Buoyant force

The volume of gas (liquid) is
at rest with respect to its
surrounding gas (liquid): the
force of gravity is balanced

by the buoyant force

ha

Note that the buoyant force does not care what’s

inside this volume (a brick, a gas, or vacuum): it -

depends only on the volume and the density of the
outside gas (liquid).
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Lecture 3. Transport Phenomena (Ch.1)

Lecture 2 — various processes in macro systems near the state of
equilibrium can be described by a handful of macro parameters. Quasi-
static processes — sufficiently slow processes, at any moment the system
is almost in equilibrium.

It is important to know how much time it takes for a system to approach an
equilibrium state. A system is not in equilibrium when the macroscopic
parameters (T, P, etc.) are not constant throughout the system. To
approach equilibrium, these non-uniformities have to be ironed out through
the transport of energy, momentum, and mass from one part of the
system to another. The mechanism of transport is molecular collisions. Our
goal - to estimate the characteristic rates of approaching equilibrium, and,
thus, to impose limitations on the rates of “quasi-static’ processes.

1. Transfers of Q (“Heat” Conduction)

2. Transfers of Mass (Diffusion)

One-dimensional (1D) case: —
b I N

T(X,t)




The Mean Free Path of Molecules

Transports energy, momentum, mass — due to random
thermal motion of molecules in gases and liquids.

The mean free path | - the average distance traveled
by a molecule btw two successive collisions.

An estimate: one molecule is moving with a constant
speed v, the other molecules are fixed. Model of hard
spheres, the radius of molecule r ~ 1-10-19m.

The av. distance traversed by a molecule until the 1st collision is the
distance in which the av. # of molecules in this cylinder is 1.

2, N 1 v 1 1
r@Rr)fIx—=1 o |l=—— Y-~ Maxwell: |[I=
V 4zr* N on J2on
n=N/N \
— the density of molecules o = 4nr2 — the cross section

The average time interval between successive collisions - the collision time:

= l V. - the most probable speed of a molecule

vV




1
lc— = foranidealgas: PV =Nk,T P=nk, T = Ioc:i ocI
on n P
-23
air at norm. conditions: E: v — kBT — 1.38-10 7 J/K x 300K ~4.10%°m?®

n N P 10°Pa
. . V g
the intermol. distance d=3 N ~3:107 m

P=10%Pa: |~10"m - 30 times greater than d

P =102Pa (10“%mbar): |~1m (size of a typical vacuum chamber)

| _ _
- at this P, there are still ~2.5 -102 molecule/cm3 (!) —ocn o p?

The collision time at norm. conditions: T~ 10"m /500m/s = 2:10-10s

For H, gas in interstellar space, where the density is ~ 1 molecule/ cm3,

| ~10" m - ~ 100 times greater than the Sun-Earth distance (1.5 -10"" m)



Transport in Gases (Liquids)

Simplified approach: consider the “ballistic”

molecule exchange between two “boxes” within the
gas (thickness of each box should be comparable to
the mean free path of molecules, ). During the
average time between molecular collisions, T,
roughly half the molecules in Box 1 will move to the
right in Box 2, while roughly half the molecules in
Box 2 will move to the left in Box 1.

Each molecule “carries” some quantity @ (mass, kin. energy, etc.), within

each box - ® = N ¢= Al n ¢. E.g., the flux of the number of molecules
across the border per unit area of the border, J.:

J, = ﬂzlv[n(x:_u)_n(x:|)]:1v(_2|5_”j:_1w@_”:_aa_”
AAt 6+ 6 OX 3 OX *8x

in a 3D case, on average 1/6 of the the diffusion constant
molecules have a velocity along +x or —x

“-” -if on/ox is negative, the flux is in the positive x direction
(the current flows from high density to low density)

J o=
— = h X
Ina 3D case, |J, =-DVn J, =-K,VT ne \ X

>




Diffusion — the flow of randomly moving particles
caused by variations of the concentration of
particles. Example: a mixture of two gases, the total
concentration n = n,+n, =const over the volume (P

= const).

1, _an on 1.
Fick’s Law: JX=——|V8—=—D— D==Iv

3 OX OX

- the diffusion coefficient

(numerical pre-factor depends on the dimensionality: 3D — 1/3; 2D — 1/2)

1
D= 5 | v its dimensions [L]?[t]?, its units mZ2s-
Typically, at normal conditions, | ~10-"m, v ~300 m/s = D ~ 10-°*m?2 s
(in liquids, D is much smaller, ~10-10m2 s-1)

For electrons in well-ordered semiconductor heterostructures at low T:
| ~10°m, v ~105m/s = D ~ 1 m2s-!



Diffusion Coefficient of an Ideal Gas  (Pr.1.70)

. 1 kT )
for an ideal gas: | oc = oc -
n P > D Tl/Z T . T
from the equipartition theorem: ¥ oc TY? P P
7
1
therefore, at a const. temperature: D oc E

and at a const. pressure: D oc T2



The Diffusion Equation

flow in flow out
—_— —_— change of n inside:
J, (x)AAt J, (x+ Ax)AAt on_ dl,
ot OX
| | > on
X X+ AX combining with ~ J, = —D&
we’ll get the equation that describes one-dimensional diffusion:
on o°n
—=D— the diffusion equation
ot OX
t, =0
Y the solution which corresponds to an initial condition

that all particles are at x =0 at t =0:
t, =t

C X
n(x,t) = —exp(— ] C is a normalization factor

JDt 4Dt
\
0 \ the rms displacement of particles: ,/<x2> ~ +/ Dt

X
Il




Brownian Motion (self-diffusion)

Historical background:

The experiment by the botanist R. Brown concerning the
drifting of tiny (~ 1um) specks in liquids and gases, had been
known since 1827.

Brownian motion was in focus of the struggle for and against
the atomic structure of matter, which went on during the
second half of the 19t century and involved many prominent
physicists.

Brownian Motion

Ernst Mach: “If the belief in the existence of atoms is so crucial in your eyes, |
hereby withdraw from the physicist’s way of thought...”

Albert Einstein explained the phenomenon on the basis of the kinetic theory
(1905), connected in a quantitative manner the Brownian motion and such
macroscopic quantities as the coefficients of mobility and viscosity — and
brought the debate to a conclusion in a short time.

Observing the Brownian motion under a microscope, Jean Perrin measured
the Boltzman constant and Avogadro number in 1908 (Nobel 1926).



25 . _ . . . . . . i . 2
_ ] Gaussian 1, 1)_ C exp(— X

: distribution Dt 4Dt
Brownian

Motion 2

X =4/ DAt
(COnt.) st a 1D random walk < >At

20 F f k i

O ?adr;l:n;g o e s the rms displacement

— >t

A body that participates in a random walk, or a subject of random collisions with the
gas molecules. Its average displacement is zero. However, the average square

distance grows linearly with time:

B - ~ N - arandomly
after N steps, the position is RN+1 RN+1 = RN+1 +1n oriented unit

vector

R, = (R +In) RZ+12+217-R,

after averaging (<RN+1> 0 ): <R§+1> <R2>+I2 = <I§§>: N |2 oc@

For air at normal conditions (1 ~10"'m VvV ~500m/s D ~1.7-10°m?/s), it takes
2
At = LE ~10°s for a molecule to “diffuse” over 1m: odor spreads by convection
For electrons in metals at 300K (1 =10 m V~10°m/s D ~3-107°m?/s) it takes

2
At = L. 30s to “diffuse” over 1m. For the electron gas in metals, convection can be ignored:

the electron velocities are randomized by impurity/phonon scattering.




Static Energy Flow by “Heat” Conduction

In general, the energy transport due | 57 1 8] K. 02T oT
to molecular motion is described by |—=—-——"">=—"— J, =-K; —
ot C ox C oX OX

the equation of heat conduction:

Thus, in principle, if you know the initial conditions, e.g. T(x,t=t;), you can
describe the process by solving the equation. Often, you are asked to consider a
different situation: a static flow of energy from a “hot” object to a “cold” one. (At
what rate the internal energy is transferred between two systems with T, # T, or
between parts of a non-equilibrium system (if one can introduce T,) ?) The
temperature distribution in this formulation is time-independent, and we need to
calculate the flux of thermal energy J, due to the heat conduction
(diffusion/intermixing of particles with different energies, interactions between the
particles that vibrate but do not move “translationally”).

area A Heat conduction ( static heat flow, AT = const)
| ¥, T
| T, [




Fourier Heat Conduction Law

R oC ATAt A = Ju — @ — _KthA£ " - if T increases from left to

AX At AX right, energy flows from right to left

Ki, [W/K-m] - the thermal conductivity (material-specific)
Pr.1.56 For a window glass (K, =0.8W/m-K, 3 mm thick, A=1m?) and AT = 20K:

20K ~ 10 times greater than in reality, a thin
~ 5300 W layer of still air
0.003m must contribute to thermal insulation.

J,(power)=GAT, G=K, AA
X
G - the thermal conductivity [W/K]

R =1/G - the thermal resistivity

5Q v o
A—t—(0.8 W/m-K)(1m?)

What “flows” Charge Q Th. Energy, 6Q T, T, Ru=Ri+R;
Flux Currant dQ/dt | Power 5Q/dt Connection in parallel:
El.-stat. pot. Temperature Rt = R+ Ry
Driving “force” difference difference . .
“Resistance” | El. resistance R| Th. resistance R 1 2




Relaxation Time due to Thermal Conductivity

the heat capacity (specific heat)
(a rough estimate)

U CT C
(2 = z[Tl—TZle]z—
| oQ /[ dt ;5 AT G
G i the thermal conductivity
, environment A
| T, the thermal g _
| conductivity h Ax

Problem 1.60: A frying pan is quickly heated on the stovetop to 200°C. It has
an iron handle that is 20 cm long. Estimate how much time should pass before
the end of the handle is too hot to grab (the density of iron p = 7.9 g/cm3, its
specific heat ¢ = 0.45 J/g-K, the thermal conductivity K,;=80 W/m-K).

~C_pcAL pcl® 7900kg-m>x450J kg™ K™ x(0.1m)’

TR
G A K, 80J-st-m*t.K™
tht

~ 400s



Thermal Conductivity of an Ideal Gas

Energy “flow”, At~ 1 : @ZEMZECV(E—TZ):% | d_TZEC vd_T
4 r 2 7 2 r 2 7 dx 2 7 dx
the time between two |
consecutive collisions v
«— | — 0] AT 1Cc,v 1C,Iv 1C,, _
[Tomm oo oo — g —:—K A— K = — - — :_—I V
cF 000 3-0cch e o oso0a10s acorchccony T " AX = Ka 2 A 2 Al 2V
prBexd g Boxi2: f
'{i the specific _C, szB o
T T heatcapacity =y Ty g
e f
JHHHESEEES SHRRR Ky =—nkg IV
——— yT 4
The thermal conductivity of air at norm. conditions:
f 5 W
Ky, = Zn kg | V = ZX 2.4.10°m>x1.38-10*°J/Kx10'mx 500m/s =~ 0.02—K
m -

(exp. value — 0.026 W/m-K)



Thermal Conductivity of Gases (cont.)

f _ g - T T
KhtzznkBlv = |=(0n)1,voc\/% = Kthoc\/%

1. K, oc 1/4/m

- an argon-filled window helps to reduce Q

2. Thermal conductivity of an ideal gas
is independent of the gas density!

Dewar

\ |

(at higher densities, more
molecules participate in the
energy transfer, but they
carry the energy over a
shorter distance)

Thermal Conductivity at 300 K

(W/mK)
Air 0.026
Ar 0.018
CO 0.025
CO, 0.017
H 0.182
He 0.151
N2 0.026
Ne 0.049
0, 0.027

This conclusion holds only if L >> | .

ForL<I, K;o«n

(——/




Sate-of-the-art Bolometers
(direct detectors of e.-m. radiation)

0-1 T, K 1 g 100 b}
T, Lelectrons "“ﬁiﬁ&i
| Gepn=Cotepn 5] £ ok ii
T,,Lphonons e=ph = o s
1 : G — Cph/Tes T~ Te—ph l
T heat sink 10 100 1000

Temperature (MK)



Momentum Transfer, Viscosity

Drag — transfer of the momentum in the j
direction perpendicular to velocity. Az —> u,
|
A Py = F o A (ux,top B uX,bottom) Laminar flow of a gas (fluid) between two
At X A7 surfaces moving with respect to each other.
5 _ du, F, — the viscous drag force, 77 - the coefficient of viscosity
A 7 A7 F./A — shear stress
. Box2 | U (2)
Viscosity of an ideal gas ( Pr. 1.66 ): Az ~/I I |
| Box 1 —u, (z,)

Ap, = % Nmu, (z,) —% Nmu, (z,) = —% Nm Au,

F, _1Ap, NmAu,V N F (1 7] du, 1 71 12
A A7 A A 2P 43 =5 PN




Effusion of an Ideal Gas l

- the process of a gas escaping through a small hole (a << I)
into a vacuum (Pr. 1.22) — the collisionless regime.
The opposite limit of a very large hole (a >> 1) — the hydrodynamic regime.

I
The number of molecules that escape through Er'ggsum Vacuum

a hole of area Ain 1 sec, N, interms of P(t ), T gas
(how is T changing in the process?)

Ap1l 2m(v. ) 1 _ PAAt 1 5\ 1 >
AUA N“%K M= omuy W= Mgk =)=

= - AN, where N is the total # of molecules in a system

_AN_PAAt NkTAAt ~ ANAt /kT AN _ kTN:—lN
kT AtV P

Y

N(®) = N(0) exp(— ij,
T

KgT

Depressurizing of a space ship, . -
V- 50m?, A of a hole in a wall — 104 m2 __ 2x50m \/ 30xL.7-107'Kg 106 1572035 — 30005

_4 2 -23
(clearly, a << | does not apply) 107 m™ §1.38-1077J/Kx30K
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