
Lecture 11.   Heat Engines  (Ch. 4)

Heating – the transfer of energy to a system by thermal contact with a 
reservoir.
Work – the transfer of energy to a system by a change in the external 
parameters (V, el.-mag. and grav. fields, etc.).

The main question we want to address: what are the limitations imposed 
by thermodynamic on the performance of heat engines?

A heat engine – any device that is capable of 
converting thermal energy (heating) into mechanical 
energy (work). We will consider an important class of 
such devices whose operation is cyclic.



Perpetual Motion Machines are Impossible
Perpetual Motion Machines of the 

first type – these designs seek to 
create the energy required for their 
operation out of nothing.

Perpetual Motion Machines of the 
second type - these designs extract 
the energy required for their operation 
in a manner that decreases the entropy 
of an isolated system.

violation of the First Law 
(energy conservation)

violation of the Second 
Law
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Word of caution: for non-cyclic processes, 
100% of heat can be transformed into work 
without violating the Second Law. 

Example: an ideal gas expands isothermally 
being in thermal contact with a hot reservoir. 
Since U = const at T = const, all heat has 
been transformed into work.

impossible cyclic
heat engine



Fundamental Difference between Heating and Work 

- is the difference in the entropy transfer!

Transferring purely mechanical energy to or from a system does
not (necessarily) change its entropy: ΔS = 0 for reversible 
processes. For this reason, all forms of work are thermodynamically 
equivalent to each other - they are freely convertible into each other 
and, in particular, into mechanical work.

An ideal el. motor converts el. work into mech. work, an ideal el. generator 
converts mech. work into el. work.

Work can be completely converted into heat, but the inverse is 
not true. The transfer of energy by heating is accompanied with the 
entropy transfer

Thus, entropy enters the system with heating, but does not leave the 
system with the work. On the other hand, for a continuous operation of a 
heat engine, the net entropy change during a cycle must be zero!

How is it possible???
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The Price Should be Paid...
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hot reservoir, TH 

cold reservoir, TC

“Working substance” – the system 
that absorbs heat, expels waste 
energy, and does work (e.g., water 
vapor in the steam engine)

Thus, the only way to get rid of the 
accumulating entropy is to absorb 
more internal energy in the heating 
process than the amount converted 
to work, and to “flush” the entropy 
with the flow of the waste heat out 
of the system.

An engine can get rid of all the 
entropy received from the hot 
reservoir by transferring only part
of the input thermal energy to the 
cold reservoir.
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Essential parts of a heat engine 
(any continuously operating 
reversible device generating work 
from “heat”)

An essential ingredient: a 
temperature difference between 
hot and cold reservoirs.



Perfect Engines (no extra S generated)
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hot reservoir, TH 

cold reservoir, TC

The condition of continuous operation:
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The work generated during one cycle of a 
reversible process:
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the highest possible 
value of the energy 

conversion efficiency

11max <−=≡
H

C

H T
T

Q
We

Sadi Carnot

(to simplify equations, I’ll omit δ in δQ throughout this lecture)



Consequences

Any difference TH –TC ≠ 0 can be exploited to generate mechanical 
energy. 

The greater the TH –TC difference, the more efficient the engine.
Energy waste is inevitable.

Example: In a typical nuclear power plant, TH = 3000C (~570K), TC = 
400C (~310K), and the maximum efficiency emax=0.45. If the plant 
generates 1000 MW of “work”, its waste heat production is at a rate 

- more fuel is needed to get rid of the entropy then to generate useful 
power.
This creates the problem of waste heat - e.g., the waste heat produced 
by human activities in the LA basin exceeds 7% of the solar energy 
falling on the basin (~ 1kW/m2).
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Real Engines
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hot reservoir, TH 

cold reservoir, TC

Real heat engines have lower efficiencies 
because the processes within the devices are 
not perfectly reversible – the entropy will be 
generated by irreversible processes:
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e = emax only in the limit of reversible 
operation.
Some sources of irreversibility:

heat may flow directly between reservoirs; 
not all temperature difference TH – TC may 

be available (temperature drop across thermal 
resistances in the path of the heat flow);

part of the work generated may be 
converted to heat by friction;

gas may expand irreversibly without doing 
work (as gas flow into vacuum).



Problem
The temperature inside the engine of a helicopter is 20000C, the temperature of the 
exhaust gases is 9000C. The mass of the helicopter is M = 2⋅103 kg, the heat of 
combustion of gasoline is Qcomb = 47⋅103 kJ/kg, and the density of gasoline is ρ = 
0.8 g/cm3. What is the maximum height that the helicopter can reach by burning V = 
1 liter of gasoline?

The work done on lifting the helicopter: MgHW =
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Problem [ TH = f(t) ]

.
(a) Calculate the heat extracted from the hot reservoir during this period.
(b) What is the change of entropy of the hot reservoir during this period?
(c) How much work did the engine do during this period?
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A reversible heat engine operates between two reservoirs, TC and TH.. The cold reservoir 
can be considered to have infinite mass, i.e., TC = T1 remains constant. However the hot 
reservoir consists of a finite amount of gas at constant volume (ν moles with a specific heat 
capacity cV), thus TH decreases with time (initially, TH =T2, T2 > T1). After the heat engine 
has operated for some long period of time, the temperature TH is lowered to TC =T1

Note: if TH and/or TC vary in the process, we still can 
introduce an “instanteneous” efficiency: ( )
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a) What is the temperature of the water?
b) How much heat has been absorbed by the block of ice in the process?
c) How much ice has been melted (the heat of fusion of ice is 333 J/g)?
d) How much work has been done by the engine?

(a) Because the block of ice is very large, we can assume its 
temperature to be constant. When work can no longer be 
extracted from the system, the efficiency of the cycle is zero: CTT
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A reversible heat engine absorbs heat from the water and expels heat to the ice until 
work can no longer be extracted from the system. The heat capacity of water is 4.2 
J/g·K.   At the completion of the process:

Problem

Problem (cont.)

(c) The amount of melted ice: kg 
J/g 333
kJ 07.19.357
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(d) The work : kJ 1.62kJ 9.357-100KKkJ/kg2.4kg1 =×⋅×=−= CH QQW

(b) The heat absorbed by the block of ice:
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Given 1 kg of water at 1000C and a very large block of ice at 00C.



Carnot Cycle

1 – 2 isothermal expansion (in contact with TH) 
2 – 3 isentropic expansion to TC
3 – 4    isothermal compression (in contact with TC) 
4 – 1 isentropic compression to TH

(isentropic ≡ adiabatic+quasistatic)

Efficiency of Carnot 
cycle for an ideal gas: 
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On the S -T diagram, the work done is 
the area of the loop:
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The heat consumed at TH (1 – 2) is the area 
surrounded by the broken line:

( )CHHH SSTQ −= S - entropy 
contained in gas

- is not very practical (too slow), but operates at the maximum efficiency allowed by 
the Second Law.

TC 

P 

V 

TH 

1

2

34

absorbs
heat

rejects heat



Problem
Problem. Consider a heat engine working in a reversible cycle and using an ideal 

gas with constant heat capacity cP as the working substance. The cycle 
consists of two processes at constant pressure, joined by two adiabatic 
processes.

(a) Which temperature of TA, TB, TC, and TD is highest, and which is lowest?
(b) Find the efficiency of this engine in terms of P1 and P2 .
(c) Show that a Carnot engine with the same gas working between the highest and 

lowest temperatures has greater efficiency than this engine.

(a)   From the equation of state for an ideal gas (PV=RT), 
we know that 
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From the adiabatic equation : DACB TTTT >>

Thus ( ) ( )DCBADDCBAB TTTTTTTTTT ,,,min,,,max ==

The Carnot heat engine operates at the maximum efficiency allowed by the Second 
Law. Other heat engines may have a lower efficiency even if the cycle is reversible 
(no friction, etc.)



Problem (cont.)
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(b) The heat absorbed from the hot reservoir  ( )ABPAB TTCQ −=

The heat released into the cold reservoir  ( )DCPCD TTCQ −=
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Stirling heat engine

The gasses used inside a Stirling engine never leave the 
engine. There are no exhaust valves that vent high-pressure 
gasses, as in a gasoline or diesel engine, and there are no 
explosions taking place. Because of this, Stirling engines are 
very quiet. The Stirling cycle uses an external heat source, 
which could be anything from gasoline to solar energy to the 
heat produced by decaying plants. Today, Stirling engines 
are used in some very specialized applications, like in 
submarines or auxiliary power generators, where quiet 
operation is important. 

Stirling engine – a simple, practical heat engine using a gas 
as working substance. It’s more practical than Carnot, though 
its efficiency is pretty close to the Carnot maximum 
efficiency. The Stirling engine contains a fixed amount of gas 
which is transferred back and forth between a "cold" and and 
a "hot" end of a long cylinder. The "displacer piston" moves 
the gas between the two ends and the "power piston" 
changes the internal volume as the gas expands and 
contracts.
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Efficiency of Stirling Engine
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In the Stirling heat engine, a working substance, which may be assumed to be an 
ideal monatomic gas, at initial volume V1 and temperature T1 takes in “heat” at 
constant volume until its temperature is T2, and then expands isothermally until its 
volume is V2. It gives out “heat” at constant volume until its temperature is again T1
and then returns to its initial state by isothermal contraction. Calculate the efficiency 
and compare with a Carnot engine operating between the same two temperatures.



Internal Combustion Engines (Otto cycle)

Otto cycle. Working substance – a mixture of air and 
vaporized gasoline. No hot reservoir – thermal energy 
is produced by burning fuel. 
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V - the compression ratio

0 – 3         intake (fuel+air is pulled into the cylinder 
by the retreating piston)

3 – 4 isentropic compression 
4 – 1 isochoric heating 
1 – 2         isentropic expansion  
2 – 3 – 0 exhaust

The efficiency:
(Pr. 4.18) γ = 1+2/f - the adiabatic exponent

For typical numbers V1/V2 ~8 , γ ~ 7/5  → e = 0.56, (in reality, e = 0.2 – 0.3)
(even an “ideal” efficiency is smaller than the second law limit 1-T3/T1)
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- engines where the fuel is burned inside the engine cylinder as opposed to that 
where the fuel is burned outside the cylinder (e.g., the Stirling engine). More 
economical than ideal-gas engines because a small engine can generate a 
considerable power.



Otto cycle (cont.)
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Refrigerators
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hot reservoir, TH 

cold reservoir, TC

The purpose of a refrigerator is to make thermal 
energy flow from cold to hot. The coefficient of 
performance for a fridge:
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COP is the largest when TH and TC are close 
to each other!
For a typical kitchen fridge TH ~300K, TC~ 
250K ⇒ COP ~ 6 (for each J of el. energy, 
the coolant can suck as much as 6 J of heat 
from the inside of the freezer).
A fridge that cools something from RT to LHe
temperature (TC~ 4K) would have to be much 
less efficient.



Example:

A “perfect” heat engine with e = 0.4 is used as a refrigerator (the heat 
reservoirs remain the same). How much heat QC can be transferred in one 
cycle from the cold reservoir to the hot one if the supplied in one cycle 
work  is W =10 kJ?
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