1. Potential energy of a particle is given by $U(r, \theta, \phi) = a \cdot r \cdot \sin \theta \cdot \cos \phi$.

 a) what is the force on the particle?
 b) what work need to be done on the particle to move it from a point $(1, \pi/4, \pi/4)$ to $(2, \pi/2, \pi)$?

2. A metal ball (mass m) with a hole through it is threaded on a frictionless vertical rod. A massless string (length L) attached to the ball runs over a small, massless, frictionless pulley and supports a block of mass M. Horizontal distance between the rod and the pulley is b (see the figure). The position of the two masses can be uniquely specified by the one angle θ.

 a) write down gravitational potential energy of the system $U(\theta)$. (It is given easily in terms of heights shown in H and h in the figure. Express H and h in terms of θ, L and b)
 b) By differentiating $U(\theta)$ find whether the system has an equilibrium position, and for what values of m and M equilibrium can occur. Discuss stability of any equilibrium positions.

3. A box of height H and width W is dropped from small height on a conveyer belt that runs with speed V. The friction coefficient between the box and the belt is μ. The box will slip right after it’s dropped, but may or may not tumble (obviously if H is much larger then W the box will tumble). For a given H and μ, find the minimum W for which the box does not tumble.