
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Exercise

In example 4 show that if N is even then the subset of classes of even integers forms

a subgroup of ZN . What happens if N is odd?

So far, all our examples had the property that for any two elements a, b

a · b = b · a (2.3)

When (2.3) holds we say “a and b commute.” Such groups are very special and baptised

as abelian groups:

Definition 2.4: If a, b commute for all a, b ∈ G we say “G is abelian.”

There are certainly examples of nonabelian groups.

Example 2.5: The general linear group

Let κ = R or κ = C. Define:

GL(n, κ) = {A|A = n× n invertible matix over κ} (2.4)

GL(n, κ) is a group of infinite order. It is abelian if n = 1 and nonabelian if n > 1.

There are some important generalizations: We could let κ be any field. If κ is a finite

field then we get a finite group. More generally, if R is an ring (defined in Chapter 2 below)

GL(n,R) is the subset of n×n matrices with entries in R with an inverse in Mn(R). This

set forms group.

Definition 2.5: The center Z(G) of a group G is the set of elements z ∈ G that commute

with all elements of G:

Z(G) := {z ∈ G|zg = gz ∀g ∈ G} (2.5)

Z(G) is an abelian subgroup of G. As an example, for κ = R or κ = C the center of

GL(n, k) is the subgroup of matrices proportional to the unit matrix.

Example 2.6: Classical matrix groups

A matrix group is a subgroup of GL(n, k). There are several interesting examples

which we will study in great detail later. Some examples include:

The special linear group:

SL(n, k) ≡ {A ∈ GL(n, k) : detA = 1} (2.6)

The orthogonal groups:

O(n,R) := {A ∈ GL(n,R) : AAtr = 1}
SO(n,R) := {A ∈ O(n,R) : detA = 1}

(2.7)
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In particular

SO(2,R) = {R(φ) :=
(

cosφ sinφ

− sinφ cosφ

)
: φ ∼ φ+ 2π} (2.8)

and SO(3,R) is familiar from rotations in 3-space.

Another natural class are the unitary and special unitary groups:

U(n) := {A ∈ GL(n,C) : AA† = 1} (2.9)

SU(n) := {A ∈ U(n) : detA = 1} (2.10)

Finally, to complete the standard list of classical matrix groups we consider the stan-

dard symplectic form on R2n:

J =

(
0 1n×n

−1n×n 0

)
∈M2n(R) (2.11)

Note that the matrix J satisfies the properties:

J = J∗ = −J tr = −J−1 (2.12)

Definition A symplectic matrix is a matrix A such that

AtrJA = J (2.13)

We define the symplectic groups:

Sp(2n,R) := {A ∈ GL(2n,R)|AtrJA = J}
Sp(2n,C) := {A ∈ GL(2n,C)|AtrJA = J}

(2.14)

Exercise

a.) Check that each of the above sets (2.6),(2.7),(2.9), (2.14), are indeed subgroups of

the general linear group.

b.) In (2.14) we could have defined Sp(2n, κ) to be matrices in M2n(κ) such that

AtrJA = J . Why?

Example 2.7 Function spaces as ∞-dimensional groups

Suppose G is a group. Suppose X is any set. Define a space of functions:

F [X → G] = {f : f is a function from X → G} (2.15)

Claim: F [X → G] is also a group: We define the product f1 · f2 to be the function

taking values:

(f1 · f2)(x) ≡ f1(x) · f2(x) (2.16)
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The inverse of f is the function x→ f(x)−1.

If X or G has an infinite set of points then this is an infinite order group. If X is a

manifold and G is a Lie group (notions defined below) this is an infinite-dimensional space.

In the special case of the space of maps from the circle into the group:

LG = {Maps : f : S1 → G} (2.17)

we have the famous “loop group” which has many wonderful properties. (It is also the

beginning of string theory.)

Example 2.8: LetM be a smooth manifold. The group of diffeomorphisms ofM , denoted

Diff(M) is a group under composition. While much work has been done on these groups,

it seems there is a lot left to discover about them. One can ask simple questions about

them whose answers are unknown.

Exercise Direct product of groups

Definition Let G1, G2 be two groups. The direct product of G1, G2 is the set G1×G2

with product:

(g1, g2) · (g′1, g′2) = (g1 · g′1, g2 · g′2) (2.18)

Check the group axioms.

3. Homomorphism and Isomorphism

Definition 3.1: Let G,G′ be two groups,

1.) A homomorphism µ : G→ G′ is a mapping that preserves the group law

µ( g1g2︸︷︷︸
product in G

) =

product in G′

︷ ︸︸ ︷
µ(g1)µ(g2) (3.1)

2.) If µ is 1-1 and onto it is called an isomorphism.

3.) One often uses the term automorphism of G when µ is an isomorphism and G = G′.

Remarks

1. A common slogan is: “isomorphic groups are the same.”

2. An example of a nontrivial automorphism of a group is to consider the integers

modulo N , additively, G = Z/NZ and consider the transformation µ(r̄) = kr where

k is an integer relatively prime to N . For example in Z/3Z = {0̄, 1̄, 2̄} this exchanges

1̄ and 2̄. We will discuss this kind of example in greater detail in Section §9 below.
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3. One kind of homomomorphism is especially important:

Definition 3.2: A matrix representation of a group G is a homomorphism T : G→
GL(n, k) for some positive integer n and field k.

Exercise Some simple isomorphisms

a.) Show that the exponential map x → ex defines an isomorphism between the

additive group (R,+) and the multiplicative group (R∗
+,×).

b. ) Consider the group of N th roots of unity {1, ω, . . . , ωN−1}, ω = exp(2πi/N),

with multiplication of complex numbers as the group operation. Show that this group is

isomorphic to ZN .

Exercise

Show that:

µ(1G) = 1G′ (3.2)

µ(g−1) = µ(g)−1 (3.3)

Exercise Subgroups of ZN

a.) Show that the subgroups of ZN are isomorphic to the groups ZM for M |N .

b.) For N = 8,M = 4 write out H.

Exercise

Let S2 be the group of permutations on two letters {e, (12)}. (See the next section for

the definition.) Denote σ = (12). Consider the group:

Ŝ2 = {
(
1 0

0 1

)
,

(
0 1

1 0

)
} (3.4)

with multiplication being matrix multiplication.

Define µ : S2 → Ŝ2
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µ(e) =

(
1 0

0 1

)

µ(σ) =

(
0 1

1 0

) (3.5)

Show this is an isomorphism, and hence a matrix representation of S2. The main thing

to check is:

µ(σ · σ) ?
=µ(σ) · µ(σ) (3.6)

Exercise

Let ω = e2πi/N . Show that

µ : ωj 7→
(

cos(2πjN ) sin(2πjN )

− sin(2πjN ) cos(2πjN )

)
(3.7)

defines a matrix representation of ZN .

4. The symmetric group.

The symmetric group is an important example of a finite group. As we shall see later all

finite groups are subgroups of the symmetric group.

A permutation of a set X is a one-one invertible transformation φ : X → X. The

composition φ1 ◦ φ2 of two permutations is a permutation. The identity permutation

leaves every element unchanged. The inverse of a permutation is a permutation. Thus,

composition defines a group operation on the permutations of any set. This group is

designated SX .

If n is a positive integer the symmetric group on n elements, denoted Sn, is defined as

the group of permutations of the set X = {1, 2, . . . , n}.
In group theory, as in politics, there are leftists and rightists and we can actually define

two group operations:

(φ1 ·L φ2)(i) := φ2(φ1(i))

(φ1 ·R φ2)(i) := φ1(φ2(i))
(4.1)

That is, with ·L we read the operations from left to right and first apply the left permu-

tation, and then the right permutation. Etc. Each convention has its own advantages and

both are frequently used.
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In these notes we will adopt the ·R convention and henceforth simply write φ1φ2 for the product.

We can write a permutation symbolically as

φ =

(
1 2 · · · n

p1 p2 · · · pn

)
(4.2)

meaning: φ(1) = p1, φ(2) = p2, . . . , φ(n) = pn. Note that we could equally well write

the same permutation as:

φ =

(
a1 a2 · · · an
pa1 pa2 · · · pan

)
(4.3)

where a1, . . . , an is any permutation of 1, . . . , n. With this understood, suppose

φ1 =

(
q1 · · · qn
1 · · · n

)

φ2 =

(
1 · · · n

p1 · · · pn

) (4.4)

Then

φ1 ·L φ2 =
(
q1 · · · qn
p1 · · · pn

)
(4.5)

On the other hand, to compute φ1 ·R φ2 we should represent

φ1 =

(
1 · · · n

q′1 · · · q′n

)

φ2 =

(
p′1 · · · p′n
1 · · · n

) (4.6)

and then

φ1 ·R φ2 =
(
p′1 · · · p′n
q′1 · · · q′n

)
(4.7)

Exercise

a.) Show that the order of the group is |Sn| = n!.

b.) Show that if n1 ≤ n2 then we can consider Sn1 as a subgroup of Sn2 .

Exercise Show that the inverse of (4.2) is the permutation:

φ =

(
p1 p2 · · · pn
1 2 · · · n

)
(4.8)
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1

φ

φ

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Figure 1: A pictorial view of the composition of two permutations φ1, φ2 in S8. Thus 1 → 3, 2 → 7

etc. for the group product φ2 · φ1.

It is often useful to visualize a permutation in terms of “time evolution” (going up) as

shown in 1.

Exercise Left versus right

a.) Show that in the pictorial interpretation the inverse is obtained by running arrows

backwards in time.

b.) Show that the left- and right- group operation conventions are related by

φ1 ·L φ2 = (φ−1
1 ·R φ−1

2 )−1 (4.9)

c.) Interpret (4.9) pictorially by running time backwards. 5

4.1 Cayley’s Theorem

As a nice illustration of some of the concepts we have introduced we now prove Cayley’s

theorem. This theorem states that any finite group is isomorphic to a subgroup of a

permutation group SN for some N .

To prove this we begin with an elementary, but important observation known as the

The rearrangement lemma:

Consider a finite group

G = {g1, . . . , gn} (4.10)

5Hint: The notion of inverse is convention-independent, so φ−1 is the same permutation whether we use

·L or ·R. So now write (φ1 ·L φ2)
−1 = φ−1

1 ·R φ−1
2 .
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For any h ∈ G consider the set

{h · g1, . . . , h · gn} (4.11)

Show that (4.11) is a list of distinct elements which is just a rearrangement, i.e. a permu-

tation of (4.10). We will come back to this point several times.

By considering the right-multiplication or the left-multiplication of G on itself we see

that any group element a ∈ G defines a permutation L(a):

L(a) : g → a · g (4.12)

Note that L(a1)◦L(a2) = L(a1·a2) so a→ L(a) is a homomorphism. This is an example of a

group action on a set, another notion we will come back to and discuss more systematically

in chapter ****.

Now consider any finite group G. We take N = |G| and notice that a → L(a) is an

isomorphism to a subgroup of SN .

4.2 Cyclic Permutations and cycle decomposition

A very important class of permutations are the cyclic permutations of length ℓ. Choose ℓ

distinct numbers, a1, . . . , aℓ between 1 and n and permute:

a1 → a2 → · · · → aℓ → a1 (4.13)

holding all other n− ℓ elements fixed. This permutation is denoted as

φ = (a1a2 . . . aℓ). (4.14)

Of course, this permutation can be written in ℓ different ways:

(a1a2 . . . aℓ) = (a2a3 . . . aℓa1) = (a3 . . . aℓa1a2) = · · · = (aℓa1a2 . . . aℓ−1) (4.15)

So:

S2 = {1, (12)} (4.16)

S3 = {1, (12), (13), (23), (123), (132)} (4.17)

S4 = {1, (12), (13), (14),(23), (24), (34), (12)(34), (13)(24), (14)(23),
(123), (132), (124), (142),(134), (143), (234), (243)

(1234),(1243), (1324), (1342), (1423), (1432)}
(4.18)

Note that every permutation above is a product of cyclic permutations on disjoint sets

of integers. A little thought shows that this is quite general:

Any permutation σ ∈ Sn can be uniquely written as a product of disjoint cycles. This

is called the cycle decomposition of σ.
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For example

σ = (12)(34)(10, 11)(56789) (4.19)

is a cycle decomposition in S11. There are 3 cycles of length 2 and 1 of length 5.

The decomposition into products of disjoint cycles is known as the cycle decomposition.

Remarks

1. S2 is abelian.

2. S3 is NOT ABELIAN6

(12) · (13) = (132)

(13) · (12) = (123)
(4.20)

4.3 Transpositions

A transposition is a permutation of the form: (ij). These satisfy some nice properties: Let

i < j < k. You can check as an exercise that transpositions obey the following identities:

(ij) · (jk) · (ij) = (ik) = (jk) · (ij) · (jk)
(ij)2 = 1

(ij) · (kl) = (kl) · (ij) {i, j} ∩ {k, l} = ∅
(4.21)

=

i j k kji 

Figure 2: Pictorial illustration of equation (4.21) line one for transpositions. Note that the identity

is suggested by “moving the time lines” holding the endpoints fixed. Reading time from bottom to

top corresponds to reading the composition from left to right in the ·R convention.

The first identity is illustrated in Figure 2. Draw the other two.

We observed above that there is a cycle decomposition of permutations. Now note

that

6Note that (12) ·L (13) = (123).
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Any cycle (a1, · · · , ak) can be written as a product of transpositions. To prove this

note that

(1, k)(1, k − 1) · · · (1, 4)(1, 3)(1, 2) = (1, 2, 3, 4, . . . , k) (4.22)

Now, if we conjugate this identity by the permutation taking {1, . . . , k} → {a1, . . . , ak} (say,
holding everything else fixed) then we get an analogous identity for the cyclic permutation

(a1, · · · , ak).
Therefore, every element of Sn can be written as a product of transpositions, gener-

alizing (4.20). We say that the transpositions generate the permutation group. Taking

products of various transitions – what we might call a “word” whose “letters” are the

transpositions – we can produce any element of the symmetric group. We will return to

this notion in §5 below.

Of course, a given permutation can be written as a product of transpositions in many

ways. This clearly follows because of the identities (4.21). A nontrivial fact is that all

relations between transpositions follow from repeated use of these identities.

Although permutations can be written as products of transpositions in different ways,

the number of transpositions in a word modulo 2 is always the same, because the identities

(4.21) have the same number of transpositions, modulo two, on the LHS and RHS. Thus

we can define even, resp. odd, permutations to be products of even, resp. odd numbers of

transpositions.

Definition: The alternating group An ⊂ Sn is the subgroup of Sn of even permuta-

tions.

Exercise

a.) What is the order of An ?

b.) Write out the even elements of S4, that is, write out A4.

Exercise

When do two transpositions commute? Illustrate the answer with pictures, as above.

Exercise Smaller set of generators

Show that from the transpositions σi := (i, i + 1), 1 ≤ i ≤ n − 1 we can generate all

other transpositions in Sn. These are sometimes called the elementary generators.
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Exercise Center of Sn

What is the center of Sn?

Exercise Decomposing the reverse shuffle

Consider the permutation which takes 1, 2, . . . , n to n, n− 1, . . . , 1.

a.) Write the cycle decomposition.

b.) Write a decomposition of this permutation in terms of the elementary generators

σi.

Example 3.2 The sign homomorphism.

This is a very important example of a homomorphism:

ǫ : Sn → Z2 (4.23)

where we identify Z2 as the multiplicative group {±1}. The rule is:

ǫ : σ → +1 if σ is a product of an even number of transpositions.

ǫ : σ → −1 if σ is a product of an odd number of transpositions.

Put differently, we could define ǫ(ij) = −1 for any transposition. This is compatible

with the words defining the relations on transpositions. Since the transpositions generate

the group the homomorphism is well-defined and completely determined.

In physics one often encounters the sign homomorphism in the guise of the “epsilon

tensor” denoted:

ǫi1···in (4.24)

Its value is:

1. ǫi1···in = 0 if two indices are repeated.

2. ǫi1···in = +1 if (
1 2 · · · n

i1 i2 · · · in

)
(4.25)

is an even permutation.

3. ǫi1···in = −1 if (
1 2 · · · n

i1 i2 · · · in

)
(4.26)

is an odd permutation.

So, e.g. among the 27 entries of ǫijk, 1 ≤ i, j, k ≤ 3 we have
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ǫ123 = 1

ǫ132 = −1

ǫ231 = +1

ǫ221 = 0

(4.27)

and so forth.

Exercise

Show that

ǫi1i2···inǫj1j2···jn =
∑

σ∈Sn

ǫ(σ)δi1jσ(1)
δi2jσ(2)

· · · δinjσ(n)
(4.28)

This formula is often useful when proving identities involving determinants. An im-

portant special case occurs for n = 3 where it is equivalent to the rule for the cross-product

of 3 vectors in R3:

~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B) (4.29)

4.4 Diversion and Example: Card shuffling

One way we commonly encounter permutation groups is in shuffling a deck of cards.

A deck of cards is equivalent to an ordered set of 52 elements. Some aspects of card

shuffling and card tricks can be understood nicely in terms of group theory.

Mathematicians often use the perfect shuffle or the Faro shuffle. Suppose we have a

deck of 2n cards, so n = 26 is the usual case. There are actually two kinds of perfect

shuffles: the In-shuffle and the Out-shuffle.

In either case we begin by splitting the deck into two equal parts, and then we interleave

the two parts perfectly.

Let us call the top half of the deck the left half-deck and the bottom half of the deck

the right half-deck. Then, to define the Out-shuffle we put the top card of the left deck on

top, followed by the top card of the right deck underneath, and then proceed to interleave

them perfectly. The bottom and top cards stay the same.

If we number the cards 0, 1, . . . , 2n−1 from top to bottom then the top (i.e. left) half-

deck consists of the cards numbered 0, 1, . . . , n − 1 while the bottom (i.e. right) half-deck

consists of the cards n, n+ 1, . . . , 2n − 1. Then the Out-shuffle gives the cards in the new

order

0, n, 1, n + 1, 2, n + 2, . . . , n+ 2, 2n − 2, n − 1, 2n − 1 (4.30)
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Another way to express this is that the Out-shuffle defines a permutation of {0, 1, . . . , 2n−
1} defined by the formula:

O(x) =

{
2x x ≤ n− 1

2x− (2n− 1) n ≤ x ≤ 2n− 1
(4.31)

Note that this already leads to a card trick: Modulo (2n − 1) the operation is just

x → 2x, so if k is the smallest number with 2k = 1mod(2n − 1) then k Out-shuffles will

restore the deck perfectly.

For example: For a standard deck of 52 cards, 28 = 5×51+1 so 8 perfect Out-shuffles

restores the deck!

We can also see this by working out the cycle presentation of the Out-shuffle:

O = (0)(1, 2, 4, 8, 16, 32, 13, 26)(3, 6, 12, 24, 48, 45, 39, 27)

(5, 10, 20, 40, 29, 7, 14, 28)(9, 18, 36, 21, 42, 33, 15, 30)

(11, 22, 44, 37, 23, 46, 41, 31)(17, 34)(19, 38, 25, 50, 49, 47, 43, 35)(51)

(4.32)

Clearly, the 8th power gives the identity permutation.

Now, to define the In-shuffle we put the top card of the right half-deck on top, then

the top card of the left half-deck underneath, and then proceed to interleave them.

Now observe that if we have a deck with 2n cards D2n = {0, 1, . . . , 2n − 1} and we

embed it in a Deck with 2n+ 2 cards

D2n → D2n+2 (4.33)

by the map x→ x+1 then the Out-shuffle on the deck D2n+2 permutes the cards 1, . . . , 2n

amongst themselves and acts as an In-shuffle on these cards!

Therefore, applying our formula for the Out-shuffle we find that the In-shuffle is given

by the formula

I(x) =
{
2(x+ 1)− 1 x+ 1 ≤ n

2(x+ 1)− (2n + 1)− 1 n+ 1 ≤ x+ 1
(4.34)

One can check that this is given by the uniform formula

I(x) = 2x+ 1mod(2n+ 1) (4.35)

for x ∈ D2n.

For 2n = 52 this turns out to be one big cycle!

(0, 1, 3, 7, 15, 31, 10, 21, 43, 34,16, 33, 14, 29, 6, 13, 27, 2, 5,

11, 23, 47, 42, 32, 12, 25, 51, 50,48, 44, 36, 20, 41, 30, 8, 17,

35, 18, 37, 22, 45, 38, 24,49, 46, 40, 28, 4, 9, 19, 26)

(4.36)

so it takes 52 consecutive perfect In-shuffles to restore the deck.

One can do further magic tricks with In- and Out-shuffles. As one example there is

a simple prescription for bringing the top card to any desired position, say, position ℓ by

doing In- and Out-shuffles.
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To do this we write n in its binary expansion:

ℓ = 2k + ak−12
k−1 + · · ·+ a12

1 + a0 (4.37)

where aj ∈ {0, 1}. Interpret the coefficients 1 as In-shuffles and the coefficients 0 as Out-

shuffles. Then, reading from left to right, perform the sequence of shuffles given by the

binary expression: 1ak−1ak−2 · · · a1a0.
To see why this is true consider iterating the functions o(x) = 2x and i(x) = 2x + 1.

Notice that the sequence of operations given by the binary expansion of n are

0 → 1

→ 2 · 1 + ak−1

→ 2 · (2 · 1 + ak−1) + ak−2 = 22 + 2ak−1 + ak−2

→ 2 · (22 + 2ak−1 + ak−2) + ak−3 = 23 + 22ak−1 + 2ak−2 + ak−3

...
...

→ 2k + ak−12
k−1 + · · ·+ a12

1 + a0 = ℓ

(4.38)

For an even ordered set we can define a notion of permutations preserving central

symmetry. For x ∈ D2n let x̄ = 2n− 1− x. Then we define the group W (Bn) ⊂ S2n to be

the subgroup of permutations which permutes the pairs {x, x̄} amongst themselves.

Note that there is clearly a homomorphism

φ : W (Bn) → Sn (4.39)

Moreover, both O and I are elements of W (Bn). Therefore the shuffle group, the group

generated by these is a subgroup of W (Bn). Using this one can say some nice things about

the structure of S2n. It was completely determined in a beautiful paper (the source of the

above material):

“The mathematics of perfect shuffles,” P. Diaconis, R.L. Graham, W.M. Kantor, Adv.

Appl. Math. 4 pp. 175-193 (1983)

It turns out that shuffles of a deck of 12 cards have some special properties. In fact,

one can use it to generate a very interesting group known as the Mathieu group M12. It

was the first “sporadic” finite simple group. See section §12.4 below.

To describe M12 we consider the reverse shuffle r(x) = 11 − x. Here we take the deck

of cards and simply transfer the top card to the bottom, the next on top etc. For the

Mongean shuffle we start with our deck on the left. We place the top card on the right.

Then alternately we put the next card on the top of the bottom of the right deck. This is

the permutation

m : {1, 2, . . . , 2n} → {2n, 2n − 2, . . . , 4, 2, 1, 3, 5, . . . , 2n− 3, 2n − 1} (4.40)

In formulae, acting on D2n

m(x) = Min[2x, 2n + 1− 2x] (4.41)
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For a pack of 12 cards r and m generate the Mathieu group M12. It turns out to have

order

|M12| = 26 · 33 · 5 · 11 = 95040 (4.42)

Compare this with

12! = 210 · 35 · 52 · 7 · 11 = 479001600 (4.43)

We mention some final loosely related facts:

1. There are indications that the Mathieu groups have some intriguing relations to string

theory, conformal field theory, and K3 surfaces.

2. In the theory of L∞ algebras and associated topics, which are closely related to string

field theory one encounters the concept of the k-shuffle...

FILL IN.

Exercise Cycle structure for the Mongean shuffle

Write the cycle structure for the Mongean shuffle of a deck with 52 cards. How many

Mongean shuffles of such a deck will restore the original order?

5. Generators and relations

The presentation (4.21) of the symmetric group is an example of presenting a group by

generators and relations.

Definition 5.1 A subset S ⊂ G is a generating set for a group if every element g ∈ G can

be written as a “word” or product of elements of S. That is any element g ∈ G can be

written in the form

g = si1 · · · sir (5.1)

where, for each 1 ≤ k ≤ r we have sik ∈ S.

Finitely generated means that the generating set S is finite, that is, there is a finite

list of elements {s1, . . . sn} so that all elements of the group can be obtained by taking

products – “words” – in the “letters” drawn from S. For example, the symmetric group is

finitely generated by the transpositions. Typical Lie groups are not finitely generated.

The relations are then equalities between different words such that any two equivalent

words in G can be obtained by successively applying the relations. 7

In general if we have a finitely generated group we write

G = 〈g1, . . . , gn|R1, · · ·Rr〉 (5.2)

7See Jacobsen, Basic Algebra I, sec. 1.11 for a more precise definition.
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where Ri are the words in the letters of S which will be set to 1.

Remark: It is convenient to exclude the unit 1 from S. Also, it is sometimes conve-

nient to include s−1 in S if s ∈ S. Such generating sets are said to be symmetric.

Example 2.1: If S consists of one element a then F (S) ∼= Z. The isomorphism is given

by mapping n ∈ Z to the word an.

Example 2.2: The group defined by

〈a|aN = 1〉 (5.3)

is an abelian group of N elements. In fact it is isomorphic to the cyclic group ZN .

Example 2.3: Free groups. If there are no relations then we have the free group on S,

denoted F (S). If S consists of one element then we just get Z, as above. However, things

are completely different if S consists of two elements a, b. Then F (S) is very complicated.

A typical element looks like one of

an1bm1 · · · ank

an1bm1 · · · bmk

bn1am1 · · · ank

bn1am1 · · · bmk

(5.4)

where ni,mi are nonzero integers (positive or negative).

Combinatorial group theorists use the notion of a Cayley graph to illustrate groups

presented by generators and relations. Assuming that 1 /∈ S the Cayley graph is a graph

whose vertices correspond to all group elements in G and the oriented edges are drawn

between g1 and g2 if there is an s ∈ S with g2 = g1s. We label the edge by s. (If S is

symmetric we can identify this edge with the edge from g2 to g1 labeled by s−1.) For the

free group on two elements this generates the graph shown in Figure 3.

Example 2.4: Coxeter groups: Let mij by an n × n symmetric matrix whose entries are

positive integers or ∞, such that mii = 1, 1 ≤ i ≤ n, and mij ≥ 2 or mij = ∞ for i 6= j.

Then a Coxeter group is the group with generators and relations:

〈s1, . . . , sn|∀i, j : (sisj)mij = 1〉 (5.5)

where, if mij = ∞ we interpret this to mean there is no relation.

Note that since mii = 1 we have

s2i = 1 (5.6)

That is, all the generators are involutions. It then follows that if mij = 2 then si and sj
commute. If mij = 3 then the relation can also be written:

sisjsi = sjsisj (5.7)
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Figure 3: The Cayley graph for the free group on 2 generators a and b.

These groups have nice geometrical interpretations as groups of reflections (note s2i = 1

!!) in higher-dimensional spaces. In particular, we will see that all the finite Coxeter groups

are Weyl groups of simple Lie algebras. Coxeter’s main theorem (from the 1930’s) was a

classification of the finite Coxeter groups. He found it useful to describe these groups by a

diagrammatic notation: We draw a graph whose vertices correspond to the generators si.

We draw an edge between vertices i and j if mij ≥ 3. By convention the edges are labeled

by mij and if mij = 3 then the standard convention is to omit the label.

It turns out that the finite Coxeter groups can be classified and their Coxeter diagrams

are

Figure 4: Coxeter’s list of finite Coxeter groups.

Coxeter’s theorem states that all finite Coxeter groups are groups of reflections in some

Euclidean space. That is, there is some vector space RN with vectors vi and inner product

vi · vj = − cos(
π

mi,j
) (5.8)
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so that the group is the group of reflections in the vectors vi.

We will meet some of these groups again later as Weyl groups of simple Lie groups.

We have, in fact, already met two of these groups! The case An turns out to be just the

symmetric group. The case Bn = Cn is the group of centrally symmetric permutations

WBn ⊂ S2n discussed in card-shuffling. (These statements are not meant to be obvious.)

Remarks

1. One very practical use of having a group presented in terms of generators and relations

is in the construction of homomorphisms. If one is constructing a homomorphism

φ : G1 → G2, then it suffices to say what elements the generators map to, g′i = φ(gi).

Moreover, the images g′i must satisfy the same relations as the gi. This puts useful

constraints on what homomorphisms you can write down.

2. In general it is hard to say much about a group given a presentation in terms of

generators and relations. For example, it is not even obvious, in general, if the group

is the trivial group! This is part of the famous “word problem for groups.” There are

finitely presented groups where the problem of saying whether two words represent

the same element is undecidable! [GIVE REF!] However, for many important finitely

presented groups the word problem can be solved.

2. Nevertheless, there are four Tietze transformations (adding/removing a relation,

adding/removing a generator) which can transform one presentation of a group to a

different presentation of an isomorphic group. It is a theorem [REF!] that any two

presentations can be related by a finite sequence of Tietze transformations. How is

this compatible with the previous remark? The point is that the number f(n) of

such transformations needed to transform a presentation of the trivial group with n

relations into the trivial presentation grows faster than any recursive function of n.

Exercise Show that

〈a, b|a3 = 1, b2 = 1, abab = 1〉 (5.9)

is a presentation of S3

Exercise

Show that Sn is a Coxeter group: There are generators σi, i = 1, . . . , n−1 with σ2i = 1,

1 ≤ i ≤ (n− 1), (σiσi+1)
3 = 1, 1 ≤ i ≤ n− 2, (σiσj)

2 = 1 for |i− j| > 1.
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Exercise

Consider the group with presentation:

〈T, S|(ST )3 = 1, S2 = 1〉 (5.10)

Is this group finite or infinite?

This group plays a very important role in string theory.

5.1 Fundamental groups in topology

Presentations in terms of generators and relations is very common when discussing the

fundamental group of a topological space X.

Without trying to be too precise we choose a basepoint x0 ∈ X and let π1(X,x0) be

the set of closed paths in X, beginning and ending at x0 where we identify two paths if

they can be continuously deformed into each other. We can define a group multiplication

by concatenation of paths. Inverses exist since we can run paths backwards. 8

Figure 5: A collection of closed paths at x0 which generate the fundamental group of a two-

dimensional surface with two handles and three (green) holes.

Consider a surface, perhaps with punctures as shown in Figure 5. By cutting along

the paths shown there the surface unfolds to a presentation by gluing as in Figure 6:

8For more detail see Chapter 2 below.
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Figure 6: When the directed edges are identified according to their labels the above surface

reproduces the genus two surface with three punctures. Since the disk is simply connected we

derive one relation on the curves shown here.

From these kinds of constructions one can prove 9 that the fundamental group of an

orientable surface with g handles and p punctures will be

π1(S, x0) = 〈ai, bi, cs|
g∏

i=1

[ai, bi]

p∏

s=1

cs = 1〉 (5.11)

There is only one relation so this is very close to a free group! In fact, for g = 0, and p

punctures it is a free group on p− 1 generators. Groups of the form (5.11) are sometimes

called surface groups.

Exercise Fundamental group of the Klein bottle

9See, for example, W. Massey, Introduction to Algebraic Topology, Springer GTM
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A very interesting unorientable surface is the Klein bottle. Its fundamental group has

two natural presentations in terms of generators and relations. One is

〈a, b|a2 = b2〉 (5.12)

and the other is

〈g1, g2|g1g2g1g−1
2 = 1〉 (5.13)

Show that these two presentations are equivalent.

Figure 7: Pictorial illustration of the generator σi of the braid group Bn.

Example : Braid groups. Let us modify Figure 2 and Figure 1 to include an under-crossing

and overcrossing of the strands. So now we are including more information - the topological

configuration of the strands in three dimensions. In an intuitive sense, which we will not

make precise here we obtain a group called the nth braid group. It is generated by the

overcrossing σ̃i of strings (i, i + 1), for 1 ≤ i ≤ n − 1 and may be pictured as in Figure 7.

Note that σ̃−1
i is the undercrossing.

Now one verifies the relations

σ̃iσ̃j = σ̃jσ̃i |i− j| ≥ 2 (5.14)

and

σ̃iσ̃i+1σ̃i = σ̃i+1σ̃iσ̃i+1 (5.15)

where the relation (5.15) is illustrated in Figure 8.

The braid group Bn may be defined as the group generated by σ̃i subject to the relations

(5.14)(5.15):

Bn := 〈σ̃1, . . . , σ̃n−1|σ̃iσ̃jσ̃−1
i σ̃−1

j = 1, |i− j| ≥ 2; σ̃iσ̃i+1σ̃i = σ̃i+1σ̃iσ̃i+1〉 (5.16)
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Figure 8: Pictorial illustration of the Yang-Baxter relation.

The braid group Bn may also be defined as the fundamental group of the space of

configurations of n unordered points on the disk.

Note that the “only” difference from the presentation of the symmetric group is that

we do not put any relation like (σ̃i)
2 = 1. Indeed, Bn is of infinite order because σ̃ni keeps

getting more and more twisted as n→ ∞.

Exercise

Define a homomorphism φ : Bn → Sn.

Remarks

1. In the theory of integrable systems the relation (5.15) is known as the “Yang-Baxter

relation.” It plays a fundamental role in integrable models of 2D statistical mechanics

and field theory.

2. One interesting application of permutation groups to physics is in the quantum the-

ory of identical particles. Intuitively, a system of n identical particles should have

an Sn symmetry. We will make this notion more precise later. In relativistically

invariant theories in spacetimes of dimension larger than 2 particles are either bosons

or fermions. This is related to the classification of the projective representations of

SO(d, 1), where d is the number of spatial dimensions. In nonrelativistic systems

the rotational group of space SO(d) and its projective representations are important.

Again there is a fundamental difference between d ≤ 2 and d > 2. The essential point
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is that the fundamental group π1(SO(2)) ∼= Z is infinite while π1(SO(d)) ∼= Z2 for

d ≥ 3. A consequence of this, and other principles of physics is that in 2 + 1 and

1 + 1 dimensions particles with “anyonic” statistics can exist. There are even phys-

ical realizations of this theoretical prediction in the fractional quantum Hall effect.

Moreover, quantum wavefunctions should transform in representations of the braid

group. There can be interesting representations of dimension greater than one, and

if wavefunctions transform in such representations there can be nonabelian statistics.

There are some theoretical models of fractional quantum Hall states in which this

takes place. For a recent review see: 10

6. Cosets and conjugacy

6.1 Equivalence Relations

A good reference for this elementary material is I.N. Herstein, Topics in Algebra, sec. 1.1.

Definition 6.1.1 . Let X be any set. A binary relation ∼ is an equivalence relation

if ∀a, b, c ∈ X

1. a ∼ a

2. a ∼ b⇒ b ∼ a

3. a ∼ b and b ∼ c ⇒ a ∼ c

Example 6.1.1 : ∼ is =.

Example 6.1.2 : X = Z, a ∼ b if a− b is even.

Definition 6.1.2: Let ∼ be an equivalence relation on X. The equivalence class of

an element a is

[a] ≡ {x ∈ X : x ∼ a} (6.1)

In the above two examples we have

Example 6.1.1’ : [a] = {a}
Example 6.1.2’ :

[1] = {n : n is an odd integer}
[4] = {n : n is an even integer}.
Here is a simple, but basic, principle:

The distinct equivalence classes of an equivalence relation on X decompose X into

a union of mutually disjoint subsets. Conversely, given a disjoint decomposition

X = ∐Xi we can define an equivalence relation by saying a ∼ b if a, b ∈ Xi.

For example, the integers are the disjoint union of the even and odd integers.

10A. Stern, ”Anyons and the quantum Hall effectA pedagogical review”. Annals of Physics 323: 204;

arXiv:0711.4697v1.
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6.2 Lagrange Theorem

Definition 6.2.1: Let H ⊆ G be a subgroup. The set

gH ≡ {gh|h ∈ H} ⊂ G (6.2)

is called a left-coset of H.

Example 1: G = Z,H = 2Z. There are two cosets: H and H + 1. This is closely related

to the example above.

Example 2: G = S3, H = S2 = {1, (12)}. Cosets:

1 ·H = {1, (12)}
(12) ·H = {(12), 1} = {1, (12)}
(13) ·H = {(13), (123)}
(23) ·H = {(23), (132)}

(123) ·H = {(123), (13)} = {(13), (123)}
(132) ·H = {(132), (23)} = {(23), (132)}

(6.3)

Claim: Two left cosets are either identical or disjoint. Moreover, every element g ∈ G

lies in some coset. That is, the cosets define an equivalence relation by saying g1 ∼ g2 if

there is an h ∈ H such that g1 = g2h. Here’s a proof written out in excruciating detail. 11

First, g is in gH, so every element is in some coset. Second, suppose g ∈ g1H ∩ g2H.

Then g = g1h1 and g = g2h2 for some h1, h2 ∈ H. This implies g1 = g2(h2h
−1
1 ) so g1 = g2h

for an element h ∈ H. (Indeed h = h2h
−1
1 , but the detailed form is not important.) By

the rearrangement lemma hH = H, and hence g1H = g2H.

The basic principle above leads to a fundamental theorem:

Theorem 6.2.1 (Lagrange) If H is a subgroup of a finite group G then the order of

H divides the order of G:

|G|/|H| ∈ Z+ (6.4)

Proof : If G is finite G = ∐m1 giH for some set of gi, leading to distinct cosets. Now

note that the order of any coset is the order of H:

|giH| = |H| (6.5)

So |G|/|H| = m, where m is the number of distinct cosets. ♠
This theorem is simple, but powerful: for example, we can conclude immediately that

Zp has no nontrivial subgroups for p prime. In particular, Z137 has no nontrivial subgroups.

11In general, the reader should provide these kinds steps for herself or himself and we will not spell out

proofs in such detail.
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Definition 6.2.2: If G is any group and H any subgroup then the he set of left cosets is

denoted G/H. It is also referred to as a homogeneous space. The order of this set is the

index of H in G, and denoted [G : H].

Example: If G = S3,H = S2, then G/H = {H, (13) ·H, (23) ·H}, and [G : H] = 3.

Remark: What about the converse to Lagrange’s theorem? Suppose n||G|, does there
then exist a subgroup of G of order n? Not necessarily!

Exercise

Find a counterexample. That is, find a group G and an n such that n divides |G|, but
G has no subgroup of order n. 12 13

Nevertheless, there is a very powerful theorem in group theory known as

Theorem 6.2.2: (Sylow’s theorem). Suppose p is prime and pk divides |G| for a nonneg-

ative integer k. Then there is a subgroup H ⊂ G of order pk.

For a proof, see Herstein’s book, sec. 2.12.

As a final application, an element g ∈ G is said to have order n if n is the smallest

natural number such that gn = 1. If G is a finite group then by considering the subgroup

generated by g, i.e. {1, g, g2 , . . . } we see that the order g must divide |G|, and in particular

g|G| = 1. (It is very easy to give examples of elements with infinite order in infinite groups.)

Exercise Subgroups of A4

Write down all the subgroups of A4.

6.3 Conjugacy

Now introduce a notion generalizing the idea of similarity of matrices:

Definition 6.3.1 :

a.) A group element h is conjugate to h′ if ∃g ∈ G h′ = ghg−1.

12Answer: One possible example is A4, which has order 12, but no subgroup of order 6. By examining

the table of groups below we can see that this is the example with the smallest value of |G|.
13An infinite class of counterexamples is in fact provided by An, for n ≥ 4. As we describe below, An

for n ≥ 5 are all simple groups. Moreover, |An| is even and hence 1
2
|An| is a divisor of |An|. However, a

subgroup of order |An|/2 would have to be a normal subgroup, and hence does not exist, since An is simple.

More generally, a high-powered theorem, known as the Feit-Thompson theorem states that a finite simple

nonabelian group has even order. Therefore if G is a finite simple nonabelian group there is no subgroup

of order 1
2
|G|, even though this is a divisor.

– 29 –



b.) Conjugacy defines an equivalence relation and the conjugacy class of h is the

equivalence class under this relation:

C(h) := {ghg−1 : g ∈ G} (6.6)

c.) Let H ⊆ G,K ⊆ G be two subgroups. We say “H is conjugate to K” if ∃g ∈ G

such that

K = gHg−1 ≡ {ghg−1 : h ∈ H} (6.7)

Exercise

a.) Show that conjugacy is an equivalence relation

b.) Prove that gHg−1 is also a subgroup.

Example 6.3.1 : Let G = GL(n, k) be a matrix group. Then conjugacy is the same

notion as similarity of matrices. The conjugacy class of a diagonalizable matrix A is the

set of diagonalizable matrices with the same unordered set of eigenvalues as A.

Groups which are self-conjugate are very special:

Definition 6.3.2: A subgroup N ⊆ G is called a normal subgroup, or an invariant

subgroup if

gNg−1 = N ∀g ∈ G (6.8)

Sometimes this is denoted as N ⊳G.

In this case we have a nice theorem. In general the set of cosets of H in G, denoted

G/H, is not a group. But, if H is normal something special happens:

Theorem 6.3.1. If N ⊂ G is a normal subgroup then the set of left cosets G/N =

{gN |g ∈ G} is itself a group with group multiplication:

(g1N) · (g2N) := (g1 · g2)N (6.9)

Proof- left as an exercise:

The main thing to check is that this is is even well defined. If g1N = g′1N do you get

the same answer from (6.9) ? Show this carefully.

Once we see that (6.9) is well-defined the remaining checks are straightforward. Es-

sentially all the basic axioms are inherited from the group law for multiplying g1 and g2.

♠
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Exercise Normal subgroups

a.) Check the details of the proof of Theorem 6.3.1 !

b.) Consider the right cosets. Show that N\G is a group.

c.) Warning! Equation (6.8) does not mean that gng−1 = n for all n ∈ N ! Construct

a counterexample using a normal subgroup of S3.

d.) Suppose that H ⊂ G is of index two: [G : H] = 2. Show that H is normal in G.

What is the group G/H in this case?

Example 6.3.3 . All subgroups N of abelian groups A are normal, and moreover the

quotient group A/N is abelian. For example NZ ⊂ Z is normal, and the quotient group is

Z/NZ, explaining the previous notation.

Example 6.3.4 .

A3 ≡ {1, (123), (132)} ⊂ S3 (6.10)

is normal. What group is S3/A3?

Exercise Even permutations

Example 6.3.4 has a nice generalization. Recall that a permutation is called even if

it can be written as a product of an even number of transpositions. Show that the even

permutations, An, form a normal subgoup of Sn. (Hint: use the above exercise.) What is

Sn/An?

Exercise Commutator subgroups and abelianization

If g1, g2 are elements of a group G then the group commutator is the element [g1, g2] :=

g1g2g
−1
1 g−1

2 . If G is any group the commutator subgroup usually denoted [G,G] (sometimes

denoted G′) is the subgroup generated by words in all group commutators g1g2g
−1
1 g−1

2 .

a.) Show that [G,G] is a normal subgroup of G.

b.) Show that G/[G,G] is abelian. This is called the abelianization of G.

c.) Consider the free group on 2 generators. What is the abelianization?

d.) Consider a surface group of the type given in (5.11). The abelianization of this

group is called the homology group H1(S) where S is the punctured surface. Compute this

group.

e.) A simple group is a group with no nontrivial normal subgroups. A perfect group is

a group which is equal to its commutator subgroup. Show that a nonabelian simple group

must be perfect.
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6.4 Conjugacy classes in Sn

Above we discussed the cycle decomposition of elements of Sn. Now let us study how the

cycles change under conjugation. Note the following two points:

1. If (i1i2 · · · ik) is a cycle of length k then g(i1i2 · · · ik)g−1 is a cycle of length k. It is

the cycle where we replace i1, i2, . . . by their images under g. That is, if g(ia) = ja,

a = 1, . . . , k, then g(i1i2 · · · ik)g−1 = (j1j2 · · · jk).

2. Therefore, any two cycles of length k are conjugate.

Example In S3 there are two cycles of length 3 and they are indeed conjugate:

(12)(123)(12)−1 = (213) = (132) (6.11)

Now recall that any element in Sn can be written as a product of disjoint cycles.

3. Therefore, the conjugacy classes in Sn are labeled by how many distinct cycles of

length j we have in a cycle decomposition of a typical element σ of C(σ).

Example In S4 there are 3 elements with cycle decomposition of type (ab)(cd):

(12)(34), (13)(24), (14)(23) (6.12)

Note that these can be conjugated into each other by suitable transpositions.

Given a cycle decomposition call the number of disjoint cycles of length j, ℓj. Clearly

since we must account for all n letters being permuted:

n = ℓ1 + 2ℓ2 + · · ·nℓn =
n∑

j=1

jℓj (6.13)

such a decomposition of n into a sum of nonnegative integers is called a partition of n. We

denote the conjugacy class by

(1)ℓ1(2)ℓ2 · · · (n)ℓn (6.14)

The conjugacy classes of Sn are in 1-1 correspondence with the partitions of n.

Definition The number of distinct partitions of n is called the partition function of n,

and denoted p(n).

Example Conjugacy classes of S4 and S5:
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Partition Cycle decomposition Typical g |C(g)| Order of g

4 = 1 + 1 + 1 + 1 (1)4 1 1 1

4 = 1 + 1 + 2 (1)2(2) (ab)
(
4
2

)
= 6 2

4 = 1 + 3 (1)(3) (abc) 2 · 4 = 8 3

4 = 2 + 2 (2)2 (ab)(cd) 1
2

(
4
2

)
= 3 2

4 = 4 (4) (abcd) 6 4

Cycle decomposition |C(g)| Typical g Order of g

(1)5 1 1 1

(1)3(2)
(5
2

)
= 10 (ab) 2

(1)2(3) 2 ·
(5
3

)
= 20 (abc) 3

(1)(4) 6 ·
(5
4

)
= 30 (abcd) 4

(1)(2)2 5 · 1
2

(4
2

)
= 15 (ab)(cd) 2

(2)(3) 2 ·
(
5
2

)
= 20 (ab)(cde) 6

(5) 4! = 24 (abcde) 5

Remarks:

1. Conjugacy classes of the symmetric group come up in several ways in string theory

and conformal field theory. We’ll give a taste of how that happens here. Suppose

we have a system (such as a string) which is described by an infinite collection of

harmonic oscillators:

[aj , ak] = 0 [a†j , a
†
k] = 0 [aj , a

†
k] = δj,k j, k = 1, . . . (6.15)

Suppose they have frequencies which are all a multiple of a basic harmonic ω, so the

frequencies are ω, 2ω, 3ω, .... The Hamiltonian is, formally,

H formal =

∞∑

j=1

jω(a†jaj +
1

2
) (6.16)
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This is formal, because on the usual lowest weight module defined by aj |vac〉 = 0

the groundstate energy is infinite. This is typical of the divergences of quantum field

theory: An infinite number of degrees of freedom typically leads to divergences in

physical quantities. However, there is a very natural way to regularize and renormal-

ize this divergence by identifying

∞∑

j=1

j

2
ω =

ω

2

∞∑

j=1

1

j−1
→ ω

2
ζ(−1) = − ω

24
(6.17)

This can be justified much more rigorously and indeed it gives the correct Casimir

energy for a massless scalar field on a circle. In any case, things work out very nicely

if we take the Hamiltonian to be:

H =
∞∑

j=1

jωa†jaj −
ω

24
(6.18)

The dimension of the space of states of energy nω above the groundstate is p(n). A

natural basis of this space is labeled by partitions of n:

(a†1)
ℓ1(a†2)

ℓ2 · · · (a†n)ℓn |0〉 (6.19)

and hence the vectors in this basis are in 1-1 correspondence with the conjugacy

classes of Sn. This turns out to be significant in the boson-fermion correspondence

in 1+1 dimensional quantum field theory.

2. Let q be a complex number with |q| < 1. Notice that:

1∏∞
n=1(1− qn)

= 1 +

∞∑

n=1

p(n)qn (6.20)

Indeed, note that this is the physical partition function of our system of oscillators!

Z(β) = Tre−βH =
1

q1/24
∏∞
n=1(1− qn)

, (6.21)

where we trace over the Hilbert space of states of our collection of oscillators. Here

we identify q = e−βω. Expanding out (6.20) gives the first few values of p(n):

1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + 15q7 + 22q8 + 30q9+

+ 42q10 + 56q11 + 77q12 + 101q13 + 135q14 + · · ·
(6.22)

and one can easily generate the first few 100 values using Maple or Mathematica.

3. It turns out the generating series has a remarkable “modular transformation prop-

erty” relating Z(β) to Z(1/β):

β1/4Z(β) = β̃1/4Z(β̃) (6.23)
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ββ̃ =

(
2π

ω

)2

(6.24)

which, when combined with the method of stationary phase allows one to derive the

Hardy-Ramanujan formula giving an asymptotic formula for large values of n:

p(n) ∼ 1√
2

( 1
24

)3/4
n−1exp

(
2π

√
n

6

)
(6.25)

Note that this grows much more slowly than the order of the group, n!. So we

conclude that some conjugacy classes must be very large!

4. Analogs of equation (6.25) for a class of functions known as modular forms plays an

important role in modern discussions of the entropy of supersymmetric (and extreme)

black hole solutions of supergravity.

Exercise Sign of the conjugacy class

Let ǫ : Sn → {±1} be the sign homomorphism. Show that ǫ(g) = (−1)n+
∑

j ℓj if g is

in the conjugacy class (6.14).

Exercise Order of the conjugacy class

Given a conjugacy class of type (6.14) compute the order |C(g)|. 14

Exercise Deriving the Hardy-Ramanujan formula

Write

p(n) =

∫ 2πi/ω

0
dβe−nβωZ(β) (6.26)

and use the above transformation formula, together with the stationary phase method to

derive (6.25).

14Answer : |C(g)| = n!/(
∏n

i=1 i
ℓiℓi!).
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6.5 Centralizer and counting conjugacy classes

Definition 6.5.1: Let g ∈ G, the centralizer subgroup of g, (also known as the normalizer

subgroup ), denoted, Z(g), is defined to be:

Z(g) := {h ∈ G|hg = gh} (6.27)

Exercise

Check that Z(g) ⊂ G is a subgroup. Note that gn ∈ Z(g) for any integer n.

Recall that C(g) denotes the conjugacy class of g. Then we have

|C(g)| = |G|
|Z(g)| (6.28)

The proof is given by constructing a map ψ : G/Z(g) → C(g) by

ψ : giZ(g) → gigg
−1
i (6.29)

1. First, check that this is well-defined.

2. Then note that ψ is 1-1 and onto C(g).

Now, G has a disjoint decomposition into conjugacy classes - conjugacy is an equiva-

lence relation - so we get a very useful counting rule sometimes called the class equation:

|G| =
∑

classes

|G|
|Z(g)| (6.30)

The sum is over distinct conjugacy classes. We may choose any element g from a given

class since if g1 = hg2h
−1 then Z(g1) = hZ(g2)h

−1 are conjugate groups, and hence have

the same order.

Remarks:

1. In chapter 5 (???) we will study group actions on sets and orbits. The above result is

nicely interpreted in terms of the transitive action of G on the conjugacy class C(g).

2. Gauge theories can be formulated for discrete groups just as well as for compact

Lie groups. In the finite group case physical answers typically come out in terms of

sums over conjugacy classes. The simplest example is “Yang-Mills theory” in 0 + 1

dimensions where the gauge group is a finite group G. The partition function on the

circle is

Z(S1) =
1

|G|
∑

g∈G

1 (6.31)

Here we are summing over bundles with connection and dividing by the volume of

the group of gauge transformations. The Yang-Mills action in this case is rather
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trivially zero. Of course, the answer is Z(S1) = 1, but let us rewrite this using the

class equation. We organize the sum into conjugacy classes:

Z(S1) =
1

|G|
∑

cc

|C(g)| =
∑

cc

1

|Z(g)| (6.32)

In the last sum can be viewed as a sum over isomorphism classes of bundles weighted

by the one over the order of the automorphism group of the bundle. As in any field

theory, the partition function on X × S1 is a trace over the Hilbert space on X. In

this case, X is a point, and Z(S1) = 1 tells us the Hilbert space is one dimensional.

Indeed we expect to find only one state in this rather trivial theory!

Here is a nice application of this counting principle:

Theorem: If |G| = pn then the center has nontrivial elements, i.e., Z(G) 6= {1}.

Proof : Observe that an element g is central if and only if C(g) = {g} has order 1. Now

let us use the class equation. We can usefully split up the sum over conjugacy classes as a

sum over the center and the rest:

|G| = |Z(G)|+
′∑

classes

|G|
|Z(a)| (6.33)

where the sum with a prime is over over conjugacy classes bigger than 1. For these

classes |Z(a)| < |G|. But by Lagrange’s theorem |Z(a)| = pn−na for some na < n. There-

fore, the second term on the RHS of (6.33) is divisible by p and hence p||Z(G)|. ♠
A similar useful fact is:

Theorem(Cauchy’s theorem): If p divides |G| then there is an element g ∈ G, g 6= 1 with

order p.

Proof: See Herstein’s book. The idea is to use induction on the order |G| together
with the class equation ♠

Exercise

If |G| = p2 where p is a prime then G is abelian. Show that G ∼= Zp × Zp or Zp2.

Exercise

Show that if pk divides |G| with k > 1 then it does not follow that there exists an

element of order pk. 15

15Answer : One counterexample is to consider (Z2)
k. It has order 2k, but all elements are order two.
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Exercise

Find the centralizer of (12 . . . n) in Sn.

Exercise

Prove that if |G| = 15 then G = Z/15Z.

7. Kernel, image, and exact sequence

Given an arbitrary homomorphism

µ : G→ G′ (7.1)

there is automatically a “God-given” subgroup of both G and G′:

Definition 7.1:

a.) The kernel of µ is

K = kerµ := {g ∈ G|µ(g) = 1G′} (7.2)

b.) The image of µ is

imµ := µ(G) ⊂ G′ (7.3)

Exercise

a.) Check that µ(G) ⊆ G′ is indeed a subgroup.

b.) Is µ(G) always a normal subgroup?

In mathematics one often encounters the notation of an exact sequence: Suppose we

have three groups and two homomorphisms f1, f2

G1
f1→G2

f2→G3 (7.4)

We say the sequence is exact at G2 if imf1 = kerf2.

This generalizes to sequences of several groups and homomorphisms

· · · fi−1→ Gi
fi→Gi+1

fi+1→ · · · (7.5)
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In particular, a short exact sequence is a sequence of the form

1 → G1
f1→G2

f2→G3→1 (7.6)

where 1 refers to the trivial group with one element is exact at G1, G2, G3. Thus, the

meaning of (7.6) is that

1. f1 is an injection of G1 into G2. There is no nontrivial kernel.

2. imf1 = kerf2.

3. f2 is a surjection onto G3.

When we have a short exact sequence of groups there is an important relation between

them, as we now explain.

Theorem 7.1: Let K ⊆ G be the kernel of a homomorphism (7.1). Then K is a normal

subgroup of G.

Proof: k1, k2 ∈ K ⇒

µ(k1k2) = µ(k1)µ(k2) = 1G′

µ(k−1) = µ(k)−1 = 1G′

(7.7)

⇒ K is a subgroup

µ(gkg−1) = µ(g)µ(k)µ(g−1) = µ(g)µ(g)−1 = 1G′ ⇒ K is normal. ♠

It follows by Theorem 6.3.1, that G/K has a group structure. Note that µ(G) is also

naturally a group.

These two groups are closely related because

µ(g) = µ(g′) ↔ gK = g′K (7.8)

Thus we have

Theorem 7.2:

µ(G) ∼= G/K (7.9)

Proof : We associate the coset gK to the element µ(g) in G′.

ψ : gK 7→ µ(g) (7.10)

Claim: ψ is an isomorphism. You have to show two things:

1. ψ is a well defined map:

gK = g′K ⇒ ∃k ∈ K, g′ = gk ⇒ µ(g′) = µ(gk) = µ(g)µ(k) = µ(g) (7.11)

2. ψ is 1 to 1, i.e.

µ(g′) = µ(g) ⇒ ∃k ∈ K, g′ = gk ⇒ g′K = gK ♠ (7.12)

– 39 –



Remark: If we have a short exact sequence

1 → N → G→ Q→ 1 (7.13)

Then N is isomorphic to a normal subgroup of G and Q, the quotient group, is iso-

morphic to G/N . A frequently used terminology is that “G is an extension of Q by N . ”

but some authors will use the terminology that ”G is an extension of N by Q.” So it is

best simply to speak of a group extension with kernel N and quotient Q. Group extensions

play an important role in quantum mechanics so we will discuss them rather thoroughly in

§11 below. For the moment we quote two important examples:

Example 1: Consider Z4 as the multiplicative group of fourth roots of unity and π(g) = g2.

Then

1 → Z2 → Z4 → Z2 → 1 (7.14)

Exercise: Describe this extension thinking of Z4 additively as Z/4Z.

Example 2: In chapter 10 we will discuss the beautiful relation between two-by-two matrix

groups and groups of rotations and boosts. One example of this leads to the exact sequence

1 → Z2 → SU(2) → SO(3) → 1 (7.15)

Example 3: Let P,Q be N ×N “clock” and “shift” matrices. To define these introduce

an N th root of unity, say ω = exp[2πi/N ]. Then

Pi,j = δj=i+1modN (7.16)

Qi,j = δi,jω
j (7.17)

Note that PN = QN = 1 and no smaller power is equal to 1. Further note that

PQ = ωQP (7.18)

For N = 4 the matrices look like

P =




0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


 Q =




ω 0 0 0

0 ω2 0 0

0 0 ω3 0

0 0 0 1


 (7.19)

with ω = e2πi/4. The group of matrices generated by P,Q is a finite subgroup of GL(N,C)

isomorphic to a finite Heisenberg group, denoted Heis. It is an extension

1 → ZN → HeisN
π→ZN × ZN → 1 (7.20)

and has many pretty applications to physics. Exercise: What is π in this sequence?
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Exercise An
Use Theorem 7.1 to show that An is a normal subgroup of Sn.

Exercise Induced maps on quotient groups

We will use the following result in §8.2: Suppose µ : G1 → G2 is a homomorphism and

H2 ⊂ G2 is a subgroup.

a.) Show that µ−1(H2) ⊂ G1 is a subgroup.

b.) If H1 ⊂ µ−1(H2) is a subgroup show that there is an induced map µ̄ : G1/H1 →
G2/H2.

c.) Show that if H1 and H2 are normal subgroups then µ̄ is a homomorphism.

d.) In this case there is an exact sequence

1 → µ−1(H2)/H1 → G1/H1 → G2/H2 (7.21)

Exercise

Let n be a natural number and let

ψ : Z/nZ → (Z/nZ)d (7.22)

be given by the diagonal map ψ(ω) = (ω, · · · , ω).
Find a set of generators and relations for G/ψ(H).

Exercise

Let G = Z×Z4. Let K be the subgroup generated by (2, ω2) where we are writing Z4

as the multiplicative group of 4th roots of 1. Note (2, ω2) is of infinite order so that K ∼= Z.

Show that G/K ∼= Z8.

Exercise

Using the matrices of (7.16) and (7.17) show that the word

Pn1Qm1Pn2Qm2 · · ·PnkQmk (7.23)
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where ni,mi ∈ Z can be written as ξP xQy where x, y ∈ Z and ξ is an N th root of unity.

Express x, y, ξ in terms of ni,mi.

Exercise

Compute the kernel of the natural homomorphism φ : Bn → Sn and show that there

is an exact sequence

1 → Zn−1 → Bn → Sn → 1 (7.24)

Exercise Centrally symmetric shuffles

Let us consider again the permutation group of the set {0, 1, . . . , 2n − 1}. Recall we

let WBn denote the subgroup of S2n of centrally symmetric permutations which permutes

the pairs x+ x̄ = 2n− 1 amongst themselves.

Show that there is an exact sequence

1 → Zn2 → WBn → Sn → 1 (7.25)

and therefore |WBn| = 2nn!.

8. Group theory and elementary number theory

8.1 Reminder on gcd and the Euclidean algorithm

Let us recall some basic facts from arithmetic.

First, if A > B are two positive integers then we can write

A = qB + r 0 ≤ r < B (8.1)

for unique nonnegative integers q and r known as the quotient and the residue, respectively.

Next, let (A,B) = (±A,±B) = (±B,±A) denote the greatest common divisor of A,B.

Then we can find it using the Euclidean algorithm by looking at successive quotients:

A = q1B + r1 0 < r1 < B

B = q2r1 + r2 0 < r2 < r1

r1 = q3r2 + r3 0 < r3 < r2

...
...

rj−2 = qjrj−1 + rj 0 < rj < rj−1

rj−1 = qj+1rj

(8.2)
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Note well: In (8.1) the remainder might be zero but in the first j lines of the Euclidean

algorithm the remainder is positive, unless B divides A, in which case rather trivially

(A,B) = B. The last positive remainder rj is the gcd (A,B). Indeed if m1,m2 are integers

then the gcd satisfies:

(m1,m2) = (m1,m2 − xm1) (8.3)

for any integer x and hence we are reducing by

(A,B) = (B, r1) = (r1, r2) = · · · = (rj−1, rj) = (rj , 0) = rj. (8.4)

A corollary of this algorithm is that if g = (A,B) is the greatest common divisor then

there exist integers (x, y) so that

Ax+By = g (8.5)

In particular, two integers m1,m2 are relatively prime, that is, have no common integral

divisors other than ±1, if and only if there exist integers x, y such that

m1x+m2y = 1. (8.6)

Of course x, y are not unique. Equation (8.6) is sometimes known as “Bezout’s theorem.”

Remark: A theorem of Lamé asserts that the Euclidean algorithm is very efficient.

The number of steps never exceeds 5log10B (recall that A > B). This is important for

RSA (see below).

Exercise

Given one solution for (8.5), find all the others.

Exercise Continued fractions and the Euclidean algorithm

a.) Show that the quotients qi in the Euclidean algorithm define a continued fraction

expansion for A/B:

A

B
= q1 +

1

q2 +
1

q3+···+ 1
qj

:= [q1, q2, q3, · · · , qj] (8.7)

b.) The fractions [q1], [q1, q2], [q1, q2, q3], . . . are known as the convergents of the con-

tinued fraction. Write [q1, . . . , qk] = Nk/Dk where Nk and Dk are polynomials in q1, . . . , qk.

Note that if we eliminate from equations (8.38) rj−1, . . . , r1 (in that order) in terms of

the q′s and rj then we can substitute into the first two equations and the result is that we

express A and B as a polynomial in q′s times rj Of course these polynomials are Nj and

Dj , respectively: A = Nj[q1, . . . , qj ]rj and B = Dj [q1, . . . , qj]rj . Using this observation

give an explicit formula for the integers x, y in Bezout’s theorem: 16

ADj−1 −BNj−1 = (−1)j−1(A,B) (8.8)

16Answer : Consult Hardy and Wright.
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8.2 The direct product of two cyclic groups

Recall the elementary definition we met in the last exercise of section 2.

Definition Let H,G be two groups. The direct product of H and G, denoted H ×G,

is the set H ×G with product:

(h1, g1) · (h2, h2) = (h1 · h2, g1 · g2) (8.9)

We will consider the direct product of cyclic groups. According to our general notation

we would write this as Zm1×Zm2 . However, since Zm is also a ring the notation Zm1 ⊕Zm2

is generally used.

Let us begin with the question: Is it true that

Zm1 ⊕ Zm2

?∼=Zm1m2 . (8.10)

In general (8.10) is false!

Exercise

a.) Show that Z4 is not isomorphic to Z2 ⊕ Z2. (There is a one-line proof.)

b.) Examine some other examples.

However, there is a natural exact sequence

0 → Zg → Zm1 × Zm2 → Zℓ → 0 (8.11)

where we write g = gcd(m1,m2) and ℓ = lcm(m1,m2).

Recall that if we write the prime factors of m1,m2 as

ma =
∏

i

p
ei,a
i , a = 1, 2 (8.12)

then

g = gcd(m1,m2) =
∏

i

p
min[ei,1,ei,2]
i

ℓ = lcm(m1,m2) =
∏

i

p
max[ei,1,ei,2]
i

(8.13)

Note that gℓ = m1m2. It will also be useful to write m1 = µ1g and m2 = µ2g where µ1, µ2
are relatively prime. Thus there are integers ν1, ν2 with

µ1ν1 + µ2ν2 = 1 (8.14)

and hence m1ν1 +m2ν2 = g.

To prove (8.11) think of Zm as the multiplicative group of mth roots of 1 and let

ω1 = e
2πi
m1 and ω2 = e

2πi
m2 . Then the projection map is simply given by multiplication:
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π : (ωr11 , ω
r2
2 ) → ωr11 ω

r2
2 . Note that the product is an ℓth root of unity. Moreover, since

ν1m1 + ν2m2 = g then π maps (ων21 , ω
ν1
2 ) to e

2πi
ℓ which is a generator of Zℓ, and hence the

homomorphism is onto. On the other the injection map is defined by taking the generator

e2πi/g of Zg to (exp[2πi µ1m1
], exp[−2πi µ2m2

]). Note this maps into the kernel of π.

A second proof gives some additional insight. It is related to the first by “taking

a logarithm” and involves exact sequences of infinite groups which induce sequences on

quotients.

Consider the sublattice of Z⊕ Z given by

Λ = m1Z⊕m2Z = {
(
m1α

m2β

)
|α, β ∈ Z} (8.15)

Then

Z2/Λ = Zm1 ⊕ Zm2 (8.16)

Now, write m1 = µ1g,m2 = µ2g as above. Choose integers ν1, ν2 so that µ1ν1 + µ2ν2 = 1

and consider the matrix (
µ2 µ1
−ν1 ν2

)
∈ SL(2,Z) (8.17)

This is an invertible matrix over the integers, so we can change coordinates on the lattice

from x = m1α, y = m2β to

(
x′

y′

)
=

(
µ2 µ1
−ν1 ν2

)(
x

y

)
(8.18)

that is (
x

y

)
=

(
ν2 −µ1
ν1 µ2

)(
x′

y′

)
(8.19)

which we prefer to write as:
(
x

y

)
= x′

(
ν2
ν1

)
+ y′

(
−µ1
µ2

)
(8.20)

Thus, we are using the basis vectors

v1 =

(
ν2
ν1

)
v2 =

(
−µ1
µ2

)
(8.21)

as a different basis for Z2 which has the nice property that the smallest multiple of v1 in

Λ is ℓv1 and the smallest multiple of v2 in Λ is gv2.

Define a homomorphism ψ : Z2 → Z that takes

(
x

y

)
to x′. That is, we have projection

on the v1 axis. This defines a surjective homomorphism onto Z. (Explain why.) On the

other hand, using (8.18) and µ1µ2g = ℓ we see that the image of Λ under ψ is ℓZ. Therefore,

using the exercise result (7.21) ψ descends to a map

ψ̄ : Z2/Λ → Z/ℓZ (8.22)

– 45 –



Now note from (8.20) that (
−µ1
µ2

)
modΛ (8.23)

is in the kernel of ψ̄, and moreover it generates a cyclic subgroup of order g in Z2/Λ. By

counting, this cyclic subgroup must be the entire kernel of ψ̄. Therefore we have an exact

sequence

0 → Zg → Z2/Λ → Zℓ → 0 (8.24)

This concludes our second proof. ♠

Now, a corollary of (8.11) is that if m1,m2 are relatively prime then indeed we have

Zm1 ⊕ Zm2
∼= Zm1m2 . (8.25)

In fact, there is an important generalization of this statement known as the Chinese re-

mainder theorem:

Theorem Suppose m1, . . . ,mr are pairwise relatively prime positive integers, (i.e.

(mi,mj) = 1 for all i 6= j) then

(Z/m1Z)⊕ (Z/m2Z) · · · ⊕ (Z/mrZ) ∼= Z/MZ (8.26)

where M = m1m2 · · ·mr.

Proof : We construct a homomorphism

ψ : Z → (Z/m1Z)⊕ (Z/m2Z) · · · ⊕ (Z/mrZ) (8.27)

by

ψ(x) = (xmodm1, xmodm2, . . . , xmodmr) (8.28)

We first claim that ψ(x) is onto. That is, for any values a1, . . . , ar we can solve the

simultaneous congruences:

x = a1modm1

x = a2modm2

...
...

x = armodmr

(8.29)

for some common value x ∈ Z.

To prove this note that m̂i := M/mi =
∏
j 6=imj is relatively prime to mi (by the

hypothesis of the theorem). Therefore there are integers xi, yi such that

ximi + yim̂i = 1 (8.30)
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Let gi = yim̂i. Note that

gi = δi,jmodmj ∀1 ≤ i, j ≤ r (8.31)

Therefore if we set

x =

r∑

i=1

aigi (8.32)

then x is a desired solution to (8.29) and hence is a preimage under ψ.

On the other hand, the kernel of ψ is clearly MZ. Therefore:

0 →MZ → Z → (Z/m1Z)⊕ (Z/m2Z) · · · ⊕ (Z/mrZ) → 0 (8.33)

and hence the desired isomorphism follows. ♠

Remarks

1. (8.25) is used implicitly all the time in physics, whenever we have two degrees of

freedom with different but commensurable frequencies. As a simple example, suppose

you do X every other day. You will then do X on Mondays every other week, i.e.,

every 14 days, because 2 and 7 are relatively prime. More generally, consider a system

with a discrete configuration space Z/pZ thought of as the multiplicative group of

pth roots of 1. Suppose the time evolution for ∆t = 1 is ωrp → ωr+1
p where ωp is a

primitive pth root of 1. The basic period is T = p. Now, if we have two oscillators

of periods p, q, the configuration space is Zp ×Zq. The basic period of this system is

- obviously - the least common multiple of p and q. That is the essential content of

(8.25).

2. One might wonder how the theorem got this strange name. (Why don’t we refer to

the “Swiss-German theory of relativity?”) The theorem is attributed to Sun Tzu,

who was active about 2000 years ago. (He should not be confused with Sun Tzu who

lived in the earlier Spring and Autumn period and wrote The Art of War.) For an

interesting historical commentary see 17 which documents the historical development

in India and China up to the definitive treatments by Euler, Lagrange, and Gauss

who were probably unaware of previous developments hundreds of years earlier. The

original motivation was apparently related to construction of calendars. The Chinese

calendar is based on both the lunar and solar cycles. Roughly speaking, one starts the

new year based on both the winter solstice and the new moon. Thus, to find periods

of time in this calendar one needs to solve simultaneous congruences. I suspect the

name “Chinese Remainder Theorem” is an invention of 19th century mathematicians.

Hardy & Wright (1938) do not call it that, but do recognize Sun Tzu.

17Kang Sheng Shen, “Historical development of the Chinese remainder theorem,” Arch. Hist. Exact Sci.

38 (1988), no. 4, 285305.
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Exercise Counting your troops

Suppose that you are a general and you need to know how many troops you have from

a cohort of several hundred. Time is too short to take attendance.

So, you have your troops line up in rows of 5. You observe that there are 3 left over.

Then you have your troops line up in rows of 11. Now there are 2 left over. Finally, you

have your troops line up in rows of 13, and there is only one left over.

How many troops are there? 18

8.3 Application: Expressing elements of SL(2,Z) as words in S and T

The group SL(2,Z) is generated by

S :=

(
0 −1

1 0

)
& T :=

(
1 1

0 1

)
(8.34)

Here is an algorithm for decomposing an arbitrary element

h =

(
A B

C D

)
∈ SL(2,Z) (8.35)

as a word in S and T .

First, note the following simple

Lemma Suppose h ∈ SL(2,Z) as in (8.35). Suppose moreover that g ∈ SL(2,Z) satisfies:

g ·
(
A

C

)
=

(
1

0

)
(8.36)

Then

gh = T n (8.37)

for some integer n ∈ Z.

The proof is almost immediate by combining the criterion that gh ∈ SL(2,Z) has

determinant one and yet must have the first column (1, 0).

Now, suppose h is such that A > C > 0. Then (A,C) = 1 and hence we have the

Euclidean algorithm to define integers qℓ, ℓ = 1, . . . N + 1, where N ≥ 1, such that

A = q1C + r1 0 < r1 < C

C = q2r1 + r2 0 < r2 < r1

r1 = q3r2 + r3 0 < r3 < r2

...
...

rN−2 = qNrN−1 + rN 0 < rN < rN−1

rN−1 = qN+1rN

(8.38)

18Apply the Chinese remainder theorem with m1 = 5, m2 = 11, m3 = 13. Then M = 715, m̂1 = 143,

m̂2 = 65 and m̂3 = 55. Using the Euclidean algorithm you find convenient lifts to the integers g1 = 286,

g2 = −65 and g3 = −220. Then the number of troops is 3×286−2×65−1×220 = 508mod715. Therefore

there are 508 soldiers.
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with rN = (A,C) = 1. (Note you can interpret r0 = C, as is necessary if N = 1.) Now,

write the first line in the Euclidean algorithm in matrix form as:

(
1 −q1
0 1

)(
A

C

)
=

(
r1
C

)
(8.39)

We would like to have the equation in a form that we can iterate the algorithm, so we need

the larger integer on top. Therefore, rewrite the identity as:

σ1

(
1 −q1
0 1

)(
A

C

)
=

(
C

r1

)
(8.40)

Now the Euclidean algorithm implies the matrix identity:

g̃

(
A

C

)
=

(
1

0

)
(8.41)

g̃ = (σ1T−qN+1) · · · (σ1T−q1) (8.42)

Now, to apply the Lemma we need g to be in SL(2,Z), but

detg̃ = (−1)N+1 (8.43)

We can easily modify the equation to obtained a desired element g. We divide the argument

into two cases:

1. Suppose first that N + 1 = 2s is even. Then we group the factors of g̃ in pairs and

write

(σ1T−q2ℓ)(σ1T−q2ℓ−1) = (σ1σ3)(σ3T−q2ℓσ3)(σ3σ1)T−q2ℓ−1

= −ST q2ℓST−q2ℓ−1
(8.44)

where we used that σ1σ3 = −iσ2 = S. Therefore, we can write

g̃ = g = (−1)s
s∏

ℓ=1

(ST q2ℓST−q2ℓ−1) (8.45)

2. Now suppose that N + 1 = 2s + 1 is odd. Then we rewrite the identity (8.41) as:

σ1g̃

(
A

C

)
=

(
1

0

)
(8.46)

so now we simply take

g = σ1g̃ = (−1)s+1(ST−q2s+1)

s∏

ℓ=1

(ST q2ℓST−q2ℓ−1) (8.47)
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Thus we can summarize both cases by saying that

g = (−1)⌊
N+1

2
⌋
N+1∏

ℓ=1

(ST (−1)ℓqℓ) (8.48)

Then we can finally write

h =

(
A B

C D

)
= g−1T n (8.49)

as a word in S and T for a suitable integer n. (Note that S2 = −1.)

Now we need to show how to bring the general element h ∈ SL(2,Z) to the form with

A > C > 0 so we can apply the above formula. Note that

(
1 0

m 1

)(
A B

C D

)
=

(
A B

C +mA D +mB

)
(8.50)

while (
1 0

m 1

)
= STmS (8.51)

This takes care of all cases except A = C = 1 and A = −C = 1.

9. The Group of Automorphisms

Recall that an automorphism of a group G is an isomorphism µ : G → G, i.e. an isomor-

phism of G onto itself.

One easily checks that the composition of two automorphisms µ1, µ2 is an automor-

phism. The identity map is an automorphism, and every automorphism is invertible. In

this way, the set of automorphisms, Aut(G), is itself a group with group law given by

composition.

Given a group G there are God-given automorphisms given by conjugation. That is,

if a ∈ G then

I(a) : g → aga−1 (9.1)

defines an automorphism of G. Indeed I(a) ◦ I(b) = I(ab) and hence I : G → Aut(G)

is a homomorphism. The subgroup Inn(G) of such automorphisms is called the group of

inner automorphisms. Note that if a ∈ Z(G) then I(a) is trivial, and conversely. Thus we

have:

Inn(G) ∼= G/Z(G). (9.2)

Moreover, Inn(G) is a normal subgroup of Aut(G), since for any automorphism φ ∈
Aut(G):

φ ◦ I(a) ◦ φ−1 = I(φ(a)). (9.3)
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Therefore we have another group

Out(G) := Aut(G)/Inn(G) (9.4)

known as the group of “outer automorphisms.” Thus

1 → Inn(G) → Aut(G) → Out(G) → 1 (9.5)

Remarks

1. In practice people often say that an element ϕ ∈ Aut(G) is an “outer automorphism”

if it projects to a nontrivial element of Out(G). However, strictly speaking this is an

abuse of terminology and an outer automorphism is in the quotient group (9.4)

2. Note that the group of automorphisms of any abelian group G consists entirely of

outer automorphisms.

Example 9.1: Consider Aut(Z4). Think of Z4 as the group of fourth roots of unity,

generated by ω = exp[iπ/2] = i. A generator must go to a generator, so there is only

one possible nontrivial automorphism: φ : ω → ω3. Note that ω → ω2 is a nontrivial

homomorphism of Z4 → Z4, but it is not an automorphism. Thus Aut(Z4) ∼= Z2. Similarly,

Aut(Z3) ∼= Z2.

Example 9.2: ConsiderAut(Z5). Think of Z5 as the group of fifth roots of unity, generated

by ω = exp[2πi/5]. Now there are several automorphisms: φ2 defined by its action on the

generator ω → ω2. Similarly, we can define φ3, by ω → ω3 and φ4, by ω → ω4. Letting φ1
denote the identity we have

φ22 = φ4 φ32 = φ3 φ42 = φ1 = 1 (9.6)

So Aut(Z5) ∼= Z4.

Example 9.3: Consider Aut(ZN ). A generator ω must go to ωr for some r. On the other

hand, ωr must be a generator. Hence r is relatively prime to N . This is true iff there is an

s with

rs = 1modN (9.7)

Thus, Aut(ZN ) is the group of transformations ω → ωr where r admits a solution to

rs = 1modN . We will examine this interesting group in a little more detail in §9.1 below.

Example 9.4: Aut(Sn). There are no outer automorphisms of Sn so

Aut(Sn) ∼= Inn(Sn) ∼= Sn, n 6= 2, 6 (9.8)

Note the exception: n = 2, 6. Note the striking contrast from an abelian group, all of

whose automorphisms are outer.

This is not difficult to prove: Note that an automorphism φ of Sn must take conju-

gacy classes to conjugacy classes. Therefore we focus on how it acts on transpositions.
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These are involutions, and involutions must map to involutions so the conjugacy class of

transpositions must map to a conjugacy class of the form (1)k(2)ℓ with k + 2ℓ = n. We

will show below that, just based on the order of the conjugacy class, φ must map trans-

positions to transpositions. We claim that any automorphism that maps transpositions to

transpositions must be inner. Let us say that

φ((ab)) = (xy) φ((ac)) = (zw) (9.9)

where a, b, c are all distinct. We claim that x, y, z, w must comprise precisely three distinct

letters. We surely can’t have (xy) = (zw) because φ is 1-1, and we also can’t have (xy)

and (zw) commuting because the group commutator of (ab) and (ac) is (abc). Therefore

we can write

φ((ab)) = (xy) φ((ac)) = (xz) (9.10)

Therefore, we have defined a permutation a→ x and φ is the inner automorphism associ-

ated with this permutation.

Now let us consider the size of the conjugacy classes. This was computed in exercise

*** above. The size of the conjugacy class of transpositions is of course
(
n

2

)
=

n!

(n− 2)!2!
(9.11)

The size of a conjugacy class of the form (1)k(2)ℓ with k + 2ℓ = n is

n!

(n− 2ℓ)!ℓ!2ℓ
(9.12)

Setting these equal results in the identity

(n− 2)!

(n− 2ℓ)!
= ℓ!2ℓ−1 n ≥ 2ℓ (9.13)

For a fixed ℓ the LHS is a polynomial in n which is growing for n ≥ 2ℓ and therefore

bounded below by (2ℓ − 2)!. Therefore we consider whether there can be a solution with

n = 2ℓ:

(2ℓ− 2)! = ℓ!2ℓ−1 (9.14)

For ℓ = 3, corresponding to n = 6, there is a solution, but for ℓ > 3 we have (2ℓ − 2)! >

ℓ!2ℓ−1. The peculiar exception n = 6 is related to the symmetries of the icosahedron. For

more information see

1.http://en.wikipedia.org/wiki/Automorphisms of the symmetric and alternating groups

2. http://www.jstor.org/pss/2321657

3. I.E. Segal, “The automorphisms of the symmetric group,” Bulletin of the American

Mathematical Society 46(1940) 565.

Example 9.5: Alternating groups. For the group An ⊂ Sn there is an obvious outer auto-

morphism: Conjugation by any odd permutation. Recall that Out(G) = Aut(G)/Inn(G)

is a quotient group so conjugation by any odd permutation represents the same element in

Out(G). Again for n = 6 there is an exceptional outer automorphism.
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Example 9.6: Consider G = GL(n,C). Then A → A∗ is an outer automorphism. Sim-

ilarly, A → Atr,−1 is an outer automorphism. Consider G = SU(2). Is A → A∗ an outer

automorphism?

Exercise

Although Z2 does not have any automorphisms the product group Z2 ⊕ Z2 certainly

does.

a.) Show that an automorphism of Z2 ⊕ Z2 must be of the form

φ(x1, x2) = (a1x1 + a2x2, a3x3 + a4x4) (9.15)

where we are writing the group additively, and

(
a1 a2
a3 a4

)
∈ GL(2,Z2) (9.16)

b.) Show that GL(2,Z2) ∼= S3.

9.1 The group of units in ZN

We have seen that Z/NZ is a group inherited from the additive law on Z. For an integer

n ∈ Z denote its image in Z/NZ by n̄. With this notation the group law on Z/NZ is

n̄1 + n̄2 = n1 + n2, (9.17)

and 0̄ is the unit element.

However, note that since

(n1 +Nℓ1)(n2 +Nℓ2) = n1n2 +Nℓ′′ (9.18)

we do have a well-defined operation on Z/NZ inherited from multiplcation in Z:

n̄1 · n̄2 := n1 · n2. (9.19)

In general, even if we omit 0̄, Z/NZ is not a group with respect to the multiplication

law (find a counterexample). Nevertheless, Z/NZ with +,× is an interesting object which

is an example of something called a ring. See the next chapter for a general definition of a

ring.

On the other hand, let us define the group of units in the ring Z/NZ:

(Z/NZ)∗ := {m̄ : 1 ≤ m ≤ N − 1, gcd(m,N) = 1} (9.20)

where (m,N) is the greatest common divisor of m and N .

Then, (Z/NZ)∗ is a group with the law (9.19) ! Clearly the multiplication is closed

and 1̄ is the unit. The existence of multiplicative inverses follows from (8.6).
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Moreover, as we have seen above, we can identify

Aut(Z/NZ) ∼= (Z/NZ)∗ (9.21)

The isomorphism is that a ∈ (Z/NZ)∗ is mapped to the transformation

φa : nmodN → anmodN (9.22)

if we think of Z/NZ additively or

φa : ω → ωa (9.23)

if we think of it multiplicatively. Note that φa1 ◦ φa2 = φa1a2 .

The order of the group (Z/NZ)∗ is denoted φ(N) and is called the Euler φ-function or

Euler’s totient function. One can check that

φ(2) = 1

φ(3) = 2

φ(4) = 2

(9.24)

Now, we have seen that if (n,m) are relatively prime then

Znm ∼= Zn ⊕ Zm (9.25)

Therefore, the group of automorphisms should be the same and hence

Z∗
nm

∼= Z∗
n × Z∗

m (9.26)

In particular, φ is a multiplicative function: φ(nm) = φ(n)φ(m) if (n,m) = 1. Therefore,

if N = pe11 · · · perr is the decomposition of N into distinct prime powers then

(Z/NZ)∗ ∼= (Z/pe11 Z)∗ × · · · (Z/perr Z)∗ (9.27)

Moreover, (Z/peZ)∗ is of order φ(pe) = pe − pe−1, as is easily shown and hence

φ(N) =
∏

i

(peii − pei−1
i ) = N

∏

p|N

(1− 1

p
) (9.28)

In elementary number theory textbooks it is shown that if p is an odd prime then

(Z/peZ)∗ is a cyclic group. Finding a generator is not always easy, and it is related to some

deep conjectures in number theory. For example, the Artin conjecture on primitive roots

states that for any positive integer a which is not a perfect square there are an infinite

number of primes so that a is a generator of the cyclic group (Z/pZ)∗.

On the other hand, if p = 2

(Z/4Z)∗ ∼= {±1} (9.29)

is cyclic but

(Z/2eZ)∗ = {(−1)a5b|a = 0, 1, 0 ≤ b < 2e−2} ∼= (Z/2Z)× (Z/2e−2Z) (9.30)

when e ≥ 3.

Examples
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1. (Z/7Z)∗ = {1, 2, 3, 4, 5, 6}mod7 ∼= Z6. Note that 3 and 5 are generators:

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1 mod7 (9.31)

51 = 5, 52 = 4, 53 = 6, 54 = 2, 55 = 3, 56 = 1 mod7 (9.32)

However, 2 = 32mod7 is not a generator, even though it is prime. Rather, it generates

an index 2 subgroup ∼= Z3, as does 4, while 6 generates an index 3 subgroup ∼= Z2. Do

not confuse this isomorphic copy of Z6 with the additive presentation Z6
∼= Z/6Z =

{0, 1, 2, 3, 4, 5} with the additive law. Then 1 and 5 are generators, but not 2, 3, 4.

2. (Z/9Z)∗ = {1, 2, 4, 5, 7, 8}mod9 ∼= Z6. It is a cyclic group generated by 2 and 25 =

5mod9, but it is not generated by 22 = 4, 23 = 8 or 24 = 7mod9, because 2, 3, 4 are

not relatively prime to 6.

3. (Z/8Z)∗ = {1, 3, 5, 7} ∼= Z2×Z2. Note that 3
2 = 52 = 72 = 1mod8 and 3 ·5 = 7mod8,

so we can take 3 and 5 to be the generators of the two Z2 subgroups.

Remarks A good reference for this material is Ireland and Rosen, A Classical Intro-

duction to Modern Number Theory Springer GTM

Exercise Euler’s theorem and Fermat’s little theorem

a.) Let G be a finite group of order n. Show that if g ∈ G then gn = e where e is the

identity element.

b.) Prove Euler’s theorem: For all integers a relatively prime to N , g.c.d(a,N) = 1,

aφ(N) = 1modN (9.33)

Note that a special case of this is Fermat’s little theorem: If a is an integer and p is

prime then

ap = amodp (9.34)

Remark: This theorem has important practical applications in prime testing. If we

want to test whether an integer n is prime we can compute 2nmodn. If the result is

6= 2modn then we can be sure that n is not prime. Now 2nmodn can be computed much

more quickly with a computer than the traditional test of seeing whether the primes up

to
√
n divide n. If 2nmodn is indeed = 2modn then we can suspect that n is prime.

Unfortunately, there are composite numbers which will masquerade as primes in this test.

They are called “base 2 pseudoprimes.” In fact, there are numbers n, known as Carmichael

numbers which satisfy an = amodn for all integers a. The good news is that they are rare.

The bad news is that there are infinitely many of them.
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9.2 Group theory and cryptography

Any invertible map f : Z/NZ → Z/NZ can be used to define a code. For example, if

N = 26 we may identify the elements in Z/26Z with the letters in the Latin alphabet:

a↔ 0, b↔ 1, c↔ 2, . . . (9.35)

Exercise Simple shift

a.) Show that f(m) = (m + 3)mod26 defines a code. In fact, the above remark, and

this example in particular, is attributed to Julius Ceasar. Using this decode the message:

ZOLPPQEBORY FZLK! (9.36)

b.) Is f(m) = (3m)mod26 a valid code? By adding symbols or changing the alphabet

we can change the value of N above. Is f(m) = (3m)mod27 a valid code?

The RSA public key encryption system is a beautiful application of Euler’s theorem

and works as follows. The basic idea is that with numbers with thousands of digits it is

relatively easy to compute powers anmodm and greatest common divisors, but it is very

difficult to factorize such numbers into their prime parts. For example, for a 1000 digit

number the brute force method of factorization requires that we sample up to 10500 divisors.

Bear in mind that our universe is about π×107×13.77×109 ∼= 4×1017 seconds old. There

are of course more efficient algorithms, but all the publicly known ones are still far too

slow.

Now, Alice wishes to receive and decode secret messages sent by any member of the

public. She chooses two large primes (thousands of digits long) pA, qA and computes nA :=

pAqA. These primes are to be kept secret. How does she find her secret thousand-digit

primes? She chooses a random thousand digit number and applies the Fermat primality

test. By the prime number theorem she need only make a few thousand attempts, and she

will find a prime.

Now φ(nA) = (pA − 1)(qA − 1). Next, she chooses a random thousand-digit number

dA such that gcd(dA, φ(nA)) = 1 and computes an inverse dAeA = 1modφ(nA). This is

relatively easy, because Euclid’s algorithm is very fast. Thus there is some integer f so

that

dAeA − fφ(nA) = 1 (9.37)

That is, she solves the congruence x = 1modφ(nA) and x = 0moddA, for the smallest

positive x and then computes eA = x/dA.

Finally, she publishes for the world to see the encoding key: {nA, eA}, but she keeps

the numbers pA, qA, φ(nA), dA secret. This means that if anybody, say Bob, wants to send

Alice a secret message then he can do the following:
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Bob converts his plaintext message into a number less than nA by writing a ↔ 01,

b ↔ 02, . . . , z ↔ 26. (Thus, when reading a message with an odd number of digits we

should add a 0 in front. If the message is long then it should be broken into pieces of length

smaller than nA.) Let Bob’s plaintext message thus converted be denoted m.

Bob computes the ciphertext:

c := meAmodnA (9.38)

Bob sends the ciphertext c to Alice over the internet. Anyone can read it.

Then Alice can decode the message by computing

cdAmodnA = meAdAmodnA

= m1+fφ(nA)modnA

= mmodnA

(9.39)

Now Eve, who has a reputation for making trouble, cannot decode the message without

knowing dA. Just knowing nA and eA but not the prime factorization nA = pAqA there is

no obvious way to find dA. Thus, the security of the method hinges on the inability of Eve

to factor nA into primes.

Note that the decoding will fail if m and nA have a common factor. However, nA =

pAqA and pA, qA are primes with thousands of digits. The probability that Bob’s message

is one of these is around 1 in 101000.

Exercise Your turn to play Eve

Alice has published the key

(n = 661643, e = 325993) (9.40)

Bob sends her the ciphertext in four batches:

c1 = 541907 c2 = 153890 c3 = 59747 c4 = 640956 (9.41)

What is Bob’s message? 19

10. Products and Semidirect products

We have seen a few examples of direct products of groups above. We now study a more

subtle notion, the semidirect product. The semidirect product is a twisted version of the

19Factor the integer n = 541 ∗ 1223. Then you know p, q and hence φ(n) = 659880. Now take e and

compute d by using the Chinese Remainder theorem to compute x = 1modφ and x = 0mode. This

gives x = 735766201 = de and hence d = 2257. Now you can compute the message from the ciphertext

m = cdmodn.
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direct product of groups H and G which can be defined once we are given one new piece

of extra data. The new piece of data we need is a homomorphism

α : G→ Aut(H). (10.1)

For an element g ∈ G we will denote the corresponding automorphism by αg. The value

of αg on an element h ∈ H is denoted αg(h). Thus αg(h1h2) = αg(h1)αg(h2) because αg
is a homomorphism of H to itself while we also have αg1g2(h) = αg1(αg2(h)) because α is

a homomorphism of G into the group of automorphisms Aut(H).

Using the extra data given by α we can form a more subtle kind of product called the

semidirect product H ⋊G, or H ⋊αG when we wish to stress the role of α. This group

is the Cartesian product H ×G as a set but has the “twisted” multiplication law:

(h1, g1) · (h2, g2) := (h1αg1(h2), g1g2) (10.2)

A good intuition to have is that “as g1 moves from left to right across the h2 they

interact via the action of g1 on h2.”

Exercise

a.) Show that (10.2) defines an associative group law.

b.) Show that (1H , 1G) defines the unit and

(h, g)−1 =
(
αg−1(h−1), g−1

)
(10.3)

Exercise Internal definition of semidirect products

Suppose there is a homomorphism G → Aut(H) so that we can form the semidirect

product H ⋊G.

a.) Show that elements of the form (1, g), g ∈ G form a subgroup Q ⊂ H ⋊ G

isomorphic to G, while elements of the form (h, 1), h ∈ H constitute another subgroup,

call it N , which is isomorphic to H.

b.) Show that N = {(h, 1)|h ∈ H} is a normal subgroup of H ⋊ G, while Q =

{(1, g)|g ∈ G} in general is not a normal subgroup. 20 This explains the funny fish product

⋊: it is a combination of × with the normal subgroup symbol ⊳.

c.) Show that we have a short exact sequence:

1 → N → H ⋊G→ Q→ 1 (10.5)

20Answer to (b): Compute (h1, g1)(h, 1)(h1, g1)
−1 = (h1αg1(h)h

−1
1 , 1) and

(h1, g1)(1, g)(h1, g1)
−1 = (h1αg1gg

−1

1

(h−1
1 ), g1gg

−1
1 ). (10.4)
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d.) Show that G = NQ = QN and show that Q ∩N = {1}.
e.) Conversely, show that if G = NQ where N is a normal subgroup of G and Q is a

subgroup of G, (that is, every element of G can be written in the form g = nq with n ∈ N

and q ∈ Q and N ∩ Q = {1} ) then G is a semidirect product of N and Q. Show how

to recover the action of Q as a group of automorphisms of N by defining αq(n) := qnq−1.

Note that αq in general is NOT an inner automorphism of N .

Example 10.1: Let G = {e, σ} ∼= Z2 with generator σ, and let H = Z, written additively.

Then define a nontrivial α : G→ Aut(H) by letting ασ act on x ∈ H as ασ(x) = −x. Then
Z ⋊ Z2 is a group with elements (x, e) and (x, σ), for x ∈ Z. Note the multiplication laws:

(x1, e)(x2, e) = (x1 + x2, e)

(x1, e)(x2, σ) = (x1 + x2, σ)

(x2, σ)(x1, e) = (x2 − x1, σ)

(x1, σ)(x2, σ) = (x1 − x2, e)

(10.6)

and hence the resulting group is nonabelian with this twisted multiplication law. In fact

Aut(Z) ∼= Z2, so this is the only nontrivial semidirect product we can form. This group is

known as the infinite dihedral group. It has a presentation:

Z ⋊ Z2
∼= 〈r, s|s2 = 1 srs = r−1〉 (10.7)

(e.g. take s = (0, σ) and r = (1, e)) from which we also see it has a presentation as a

Coxeter group:

Z ⋊ Z2
∼= 〈x, y|x2 = 1 y2 = 1〉 (10.8)

It is also the Weyl group for the affine Lie group LSU(2).

Example 10.2: We can use the same formulae as in Example 1 but with H = Z/NZ. This

defines the finite dihedral group DN , which we will meet again as the group of symmetries

of the regular N -gon in the plane. Note that the presentation is now

(Z/NZ)⋊ Z2
∼= 〈r, s|s2 = 1, rN = 1, srs = r−1〉 (10.9)

Indeed, note that N = {(x, e)|x = 0modN} ⊂ Z ⋊ Z2 is a normal subgroup and

(Z/NZ)⋊ Z2
∼= (Z ⋊ Z2)/N . (10.10)

Example 10.3: We will study below group actions on spaces. In particular we will look

at the Euclidean group Euc(d) of isometries of the affine space Ed modeled on Rd with

Euclidean metric. For now, we choose an origin and identify Ed ∼= Rd and then to a pair

R ∈ O(d) and v ∈ Rd we can associate the isometry: 21

{R|v} : x 7→ Rx+ v (10.11)

21Logically, since we operate with R first and then translate by v the notation should have been {v|R},

but unfortunately the notation used here, known as the Seitz notation, is the standard one.
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In this notation the group multiplication law is

{R1|v1}{R2|v2} = {R1R2|v1 +R1v2} (10.12)

which makes clear that there is a nontrivial automorphism used to construct the semidirect

product of the group of translations, isomorphic to Rd with the rotation-inversion group

O(d):

{R|v}{1|w}{R|v}−1 = {1|Rw} (10.13)

and π : {R|v} → R is a surjective homomorphism Euc(d) → O(d). Similarly the Poincaré

group is the semidirect product of the translation and Lorentz group.

Example 10.4: Kaluza-Klein theory. In Kaluza-Klein theory we study general relativity

on a product manifold and partially rigidify the situation by putting some structure on Y .

We then regard Y as “small” and study the physics as “effectively” taking place on X.

It is interesting to understand how gauge symmetries in theories on X arise in this point

of view. Suppose D ∼= Diff(X) is a subgroup of diffeomorphisms of X × Y of the form

ψf : (x, y) → (f(x), y) with f ∈ Diff(X). We also consider a subgroup G of Diff(X×Y )

where G is isomorphic to a subgroup of Map(X,Diff(Y )). For the point we make here we

might as well take G =Map(X,Diff(Y )), so an element g is a family of diffeomorphisms:

x → gx : y → g(y;x). That is, for fixed x, the map y 7→ g(y;x) is a diffeomorphism of

Y . Then we take G to be the subgroup of diffeomorphisms of Diff(X × Y ) of the form

(x, y) → (x, g(y;x)). Note that within Diff(X × Y ) we can write the subgroup

GD (10.14)

and D acts as a group of automorphisms of G via

ψfψgψ
−1
f : (x, y) → (f−1(x), y)

→ (f−1(x), g(y; f−1(x)))

→ (x, g(y; f−1(x)))

(10.15)

so this subgroup is a semidirect product. This is a model for the group of gauge transforma-

tions in Kaluza-Klein theory, where D is the diffeomorphism group of the large spacetime.

Typically, Y is endowed with a fixed metric ds2Y and the diffeomorphism symmetry of Y

is (spontaneously) broken down to the group of isometries of Y , Isom(Y, ds2Y ). Then G is

taken to be the unbroken subgroup Map(X, Isom(Y, ds2Y )) and is interpreted as a group

of gauge transformations of a gauge theory on X coupled to general relativity on X.

Exercise Centralizers in the symmetric group

a.) Suppose that g ∈ Sn has a conjugacy class given by
∏n
i=1(i)

ℓi . Show that the

centralizer Z(g) is isomorphic to

Z(g) ∼=
n∏

i=1

(
Z
ℓi
i ⋊ Sℓi

)
(10.16)
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where
∏
i is a direct product.

b.) Use this to compute the order of a conjugacy class in the symmetric group.

Exercise Holomorph

Given a finite group G a canonical semidirect product group is G⋊Aut(G) known as

the holomorph of G. Show that this is the normalizer of the copy of G in the symmetric

group S|G| given by Cayley’s theorem.

Exercise Equivalence of semidirect products

A nontrivial automorphism α can lead to a semidirect product which is in fact isomor-

phic to a direct product. Show this as follows: Suppose φ : G → H is a homomorphism.

Define α : G→ Aut(H) by αg = I(φ(g)). Construct an isomorphism 22

Ψ : H ⋊α G→ H ×G (10.17)

Exercise

Show that if G = NQ is a semidirect product and Q is also a normal subgroup of G,

then G is the direct product of N and Q. 23

11. Group Extensions and Group Cohomology

11.1 Group Extensions

Recall that an extension of Q by a group N is an exact sequence of the form:

1 → N
ι→ G

π→ Q→ 1 (11.1)

There is a notion of homomorphism of two group extensions

1 → N
ι1→ G1

π1→ Q→ 1 (11.2)

1 → N
ι2→ G2

π2→ Q→ 1 (11.3)

22Answer : Ψ(h, g) = (hφ(g), g).
23Answer: Note that n1q1n2q2 = n1n2(n

−1
2 q1n2q

−1
1 )q1q2. However, if bothN and Q are normal subgroups

then (n−1
2 q1n2q

−1
1 ) ∈ N ∩Q = {1}. Therefore n1q1n2q2 = n1n2q1q2 is the direct product structure.

– 61 –



This means that there is a group homomorphism ϕ : G1 → G2 so that the following diagram

commutes:

1 // N
ι1 // G1

ϕ

��

π1 // Q // 1

1 // N
ι2 // G2

π2 // Q // 1

(11.4)

When there is a homomorphism of group extensions based on ψ : G2 → G1 such that ϕ◦ψ
and ψ ◦ ϕ are the identity then the group extensions are said to be isomorphic.

It can certainly happen that there is more than one nonisomorphic extension of Q by

N . Classifying all extensions of Q by N is a difficult problem.

Figure 9: Illustration of a group extension 1 → N → G→ Q→ 1 as an N -bundle over Q.

We would encourage the reader to think geometrically about this problem, even in

the case when Q and N are finite groups, as in Figure 9. In particular we will use the

important notion of a section, that is, a right-inverse to π: It is a map s : Q→ G such that

π(s(q)) = q for all q ∈ Q. Such sections always exist.24 Note that in general s(π(g)) 6= g.

This is obvious from Figure 9: The map π projects the entire “fiber over q” to q. The

section s chooses just one point above q in that fiber.

In order to justify the picture of Figure 9 let us prove that, as a set, G is just the

product N ×Q. Note that for any g ∈ G and any section s:

g(s(π(g)))−1 (11.5)

maps to 1 under π (check this). Therefore, since the sequence is exact

g(s(π(g)))−1 = ι(n) (11.6)

for some n ∈ N . That is, every g ∈ G can be written as

g = ι(n)s(q) (11.7)

24By the axiom of choice. For continuous groups such as Lie groups there might or might not be continuous

sections.
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for some n ∈ N and some q ∈ Q. In fact, this decomposition is unique: Suppose that:

ι(n1)s(q1) = ι(n2)s(q2) (11.8)

Then we rewrite this as

ι(n−1
2 n1) = s(q2)s(q1)

−1 (11.9)

Now, applying π we learn that 1 = q2π(s(q1)
−1) = q2(π(s(q1))

−1) = q2q
−1
1 , so q1 = q2. But

that implies n1 = n2. Therefore, as a set G can be identified with N ×Q.

Now, given an extension and a choice of section s we define a map

ω : Q→ Aut(N) (11.10)

denoted by

q 7→ ωq (11.11)

where the definition of ωq is given by

ι(ωq(n)) = s(q)ι(n)s(q)−1 (11.12)

Because ι(N) is normal the RHS is again in ι(N). Because ι is injective ωq(n) is well-

defined. Moreover, for each q the reader should check that indeed ωq(n1n2) = ωq(n1)ωq(n2),

therefore we really have a homomorphism (11.10).

Remark: Clearly the ι is a bit of a nuisance and leads to clutter and it can be safely

dropped if we consider N simply to be a subgroup of G. The confident reader is encouraged

to do this. The formulae will be a little cleaner. However, we will be pedantic and retain

the ι in most of our formulae.

Let us stress that the map ω : Q→ Aut(N) in general is not a homomorphism and in

general depends on the choice of section s. Let us see how close ω comes to being a group

homomorphism:

ι (ωq1 ◦ ωq2(n)) = s(q1)ι(ωq2(n))s(q1)
−1

= s(q1)s(q2)ι(n)(s(q1)s(q2))
−1

(11.13)

We want to compare this to ι (ωq1q2(n)). In general they will be different unless s(q1q2) =

s(q1)s(q2), that is, unless s : Q → G is a homomorphism. In general the section is not a

homomorphism, but clearly something nice happens when it is:

Definition: We say an extension splits if there exists a section s : Q→ G which is also

a group homomorphism. A choice of a section which is a group homomorphism is called a

(choice of) splitting.

Theorem: An extension is isomorphic to a semidirect product iff it is a split extension.
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Proof :

First suppose it splits. Choose a splitting s. Then from (11.13) we know that

ωq1 ◦ ωq2 = ωq1q2 (11.14)

and hence q 7→ ωq defines a homomorphism ω : Q → Aut(N). Therefore, we can aim to

prove that there is an isomorphism of G with N ⋊ω Q.

In general if s is just a section the image s(Q) ⊂ G is not a subgroup. But if the

sequence splits, then it is a subgroup. The equation (11.7) implies that G = ι(N)s(Q)

where s(Q) is a subgroup, and by the internal characterization of semidirect products that

means we have a semidirect product.

To give a more concrete proof, let us write the group law in the parametrization (11.7).

Write

ι(n)s(q)ι(n′)s(q′) = ι(n)
(
s(q)ι(n′)s(q)−1

)
s(qq′) (11.15)

Note that

s(q)ι(n′)s(q)−1 = ι(ωq(n
′)) (11.16)

so

ι(n1)s(q1)ι(n2)s(q2) = ι (n1ωq1(n2)) s(q1q2) (11.17)

But this just means that

Ψ(n, q) = ι(n)s(q) (11.18)

is in fact an isomorphism Ψ : N ⋊ω Q→ G. Indeed equation (11.17) just says that:

Ψ(n1, q1)Ψ(n2, q2) = Ψ((n1, q1) ·ω (n2, q2)) (11.19)

where ·ω stresses that we are multiplying with the semidirect product rule.

Thus, we have shown that a split extension is isomorphic to a semidirect product

G ∼= N ⋊Q. The converse is straightforward. ♠
In §11.4 below we will continue the general line of reasoning begun here. However, in

order to appreciate the formulae better it is a good idea first to step back and consider a

simple but important special case of extensions, namely, the central extensions.

Exercise

If s : Q→ G is any section of π show that for all q ∈ Q,

s(q−1) = s(q)−1n = n′s(q)−1 (11.20)

for some n, n′ ∈ N .

Exercise The pullback construction
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There is one general construction with extensions which is useful when discussing

symmetries in quantum mechanics. This is the notion of pullback extension. Suppose we

are given both an extension

1 // H ′ ι // H
π // H ′′ // 1 (11.21)

and a homomorphism

ρ : G′′ → H ′′ (11.22)

Then the pullback extension is defined by a subgroup of the Cartesian productG ⊂ H×G′′:

G := {(h, g′′)|π(h) = ρ(g′′)} ⊂ H ×G′′ (11.23)

and is an extension of the form

1 // H ′ ι // G
π̃ // G′′ // 1 (11.24)

where π̃(h, g′′) := g′′. Show that this extension fits in the commutative diagram

1 // H ′ // G

ρ̃
��

π̃ // G′′ //

ρ
��

1

1 // H ′ // H
π // H ′′ // 1

(11.25)

Moreover, show that this diagram can be used to define the pullback extension.

Exercise Choice of splitting and the Euclidean group Euc(d)

As we noted, the Euclidean group Euc(d) is isomorphic to the semidirect product

Rd⋊O(d), but to exhibit that we needed to choose an origin about which to define rotation-

inversions.

Show that a change of origin corresponds to a change of splitting.

11.2 Central extensions

Now we study an important class of extensions. We change the notation from the previous

section to emphasize this.

Let A be an abelian group and G any group.

Definition A central extension of G by A, 25 is a group G̃ such that

1 → A
ι→ G̃

π→ G→ 1 (11.26)

such that ι(A) ⊂ Z(G̃).

25Some authors say an extension of A by G.
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We stress again that what we called G in the previous section is here called G̃, and

what we called Q in the previous section is here called G.

Example . An example familiar from the quantum mechanical theory of angular momen-

tum, and which we will discuss later is:

1 → Z2 → SU(2) → SO(3) → 1 (11.27)

Here the Z2
∼= {±1} is the center of SU(2).

Remarks:

1. Central extensions are important in the theory of projective representations and occur

quite frequently in quantum mechanics. A simple example is the spin representation

of the rotation group. We will explain this relation in more detail later, but for

the moment the reader might find it useful to think about G as a group of classical

symmetries of a physical system and G̃ as a group of corresponding operators in the

quantum mechanical description of that physical system. The fiber of the map π

can be thought of as possible c-number phases which can multiply the operator on

Hilbert space representing a symmetry operation g. For a more detailed account of

this see Chapter *** below.

2. Central extensions appear naturally in quantization of bosons and fermions. The

Heisenberg group is an extension of a translation group. The symplectic group of

linear canonical transformations gets quantum mechanically modified by a central

extension to define something called the metaplectic group.

3. Central extensions are important in the theory of anomalies in quantum field theory.

4. Central extensions are very important in conformal field theory. The Virasoro group,

and the Kac-Moody groups are both nontrivial central extensions of simpler objects.

Exercise Another form of splitting

Show that an equivalent definition of a split exact sequence for a central extension is

that there is a homomorphism t : G̃→ A which is a left-inverse to ι, t(ι(a)) = a.

(Hint: Define s(π(g̃)) = ιt(g̃−1))g̃.)

There is an interesting way to classify central extensions of G by A.

As before let s : G→ G̃ be a “section” of π. That is, a map such that

π(s(g)) = g ∀g ∈ G (11.28)
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As we have stressed, in general s is not a homomorphism. In the case when the

sequence splits, that is, when there exists a section which is a homomorphism, then we can

say G̃ is isomorphic to a direct product G̃ ∼= A×G via

ι(a)s(g) → (a, g) (11.29)

When the sequence splits the semidirect product of the previous section is a direct

product because A is central, so ωg(a) = a.

Now, let us allow that (11.26) does not necessarily split. Let us choose any section

s and measure by how much s differs from being a homomorphism by considering the

combination:

s(g1)s(g2) (s(g1g2))
−1 . (11.30)

Now the quantity (11.30) is in the kernel of π and hence in the image of ι. Since ι is

injective we can define a function fs : G×G→ A by the equation

ι(fs(g1, g2)) := s(g1)s(g2) (s(g1g2))
−1 . (11.31)

That is, we can write:

s(g1)s(g2) = ι(fs(g1, g2))s(g1g2) (11.32)

The function fs satisfies the important cocycle identity

f(g1, g2g3)f(g2, g3) = f(g1, g2)f(g1g2, g3) (11.33)

Exercise

Verify (11.33) by using (11.31) to compute s(g1g2g3) in two different ways.

(Note that simply substituting (11.31) into (11.33) is not obviously going to work

because G̃ need not be abelian.)

Exercise Simple consequences of the cocycle identity

a.) By putting g1 = 1 and then g3 = 1 show that

f(g, 1) = f(1, g) = f(1, 1) ∀g ∈ G (11.34)

b.) Show that

f(g, g−1) = f(g−1, g). (11.35)

Now we introduce some fancy terminology:
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Definition: In general

1. A 2-cochain on G with values in A, C2(G,A) is a function

f : G×G→ A (11.36)

2. A 2-cocycle f ∈ Z2(G,A) is a 2-cochain f : G×G→ A satisfying (11.33).

Remarks:

1. The fancy terminology is introduced for a good reason because there is a topological

space and a cohomology theory underlying this discussion. See Section §11.5 and

Section §13.2 for further discussion.

2. Note that C2(G,A) is naturally an abelian group because A is an abelian group.

(Recall example 2.7 of Section §2.) Z2(G,A) inherits an abelian group structure

from C2(G,A).

So, in this language, given a central extension of G by A and a section s we naturally

obtain a two-cocycle fs ∈ Z2(G,A) via (11.31).

Now, if we choose a different section ŝ then

ŝ(g) = s(g)ι(t(g)) (11.37)

for some function t : G→ A. It is easy to check that

fŝ(g1, g2) = fs(g1, g2)t(g1)t(g2)t(g1g2)
−1 (11.38)

where we have used that ι(A) is central in G̃.

Definition: In general two 2-cochains f and f̂ are said to differ by a coboundary if they

satisfy

f̂(g1, g2) = f(g1, g2)t(g1)t(g2)t(g1g2)
−1 (11.39)

for some function t : G→ A.

One can readily check that if f is a cocycle then any other f̂ differing by a coboundary

is also a cocycle. Moreover, being related by a cocycle defines an equivalence relation on

the set of cocycles f ∼ f̂ . Thus, we may define:

Definition: The group cohomology H2(G,A) is the set of equivalence classes of 2-cocycles

modulo equivalence by coboundaries. Moreover, this set carries a natural structure of an

abelian group.

As mentioned above, the group multiplication making H2(G,A) into an abelian group

is simply defined by

(f1 · f2)(g, g′) = f1(g, g
′) · f2(g, g′) (11.40)

where we are writing the product in A multiplicatively. This descends to a well-defined

muiltiplication on cohomology classes: [f1] · [f2] := [f1 · f2].
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Now, the beautiful theorem states that group cohomology classifies central extensions:

Theorem: Isomorphism classes of central extensions of G by an abelian group A are

in 1-1 correspondence with the second cohomology set H2(G,A). Moreover, considering

H2(G,A) itself as an abelian group, the identity element corresponds to the split extension

A×G.

Proof : From (11.31)(11.33)(11.38) we learn that given a central extension we can unam-

biguously form a group cohomology class which is independent of the choice of section.

Moreover, if G̃ ∼= G̃′ are isomorphic central extensions and ψ : G̃→ G̃′ is an isomorphism,

then ψ can be used to map sections of G̃ → G to sections of G̃′ → G: s′(g) = ψ(s(g)).

Then

s′(g1)s
′(g2) = ψ(s(g1))ψ(s(g2))

= ψ(s(g1)s(g2))

= ψ(ι(fs(g1, g2))s(g1g2))

= ψ(ι(fs(g1, g2)))ψ(s(g1g2))

= ι′(fs(g1, g2))s
′(g1g2)

(11.41)

and hence we assign precisely the same 2-cocycle f(g1, g2) to the section s′. Hence the

isomorphism class of a central extension maps unambiguously to a cohomology class [f ].

Conversely, given a cohomology class [f ] we may construct a corresponding central

extension as follows. Choose a representative 2-cocycle f . With such an f we may define

G̃ = A×G as a set and we use f to define the multiplication law:

(a1, g1)(a2, g2) := (a1a2f(g1, g2), g1g2) (11.42)

Now suppose that we use two 2-cocycles f and f ′ which are related by a coboundary

as in (11.39) above. Then we claim that the map ψ : G̃→ G̃′ defined by

ψ : (a, g) → (at(g)−1, g) (11.43)

is an isomorphism of groups. (Check this!) On the other hand, we just showed above that

if [f ] 6= [f ′] then G̃ cannot be isomorphic to G̃′. ♠

Remark: Using a coboundary one can usefully simplify cocycles. For example, by setting

t(1) = f(1, 1)−1 we may assume f(1, 1) = 1. Then, by (11.34) we have f(g, 1) = f(1, g) = 1

for all g. Similarly, if g 6= g−1 we may put f(g, g−1) = f(g−1, g) = 1. If g = g−1 then we

might not be able to set f(g, g) = 1. We can “preserve this gauge” with further coboundary

transformations that satisfy t(1) = 1 and t(g−1) = t(g)−1.

Example 1 . Extensions of Z2 by Z2. WLOG we can take f(1, 1) = f(1, σ) = f(σ, 1) = 1.

Then we have two choices: f(σ, σ) = 1 or f(σ, σ) = σ. Each of these choices satisfies the

cocycle identity and they are not related by a coboundary. In other wordsH2(Z2,Z2) = Z2.
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For the choice f = 1 we obtain G̃ = Z2 × Z2. For the nontrivial choice f(σ, σ) = σ we

obtain G̃ ∼= Z4. Let us see this in detail. We’ll let σ1 ∈ A ∼= Z2 and σ2 ∈ G ∼= Z2 be the

nontrivial elements so we should write f(σ2, σ2) = σ1. Note that (σ1, 1) has order 2, but

then

(1, σ2) · (1, σ2) = (f(σ2, σ2), 1) = (σ1, 1) (11.44)

shows that (1, σ2) has order 4. Moreover (σ1, σ2) = (σ1, 1)(1, σ2) = (1, σ2)(σ1, 1).

Thus,

Ψ : (σ1, 1) → ω2 = −1

Ψ : (1, σ2) → ω
(11.45)

where ω is a primitive 4th root of 1 defines an isomorphism. In conclusion, the nontrivial

central extension of Z2 by Z2 is:

1 → Z2 → Z4 → Z2 → 1 (11.46)

Recall that Z4 is not isomorphic to Z2 × Z2.

Example 2. The generalization of the previous example to an odd prime p is extremely

instructive. So, let us study in detail the extensions

1 → Zp → G→ Zp → 1 (11.47)

where we will write our groups multiplicatively. Now, using methods of topology one can

show that 26

H2(Zp,Zp) ∼= Zp. (11.48)

On the other hand, we know from the class equation and Sylow’s theorems that there

are exactly two groups of order p2, up to isomorphism! How is that compatible with

(11.48)? The answer is that there can be nonisomorphic extensions (11.26) involving the

same group G̃. To see this, let us examine in detail the standard extension:

1 → Zp → Zp2 → Zp → 1 (11.49)

We write the first, second and third groups in this sequence as

Zp = 〈σ1|σp1 = 1〉
Zp2 = 〈α|αp2 = 1〉
Zp = 〈σ2|σp2 = 1〉

(11.50)

respectively. Then the first injection must take

ι(σ1) = αp (11.51)

26You can also show it by examining the cocycle equation directly.
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since it must be an injection and it must take an element of order p to an element of order

p. The standard sequence then takes the second arrow to be reduction modulo p, so

π(α) = σ2 (11.52)

While there is no choice in ι we are making a choice in defining π. We will return to this

shortly.

Now, with the choice (11.52), we try to choose a section of π. Let us try to make it a

homomorphism. Therefore we must take s(1) = 1. What about s(σ2)? Since π(s(σ2)) = σ2
we have a choice: s(σ2) could be any of

α,αp+1, α2p+1, . . . , α(p−1)p+1 (11.53)

Here we will make the simplest choice s(σ2) = α. The reader can check that the discussion

is not essentially changed if we make one of the other choices. (After all, this will just

change our cocycle by a coboundary!)

Now that we have chosen s(σ2) = α, if s were a homomorphism then we would be

forced to take:

s(1) = 1

s(σ2) = α

s(σ22) = α2

...
...

s(σp−1
2 ) = αp−1

(11.54)

But now we are stuck! The property that s is a homomorphism requires two contradictory

things. On the one hand, we must have s(1) = 1 for any homomorphism. On the other

hand, from the above equations we also must have s(σp2) = αp. But because σp2 = 1 and

αp 6= 1 these requirements are incompatible. Therefore, with this choice of section we find

a nontrivial cocycle as follows:

s(σk2 )s(σ
ℓ
2)s(σ

k+ℓ
2 )−1 =

{
1 k + ℓ < p

αp p ≤ k + ℓ
(11.55)

and therefore,

f(σk2 , σ
ℓ
2) =

{
1 k + ℓ < p

σ1 p ≤ k + ℓ
(11.56)

In these equations we assume 1 ≤ k, ℓ ≤ p− 1. We know the cocycle is nontrivial because

Zp × Zp is not isomorphic to Zp2 .

But now let us use the group structure on the group cohomology. [f ]r is the cohomology

class represented by

f r(σk2 , σ
ℓ
2) =

{
1 k + ℓ < p

σr1 p ≤ k + ℓ
(11.57)
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This corresponds to replacing (11.52) by

πr(α) = (σ2)
r (11.58)

and the sequence will still be exact, i.e. ker(πr) = im(ι), if (r, p) = 1, that is, if we compose

the standard projection with an automorphism of Zp. Thus πr also defines an extension of

the form (11.49). But we claim that it is not isomorphic to the standard extension! To see

this let us try to construct ψ so that

〈α〉

ψ

��

πr
&&◆◆

◆◆
◆◆

1 // 〈σ1〉
ι

88♣♣♣♣♣♣

ι

&&◆◆
◆◆

◆◆
〈σ2〉 // 1

〈α〉
π 88♣♣♣♣♣♣

(11.59)

In order for the triangle on the right to commute we must have ψ(α) = αr, but then the

triangle on the left will not commute. Thus the extensions π1, . . . , πp−1, all related by outer

automorphisms of the quotient group Zp = 〈σ2〉, define inequivalent extensions with the

same group Zp2 in the middle.

In conclusion, we describe the group of isomorphism classes of central extensions of Zp
by Zp as follows: The identity element is the trivial extension

1 → Zp → Zp × Zp → Zp → 1 (11.60)

and then there is an orbit of (p− 1) nontrivial extensions of the form

1 → Zp → Zp2 → Zp → 1 (11.61)

acted on by Aut(Zp).

Example 3: Let us analyze in detail the extension

1 → Z2 → Z8 → Z4 → 1 (11.62)

We will think of these as multiplicative groups of roots of unity, with generators σ = −1

for Z2, α = exp[2πi/8] for Z8, and ω = exp[2πi/4] for Z4.

The inclusion map ι : σ → α4, while the projection map takes π : α→ α2 = ω.

Let us try to find a section. Since we want a normalized cocycle we must choose

s(1) = 1. Now, π(s(ω)) = ω implies s(ω)2 = ω, and this equation has two solutions:

s(ω) = α or s(ω) = α5. Let us choose s(ω) = α. (The following analysis for α5 is similar.)

If we try to make s into a homomorphism then we are forced to choose

s(ω) = α

s(ω2) = α2

s(ω3) = α3

(11.63)

but now we have no choice - we must set s(ω4) = s(1) = 1. On the other hand, if s were

to have been a homomorphism we would have wanted to set s(ω4) = s(ω)4 = α4, but, as
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we just said, we cannot do this. With the above choice of section we get the symmetric

cocycle whose nontrivial entries are

f(ω, ω3) = f(ω2, ω2) = f(ω2, ω3) = f(ω3, ω3) = α4 = σ. (11.64)

Example 4.. Nonabelian groups can also have central extensions. For example the sym-

metric group Sn has one nontrivial central extension by Z2. To define it we let σi = (i, i+1),

1 ≤ i ≤ n−1 be the transpositions generating Sn. Then Ŝn is generated by σ̂i and a central

element z satisfying the relations:

z2 = 1

σ̂2i = z

σ̂iσ̂i+1σ̂i = σ̂i+1σ̂iσ̂i+1

σ̂iσ̂j = zσ̂j σ̂i j > i+ 1

(11.65)

There is an elegant realization of this group using Clifford algebras.

Remarks:

1. One generally associates cohomology with the subject of topology. There is indeed

a beautiful topological interpretation of group cohomology in terms of “classifying

spaces.”

2. In the case where G is itself abelian we can use more powerful methods of homological

algebra to classify central extensions.

3. The special case H2(G,U(1)) (or sometimes H2(G,C∗), they are the same) is known

as the Schur multiplier. It plays an important role in the study of projective repre-

sentations of G. We will return to this important point.

4. We mentioned that a general extension (11.1) can be viewed as a principal N bundle

over Q. Let us stress that trivialization of π : G → Q as a principal bundle is

completely different from trivialization of the extension (by choosing a splitting).

These are different mathematical structures! For example, for finite groups the bundle

is of course trivial because any global section is also continuous. However, as we have

just seen the extensions might be nontrivial. It is true, quite generally, that if a central

extension is trivial as a group extension then G̃ = A × G and hence π : G̃ → G is

trivializable as an A-bundle.

Exercise

Choosing the natural section s : σi → σ̂i in example 2 find the corresponding cocycle

fs.
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Exercise

Show that the associative law for the twisted product (11.42) is equivalent to the

cocycle condition on the 2-cochain f .

Exercise

a.) Compute the group commutator:

[(a1, g1), (a2, g2)] =

(
f(g1g2, g

−1
1 g−1

2 )

f(g2g1, g
−1
1 g−1

2 )

f(g1, g2)

f(g2, g1)
, g1g2g

−1
1 g−1

2

)
(11.66)

b.) Suppose G is abelian. Show that G̃ is abelian iff f(g1, g2) is symmetric.

Exercise

Using methods of topology one can prove that

H2(Z2 × Z2,Z2) = Z2 ⊕ Z2 ⊕ Z2 (11.67)

There are 4 isomorphisms classes of groups which fit in the central extensions of Z2 × Z2

by Z2, two of which are nonabelian groups of order 8. They are:

1 → Z2 → Z2 × Z2 × Z2 → Z2 × Z2 → 1

1 → Z2 → Z2 × Z4 → Z2 × Z2 → 1

1 → Z2 → Q→ Z2 × Z2 → 1

1 → Z2 → D4 → Z2 × Z2 → 1

(11.68)

where Q is the quaternion group and D4 the dihedral group defined in future chapters. For

now we can take Q to be the group of 2× 2 matrices generated by
(
i 0

0 −i

)
&

(
0 i

i 0

)
(11.69)

(If you know about quaternions then another useful description is: Q = {±1,±i,±j,±k},
as we describe in Chapter *** below.)

D4 is dihedral group defined above. It can also be thought of as the group of 2 × 2

matrices generated by (
1 0

0 −1

)
&

(
0 1

−1 0

)
(11.70)
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Question: Construct cocycles corresponding to each of these central extensions and

show how the automorphisms of Z2 × Z2 account for the the fact that there are only four

entries in (11.68) while (11.67) is order 8.

11.3 Heisenberg extensions

In all the examples above (except for Q and D4 in (11.68)) the group G̃ in the central

extension is abelian when G is abelian. But this need not be the case, as we will see in the

present section.

In this section we focus attention on some special central extensions known as Heisen-

berg extensions. In fact in the literature two closely related but slightly different things

are meant by “Heisenberg extensions” and “Heisenberg groups.” These kinds of extensions

show up all the time in physics.

Motivating Example: Those who have taken quantum mechanics will be familiar with

the relation between position and momentum operators for the quantum mechanics of a

particle on the real line:

[q̂, p̂] = i~ (11.71)

One realization of these operator relations is in terms of wavefunctions ψ(q) where we

write:

(q̂ · ψ)(q) = qψ(q)

(p̂ · ψ)(q) = −i~ d
dq
ψ(q)

(11.72)

Now, let us consider the unitary operators

U(α) := exp[iαp̂]

V (α) := exp[iβq̂]
(11.73)

where α ∈ R. Of course U(α1)U(α2) = U(α1 + α2) and similarly for V (α) so, separately,

the group of operators U(α) is isomorphic to R as is the group of operators V (α). However,

one can show in a number of ways that:

U(α)V (β) = ei~αβV (β)U(α) (11.74)

Therefore, the group generated by the operators U(α) and V (α) for α ∈ R, which we’ll

denote Heis(R× R) fits in a central extension:

1 → U(1) → Heis(R × R) → R× R → 1 (11.75)

Let us now step back and think more generally about central extensions of G by

A where G is also abelian. From the exercise (11.66) we know that for G abelian the

commutator is

[(a1, g1), (a2, g2)] =

(
f(g1, g2)

f(g2, g1)
, 1

)
(11.76)
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(We are writing 1/f(g2, g1) for f(g2, g1)
−1 and since A is abelian the order doesn’t matter,

so we write a fraction as above.)

The function κ : G×G→ A defined by

κ(g1, g2) =
f(g1, g2)

f(g2, g1)
(11.77)

is known as the commutator function.

Note that:

1. The commutator function is gauge invariant, in the sense that it does not change

under the change of 2-cocycle f by a coboundary. (Check that! This uses the property

that G is abelian). It is therefore a more intrinsic quantity associated with the central

extension.

2. The extension G̃ is abelian iff κ(g1, g2) = 1, that is, iff there exists a symmetric

cocycle f .

3. κ is skew :

κ(g1, g2) = κ(g2, g1)
−1 (11.78)

4. κ is alternating :

κ(g, g) = 1 (11.79)

5. κ is bimultiplicative:

κ(g1g2, g3) = κ(g1, g3)κ(g2, g3) (11.80)

κ(g1, g2g3) = κ(g1, g2)κ(g1, g3) (11.81)

All of these properties except perhaps the last are obvious. To prove the bimultiplica-

tive properties (it suffices to prove just one) we rewrite (11.80) as

f(g1g2, g3)f(g3, g2)f(g3, g1) = f(g2, g3)f(g1, g3)f(g3, g1g2) (11.82)

Now multiply the equation by f(g1, g2) and use the fact that A is abelian to write

(f(g1, g2)f(g1g2, g3))f(g3, g2)f(g3, g1) = f(g2, g3)f(g1, g3)(f(g1, g2)f(g3, g1g2)) (11.83)

We apply the cocycle identity on both the LHS and the RHS (and also use the fact that

G is abelian) to get

f(g2, g3)f(g1, g2g3)f(g3, g2)f(g3, g1) = f(g2, g3)f(g1, g3)f(g3, g1)f(g3g1, g2) (11.84)

Now canceling some factors and using that A is abelian we have

f(g1, g2g3)f(g3, g2) = f(g1, g3)f(g3g1, g2) (11.85)

Now use the fact that G is abelian to write this as

f(g1, g3g2)f(g3, g2) = f(g1, g3)f(g1g3, g2) (11.86)
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which is the cocycle identity. This proves the bimultiplicative property (11.80). ♠
For a large class of abelian groups G, namely those which are (noncanonically!) prod-

ucts of finitely generated discrete abelian groups, tori, and vector spaces, we have the

following theorem:

Theorem Let G be a topological abelian group of the above class. The isomorphism

classes of central extensions of G by U(1) are in one-one correspondence with continuous

bimultiplicative maps

κ : G×G→ U(1) (11.87)

which are alternating (and hence skew).

For a proof of the theorem see27

In other words, given the commutator function κ one can always find a corresponding

cocycle f . This theorem is useful because κ is invariant under change of f by a coboundary,

and moreover the bimultiplicative property is simpler to check than the cocycle identity.

(In fact, one can show that it is always possible to find a cocycle f which is bimultiplicative.

This property automatically ensures the cocycle relation.) It is important to realize that

κ only characterizes G̃ up to noncanonical isomorphism: to give a definite group one must

choose a definite cocycle.

Now let us turn to a special class of central extensions of an abelian group G by an

abelian group A, the Heisenberg extensions. By the above theorem, a central extension is

characterized by a commutator function κ. The function κ is said to be nondegenerate if

for all g1 6= 1 there is a g2 with κ(g1, g2) 6= 1. When this is the case the center of G̃ is

precisely A. If κ is degenerate the center will be larger.

One definition which is used in the literature is

Definition: A Heisenberg extension is a central extension of an abelian group G by an

abelian group A where the commutator function κ is nondegenerate.

The reader should beware that in the literature there is another and narrower defi-

nition of the term “Heisenberg group.” Suppose R is a commutative ring with identity.

(See the next chapter, or just take R = Z/NZ with abelian group structure + and extra

multiplication structure n̄1n̄2 = n1n2. ) Then we can consider the group of 3× 3 matrices

over R of the form

M(a, b, c) :=



1 a c

0 1 b

0 0 1


 (11.88)

The multiplication law is easily worked out to be

M(a, b, c)M(a′, b′, c′) =M(a+ a′, b+ b′, c+ c′ + ab′) (11.89)

27D. Freed, G. Moore, G. Segal, “The uncertainty of fluxes,” Commun.Math.Phys. 271 (2007) 247-274,

arXiv:hep-th/0605198, Proposition A.1.
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Therefore, as abelian groups we have an extension

0 → R→ Heis(R×R) → R×R→ 0 (11.90)

with cocycle f((a, b), (a′, b′)) = ab′ and commutator

κ((a, b), (a′, b′)) = ab′ − a′b (11.91)

We now relate this notion of Heisenberg group to the Heisenberg extensions above.

First, let us generalize the Heisenberg groups slightly: If we have a bilinear map c : R×R→
Z where Z is abelian, and written additively, then we can define a central extension

0 → Z → G̃→ R×R→ 0 (11.92)

by the law

(z1, (a, b)) · (z2, (a′, b′)) = (z1 + z2 + c(a, b′), (a+ a′, b+ b′)) (11.93)

The corresponding group cocycle is f((a, b), (a′, b′)) = c(a, b′) and it will be a Heisenberg

extension if κ : (R × R) × (R × R) → Z given by κ((a, b), (a′, b′)) = c(a, b′) − c(a′, b) is

nondegenerate.

Example: The group Heis(Zn×Zn). Let us specialize the above discussion to R = Z/nZ,

written additively. Then we define

U =



1̄ 1̄ 0

0 1̄ 0

0 0 1̄


 V =



1̄ 0 0

0 1̄ 1̄

0 0 1̄


 q =



1̄ 0 1̄

0 1̄ 0

0 0 1̄


 (11.94)

We easily check that for a ∈ Z,

Ua =



1 ā 0

0 1 0

0 0 1


 V a =



1 0 0

0 1 ā

0 0 1


 qa =



1 0 ā

0 1 0

0 0 1


 (11.95)

And moreover,

UV = qV U qU = Uq qV = V q (11.96)

Thus we obtain a presentation:

Heis(Zn × Zn) = 〈U, V, q|Un = V n = qn = 1, UV = qV U, Uq = qU, V q = qV 〉
(11.97)

It is interesting to look at the Heisenberg extension

1 → Zn → Heis(Zn × Zn) → Zn × Zn → 1 (11.98)

where we think of Zn as the multiplicative group of nth roots of unity. Let ω = exp[2πi/n].

We distinguish the three Zn factors by writing ω1, ω2, ω3. Then the cocycle is

f
(
(ωs1, ω

t
2), (ω

s′
1 , ω

t′
2 )
)
:= ωst

′

3 (11.99)
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The corresponding commutator function is

κ
(
(ωs1, ω

t
2), (ω

s′

1 , ω
t′

2 )
)
:= ωst

′−ts′

3 (11.100)

To connect with our general theory of extensions let U := (1, (ω1, 1)), V := (1, (1, ω2)) and

compute

UV = (f((ω1, 1), (1, ω2)), (ω1, ω2))

= (ω3, (ω1, ω2))

V U = (f((1, ω2), (ω1, 1)), (ω1, ω2))

= (1, (ω1, ω2))

(11.101)

or in other words, since the center is generated by q = (ω3, (1, 1)) we can write:

UV = qV U (11.102)

Remarks

1. Let us compare a general Heisenberg extension

1 → Z → G̃→ G→ 0 (11.103)

with (11.92)(11.93). The difference is that G has been split into R × R. For a

general Heisenberg extension with commutator function κ we can define a Lagrangian

subgroup to be a maximal subgroup L ⊂ G such that κ(g1, g2) = 1 for all pairs

(g1, g2) ∈ L. Since κ is nondegenerate there will be a complementary Lagrangian

subgroup L′ so that G = L × L′. However, the maximal subgroup is in general not

unique and so this decomposition of G is noncanonical.

2. This construction is extremely important in quantum mechanics and in the descrip-

tion of free quantum field theories. In these cases we take a vector space V and its

dual V ∨ and use the pairing to define a cocycle valued in Z =
√
−1R. We will discuss

all that in detail in the chapter on representations.

Exercise

a.) Prove (11.74) by using the action on wavefunctions (11.72).

b.) Show that the choice of section

s(α, β) = U(α)V (β) (11.104)

leads to the cocycle

f((α1, β1), (α2, β2) = ei~(α1β1+α2β2+α1β2) (11.105)

c.) Show that the choice of section

s(α, β) = exp[i~(αp̂ + βq̂)] (11.106)
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leads to the cocycle

f((α1, β1), (α2, β2) = e
i
2
~(α1β2−α2β1) (11.107)

d.) Show that in both cases the commutator function is

κ((α1, β1), (α2, β2) = ei~(α1β2−α2β1) (11.108)

Exercise Alternating implies skew

Show that a map κ : G ×G → A which satisfies the bimultiplicative identity (11.80)

and the alternating identity (11.79) is also skew, that is, satisfies (11.78).

Exercise

In an exercise above we listed the extensions of Z2 × Z2 by Z2. Which one is the

Heisenberg extension?

Exercise Degenerate Heisenberg extensions

Suppose n = km is composite and suppose we use the function ck(a, b
′) = kab′ in

defining an extension of Zn × Zn.

a.) Show that the commutator function is now degenerate.

b.) Show that the center of the central extension is larger than Zn. Compute it. 28

While these are not - strictly speaking - Heisenberg extensions people will often refer to

them as Heisenberg extensions. We might call them “degenerate Heisenberg extensions.”

11.4 General Extensions

Let us briefly return to the general extension (11.1). We might ask what happens if we try

to apply the reasoning of the previous section to this general case. Thus, we are now not

assuming that N or Q is abelian.

What we showed is that for any group extension a choice of a section automatically

gives us two maps:

1. ωs : Q→ Aut(N)

2. fs : Q×Q→ N

28The center is generated by q, Um, V m and is Zn × Zk × Zk.
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defined by

ι(ωs,q(n)) = s(q)ι(n)s(q)−1 (11.109)

and

s(q1)s(q2) = ι(fs(q1, q2))s(q1, q2) (11.110)

respectively.

Now (11.109) defines an element of Aut(N) for fixed s and q, but the map q 7→ ωs,q
need not be a homomorphism. Rather, using (11.109) and (11.110) we can derive a twisted

version of the homomorphism rule:

ωs,q1 ◦ ωs,q2 = I(fs(q1, q2)) ◦ ωs,q1q2 (11.111)

Recall that I(a) denotes the inner automorphism given by conjugation by a.

Moreover, using (11.110) to relate s(q1)s(q2)s(q3) to s(q1q2q3) in two ways gives a

twisted cocycle relation:

ωs,q1(fs(q2, q3))fs(q1, q2q3) = fs(q1, q2)fs(q1q2, q3) (11.112)

Note the difference from (11.33) is in the action of ω on the first term. Also, the order of

the terms is very important since we no longer assume that N is abelian.

Conversely, given the data of two maps:

1. A map f : Q×Q→ N

2. A map ω : Q→ Aut(N)

satisfying (11.111) and (11.112) we can construct an extension (11.1) with the multi-

plication law:

(n1, q1) ·f,ω (n2, q2) := (n1ωq1(n2)f(q1, q2), q1q2) (11.113)

With a few lines of algebra, using the identities (11.111) and (11.112) one can check the

associativity law. Note that this formula simultaneously generalizes the twisted product of

a semidirect product (10.2) and the twisted product of a central extension (11.42).

If we change the choice of section by a function t : Q→ N then we have

s̃(q) = ι(t(q))s(q) (11.114)

and one easily computes that we now have

ωs̃,q = I(t(q)) ◦ ωs,q (11.115)

fs̃(q1, q2) = t(q1)ωs,q1(t(q2))fs(q1, q2)t(q1q2)
−1 (11.116)

Equation (11.116) generalizes the coboundary relation (11.39) of central extension theory.
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The relations (11.115) and (11.116) define an equivalence relation on the pairs (ω, f)

satisfying (11.111) and (11.112) and the theorem generalizing the main theorem of Sec-

tion **** on central extensions states that isomorphism classes of extensions are in 1-1

correspondence with the equivalence classes [(ω, f)].

Exercise Checking the group laws

Show that (11.113) really defines a group structure.

a.) Check the associativity relation.

b.) What is the identity element? 29

c.) Check that every element has an inverse.

Exercise

Show that for an arbitrary extension q 7→ [ωq] defines a homomorphism Q→ Out(N),

to the outer automorphisms of N .

11.4.1 Non-central extensions when N is abelian

An important special case is where N = A is abelian, but ι(A) is not necessarily central in

G.

Noncentral extensions of this type are useful in studying symmetries involving time-

reversal and/or “charge-conjugation” (in the sense of condensed matter physics).

In this case, the inner automorphisms on N are trivial so (11.111) simplifies to a

homomorphism ω : Q → Aut(N). Moreover, from (11.115) we see that ω is independent

of the choice of section. In this case, with the action of G on A understood through ω

the solutions of (11.112) modulo (11.116) define again a cohomology group H2+ω(G,A),

where the superscript ω reminds us that G acts on A through ω. This is a simple example

of what is known as twisted cohomology.

The analog of Theorem *** above is:

Theorem: Let α : G → Aut(A) be a fixed homomorphism. Then the set of isomo-

prhism classes of extensions of the form

1 → A→ G̃→ Q→ 1 (11.117)

which induce the automorphism α, denoted Extα(G,A), is in 1-1 correspondence with the

twisted cohomology H2+α(Q,A).

29Answer : (f(1, 1)−1, 1Q).
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11.5 Group cohomology in other degrees

Motivations:

a.) The word “cohomology” suggests some underlying chain complexes, so we will

show that there is such a formulation.

b.) There has been some discussion of higher degree group cohomology in physics in

1. The theory of anomalies (Faddeev-Shatashvili; Segal; Carey et. al.; Mathai et. al.;

... )

2. Classification of rational conformal field theories (Moore-Seiberg; Dijkgraaf-Vafa-

Verlinde-Verlinde; Dijkgraaf-Witten; Kapustin-Saulina)

3. Condensed matter/topological phases of matter (Kitaev; Wen; ...)

4. Three-dimensional Chern-Simons theory and three dimensional supersymmetric gauge

theory.

So here we’ll just give a few definitions.

11.5.1 Definition

Suppose we are given any group G and an abelian group A (written additively in this

section) and a homomorphism

α : G→ Aut(A) (11.118)

Definition: An n-cochain is a function φ : G×n → A. The space of n-cochains is

denoted Cn(G,A).

Note that Cn(G,A) is an abelian group using the abelian group structure of A on the

values of φ, that is: (φ1 + φ2)(~g) := φ1(~g) + φ2(~g).

Define a group homomorphism: d : Cn(G,A) → Cn+1(G,A)

(dφ)(g1, . . . , gn+1) := αg1 (φ(g2, . . . , gn+1))

− φ(g1g2, g3, . . . , gn+1) + φ(g1, g2g3, . . . , gn+1)± · · · + (−1)nφ(g1, . . . , gn−1, gngn+1)

+ (−1)n+1φ(g1, . . . , gn)

(11.119)

We interpret a 0-cochain φ0 to be some element φ0 = a ∈ A. Then we have, for n = 0:

(dφ0)(g) = αg(a)− a (11.120)

For n = 1 φ1 : G→ A and the differential acts as:

(dφ1)(g1, g2) = αg1 (φ1(g2))− φ1(g1g2) + φ1(g1) (11.121)

(dφ2)(g1, g2, g3) = αg1 (φ2(g2, g3))− φ2(g1g2, g3) + φ2(g1, g2g3)− φ2(g2, g3) (11.122)

(dφ3)(g1, g2, g3, g4) = αg1 (φ3(g2, g3, g4))−φ3(g1g2, g3, g4)+φ3(g1, g2g3, g4)−φ3(g1, g2, g3g4)+φ3(g1, g2, g3)
(11.123)
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The set of n-cocycles is defined to be the subgroup Zn(G,A) ⊂ Cn(G,A) that satisfy

dφn = 0.

Next, one can check that for any φ, d(dφ) = 0. (We give a simple proof below.)

Therefore, we can define a subgroup Bn(G,A) ⊂ Zn(G,A) by

Bn(G,A) := {φn|∃φn−1 s.t. dφn−1 = φn} (11.124)

Then the group cohomology is defined to be the quotient

Hn(G,A) = Zn(G,A)/Bn(G,A) (11.125)

Remarks:

1. Remembering that we are now writing our abelian group A additively, we see that

the equation (dφ2) = 0 is just the twisted 2-cocycle conditions, and φ′2 = φ2+dφ1 are

two different twisted cocycles related by a coboundary. See equations **** above.

2. Homogeneous cocycles: A nice way to prove that d2 = 0 is the following. We define

homogeneous n-cochains to be maps ϕ : Gn+1 → A which satisfy

ϕ(hg0, hg1, . . . , hgn) = αh (ϕ(g0, g1, . . . , gn)) (11.126)

Let Cn(G,A) denote the abelian group of such homogeneous group cochains. Define

δ : Cn(G,A) → Cn+1(G,A) (11.127)

by

δφ(g0, . . . , gn+1) :=

n+1∑

i=0

(−1)iϕ(g0, . . . , ĝi, . . . , gn+1) (11.128)

where ĝi means the argument is omitted. It is then very straightforward to prove

that δ2 = 0. Indeed, if ϕ ∈ Cn−1(G,A) we compute:

δ2ϕ(g0, . . . , gn+1) =

n+1∑

i=0

(−1)i
( i−1∑

j=0

(−1)jϕ(g0, . . . , ĝj , . . . , ĝi, . . . , gn+1)

−
n+1∑

j=i+1

(−1)jϕ(g0, . . . , ĝi, . . . , ĝj , . . . , gn+1)
)

=
∑

0≤j<i≤n+1

(−1)i+jϕ(g0, . . . , ĝj , . . . , ĝi, . . . , gn+1)

−
∑

0≤i<j≤n+1

(−1)i+jϕ(g0, . . . , ĝi, . . . , ĝj , . . . , gn+1)

= 0

(11.129)

Now, we can define an isomorphism ψ : Cn(G,A) → Cn(G,A) by defining

φn(g1, . . . , gn) := ϕn(1, g1, g1g2, . . . , g1 · · · gn) (11.130)

That is, when φn and ϕn are related this way we say φn = ψ(ϕn). Now one can check

that the simple formula (11.128) becomes the more complicated formula (11.119).

Put more formally: there is a unique d so that dψ = ψδ.
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3. Where do all these crazy formulae come from? The answer is in topology. We will

indicate it briefly in our discussion of categories and groupoids below.

11.5.2 Interpreting the meaning of H0

These are just fixed points of the αg action.

11.5.3 Interpreting the meaning of H1

Let us interpret the cohomology group H1(G,A). For simplicity let us take α to be trivial,

so that αg(a) = a for all a ∈ A and g ∈ G. Then dφ0 = 0 for any 0-cochain and for a

1-cochain

(dφ)(g1, g2) = φ(g2)− φ(g1g2) + φ(g1) (11.131)

so the equation dφ = 0 is equivalent to saying that φ : G→ A is just a homomorphism.

Now, suppose we know that a 2-cocycle φ2 induces the zero cohomology class, [φ2] = 0.

Then we say that a trivialization of φ2 is a choice of φ1 so that φ2 = dφ1. Note that two

different trivializations differ by a 1-cocycle and hence:

There is a 1-1 correspondence between the trivializations of trivializable 2-cocycles and

elements of H1(G,A).

This is an example of a general pattern in cohomology theory: If a cocycle is trivial-

izable, the isomorphism classes of trivializations can be identified with the cohomology of

one degree lower.

Remark: Now suppose α 6= 1. It turns out there is still a nice interpretation of

H1+α(G,A). We can study the automorphisms of extensions in Extα. Conjugation by

elements of A are trivially such automorphisms and one can show that H1+α(G,A) acts

on Aut(Extα)/A.

11.5.4 Interpreting the meaning of H3

To see one interpretation of H3 in terms of extension theory let us return to the analysis

of general extensions in §11.4.
It follows from (11.111) and (11.115) that a general extension (11.1) has a canonically

associated homomorphism

ω̄ : Q→ Out(N) (11.132)

where Out(N) is the group of outer automorphisms of N .

The natural question arises: Given a homomorphism ω̄ as in (11.132) is there a cor-

responding extension of Q by N inducing ω̄?

To answer this question we could proceed by choosing for each q ∈ Q an automorphism

ξq ∈ Aut(N) such that [ξq] = ω̄q in Out(N). We know that for all q1, q2 ∈ Q

ξq1 ◦ ξq2 ◦ ξ−1
q1q2 ∈ Inn(N) (11.133)

Therefore, for every q1, q2 we may choose an element f(q1, q2) ∈ N so that

ξq1 ◦ ξq2 ◦ ξ−1
q1q2 = I(f(q1, q2)) (11.134)
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i.e.

ξq1 ◦ ξq2 = I(f(q1, q2)) ◦ ξq1q2 (11.135)

Of course, the choice of f(q1, q2) is ambiguous by an element of Z(N)!

Equation (11.135) is of course just (11.111) written in slightly different notation.

Therefore, as we saw in §11.4, if f(q1, q2) were to satisfy the the twisted cocycle condi-

tion (11.112) then we could use (11.113) to define an extension inducing ω̄.

Therefore, let us check if some choice of f(q1, q2) actually does satisfy the twisted

cocycle condition. Looking at the RHS of (11.112) we compute:

I(f(q1, q2)f(q1q2, q3)) = I(f(q1, q2))I(f(q1q2, q3))

=
(
ξq1 ◦ ξq2 ◦ ξ−1

q1q2

)
◦
(
ξq1q2 ◦ ξq3 ◦ ξ−1

q1q2q3

)

= ξq1 ◦ ξq2 ◦ ξq3 ◦ ξ−1
q1q2q3

(11.136)

On the other hand, looking at the LHS of (11.112) we compute:

I(ξq1(f(q2, q3))f(q1, q2q3)) = I(ξq1(f(q2, q3)))I(f(q1, q2q3))

= ξq1 ◦ I((f(q2, q3))) ◦ ξ−1
q1 ◦ I(f(q1, q2q3)

= ξq1 ◦
(
ξq2 ◦ ξq3 ◦ ξ−1

q2q3

)
◦ ξ−1

q1 ◦
(
ξq1 ◦ ξq2q3 ◦ ξ−1

q1q2q3

)

= ξq1 ◦ ξq2 ◦ ξq3 ◦ ξ−1
q1q2q3

(11.137)

Therefore, comparing (11.136) and (11.137) we conclude that

I(ξq1(f(q2, q3))f(q1, q2q3)) = I(f(q1, q2)f(q1q2, q3)) (11.138)

We cannot conclude that f satisfies the twisted cocycle equation from this identity because

inner transformations are trivial for elements in the center Z(N). Rather, what we can

conclude is that for every q1, q2, q3 there is an element z(q1, q2, q3) ∈ Z(N) such that

f(q1, q2)f(q1q2, q3) = z(q1, q2, q3)ξq1(f(q2, q3))f(q1, q2q3) (11.139)

Now, one can check (with a lot of algebra) that

1. z is a cocycle in Z3(Q,Z(N)).

2. Changes in choices of ξq and f(q1, q2) lead to changes in z by a coboundary.

and therefore we conclude:

Theorem 11.5.4.1 : Given ω̄ : Q → Out(N) there exists an extension of Q by N iff

the cohomology class [z] ∈ H3(Q,Z(N)) vanishes.

Moreover

Theorem 11.5.4.2 : If [z] = 0 then the isomorphism classes of trivializations of z

are in 1-1 correspondence with elements H2(Q,Z(N)) and are hence in 1-1 correspondence

with isomorphism classes of extensions of Q by N .

Note that Theorem 11.5.4.2 gives an interpretation H2(Q,Z(N)) quite analogous to

the interpretation of H1 discussed in §11.5.3.
*************************

Next time: Do interpretations of H0,H1,H2,H3 more systematically. Consult: S.

MacLane, Retiring Presidential Address, Bull. Amer. Math. Soc. 82 (1976), 1-4.

*************************
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11.6 Some references

Some online sources with links to further material are

1. http://en.wikipedia.org/wiki/Group-extension

2. http://ncatlab.org/nlab/show/group+extension

3 http://terrytao.wordpress.com/2010/01/23/some-notes-on-group-extensions/

4. Section 11.5.4, known as the Artin-Schreier theory, is based on a nice little note by

P.J. Morandi,

http://sierra.nmsu.edu/morandi/notes/GroupExtensions.pdf

5. Jungmann, Notes on Group Theory

Textbooks:

1. K. Brown, Group Cohomology

2. Karpilovsky, The Schur Multiplier

12. Overview of general classification theorems for finite groups

In general if a mathematical object proves to be useful then there is always an associated

important problem, namely the classification of these objects.

For example, with groups we can divide them into classes: finite and infinite, abelian

and nonabelian producing a four-fold classication:

Finite abelian Finite nonabelian

Infinite abelian Infinite nonabelian

But this is too rough, it does not give us a good feeling for what the examples really

are.

Once we have a “good” criterion we often can make a nontrivial statement about the

general structure of objects in a given class. Ideally, we should be able to construct all the

examples algorithmically, and be able to distinguish the ones which are not isomorphic.

Of course, finding such a “good” criterion is an art. For example, classification of infinite

nonabelian groups is completely out of the question. But in Chapter *** we will see that

an important class of infinite nonabelian groups, the compact semisimple Lie groups, have

a very beautiful classification.

One might well ask: Can we classify finite groups? In this section we survey a little of

what is known about this problem.
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12.1 Brute force

If we just start listing groups of low order we soon start to appreciate what a jungle is out

there.

But let us try, if only as an exercise in applying what we have learned so far. First,

let us note that for groups of order p where p is prime we automatically have the unique

possibility of the cyclic group Z/pZ. Similarly, for groups of order p2 there are precisely

two possibilities: Z/p2Z and Z/pZ × Z/pZ. This gets us through many of the low order

cases.

Given this remark the first nontrivial order to work with is |G| = 6. By Cauchy’s

theorem there are elements of order 2 and 3. Call them b, with b2 = 1 and a with a3 = 1.

Then (bab)3 = 1, so either

1. bab = a which implies ab = ba which implies G = Z2 × Z3 = Z6

2. bab = a−1 which implies G = D3.

This is the first place we meet a nonabelian group. It is the dihedral group, the first

of the series we saw before

Dn = 〈a, b|an = b2 = 1, bab = a−1〉 (12.1)

and has order 2n. There is a special isomorphism D3
∼= S3 with the symmetric group on

three letters.

The next nontrivial case is |G| = 8. Here we can invoke Sylow’s theorem: If pk||G|
then G has a subgroup of order pk. Let us apply this to 4 dividing |G|. Such a subgroup

has index two and hence must be a normal subgroup, and hence fits in a sequence

1 → N → G→ Z2 → 1 (12.2)

Now, N is of order 4 so we know that N ∼= Z2 × Z2 or N ∼= Z4. If we have

1 → Z4 → G→ Z2 → 1 (12.3)

then we have α : Z2 → Aut(Z4) ∼= Z2 and there are exactly two such homomorphisms.

Moreover, for a fixed α there are two possibilities for the square σ̃2 ∈ Z4 where σ̃ is a lift

of the generator of Z2. Altogether this gives four possibilities:

1 → Z4 → Z2 × Z4 → Z2 → 1 (12.4)

1 → Z4 → Z8 → Z2 → 1 (12.5)

1 → Z4 → D4 → Z2 → 1 (12.6)

1 → Z4 → D̃2 → Z2 → 1 (12.7)

Here we meet the first of the series of dicyclic or binary dihedral groups defined by

D̃n := 〈a, b|a2n = 1, an = b2, b−1ab = a−1〉 (12.8)

It has order 4n. There is a special isomorphism of D̃2 with the quaternion group.
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The other possibility for N is Z2 × Z2 and here one new group is found, namely

Z2 × Z2 × Z2.

Thus there are 5 inequivalent groups of order 8.

The next few cases are trivial until we get to |G| = 12. By Cauchy’s theorem there are

subgroups isomorphic to Z2, so we can view G as an extension of D3 or Z6 by Z2. There

is also a subgroup isomorphic to Z3 so we can view it as an extension of an order 4 group

by an order 3 group. We skip the analysis and just present the 5 distinct order 12 groups.

In this way we find the groups forming the pattern at lower order:

Z12, ,Z2 × Z6, ,D6, , D̃3 (12.9)

And we find one “new” group: A4 ⊂ S4.

We can easily continue the table until we get to order |G| = 16. At order 16 there are

14 inequivalent groups! So we will stop here. 30

30See, however, M. Wild, “Groups of order 16 made easy,” American Mathematical Monthly, Jan 2005
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Order Presentation name

1 〈a|a = 1〉 Trivial group

2 〈a|a2 = 1〉 Cyclic Z/2Z

3 〈a|a3 = 1〉 Cyclic Z/3Z

4 〈a|a4 = 1〉 Cyclic Z/4Z

4 〈a, b|a2 = b2 = (ab)2 = 1〉 Dihedral D2
∼= Z/2Z× Z/2Z, Klein

5 〈a|a5 = 1〉 Cyclic Z/5Z

6 〈a, b|a3 = 1, b2 = 1, bab = a〉 Cyclic Z/6Z ∼= Z/2Z× Z/3Z

6 〈a, b|a3 = 1, b2 = 1, bab = a−1〉 Dihedral D3
∼= S3

7 〈a|a7 = 1〉 Cyclic Z/7Z

8 〈a|a8 = 1〉 Cyclic Z/8Z

8 〈a, b|a2 = 1, b4 = 1, aba = b〉 Z/2Z× Z/4Z

8 〈a, b, c|a2 = b2 = c2 = 1, [a, b] = [a, c] = [b, c] = 1〉 Z/2Z× Z/2Z × Z/2Z

8 〈a, b|a4 = 1, b2 = 1, bab = a−1〉 Dihedral D4

8 〈a, b|a4 = 1, a2 = b2, b−1ab = a−1〉 Dicyclic D̃2
∼= Q, quaternion

9 〈a|a9 = 1〉 Cyclic Z/9Z

9 〈a, b|a3 = b3 = 1, [a, b] = 1〉 Z/3Z× Z/3Z

10 〈a|a10 = 1〉 Cyclic Z/10Z ∼= Z/2Z× Z/5Z

10 〈a|a5 = b2 = 1, bab = a−1〉 Dihedral D5

11 〈a|a11 = 1〉 Cyclic Z/11Z

12 〈a|a12 = 1〉 Cyclic Z/12Z ∼= Z/4Z× Z/3Z

12 〈a, b|a2 = 1, b6 = 1, [a, b] = 1〉 Z/2Z× Z/6Z

12 〈a, b|a6 = 1, b2 = 1, bab = a−1〉 Dihedral D6

12 〈a, b|a6 = 1, a3 = b2, b−1ab = a−1〉 Dicyclic D̃3

12 〈a, b|a3 = 1, b2 = 1, (ab)3 = 1〉 Alternating A4

13 〈a|a13 = 1〉 Cyclic Z/13Z

14 〈a|a14 = 1〉 Cyclic Z/14Z ∼= Z/2Z× Z/7Z

14 〈a, b|a7 = 1, b2 = 1, bab = a−1〉 Dihedral D7

15 〈a|a15 = 1〉 Cyclic Z/15Z ∼= Z/3Z× Z/5Z

Remarks:

1. Explicit tabulation of the isomorphism classes of groups was initiated by by Otto

Holder who completed a table for |G| ≤ 200 about 100 years ago. Since then there

has been much effort in extending those results. For surveys see

1. J.A. Gallan, “The search for finite simple groups,” Mathematics Magazine, vol.

49 (1976) p. 149. (This paper is a bit dated.)
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Figure 10: A plot of the number of nonisomorphic groups of order n. This plot was taken from

the book by D. Joyner, Adventures in Group Theory.

2. H.U. Besche, B. Eick, E.A. O’Brian, “A millenium project: Constructing Groups

of Small Order,”

2. There are also nice tables of groups of low order, in Joyner, Adventures in Group

Theory, pp. 168-172, and Karpilovsky, The Schur Multiplier which go beyond the

above table.

3. There are also online resources:

1. http://www.gap-system.org/ for GAP

2. http://hobbes.la.asu.edu/groups/groups.html for groups of low order.

3. http://www.bluetulip.org/programs/finitegroups.html

4. http://en.wikipedia.org/wiki/List-of-small-groups

4. The number of isomorphism types of groups jumps wildly. Apparently, there are

49, 487, 365, 422 isomorphism types of groups of order 210 = 1024. (Besche et. al.

loc. cit.) The remarkable plot of Figure 10 from Joyner’s book shows a plot of the

number of isomorphism classes vs. order up to order 100. Figure 11 shows a log plot

of the number of groups up to order 2000.

Exercise Relating the binary dihedral and dihedral groups
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Figure 11: A logarithmic plot of the number of nonisomorphic groups of order n out to n ≤ 2000.

This plot was taken from online encyclopedia of integer sequences, OEIS.

Show that D̃n is a double-cover of Dn which fits into the exact sequence:

Z2

��

Z2

��

1 // Z2n
// D̃n

��

// Z2
// 1

1 // Zn // Dn
// Z2

// 1

(12.10)

12.2 Finite Abelian Groups

The upper left box of our rough classification can be dealt with thoroughly, and the result

is extremely beautiful.

In this subsection we will write our abelian groups additively.

Recall that we have shown that if p and q are positive integers then
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0 → Z/gcd(p, q)Z → Z/pZ⊕ Z/qZ → Z/lcm(p, q)Z → 0 (12.11)

and in particular, if p, q are relatively prime then

Z/pZ⊕ Z/qZ ∼= Z/pqZ. (12.12)

It thus follows that if n has prime decomposition

n =
∏

i

peii (12.13)

then

Z/nZ ∼= ⊕iZ/p
ei
i Z (12.14)

This decomposition has a beautiful generalization to an arbitrary finite abelian group:

Kronecker Structure Theorem. Any finite abelian group is a direct product of cyclic

groups of order a prime power. That is, we firstly have the decomposition:

G = G2 ⊕G3 ⊕G5 ⊕G7 ⊕ · · ·
= ⊕p primeGp

(12.15)

where Gp has order pn for some n ≥ 0 (n can depend on p, and for all but finitely many p,

Gp = {0}.) And, secondly, each nonzero factor Gp can be written:

Gp = ⊕iZ/(p
niZ) (12.16)

for some finite collection of positive integers ni (depending on p).

Proof : The proof proceeds in two parts. The first, easy, part shows that we can split G

into a direct sum of “p-groups” (defined below). The second, harder, part shows that an

arbitrary abelian p-group is a direct sum of cyclic groups.

For part 1 of the proof let us consider an arbitrary finite abelian group G. We will

write the group multiplication additively. Suppose n is an integer so that ng = 0 for all

g ∈ G. To fix ideas let us take n = |G|. Suppose n = m1m2 where m1,m2 are relatively

prime integers. Then there are integers s1, s2 so that

s1m1 + s2m2 = 1 (12.17)

Therefore any element g can be written as

g = s1(m1g) + s2(m2g) (12.18)

Now m1G and m2G are subgroups and we claim that m1G ∩ m2G = {0}. If a ∈
m1G ∩m2G then m1a = 0 and m2a = 0 and hence (12.18) implies a = 0. Thus,

G = m1G⊕m2G (12.19)
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Moreover, we claim that m1G = {g ∈ G|m2g = 0}. It is clear that every element in m1G

is killed by m2. Suppose on the other hand that m2g = 0. Again applying (12.18) we see

that g = s1m1g = m1(s1g) ∈ m1G.

Thus, we can decompose

G = ⊕Gp (12.20)

where Gp is the subgroup of G of elements whose order is a power of p.

If p is a prime number then a p-group is a group all of whose elements have order a

power of p. Now for part 2 of the proof we show that any abelian p-group is a direct sum

of the form (12.16). The proof of this statement proceeds by induction and is based on a

systematic application of Cauchy’s theorem: If p divides |G| then there is an element of

G of order precisely p. One proves Cauchy’s theorem for abelian groups by induction on

the order. If p divides |G| and G is not Z/pZ then G has a nontrivial proper subgroup H.

Then p divides H or G/H. In either case there is an element of order p. In the second case

one needs to argue a little further to produce an element in G of order p.

Now, note that any p-group G has an order which is a power pn for some n. If not,

then |G| = pnq where q is relatively prime to p. But then - by Cauchy’s theorem - there

would have to be an element of G whose order is a prime divisor of q.

Next we claim that if an abelian p-group has a unique subgroup H of order p then G

itself is cyclic.

To prove this we again proceed by induction on |G|. Consider the subgroup defined

by:

H = {g|pg = 0} (12.21)

From Cauchy’s theorem we see that H cannot be the trivial group, and hence this must

be the unique subgroup of order p. On the other hand, H is manifestly the kernel of the

homomorphism φ : G → G given by φ(g) = pg. Again by Cauchy, φ(G) has a subgroup

of order p, but this must also be a subgroup of G, which contains φ(G), and hence φ(G)

has a unique subgroup of order p. By the induction hypothesis, φ(G) is cyclic. But now

φ(G) ∼= G/H, so let g0 + H be a generator of the cyclic group G/H. Next we claim

that H ⊂ 〈g0〉. Since G is a p-group the subgroup 〈g0〉 is a p-group and hence contains a

subgroup of order p (by Cauchy) but (by hypothesis) there is a unique such subgroup in

G and any subgroup of 〈g0〉 is a subgroup of G, so H ⊂ 〈g0〉. But now take any element

g ∈ G. On the one hand it must project to an element [g] ∈ G/H. Thus must be of the

form [g] = kg0 +H, since g0 +H generates G/H. That means g = kg0 + h, h ∈ H, but

since H ⊂ 〈g0〉 we must have h = ℓg0 for some integer ℓ. Therefore G = 〈g0〉 is cyclic.
The final step proceeds by showing that if G is a finite abelian p-group and M is a

cyclic subgroup of maximal order then G = M ⊕ N for some subgroup N . Once we have

established this the desired result follows by induction.

So, now suppose that that G has a cyclic subgroup of maximal order M . If G is cyclic

then N = {0}. If G is not cyclic then we just proved that there must be at least two distinct

subgroups of order p. One of them is in M . Choose another one, say K is not. Note that

K must not be in M , because M is cyclic and has a unique subgroup of order p. Therefore

K ∩M = {0}. Therefore (M +K)/K ∼= M . Therefore (M +K)/K is a cyclic subgroup
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of G/K. Any element g + K has an order which divides |g|, and |g| ≤ |M | since M is a

maximal cyclic subgroup. Therefore the cyclic subgroup (M +K)/K is a maximal order

cyclic subgroup of G/K. Now the inductive hypothesis implies G/K = (M+K)/K⊕H/K
for some subgroup K ⊂ H ⊂ G. But this means (M+K)∩H = K and henceM∩H = {0}
and hence G =M ⊕H. ♠

For other proofs see

1. S. Lang, Algebra, ch. 1, sec. 10.

2. I.N. Herstein, Ch. 2, sec. 14.

3. J. Stillwell, Classical Topology and Combinatorial Group Theory.

4. Our proof is based on G. Navarro, “On the fundamental theorem of finite abelian

groups,” Amer. Math. Monthly, Feb. 2003, vol. 110, p. 153.

Exercise

Show that an alternative of the structure theorem is the statement than any finite

abelian group is isomorphic to

Zn1 ⊕ Zn1 ⊕ · · · ⊕ Znk
(12.22)

where

n1|n2 & n2|n3 & · · · & nk−1|nk (12.23)

Write the ni in terms of the prime powers in (12.16).

Exercise p-groups

a.) Show that Z4 is not isomorphic to Z2 ⊕ Z2.

b.) Show more generally that if p is prime Zpn and Zpn−m ⊕Zpm are not isomorphic if

0 < m < n.

c.) How many nonisomorphic abelian groups have order pn?

Exercise

Suppose e1, e2 ∈ Z2 are two linearly independent vectors (over Q). Let Λ = 〈e1, e2〉 ⊂
Z2 be the sublattice generated by these vectors. Then Z2/Λ is a finite abelian group.

Compute its Kronecker decomposition in terms of the coordinates of e1, e2.
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12.3 Finitely generated abelian groups

It is hopeless to classify all infinite abelian groups, but a “good” criterion that leads to an

interesting classification is that of finitely generated abelian groups.

Any abelian group has a canonically defined subgroup known as the torsion subgroup,

and denoted Tors(G). This is the subgoup of elements of finite order :

Tors(G) := {g ∈ G|∃n ∈ Z ng = 0} (12.24)

where we are writing the group G additively, so ng = g + · · ·+ g.

One can show that any finitely generated abelian group fits in an exact sequence

0 → Tors(G) → A→ Zr → 0 (12.25)

where Tors(G) is a finite abelian group.

For a proof, see, e.g., S. Lang, Algebra .

Moreover (12.25) is a split extension, that is, it is isomorphic to 31

Zr ⊕ Tors(G) (12.26)

The integer r, called the rank of the group, and the finite abelian group Tors(G) are

invariants of the finitely generated abelian group. Since we have a general picture of the

finite abelian groups we have now got a general picture of the finitely generated abelian

groups.

Remarks

1. The groups C,R,Q under addition are abelian but not finitely generated. To see that

Q is not finitely generated consider any finite set of fractions {p1q1 , . . . ,
ps
qs
}. This set

will will only generate fractions with denominator at most q1q2 · · · qs.

2. Note that a torsion abelian group need not be finite in general. For example Q/Z is

entirely torsion, but is not finite.

Exercise

Find a splitting of the sequence (12.25).

12.4 The classification of finite simple groups

Kronecker’s structure theorem is a very satisfying, beautiful and elegant answer to a clas-

sification question. The generalization to nonabelian groups is very hard. It turns out that

a “good” criterion is that a finite group be a simple group. This idea arose from the Galois

demonstration of (non)solvability of polynomial equations by radicals.

31albeit, not canonically isomorphic
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A key concept in abstract group theory is provided by the notion of a composition

series. This is a sequence of subgroups

1 = Gs+1 ⊳ Gs ⊳ · · · ⊳ G2 ⊳ G1 = G (12.27)

which have the property that Gi+1 is a maximal normal subgroup of Gi. (Note: Gi+1 need

not be normal in G. Moreover, there might be more than one maximal normal subgroup

in Gi. )

It follows that in a composition series the subgroups Gi/Gi+1 are simple groups: By

definition, a simple group is one whose only normal subgroups are 1 and itself. From what

we have learned above, that means that a simple group has no nontrivial homomorphic

images. It also implies that the center is trivial or the whole group.

Let us prove that the Gi/Gi+1 are simple: In general, if N ⊳ G is a normal subgroup

then there is a 1-1 correspondence between the subgroups N ⊂ H ⊂ G and subgroups

of G/N , and under this correspondence normal subgroups of G/N correspond to normal

subgroups H ⊂ G. If H/Gi+1 ⊂ Gi/Gi+1 were normal and 6= 1 then Gi+1 ⊂ H ⊂ Gi
would be normal and and properly contain Gi+1, contradicting maximality of Gi+1. ♠

A composition series is a nonabelian generalization of the Kronecker decomposition.

It is not unique (see exercise below) but the the following theorem, known as the Jordan-

Hölder theorem states that there are some invariant aspects of the decomposition:

Theorem: Suppose there are two different composition series for G:

1 = Gs+1 ⊳ Gs ⊳ · · · ⊳ G2 ⊳ G1 = G (12.28)

1 = G′
s′+1 ⊳ G

′
s ⊳ · · · ⊳ G′

2 ⊳ G
′
1 = G (12.29)

Then s = s′ and there is a permutation i → i′ so that Gi/Gi+1
∼= G′

i′/G
′
i′+1. That is:

The length and the unordered set of quotients are both invariants of the group and do not

depend on the particular composition series.

For a proof see Jacobsen, Section 4.6.

The classification of all finite groups is reduced to solving the extension problem in

general, and then classifying finite simple groups. The idea is that if we know Gi/Gi+1 = Si
is a finite simple group then we construct Gi from Gi+1 and the extension:

1 → Gi+1 → Gi → Si → 1 (12.30)

We have discussed the extension problem thoroughly above. One of the great achievements

of 20th century mathematics is the complete classification of finite simple groups, so let us

look at the finite simple groups:

First consider the abelian ones. These cannot have nontrivial subgroups and hence

must be of the form Z/pZ where p is prime.

So, now we search for the nonabelian finite simple groups. A natural source of non-

abelian groups are the symmetric groups Sn. Of course, these are not simple because

An ⊂ Sn are normal subgroups. Could the An be simple? The first nonabelian example
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is A4 and it is not a simple group! Indeed, consider the cycle structures (2)2. There are

three nontrivial elements: (12)(34), (13)(24), and (14)(23), they are all involutions, and

((12)(34)) · ((13)(24)) = ((13)(24)) · ((12)(34)) = (14)(23) (12.31)

and therefore together with the identity they form a subgroup K ⊂ A4 isomorphic to

Z2 × Z2. Since cycle-structure is preserved under conjugation, this is obviously a normal

subgroup of A4!. After this unpromising beginning you might be surprised to learn:

Theorem An is a simple group for n ≥ 5.

Sketch of the proof :

We first observe that An is generated by cycles of length three: (abc). The reason

is that (abc) = (ab)(bc), so any word in an even number of distinct transpositions can

be rearranged into a word made from a product of cycles of length three. Therefore, the

strategy is to show that any normal subgroup K ⊂ An which is larger than 1 must contain

at least one three-cycle (abc). WLOG let us say it is (123). Now we claim that the entire

conjugacy class of three-cycles must be in K. We consider a permutation φ which takes

φ =

(
1 2 3 4 5 · · ·
i j k l m · · ·

)
(12.32)

Then φ(123)φ−1 = (ijk). If φ ∈ An we are done, sinceK is normal in An so then (ijk) ∈ K.

If φ is an odd permutation then φ̃ = φ(45) is even and φ̃(123)φ̃−1 = (ijk).

Thus, we need only show that some 3-cycle is in K. For n = 5 this can be done rather

explicitly. See the exercise below. Once we have established that A5 is simple we can

proceed by induction as follows.

We first establish a lemma: If n ≥ 5 then for any σ ∈ An, σ 6= 1 there is a conjugate

element (in An) σ
′ with σ′ 6= σ such that there is an i ∈ {1, . . . , n} so that σ(i) = σ′(i).

To prove the lemma choose any σ 6= 1 and for σ choose a cycle of maximal length, say

r so that σ = (12 . . . r)π with π fixing {1, . . . , r}. If r ≥ 3 then consider the conjugate:

σ′ = (345)σ(345)−1 = (345)(123 · · · )π(354) (12.33)

We see that σ(1) = σ′(1) = 2, while σ(2) = 3 and σ′(2) = 4. We leave the case r = 2 to

the reader.

Now we proceed by induction: Suppose Aj is simple for 5 ≤ j ≤ n. Consider An+1 and

let N ⊳ An+1. Then choose σ ∈ N and using the lemma consider σ′ ∈ An+1 with σ′ 6= σ

and σ′(i) = σ(i) for some i. Let Hi ⊂ An+1 be the subgroup of permutations fixing i. It is

isomorphic to An. Now, σ′ ∈ N since it is a conjugate of σ ∈ N and N is assumed to be

normal. Therefore σ−1σ′ ∈ N , and σ−1σ′ 6= 1. Therefore N ∩Hi 6= 1. But N ∩Hi must

be normal in Hi. Since Hi
∼= An it follows that N ∩Hi = Hi. But Hi contains 3-cycles.

Therefore N contains 3-cycles and hence N ∼= An+1. ♠
Remark: For several other proofs of the same theorem and other interesting related

facts see
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http://www.math.uconn.edu/kconrad/blurbs/grouptheory/Ansimple.pdf.

Digressive Remark: A group is called solvable if the Gi/Gi+1 are abelian (and hence

Z/pZ for some prime p). The term has its origin in Galois theory, which in turn was the

original genesis of group theory. Briefly, in Galois theory one considers a polynomial P (x)

with coefficients drawn from a field F . (e.g. consider F = Q or R). Then the roots of the

polynomial θi can be adjoined to F to produce a bigger field K = F [θi]. The Galois group

of the polynomial Gal(P ) is the group of automorphisms of K fixing F . Galois theory

sets up a beautiful 1-1 correspondence between subgroups H ⊂ Gal(P ) and subfields

F ⊂ KH ⊂ K. The intuitive notion of solving a polynomial by radicals corresponds to

finding a series of subfields F ⊂ F1 ⊂ F2 ⊂ · · · ⊂ K so that Fi+1 is obtained from Fi
by adjoining the solutions of an equation yd = z. Under the Galois correspondence this

translates into a composition series where Gal(P ) is a solvable group - hence the name. If

we take F = C[a0, . . . , an−1] for an n
th order polynomial

P (x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 (12.34)

then the roots θi are such that aj are the jth elementary symmetric polynomials in the θi
(See Chapter 2 below). The Galois group is then Sn. For n ≥ 5 the only nontrivial normal

subgroup of Sn is An, and this group is simple, hence certainly not solvable. That is why

there is no solution of an nth order polynomial equation in radicals for n ≥ 5.

Returning to our main theme, we ask: What other finite simple groups are there? The

full list is known. The list is absolutely fascinating: 32

1. Z/pZ for p prime.

2. The subgroup An ⊂ Sn for n ≥ 5.

3. “Simple Lie groups over finite fields.”

4. 26 “sporadic oddballs”

We won’t explain example 3 in great detail, but it consists of a few more infinite

sequences of groups, like 1,2 above. To get a flavor of what is involved note the following:

The additive group Z/pZ where p is prime has more structure: One can multiply elements,

and if an element is nonzero then it has a multiplicative inverse, in other words, it is a finite

field. One can therefore consider the group of invertible matrices over this field GL(n, p),

and its subgroup SL(n, p) of matrices of unit determinant. Since Z/pZ has a finite number

of elements it is a finite group. This group is not simple, because it has a nontrivial center,

32See the Atlas of Finite Simple Groups, by Conway and Norton
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in general. For example, if n is even then the group {±1} is a normal subgroup isomorphic

to Z2. If we divide by the center the we get a group PSL(n, p) which, it turns out, is

indeed a simple group. This construction can be generalized in a few directions. First,

there is a natural generalization of Z/pZ to finite fields Fq of order a prime power q = pk.

Then we can similarly define PSL(n, q) and it turns out these are simple groups except

for some low values of n, q. Just as the Lie groups SL(n,C) have counterparts O(n), Sp(n)

etc. one can generalize this construction to groups of type B,C,D,E. This construction

can be used to obtain the third class of finite simple groups.

Figure 12: A table of the sporadic groups including subgroup relations. Source: Wikipedia.

It turns out that there are exactly 26 oddballs, known as the “sporadic groups.” Some

relationships between them are illustrated in Figure 12. The sporadic groups first showed

up in the 19th century via the Mathieu groups

M11,M12,M22,M23,M24. (12.35)

Mn is a subgroup of the symmetric group Sn. M11, which has order |M11| = 7920 was

discovered in 1861. We met M12 when discussing card-shuffling. The last group M24, with

order ∼ 109 was discovered in 1873. All these groups may be understood as automorphisms

of certain combinatorial objects called “Steiner systems.”
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It was a great surprise when Janko constructed a new sporadic group J1 of order

175, 560 in 1963, roughly 100 years after the discovery of the Mathieu groups. The list of

sporadic groups is now thought to be complete. The largest sporadic group is called the

Monster group and its order is:

|Monster| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
= 808017424794512875886459904961710757005754368000000000

∼= 8.08 × 1053
(12.36)

but it has only 194 conjugacy classes! (Thus, by the class equation, it is “very” nonabelian.

The center is trivial and Z(g) tends to be a small order group.)

The history and status of the classification of finite simple groups is somewhat curious:
33

1. The problem was first proposed by Hölder in 1892. Intense work on the classification

begins during the 20th century.

2. Feit and Thompson show (1963) that any finite group of odd order is solvable. In

particular, it cannot be a simple group.

3. Janko discovers (1966) the first new sporadic group in almost a century.

4. Progress is then rapid and in 1972 Daniel Gorenstein (of Rutgers University) an-

nounces a detailed outline of a program to classify finite simple groups.

5. The largest sporadic group, the Monster, was first shown to exist in 1980 by Fischer

and Griess. It was explicitly constructed (as opposed to just being shown to exist)

by Griess in 1982.

6. The proof is completed in 2004. It uses papers from hundreds of mathematicians

between 1955 and 2004, and largely follows Gorenstein’s program. The proof entails

tens of thousands of pages. Errors and gaps have been found, but so far they are just

“local.”

Compared to the simple and elegant proof of the classification of simple Lie algebras

(to be covered in Chapter **** below) the proof is obviously terribly unwieldy.

It is conceivable that physics might actually shed some light on this problem. The

simple groups are probably best understood as automorphism groups of some mathemat-

ical, perhaps even geometrical object. For example, the first nonabelian simple group,

A5 is the group of symmetries of the icosahedron, as we will discuss in detail below. A

construction of the monster along these lines was indeed provided by Frenkel, Lepowsky,

Meurman, (at Rutgers) using vertex operator algebras, which are important in the descrip-

tion of perturbative string theory. More recently the mystery has deepened with interesting

experimental discoveries linking the largest Mathieu group M24 to nonlinear sigma models

with K3 target spaces. For more discussion about the possible role of physics in this subject

see:
33Our source here is the Wikipedia article on the classification of finite simple groups.
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1. Articles by Griess and Frenkel et. al. in Vertex Operators in Mathematics and

Physics, J. Lepowsky, S. Mandelstam, and I.M. Singer, eds.

2. J. Harvey, “Twisting the Heterotic String,” in Unified String Theories, Green and

Gross eds.

3. L.J. Dixon, P.H. Ginsparg, and J.A. Harvey, “Beauty And The Beast: Superconfor-

mal Symmetry In A Monster Module,” Commun.Math.Phys. 119 (1988) 221-241

4. M.C.N. Cheng, J.F.R. Duncan, and J.A. Harvey, “Umbral Moonshine,” e-Print:

arXiv:1204.2779 [math.RT]

Exercise Completing the proof that A5 is simple

Show that any nontrivial normal subgroup of A5 must contain a 3-cycle as follows:

a.) If N ⊳A5 is a normal subgroup containing no 3-cycles then the elements must have

cycle type (ab)(cd) or (abcde).

b.) Compute the group commutators (a, b, c, d, e are all distinct):

[(abe), (ab)(cd)] = (aeb) (12.37)

[(abc), (abcde)] = (abd) (12.38)

c.) Use these facts to conclude that N must contain a 3-cycle.

Legend has it that Galois discovered this theorem on the night before his fatal duel.

Exercise Conjugacy classes in An
Note that conjugacy classes in An are different from conjugacy classes in Sn. For

example, (123) and (132) are not conjugate in A3.

Describe the conjugacy classes in An.

Exercise Jordan-Hölder decomposition

Work out JH decompositions for the order 8 quaternion group D̃2 and observe that

there are several maximal normal subgroups.

Exercise The simplest of the Chevalley groups
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a.) Verify that SL(2,Z/pZ) is a group.

b.) Show that the order of SL(2,Z/pZ) is p(p2 − 1). 34

c.) Note that the scalar multiples of the 2× 2 identity matrix form a normal subgroup

of SL(2,Z/pZ). Show that the number of such matrices is the number of solutions of

x2 = 1modp. Dividing by this normal subgroup produces the group PSL(2,Z/pZ). Jordan

proved that these are simple groups for p 6= 2, 3.

It turns out that PSL(2,Z5) ∼= A5. (Check that the orders match.) Therefore the

next simple group in the series is PSL(2,Z7). It has many magical properties.

d.) Show that PSL(2,Z7) has order 168.

13. Categories: Groups and Groupoids

A rather abstract notion, which nevertheless has found recent application in string theory

and conformal field theory is the language of categories. Many physicists object to the

high level of abstraction entailed in the category language. However, it seems to be of

increasing utility in the further formal development of string theory and supersymmetric

gauge theory.

We briefly illustrate some of that language here.

Definition A category C consists of

a.) A set Ob(C) of “objects”
b.) A collection Mor(C) of sets hom(X,Y ), defined for any two objects X,Y ∈ Ob(C).

The elements of hom(X,Y ) are called the “morphisms from X to Y .” They are often

denoted as arrows:

X
φ→ Y (13.1)

c.) A composition law:

hom(X,Y )× hom(Y,Z) → hom(X,Z) (13.2)

(ψ1, ψ2) 7→ ψ2 ◦ ψ1 (13.3)

Such that

1. A morphism φ uniquely determines its source X and target Y . That is, hom(X,Y )

are disjoint.

2. ∀X ∈ Ob(C) ∃ 1X : X → X, uniquely determined by:

1X ◦ φ = φ ψ ◦ 1X = ψ (13.4)

for morphisms φ,ψ, when the composition is defined.

3. Composition of morphisms is associative:

(ψ1 ◦ ψ2) ◦ ψ3 = ψ1 ◦ (ψ2 ◦ ψ3) (13.5)

34Break up the cases into d = 0 and d 6= 0. When d = 0 you can solve ad − bc = 1 for a. When d = 0

you can have arbitrary a but you must have bc = −1.
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An alternative definition one sometimes finds is that a category is defined by two sets

X0 (the objects) and X1 (the morphisms) with two maps p0 : X1 → X0 and p1 : X1 →
X0. The map p0(f) = x1 is the range map and p1(f) = x0 is the domain map. In

this alternative definition a category is then defined by a composition law on the set of

composable morphisms

X2 = {(f, g) ∈ X1 ×X1|p0(f) = p1(g)} (13.6)

which is sometimes denoted X1p1 ×p0X1 and called the fiber product. The composition law

takes X2 → X1 and may be pictured as the composition of arrows. If f : x0 → x1 and

g : x1 → x2 then the composed arrow will be denoted g ◦ f : x0 → x2. The composition

law satisfies the axioms

1. For all x ∈ X0 there is an identity morphism in X1, denoted 1x, or Idx, such that

1xf = f and g1x = g for all suitably composable morphisms f, g.

2. The composition law is associative. If f, g, h are 3-composable morphisms then

(hg)f = h(gf).

Remarks:

1. When defining composition of arrows one needs to make an important notational

decision. If f : x0 → x1 and g : x1 → x2 then the composed arrow is an arrow

x0 → x2. We will write g ◦ f when we want to think of f, g as functions and fg when

we think of them as arrows.

2. It is possible to endow the data X0,X1 and p0, p1 with additional structures, such as

topologies, and demand that p0, p1 have continuity or other properties.

3. A morphism φ ∈ hom(X,Y ) is said to be invertible if there is a morphism ψ ∈
hom(Y,X) such that ψ ◦ φ = 1X and φ ◦ ψ = 1Y . If X and Y are objects with an

invertible morphism between then then they are called isomorphic objects. One key

reason to use the language of categories is that objects can have nontrivial automor-

phisms. That is, hom(X,X) can have more than just 1X in it. When this is true then

it is tricky to speak of “equality” of objects, and the language of categories becomes

very helpful.

One use of categories is that they provide a language for describing precisely notions

of “similar structures” in different mathematical contexts. For example:

1. SET: The category of sets and maps of sets

2 DIFF: The category of manifolds and smooth maps.

3. GROUP: the category of groups and homomorphisms of groups.

4. AB: The (sub) category of abelian groups.

When discussed in this way it is important to introduce the notion of functors and

natural transformations (morphisms between functors) to speak of interesting relationships

between categories.
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In order to state a relation between categories one needs a “map of categories.” This

is what is known as a functor:

Definition A functor between two categories C1 and C2 consists of a pair of maps Fobj :

Obj(C1) → Obj(C2) and Fmor :Mor(C1) →Mor(C2) so that if

x
f

// y ∈ hom(x, y) (13.7)

then

Fobj(x)
Fmor(f)

// Fobj(y) ∈ hom(Fobj(x), Fobj(y)) (13.8)

and moreover we require that if f1, f2 are composable morphisms then

Fmor(f1 ◦ f2) = Fmor(f1) ◦ Fmor(f2) (13.9)

We usually drop the subscript on F since it is clear what is meant from context.

Exercise

Using the alternative definition of a category in terms of data p0,1 : X1 → X0 define

the notion of a functor writing out the relevant commutative diagrams.

Example 1: Every category has a canonical functor to itself, called the identity functor

IdC .

Example 2: There is an obvious functor, the “forgetful functor” from GROUP to

SET.

Example 3: Since AB is a subcategory of GROUP there is an obvious functor

F : AB → GROUP.

Example 4: In an exercise below you are asked to show that the abelianization of a

group defines a functor G : AB → GROUP.

Note that in example 2 there is no obvious functor going the reverse direction. When

there are functors both ways between two categories we might ask whether they might be,

in some sense, “the same.” But saying precisely what is meant by “the same” requires

some care.

Definition If C1 and C2 are categories and F1 : C1 → C2 and F2 : C1 → C2 are two functors

then a natural transformation τ : F1 → F2 is a rule which, for every X ∈ Obj(C1) assigns
an arrow τX : F1(X) → F2(X) so that, for all X,Y ∈ Obj(C1) and all f ∈ hom(X,Y ),

τY ◦ F1(f) = F2(f) ◦ τX (13.10)

Or, in terms of diagrams.

F1(X)
F1(f)

//

τX
��

F1(Y )

τY
��

F2(X)
F2(f)

// F2(Y )

(13.11)
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Definition Two categories are said to be equivalent if there are functors F : C1 → C2
and G : C2 → C1 together with isomorphisms (via natural transformations) FG ∼= IdC2
and GF ∼= IdC1 . (Note that FG and IdC2 are both objects in the category of functors

FUNCT(C2, C2) so it makes sense to say that they are isomorphic.)

Many important theorems in mathematics can be given an elegant and concise formu-

lation by saying that two seemingly different categories are in fact equivalent. In physics,

the very statement of the important phenomenon of “mirror symmetry” is a statement of

the equivalence of two (A∞)-) categories.

Exercise Playing with natural transformations

a.) Given two categories C1, C2 show that the natural transformations allow one to

define a category FUNCT(C1, C2) whose objects are functors from C1 to C2 and whose

morphisms are natural transformations. For this reason natural transformations are often

called “morphisms of functors.”

b.) Write out the meaning of a natural transformation of the identity functor IdC to

itself. Show that End(IdC), the set of all natural transformations of the identity functor

to itself is a monoid.

Exercise Freyd’s theorem

A “practical” way to tell if two categories are equivalent is the following:

By definition, a fully faithful functor is a functor F : C1 → C2 where Fmor is a bijection

on all the hom-sets. That is, for all X,Y ∈ Obj(C1) the map

Fmor : hom(X,Y ) → hom(Fobj(X), Fobj(Y )) (13.12)

is a bijection.

Show that C1 is equivalent to C2 iff there is a fully faithful functor F : C1 → C2 so that

any object α ∈ Obj(C2) is isomorphic to an object of the form F (X) for some X ∈ Obj(C1).

Exercise

As we noted above, there is a functor AB → GROUP just given by inclusion.

a.) Show that the abelianization map G → G/[G,G] defines a functor GROUP →
AB.

b.) Show that the existence of nontrivial perfect groups, such as A5, implies that this

functor cannot be an equivalence of categories.
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In addition to the very abstract view of categories we have just sketched, very concrete

objects, like groups, manifolds, and orbifolds can profitably be viewed as categories.

One may always picture a category with the objects constituting points and the mor-

phisms directed arrows between the points as shown in Figure 13.

Figure 13: Pictorial illustration of a category. The objects are the black dots. The arrows are

shown, and one must give a rule for composing each arrow and identifying with one of the other

arrows. For example, given the arrows denoted f and g it follows that there must be an arrow

of the type denoted f ◦ g. Note that every object x has at least one arrow, the identity arrow in

Hom(x, x).

As an extreme example of this let us consider a category with only one object, but

we allow the possibility that there are several morphisms. For such a category let us look

carefully at the structure on morphisms f ∈ Mor(C). We know that there is a binary

operation, with an identity 1 which is associative.

But this is just the definition of a monoid!

If we have in addition inverses then we get a group. Hence:

Definition A group is a category with one object, all of whose morphisms are invertible.

To see that this is equivalent to our previous notion of a group we associate to each

morphism a group element. Composition of morphisms is the group operation. The in-

vertibility of morphisms is the existence of inverses.

We will briefly describe an important and far-reaching generalization of a group af-

forded by this viewpoint. Then we will show that this viewpoint leads to a nice geometrical

construction making the formulae of group cohomology a little bit more intuitive.

13.1 Groupoids

Definition A groupoid is a category all of whose morphisms are invertible.

Note that for any object x in a groupoid, hom(x, x) is a group. It is called the auto-

morphism group of the object x.
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Example 1. Any equivalence relation on a set X defines a groupoid. The objects are the

elements of X. A morphism is an equivalence relation a ∼ b. Composition of morphisms

a ∼ b with b ∼ c is a ∼ c. Clearly, every morphism is invertible.

Example 2. Consider time evolution in quantum mechanics with a time-dependent Hamil-

tonian. There is no sense to time evolution U(t). Rather one must speak of unitary evolu-

tion U(t1, t2) such that U(t1, t2)U(t2, t3) = U(t1, t3). Given a solution of the Schrodinger

equation Ψ(t) we may consider the state vectors Ψ(t) as objects and U(t1, t2) as morphisms.

In this way a solution of the Schrodinger equation defines a groupoid.

Example 3. Let X be a topological space. The fundamental groupoid π≤1(X) is the

category whose objects are points x ∈ X, and whose morphisms are homotopy classes of

paths f : x→ x′. These compose in a natural way. Note that the automorphism group of

a point x ∈ X, namely, hom(x, x) is the fundamental group of X based at x, π1(X,x).

Example 4. Gauge theory: Objects = connections on a principal bundle. Morphisms

= gauge transformations. This is the right point of view for thinking about some more

exotic (abelian) gauge theories of higher degree forms which arise in supergravity and string

theories.

Example 5. In the theory of string theory orbifolds and orientifolds spacetime must be

considered to be a groupoid.

Exercise

For a group G let us define a groupoid denoted G//G (for reasons explained later)

whose objects are group elements Obj(G//G) = G and whose morphisms are arrows defined

by

g1
h // g2 (13.13)

iff g2 = h−1g1h. This is the groupoid of principal G-bundles on the circle.

Draw the groupoid corresponding to S3.

13.2 The topology behind group cohomology

Now, let us show that this point of view on the definition of a group can lead to a very

nontrivial and beautiful structure associated with a group.

An interesting construction that applies to any category is its associated simplicial

space |C|.
This is a simplicial space whose simplices are:

0. 0-simplices = objects

1. 1-simplices = ∆1(f) associated to each morphism f : x0 → x1 ∈ X1.

2. 2-simplices: ∆(f1, f2) associated composable morphisms (f1, f2) ∈ X2.
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Figure 14: Elementary 0, 1, 2 simplices in the simplicial space |C| of a category

Figure 15: An elementary 3-simplex in the simplicial space |C| of a category

3. 3-simplices: ∆(f1, f2, f3) associated to 3 composable morphisms, i.e. elements of:

X3 = {(f1, f2, f3) ∈ X1 ×X1 ×X1|p0(fi) = p1(fi+1)} (13.14)

And so on. See Figures 14 and 15. The figures make clear how these simplices are

glued together:

∂∆1(f) = x1 − x0 (13.15)

∂∆2(f1, f2) = ∆1(f1)−∆1(f1f2) + ∆1(f2) (13.16)

and for Figure 15 view this as looking down on a tetrahedron. Give the 2-simplices of

Figure 14 the counterclockwise orientation and the boundary of the simplex the induced

orientation from the outwards normal. Then we have

∂∆(f1, f2, f3) = ∆(f2, f3)−∆(f1f2, f3) + ∆(f1, f2f3)−∆(f1, f2) (13.17)

Note that on the three upper faces of Figure 15 the induced orientation is the ccw orien-

tation for ∆(f1, f2f3) and ∆(f2, f3), but with the cw orientation for ∆(f1f2, f3). On the

bottom fact the inward orientation is ccw and hence the outward orientation is −∆(f1, f2).
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Clearly, we can keep composing morphisms so the space |C| has simplices of arbitrarily

high dimension, that is, it is an infinite-dimensional space.

Let look more closely at this space for the case of a group, regarded as a category with

one object. Then in the above pictures we identify all the vertices with a single vertex.

For each group element g we have a one-simplex ∆1(g) beginning and ending at this

vertex.

For each ordered pair (g1, g2) we have an oriented 2-simplex ∆(g1, g2), etc. We simply

replace fi → gi in the above formulae, with gi now interpreted as elements of G:

∂∆(g) = 0 (13.18)

∂∆(g1, g2) = ∆1(g1) + ∆1(g2)−∆1(g1g2) (13.19)

∂∆(g1, g2, g3) = ∆(g2, g3)−∆(g1g2, g3) + ∆(g1, g2g3)−∆(g1, g2) (13.20)

See Figure 15.

And so on.

To put this more formally: We have n+ 1 maps from Gn → Gn−1 for n ≥ 1 given by

d0(g1, . . . , gn) = (g2, . . . , gn)

d1(g1, . . . , gn) = (g1g2, g3, . . . , gn)

d2(g1, . . . , gn) = (g1, g2g3, g4, . . . , gn)

· · · · · ·
· · · · · ·

dn−1(g1, . . . , gn) = (g1, . . . , gn−1gn)

dn(g1, . . . , gn) = (g1, . . . , gn−1)

(13.21)

On the other hand, we can view an n-simplex ∆n as

∆n := {(t0, t1, . . . , tn)|ti ≥ 0 &
n∑

i=0

ti = 1} (13.22)

Now, there are also (n+1) face maps which map an (n− 1)-simplex ∆n−1 into one of the

(n + 1) faces of the n-simplex ∆n:

d0(t0, . . . , tn−1) = (0, t0, . . . , tn−1)

d1(t0, . . . , tn−1) = (t0, 0, t1, . . . , tn−1)

· · · · · ·
· · · · · ·

dn(t0, . . . , tn−1) = (t0, . . . , tn−1, 0)

(13.23)

di embeds the (n − 1) simplex into the face ti = 0 which is opposite the ith vertex ti = 1

of ∆n.

Now we identify

(∐∞
n=0∆n ×Gn) / ∼
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via

(di(~t), ~g) ∼ (~t, di(~g)). (13.24)

The space we have constructed this way has a homotopy type denoted BG. Even for

the simplest nontrivial group G = Z/2Z the construction is quite nontrivial and BG has

the homotopy type of RP∞.

Now, an n-cochain in Cn(G,Z) (here we take A = Z for simplicity) is simply an

assignment of an integer for each n-simplex in BG. Then the coboundary and boundary

maps are related by

〈dφn,∆〉 = 〈φn, ∂∆〉 (13.25)

and from the above formulae we recover, rather beautifully, the formula for the coboundary

in group cohomology.

Remark: When we defined group cohomology we also used homogeneous cochains.

This is based on defining G as a groupoid from its left action and considering the mapping

of groupoids G//G → pt//G.
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