A Mid-Infrared Spectroscopic Study of Submillimeter Galaxies: Luminous Starbursts at High Redshift

Valiante et al. 2007, ApJ, 660, 1060

Chelsea Sharon Ph 689: 10/22/2009

Outline

- History
- Characterization of SMGs
 - Specifically, this paper
- The Big Picture
 - Local Analogues

Submillimeter Galaxies: History

- FIR/submm background first resolved with SCUBA (JCMT) and MAMBO (IRAM 30m)
- Small instrument bandwidth required accurate redshifts for follow-up observations
- Expensive to obtain redshifts
 - Radio Counterpart
 - Optical Spectroscopy
 - CO line detection

Submillimeter Galaxies: History

- FIR/submm background first resolved with SCUBA (JCMT) and MAMBO (IRAM 30m)
- Small instrument bandwidth required accurate redshifts for follow-up observations
- Expensive to obtain redshifts
 - Radio Counterpart
 - Optical Spectroscopy
 - CO line detection

Hughes et al. 1998

Submillimeter Galaxies: History

- FIR/submm background first resolved with SCUBA (JCMT) and MAMBO (IRAM 30m)
- Small instrument bandwidth required accurate redshifts for follow-up observations
- Expensive to obtain redshifts
 - Radio Counterpart
 - Optical Spectroscopy
 - CO line detection

Frayer et al. 2000

Characteristics of SMGs: Morphology and Distribution

- Morphology: disturbed and compact
- Redshift distribution
 - Ranges from 2-3
 - Chapman et al. (optical) peaks at z=2.3
 - Valiante et al. (7.7 μm) peaks at z=2.8
- Spatial distribution?

Baker et al. (in prep)

Characteristics of SMGs: Morphology and Distribution

- Morphology: disturbed and compact
- Redshift distribution
 - Ranges from 2-3
 - Chapman et al. (optical) peaks at z=2.3
 - Valiante et al. (7.7 μm) peaks at z=2.8
- Spatial distribution?

	X-ray	Optical	mid-IR	Submm	Radio
Rest-frame	Harder X-ray	UV	near-IR	far-IR	High-frequency radio
Source	AGN	Young, massive stars	PAH signatures	Thermal dust emission	Synchrotron from SNR
Amount	~10% of sources	~80% of radio sources	~70% of sources (Valiante et al.)	I 0 ⁴ L _{MW}	~2/3 of sources
Tells us	Few or highly- obscured AGN	Recent star formation	Warm dust, star- burst dominated (not AGN)	Dusty, gas ~40% M _b , high SFR	???

PAH = Polycyclic Aromatic Hydrocarbon

CO Lines!

- CO is the best tracer for molecular gas
 - $M_b = 10^{11} M_{sun}$
- Molecular gas fuels star formation
- Line profiles probe dynamical state of gas
 - $M_{dyn} = 6 \times M_{gas}$

Caution! Extreme Model Dependance

The Big Picture

- Local Analogues = ULIRGs
- SMGs are major mergers caught in star-burst phase
- Progenitors of modern massive elliptical galaxies

ARP 220 (VIXENS Survey)

(U)LIRGs= (Ultra-) Luminous Infrared Galaxies

In Summary, SMGs are...

- Massive, infrared-luminous galaxies at z~2-3
- Dusty and gaseous
- Starburst dominated; may have AGN components
- Likely formed during major mergers
- Likely the progenitors of the most massive elliptical galaxies
- Similar to scaled-up versions of ULIRGs