A loop of $S U(2)$ gauge fields on S^{4} stable under the Yang-Mills flow

Daniel Friedan

Rutgers the State University of New Jersey
Natural Science Institute, University of Iceland

MIT

November 3, 2009

The space of connections

$$
\begin{array}{ll}
G \text { a compact Lie group } & - \text { say } G=S U(2) \\
M \text { a riemannian 4-manifold } & - \text { say } M=S^{4} \\
B \text { a principle } G \text {-bundle over } M & \text { say } B=S^{4} \times S U(2)
\end{array}
$$

$\mathcal{A}=$ the space of connections in B
$D=d+A$ the covariant derivative
A an $s u(2)$-valued 1-form on S^{4}
$F=D^{2}$ the curvature, an $s u(2)$-valued 2-form
$\mathcal{G}=$ the group of automorphisms of B (gauge transformations)

$$
\mathcal{G}=\operatorname{Maps}\left(S^{4} \rightarrow S U(2)\right)
$$

$\mathcal{A} / \mathcal{G}=$ the gauge equivalence classes of connections

The $\mathrm{Y}-\mathrm{M}$ flow on the unparametrized loops of connections

The Yang-Mills action $\quad S_{Y M}(A)=\frac{1}{2 \pi^{2}} \int_{M} \frac{1}{4} \operatorname{tr}(-F * F)$
(normalized so that the instanton has $S_{Y M}=1$.)
The metric on $\mathcal{A} \quad(d s)_{\mathcal{A}}^{2}=\frac{1}{2 \pi^{2}} \int_{M} \frac{1}{2} \operatorname{tr}(-\delta A * \delta A)$
The gradient flow

$$
\begin{aligned}
& \frac{\partial A}{\partial t}=-\nabla S_{Y M}=* D * F(A) \\
& \left(\partial_{t} A_{\mu}(x)=D^{\nu} F_{\nu \mu}(x)=\partial^{\nu} \partial_{\nu} A_{\mu}(x)+\cdots\right)
\end{aligned}
$$

The Y -M flow is \mathcal{G}-invariant, so it acts:

- on the gauge equivalence classes, $\mathcal{A} / \mathcal{G}$
- pointwise on loops of connections, $\operatorname{Maps}\left(S^{1} \rightarrow \mathcal{A} / \mathcal{G}\right)$
- on unparametrized loops, $\mathcal{L}=\operatorname{Maps}\left(S^{1} \rightarrow \mathcal{A} / \mathcal{G}\right) / \operatorname{Diff}\left(S^{1}\right)$

The problem

What is the generic long-time behavior of the $\mathrm{Y}-\mathrm{M}$ flow on the space \mathcal{L} of unparametrized loops?
A stable loop would be a parametrized loop $\sigma \mapsto A(\sigma)$ on which the flow acts by reparametrization: $\partial_{t} A(\sigma)=v(\sigma) \partial_{\sigma} A(\sigma)$.
Are there nontrivial stable loops for all the nontrivial elements in $\pi_{0} \mathcal{L}=\pi_{1}(\mathcal{A} / \mathcal{G})$?
\mathcal{A} is contractible, so

$$
\begin{gathered}
\pi_{1}(\mathcal{A} / \mathcal{G})=\pi_{0} \mathcal{G}=\pi_{0} \operatorname{Maps}\left(S^{4} \rightarrow G\right)=\pi_{4} G \\
\pi_{4} S U(2)=\mathbb{Z}_{2}
\end{gathered}
$$

$S U(2)$ is the only compact Lie group with nontrivial π_{4}.

Personal motivation

Hypothetical application in a speculative physics theory [DF, 2003].
The lambda model is a modified 2-d nonlinear model whose target space is the space of space-time fields, e.g., $\mathcal{A} / \mathcal{G}$.

The modification consists of interspersing the ordinary dilation operator of the nonlinear model with the gradient flow of the space-time action, e.g., $S_{Y M}$.

The dilation operator of the lambda model generates a measure on the target manifold - a space-time quantum field theory.

A stable loop for the $S U(2)$ Yang-Mills flow is a classical winding mode for the lambda model.

If the stable loop can be quantized in the lambda model, it might give low energy states that are not in lagrangian $S U(2)$ quantum gauge field theory, and that might be observable.

The result

A plausible outcome of the Y-M flow would be for one point on the loop to flow to a saddle point with a one-dimensional unstable manifold. The outgoing flows in both directions along the unstable manifold would end at the flat connection. The unstable manifold would thus form a stable loop.

Here, I find such a saddle point, with $S_{Y M}=2$, and show that its unstable manifold is one-dimensional, so forms a stable loop.

Actually, the saddle point is not a point, but rather a loop of fixed points.

This is naive mathematics: entirely explicit, elementary calculations.

Previous work

Sibner, Sibner and Uhlenbeck (1989) constructed nontrivial loops of connections in the trivial bundle over S^{4}, with certain given $U(1)$ symmetry.

Then they minimized over loops with the given $U(1)$ symmetry the maximum of $S_{Y M}$ on the loop, and showed that this min-max was realized by a solution of the Yang-Mills equations.

As far as I can tell, these solutions have $S_{Y M}>2$. Each of these solutions should have a one-dimensional unstable manifold within the space of connections of the given $U(1)$ symmetry, but the full unstable manifold, within the space of all connections, presumably has dimension >1.

They conjectured the existence of an additional solution, not given by their construction. Presumably, their missing solution is the saddle point described here.

$S U(3) / S U(2)=S^{5} \subset \mathbb{C}^{3}$

Lacking intuition, I looked for an explicit nontrivial loop of $S U(2)$ connections, planning to run the $\mathrm{Y}-\mathrm{M}$ flow numerically to see what would happen.

The $S U(2)$ bundles over S^{5} are classified by $\pi_{4} S U(2)$, because they are made by gluing together trivial bundles on the north and south hemispheres using a map from the equator, S^{4}, to $S U(2)$. So there is a unique nontrivial $S U(2)$ bundle over S^{5}.
$S U(3) \rightarrow S U(3) / S U(2)=S^{5} \subset \mathbb{C}^{3}$ is a homogeneous model of the nontrivial bundle, with a canonical connection invariant under $S U(3)_{L} \times U(1)_{R}$.

Pull back along a suitable map $S^{1} \times S^{4} \rightarrow S^{5}$ to get a nontrivial loop of $S U(2)$ connections on S^{4},

$$
\sigma \in[0,2 \pi] \mapsto D_{\sigma}
$$

with D_{0} and $D_{2 \pi}$ nontrivially gauge equivalent flat connections.

Parametrizations

$$
\begin{aligned}
S^{3} \subset \mathbb{C}^{2}: \quad z=\left(z_{1}, z_{2}\right) \quad\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2} & =1 \\
S^{4} \subset \mathbb{R} \oplus \mathbb{C}^{2}: \quad\left(\cos \theta, z_{1} \sin \theta, z_{2} \sin \theta\right) \quad 0 & \leq \theta \leq \pi \\
r & =e^{x}=\tan \frac{\theta}{2}
\end{aligned}
$$

$U(2)$ symmetry
The map $S^{1} \times S^{4} \rightarrow S^{5}$ can be chosen so that each connection D_{σ} is invariant under the action of $U(2)$ on $S^{3} \subset \mathbb{C}^{2}$.

For example, take

$$
\left(\sigma, \theta, z_{1}, z_{2}\right) \mapsto\left(\cos \theta+i \sin \theta \cos \frac{\sigma}{2}, z_{1} \sin \theta \sin \frac{\sigma}{2}, z_{2} \sin \theta \sin \frac{\sigma}{2}\right)
$$

An additional \mathbb{Z}_{2} symmetry exchanges $D_{\sigma} \leftrightarrow D_{2 \pi-\sigma}$.
So the midpoint D_{π} has an enhanced $U(2) \rtimes \mathbb{Z}_{2}$ symmetry.
D_{π} should flow to the saddle point.
The \mathbb{Z}_{2} symmetry would exchange the two branches of the unstable manifold.

Instead of running the $\mathrm{Y}-\mathrm{M}$ flow numerically on the loop, it is considerably easier just to minimize $S_{Y M}$ within the space of $U(2) \rtimes \mathbb{Z}_{2}$-invariant connections.
$U(2)$ acts transitively on S^{3}, so the $U(2)$-invariant connection forms A_{σ} are functions only of θ, or x.

The additional \mathbb{Z}_{2} symmetry reflects $\theta \leftrightarrow \pi-\theta, x \leftrightarrow-x$, so the invariant connection forms satisfy reflection symmetry conditions.

Numerical investigations

The connection 1-form $A(\theta)$ has two independent components, satisfying certain symmetry conditions under $\theta \rightarrow \pi-\theta$.

Write them as suitable polynomials in $\cos \theta$. $S_{Y M}$ is a quartic polynomial in the coefficients of the polynomials.
Minimize $S_{Y M}$ numerically on this 2 N dimensional submanifold of the space of invariant connections, using Sage, Mathematica, and Maple. The programs misbehaved for $N>15$.
$S U(3): S_{Y M}=2.4$
$\mathrm{N} \min \left(S_{Y M}\right)$
12.15627
$2 \quad 2.06011$
$3 \quad 2.03019$
42.01735
$5 \quad 2.01086$
$6 \quad 2.00723$
72.00504
82.00368
92.00346
102.00313
112.00286

The numerics suggest an absolute minimum at $S_{Y M}=2$.
$12 \quad 2.00251$
$S_{Y M}$ a small integer suggests topology.
$13 \quad 2.00202$
142.00186
$15 \quad 2.00147$

(anti-)self-duality

$$
\begin{gathered}
F_{ \pm}=\frac{1}{2}(F \pm * F) \quad * \text { the Hodge operator } \\
S_{ \pm}=\frac{1}{8 \pi^{2}} \int_{S^{4}}\left(-F_{ \pm} * F_{ \pm}\right)=\int_{-\infty}^{\infty} d x L_{ \pm}(x) \\
S_{Y M}=S_{+}+S_{-}
\end{gathered}
$$

$$
S_{+}-S_{-} \in \mathbb{Z} \text { is the instanton number }
$$

The instanton: $\quad F=* F \quad S_{+}=1$

$$
F_{-}=0 \quad L_{-}(x)=0 \quad S_{-}=0
$$

The $U(2)$-invariant instanton centered at the south pole ($x=\infty$) will be written explicitly later. For now, its action density is

$$
L_{+}(x)=L_{\text {inst }}(x)=.75 \cosh ^{-4}\left(x-x_{+}\right)
$$

where

$$
r_{+}=e^{-x_{+}}
$$

is the instanton size.

The numerics suggest that $S_{Y M}=2$ is attained as a zero-size instanton at the south pole (at $x=\infty$) combined with a zero-size anti-instanton at the north pole (at $x=-\infty$).

The $U(2)$-invariant $s u(2)$-valued forms on S^{3}
$U(2)$ invariance:

$$
\omega(h z)=h \omega(z) h^{-1} \quad h \in U(2)
$$

Identify S^{3} with $S U(2)$,

$$
\hat{e}=\binom{1}{0} \quad z=g \hat{e} \quad g=\left(\begin{array}{cc}
z_{1} & -\bar{z}_{2} \\
z_{2} & \bar{z}_{1}
\end{array}\right)
$$

There is a single invariant 0 -form:

$$
\phi(z)=i(P-Q)=g\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) g^{-1} \quad P=z z^{\dagger}, \quad Q=1-P
$$

There are three invariant 1-forms:

$$
v_{+}=P d P \quad v_{-}=(d P) P \quad v_{3}=\left(z^{\dagger} d z\right)(Q-P)
$$

The Maurer-Cartan form on $\operatorname{SU}(2)$ is

$$
\Omega=g d\left(g^{-1}\right)=v_{+}-v_{-}+v_{3}
$$

The instanton and the anti-instanton

The basic instanton of size r_{+}located at the south pole $(x=\infty)$

$$
D_{+}=d+f_{+}(x) \Omega \quad f_{+}=\frac{1}{1+e^{2\left(x-x_{+}\right)}} \quad r_{+}=e^{-x_{+}}
$$

The basic anti-instanton of size r_{-}at the north pole $(x=-\infty)$

$$
D_{-}=d+f_{-}(x) \Omega \quad f_{-}=\frac{1}{1+e^{-2\left(x-x_{-}\right)}} \quad r_{-}=e^{x_{-}}
$$

The instanton and anti-instanton twisted by $h_{ \pm} \in S U(2) /\{ \pm \mathbf{1}\}$

$$
\left(g h_{+} g^{-1}\right) D_{+}\left(g h_{+} g^{-1}\right)^{-1} \quad\left(g h_{-} g^{-1}\right) D_{-}\left(g h_{-} g^{-1}\right)^{-1}
$$

8 (anti-)instanton moduli: 4 the location in S^{4}
1 the size $r_{ \pm}$
3 the twist $h_{ \pm}$

The twisted-pair

Send $r_{ \pm} \rightarrow 0$. Then, away from the poles, $f_{ \pm 1}=1$, so

$$
D_{ \pm}=g d g^{-1}, \quad \text { so } \quad\left(g h_{ \pm} g^{-1}\right) D_{ \pm}\left(g h_{ \pm} g^{-1}\right)^{-1}=g d g^{-1}
$$

so it makes sense to patch the twisted pair at the equator, defining

$$
D\left(h_{-}, h_{+}\right)= \begin{cases}\left(g h_{-} g^{-1}\right) D_{-}\left(g h_{-} g^{-1}\right)^{-1} & x \leq 0 \\ \left(g h_{+} g^{-1}\right) D_{+}\left(g h_{+} g^{-1}\right)^{-1} & x \geq 0\end{cases}
$$

The 15 parameter conformal group of S^{4} absorbs 14 of the 16 moduli. Use 8 to put the instanton and the anti-instanton at the poles, and use dilation to scale r_{+}and r_{-}^{-1}, to make $r_{+}=r_{-}$.

This leaves the 6 parameters of $O(4)=S U(2)_{L} \times S U(2)_{R} /\{ \pm \mathbf{1}\}$.
$S U(2)_{L} \times S U(2)_{R} /\{ \pm \mathbf{1}\}$ acts on the twists by

$$
\left(h_{+}, h_{-}\right) \mapsto\left(g_{R} h_{+} g_{L}^{-1}, g_{R} h_{-} g_{L}^{-1}\right)
$$

Absorb h_{+}by taking $g_{L}=g_{R} h_{+}$, leaving $S U(2)_{R} /\{ \pm \mathbf{1}\}$ acting by conjugation on h_{-}

$$
\left(\mathbf{1}, h_{-}\right) \mapsto\left(\mathbf{1}, g_{R} h_{-} g_{R}^{-1}\right)
$$

Thus the zero-size twisted-pair has 14 conformal moduli, plus a 1 parameter symmetry, plus 1 additional parameter

$$
\cos \frac{\sigma}{2}=\frac{1}{2} \operatorname{tr}\left(h_{-} h_{+}^{-1}\right) \quad 0 \leq \sigma \leq 2 \pi
$$

with $\sigma=0 \sim \sigma=2 \pi$ because the twists act by conjugation.

The loop of zero-size twisted pairs

The relative twist $h_{-} h_{+}^{-1} /\{ \pm \mathbf{1}\}$ lies in $S U(2) /\{ \pm \mathbf{1}\}=S O$ (3).
$\pi_{1} S O(3)=\mathbb{Z}_{2}$. We want to show that the nontrivial loops of zero-size twisted pairs are nontrivial loops in $\mathcal{A} / \mathcal{G}$.

A convenient nontrivial loop of zero-size twisted pairs is

$$
\left.\begin{array}{c}
D_{\sigma}=\left\{\begin{array}{ll}
D_{\sigma}^{-} & =e^{\frac{1}{4} \sigma \phi} D_{-} e^{-\frac{1}{4} \sigma \phi} \\
D_{\sigma}^{+} & =e^{-\frac{1}{4} \sigma \phi} D_{+} e^{\frac{1}{4} \sigma \phi}
\end{array} \quad x \geq 0\right.
\end{array}\right] \begin{gathered}
g h_{-} g^{-1}=e^{\frac{1}{4} \sigma \phi}=g\left(\begin{array}{cc}
e^{\frac{i \sigma}{4}} & 0 \\
0 & e^{-\frac{i \sigma}{4}}
\end{array}\right) g^{-1} \\
h_{-} h_{+}^{-1}=\left(\begin{array}{cc}
e^{\frac{i \sigma}{2}} & 0 \\
0 & e^{-\frac{i \sigma}{2}}
\end{array}\right)
\end{gathered}
$$

Non-triviality of the loop of twisted pairs in $\mathcal{A} / \mathcal{G}$

The twisted pairs, as written, are singular at the poles (before the limit $r_{ \pm} \rightarrow 0$). The connections can be made regular everywhere on S^{4} by a gauge transformation, giving

$$
\begin{gathered}
D_{\sigma}=\left\{\begin{array}{lll}
D_{\sigma}^{-} & =\Phi_{\sigma}^{-} D_{-}\left(\Phi_{\sigma}^{-}\right)^{-1} & x \leq 0 \\
D_{\sigma}^{+} & =\Phi_{\sigma}^{+} D_{+}\left(\Phi_{\sigma}^{+}\right)^{-1} & x \geq 0
\end{array}\right. \\
\Phi_{\sigma}^{-}(x, g)=e^{\frac{1}{2} \sigma k_{-}(x) \phi} \quad \Phi_{\sigma}^{+}(x, g)=e^{\left(\pi-\frac{1}{2} \sigma k_{+}(x)\right) \phi} \\
k_{+}(-\infty)=0 \quad k_{+}(-\infty)=1 \\
k_{-}+k_{+}=1 . \\
\Phi=D_{2 \pi}=\Phi D_{0} \Phi^{-1} \\
0
\end{gathered} \begin{array}{cc}
0 \\
0 \pi k_{+}(x) \phi & =g\left(\begin{array}{cc}
-i \pi k_{+}(x) & 0
\end{array}\right) g^{-1}
\end{array}
$$

$\Phi=\Sigma H: S^{4} \rightarrow S^{3}$, the suspension of the Hopf map $H: S^{3} \rightarrow S^{2}$, representing the nontrivial element in $\pi_{4} S^{3}$.

Stability

The zero-size twisted-pairs are all critical points of the $\mathrm{Y}-\mathrm{M}$ action, so the loop of zero-size twisted pairs is pointwise fixed under the Y-M flow.

Is the loop of zero-size twisted-pairs stable under the flow?
The instanton and the anti-instanton are individually stable, so we need only calculate the flow in the two zero-modes r_{+}and σ, in the limit where r_{+}is asymptotically small.

To determine the topology of the flow, it should be enough to calculate \dot{r}_{+}and $\dot{\sigma}$ as functions of r_{+}and σ, at least to leading order in r_{+}.

Calculation of \dot{r}_{+}and $\dot{\sigma}$

Write the general asymptotically small $U(2)$-invariant perturbation

$$
D_{\sigma}= \begin{cases}e^{\frac{1}{4} \sigma \phi}\left(D_{-}+\delta A_{-}\right) e^{-\frac{1}{4} \sigma \phi} & x \leq 0 \\ e^{-\frac{1}{4} \sigma \phi}\left(D_{+}+\delta A_{+}\right) e^{\frac{1}{4} \sigma \phi} & x \geq 0\end{cases}
$$

(1) Enforce the flow equation to leading order

$$
\begin{aligned}
& \dot{r}_{-} \partial_{r_{-}} D_{-}+\frac{1}{4} \dot{\sigma}\left[\phi, D_{-}\right]=* D_{-} * D_{-} \delta A_{-} \\
& \dot{r}_{+} \partial_{r_{+}} D_{+}-\frac{1}{4} \dot{\sigma}\left[\phi, D_{+}\right]=* D_{+} * D_{+} \delta A_{+}
\end{aligned}
$$

(2) Require D_{σ} to be regular at $x=0$,

$$
e^{\frac{1}{4} \sigma \phi}\left(D_{-}+\delta A_{-}\right) e^{-\frac{1}{4} \sigma \phi}-e^{-\frac{1}{4} \sigma \phi}\left(D_{+}+\delta A_{+}\right) e^{\frac{1}{4} \sigma \phi}=0+O\left(x^{2}\right)
$$

Together, (1) and (2) ensure that D_{σ} satisfies the flow equation.

Working in $A_{x}=0$ gauge, expand in the invariant 1-forms on S^{3}

$$
\delta A_{ \pm}=\delta A_{ \pm}^{+}(x) v_{+}+\delta A_{ \pm}^{-}(x) v_{-}+\delta A_{ \pm}^{3}(x) v_{3}
$$

The flow equations are thus second order inhomogeneous linear ordinary differential equations in x, with non-constant 3×3 matrix coefficients. They can be diagonalized and integrated exactly.
Then there are 6 patching equations: on the values of the coefficients of v_{+}, v_{-}, v_{3} at $x=0$, and the first derivatives.

After elementary but laborious calculations, I get

$$
\begin{aligned}
\dot{r}_{+} & =r_{+}^{3}(1+2 \cos \sigma)+O\left(r_{+}^{5}\right) \\
\dot{\sigma} & =-8 r_{+}^{2} \sin \sigma+O\left(r_{+}^{4}\right)
\end{aligned}
$$

The topology of the flow is easiest understood by looking at the flow lines.

The stable loop

There is a stable loop consisting of two branches.
One branch consists of the line of fixed points at $r_{+}=0$ from $\sigma=\pi$ to $\sigma=0$, then the outgoing trajectory along the vertical axis at $\sigma=0$.

The second branch consists of the line of fixed points at $r_{+}=0$ from $\sigma=\pi$ to $\sigma=2 \pi$, then out along the vertical axis at $\sigma=2 \pi$.

Recall that the two vertical axes, $\sigma=0$ and $\sigma=2 \pi$ are gauge equivalent, under a non-trivial gauge transformation.

I strongly suspect that the outgoing flows at $\sigma=0$ and $\sigma=2 \pi$ end at the flat connection.

Geometry

The metric inherited from the space of connections \mathcal{A} is, to leading order in r_{+},

$$
(d s)^{2}=64\left[\left(d r_{+}\right)^{2}+r_{+}^{2}\left(d \sigma^{\prime}\right)^{2}\right] \quad \sigma^{\prime}=\frac{1}{4} \sigma \quad 0 \leq \sigma^{\prime} \leq \frac{\pi}{2}
$$

The flow is the gradient flow wrt this metric for

$$
S_{Y M}=2-16 r_{+}^{4}(1+2 \cos \sigma)+O\left(r_{+}^{6}\right)
$$

$\mathcal{A} / \mathcal{G}$ is a cone: the upper right quadrant of the plane, the positive x-axis identified with the positive y-axis.

The space of zero-size twisted pairs lives at the vertex of the cone, at $r_{+}=0$.

The outgoing trajectory

The outgoing trajectory at $\sigma=0$ (or $\sigma=2 \pi$) is the flow of connections of the form

$$
D=d+f(x) \Omega \quad f(\pm \infty)=0, \quad f(x)=f(-x)
$$

generated by

$$
\frac{d f}{d t}=\partial_{x}^{2} f-4 f(1-f)(2 f-1)
$$

with initial conditions

$$
\begin{gathered}
f(x) \rightarrow \frac{1}{1+r_{+}(t)^{2} e^{2|x|}} \quad t \rightarrow-\infty \\
r_{+}(t)^{2}=(-6 t)^{-1}+O\left(t^{-2}\right)
\end{gathered}
$$

$$
\frac{d f}{d t}=\partial_{x}^{2} f-4 f(1-f)(2 f-1)
$$

is a nonlinear diffusion equation, a special case of the
FitzHugh-Nagumo equation

$$
\partial_{t} u=\partial_{x}^{2} u-u(u-1)(u-a) \quad \text { at } \quad a=\frac{1}{2}
$$

This is not integrable, but some exact solutions are known, including travelling shock waves which become static when $a=\frac{1}{2}$. These are our instanton and anti-instanton.

The calculation described above guarantees an early time solution that starts as a widely separated shock-anti-shock pair moving slowly towards each other with a speed that goes as $\frac{1}{-2 t}$.

Does this solution exist for all t ? As $t \rightarrow+\infty$, does the shock-anti-shock pair annihilate to $f=0$ (the flat connection)?

Questions

- What is the outgoing trajectory from the loop of twisted pairs located at separation R in euclidean \mathbb{R}^{4} ? How does it approach the flat connection?

I expect that any low energy states in the lambda model would come from this asymptotic approach to the flat connection on \mathbb{R}^{4}.

- Global stability? Is the attracting basin open and dense? Are there any other locally stable loops?
- Stable 2-spheres (lambda instantons)?
- $\pi_{2}(\mathcal{A} / \mathcal{G})=\pi_{5} G$
- $\pi_{5} S U(3)=\mathbb{Z} . \quad G_{2} / S U(3)=S^{6}$ is a model. Numerics are essentially the same [DF, Pisa Workshop on Geometric Flows, June 2009]. The space of twisted pairs in $S U(3)$ contains a $\mathbf{C P}{ }^{1}$. The stability calculation has not yet been done.
- $\pi_{5} S U(2)=\mathbb{Z}_{2}$. I have no idea what a stable 2-sphere might look like. Is there a homogeneous model? The model in the literature,

$$
\Sigma H \circ \Sigma^{2} H: S^{5} \rightarrow S^{4} \rightarrow S^{3}
$$

does not seem useful.

- Ricci flow
- $\pi_{0} \operatorname{Diff}\left(S^{4}\right)=0$? (no exotic 5 -spheres?)
- $\pi_{2}\left(\right.$ Metrics $\left./ \operatorname{Diff}\left(S^{4}\right)\right)=0$?

