## Rutgers Physics 381 Mechanics I (Fall'17/Gershtein)

## Class Exam - October 13, 2017

This is a closed book/notes exam. A one-sided 8.5x11 sheet with only formulae is allowed. Please attach the sheet to your solutions. Calculators are not needed. Exam duration - 1hr 20min.

| Operation                            | Cartesian coordinates $(x, y, z)$                                                                                                                                                                                                                                                                                            | Cylindrical coordinates $( ho, arphi, z)$                                                                                                                                                                                                                                                                                                                                                          | Spherical coordinates $(r,\theta,\varphi)$ , where $\theta$ is the polar and $\varphi$ is the azimuthal angle $^{\alpha}$                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A vector field A                     | $A_x\hat{f x}+A_y\hat{f y}+A_z\hat{f z}$                                                                                                                                                                                                                                                                                     | $A_{ ho}\hat{oldsymbol{ ho}}+A_{arphi}\hat{oldsymbol{arphi}}+A_{z}\hat{f z}$                                                                                                                                                                                                                                                                                                                       | $A_{r}\hat{f r}+A_{	heta}\hat{m 	heta}+A_{arphi}\hat{m arphi}$                                                                                                                                                                                                                                                                                                                                                                                                              |
| Gradient ∇f                          | $\frac{\partial f}{\partial x}\hat{\mathbf{x}} + \frac{\partial f}{\partial y}\hat{\mathbf{y}} + \frac{\partial f}{\partial z}\hat{\mathbf{z}}$                                                                                                                                                                              | $rac{\partial f}{\partial  ho}\hat{oldsymbol{ ho}} + rac{1}{ ho}rac{\partial f}{\partial arphi}\hat{oldsymbol{arphi}} + rac{\partial f}{\partial z}\hat{oldsymbol{z}}$                                                                                                                                                                                                                         | $rac{\partial f}{\partial r}\hat{\mathbf{r}} + rac{1}{r}rac{\partial f}{\partial 	heta}\hat{oldsymbol{	heta}} + rac{1}{r\sin	heta}rac{\partial f}{\partialarphi}\hat{oldsymbol{arphi}}$                                                                                                                                                                                                                                                                                |
| Divergence $\nabla \cdot \mathbf{A}$ | $rac{\partial A_x}{\partial x} + rac{\partial A_y}{\partial y} + rac{\partial A_z}{\partial z}$                                                                                                                                                                                                                           | $rac{1}{ ho}rac{\partial\left( ho A_{ ho} ight)}{\partial ho}+rac{1}{ ho}rac{\partial A_{arphi}}{\partialarphi}+rac{\partial A_{z}}{\partial z}$                                                                                                                                                                                                                                              | $rac{1}{r^2}rac{\partial\left(r^2A_r ight)}{\partial r}+rac{1}{r\sin	heta}rac{\partial}{\partial	heta}\left(A_	heta\sin	heta ight)+rac{1}{r\sin	heta}rac{\partial A_arphi}{\partialarphi}$                                                                                                                                                                                                                                                                            |
| Curi $\nabla \times \mathbf{A}$      | $egin{aligned} \left(rac{\partial A_z}{\partial y} - rac{\partial A_y}{\partial z} ight)&\hat{\mathbf{x}} \ + \left(rac{\partial A_x}{\partial z} - rac{\partial A_z}{\partial x} ight)&\hat{\mathbf{y}} \ + \left(rac{\partial A_y}{\partial x} - rac{\partial A_x}{\partial y} ight)&\hat{\mathbf{z}} \end{aligned}$ | $egin{aligned} \left(rac{1}{ ho}rac{\partial A_z}{\partial arphi}-rac{\partial A_{arphi}}{\partial z} ight)\!\hat{oldsymbol{ ho}} \ +\left(rac{\partial A_{ ho}}{\partial z}-rac{\partial A_z}{\partial  ho} ight)\!\hat{oldsymbol{arphi}} \ +rac{1}{ ho}\left(rac{\partial \left( ho A_{arphi} ight)}{\partial  ho}-rac{\partial A_{ ho}}{\partial arphi} ight)\!\hat{f z} \end{aligned}$ | $egin{aligned} &rac{1}{r\sin	heta}\left(rac{\partial}{\partial	heta}\left(A_{arphi}\sin	heta ight)-rac{\partial A_{	heta}}{\partialarphi} ight)\hat{\mathbf{r}}\ &+rac{1}{r}\left(rac{1}{\sin	heta}rac{\partial A_{r}}{\partialarphi}-rac{\partial}{\partial r}\left(rA_{arphi} ight) ight)\hat{oldsymbol{	heta}}\ &+rac{1}{r}\left(rac{\partial}{\partial r}\left(rA_{	heta} ight)-rac{\partial A_{r}}{\partial	heta} ight)\hat{oldsymbol{arphi}} \end{aligned}$ |

- **1.** Potential energy of a particle is given by  $U(r,\theta,\phi)=a\cdot r\cdot sin\ \theta\cdot cos\ \phi$ .
  - a) what is the force on the particle?
  - **b)** what work need to be done on the particle to move it from a point  $(1,\pi/4,\pi/4)$  to  $(2,\pi/2,\pi)$ ?
- **2.** A metal ball (mass m) with a hole through it is threaded on a frictionless vertical rod. A massless string (length L) attached to the ball runs over a small, massless, frictionless pulley and supports a block of mass M. Horizontal distance between the rod and the pulley is b (see the figure). The position of the two masses can be uniquely specified by the one angle  $\theta$ .
- **a)** write down gravitational potential energy of the system  $U(\theta)$ . (It is given easily in terms of heights shown in **H** and **h** in the figure. Express **H** and **h** in terms of  $\theta$ , **L** and **b**)
- b) By differentiating  $U(\theta)$  find whether the system has an equilibrium position, and for what values of m and M equilibrium can occur. Discuss stability of any equilibrium positions.



**3.** A box of height  $\boldsymbol{H}$  and width  $\boldsymbol{W}$  is dropped from small height on a conveyer belt that runs with speed  $\boldsymbol{V}$ . The friction coefficient between the box and the belt is  $\mu$ . The box will slip right after it's dropped, but may or may not tumble (obviously if H is much larger then W the box will tumble). For a given  $\boldsymbol{H}$  and  $\boldsymbol{\mu}$ , find the minimum  $\boldsymbol{W}$  for which the box does not tumble.

