
Buoyant force
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The volume of gas (liquid) is 
at rest with respect to its 
surrounding gas (liquid): the 
force of gravity is balanced 
by the buoyant force APPF topbottomB )( −=
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Note that the buoyant force does not care what’s 
inside this volume (a brick, a gas, or vacuum): it 
depends only on the volume and the density of the 
outside gas (liquid). 



Lecture 3.  Transport Phenomena  (Ch.1)
Lecture 2 – various processes in macro systems near the state of 
equilibrium can be described by a handful of macro parameters. Quasi-
static processes – sufficiently slow processes, at any moment the system 
is almost in equilibrium.

It is important to know how much time it takes for a system to approach an 
equilibrium state. A system is not in equilibrium when the macroscopic 
parameters (T, P, etc.) are not constant throughout the system. To 
approach equilibrium, these non-uniformities have to be ironed out through 
the transport of energy, momentum, and mass from one part of the 
system to another. The mechanism of transport is molecular collisions. Our 
goal - to estimate the characteristic rates of approaching equilibrium, and, 
thus, to impose limitations on the rates of “quasi-static” processes. 

1. Transfers of Q (“Heat” Conduction)

2. Transfers of Mass (Diffusion)

One-dimensional (1D) case:

x

n(x,t)
T(x,t)



The Mean Free Path of Molecules
Transports energy, momentum, mass – due to random 
thermal motion of molecules in gases and liquids.

An estimate: one molecule is moving with a constant 
speed v, the other molecules are fixed.  Model of hard 
spheres, the radius of molecule  r ~ 1⋅10-10 m.
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The av. distance traversed by a molecule until the 1st collision is the 
distance in which the av. # of molecules in this cylinder is 1.
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The mean free path l - the average distance traveled 
by a molecule btw two successive collisions.

The average time interval between successive collisions - the collision time:

v
l

=τ - the most probable speed of a moleculev

l 

n = N/V
– the density of molecules σ = 4πr2 – the cross section



Some Numbers:
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Bair at norm. conditions:

P = 105 Pa: l ~ 10-7 m   - 30 times greater than d

P = 10-2 Pa (10-4mbar):  l ~ 1 m  (size of a typical vacuum chamber)

- at this P, there are still ~2.5 ⋅1012 molecule/cm3 (!) 
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The collision time at norm. conditions:  τ ~ 10-7m / 500m/s = 2·10-10 s

For H2 gas in interstellar space, where the density is ~ 1 molecule/ cm3,

l ~ 1013  m   - ~ 100 times greater than the Sun-Earth distance (1.5 ⋅1011  m) 
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Transport in Gases (Liquids)
Box 1 Box 2

l

Simplified approach: consider the “ballistic”
molecule exchange between two “boxes” within the 
gas (thickness of each box should be comparable to 
the mean free path of molecules, l). During the 
average time between molecular collisions, τ, 
roughly half the molecules in Box 1 will move to the 
right in Box 2, while roughly half the molecules in 
Box 2 will move to the left in Box 1.

Each molecule “carries” some quantity ϕ (mass, kin. energy, etc.),  within 
each box - Φ = N ϕ = A l n ϕ. E.g., the flux of the number of molecules
across the border per unit area of the border, Jx:
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in a 3D case, on average 1/6 of the 
molecules have a velocity along +x or –x

“-” - if ∂n/∂x is negative, the flux is in the positive x direction 
(the current flows from high density to low density)
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the diffusion constant



Diffusion

Diffusion – the flow of randomly moving particles 
caused by variations of the concentration of 
particles. Example: a mixture of two gases, the total 
concentration n = n1+n2 =const over the volume (P 
= const). 
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Fick’s Law:
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- the diffusion coefficient

(numerical pre-factor depends on the dimensionality: 3D – 1/3; 2D – 1/2)
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= its dimensions  [L]2 [t]-1, its units  m2 s-1

Typically, at normal conditions, l ~10-7 m, v ~300 m/s ⇒ D ~ 10-5 m2 s-1

(in liquids, D is much smaller, ~10-10 m2 s-1)

For electrons in well-ordered semiconductor heterostructures at low T:
l ~10-5 m, v ~105 m/s ⇒ D ~ 1 m2 s-1



Diffusion Coefficient of an Ideal Gas     ( Pr. 1.70 )

for an ideal gas:
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The Diffusion Equation
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the solution which corresponds to an initial condition 
that all particles are at x =0 at t =0:
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C is a normalization factor

the rms displacement of particles: Dtx ≈2

the diffusion equation

t1 =0

x =0

t2 =t



Brownian Motion (self-diffusion)

The experiment by the botanist R. Brown concerning the 
drifting of tiny (~ 1μm) specks in liquids and gases, had been 
known since 1827.
Brownian motion was in focus of the struggle for and against 
the atomic structure of matter, which went on during the 
second half of the 19th century and involved many prominent 
physicists.

Ernst Mach:  “If the belief in the existence of atoms is so crucial in your eyes, I 
hereby withdraw from the physicist’s way of thought...”

Albert Einstein explained the phenomenon on the basis of the kinetic theory 
(1905), connected in a quantitative manner the Brownian motion and such 
macroscopic quantities as the coefficients of mobility and viscosity – and 
brought the debate to a conclusion in a short time. 

Observing the Brownian motion under a microscope, Jean Perrin measured 
the Boltzman constant and Avogadro number in 1908 (Nobel 1926).

Historical background:



Brownian 
Motion
(cont.) tDx
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a 1D random walk
of a drunk
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For electrons in metals at 300K , it takes 

the rms displacement
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to “diffuse” over 1m. For the electron gas in metals, convection can be ignored: 
the electron velocities are randomized by impurity/phonon scattering.
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A body that participates in a random walk, or a subject of random collisions with the 
gas molecules. Its average displacement is zero. However, the average square 
distance grows linearly with time:
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Static Energy Flow by “Heat” Conduction

T1 T2

Δx 

area A Heat conduction ( static heat flow, ΔT = const) 
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21In general, the energy transport due 
to molecular motion is described by 
the equation of heat conduction:

Thus, in principle, if you know the initial conditions, e.g. T(x,t=t0), you can 
describe the process by solving the equation. Often, you are asked to consider a 
different situation: a static flow of energy from a “hot” object to a “cold” one. (At 
what rate the internal energy is transferred between two systems with T1 ≠ T2  or 
between parts of a non-equilibrium system (if one can introduce Ti) ?) The 
temperature distribution in this formulation is time-independent, and we need to 
calculate the flux of thermal energy JU due to the heat conduction 
(diffusion/intermixing of particles with different energies, interactions between the 
particles that vibrate but do not move “translationally”). 
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Fourier Heat Conduction Law

T1 T2
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G – the thermal conductivity [W/K]
R =1/G – the thermal resistivity

Electricity Thermal Physics

Charge Q Th. Energy, δQ

Currant dQ/dt Power δQ/dt

What “flows”

Flux

Driving “force”
El.-stat. pot. 
difference

Temperature 
difference 

“Resistance” El. resistance R Th. resistance R

Connection in series (Pr. 1.57):

Rtot = R1 + R2

Connection in parallel:
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Kth [W/K·m] – the thermal conductivity (material-specific)
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For a window glass (Kth =0.8W/m⋅K, 3 mm thick, A=1m2) and ΔT = 20K:
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“-” - if T increases from left to 
right,  energy flows from right to left

~ 10 times greater than in reality, a thin 
layer of still air 

must contribute to thermal insulation.

Pr. 1.56



Relaxation Time due to Thermal Conductivity 

(a rough estimate)
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Problem 1.60:  A frying pan is quickly heated on the stovetop to 2000C. It has 
an iron handle that is 20 cm long. Estimate how much time should pass before 
the end of the handle is too hot to grab (the density of iron ρ = 7.9 g/cm3, its 
specific heat c = 0.45 J/g·K, the thermal conductivity Kth=80 W/m·K).
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Thermal Conductivity of an Ideal Gas

Box 1 Box 2

∇T

( ) ( )
dx
dTvC

dx
dTlCTTCUUQ

V
VV

2
1

2
1

2
1

2
1 2121 ==

−
=

−
=

ττττ
δ

l
x
TAKQ

th Δ
Δ

−=
τ
δ vl

V
C

lA
vlC

A
vCK VVV

th 2
1

2
1

2
1

===

B

B
V

V knf
V

Nkf

V
Cc

2
2 ==≡

vlknfK Bth 4
=

Energy “flow”, Δt ~ τ :

Km
W0.02500m/smJ/Km
⋅

≈××⋅×⋅×== −−− 723325 101038.1104.2
4
5

4
vlknfK Bth

(exp. value – 0.026 W/m·K)

The thermal conductivity of air at norm. conditions: 

the specific 
heat capacityT1 T2

the time between two 
consecutive collisions v

l
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Thermal Conductivity of Gases (cont.)

2. Thermal conductivity of an ideal gas 
is independent of the gas density!

This conclusion holds only if L >> l .  
For L < l ,  Kth ∝ n 

Dewar 
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- an argon-filled window helps to reduce Q 

(at higher densities, more 
molecules participate in the 
energy transfer, but they 
carry the energy over a 
shorter distance)



Sate-of-the-art Bolometers 
(direct detectors of e.-m. radiation)
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Momentum Transfer, Viscosity

ux
Δz

Drag – transfer  of  the  momentum  in  the 
direction perpendicular to velocity.

Laminar flow of a gas (fluid) between two 
surfaces moving with respect to each other.
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=η Fx – the viscous drag force, η - the coefficient of viscosity

Fx/A – shear stress

Viscosity of an ideal gas ( Pr. 1.66 ):
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Effusion of an Ideal Gas
- the process of a gas escaping through a small hole (a << l)
into a vacuum (Pr. 1.22) – the collisionless regime. 

The opposite limit of a very large hole ( a >> l ) – the hydrodynamic regime.

The  number  of  molecules that escape through 
a hole of area A in 1 sec, Nh, in terms of P(t ), T 
(how is T changing in the process?)
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Depressurizing of a space ship, 
V - 50m3, A of a hole in a wall – 10-4 m2

(clearly, a << l does not apply)
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