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The space of connections

G a compact Lie group — say G = SU(2)

M a riemannian 4-manifold — say M = S4

B a principle G -bundle over M — say B = S4 × SU(2)

A = the space of connections in B

D = d + A the covariant derivative

A an su(2)-valued 1-form on S4

F = D2 the curvature, an su(2)-valued 2-form

G = the group of automorphisms of B (gauge transformations)

G = Maps(S4 → SU(2))

A/G = the gauge equivalence classes of connections
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The Y-M flow on the unparametrized loops of connections

The Yang-Mills action SYM(A) =
1

2π2

∫
M

1

4
tr(−F ∗ F )

(normalized so that the instanton has SYM = 1.)

The metric on A (ds)2
A =

1

2π2

∫
M

1

2
tr(−δA ∗ δA)

The gradient flow
∂A

∂t
= −∇SYM = ∗D ∗ F (A)(

∂tAµ(x) = DνFνµ(x) = ∂ν∂νAµ(x) + · · ·
)

The Y-M flow is G-invariant, so it acts:

on the gauge equivalence classes, A/G
pointwise on loops of connections, Maps(S1 → A/G)

on unparametrized loops, L = Maps(S1 → A/G)/Diff (S1)
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The problem

What is the generic long-time behavior of the Y-M flow on the
space L of unparametrized loops?

A stable loop would be a parametrized loop σ 7→ A(σ) on which
the flow acts by reparametrization: ∂tA(σ) = v(σ)∂σA(σ) .

Are there nontrivial stable loops for all the nontrivial elements in
π0L = π1(A/G)?

A is contractible, so

π1(A/G) = π0G = π0Maps(S4 → G ) = π4G

π4SU(2) = Z2

SU(2) is the only compact Lie group with nontrivial π4.
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Personal motivation

Hypothetical application in a speculative physics theory [DF, 2003].

The lambda model is a modified 2-d nonlinear model whose target
space is the space of space-time fields, e.g., A/G.

The modification consists of interspersing the ordinary dilation
operator of the nonlinear model with the gradient flow of the
space-time action, e.g., SYM .

The dilation operator of the lambda model generates a measure on
the target manifold — a space-time quantum field theory.

A stable loop for the SU(2) Yang-Mills flow is a classical winding
mode for the lambda model.

If the stable loop can be quantized in the lambda model, it might
give low energy states that are not in lagrangian SU(2) quantum
gauge field theory, and that might be observable.
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The result

A plausible outcome of the Y-M flow would be for one point on
the loop to flow to a saddle point with a one-dimensional unstable
manifold. The outgoing flows in both directions along the unstable
manifold would end at the flat connection. The unstable manifold
would thus form a stable loop.

Here, I find such a saddle point, with SYM = 2, and show that its
unstable manifold is one-dimensional, so forms a stable loop.

Actually, the saddle point is not a point, but rather a loop of fixed
points.

This is naive mathematics: entirely explicit, elementary
calculations.

6 / 30



Previous work

Sibner, Sibner and Uhlenbeck (1989) constructed nontrivial loops
of connections in the trivial bundle over S4, with certain given
U(1) symmetry.

Then they minimized over loops with the given U(1) symmetry the
maximum of SYM on the loop, and showed that this min-max was
realized by a solution of the Yang-Mills equations.

As far as I can tell, these solutions have SYM > 2. Each of these
solutions should have a one-dimensional unstable manifold within
the space of connections of the given U(1) symmetry, but the full
unstable manifold, within the space of all connections, presumably
has dimension > 1.

They conjectured the existence of an additional solution, not given
by their construction. Presumably, their missing solution is the
saddle point described here.
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SU(3)/SU(2) = S5 ⊂ C3

Lacking intuition, I looked for an explicit nontrivial loop of SU(2)
connections, planning to run the Y-M flow numerically to see what
would happen.

The SU(2) bundles over S5 are classified by π4SU(2), because
they are made by gluing together trivial bundles on the north and
south hemispheres using a map from the equator, S4, to SU(2).
So there is a unique nontrivial SU(2) bundle over S5.

SU(3)→ SU(3)/SU(2) = S5 ⊂ C3 is a homogeneous model of the
nontrivial bundle, with a canonical connection invariant under
SU(3)L × U(1)R .

Pull back along a suitable map S1 × S4 → S5 to get a nontrivial
loop of SU(2) connections on S4,

σ ∈ [0, 2π] 7→ Dσ

with D0 and D2π nontrivially gauge equivalent flat connections.
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Parametrizations

S3 ⊂ C2 : z = (z1, z2) |z1|2 + |z2|2 = 1

S4 ⊂ R⊕ C2 : (cos θ, z1 sin θ, z2 sin θ) 0 ≤ θ ≤ π

r = ex = tan
θ

2

U(2) symmetry

The map S1 × S4 → S5 can be chosen so that each connection Dσ

is invariant under the action of U(2) on S3 ⊂ C2.

For example, take

(σ, θ, z1, z2) 7→
(

cos θ + i sin θ cos
σ

2
, z1 sin θ sin

σ

2
, z2 sin θ sin

σ

2

)
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An additional Z2 symmetry exchanges Dσ ↔ D2π−σ.

So the midpoint Dπ has an enhanced U(2)oZ2 symmetry.

Dπ should flow to the saddle point.

The Z2 symmetry would exchange the two branches of the
unstable manifold.

Instead of running the Y-M flow numerically on the loop, it is
considerably easier just to minimize SYM within the space of
U(2)oZ2-invariant connections.

U(2) acts transitively on S3, so the U(2)-invariant connection
forms Aσ are functions only of θ, or x .

The additional Z2 symmetry reflects θ ↔ π − θ, x ↔ −x , so the
invariant connection forms satisfy reflection symmetry conditions.
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Numerical investigations
The connection 1-form A(θ) has two inde-
pendent components, satisfying certain sym-
metry conditions under θ → π − θ.

Write them as suitable polynomials in cos θ.
SYM is a quartic polynomial in the coeffi-
cients of the polynomials.

Minimize SYM numerically on this 2N di-
mensional submanifold of the space of invari-
ant connections, using Sage, Mathematica,
and Maple. The programs misbehaved for
N > 15.

The numerics suggest an absolute minimum
at SYM = 2.

SYM a small integer suggests topology.

SU(3): SYM = 2.4

N min(SYM)

1 2.15627
2 2.06011
3 2.03019
4 2.01735
5 2.01086
6 2.00723
7 2.00504
8 2.00368
9 2.00346

10 2.00313
11 2.00286
12 2.00251
13 2.00202
14 2.00186
15 2.00147
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(anti-)self-duality

F± =
1

2
(F ± ∗F ) ∗ the Hodge operator

S± =
1

8π2

∫
S4

(−F±∗F±) =

∫ ∞
−∞

dx L±(x)

SYM = S+ + S−

S+ − S− ∈ Z is the instanton number

The instanton: F = ∗F S+ = 1

F− = 0 L−(x) = 0 S− = 0

The U(2)-invariant instanton centered at the south pole (x =∞)
will be written explicitly later. For now, its action density is

L+(x) = Linst(x) = .75 cosh−4(x − x+)

where
r+ = e−x+

is the instanton size.
12 / 30



6 4 2 2 4 6

0.2

0.4

0.6

0.8

1.0

The numerics suggest that SYM = 2 is attained as a zero-size
instanton at the south pole (at x=∞) combined with a zero-size
anti-instanton at the north pole (at x=−∞).
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The U(2)-invariant su(2)-valued forms on S3

U(2) invariance:

ω(hz) = hω(z)h−1 h ∈ U(2)

Identify S3 with SU(2),

ê =

(
1
0

)
z = gê g =

(
z1 −z̄2

z2 z̄1

)
There is a single invariant 0-form:

φ(z) = i(P − Q) = g

(
i 0
0 −i

)
g−1 P = zz†, Q = 1− P

There are three invariant 1-forms:

v+ = PdP v− = (dP)P v3 = (z†dz)(Q − P)

The Maurer-Cartan form on SU(2) is

Ω = gd(g−1) = v+ − v− + v3
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The instanton and the anti-instanton

The basic instanton of size r+ located at the south pole (x =∞)

D+ = d + f+(x)Ω f+ =
1

1 + e2(x−x+)
r+ = e−x+

The basic anti-instanton of size r− at the north pole (x = −∞)

D− = d + f−(x)Ω f− =
1

1 + e−2(x−x−)
r− = ex−

The instanton and anti-instanton twisted by h± ∈ SU(2)/{±1}

(gh+g−1)D+(gh+g−1)−1 (gh−g−1)D−(gh−g−1)−1

8 (anti-)instanton moduli: 4 the location in S4

1 the size r±
3 the twist h±
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The twisted-pair

Send r± → 0. Then, away from the poles, f±1 = 1, so

D± = gdg−1, so (gh±g−1)D±(gh±g−1)−1 = gdg−1

so it makes sense to patch the twisted pair at the equator, defining

D(h−, h+) =

{
(gh−g−1)D−(gh−g−1)−1 x ≤ 0

(gh+g−1)D+(gh+g−1)−1 x ≥ 0

The 15 parameter conformal group of S4 absorbs 14 of the 16
moduli. Use 8 to put the instanton and the anti-instanton at the
poles, and use dilation to scale r+ and r−1

− , to make r+ = r−.

This leaves the 6 parameters of O(4) = SU(2)L × SU(2)R/{±1}.
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SU(2)L × SU(2)R/{±1} acts on the twists by

(h+, h−) 7→ (gRh+g−1
L , gRh−g−1

L )

Absorb h+ by taking gL = gRh+, leaving SU(2)R/{±1} acting by
conjugation on h−

(1, h−) 7→ (1, gRh−g−1
R )

Thus the zero-size twisted-pair has 14 conformal moduli, plus a 1
parameter symmetry, plus 1 additional parameter

cos
σ

2
=

1

2
tr(h−h−1

+ ) 0 ≤ σ ≤ 2π

with σ = 0 ∼ σ = 2π because the twists act by conjugation.
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The loop of zero-size twisted pairs

The relative twist h−h−1
+ /{±1} lies in SU(2)/{±1} = SO(3).

π1SO(3) = Z2. We want to show that the nontrivial loops of
zero-size twisted pairs are nontrivial loops in A/G.

A convenient nontrivial loop of zero-size twisted pairs is

Dσ =

{
D−σ = e

1
4
σφD−e−

1
4
σφ x ≤ 0

D+
σ = e−

1
4
σφD+e

1
4
σφ x ≥ 0

gh−g−1 = e
1
4
σφ = g

(
e

iσ
4 0

0 e−
iσ
4

)
g−1

h−h−1
+ =

(
e

iσ
2 0

0 e−
iσ
2

)
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Non-triviality of the loop of twisted pairs in A/G
The twisted pairs, as written, are singular at the poles (before the
limit r± → 0). The connections can be made regular everywhere
on S4 by a gauge transformation, giving

Dσ =

{
D−σ = Φ−σ D−(Φ−σ )−1 x ≤ 0

D+
σ = Φ+

σ D+(Φ+
σ )−1 x ≥ 0

Φ−σ (x , g) = e
1
2
σk−(x)φ Φ+

σ (x , g) = e(π− 1
2
σk+(x))φ

k+(−∞) = 0 k+(−∞) = 1 k− + k+ = 1 .

D2π = ΦD0Φ−1

Φ = e−πk+(x)φ = g

(
e−iπk+(x) 0

0 e iπk+(x)

)
g−1

Φ = ΣH : S4 → S3, the suspension of the Hopf map H : S3 → S2,
representing the nontrivial element in π4S3.
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Stability

The zero-size twisted-pairs are all critical points of the Y-M action,
so the loop of zero-size twisted pairs is pointwise fixed under the
Y-M flow.

Is the loop of zero-size twisted-pairs stable under the flow?

The instanton and the anti-instanton are individually stable, so we
need only calculate the flow in the two zero-modes r+ and σ, in
the limit where r+ is asymptotically small.

To determine the topology of the flow, it should be enough to
calculate ṙ+ and σ̇ as functions of r+ and σ, at least to leading
order in r+.
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Calculation of ṙ+ and σ̇

Write the general asymptotically small U(2)-invariant perturbation

Dσ =

{
e

1
4
σφ (D− + δA−) e−

1
4
σφ x ≤ 0

e−
1
4
σφ (D+ + δA+) e

1
4
σφ x ≥ 0

(1) Enforce the flow equation to leading order

ṙ−∂r−D− +
1

4
σ̇[φ, D−] = ∗D−∗D−δA−

ṙ+∂r+D+ −
1

4
σ̇[φ, D+] = ∗D+∗D+δA+

(2) Require Dσ to be regular at x = 0,

e
1
4
σφ (D− + δA−) e−

1
4
σφ − e−

1
4
σφ (D+ + δA+) e

1
4
σφ = 0 + O(x2)

Together, (1) and (2) ensure that Dσ satisfies the flow equation.
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Working in Ax = 0 gauge, expand in the invariant 1-forms on S3

δA± = δA+
±(x)v+ + δA−±(x)v− + δA3

±(x)v3

The flow equations are thus second order inhomogeneous linear
ordinary differential equations in x , with non-constant 3× 3 matrix
coefficients. They can be diagonalized and integrated exactly.

Then there are 6 patching equations: on the values of the
coefficients of v+, v−, v3 at x = 0, and the first derivatives.

After elementary but laborious calculations, I get

ṙ+ = r3
+(1 + 2 cosσ) + O(r5

+)

σ̇ = −8r2
+ sinσ + O(r4

+)

The topology of the flow is easiest understood by looking at the
flow lines.
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The stable loop

There is a stable loop consisting of two branches.

One branch consists of the line of fixed points at r+ = 0 from
σ = π to σ = 0, then the outgoing trajectory along the vertical
axis at σ = 0.

The second branch consists of the line of fixed points at r+ = 0
from σ = π to σ = 2π, then out along the vertical axis at σ = 2π.

Recall that the two vertical axes, σ = 0 and σ = 2π are gauge
equivalent, under a non-trivial gauge transformation.

I strongly suspect that the outgoing flows at σ = 0 and σ = 2π
end at the flat connection.
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Geometry

The metric inherited from the space of connections A is, to leading
order in r+,

(ds)2 = 64
[
(dr+)2 + r2

+

(
dσ′
)2]

σ′ =
1

4
σ 0 ≤ σ′ ≤ π

2

The flow is the gradient flow wrt this metric for

SYM = 2− 16r4
+(1 + 2 cosσ) + O(r6

+)

A/G is a cone: the upper right quadrant of the plane, the positive
x-axis identified with the positive y -axis.

The space of zero-size twisted pairs lives at the vertex of the cone,
at r+ = 0.
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The outgoing trajectory

The outgoing trajectory at σ = 0 (or σ = 2π) is the flow of
connections of the form

D = d + f (x)Ω f (±∞) = 0, f (x) = f (−x)

generated by
df

dt
= ∂2

x f − 4f (1− f )(2f − 1)

with initial conditions

f (x)→ 1

1 + r+(t)2e2|x | t → −∞

r+(t)2 = (−6t)−1 + O(t−2)
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df

dt
= ∂2

x f − 4f (1− f )(2f − 1)

is a nonlinear diffusion equation, a special case of the
FitzHugh–Nagumo equation

∂tu = ∂2
x u − u(u − 1)(u − a) at a =

1

2
.

This is not integrable, but some exact solutions are known,
including travelling shock waves which become static when a = 1

2 .
These are our instanton and anti-instanton.

The calculation described above guarantees an early time solution
that starts as a widely separated shock-anti-shock pair moving
slowly towards each other with a speed that goes as 1

−2t .

Does this solution exist for all t? As t → +∞, does the
shock-anti-shock pair annihilate to f = 0 (the flat connection)?
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Questions

What is the outgoing trajectory from the loop of twisted pairs
located at separation R in euclidean R4? How does it
approach the flat connection?

I expect that any low energy states in the lambda model
would come from this asymptotic approach to the flat
connection on R4.

Global stability? Is the attracting basin open and dense? Are
there any other locally stable loops?
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Stable 2-spheres (lambda instantons)?

π2(A/G) = π5G

π5SU(3) = Z. G2/SU(3) = S6 is a model. Numerics are
essentially the same [DF, Pisa Workshop on Geometric Flows,
June 2009]. The space of twisted pairs in SU(3) contains a
CP1. The stability calculation has not yet been done.

π5SU(2) = Z2. I have no idea what a stable 2-sphere might
look like. Is there a homogeneous model? The model in the
literature,

ΣH ◦ Σ2H : S5 → S4 → S3

does not seem useful.

Ricci flow

π0Diff (S4) = 0? (no exotic 5-spheres?)

π2(Metrics/Diff (S4)) = 0?
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