A Unified, Merger-Driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids

Hopkins, et al 2006

George Locke 11-5-09

Motivation

- Standard initial conditions can be used to make highly accurate simulations of Lyman-α forest
 - Existing ab initio models from these same conditions have failed to yield a galactic population representative of observations
- Therefore, believe ACDM and the initial conditions but not the galactic evolution models
- Need a new a model with the "missing physics"
 - Additional hydrodynamical processes including star formation and feedback from black hole accretion and supernovae

Methodology

- Simulate hundreds of mergers
- Find luminosity for merged galaxies as a function of time
- Bin mergers by L_{peak}
- Quasar luminosity function φ(L) is the convolution of quasar lifetime t_Q(L|L_{peak}) with the rate of quasar births n⁻(L_{peak})

 \Box Use calculated t_Q and measured ϕ to find n (L_{peak})

• And you get $n(L, L_v, M_{BH}, N_H, L_{peak}, M_{BH}^f | z)$

Simulation

- Smoothed particle hydrodynamics
- Radiative heating and cooling
- Star formation and supernova feedback
 - "subresolution model of a multiphase interstellar medium" (Springel & Hernquist MNRAS 2003)
- Black hole is "sink" particle
 - Accretion determined by Eddington-limited version of Bondi-Hoyle-Lyttleton accretion theory (Bondi 1952)
 - \Box Radiates at L_{bol}= $\epsilon_r M_{BH} c^2$
 - ε_r=0.1 (parameter?)
 - Assume ~5% of radiation couples dynamically to surrounding gas

Calculating Quasar Lifetimes

$$t_{\mathcal{Q}}\left(L \mid L_{peak}\right) = t_{\mathcal{Q}}^{*} \int_{L}^{L_{peak}} e^{-L/L_{\mathcal{Q}}^{*}} d\log L$$

• $t_Q(L|L_{peak})$ = the time a quasar has a luminosity above L with $t_Q^* = t_*^{(10)} \left(\frac{L_{peak}}{10^{10}L_{\Theta}}\right)^{\alpha_T}$, $L_Q^* = \alpha_L L_{peak}$

and parameters fitted from model:

$$t_*^{(10)} = 1.37 \times 10^9 \, yr, \alpha_T = -0.11, \alpha_L = 0.20$$

This formula predicts ~90% of quasar lifetime near L=0.001 L_{peak}!

Getting Quasar Creation Rate n

• φ = the comoving number density of quasars in $\Delta \log L$

$$\phi(L) = \int \frac{dt_Q(L \mid L_{peak})}{d\log L} \dot{n}(L_{peak}) d\log L_{peak}$$

Approximate the above with a sum and fit:

$$\phi(L) \approx \sum_{i} \dot{n} \left(L_{peak,i} \right) \left\langle \frac{\Delta t_{Q} \left(L \mid L_{peak,i} \right)}{\Delta \log L} \right\rangle$$

 n⁻ can be extrapolated to arbitrary z

z = 0.5

(Vertical axis is just log(ϕ)/Mpc³)

Model vs X-rays

- AGNs are likely sources of x-ray background
 - Existing models inadequate for high z and require ad hoc assumptions
- Thick lines are observations
 - Barcons et al 2000 and Gruber et all 1999
- Thin lines are predictions
 - Top and middle panel show model with different obscuration predictions
 - Bottom panel shows simpler models

Additional Predictions & Tests

- Can use the model to predict
 - Column density distributions
 - Broad-line luminosity function and fraction
 - Active black hole mass function
 - Eddington ratios
 - Relic black hole mass function
 - Host galaxy properties
 - Gravitational wave signal from black hole mergers

Conclusions

- Supermassive black holes regulate galaxy formation and evolution via radiation
 - Mergers pull gas to center only to be expelled by quasars
 - Quasar lifetime well described as a function of L_{peak} and L
 - Previous models fail to successfully characterize the long low L tails of this lifetime
- n' is poorly understood
 - Observations of black hole mass distribution probe faint end of n⁻(L_{peak})
 - □ Larger scale models should illuminate merger rates

T = 0.21 Gyr	T = 0.32 Gyr	T = 0.39 Gyr	T = 0.50 Gyr
T = 0.57 Gyr	T = 0.68 Gyr	T = 0.75 Gyr	T = 0.86 Gyr
T = 0.94 Gyr	T = 1.03 Gyr	T = 1.11 Gyr	T = 1.21 Gyr

FIG. 5.—Fits to the quasar lifetime as a function of luminosity from our simulations. The top left panel shows the intrinsic, bolometric quasar lifetime t_Q of a set of simulations with L_{peak} within a factor of 2 of $10^{10} L_{\odot}$, in the manner of Fig. 4. The histogram shows the geometric mean of these lifetimes, and the histogram in the bottom left panel shows the differential lifetime $dt/d \log L$ from this geometric mean. The thick solid line in the top left panel and solid line in the bottom left panel show the best-fit to our analytical form, $dt/d \log L = t_Q^* \exp(-L/L_Q^*)$. The top right panel shows the fitted t_Q^* and resulting errors in each peak luminosity (final black hole mass) interval, and the best-fit proportionality $L_Q^* \propto L_{\text{peak}}$ (solid line). [See the electronic edition of the Supplement for a color version of this figure.]

Typical Merger

