HOME
RESEARCH PROJECTS
FACILITIES
GROUP MEMBERS
PUBLICATIONS
JOIN US
CONTACTS

Quantum Computing
with Nanoscale Josephson Junctions
We
have developed two novel Josephson circuits intended as prototypes of
protected qubits whose logical states are decoupled from the environment by
encoding them in a parity of a large number. The first type, the socalled
chargepairing qubit [1], represents a chain of two Josephson elements
characterized by the π periodicity of the phase dependence of their
Josephson energy (the socalled Josephson
rhombi [2]). The second type, the fluxpairing qubit [3], consists of a
4π periodic Josephson element (a Cooper pair box with
the e charge on the central island)
shunted by a superinductor [4]. The lowestenergy quantum states of the
chargepairing qubit are encoded in the parity of Cooper pairs on a
superconducting island flanked by the Josephson rhombi. The fluxpairing
qubit encodes its quantum states in the parity of magnetic flux quanta inside
a superconducting loop.
1. M.T. Bell, J.
Paramanandam, L.B. Ioffe, and M.E. Gershenson. Protected Josephson Rhombus
Chains. Phys. Rev. Lett. 112, 167001 15 (2014).
2.
S. Gladchenko, D. Olaya, E. DupontFerrier,
B. Doucot, L.B. Ioffe, and
M.E. Gershenson. Superconducting Nanocircuits
for Topologically Protected Qubits. Nature Physics 5, 4853 (2009).
3.
M.T.
Bell, W. Zhang, L. B. Ioffe, and M. E. Gershenson. Spectroscopic Evidence of
the AharonovCasher Effect in a Cooper Pair Box. Phys. Rev. Lett. 116,
107002 (2016).
4.
M.T.
Bell, I.A. Sadovskyy, L.B. Ioffe, A.Yu. Kitaev, and M.E.
Gershenson. Quantum Superinductor with Tunable NonLinearity. Phys. Rev. Lett. 109, 137003 (2012).
