
Lecture 15.  The van der Waals Gas  (Ch. 5)

The simplest model of a liquid-gas phase 
transition - the van der Waals model of “real” 
gases – grasps some essential features of this 
phase transformation. (Note that there is no 
such transformation in the ideal gas model). 
This will be our attempt to take intermolecular 
interactions into account.

In particular, van der Waals was able to 
explain the existence of a critical point for the 
vapor-liquid transition and to derive a Law of 
Corresponding States (1880).

In his Nobel prize acceptance speech, van der 
Waals saw the qualitative agreement of his 
theory with experiment as a major victory for 
the atomistic theory of matter – stressing that 
this view had still remained controversial at the 
turn of the 20th century!

Nobel 1910



The van der Waals Model
The main reason for the transformation of 
gas into liquid at decreasing T and (or) 
increasing P - interaction between the 
molecules. 
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the strong short-range repulsion: the molecules are rigid: P → ∞ as soon as the 
molecules “touch” each other.

The vdW equation
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the weak long-range attraction: the 
long-range attractive forces between the 
molecules tend to keep them closer 
together; these forces have the same effect 
as an additional compression of the gas.

Two ingredients of the model:

- the constant a is a measure of the long-
range attraction

( )

- the constant b (~ 4πσ3/3) is a measure of the short-range
repulsion, the “excluded volume” per particle
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Substance a’
(J. m3/mol2)

b’
(x10-5 m3/mol)

Pc
(MPa)

Tc
(K)

Air .1358 3.64 3.77 133 K
Carbon Dioxide (CO2) .3643 4.27 7.39 304.2 K 

Nitrogen (N2) .1361 3.85 3.39 126.2 K 

Hydrogen (H2) .0247 2.65 1.30 33.2 K 
Water (H2O) .5507 3.04 22.09 647.3 K 

Ammonia (NH3) .4233 3.73 11.28 406 K 
Helium (He) .00341 2.34 0.23 5.2 K 

Freon (CCl2F2) 1.078 9.98 4.12 385 K 
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b – roughly the volume of a molecule, (3.5·10-29 – 1.7 ·10-28) m3 ~(few Å)3

a – varies a lot [~ (8·10-51 – 3 ·10-48) J · m3] depending on the intermolecular 
interactions (strongest – between polar molecules, weakest – for inert gases).

The van der Waals Parameters

- low densities



Problem

The vdW constants for N2: NA
2a = 0.136 Pa·m6 ·mol-2, NAb = 3.85·10-5 m3 ·mol-1. 

How accurate is the assumption that Nitrogen can be considered as an ideal gas at 
normal P and T?
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1 mole of N2 at T = 300K occupies V1 mol ≈ RT/P ≈ 2.5 ·10-2 m3 ·mol-1

NAb = 3.9·10-5 m3 ·mol-1 NAb / V1 mol ~1.6%

NA
2a / V2 = 0.135 Pa·m6 ·mol-2 /(2.5 ·10-2 m3 ·mol-1) 2 = 216 Pa     NA

2a / V2P = 0.2%



The vdW Isotherms
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The vdW isotherms in terms of the gas density n:

A real isotherm cannot have a negative slope dP/dn (or 
a positive slope dP/dV), since this corresponds to a 
hegative compressibility. The black isotherm at 
T=TC(the top panel) corresponds to the critical 
behavior. Below TC, the system becomes unstable 
against the phase separation (gas ↔ liquid) within a 
certain range V(P,T). The horizontal straight lines show 
the true isotherms in the liquid-gas coexistence region, 
the filled circles indicating the limits of this region.

The critical isotherm represents a boundary between those isotherms along which no 
such phase transition occurs and those that exhibit phase transitions. The point at which 
the isotherm is flat and has zero curvature (∂P/∂V= ∂2P/∂V2=0) is called a critical point.



The Critical Point
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RTC/PCVC 3.0 3.1 3.4 3.5 4.5

TC (K) 33.2 5.2 126 304 647
PC (MPa) 1.3 0.23 3.4 7.4 22.1

The critical point is the unique point where both (dP/dV)T = 0
and (d2P/dV 2)T = 0 (see Pr. 5.48)
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Three solutions of the equation should merge into one at T = TC:
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- the materials parameters vanish if we introduce the proper scales.

Critical parameters:



Problems For Argon, the critical point occurs at a pressure PC = 
4.83 MPa and temperature TC = 151 K. Determine values 
for the vdW constants a and b for Ar and estimate the 
diameter of an Ar atom. 

( )
C

CB

C

CB
CBC P

Tka
P
Tkb

b
aTk

b
aP

2

2 64
27

827
8

27
1

====

329
6

23

m 104.5
Pa 104.838

K 151J/K 1038.1
8

−
−

⋅=
⋅×

×⋅
==

C

CB

P
Tkb Am 86.31086.3 103/1 =⋅= −b

( ) ( ) /PaJ 108.3
Pa 1083.4

K 151J/K 1038.1
64
27

64
27 249

6

2232
−

−

⋅=
⋅

×⋅
==

C

CB

P
Tka

Per mole: a=0.138 Pa m6 mol-2; b=3.25x10-5 m3 mol-1



Energy of 
the vdW Gas

(low n, high T)

Let’s start with an ideal gas (the 
dilute limit, interactions can be 
neglected) and compress the gas 
to the final volume @ T,N = const:
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This derivation assumes that the system is homogeneous – it does not work for the 
two-phase (P, V) region (see below). 
The same equation for U can be obtained in the model of colliding rigid spheres. 
According to the equipartition theorem, K = (1/2) kBT for each degree of freedom 
regardless of V. Upot – due to attraction between the molecules (repulsion does not 
contribute to Upot in the model of colliding rigid spheres). The attraction forces result 
in additional pressure aN2/V2 . The work against these forces at T = const provides 
an increase of U in the process of an
isothermal expansion of the vdW gas:

(see Pr. 5.12)
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Isothermal Process for the vdW 
gas at low n and/or high T ( ) ⎟
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Depending on the interplay between the 1st and 2nd terms, it’s either harder or 
easier to compress the vdW gas in comparison with an ideal gas. If both V1 and V2
>> Nb, the interactions between molecules are attractive, and ΔWvdW < ΔWideal
However, as in this problem, if the final volume is comparable to Nb , the work 
against repulsive forces at short distances overweighs that of the attractive forces at 
large distances. Under these conditions, it is harder to compress the vdW gas rather 
than an ideal gas.

r

Upot

For N2, the vdW coefficients are N2a = 0.138 kJ·liter/mol2 and Nb = 0.0385 liter/mol. Evaluate the work of 
isothermal and reversible compression of N2 (assuming it is a vdW gas) for n=3 mol, T=310 K, V1 =3.4 
liter, V2 =0.17 liter. Compare this value to that calculated for an ideal gas. Comment on why it is easier (or 
harder, depending on your result) to compress a vdW gas relative to an ideal gas under these conditions.
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Problem: One mole of Nitrogen (N2) has been compressed at T0=273 K to the volume 
V0=1liter. The gas goes through the free expansion process (δQ = 0, δ W = 0), in which 
the pressure drops down to the atmospheric pressure Patm=1 bar. Assume that the gas 
obeys the van der Waals equation of state in the compressed state, and that it behaves 
as an ideal gas at the atmospheric pressure.  Find the change in the gas temperature.

The internal energy of the gas is conserved in this 
process  (δQ = 0, δ W = 0), and, thus, ΔU = 0:
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For 1 mole of the “vdW” Nitrogen (diatomic gas)

The final temperature is lower than the initial temperature: the gas molecules work against 
the attraction forces, and this work comes at the expense of their kinetic energy.
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Problem (vdW+heat engine)
The working substance in a heat engine is the vdW gas with a known constant b and 
a temperature-independent heat capacity cV  (the same as for an ideal gas). The gas 
goes through the cycle that consists of two isochors (V1 and V2) and two adiabats. 
Find the efficiency of the heat engine.
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The relationship between TA, TB, TC, TD – from 
the adiabatic processes B-C and D-A
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One mole of Nitrogen (N2) has been compressed at T0=273 K to the volume 
V0=1liter. The critical parameters for N2 are: VC = 3Nb = 0.12 liter/mol, TC = 
(8/27)(a/kBb) = 126K. The gas goes through the free expansion process (δQ = 0, 
δW = 0), in which the pressure drops down to the atmospheric pressure Patm=1 bar. 
Assume that the gas obeys the van der Waals equation of state in the compressed 
state, and that it behaves as an ideal gas at the atmospheric pressure. Find the 
change in the gas entropy.



Phase Separation in the vdW Model
The phase transformation in the vdW model is easier to 
analyze by minimizing  F(V)  rather than G(P) (dramatic 
changes in the term PV makes the dependence G(P)  very 
complicated, see below).

At T< TC, there is a region on the F(V) curve in which F makes 
a concave protrusion (∂2F/∂V 2<0) – unlike its ideal gas 
counterpart. Due to this protrusion, it is possible to draw a 
common tangent line so that it touches the bottom of the left 
dip at V = V1 and the right dip at V = V2. Since the common 
tangent line lies below the free energy curve, molecules can 
minimize their free energy by refusing to be in a single 
homogeneous phase in the region between V1 and V2, and by 
preferring to be in two coexisting phases, gas and liquid:
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- we recognize this as the common tangent line.



Phase Separation in the vdW Model (cont.)
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Since the tangent line F(V) maintains the same slope 
between V1 and V2, the pressure remains constant 
between V1 and V2:
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In other words, the line connecting points on the PV
plot is horizontal and the two coexisting phases are in a 
mechanical equilibrium. For each temperature below 
TC, the phase transformation occurs at a well-defined 
pressure Pvap, the so-called vapor pressure.

Two stable branches 1-2-3 and 
5-6-7 correspond to different 
phases. Along branch 1-2-3 V
is large, P is small, the density 
is also small – gas. Along 
branch 5-6-7 V is small, P is 
large, the density is large –
liquid. Between the branches –
the gas-liquid phase 
transformation, which starts 
even before we reach 3 moving 
along branch 1-2-3. 
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For T<TC, there are three values of n with the same μ . The outer two values of n
correspond to two stable phases which are in equilibrium with each other.
The kink on the G(V) curve is a signature of the 1st order transition. When we move 
along the gas-liquid coexistence curve towards the critical point, the transition 
becomes less and less abrupt, and at the critical point, the abruptness disappears. 

Phase Separation in the vdW Model (cont.)



The Maxwell Construction
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the areas 2-3-4-2 and 4-5-6-4 must be equal !

the lowest branch 
represents the stable 

phase, the other branches 
are unstable

[finding the position of line 2-6 without analyzing F(V)]

On the one hand, using the dashed line on the  F-V
plot:

On the other hand, the area under the vdW isoterm 
2-6 on the P-V plot:
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Problem

P

V

The total mass of water and its saturated vapor 
(gas) mtotal = mliq+ mgas = 12 kg.  What are the 
masses of water, mliq, and the gas, mgas, in the 
state of the system shown in the Figure? 

Vliq increases from 0 to V1 while the total volume 
decreases from V2 to V1. Vgas decreases from V2
to 0 while the total volume decreases from V2 to 
V1. When V = V1, mtotal = mliq. Thus, in the state 
shown in the Figure, mliq ≈ 2 kg and mgas ≈ 10 
kg.

V

Vliq

Vgas

V1 V2



Phase Diagram in T-V Plane

Single Phase

V

T

TC

VC

At T >TC, the N molecules can exist in a single phase in 
any volume V, with any density n = N/V. Below TC, they 
can exist in a homogeneous phase either in volume V < V1
or in volume V > V2. There is a gap in the density allowed 
for a homogeneous  phase.
There are two regions within the two-phase “dome”: 
metastable (∂P/∂V< 0) and unstable (∂P/∂V>0). In the 
unstable region with negative compressibility, nothing can 
prevent phase separation. In two metastable regions, 
though the system would decrease the free energy by 
phase separation, it should overcome the potential 
barrier first. Indeed, when small droplets with radius R are 
initially formed, an associated with the surface energy term 
tends to increase F. The F loss (gain) per droplet: 
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Joule-Thomson Process for the vdW Gas

0=Δ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+Δ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=Δ P
P
HT

T
HH

TP

The JT process corresponds to an isenthalpic expansion: 
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We’ll consider the vdW gas at low densities: NbV
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This is a pretty general (model-independent) result. By applying this result to the vdW 
equation, one can qualitatively describe the shape of the inversion curve (requires solving 
cubic equations...).

cooling

heating



Joule-Thomson Process for the vdW Gas (cont.)

cooling

heating 02
=− b

Tk
a

INVB

The upper inversion temperature:
(at low densities)
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TINV

(P=1 bar)

CO2 (2050)

CH4 (1290)

O2 893

N2 621

H2 205
4He 51
3He (23)

(TC – the critical temperature 
of the vdW gas, see below)

Cooling: 02
>− b
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B

If b = 0, T always decreases in the JT process: an increase of Upot at the expense of K. 
If a = 0, T always increases in the JT process (despite the work of molecular forces is 0): 

Heating: 02
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( ) ( ) PNbTCPNbTRCPVUHPNbRTPVRTNbVP PV +=++=+=−==−

Thus, the vdW gas can be liquefied by 
compression only if its T < 27/4TC.



Problem
The vdW gas undergoes an isothermal expansion from volume V1 to volume V2.

Calculate the change in the Helmholtz free energy.

In the isothermal process, the change of the Helmholtz free energy is
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