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1d quantum systems, critical in the bulk

0 x→ L
′

1

Z = tr e−βH = tr e−H/T

(~ = kB = v = 1 in our units.)

for L/β � 1

ln Z = ln z(Λβ) +
πc

6

L

β
+ ln z ′

The bulk term is determined by bulk conformal invariance (c being
the conformal central charge of the bulk system).
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The boundary renormalization group flow

Λ
∂ ln z

∂Λ
= β

∂ ln z

∂β
= −T

∂ ln z

∂T
= βa(λ)

∂ ln z

∂λa

The λa are the boundary coupling constants. They parametrize the
space of all boundary conditions for the given bulk system (the
space of all boundary qft’s for the given bulk system).

When the boundary is at a critical point, i.e., λ = λc with
βa(λc) = 0, then z is a pure number, independent of β.

Affleck & Ludwig (1991) called this number g , the non-integer
degeneracy. (They called it a “degeneracy” because it can be
evaluated at β =∞, where the partition function counts the
ground states).

Their conjecture: for any nontrivial rg trajectory, g at the UV fixed
point (T =∞) is greater than g at the IR fixed point (T = 0).
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Boundary entropy

entropy of the full system

S =

(
1− β∂

∂β

)
ln Z

second law

β
∂S

∂β
= −β2 ∂

2 ln Z

∂β2
= −β2

(
〈H2〉 − 〈H〉2

)
< 0

boundary entropy

S =

(
1− β∂

∂β

)
(ln z +

πc

6

L

β
+ ln z ′) = s +

πc

3

L

β
+ s ′

s =

(
1− β∂

∂β

)
ln z
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Gradient formula for the boundary entropy
[D.F. & A.K., 2004]

∂s

∂λa
= −gab(λ)βb(λ)

gab(λ) = β

∫ β

0
dτ [1− cos (2πτ/β)] 〈φa(−iτ)φb(0)〉c

where the φa(t) are the boundary operators

∂ ln z

∂λa
= β

〈
φa

〉
assumptions

I bulk conformal invariance

I canonical UV behavior (as at a UV fixed point)
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second law of boundary thermodynamics

β
∂s

∂β
= Λ

∂s

∂Λ
= βa ∂s

∂λa
= −βagabβ

b ≤ 0

s decreases along the rg flow, and is stationary iff βa = 0

ln g decreases from UV fixed point to IR fixed point.

The boundary behaves thermodynamically like an isolated system.

Questions

I Why do we need bulk conformal invariance?

I Why do we need canonical UV behavior?

I Is s bounded below?
(in general? for a given bulk? for a given system as T → 0?)
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Supersymmetric 1d systems, critical in the bulk

a conserved fermionic super-charge

H = Q̂2

positive thermodynamic energy

−∂Z

∂β
= tr

(
e−βHH

)
> 0

(Advertisement: in cond-mat/0505084 and 0505085, I argue that
circuits made of bulk-critical quantum wire, joined at boundaries
and junctions, would be ideal for asymptotically large-scale
quantum computing: the c = 24 monster system in particular.

I define an entropy current operator, and derived circuit laws for
the flow of entropy, which I suggest are basic constraints on
quantum computation in such circuits.)
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A second gradient formula for supersymmetric systems
[D.F. & A. K., arXiv:0810.0611v1 [hep-th]]

∂ ln z

∂λa
= −gS

ab(λ)βb(λ)

(the λa now restricted to the susy coupling constants)

implying positivity of the susy boundary energy

Λ
∂ ln z

∂Λ
= β

∂ ln z

∂β
= βa ∂ ln z

∂λa
= −βagS

abβ
b ≤ 0

The boundary behaves like an isolated supersymmetric system.

ln z decreases along the rg flow.
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Here, I first prove the positivity of the boundary energy

Λ
∂ ln z

∂Λ
= β

∂ ln z

∂β
≤ 0

then sketch how the gradient formula is proved by the same kind
of argument.
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Local densities of energy and super-charge

H =

∫ L

0
dx H(t, x)

Q̂ =

∫ L

0
dx ρ̂(t, x)

{Q̂, ρ̂(t, x)} = 2H(t, x)

local conservation of super-charge

∂t ρ̂(t, x) + ∂x ̂(t, x) = 0
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Boundary energy and super-charge

h(t) = lim
ε→0

∫ ε

0
dx H(t, x)

q̂(t) = lim
ε→0

∫ ε

0
dx ρ̂(t, x)

{Q̂, q̂(t)} = 2h(t)

bulk conformal invariance implies

〈H(t, x)〉 =
πc

6

1

β
0 < x < L

so

−∂ ln z

∂β
=
〈
h
〉
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Separate Q̂ at x = ε > 0

q̂ε(t) =

∫ ε

0
dx ρ̂(t, x) Q̂bulk(t) =

∫ L

ε
dx ρ̂(t, x)

Q̂ = q̂ε(t) + Q̂bulk(t)

locality implies
{Q̂bulk(0), q̂(0)} = 0

so 〈
2h
〉

=
〈
{Q, q̂(0)}

〉
=
〈
{q̂ε(0), q̂(0)}

〉
but this equation is useless at ε = 0, because

〈
{q̂(t), q̂(0)}

〉
is uv divergent at t = 0.

The boundary cannot be separated from the bulk, in general.
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Use bulk super-conformal invariance

define

gε(ω) =

∫ ∞
−∞

dt e iωt
〈
{q̂ε(t), q̂(0)}

〉
G±ε (ω) = ±

∫ ±∞
0

dt e iωt
〈
{Q̂bulk(t), q̂(0)}

〉
so

2πδ(ω)
〈
2h
〉

= gε(ω) + G+
ε (ω) + G−ε (ω)

bulk super-conformal invariance implies

G+
ε (iπT ) = 0 = G−ε (−iπT )

so ∫
dω

2π

π2T 2

ω2 + π2T 2
G±ε (ω) = 0

13 / 20



so 〈
2h
〉

=

∫
dω

2π

π2T 2

ω2 + π2T 2
gε(ω)

Now take ε→ 0:

g(ω) =

∫ ∞
−∞

dt e iωt
〈
{q̂(t), q̂(0)}

〉
β
∂ ln z

∂β
= −β

〈
h
〉

= −β
2

∫
dω

2π

π2T 2

ω2 + π2T 2
g(ω)

which is UV-finite as long as dim[g(ω)] < 1, i.e., dim[q̂] < 1.

We have g(ω) ≥ 0 and g(ω) = 0 iff q̂ = 0, so

β
∂ ln z

∂β
≤ 0

with equality iff the boundary is critical (superconformal).
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The susy gradient formula

boundary fermionic operators

{Q̂, φ̂a(t)} = φa(t)

boundary beta-functions

q̂ = −2βaφ̂a

h =
1

2
{Q̂, q̂} = −βaφa

Λ
∂ ln z

∂Λ
= β

∂ ln z

∂β
= −β

〈
h
〉

= β
〈
βaφa

〉
= βa ∂ ln z

∂λa
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〈
φa

〉
=
〈
{Q̂, φ̂a(0)}

〉
=
〈
{q̂ε(t) + Q̂bulk(t), φ̂a(0)}

〉

ga(ω) =

∫ ∞
−∞

dt e iωt
〈
{q̂(t), φ̂a(0)}

〉
=

∫ ∞
−∞

dt e iωt
〈
{−2βbφ̂b(t), φ̂a(0)}

〉
= −2βbgab(ω)

〈
φa

〉
=

∫
dω

2π

π2T 2

ω2 + π2T 2
ga(ω)

= −2βb

∫
dω

2π

π2T 2

ω2 + π2T 2
gab(ω)

16 / 20



∂ ln z

∂λa
= −gS

abβ
b

gab(ω) =

∫ ∞
−∞

dt e iωt
〈
{φ̂b(t), φ̂a(0)}

〉

gS
ab = 2β

∫
dω

2π

π2T 2

ω2 + π2T 2
gab(ω)

= π

∫
dt e−π|t|T

〈
{φ̂b(t), φ̂a(0)}

〉
= 2π

∫ β

0
dτ sin

(
πτ

β

)〈
φ̂b(−iτ), φ̂a(0)

〉
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Some questions

1. Why do we need bulk conformal invariance?

2. Why do we need canonical uv behavior in the boundary?
I no negative dimension boundary operators
I no strongly irrelevant boundary operators

3. Can ln z (and/or s) be bounded below?
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Bulk conformal invariance and zeros of response functions

∂tQ̂bulk(t) =

∫ L

ε
dx [−∂x ̂(t, x)] = ̂(t, ε)

Define response functions

R±a (ω) = ±
∫ ±∞

0
dt e iωt−δ|t|〈{i ̂(t, ε), φ̂a(0)}

〉
R+

a (ω) is analytic in the upper half-plane, R−a (ω) in the lower.

Use the conservation equation

G±a,ε(ω) = ±
∫ ±∞

0
dt e iωt−δ|t|〈{Q̂bulk(t), φ̂a(0)}

〉
=

R±a (ω)

ω ± iδ
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τ = it, 0 < τ < β

〈
̂(−iτ, ε) φ̂a(0)

〉
=

∫
dω

2πi

e−ωτ

1 + e−ωβ
[
R+(ω) + R−(ω)

]
poles at

ωn = 2πinT n ∈ 1

2
+ Z

so〈
̂(−iτ, ε) φ̂a(0)

〉
= β−1

∑
n

e−ωnτ
[
θ(n)R+(ωn)− θ(−n)R−(ωn)

]
but

j(−iτ, x) = AG (x + iτ) + ĀG (x − iτ)

so
R+

a (iπT ) = 0 = R−a (−iπT )
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